


Politecnico di Torino

Doctoral Thesis

Data Mining Algorithms for
Internet Data

from Transport to Application Layer

Author:

Luigi Grimaudo

Supervisor:

Prof. Elena Baralis

Co-supervisor:

Dr. Marco Mellia

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in

Information and System Engineering

XXVI cycle

March 2014



“Never to limit yourself to one style, to keep an open mind.”

Frank Dux



POLITECNICO DI TORINO

Abstract

Information and System Engineering

XXVI cycle

Doctor of Philosophy

Data Mining Algorithms for Internet Data

from Transport to Application Layer

by Luigi Grimaudo

Nowadays we live in a data-driven world. Advances in data generation, collection and

storage technology have enabled organizations to gather data sets of massive size.

Data mining is a discipline that blends traditional data analysis methods with sophisti-

cated algorithms to handle the challenges posed by these new types of data sets.

The Internet is a complex and dynamic system with new protocols and applications

that arise at a constant pace. All these characteristics designate the Internet a valuable

and challenging data source and application domain for a research activity, both looking

at Transport layer, analyzing network tra�c flows, and going up to Application layer,

focussing on the ever-growing next generation web services: blogs, micro-blogs, on-

line social networks, photo sharing services and many other applications (e.g., Twitter,

Facebook, Flickr, etc.).

In this thesis work we focus on the study, design and development of novel algorithms and

frameworks to support large scale data mining activities over huge and heterogeneous

data volumes, with a particular focus on Internet data as data source and targeting

network tra�c classification, on-line social network analysis, recommendation systems

and cloud services and Big data.



Acknowledgements

I would like to express my special appreciation and thanks to my advisor Prof. Elena

Baralis, your advices on both research as well as on my career have been priceless. Your

mentoring was precious and fundamental for the development of my PhD work.

I want also like to thank Dr. Marco Mellia, your qualified support and availability helped

me throughout my research activity.

I would like to show my gratitude to Narus Inc. too, and in particular to all the members

of the CTO o�ce. I spent almost a third of my Phd as intern with you, giving me the

opportunity to work on very interesting projects.

My PhD and my university career probably would not have been possible without the

people that accompanied me in these years. I want to thank all my research group col-

leagues, Alberto, Alessandro, Tania, Daniele, Silvia, Paolo and Giulia for their constant

support and suggestions. I would like also to thank all the people I meet during my

PhD studies.

A special thank goes to my family for their constant belief and support. I will be always

grateful to you.

Finally, a special acknowledgement to Piera, my future wife. Her love, madness and

incessant will to flight abroad for a weekend support me through these years.. . .

iv



Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Application Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Association rule mining algorithms and Big data . . . . . . . . . . . . . . 5

2 Hierarchical Learning for Fine Grained Internet Tra�c Classification 7

2.1 Data set and classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Hierarchical Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Hierarchy Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Classification Algorithm Selection . . . . . . . . . . . . . . . . . . 14

2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Robustness versus time . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Experiment considering other data sets . . . . . . . . . . . . . . . 17

2.3.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 17

3 SeLeCT: Self-Learning Classifier for Internet Tra�c 19

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Key features of SeLeCT . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Applications to tra�c classification . . . . . . . . . . . . . . . . . . 22

3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Datasets to evaluate SeLeCT . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 The SeLeCT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



Contents vi

3.4.1 Iterative clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1.1 The filtering procedure . . . . . . . . . . . . . . . . . . . 28

3.4.1.2 The iterative clustering procedure . . . . . . . . . . . . . 29

3.4.2 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2.1 Bootstrapping the labeling process . . . . . . . . . . . . . 30

3.4.3 Self-seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Experimental dataset . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.3 Iterative clustering performance . . . . . . . . . . . . . . . . . . . . 33

3.6 Interesting findings enabled by SeLeCT . . . . . . . . . . . . . . . . . . . 37

3.7 Exploring the seeding process . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7.1 Self-seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7.2 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7.2.1 dominatedPort Clusters . . . . . . . . . . . . . . . . . . . 40

3.7.2.2 randomPort clusters . . . . . . . . . . . . . . . . . . . . . 41

3.7.3 Seeding evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Parameter sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.1 Setting filtering parameters . . . . . . . . . . . . . . . . . . . . . . 43

3.8.2 Sensitivity to portFraction . . . . . . . . . . . . . . . . . . . . . . 45

3.8.3 Sensitivity to k and minPoints . . . . . . . . . . . . . . . . . . . . 46

3.8.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 49

4.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 The Proposed Multiple-Level Clustering Framework . . . . . . . . . . . . 52

4.3.1 Twitter Data Collection and Preprocessing . . . . . . . . . . . . . 52

4.3.2 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Cluster Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Framework Configuration . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.3 Analysis of the Clustering Results . . . . . . . . . . . . . . . . . . 56

4.4.3.1 Tweet Analysis in the Paralympics Dataset. . . . . . . . 57

4.4.3.2 Tweet Analysis in the Concert Dataset. . . . . . . . . . 58

4.4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Analyzing Twitter User-Generated Content Changes 61

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Generalized itemset mining . . . . . . . . . . . . . . . . . . . . . . 63

5.1.2 Dynamic data mining . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3 Data mining from user-generated content . . . . . . . . . . . . . . 65

5.2 The TwiChI framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Twitter data crawling and representation . . . . . . . . . . . . . . 67

5.2.1.1 Twitter data representation . . . . . . . . . . . . . . . . . 68

5.2.1.2 Twitter crawler . . . . . . . . . . . . . . . . . . . . . . . 69



Contents vii

5.2.2 History Generalized pattern mining . . . . . . . . . . . . . . . . . 71

5.2.3 The HiGen miner algorithm . . . . . . . . . . . . . . . . . . . . . . 73

5.2.4 Pattern classification . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Evaluated datasets and taxonomy . . . . . . . . . . . . . . . . . . 77

5.3.2 Characteristics of the mined patterns . . . . . . . . . . . . . . . . . 77

5.3.3 Real-life use-case study . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3.1 Weather forecasting service profiling . . . . . . . . . . . . 79

5.3.3.2 Service shaping . . . . . . . . . . . . . . . . . . . . . . . . 79

6 TUCAN: Twitter User Centric ANalyzer 81

6.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Bird song generation and cleaning process . . . . . . . . . . . . . . 84

6.2.2 Cross-correlation computation . . . . . . . . . . . . . . . . . . . . 86

6.2.3 Dashboard visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 The TUCAN GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.3 Parameter sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 88

6.3.4 User centric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Personalized Tag Recommendation Based on Generalized Rules 95

7.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Motivating example 1 . . . . . . . . . . . . . . . . . . . . . 96

Motivating example 2 . . . . . . . . . . . . . . . . . . . . . 98

7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 The recommendation system . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.3 Generalized association rule mining . . . . . . . . . . . . . . . . . . 103

7.3.3.1 The GenIO Algorithm . . . . . . . . . . . . . . . . . . . 105

7.3.3.2 Rule generation . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.4 Tag selection and ranking . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.4.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.4.2 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4.1 Photo collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4.3 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.4 Real-life use-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4.5 Parameter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Misleading Generalized Itemset Discovery 119

8.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2 Preliminary definitions and notations . . . . . . . . . . . . . . . . . . . . . 123

8.3 The Misleading Generalized Itemset mining problem . . . . . . . . . . . . 125



Contents viii

8.4 The Misleading Generalized Itemset Miner algorithm . . . . . . . . . . . 127

8.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Recs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

TeamLife . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.5.2 Expert-driven MGI validation in a mobile application scenario . . 132

8.5.3 Algorithm parameter analysis . . . . . . . . . . . . . . . . . . . . . 133

8.5.3.1 E↵ect of the maximum NOD threshold . . . . . . . . . . 133

8.5.3.2 E↵ect of the correlation thresholds . . . . . . . . . . . . . 134

8.5.3.3 E↵ect of the minimum support threshold . . . . . . . . . 135

8.5.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9 SeARuM: a Cloud-Based Service for Association Rule Mining 139

9.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3 The SeARuM architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.3.1 Network measurement acquisition . . . . . . . . . . . . . . . . . . 142

9.3.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.3.3 Item frequency computation . . . . . . . . . . . . . . . . . . . . . . 145

9.3.4 Itemset mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.3.5 Rule extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.3.6 Rule aggregation and sorting . . . . . . . . . . . . . . . . . . . . . 146

9.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.4.1 Execution time distribution among jobs . . . . . . . . . . . . . . . 148

9.4.2 Evaluation of association rule mining . . . . . . . . . . . . . . . . . 149

9.4.3 Network knowledge characterization . . . . . . . . . . . . . . . . . 150

9.4.4 E↵ect of the support and confidence thresholds . . . . . . . . . . . 151

10 Conclusions 153

Bibliography 157



List of Figures

2.1 Number of flows in each ISP data set of 1 hour. . . . . . . . . . . . . . . . 10

2.2 Tree structure for the Hierarchical classifier. . . . . . . . . . . . . . . . . . 11

2.3 Comparison of di↵erent classification algorithms. Average F-measure and
Recall considering ten-fold cross-validation test on a 1h long trace from
ISP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 F-Measure and Recall for each class for the Hierarchical and Flat classi-
fiers. Training on h.17 data set and testing on h.18 data set. ISP trace.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Accuracy of the Hierarchical classifier when used in real time. One day
long data set from ISP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Improvement for each class for the Hierarchical and Flat classifiers. Test-
ing on Campus data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 CDF of the flow length in packets (on the left), and bytes (on the right).
The vertical line is in correspondence of 6 data packets. . . . . . . . . . . 25

3.2 Accuracy of the clusters for simple port-based classifier, classic k-means
and SeLeCT. Accuracy computed per flows on the top, per byte on the
bottom. Results reported for all datasets. . . . . . . . . . . . . . . . . . . 34

3.3 Accuracy before and after the di↵erent filtering steps for Dataset-4S. . . . 36

3.4 Accuracy over di↵erent batches. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 eMule recall when only S labeled clusters are used as bootstrap at batch
1 for Dataset-4S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 New protocols suddenly appear: HTTPS tra�c is added at batch 3, and
POP3 tra�c is added at batch 6 in Dataset-4S. . . . . . . . . . . . . . . . 42

3.7 Fraction of clustered flows at each step. . . . . . . . . . . . . . . . . . . . 44

3.8 Fraction of flows directed to the dominating srvPort in each cluster for
di↵erent steps for Dataset-4S. . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Sensitivity analysis to portFraction: accuracy, fraction of clustered flows
and number of clusters in left, middle and right plot. . . . . . . . . . . . . 45

3.10 Sensitivity to k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 Sensitivity to MinPoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Two simplified example tweets . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The proposed multiple-level clustering framework for tweet analysis . . . . 53

5.1 The TwiChI framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Examples of aggregation trees. . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Number of mined HiGens. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



List of Figures x

6.1 TUCAN Web Interface showing the analysis of the WhiteHouse o�cial
account. T = 7 days, plaing cleaning and Cosine similarity are considered. 85

6.2 E↵ect of di↵erent time window sizes T . Plain cleaning and Cosine similarity. 87

6.3 E↵ect of di↵erent cleaning methods. Cosine similarity and T = 7 days. . . 89

6.4 E↵ect of mention removal. T = 7 days, plain cleaning, and Cosine similarity. 89

6.5 Similarity among bird songs for di↵erent type of users. T = 7 days, plain
cleaning, Cosine similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Similarity among users over di↵erent bird songs. Plain cleaning and Co-
sine similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Example of use-case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 The recommendation system architecture . . . . . . . . . . . . . . . . . . 101

7.3 Portion of an example generalization hierarchy built over the photo col-
lection tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Real-life dataset. Performance comparison by varying the reference rank
k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.5 Benchmark dataset. Performance comparison by varying the reference
rank k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.6 Parameter analysis. MRR, S@1/P@1, and P@5 measures. . . . . . . . . . 118

8.1 Example taxonomy built on D’s attributes . . . . . . . . . . . . . . . . . . 121

8.2 Impact of the maximum NOD threshold on the number of mined MGIs.
min sup=1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Impact of the maximum negative threshold max neg cor on the number
of mined MGIs. max NOD=1%, min sup=1%. . . . . . . . . . . . . . . . 134

8.4 Impact of the minimum positive threshold min pos cor on the number of
mined MGIs. max NOD=1%, min sup=1%. . . . . . . . . . . . . . . . . . 135

8.5 Impact of the minimum support threshold min sup on the number of
mined MGIs. max NOD=1%. . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.6 MGIMiner scalability. min sup=1%, max NOD=1%, max neg cor=0.6,
min pos cor=0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.1 Dataset D2: Execution time distribution among jobs for MinSup=30%
and MinConf=50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.2 SeARuM speedup on D2 dataset . . . . . . . . . . . . . . . . . . . . . . . 148

9.3 Dataset D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.4 Dataset D1: E↵ect of MinSup and MinConf thresholds . . . . . . . . . 149

9.5 Dataset D2: E↵ect of MinSup and MinConf thresholds . . . . . . . . . 150



List of Tables

2.1 Set of protocols identified by Tstat that have more than 50 samples in
one of the data sets used for training set. . . . . . . . . . . . . . . . . . . 9

2.2 Selected feature on the server to client tra�c. . . . . . . . . . . . . . . . . 13

2.3 Computational and memory cost for di↵erent classifiers to execute a train-
ing phase on a 1h long campus data set. . . . . . . . . . . . . . . . . . . . 18

3.1 Datasets used in the Chapter for performance evaluation. The table in-
cludes flows for which features can be computed. . . . . . . . . . . . . . . 24

3.2 Confusion matrix of a classifier based on the simple k-means for Dataset-2S.
Columns give the ground truth. . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Confusion matrix of the SeLeCT classifier for Dataset-2S. Columns give
the ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Confusion matrix at batch 10 for Dataset-3C. . . . . . . . . . . . . . . . 39

3.5 dominatedPort clusters at batch 1. Bold font highlights clusters on non-
standard ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 First- and second-level clusters in the paralympics dataset (DBSCAN
parameters MinPts=30, Eps=0.39 and MinPts=25, Eps=0.49 for first-
and second-level iterations, respectively) . . . . . . . . . . . . . . . . . . . 59

4.2 First- and second- level clusters in the concert dataset (DBSCAN param-
eters MinPts=40, Eps=0.41 and MinPts=21, Eps=0.62 for the first-
and second-level iterations, respectively) . . . . . . . . . . . . . . . . . . . 59

5.1 Example of HiGens extracted by enforcing the minsup = 10%. . . . . . . 62

5.2 HiGen examples. Minsup = 20%. . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 HiGen per category distribution. . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 HiGen selection. Configuration A. minsup = 1%. . . . . . . . . . . . . . . 80

6.1 Top-words ranked by TF-IDF, Barack Obama. . . . . . . . . . . . . . . . 89

7.1 Generalized rules used for recommending to user uj tags subsequent to
Rome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Real-life dataset. Performance comparison in terms of S@k, P@k, and
MRR metrics. Statistically relevant worsening in the comparisons be-
tween our system and the other approaches are starred. . . . . . . . . . . 114

7.3 Benchmark dataset. Performance comparison in terms of S@k, P@k,
and MRR metrics. Statistically relevant worsening in the comparisons
between our system and the other approaches are starred. . . . . . . . . 114

8.1 Example dataset D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xi



List of Tables xii

8.2 MGI mined from D. min sup = 1, max neg cor= 0.65, min pos cor=
0.80, and max NOD = 100%. . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3 UCI and real mobile dataset characteristics and number of mined MGIs
with max neg cor=0.6 and min pos cor=0.7. . . . . . . . . . . . . . . . . 131

8.4 Examples of MGIs mined from TeamLife. . . . . . . . . . . . . . . . . . . 132

9.1 Pre-processing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.2 Sample transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3 Sample items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.4 Sample itemsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.5 Sample rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.6 Sample rules, sorted and aggregated . . . . . . . . . . . . . . . . . . . . . 147

9.7 Network tra�c datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Dedicated to my family and my future wife Piera. . .

xiii





Chapter 1

Introduction

Nowadays we live in a data-driven world. Advances in data generation, collection and

storage technology have enabled organizations to gather data sets of massive size. From

the tweets or comments that users post about any moments of their life to the transaction

data retailers gather from point-of-sale terminals, data is flooding organizations from

every angle. Furthermore data has inherent value and cannot be discarded anymore. A

new attitude towards data analysis arose: Gather whatever data you can, whenever and

wherever possible. Despite that, extracting useful information is becoming more and

more challenging.

Data mining is a discipline that blends traditional data analysis methods with sophisti-

cated algorithms to handle the challenges posed by these new types of data sets. There

are many data mining tasks. Among the most common ones we can mention classifica-

tion (or supervised learning), clustering (or unsupervised learning) and association rule

mining. Classification aims to learn a model from data that are labeled with pre-defined

classes or categories, while clustering organizes data instances into groups or clusters

according to their similarities (or di↵erences). Finally, association rules finds out sets of

data items that occur together frequently.

The Internet is a complex and dynamic system with new protocols and applications

that arise at a constant pace. All these characteristics designate the Internet a valuable

and challenging data source and application domain for a research activity, both looking

at Transport layer, analyzing network tra�c flows, and going up to Application layer,

focussing on the ever-growing next generation web services: blogs, micro-blogs, on-

line social networks, photo sharing services and many other applications (e.g., Twitter,

Facebook, Flickr, etc.).

1



Chapter 1. Introduction 2

On one side in the Internet tra�c management and monitoring field, a critical task

is the identification of application originating tra�c flows, possibly in near real-time

and in an automatic way, to support network operators on the adoption of ad-hoc

countermeasures. On the other, on-line social networks and other Web 2.0 applications

represent a powerful source of knowledge and a valuable matter to research on, but

also one of the most common Big data source. Hence, design e�cient data analysis

approaches, able to scale horizontally with the data volumes, is becoming an interesting

challenge.

In this thesis work we focus on the study, design and development of novel algorithms and

frameworks to support large scale data mining activities over huge and heterogeneous

data volumes, with a particular focus on Internet data as data source and targeting

network tra�c classification, on-line social network analysis, recommendation systems

and cloud services and Big data.

1.1 Transport Layer

Tra�c classification is still today a challenging problem given the ever evolving nature

of the Internet in which new protocols and applications arise at a constant pace. In

the past, so called behavioral approaches have been successfully proposed as valid al-

ternatives to traditional Deep Packet Inspection (DPI) based tools to properly classify

tra�c into few and coarse classes. We push forward the adoption of behavioral classi-

fiers by engineering a Hierarchical classifier [1] that allows proper classification of tra�c

into more than twenty fine grained classes. Thorough engineering has been followed

which considers both proper feature selection and testing seven di↵erent classification

algorithms. Results obtained over actual and large data sets show that the proposed

Hierarchical classifier outperforms o↵-the-shelf non hierarchical classification algorithms

by exhibiting average accuracy higher than 90%, with precision and recall that are higher

than 95% for most popular classes of tra�c.

Network visibility is a critical part of tra�c engineering, network management, and se-

curity. The most popular current solutions, DPI and statistical classification, deeply

rely on the availability of a training set. Besides the cumbersome need to regularly

update the signatures, their visibility is limited to classes the classifier has been trained

for. Unsupervised algorithms have been envisioned as a viable alternative to automati-

cally identify classes of tra�c. However, the accuracy achieved so far does not allow to

use them for tra�c classification in practical scenario. To address the above issues, we

propose SeLeCT, a Self-Learning Classifier for Internet Tra�c [2]. It uses unsupervised



Chapter 1. Introduction 3

algorithms along with an adaptive seeding approach to automatically let classes of traf-

fic emerge, being identified and labeled. Unlike traditional classifiers, it requires neither

a-priori knowledge of signatures nor a training set to extract the signatures. Instead,

SeLeCT automatically groups flows into pure (or homogeneous) clusters using simple

statistical features. SeLeCT simplifies label assignment (which is still based on some

manual intervention) so that proper class labels can be easily discovered. Furthermore,

SeLeCT uses an iterative seeding approach to boost its ability to cope with new protocols

and applications. We evaluate the performance of SeLeCT using tra�c traces collected

in di↵erent years from various ISPs located in 3 di↵erent continents. Our experiments

show that SeLeCT achieves excellent precision and recall, with overall accuracy close to

98%. Unlike state-of-the-art classifiers, the biggest advantage of SeLeCT is its ability to

discover new protocols and applications in an almost automated fashion.

1.2 Application Layer

On-line social network websites such as Facebook, Twitter, and LinkedIn are quickly

transitioned to global phenomena over the last few years. Among the plethora of such

services, we put more focus on Twitter. Twitter is a micro-blog service that has attracted

millions of users that generate a humongous flow of information at constant pace. The

research community has thus started proposing tools to extract meaningful information

from tweets. At the beginning, we target the generic stream of Twitter messages (i.e.,

tweets) sent continuously by users. We propose a data analysis framework to discover

groups of similar tweets posted on a given event [3]. By analyzing these groups, user

emotions or thoughts that seem to be associated with specific events can be extracted,

as well as aspects characterizing events according to user perception. To deal with the

inherent sparseness of micro-messages, the proposed approach relies on a multiple-level

strategy that allows clustering text data with a variable distribution. Clusters are then

characterized through the most representative words appearing in their messages, and

association rules are used to highlight correlations among these words. To measure

the relevance of specific words for a given event, text data has been represented in the

Vector Space Model using the TF-IDF weighting score. As a case study, two real Twitter

datasets have been analysed.

Moreover, user-generated content (UGC) coming from social networks and online com-

munities continuously grows and changes. By analyzing relevant patterns from the UGC,

analysts may discover peculiar user behaviors and interests which can be used to per-

sonalize Web-oriented applications. In the last several years, the use of dynamic mining



Chapter 1. Introduction 4

techniques has captured the interest of the research community. They are focus on an-

alyzing the temporal evolution of most significant correlations hidden in the analyzed

data. However, keeping track of all temporal data correlations relevant for user behav-

iors, community interests, and topic trend analysts may become a challenging task due

to the sparseness of the analyzed data. We present a novel data mining system [4] that

performs dynamic itemset mining from both the content and the contextual features

of the messages posted on Twitter. Dynamic itemsets represent the evolution of data

correlations over time. The framework exploits a dynamic itemset mining algorithm,

named HiGen Miner, to discover relevant temporal data correlations from a stream of

tweet collections. In particular, it extracts compact patterns, namely the HiGens, that

represent the evolution of the most relevant itemsets over consecutive time periods at

di↵erent abstraction levels. A taxonomy is used to drive the mining process and prevent

the discarding of knowledge that becomes infrequent in a certain time period. Experi-

ments, performed on real Twitter posts, show the e↵ectiveness and the usability of the

proposed system in supporting Twitter user behavior and topic trend analysis.

Afterwards, we take a di↵erent angle from the mainstream of previous works: we ex-

plicitly target the analysis of the timeline of tweets from “single users”. We define a

framework - named TUCAN [5] - to compare information o↵ered by the target users

over time, and to pinpoint recurrent topics or topics of interest. First, tweets belonging

to the same time window are aggregated into “bird songs”. Several filtering procedures

can be selected to remove stop-words and reduce noise. Then, each pair of bird songs is

compared using a similarity score to automatically highlight the most common terms,

thus highlighting recurrent or persistent topics. TUCAN can be naturally applied to

compare bird song pairs generated from timelines of di↵erent users. By showing actual

results for both public profiles and anonymous users, we show how TUCAN is useful to

highlight meaningful information from a target user’s Twitter timeline.

A common feature of Web 2.0 services, for instance Delicious and Flickr, is the ability

to assign a label or metadata, namely a tag, to a Web resource (i.e., photo, bookmark,

etc.) to help in describing it. Tag recommendation is the task of predicting folksonomy

tags for a given user and item, based on past user behavior (and possibly other infor-

mation). Tag recommendation is focused on recommending useful tags to a user who is

annotating a Web resource. A relevant research issue is the recommendation of addi-

tional tags to partially annotated resources, which may be based on either personalized

or collective knowledge. However, since the annotation process is usually not driven

by any controlled vocabulary, the collections of user-specific and collective annotations

are often very sparse. Indeed, the discovery of the most significant associations among

tags becomes a challenging task. We present a novel personalized tag recommendation

system [6] that discovers and exploits generalized association rules, i.e., tag correlations



Chapter 1. Introduction 5

holding at di↵erent abstraction levels, to identify additional pertinent tags to suggest.

The use of generalized rules relevantly improves the e↵ectiveness of traditional rule-based

systems in coping with sparse tag collections, because (i) correlations hidden at the level

of individual tags may be anyhow figured out at higher abstraction levels and (ii) low

level tag associations discovered from collective data may be exploited to specialize high

level associations discovered in the user-specific context. The e↵ectiveness of the pro-

posed system has been validated against other personalized approaches on real-life and

benchmark collections retrieved from the popular photo-sharing system Flickr.

1.3 Association rule mining algorithms and Big data

We leverage association rule and itemset mining to design many of our analysis frame-

works. Frequent generalized itemset mining is a data mining technique utilized to dis-

cover a high-level view of interesting knowledge hidden in the analyzed data. By ex-

ploiting a taxonomy, patterns are usually extracted at any level of abstraction. However,

some misleading high-level patterns could be included in the mined set. We propose a

novel generalized itemset type, namely the Misleading Generalized Itemset (MGI) [7].

Each MGI, denoted as X . E , represents a frequent generalized itemset X and its set

E of low-level frequent descendants for which the correlation type is in contrast to the

one of X. To allow experts to analyze the misleading high-level data correlations sep-

arately and exploit such knowledge by making di↵erent decisions, MGIs are extracted

only if the low-level descendant itemsets that represent contrasting correlations cover

almost the same portion of data as the high-level (misleading) ancestor. An algorithm

to mine MGIs at the top of traditional generalized itemsets is also proposed. The ex-

periments performed on both real and synthetic datasets demonstrate the e↵ectiveness

and e�ciency of the proposed approach.

As we have already seen, large volumes of data are being produced by various modern

web applications at an ever increasing rate. The automatic analysis of such huge data

volume is a challenging task since a large amount of interesting knowledge can be ex-

tracted. Association rule mining is an exploratory data analysis method able to discover

interesting and hidden correlations among data. Since this data mining process is char-

acterized by computationally intensive tasks, e�cient distributed approaches are needed

to increase its scalability. We propose a novel cloud-based service, named SeARuM [8],

to e�ciently mine association rules on a distributed computing model. SeARuM con-

sists of a series of distributed MapReduce jobs run in the cloud. Each job performs

a di↵erent step in the association rule mining process. As a case study, the proposed

approach has been applied to the network data scenario. The experimental validation,



Chapter 1. Introduction 6

performed on two real network datasets, shows the e↵ectiveness and the e�ciency of

SeARuM in mining association rules on a distributed computing model.

The thesis is organized as follows. A hierarchical classifier is described in Chapter 2,

while Chapter 3 presents SeLeCT, a Self-Learning Classifier for Internet Tra�c. A

multi-level clustering approach and a dynamic itemset framework for Twitter data are

described in Chapter 4 and 5, respectively. Chapter 6 presents TUCAN, a Twitter User

Centric ANalyzer. Then, a tag recommendation system is illustrated in Chapter 7, while

Chapter 8 presents a novel generalized itemset type. Moreover, SeARuM, a cloud-based

SErvice for Association RUle Mining is described in Chapter 9. Experimental designs

and results are reported in each chapter. Finally, Chapter 10 derives conclusions and

presents future developments for the proposed approaches.



Chapter 2

Hierarchical Learning for Fine

Grained Internet Tra�c

Classification

The identification and characterization of network tra�c is at the base of network man-

agement activities for an operator. Through the continuous monitoring of the tra�c,

security policies can be deployed and tuned, anomalies can be detected, changes in the

users behavior can be identified so that QoS and tra�c engineering policies can be

continuously improved.

In the last years, several tra�c classification techniques have been proposed to overcome

the limit of original port-based classifiers. Most popular approaches are coarsely based

on deep packet inspection (DPI) or behavioral techniques. In the first case, the tra�c

is classified looking for specific tokens inside the packet payload. Behavioral techniques

try to overcome the limitations of DPI by exploiting some description of the application

behavior by means of statistical characteristics, such as the length of the first packets of

a flow.

Both DPI and behavioral classifiers are supervised techniques. However, in case of DPI,

the training is often cumbersome and complex, since it involves in most cases the manual

identification of the tokens and regular expressions that define a class. In case of behav-

ioral classifiers instead, the adoption of classification algorithms allows to automatically

define the rules to label flows, provided a good training set is available. Behavioral ap-

proaches bring other advantages with respect to DPI: i) They do not inspect the packet

payload, thus preserving privacy, and can then be used for lighter monitoring such as

the one o↵ered by, e.g., netflow; ii) They can be easily extended by going through a

7



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 8

quicker retraining phase; iii) The decision process can be computationally lightweight

since feature computation is typically much simpler than regular expression parsing.

However, behavioral classifiers su↵er from some drawback too [9]: i) A proper training

set must be available, including a training set for the “unknown” class, i.e., flows that

do not belong to any of the targeted classes; ii) Training must be customized to the

monitored network, i.e., training is not portable; iii) And they are known to provide

good accuracy when considering few and coarse tra�c classes, like HTTP vs Peer-to-

Peer (P2P) vs email. The last issue is particularly critical given the current trend to

have a convergence of most applications going over the same protocol, namely HTTP.

Therefore one natural question arises: is it possible to push further behavioral classifiers

to correctly identify a large and granular set of classes? For instance, could it be possible

to identify application specific tra�c that runs over HTTP, like distinguishing Facebook,

YouTube, or Google Maps tra�c? How to handle the unknown class? In this work we

address this latter problem by engineering and evaluating the performance of a novel

Hierarchical behavioral classifier. The intuition is to split the classification process of

flows into several stages. At the beginning, coarser classes are used, while in following

stages finer grained classification is performed. Classifiers are organized in a tree-based

structure, defined according to our domain knowledge. Each node is an independent

classifier which operates on a subset of flow features specifically selected to maximize its

accuracy, precision and recall. The root node simply separates flows into “unknown” or

“known” protocols. The latter set is then classified into 7 classes, with P2P and HTTP

appearing as generic classes to be further refined at the next step. For instance, 10

possible subclasses are possible for HTTP tra�c.

We consider a benchmark in which 23 di↵erent classes are provided by an “oracle”.

We use Tstat [10], our DPI-based tool as ground truth generator. Extensive and thor-

ough experiments are run considering 22 di↵erent data sets collected from a large ISP

network and 3 additional data sets collected from our campus network. Results show

that the proposed approach outperforms classical machine-learning based classification

algorithms, which fail in handling flows of the “unknown” class, and when the number

of samples in the training set is heavily unbalanced, as typical in real scenarios. The

hierarchical classifier, instead, achieves better results thanks to splitting the decision

process into several stages, each involving fewer classes.

2.1 Data set and classes

For the experiments carried out in this work we rely on the tra�c monitoring and

classification capabilities of Tstat [10], the passive sni↵er developed at Politecnico di



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 9

Table 2.1: Set of protocols identified by Tstat that have more than 50 samples in one
of the data sets used for training set.

ID Class Byte Flow Application protocol

1 Unknown/other 1.2G 355k Unclassified or belonging to discarded classes
2 SMTP 394M 44k Simple Mail Transfer Protocol - RFC 5321
3 POP3 182M 6k Post O�ce Protocol - RFC 1939
4 IMAP4 55M 419 Internet Message Access Protocol - RFC 3501
5 SSL/TLS 968M 25k Transport Layer Security protocol - RFC 5246
6 MSN 4M 137 Microsoft Messanger MSN Protocol
7 MSN HTTP 12M 162 Microsoft Messanger MSN

Protocol tunneled over HTTP
8 Flickr 105M 2k Flickr Photo download over HTTP
9 ADV 159M 11k Advertisement content download over HTTP
10 MegaUpload 2.1G 225 Megaupload file download over HTTP
11 Gmaps 218M 2k Google Maps images download over HTTP
12 Wiki 28M 661 Wikipedia content download over HTTP
13 Facebook 1.6G 40k Facebook web page content download over HTTP
14 OpenSocial 6M 241 OpenSocial based social networks over HTTP
15 YouTube Video 4.9G 796 YouTube flash video streams over HTTP
16 YouTube Site 4G 4k YouTube web page static content

download over HTTP
17 Flash Video 848M 560 Generic flash video streams over HTTP
18 RTMP 72M 56 Generic flash video streams over

Real Time Messaging Protocol
19 Other Video 200M 60 Generic video content over HTTP
20 ED2K Obf 23.6G 28k Obfuscated Emule Protocol
21 ED2K 59G 17k Plain Emule Protocol
22 BT 3G 14k BitTorrent Peer Wire Protocol
23 BT MSE/PE 3G 16k Encrypted BitTorrent Peer Wire Protocol

Torino since 2000 which is freely available from [11]. Tstat passively monitors network

tra�c carried on a link. It is capable to rebuild each TCP flow, computing a number of

statistics. A complex DPI classifier is able to identify more than 50 di↵erent protocols.

Its accuracy has proved to be very reliable in the past [12]. Among all possible tra�c

classes that Tstat is able to classify, we selected those for which at least 50 flows are

present in each data set. Table 2.1 details the list of applications we target, showing also

their predominance in one of the data sets used for training. Protocols and application

are coarsely grouped to easy readability. As it is possible to see, we consider both

simple and well known application protocols (SMPT/POP3/SSL/etc.), and finer grained

classification. For example, we would like to distinguish among plain and obfuscated

P2P protocols; for HTTP tra�c, we would like to identify Facebook separately from

social network platforms based on Google OpenSocial protocol. In total we consider 23

di↵erent classes.

To run performance evaluation on actual tra�c, packet traces have been collected from

two real networks: a nation-wide ISP in Italy that o↵ers us three di↵erent vantage

points, and our Campus network. ISP vantage points expose tra�c of three di↵erent

Points-of-Presence (POP) in di↵erent cities in Italy; each PoP aggregates tra�c from

more then 10,000 ISP customers, which range from home users to Small O�ce Home

O�ce (SOHO) accessing the Internet via ADSL or Fiber-To-The-Home technology. It

represents therefore a very heterogeneous and challenging scenario. We define a data



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 10

 200

 300

 400

 500

 600

 700

 800

12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r 

o
f 

F
lo

w
s 

[x
1

0
0

0
]

Training dataset

Figure 2.1: Number of flows in each ISP data set of 1 hour.

set as the set of all flows observed from a vantage point during a one-hour long time

interval. In this work we focus our attention to one of the three ISP vantage points

from which we have collected 22 di↵erent data sets, i.e., 22h long trace. Fig. 2.1 shows

the number of flows that are present in each ISP data set. As expected, the number of

flows grows during the day when web tra�c is predominant. During the night, fewer

flows are present, most of them due to P2P tra�c. At 17:00, tra�c reaches the peak.

We consider this particular data set as “training data set” in the following. Other data

sets are used for testing and validation purposes. Table 2.1 details the breakdown of the

h.17 data set among di↵erent classes for Bytes and flows. Notice that some classes have

several thousands of flows, while others count no more than few tens of flows.

Finally, 3 completely di↵erent data sets have been collected from our campus network

and will complete our analysis. This represent a di↵erent scenario, in which tra�c

generated by more than 20,000 students, professors and sta↵ members is present. In

this scenario, there is little P2P tra�c, since a firewall blocks plain P2P protocols.

2.1.1 Performance metrics

Performance of a classifier are typically assessed considering the overall accuracy, recall,

precision and F-measure [13].



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 11

ROOT

GENERAL UNKNOWN

P2P SMTP POP3 SSL/TLS IMAP4 MSN HTTP

BITTORRENT
BITTORRENT

MSE/PE

ED2K

OBF
ED2K FLICKR

OPEN

SOCIAL

MSN

HTTP
ADV FACEBOOK VIDEO WIKIPEDIA GMAPS MEGAUPLOAD RTMPT

YOUTUBE

SITE

FLASH

VIDEO

YOUTUBE

VIDEO

OTHER

VIDEO

Figure 2.2: Tree structure for the Hierarchical classifier.

Accuracy, is the ratio of the sum of all True Positives (prediction and ground truth are

in agreement) to the sum of all tests, for all classes. Accuracy however is biased toward

the most predominant class in a data set.

Precision, for a given class, is the ratio of True Positives and the sum of True Positives

and False Positive (a sample of another class that has been labeled as of this class). It

determines the fraction of samples that actually turns out to be positive in the group

the classifier has declared as a positive class. The higher the precision is, the lower the

number of false positive errors committed by the classifier.

Recall, for a given class, is the ratio of the True Positives and the sum of True Positives

and False Negatives (a sample of the class is labeled as not). It measures the fraction

of positive samples correctly predicted by the classifier. Classifier with large recall have

very few positive example misclassified as the negative class.

F-Measure, a widely used metric in classification, weights both precision and recall

in a single metric by taking the harmonic mean: 2 ⇥ Recall ⇥ Precision / (Recall +

Precision).

In this work we report Recall and F-Measure metrics to assess per-class performance,

while Accuracy will be provided when comparing overall results. All experiments have

been carried out using RapidMiner [14] on a 8-cores Intel Xeon E5450 based server PC

equipped with 32GB of ram. Computational costs will be reported considering this

setup.



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 12

2.2 Hierarchical Classification

All classification algorithms share the same idea: given a description of the object to

classify in terms of “features”, find the most likely class according to a model that has

been derived from a set of objects properly labeled, i.e., the “training set”. Which

algorithm and which features to use are key points to address in the design of the

classifier. Our proposal has been designed by performing a thorough selection among

di↵erent alternatives. The key and novel idea we leverage is to build a classification

scheme which is based on a hierarchy of classifiers. This allows each classifier to work

on a limited subset of classes and on a specialized subset of features, i.e., the features

that are most suitable to distinguish among the considered classes. In the following we

describe the overall process.

2.2.1 Hierarchy Definition

All classification algorithms are known to su↵er when the number of classes they have

to choose among increases. For example, it can be easy to split P2P tra�c from HTTP

tra�c. How to however correctly classify the single application running over HTTP may

be trickier. Moreover, for example the features that allow to separate P2P tra�c from

HTTP tra�c may be useless when trying to separate YouTube from Facebook flows.

The key idea we leverage in this work is to design a classification scheme based on a

hierarchy of classifiers. At first, the flow will be classified into few coarse classes. At

the following stages, finer and finer grained classification is achieved. To define the

hierarchy, we rely on our domain knowledge. Fig. 2.2 shows the Hierarchical classifier

we propose in this work. Gray nodes are sub-classifiers and white nodes represent the

final classes. We use five classifiers. At the root, flows are split among the “known” and

“unknown” classes. Then, a general classifier decides among protocols that we know

it is easy to distinguish: P2P, HTTP, SMTP, etc., are well defined classes that have

been already shown to be easily identified using behavioral algorithms [9]. At the next

step, some classes can be further split into subclasses. For example, P2P tra�c is split

into BitTorrent versus eMule, while HTTP tra�c is split into finer grained applications.

Finally, video streams over HTTP will be further classified among YouTube streams,

YouTube web site objects, generic Flash Video, or other Video streams.

In the following, for comparison purposes, we consider a classical classifier based on a

single stage, in which the classification decision has to be taken at the root node directly.

We refer to this case as “Flat” classifier.



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 13

Table 2.2: Selected feature on the server to client tra�c.

Features

Classifier T
C
P

p
o
rt

R
S
T

se
n
t

P
U
R
E

A
C
K

se
n
t

u
n
iq
u
e
b
y
te
s

d
a
ta

p
k
ts

d
a
ta

b
y
te
s

R
F
C
1
3
2
3
w
s

R
F
C
1
3
2
3
ts

W
N
D
S
C
A
L
E

fa
ct
o
r

S
er
ve

r
S
A
C
K

re
q
.

M
S
S

m
a
x
se
g
m
en

t
si
ze

m
in

se
g
m
en

t
si
ze

R
W

N
D

m
a
x

R
W

N
D

m
in

C
W

N
D

m
a
x

C
W

N
D

m
in

in
it
ia
l
C
W

N
D

st
d
ev

R
T
T

m
in

T
T
L

m
a
x
T
T
L

la
st

se
g
m
en

t
ti
m
e

m
sg

1
si
ze

m
sg

2
si
ze

m
sg

5
si
ze

m
sg

7
si
ze

m
sg

8
si
ze

m
sg

1
0
si
ze

#
se
g
m
en

ts
se
g
1
si
ze

se
g
2
si
ze

se
g
3
si
ze

se
g
4
si
ze

se
g
5
si
ze

se
g
6
si
ze

se
g
7
si
ze

se
g
8
si
ze

se
g
9
si
ze

se
g
1
0
si
ze

se
g
7
IP

G

#
fe
a
tu

re
s

Flat x x x x x x x x x x x x x x x x x x x x x x x x x x 26
ROOT x x x x x x x x x x 10

General x x x x x x x x x x 10
P2P x x x x x x x x 8

HTTP x x x x x x x x x x x x x x x x x x x x x x 22
Video x x x x x x x x x x x 11

2.2.2 Feature Selection

For each classifier, the proper set of features must be selected. In the context of tra�c

classification, most of the proposals so far relies on a set of features that have been

chosen based on authors’ domain knowledge. For example, [15] uses a list of features

that the authors think to be good to distinguish P2P tra�c from client-server tra�c.

Similarly, [16] uses the size of the first packets as features given the focus on the “early

tra�c classification”. While the choice of the features can be intuitive when dealing with

few classes of tra�c, it becomes suddenly di�cult to properly select the most prominent

features that allow to distinguish between a large list of applications. For example, how

to distinguish YouTube video streams from other flash video streams?

In machine learning field, well-known algorithms have been proposed to solve the prob-

lem of feature selection, i.e., techniques for selecting a subset of relevant features for

building robust learning models [17]. Among the di↵erent algorithms, the “minimum-

Redundancy-Maximum-Relevance” (mRMR) algorithm is considered as the state-of-the-

art [18]. mRMR is an approximation of the theoretically optimal maximum-dependency

feature selection that maximizes the mutual information between the joint distribution

of the selected features and the classification variable. The input of the feature selection

algorithm is a “training” data set, in which all possible flow features are provided and

flows are correctly labeled. The algorithm selects then the subset of most relevant fea-

tures to properly assign the correct class. As initial set of features, we use all behavioral

layer-4 features that are provided by Tstat. The overall list includes more than 200 fea-

tures, most of which have been proposed in the past literature. For the sake of brevity

we do not report the complete list.

Feature selection can be run independently for each classifier. This allows us to actually

select a di↵erent set of features for each sub-classifier, a key and desirable property.



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 14

The results of the feature selection are reported in Table 2.2 which report the subset

of features selected for each classifier considering server to client flow features. Three

considerations hold: First, the list of selected features includes some intuitive choices,

but also some unexpected selections. For example, the server RWND scale factor have

been found to be useful by the ROOT and HTTP classifier only. Second, di↵erent

classifiers use di↵erent features. Third, the Flat classifier has to consider 45 (26+19)

features entailing a larger complexity; at most 35 (22+13) features have been selected

for any hierarchical stage.

2.2.3 Classification Algorithm Selection

The proper classification algorithm has to be selected among the large number of ap-

proaches discussed in the literature: Naive Bayes, Bayesian Kernel Estimation, Rule

Based, Decision Trees, Neural Networks, Support Vector Machine (SVM), K-Nearest

Neighbor (K-NN) are popular techniques, each leveraging some di↵erent idea [17]. Most

of these have also been used in the context of tra�c classification [9, 19] with good

results when dealing with few classes.

We run a preliminary set of experiments to see which is the classifier that would guar-

antee the best performance. For each algorithm, we consider the training data set.

We apply the ten-fold cross-validation methodology to estimate the accuracy of each

classifier.

Figure 2.3 reports the average among classes of the F-Measure and the Recall, on top and

bottom plot, respectively. Performance of the Flat classifier (black) and the Hierarchical

classifier (gray) are reported for each classification algorithm. First, notice that we were

not able to complete the test of the SVM and the K-NN Flat classifiers, that were

not able to complete the experiment after three days. As well known, dealing with a

large number of classes and features poses computational issues for some algorithms.

The Hierarchical solution scales better, since each classifier has to deal with a smaller

number of classes and features. More details are provided in Section 2.3.3.

Second, the Hierarchical classifier outperforms the Flat classifier considering any clas-

sification algorithm. Average F-Measure and Recall are both smaller than 80% for the

Flat classifier. On the contrary, the Hierarchical classifier achieves performance higher

than 95% for both metrics when a Decision tree is used. This suggests that the problem

in designing a Flat classifier is not in the choice of the classification algorithm; rather,

any algorithm performs poorly with a large number of tra�c classes. Therefore some

ingenuity has to be used to improve performance, justifying the need for a hierarchical

solution.



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Bayes

KernelBayes

R
uleBased

D
ecisionTree

N
euralN

et

SVM
K-N

N

F
-m

e
a
su

re
 [
%

]

Flat Hier

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Bayes

KernelBayes

R
uleBased

D
ecisionTree

N
euralN

et

SVM
k-N

N

R
e
ca

ll 
[%

]

Flat Hier

Figure 2.3: Comparison of di↵erent classification algorithms. Average F-measure and
Recall considering ten-fold cross-validation test on a 1h long trace from ISP.

For the Hierarchical classifier, the Decision Tree is the only classifier that achieves ex-

cellent results for all sub-classifiers in the hierarchy. Other algorithms exhibit more

variable results. For example, the SVM performs very well for P2P classification, but it

performs poorly for Video classification. Note that the Hierarchical classifier allows also

the selection of di↵erent classification algorithms for each internal sub-classifier. In the

following we restrict our attention to the Decision Tree classifier only.

2.3 Experimental results

We now provide a more extensive and thorough performance evaluation. We start by

considering the performance of the Hierarchical versus Flat classifier considering each

subclass. We consider as training data set the ISP trace collected at h.17, and the h.18

trace for testing. Figure 2.4 details the results. Top plots compare the absolute F-

Measure for each class; while plots on the bottom quantify the improvement guaranteed

by the Hierarchical classifier for F-measure and Recall, respectively. Classes appear

in the same order as in Table 2.1. Results allow to appreciate the benefit of the

Hierarchical approach. F-Measure improves for all classes by 28% on average. Notably,

some classes are basically ignored by the Flat classifier, e.g., MSN. On the contrary,

the Hierarchical classifier deals with MSN flows at the Generic sub-level, where only 7

classes have to be identified. The F-Measure for MSN class then tops to 98%.

Recall improves by about 10% overall, since for some classes the Flat classifier is already

achieving good results. In some cases, the Recall decreases by some percentage points.

Notice that these are border cases in which the Flat classifier reaches good Recall, but

bad F-Measure, i.e., bad Precision. For instance, consider the You-Tube Video class. In

this case, the number of False Negatives is small, but the number of False Positives is

very high. The Hierarchical classifier improves the F-Measure (thus lowering the False

Positive) and overall it performs much better also in this case (F-measure grows by

80%).



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 16

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SM
TP�

PO
P3�

IM
AP4�

SSL/TLS�

M
SN

�

M
SN

_H
TTP�

Flickr�

AD
V�

M
egaU

pload�

G
M

aps�

W
iki�

Facebook�

O
penSocial�

YouTube-Video�

YouTube-Site�

Flash-Video�

R
TM

PT�

O
ther-Video�

ED
2K�

ED
2K-O

bf�

BitTorrent�

BitTorrent-M
SE/PE�

U
nknow

n�

F
-m

e
a
su

re
 [
%

]
Flat Hier

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SM
TP�

PO
P3�

IM
AP4�

SSL/TLS�

M
SN

�

M
SN

_H
TTP�

Flickr�

AD
V�

M
egaU

pload�

G
M

aps�

W
iki�

Facebook�

O
penSocial�

YouTube-Video�

YouTube-Site�

Flash-Video�

R
TM

PT�

O
ther-Video�

ED
2K�

ED
2K-O

bf�

BitTorrent�

BitTorrent-M
SE/PE�

U
nknow

n�

Im
p
ro

ve
m

e
n
t 
[%

]

F-measure Improvement

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

SM
TP�

PO
P3�

IM
AP4�

SSL/TLS�

M
SN

�

M
SN

_H
TTP�

Flickr�

AD
V�

M
egaU

pload�

G
M

aps�

W
iki�

Facebook�

O
penSocial�

YouTube-Video�

YouTube-Site�

Flash-Video�

R
TM

PT�

O
ther-Video�

ED
2K�

ED
2K-O

bf�

BitTorrent�

BitTorrent-M
SE/PE�

U
nknow

n�

Im
p
ro

ve
m

e
n
t 
[%

]

Recall Improvement

Figure 2.4: F-Measure and Recall for each class for the Hierarchical and Flat classi-
fiers. Training on h.17 data set and testing on h.18 data set. ISP trace.

Notice that also popular classes are misclassified by the Flat classifier. For example, the

Unknown class has very poor performance. Since the Recall is only 15%, the number

of False Negative is very large. This is clearly critical, making it impractical to use

the Flat classifier given that most of the unknown flows will be classified as one of the

known classes. The Hierarchical classifier on the contrary is able to achieve excellent

performance, with Recall and F-Measure higher than 95%.

2.3.1 Robustness versus time

One interesting question to answer is how the performance of a classifier change over

time. Assume to train the classifier with a given data set collected at a given time.

What happens if the classifier is used later? To answer this question we consider the

whole ISP data set, which is 22h long. Training of the classifier is done considering the

usual h.17 data set. Then performance is evaluated on the other 21 di↵erent data sets.

To validate the statistical significance of the performance improvements, we used the

paired t-test [20] at 95% of significance level for each data set. The overall Accuracy is

reported in Figure 2.5. It shows that the Hierarchical classifier significantly outperforms

the Flat classifier. The former guarantees an overall accuracy always higher than 88%,

while the latter achieves reasonable performance only during night time when the tra�c



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 17

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9

A
cc

u
ra

cy
 [

%
]

Hour of the day

Training dataset

Flat classifier
Hierchical

Figure 2.5: Accuracy of the Hierarchical classifier when used in real time. One day
long data set from ISP.

is dominated by P2P tra�c and thus few classes are “active”. During the day it barely

reaches 70% of overall Accuracy.

2.3.2 Experiment considering other data sets

We have repeated the experiment considering other data sets. For the sake of brevity,

we report only one experiment considering two 1-hour long traces collected from our

campus LAN at h.15 and h.19 on a normal working day. As previously, training has

been done considering the h.15 trace and testing is done on the h.19 trace. The Recall

improvement is reported in Figure 2.6. Also in this case the Flat classifier provides

good results for some classes, while it completely misses others, while the hierarchical

classifier improves results especially for less popular classes.

2.3.3 Computational Complexity

To gauge the overall computational costs of the classifiers, we were able to completely

classify a 1h long data set in less than 1 second and using a very limited amount of

memory; i.e., classification cost are very light. The Flat classifier can classify 89,750

flows per second, while the hierarchical classifiers tops to more than 368,400 decision

per second. This results are mainly due to the adoption of a Decision Tree classifier at

each node. Memory cost is also negligible. Notice that the Hierarchical classifier can

be naturally implemented using parallel processes organized in a pipeline. These results

show that it is possible to actually use the classifier in on-line system.



Chapter 2. Hierarchical Learning for Fine Grained Internet Tra�c Classification 18

-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

SM
TP

PO
P3

IM
AP4

SSL/TLS

M
SN
M

SN
_H

TTP

Flickr

AD
V
M

egaU
pload

G
M

aps

W
iki
Facebook

O
penSocial

YouTube-Video

YouTube-Site

Flash-Video

R
TM

PT

O
ther-Video

ED
2K

ED
2K-O

bf

BitTorrent

BitTorrent-M
SE/PE

U
nknow

n

Im
p

ro
ve

m
e

n
t 

[%
]

Recall Improvement

Figure 2.6: Improvement for each class for the Hierarchical and Flat classifiers. Test-
ing on Campus data set.

Table 2.3: Computational and memory cost for di↵erent classifiers to execute a
training phase on a 1h long campus data set.

Flat Root General HTTP P2P Video Total
CPU time [s] 7849 1207 389 589 48 74 2307
Memory [GB] 29 17 11 13 3.4 2.5 46.9

Considering training cost, Table 2.3 reports the overall time need to perform a training

on a 1h long trace. The campus network data set is considered, in which a total of

1.6M flows is present. Both total CPU execution time and total memory usage are

reported considering the training phase. As it can be seen, the adoption of a hierarchy

of classifiers allows to greatly reduce the computational cost and the maximum memory

required at any given time. Each sub-classifier indeed benefits from the reduced number

of classes and features. Moreover, fewer flows have to be considered to build the model

and only those flows that belong to the subset of considered classes have to be taken

into account. Note that the training phase cost is relatively important since it has to be

seldomly performed o↵-line.



Chapter 3

SeLeCT: Self-Learning Classifier

for Internet Tra�c

As we have already discussed in Chapter 2, a critical part of network management and

tra�c engineering is the ability to identify applications and protocols originating tra�c

flows. To provide network visibility, in the last years several classification techniques

have been proposed (see [9, 19] and references therein). Until a decade ago, port-based

approaches were very popular. The e↵ectiveness of pure port-based approach has dimin-

ished even if it has been shown that port numbers carry valuable information about the

application and/or protocol [9]. Over the last few years deep packet inspection (DPI)

has become popular [19], and behavioral techniques have been investigated since the

seminal work of [15]. And in the previous Chapter, we proposed a novel approach to

push further behavioral classification techniques.

However, both DPI and behavioral classifiers share some limitations. First, to achieve a

high classification accuracy, either a cumbersome protocol reverse engineering to identify

the signatures in DPI, or a tedious process to generate an accurate training set for

behavioral classifiers is required. In other words, both approaches require training.

Second, and most critical, the classifiers can identify only the specific applications they

have been trained for. All other tra�c is aggregated either in a generic class labeled as

“unknown”, or, even worse, it is mislabeled as one of the known applications. In other

words, these classifiers cannot identify the introduction of a new application, or changes

in the applications’ protocol or behavior, unless a re-training phase is entered. Designing

a classification engine capable of automatically identifying new emerging protocols is still

an open and challenging research topic.

In this Chapter, we propose SeLeCT, a novel algorithm that overcomes the limitations

highlighted above. Our goal is to provide a deeper network visibility for operators.

In other words, we intend to o↵er the ability to semi-automatically identify prominent

19



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 20

classes of tra�c, targeting network management and tra�c engineering operations1.

SeLeCT proves to be able to expose classes of tra�c which are very specific and possibly

are not already known to the operator. For example, SeLeCT has been able to separate

Google Mail tra�c from other mail services. It thus automatically allows to discover

new classes of tra�c, allowing arbitrary definition of labels.

In SeLeCT, we leverage unsupervised data mining algorithms to automatically split

tra�c into homogeneous subsets or clusters. We consider flows as the target of the

classification. Each flow is characterized by using simple layer-4 metrics, like segment

size and inter-arrival time. These features are known to carry valuable information

about the protocol and/or application that generated the flow [9].

However, they perform not as good in the context of unsupervised (i.e. clustering) algo-

rithms. Hence we have to adopt some ingenuity in order to improve cluster homogeneity.

To overcome the limitation of o↵-the-shelf algorithms, we design an iterative clustering

procedure in which a filtering phase follows each clustering phase to eliminate possible

outliers. Filtering is based on the still valuable information provided by port numbers.

Note that port number information is not embedded in a metric space, e.g., the distance

between port 79 and 80 is not di↵erent from the one between port 80 and 8080. As

such, it is hard to integrate port number as a simple feature into classical clustering

algorithms.

Using tra�c traces collected in di↵erent years from various ISPs located in 3 di↵erent

continents, we show that the iterative clustering process leads to clusters with excellent

properties. First, SeLeCT generated only a few cluster in each of these traces (typically

less than 150). Second, clusters are very pure, i.e., the overall homogeneity of the clusters

is close to 100%. This allows to easily inspect and label each cluster, thus assigning a

proper label to all flows belonging to the same cluster.

As soon as some labels are assigned to flows, SeLeCT will automatically inherit them

for classification of flows that arrive in the future.

We refer to this as adaptive or progressive seeding since flows labeled in the past are

used to seed the subsequent datasets. Notably, this will minimize the bootstrapping

e↵ort required to label applications, and manual intervention is mainly required for the

initial label assignment. This mechanism allows to naturally grow the intelligence of

the system such that it is able to automatically adapt to the evolution of protocols and

applications, as well as to discover new applications.

The idea of leveraging semi-supervised learning has been initially proposed in [21], where

the authors leverage the standard k-means to construct clusters. Part of the flows to

be clustered are assumed to be already labeled, and a simple voting scheme is used to

extend the dominant label to the whole cluster.
1
SeLeCT is not intended for security purposes where every single bit, packet, and/or flow must be

carefully examined.



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 21

SeLeCT follows similar principles, extending the idea with i) iterative port filtering and

ii) multi-batch seeding which, as we will see in Section 3.5, allow to significantly boost

overall performance achieving 98% accuracy in practical cases. The iterative clustering

algorithm and self-seeding approach provide several advantages: the number of clusters

is reduced to less than 150, while at the same time homogeneity is significantly increased.

This simplifies the labeling process so that manual inspection becomes almost trivial.

Furthermore, the SeLeCT self-seeding process is more robust and results obtained from

actual tra�c traces show how SeLeCT helps in automatically identifying fine grained

classes of tra�c (e.g, IMAP vs POP3, XMPP vs Messenger), and even unveiling the

presence of unknown/undesired classes (e.g., Apple push notification, Bot/Trojan, or

Skype authentication tra�c). In identifying standard protocols SeLeCT proves to be

even more robust than professional DPI based tools which were fooled by non-English

customizations of protocol error messages.

3.1 Related work

3.1.1 Clustering Algorithms

Data mining techniques may be grouped in two families: supervised and unsupervised

techniques [13]. Supervised algorithms assume the availability of a training dataset in

which each object is labeled, i.e., it is a-priori associated to a particular class. This

information is used to create a suitable model describing groups of objects with the

same label. Then, unlabeled objects can be classified, i.e., associated to a previously

defined class, according to their features. For unsupervised algorithms, instead, grouping

is performed without any a-priori knowledge of labels. Groups of objects are clustered

based on a notion of distance evaluated among samples, so that objects with similar

features are part of the same cluster.

Supervised algorithms achieve high classification accuracy, provided that the training

set is representative of the objects. However, labeled data may be di�cult, or time-

consuming to obtain. Semi-supervised classification addresses this issue by exploiting the

information available in unlabeled data to improve classifier performance. Many semi-

supervised learning methods have been proposed [22], unfortunately, no single method

fits all problems.

The semi-supervised learning approaches closest to our proposal are [23] and [24]. Both

labeled and unlabeled data are clustered by means of (variations of) known clustering

algorithms (k-means in [23] and SOM in [24]). Next, labeled data in each cluster is

exploited to assign labels to unlabeled data. Finally a new classifier is trained on the

entire labeled dataset. While we exploit a di↵erent, iterative clustering approach to

group data, our labeling process is similar to [23]. Due to its iterative refinement process,



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 22

the approach adopted in SeLeCT is also particularly suited to model tra�c flow changes,

because it allows a seamless adaptation of the obtained tra�c classes to tra�c pattern

evolution.

3.1.2 Key features of SeLeCT

Some of the key features of SeLeCT are:

• Adaptive classification model. A semi-supervised learning approach allows SeLeCT to

learn information from unlabeled data with simplified manual intervention. Once some

labels are provided, SeLeCT automatically adapts the model to changes in the tra�c.

• Simple iterative approach. SeLeCT is based on k-means, a simple yet e↵ective cluster-

ing algorithm. It uses k-means as a building block in an iterative clustering refinement

process, which allows leveraging specific Internet tra�c features such as the server port

that cannot be integrated into classical clustering algorithms in a straightforward fash-

ion. This approach yields strongly cohesive clusters and provides an almost complete

coverage of the considered flows.

• Leverages layer-4 features. SeLeCT relies on the availability of flow level features that

can be easily acquired at the beginning of the flow, and it does not assume to see both

directions of tra�c.

• Limited complexity. SeLeCT can run in real time by constantly monitoring the incom-

ing tra�c, creating batches of flows, and processing these batches before the next batch

accumulates.

3.1.3 Applications to tra�c classification

The application of unsupervised techniques is not new in the tra�c classification field.

[25] is one of the preliminary works and shows that clustering techniques are useful

to obtain insights about the tra�c. In [26] supervised and unsupervised techniques

are compared, demonstrating that unsupervised algorithms can achieve performance

similar to the supervised algorithms. Other works compare the accuracy of di↵erent

and standard unsupervised algorithms [16, 27, 28]. In general, the techniques presented

in these works achieve a moderate accuracy and they typically identify several hundreds

of clusters, therefore questioning the applicability of this methodology in practice.

Recently, [21, 29–32] have introduced the semi-supervised methodology in the context

of tra�c classification.

[21] is among the first works that proposes also a simple labeling algorithm. It uses

the o↵-the-shelf k-means algorithm and present a performance evaluation considering a

trace collected from a Campus and a small residential network. Limited ground truth

is available and only coarse classes are considered (e.g., P2P, HTTP, EMAIL, CHAT,

etc.). Results show that to achieve good accuracy, a still large number of clusters must



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 23

be used (k � 400) and the labeled dataset must be large (more than 15% of flows must

be already labeled). We explicitly compare the performance of SeLeCT against the

solution proposed in [21] in Section 3.5.

In [29] the authors propose a simple clustering algorithm based on information entropy

to group flows. Clusters are then labeled using some ad-hoc engineered algorithm that

can coarsely identify classes like P2P or Client/Server tra�c. Limited performance

evaluation is provided considering tra�c generated by 20 hosts only. Neither learning

nor seeding is proposed. In [30], the authors proposed advanced unsupervised and

semi-supervised machine learning algorithms to cluster flows. 22 (bi-directional) flow

level features are used, which include packet size and inter-arrival time. Performance

evaluation considers two small datasets of 4,000 flows each. Accuracy reaches 85%. [31]

proposes a semi-supervised method which extends [21]. As features, the destination IP

address, server port and transport protocol are considered. k-means is used as basic

building block. Accuracy, evaluated considering two tra�c traces, tops 90%. In [32],

the authors propose an unsupervised tra�c classification that uses both flow features

and packet payload. Using a bag-of-words approach and latent semantic analysis, some

clusters are identified. Performance is evaluated using a single trace and reaches 90% of

accuracy.

In all cases, SeLeCT achieves better results in terms of classification performance, pro-

vides finer grained visibility on tra�c, and o↵ers a simple self-seeding mechanism that

naturally allows the system to increase its knowledge..

3.2 Problem statement

We consider directed tra�c flows as the objects to classify. A directed flow, or flow for

short, is defined as the group of packets that have the same five tuple

F = {srcIP, dstIP, srcPort, dstPort, protocol}. Note that packets going in opposite

directions belong to two directed flows. For instance, in a traditional TCP connection,

packets sent by the client belong to a directed flow, and packets sent by the server

belong to a di↵erent flow. Considering directed flows allows the classifier to work even

in presence of asymmetric routing (backbone networks for instance).

We assume all packets traversing a link are exposed to the classifier which keeps track

of per-flow state. A flow F is identified when the first packet is observed; the flow ends

when no packets have been seen for a given time �T . TCP signaling segments may

be used to detect appropriate flow start and end. As suggested in [33], we consider a

conservative value of �T = 5min.

For each flow F , a set of features A(F ) = {a(F )
1 , a(F )

2 , . . . , a(F )
n } is collected. These

features are used by SeLeCT to characterize flows and take the classification decision.



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 24

name DateTime Place Type IP Flow
Dataset-1 Aug05 1pm S.America backbone 108k 527k
Dataset-2 Sep10 10am Asia backbone 111k 1.8M
Dataset-3 Aug11 2am Europe access 111k 885k
Dataset-4 Aug11 5pm Europe access 190k 2.3M

Table 3.1: Datasets used in the Chapter for performance evaluation. The table
includes flows for which features can be computed.

The goal of SeLeCT is to assign a proper application to each flow F based on the sole

knowledge of the flow feature set A(F ).

In this work, we choose behavioral features that are well known to carry useful infor-

mation about the application and protocol used at the application layer [9, 19]. In

particular, we select: (i) The server port srvPrt, (ii) the length of the first n segments

with payload, and (iii) their corresponding inter-arrival-time. Note that only flows that

have more than n segments can be classified. The impact of the choice of n is discussed

in Section 3.3.

Formally, let L(iF ) be the length of the i-th segment of flow F , and let t(iF ) be its

arrival time. The i-th inter-arrival time �t(iF ) is �t(iF ) = t(iF ) � t(iF � 1), iF > 1.

Then

A(F ) = {srvPrt, L(iF ), �t(iF ) 8iF  n ^ L(iF ) > 0}

The choice of which features to consider is a matter of optimization and several works

in the literature have proposed and investigated possible alternatives. Our choice stems

from the following intuitions: (i) keep the feature set limited, (ii) include generic layer-4

features that can be easily computed, and (iii) use features that can be collected during

the beginning of a flow so that we can classify flows in real-time (i.e., minimize the time

required for identification). It is out of the scope of this Chapter to compare and choose

which are the most suitable features to use. We will consider this as a part of our future

work. However, given the high accuracy of SeLeCT, we believe that it may be di�cult

to improve it by considering a wider/di↵erent set of features.

3.3 Datasets to evaluate SeLeCT

In this section, we briefly describe the datasets that we collected and used to evaluate

SeLeCT. We provide more details in Section 3.5. Table 3.1 summarizes the main cha-

racteristics of the datasets. We collected four di↵erent traces from access and backbone

networks of large ISPs2. Each dataset is a 1-hour long complete packet trace including

the packet payloads. We selected these traces to create a very heterogeneous bench-

marking set. They include backbone and access scenarios, day and night time periods,

di↵erent years, and users from three di↵erent continents.

2
Due to NdA with ISPs we are not allowed to share the original tra�c traces.



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 101 102

C
D

F
 -

 F
ra

ct
io

n
 o

f 
p
a
ck

e
ts

Flow Length [pkts]

Dataset-3C
Dataset-4C
Dataset-3S
Dataset-4S

10-3

10-2

10-1

100

100 101 102 103 104 105

C
D

F
 -

 F
ra

ct
io

n
 o

f 
b
yt

e
s

Flow Length [pkts]

Figure 3.1: CDF of the flow length in packets (on the left), and bytes (on the right).
The vertical line is in correspondence of 6 data packets.

In this work, we focus on TCP tra�c only as most applications today rely on TCP. The

extension of SeLeCT to UDP tra�c is straightforward and is not further investigated in

this Chapter.

For each trace, we generate two separate datasets - the set of flows originated by clients

(i.e., hosts actively opening the TCP connection) and the set of flows originated by

servers (i.e., hosts that replied to the connection request). A letter ‘C’ (client-to-server)

or ‘S’ (server-to-client) is appended at the dataset name when needed. Overall, the oldest

trace - Dataset-1 - was collected in 2005 from a major ISP in South America; it contains

more than half million TCP flows involving more than 100, 000 hosts. Dataset-2 was

collected from the peering link of an ISP in Asia in September 2010. Finally, Dataset-3

and Dataset-4 were collected at di↵erent times of the day from the same vantage point

in Europe during August 2011. Dataset-3 was collected at 2am in the night, while

Dataset-4 was collected at 5pm. The latter contains about 2.3 million flows directed

to more than 190, 000 hosts. We will primarily use the last two datasets for deeper

investigation in the rest of the Chapter.

Only flows that have at least n data packets can be considered by SeLeCT. So the first

question to answer is how much tra�c can be classified by SeLeCT for di↵erent values

of n. Figure 3.1 reports the Cumulative Distribution Function (CDF) of the number of

packets (on the left) and bytes (on the right) carried by flows of di↵erent length. For

the sake of simplicity, let us focus on Dataset-3 and Dataset-4, which are the two most

recent datasets. The CDF of the fraction of packets (on the left plot) shows that the large



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 26

1: Main()
2: Output: set C of labeled clusters
3: S = ;

4: while (newbatch B) do
5: ProcessBatch(B, U , S, C, NS)
6: S = NS

7: end while
8:

9: ProcessBatch(B, U , S, C, NS):
10: Input: Set B of new flows, set S of seeds
11: Output: set C of labeled clusters, set NS of new seeds
12: B

0 = B [ S [ U /* Merge new flow, seeding set,
13: and past outliers */
14: C

0 = doIterativeClustering(B0);
15: C = doLabeling(C0);
16: NS = extractSeeds(C);

Algorithm 1: SeLeCT Main loop.

majority of the flows are “mice”, i.e., flows with few packets. For instance, 90% of client

flows have no more than 6 data packets (highlighted by the vertical bar). However, by

looking at the CDF of bytes (reported on right plot), we observe that the mice account

for no more than 1% of the volume of tra�c (notice the log scale on y-axis). Thus, by

considering flows that have at least 6 data packets: (i) we allow a richer description of

each flow characteristics (ii) we are discarding the large majority of mice flows and (iii)

we are looking at more than 99% of tra�c volume. Based on these observations, in the

rest of the Chapter we use n = 6. Thus, as any statistical classifier, SeLeCT targets

long-lived flows.

3.4 The SeLeCT algorithm

We consider a scenario in which tra�c is sni↵ed in real time and new flows enter the

system continuously. Flows are processed in batches. A new batch B is formed as soon

as a given number of valid flows is observed. The probe monitors packets and rebuilds

flows. For a given flow, as soon as 6 data packets are observed the flow identifier and

features are dispatched to a bu↵er where the batch is being formed. When the batch

reaches the target number of flows, it is dispatched to the classification algorithm, and

a new batch starts.

SeLeCT analyzes each batch of newly collected flows via the ProcessBatch() function

shown in the pseudo-code reported in Alg. 1. This function takes in input

• B, the batch of new flows;



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 27

• U , the set of previous outliers that were not assigned to any class when processing

the previous batch;

• S, the set of seeding flows, i.e., flows already analysed in past batches for which

SeLeCT was able to provide a label;

As output, it produces

• C, the set of clusters;

• NS, the set of new seeds that are extracted from each cluster;

• U , which contains the set of new outliers;

Its main steps (see Alg. 1) are (i) clustering batch data to get homogeneous subsets of

flows (function doIterativeClustering()), (ii) flow label assignment (function doLa-

beling()), and (iii) extraction of a new set of seeds (function extractSeeds()).

Note that flows that are not assigned to any cluster are returned in the U set. Those

flows are then aggregated in the next batch, so that they can eventually be aggregated

to some cluster3. In the following we detail each step of the batch processing.

3.4.1 Iterative clustering

Clustering algorithms group objects with similar characteristics [13]. Objects are de-

scribed by means of features which map each object to a specific position in a hyperspace.

The similarity between two objects is based on their distance. The closer the two objects

are, the more likely they are similar and thus should to be grouped in the same cluster.

Typically, the Euclidean distance is used.

Iterative clustering is the core of SeLeCT. It exploits the k-means clustering algo-

rithm [13] to group flows into subsets or clusters which are possibly generated by the

same applications.

We selected the k-means algorithm since it is well understood and it has been previously

used in previous works. We tested also other clustering algorithms like DBSCAN [13].

Results are similar or worse, with a trickier sensitivity to parameter settings.

In this context, it is natural to consider two flows with similar packet lengths and inter-

arrival times to be close (i.e., to be likely generated by the same application). However,

the same property does not hold for the srvPort feature. For instance, two flows directed

to port 25 and to port 80 are not more likely to be similar than two flows directed to

port 80 and to port 62000. The srvPort feature is a nominal feature [13], thus it cannot

be included in Euclidean distance computations.

3
It would be possible to limit the number of batches some flows may be still in the U set and output

them in a “unclassifiable” set to avoid delaying classification process.



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 28

Still, the srvPort is an important feature for tra�c classification [9]. Two cases can be

distinguished: protocols and applications i) running on one (or more) specific srvPort

on servers, or ii) running on a random srvPort selected by each server. We denote them

as dominatedPort and randomPort protocols respectively. In both cases, the srvPort

carries valuable information if applied as a filter.

In the past, several researchers have applied clustering algorithms to tra�c analysis [21,

27]. However, to the best of our knowledge, none of the previous works exploited the

specific characteristic of the srvPort feature in a clustering process. This is mainly

related to the fact that port numbers are not embedded in a metric space. Thus ingenuity

is required to smartly include them. In our work we engineer an iterative procedure to

identify clusters of flows in which the srvPort information is used to filter elements in

each cluster. As reported in Alg. 3, we devise an iterative process, in which clustering

phases and filtering phases alternate. We use a set-based notation. Names of the sets

are defined in the pseudo code.

3.4.1.1 The filtering procedure

1: doFiltering(I, C, U , DP, portFraction, DominatingPhase)
2: Input: cluster I of flows to be filtered, DominatingPhase flag to select the

filtering
3: Output: set C of clusters, set U of outliers, set DP

of dominant ports
4: DP = ;

5: if ||I|| < minPoints then
6: U = U [ I; return
7: end if
8: if DominatingPhase == TRUE then
9: /* Processing dominatedPort cluster */

10: if (topPortFreq(I) > portFraction) then
11: C

0 = getFlows(I,DP )
12: C = C [ C

0 /* Add the filtered cluster to C /*
13: R = I \ C

0

14: U = U [R /* Put discarded flows in U */
15: dp = dominantPort(I)
16: DP = DP [ {dp} /* Record dominant port */
17: else
18: U = U [ I /* I flows must be reclustered */
19: end if
20: else
21: C = C [ I /* I is a good cluster at last */
22: end if

Algorithm 2: Filtering of clusters.

The filtering procedure is reported in Alg. 2. Filtering is performed on the cluster I pro-

vided as input. First, doFiltering() discards clusters which have less than minPoints



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 29

1: doIterativeClustering(B)
2: Input: Set B of flows to be clustered
3: Output: set of clusters C, set of outliers U
4: U = B, DP = ;

5: for (step=1; step  itermax; step++) do
6: C

0 = k-means(U)
7: U = ;

8: for I in C

0 do
9: /* look for dominatedPort clusters first */

10: doFiltering(I,C,U ,DP,portFraction,true)
11: end for
12: end for
13: /* Last step: process random port clusters */
14: for dp in DP do
15: delFlows(U ,dp) /* Discard flows still to DP */
16: end for
17: C

0 = k-means(U)
18: for I in C

0 do
19: /* look for randomPort clusters now */
20: doFiltering(I,C,U ,DP,0,false)
21: end for
22: return C, U

Algorithm 3: Iterative Clustering

flows to avoid dealing with excessively small clusters. Discarded flows are returned in

set U , the set of unclustered flows that will undergo a subsequent clustering phase (lines

5-7).

DominatingPhase is a flag that is used to select the type of filtering: when it is TRUE,

the filtering processes only dominatedPort clusters.

To this aim, the srvPort distribution is checked. If the fraction of flows with the most

frequent srvPort in I exceeds the threshold portFraction, the cluster is a dominatedPort

cluster. The flows involving the dominant srvPort are clustered together and added to

the set C of final clusters (line 11-12), while flows not involving the dominant srvPort

are removed and put in U (lines 13-14). The dominant port dp is included in the set

DP of dominant ports (lines 15-16). If there is no dominant port, all flows from I are

put in U (lines 17-18).

When DominatingPhase is FALSE, randomPort clusters are handled. In this case,

cluster I (with all its flows) is simply added to the set of final clusters (line 21).

3.4.1.2 The iterative clustering procedure

The iterative clustering procedure is reported in Alg. 3 which receives as input the

current batch B of flows. It iteratively generates dominated port clusters alternating



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 30

clustering and filtering phases. At last, it generates random port clusters. More specif-

ically, the set of flows B to be clustered is processed for itermax iterations. At each

iteration the set U of flows that are not yet assigned to any cluster is processed (lines

5-12). k clusters are formed using the well-known k-means algorithm that returns the

set C0 of k clusters. Each cluster in C

0 undergoes a filtering phase (lines 8-11), which is

looking for dominatedPort clusters at this stage. The doFiltering() procedure returns

in U flows that did not pass the filter and must be processed at the next iteration.

After itermax iterations, randomPort clusters are handled. In this case, the information

carried by the dominant port has been already exploited in previous phases. The set

DP of dominant ports contains the srvPort that appeared as dominant in the past.

Intuitively, if a srvPort emerged as dominant port, then flows that have not been already

put into srvPort dominated clusters should be considered outliers.

As such, we first remove from the set U of flows to be clustered all those flows directed to

any dominating port that has been found in the previous iterations (lines 14-16). Then,

the final clustering is completed (line 17-21).

3.4.2 Labeling

Once flows have been clustered, the doLabeling(C0) procedure (see Alg. 1 - line 15)

assigns a label to each cluster. For each cluster I in C

0, flows are checked.

If I contains some seeding flows, i.e., flows (extracted from S) that already have a label,

a simple majority voting scheme is adopted: the seeding flow label with the largest

frequency will be extended to all flows in I, possibly over-ruling a previous label for other

seeding flows. More complicated voting schemes may be adopted (e.g., by requiring that

the most frequent label wins by 50% or more). However, performance evaluation shows

that the homogeneity of clusters produced by the iterative clustering procedure is so

high that simple schemes work very nicely in practice as shown in Section 3.7.

3.4.2.1 Bootstrapping the labeling process

If no seeding flows are present, I is labeled as “unknown” and passed to the system

administrator that should manually label the cluster. This will clearly happen during

the bootstrapping of SeLeCT, when no labeled flows are present.

To address this issue, several solutions can be envisioned. For example, labels can be

manually assigned by using the domain knowledge of the system administrator, sup-

ported by all the available information on the flows in the cluster (e.g., port number,

server IP addresses or even the flow payload, if available). We show how easily this can

be done in Section 3.7. A second option is to use a bootstrapping flow set from some

active experiments in which tra�c of a targeted application is generated. Similarly, a



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 31

set of bootstrapping flows can be generated by providing labels obtained by some other

available tra�c classification tools, (as in [21]).

In all cases, the complexity of the labeling process is reduced to the analysis of few clus-

ters, instead of hundred of thousands of flows. This mechanism can be also automated

as suggested by [34], but this is outside the scope of this Chapter.

3.4.3 Self-seeding

Once some clusters have been labeled, SeLeCT is able to automatically reuse this in-

formation to process next batches. This is simply achieved by extracting some seeding

flows from labeled clusters by means of the extractSeeds(C) procedure (see Alg. 1 -

line 16).

It implements a stratified sampling technique, i.e., from each cluster, the number of

extracted seeds is proportional to the cluster size. Stratified sampling ensures that

at least one observation is picked from each of the cluster, even if probability of it

being selected is far less than 1. Thus, it guarantees that in the seeding set there are

representatives of each cluster and avoids the bias due to classes having much more flows

than others. Let numSeeds be the target number of seeding flows, i.e., numSeeds =

||NS||.

For each labeled cluster I, a number NSI of labeled flows proportional to the cluster

size is extracted at random. That is NSI = 1+
⇣

||I||
numSeeds

⌘
flows are randomly selected

from each cluster I.

This mechanism enforces a self training process that allows the system to grow the set

of labeled data and thus augment the coverage of the classification process. Section 3.7

provides some evidence to support this statement.

3.5 Experimental results

3.5.1 Experimental dataset

We performed several experiments to assess the performance of SeLeCT using the

datasets described in Section 3.3. All traces have been processed to generate directed

flow level logs. Recall that we only consider TCP flows in this work. We use two sep-

arate advanced DPI classifiers to label flows and use these labels as our ground truth.

The first one is provided by the NarusInsight4 professional tool, and the second one is

implemented in Tstat [10], the Open Source tra�c monitoring developed at Politecnico

di Torino. A total of 23 di↵erent protocols are identified including web (HTTP/S, RTSP,

4
http://www.narus.com/



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 32

TLS), mail (SMTP/S, POP3/S, IMAP/S), chat (XMPP, MSN, YAHOOIM), peer-to-

peer (BitTorrent, eMule, Gnutella, Fasttrack, Ares) and other protocols (SMB, FTP,

Telnet, IRC).

To be conservative, we label as “unknown” those flows that do not match any of the

DPI rules, or for which DPIs’ labels are di↵erent. Each dataset has a di↵erent share of

application labels, with a typical bias toward most popular protocols like HTTP and/or

P2P that dominate the datasets; we do not report these details for the sake of brevity.

3.5.2 Performance metrics

We consider two metrics to characterize the output of the iterative clustering algorithm:

number of clusters and clustered flows percentage (i.e., the ratio of flows ||C0
|| clustered

by doIterativeClustering(B0) to the total number of flows ||B

0
|| provided as input

expressed in percentage).

In order to evaluate classification performance, we use the confusion matrix. The con-

fusion matrix is a matrix in which each row represents the instances in a predicted class

(i.e., the decision of SeLeCT), while each column represents the instances in an actual

class (i.e., the ground truth). The name stems from the fact that it highlights cases in

which the system is confusing two classes (i.e., it is mislabeling one as another). To eval-

uate the classification performance of SeLeCT, we use three metrics: overall accuracy,

recall, and precision.

• Accuracy is the ratio of the sum of elements in the main diagonal (i.e., the total true

positives) of the confusion matrix to the sum of all elements (i.e., the total samples).

Accuracy does not distinguish among classes and is biased towards dominant classes

in the dataset. For instance, consider a scenario where 90% of flows are HTTP flows.

A classifier that always returns the “HTTP” label will have accuracy of 90%, despite

completely missing all the other classes. Although accuracy is an important metric, it

does not capture all the characteristics of the classifier.

• Recall for the i-th class, is the ratio of the element (i, i) (i.e., the true positives) in the

confusion matrix to the sum of all elements in the i-th column (i.e., the total samples

belonging to the i-th class). It measures the ability of a classifier to select instances of

class i from a data set. In the same example as before, always returning “HTTP” would

have a recall of 0% for all classes except for “HTTP”.

• Precision, for the i-th class, is the ratio of the element (i, i) in the confusion matrix

to the sum of all the elements in the i-th row (i.e., the true positives plus the false

positives). It measures the ability of the classifier in assigning only correct samples to

class i. In the example above, always returning “HTTP” would have a precision of 90%

for the HTTP class and of 0% for the other classes.



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 33

In the rest of this section, we consider the following parameter settings: Batch size

||B|| = 10, 000, number of flows used for seeding numSeeds = 8, 000, minPoints = 20,

itermax = 3, portFraction = 0.5 for step < itermax, and portFraction = 0.2 for step

itermax. Extensive parameter sensitivity is carried over in Section 3.8. For the k-means

algorithm, we set k = 100, number of iterations smaller than 1, 000, 000 and, to avoid

the initial centroid placement bias, we execute 10 independent runs and select the result

with the best Sum of Squared Errors (SSE) [13].

3.5.3 Iterative clustering performance

We first evaluate the benefits of the iterative clustering procedure in SeLeCT.

We compare the accuracy against i) simple port-based classifier and ii) classic k-means

as proposed in [21]. The simple port-based classifiers uses the srvPort to label flows. It

considers well-known ports for the most common protocols, and port 4662 for eMule.

Experiments here consider, for each dataset, the first batch of 10,000 flows only. For both

algorithms, labeling is performed by the doLabeling() procedure. The labeling process

adopts a simple majority voting scheme: given a cluster, the most frequent label among

seeding flows in the cluster is extracted, and used to label all flows (mimicking [21]).

The assigned label is then compared to the original label that the DPI assigned to each

flow.

Figure 3.2 reports results for all datasets.

Flow-wise and byte-wise accuracy are reported in top and bottom plot, respectively.

The former is computed as the percentage of the correctly classified flows, while the

latter is computed as the percentage of the bytes carried by correctly classified flows.

Results highlight the benefit of the iterative clustering process for which the accuracy is

about 97.5% on average, with a worst case of 94.2% for Dataset-3C considering flow-wise

accuracy.

The simple k-means adopted in [21] results in no more than 85% flow-wise accuracy,

which is in line to the findings in [21, 27]. The port-based classifier performs poorly

in some scenarios where protocols not using a well-known port. This is the case for

Dataset-1C where the presence of P2P tra�c is predominant.

SeLeCT is the only classifier that o↵ers excellent results for all datasets, and considering

both flow-wise and byte-wise accuracy. Given the marginal di↵erences of the two metrics,

in the following we consider only flow-wise performance indexes.

An interesting observation in Figure 3.2 is that the Server datasets show better accuracy

than the Client datasets. The reason is that layer-4 features carry more valuable infor-

mation to di↵erentiate between classes when considering packets sent by servers rather

than by clients, e.g., the typical lengths of packets sent by HTTP and SMTP servers



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 34

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

1C 2C 3C 4C 1S 2S 3S 4S

A
cc

u
ra

cy
 [
%

]

Dataset

k-means SELECT Port-based

 30

 40

 50

 60

 70

 80

 90

 100

1C 2C 3C 4C 1S 2S 3S 4S

A
cc

u
ra

cy
 [
%

]

Dataset

k-means SELECT Port-based

Figure 3.2: Accuracy of the clusters for simple port-based classifier, classic k-means
and SeLeCT. Accuracy computed per flows on the top, per byte on the bottom. Results

reported for all datasets.

are di↵erent, while the client queries could be more similar. The intuition is that server

responses have more peculiar lengths than client queries.

Table 3.2 shows the confusion matrix for Dataset-2S, which represents the best case for

the k-means based classifier. The bold font highlights true positives. First, notice that

the HTTP, SMTP, and Unknown classes are clearly predominant, possibly causing a

“capture e↵ect” so that other classes vanish. In fact, most of the flows of other classes

are misclassified as one of these three predominant classes, impairing recall and precision,

even if the accuracy is still high (90% in this case - see Figure 3.2). For example, POP3S

and Telnet have 0% for both recall and precision. For the HTTPS flows - which are a non

negligible fraction of samples - precision is 74% and recall is as low as 54%, i.e., about

half of the HTTPS flows are misclassified. Finally, the predominant class performance

is impaired as well. For example, SMTP precision drops to 78% because of the high

number of false positives. In summary, the standard k-means clustering exhibits poor



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 35

B
T

H
T
T
P

H
T
T
P
S

M
S
N

P
O
P
3

P
O
P
3S

S
M
B

S
M
T
P

S
S
H

T
el
n
et

U
N
K

X
M
P
P

BT 34 9 2 0 0 0 0 1 0 0 11 0
HTTP 185829 175 10 1 2 0 27 0 0 118 1

HTTPS 3 18345 5 0 0 0 18 0 0 65 0
MSN 0 0 0 0 0 0 0 0 0 0 0 0
POP3 3 6 1 0 16 2 0 3 0 0 14 0

POP3S 0 0 0 0 0 0 0 0 0 0 0 0
SMB 0 0 0 0 0 0 0 0 0 0 0 0

SMTP 21 18 85 14 45 53 182247 0 43 276 5
SSH 0 0 0 0 0 0 0 0 0 0 0 0

Telnet 0 0 0 0 0 0 0 0 0 0 0 0
UNK 21 35 35 6 0 1 0 29 9 0214 0

XMPP 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.2: Confusion matrix of a classifier based on the simple k-means for Dataset-2S.
Columns give the ground truth.

B
T

H
T
T
P

H
T
T
P
S

M
S
N

P
O
P
3

P
O
P
3S

S
M
B

S
M
T
P

S
S
H

T
el
n
et

U
N
K

X
M
P
P

BT 3 0 0 0 0 0 0 0 0 0 3 0
HTTP 05769 0 0 0 0 0 0 0 0 30 0

HTTPS 0 0 530 0 0 0 0 0 0 0 0 0
MSN 0 0 0 7 0 0 0 0 0 0 1 0
POP3 0 0 0 0 42 0 0 0 0 0 0 0

POP3S 0 0 0 0 0 46 0 0 0 0 0 0
SMB 0 0 0 0 0 0 8 0 0 0 0 0

SMTP 0 0 0 0 0 0 02217 0 0 102 0
SSH 0 0 0 0 0 0 0 0 9 0 0 0

Telnet 0 0 0 0 0 0 0 0 0 43 0 0
UNK 4 0 0 2 0 0 0 0 0 0 83 0

XMPP 0 0 0 0 0 0 0 0 0 0 0 5

Table 3.3: Confusion matrix of the SeLeCT classifier for Dataset-2S. Columns give
the ground truth.

performance for not dominant classes.

SeLeCT significantly boosts performance as depicted in Table 3.35. The overall accuracy

tops to 98.82% and the confusion matrix exhibits almost perfect results. Interestingly,

only flows in the Unknown class have been (possibly) misclassified.

For example, 102 flows that the DPI labeled as Unknown are instead labeled as SMTP

by SeLeCT. We manually cross-checked these flows, and found that 97 out of 102 flows

are indeed SMTP flows which the DPI was not able to correctly classify because the

SMTP banner sent by the server was not the usual one, and its pattern was not included

5
Totals are di↵erent than in Table 3.2 since SeLeCT adopts a conservative approach by deferring the

clustering of “noise” flows to next batches.



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 36

 70
 72
 74
 76
 78
 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 100

Step 1 Step 2 Step 3 Step 4

A
cc

u
ra

cy
 [
%

]

k-means
MinPoints-filter

port-filter

Figure 3.3: Accuracy before and after the di↵erent filtering steps for Dataset-4S.

in the DPI engine signature set. Double checking unknown flows that SeLeCT classified

as HTTP, we also verified that the DPI was fooled by some HTTP messages which

included non-English text (recall this dataset was collected from an ISP in the far east).

This shows that SeLeCT is able to automatically adapt classes to small variations of

features.

SeLeCT is more robust than the DPI-based classifier because layer-4 features are less

sensitive to small feature changes than the DPI pattern matching rules. The latter can

be fooled by a simple character change.

Figure 3.3 gives more insights about the benefits of the filtering steps in the iterative

clustering process. It reports the overall accuracy after (i) running the k-means only

(line 6 of Alg. 3), (ii) after all clusters with less than minPoints samples have been

discarded (lines 4-6 of Alg. 2), and (iii) after the final port based filtering is performed

(lines 7-18 of Alg. 2). Accuracy is evaluated at each of the four steps independently

of the others, i.e., the results are not cumulative. The first 10,000 flows in the first

batch of the Dataset-4S trace are considered. In this case, flows are labelled by the

original DPI label; flows in a cluster are then re-assigned the majority label, and the

original and the new label are then compared. . Results show that discarding clusters

with less than minPoints provides small improvements, while the port-based filtering

is the key to boost accuracy to 98% when dominatedPort clusters are selected. Only

at the last step, when randomPort clusters are considered and the port-based filtering

is disabled, accuracy lowers to 82%. In this case, discarding the clusters smaller than

minPoints helps improving recall and precision for all classes (see Table 3.3). This last



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 37

step is important since it allows to properly look for Peer-to-Peer (P2P) protocols that

typically do not run on standard server ports.

These results show the benefits of the iterative clustering approach. In particular, they

highlight the befits of the filtering mechanisms that allows exploiting the information

carried by the srvPort, which was not leveraged by previous clustering approaches.

3.6 Interesting findings enabled by SeLeCT

One of the interesting possibilities o↵ered by SeLeCT is its ability to automatically group

flows in homogeneous clusters. It is thus interesting to verify if the clusters o↵er more

fine-grained classification than traditional protocol classification. We first investigate

dominatedPort clusters whose DPI inherited label is “Unknown” for all datasets. We

found:

• srvPort = 5223 - the Apple push notification server over TLS is identified in

Dataset-3 and Dataset-4;

• srvPort = 5152 - Backdoor.Laphex.Client tra�c is identified in Dataset-1;

• srvPort = 12350 - the Skype proprietary authentication protocol is identified in

Dataset-3 and Dataset-4;

SeLeCT automatically unveils clusters of tra�c generated by services that appear as real

unknown to the network administrator. This is the case of the Apple Push Notification

system for iOS devices and iCloud enabled devices, which is based on the SSL/TLS

protocol, but running on a non standard srvPort = 5223. All flows in this cluster are

labeled by the DPI as SSL/TLS protocol. To find the correct label, a whois lookup for

the srvIP addresses reveals that the servers are all registered to Apple Inc. By running

an active experiment, it is possible to confirm that all flows in this cluster are related to

Apple Push Notification and iCloud services.

A second cluster of unknown flows aggregates tra�c generated by the malware Back-

door.Laphex.Client Bot/Trojan. Manual inspection of flows payload confirms this as-

sumption. Similarly the cluster of flows directed to srvPort = 12350 turns out to

unveil Skype Authentication protocol tra�c. Also in this case, the srvIP of all flows

reveals strong clues about the application. All flows are directed to srvIP in the subnet

213.146.189.0/24, registered to Skype Inc.

We then analyze clusters labeled as HTTP tra�c. There are several tens of them

in each dataset, and some share some clear threat. As proposed in [35], the srvIP

feature reveals interesting information. For instance, srcIP addresses in some clusters

clearly belong to the same subnet. By means of a simple whois query, it is possible to

identify clusters containing only Google, Dailymotion or Amazon services, respectively.

Similarly, a POP3S cluster refers to mail.google.com servers scattered in 4 di↵erent



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 38

 50

 60

 70

 80

 90

 100

 1  2  3  4  5  6  7  8  9  10

A
cc

u
ra

cy
 [
%

]

Batch

Dataset-1C
Dataset-1S
Dataset-2C
Dataset-2S
Dataset-3C
Dataset-3S
Dataset-4C
Dataset-4S

Figure 3.4: Accuracy over di↵erent batches.

subnets in Dataset-4, while a second POP3S cluster aggregates together all flows of

other mail providers.

These examples confirm the ability of SeLeCT to automatically reveal new classes of

tra�c that would be hard to highlight by means of any supervised technique. Once

SeLeCT is augmented with this knowledge by injecting these labels, flows are correctly

classified in all subsequent batches thanks to the seeding mechanism.

Overall, we were able to find labels for about 90% of unknown clusters. The remaining

10% of clusters contains flows that appear to be encrypted, and for which the IP ad-

dresses refer to end-user addresses assigned by ISPs to modems. We suspect those could

be Skype flows, but we are not able to confirm this assumption.

3.7 Exploring the seeding process

So far we have analyzed the performance of SeLeCT considering a single batch provided

as input. We are interested now in analyzing the performance of the seeding process. To

accomplish this, we run SeLeCT on ten successive batches of flows. As previously done,

the bootstrapping at batch 1 is done using the DPI labels. Then, for the subsequent

batches, extractSeeds() is used to seed the labeling process from batch n to batch

n+1. Each batch performance is evaluated by comparing the DPI labels in the ground

truth with the labels provided by SeLeCT.



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 39

B
T

eM
u
le

H
T
T
P

H
T
T
P
S

IM
A
P
S

P
O
P
3

P
O
P
3S

U
N
K

BT 157 105 0 0 0 0 0 8
eMule 122 3556 0 0 0 0 4 24
HTTP 0 0 10815 0 0 0 0 5

HTTPS 0 0 1 1291 0 0 0 14
IMAPS 0 0 0 0 53 0 0 0
POP3 0 0 0 0 0 145 0 3

POP3S 0 0 0 0 0 0 25 0
UNKNOWN 0 0 18 0 0 0 0 196

Table 3.4: Confusion matrix at batch 10 for Dataset-3C.

3.7.1 Self-seeding

Figure 3.4 shows the results for all datasets. First, notice that the accuracy of SeLeCT

is extremely high and stable over time for all server datasets. As we already mentioned

before, this is due to the better representativeness of the layer-4 features for server flows.

Other metrics (i.e., the number of clusters and the percentage of clustered flows) remain

unchanged over di↵erent batches and hence we do not report these results.

For client Dataset-3C and Dataset-4C, the accuracy slightly decreases over time. For

instance, in Dataset-3C it decreases to about 90% during the first 7 batches, then it

stabilizes. Investigating further, we notice that both recall and precision of SeLeCT

are higher than 98% for all classes of tra�c except for BitTorrent and eMule protocols

which tend to be confused with each other. This is detailed by the confusion matrix

of the 10-th batch in Table 3.4. Note that the total number of flows exceeds the batch

size, since at step 10 SeLeCT processes also seeding flows. The relative higher fraction

of P2P tra�c in the Dataset-3C (collected at 2am) results in a global decrease in the

overall accuracy. Similar considerations hold for the Dataset-4C which refers to peak

time. However, in this case the fraction of P2P flows is smaller than during the night

and thus it has less impact on the overall accuracy. An important and desirable property

is that confusion actually happens among P2P protocols only. The lack of dominating

port for P2P protocols makes it more challenging for SeLeCT to clearly distinguish the

tra�c.

Based on the results of our experiments, we believe that SeLeCT shows very good

performance in terms of accuracy, precision, and recall. For most protocols, SeLeCT

correctly classifies flows for which labels have been provided with no confusion.

3.7.2 Bootstrapping

As we noted before, SeLeCT requires manual intervention to provide labels to clusters.

When a label for a few flows is introduced, SeLeCT will carry on these labels for future



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 40

%scriptsize

SrvPort 25 80 88 110 443 995 1935 4662 5223 12350
# cluster 1 46 1 3 30 2 1 51 1 1

Label S
M
T
P

H
T
T
P

H
T
T
P

P
O
P
3

H
T
T
P
S

P
O
P
3S

R
T
M
P

eM
u
le

A
p
p
le

S
ky

p
e

Table 3.5: dominatedPort clusters at batch 1. Bold font highlights clusters on non-
standard ports.

classification. In the previous experiments we used the labels provided by a DPI to

bootstrap the classification and seeding process. We now investigate how di�cult it can

be to manually bootstrap the system. We assume that a network operator is o↵ered

clusters of flows, and s/he has to use her/his domain knowledge to provide labels.

We consider the Dataset-4S trace and ignore all the DPI labels. In other words, no

labels are provided to SeLeCT. At the end of the first batch, the operator has to analyze

the clusters that have been formed to label them.

3.7.2.1 dominatedPort Clusters

To assign a label, the information provided by the srvPort for dominatedPort clusters

proves to be very valuable. Table 3.5 reports the srvPort and the number of correspond-

ing dominatedPort clusters on the first and second row, respectively, while the third row

reports the class label that we assigned. Overall, protocols running on well-known ports

are straightforward to identify. Notice that SeLeCT can identify several clusters that

refer to the same protocol (e.g., 46 clusters of HTTP flows). In general, the number of

clusters is proportional to i) the number of flows, and ii) the variability of the services

o↵ered on a given protocol.

It is interesting that SeLeCT naturally created some clusters whose protocol was not

known to the DPI. These clusters are highlighted using bold fonts. By simply searching

the web, protocols are easily identified: Port 1935 is used by the Macromedia flash

server to stream videos using the RTMP protocol; port 4662 is the default eMule port.

At last, port 5223 is used by Apple push notification service for iOS devices running

over TLS, and port 12350 cluster contains flows going to Skype Inc. managed servers

(see above). Following this approach, 136 clusters can be immediately labeled. Only one

cluster dominated by srvPort = 88 remains ambiguous. Looking at the closest cluster,

it reveals that flows in this cluster are very likely to be HTTP flows, since the 6 closest

clusters are HTTP clusters. A simple packet inspection on some flows confirms this

hypothesis. This process can be possibly automated in the future.

Once SeLeCT is augmented with the knowledge of these labels, flows are correctly clas-

sified in all subsequent batches thanks to the seeding mechanism. From Figure 3.7, we

can see that more than 80% of flows are typically clustered in dominatedPort clusters



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 41

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1  2  3  4  5  6  7  8  9  10

R
e
ca

ll 
[%

]

Batch

S=1
S=2
S=3

Figure 3.5: eMule recall when only S labeled clusters are used as bootstrap at batch
1 for Dataset-4S.

at the end of step 3. In other words, more than 80% of flows can be easily labeled using

simple information obtained from the dominating srvPort, whose accuracy is close to

100% (refer to Figure 3.3).

3.7.2.2 randomPort clusters

At the last iteration, SeLeCT disables the port filters in doClustering() and the re-

maining 10-20% of flows are clustered in randomPort clusters. The analysis of those

clusters is expected to be more complicated since the srvPort information is, by con-

struction, providing limited information. First of all, it is easy to see whether a cluster

is grouping some P2P protocol or traditional client-server protocols by looking at the

srcIP, dstIP of flows, as proposed in [15, 36].

Interestingly, srvPort analysis still provides vital clues about the protocol when analyz-

ing the port number frequency distribution by considering all flows in a cluster together.

For instance, consider a P2P protocol in which the user can manually change the port

used by the application. It is very likely that the port the user would choose is “similar”

to the default number o↵ered by the application, therefore biasing the port frequency

distribution. Consider a cluster in which the topmost ports are 4664, 4661, 8499, 7662,

6662, 5662, 4663, 64722, . . . The intuition suggests to label flows in that cluster as

eMule whose default port is 4662 (which turns out to be the correct label). On the

contrary, clusters in which port numbers are uniformly distributed clearly suggest that

the application itself is enforcing a random port selection, as done, e.g., by most popular

BitTorrent applications.

At last, packet inspection can been considered as another option to label randomPort

clusters. Unlike traditional per-flow analysis, the inspection of clustered flows simplifies

the identification of signatures since a set of flows is exposed and can be analyzed in



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 42

 75

 80

 85

 90

 95

 100

 1  2  3  4  5  6  7  8  9  10

A
cc

u
ra

cy
 [
%

]

Batch

DS-4S

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8  9  10

P
re

ci
si

o
n
 [
%

]

Batch

HTTPS
POP3

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8  9  10

R
e
ca

ll 
[%

]

Batch

HTTPS
POP3

Figure 3.6: New protocols suddenly appear: HTTPS tra�c is added at batch 3, and
POP3 tra�c is added at batch 6 in Dataset-4S.

parallel to identify common headers. Once a label has been found, SeLeCT extend it to

all the flows in the same cluster.

3.7.3 Seeding evolution

To show the ability of SeLeCT to increase its knowledge over time, we perform the

following experiment. Consider Dataset-4S and focus on the eMule flows not having

the default 4662 srvPort (which are clustered as dominatedPorts clusters). At the

end of batch 1 processing, only the largest S randomPort clusters are manually labeled

as eMule (e.g., by checking the port number distribution as above). Labeled flows are



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 43

then used to bootstrap the seeding process. Figure 3.5 reports the recall evolution over

the di↵erent batches for di↵erent values of S. For S = 3, corresponding to only 28%

flows selected as bootstrap at the end of batch 1, SeLeCT already achieves 98% of recall

at batch 10. Worst case precision is 98.6%. These results show that SeLeCT seeding

process is successfully bootstrapped even if only S = 1 cluster is used as initial seed.

We now perform another experiment in which we simulate the sudden appearance of a

new class of tra�c. We consider the Dataset-4S trace, from which we removed all POP3

and HTTPS flows. Then, during the third and sixth batch, HTTPS and POP3 tra�c

is injected to simulate the sudden birth of new protocols. We run SeLeCT over all 10

batches. Results are reported in Fig. 3.6. The top plot reports the overall accuracy, while

middle and bottom plots report precision and recall, respectively. Notice how SeLeCT

rapidly detects the presence of new tra�c classes. In particular, at batch 3, accuracy

severely drops since HTTPS flows are labeled as “Unknown”. We then bootstrap the

HTTPS seeding as before, i.e., by labeling the largest Unknown tra�c cluster as HTTPS.

Bootstrapping in this case is much faster then for eMule thanks to the purity of HTTPS

clusters. Indeed, at batch 4, accuracy returns to 97.5%, and HTTPS precision and recall

approach 100%.

At batch 6, the same transient is observed when POP3 flows are injected. Being their

number small, the impairment on accuracy is less evident. Then, from batch 7 on, the

bootstrapping of the POP3 protocol is completed so that accuracy, recall and precision

get back to excellent values.

These examples show that SeLeCT allows an easy identification of protocols that, in

our example, were not detected by the DPI because no signature was present. This

enhances the operator’s network visibility by providing homogeneous clusters of flows

whose analysis is much easier, due to the aggregated information provided by the flows

in the cluster.

3.8 Parameter sensitivity analysis

In this section we present an extended set of experiments to evaluate the impact of the

parameter choices on SeLeCT. In general, SeLeCT is very robust to various parameter

settings and its behavior is stable in di↵erent scenarios. In this section, we report some

of the most interesting findings.

3.8.1 Setting filtering parameters

Figure 3.7 reports the percentage of clustered flows during di↵erent iterations of the

iterative clustering. Only Server datasets are considered for the sake of simplicity. As

we can see, SeLeCT clusters most of the flows during step 1, when there are many

dominatedPort clusters (i.e., clusters in which most of the flows involve the same port).



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 44

 50

 60

 70

 80

 90

 100

Step 1 Step 2 Step 3 Step 4

C
lu

st
e
re

d
 f
lo

w
s 

[%
]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Figure 3.7: Fraction of clustered flows at each step.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

D
o
m

in
a
tin

g
 F

lo
w

 [
%

]

Cluster ID

Step 1
Step 2
Step 3

Figure 3.8: Fraction of flows directed to the dominating srvPort in each cluster for
di↵erent steps for Dataset-4S.

Small clusters and outlier flows are discarded and passed to step 2. At this point, an

additional fraction of dominatedPort clusters are identified, allowing to add about 10-

15% more flows. This filtering is repeated one more time at step 3 when another 5-10%

of flows is clustered. As a last step, SeLeCT looks for randomPort clusters and an

additional fraction of flows gets properly clustered (e.g., P2P protocols). As the curves



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 45

suggest, the benefit of adding more dominatedPort filtering phases is limited, and little

improvement is achieved by setting itermax larger than 3.

To confirm this intuition, Figure 3.8 reports, for each step, the fraction of flows directed

to the dominating port in each cluster with more than minPoints flows. Clusters are

sorted in decreasing fraction for ease of visualization. The number of dominatedPort

clusters is large during step 1, with 70 clusters having more than 50% of flows that

are directed to the same srvPort. Given portFraction = 0.5, SeLeCT picks flows in

these clusters. In step 2, the number of dominatedPort clusters decreases, and only 17

clusters pass the portFraction = 0.5 filter. In step 3, very few dominatedPort clusters

are present. This confirms the intuition that it is useless to add more than 3 steps

because the information carried by the srvPort has already been exploited. In addition,

the intuition suggests to relax the portFraction threshold during the last step, thus we

set portFraction = 0.2.

3.8.2 Sensitivity to portFraction

 80

 85

 90

 95

 100

 0  20  40  60  80  100

A
cc

u
ra

cy
 [
%

]

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  20  40  60  80  100

F
ra

ct
io

n
 o

f 
cl

u
st

e
re

d
 p

o
in

ts
 [
%

]

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  20  40  60  80  100

N
u
m

b
e
r 

o
f 
cl

u
st

e
rs

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Figure 3.9: Sensitivity analysis to portFraction: accuracy, fraction of clustered flows
and number of clusters in left, middle and right plot.

To complete the sensitivity analysis, Fig. 3.9 shows how the choice of portFraction

impacts performance. More specifically, the left plot, which reports the overall accuracy,

shows that the impact on accuracy is limited, and only values larger than 80% exhibit

some severe degradation on accuracy (note the y-range). The middle plot, which shows



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 46

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20  40  60  80  100  120  140

A
cc

u
ra

cy
 [
%

]

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C  40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20  40  60  80  100  120  140

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20  40  60  80  100  120  140

C
lu

st
e
re

d
 f
lo

w
s 

[%
]

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20  40  60  80  100  120  140

A
cc

u
ra

cy
 [
%

]

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20  40  60  80  100  120  140

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20  40  60  80  100  120  140

C
lu

st
e
re

d
 f
lo

w
s 

[%
]

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Figure 3.10: Sensitivity to k.

the fraction of clustered points, suggests to select smaller values for portFraction, since

this results in a larger fraction of clustered flows. However, a trade-o↵ is shown in

the right plot, because the number of clusters notably increases for small values of

portFraction. Small values cause the algorithm to accept a lot of clusters in the first

filtering steps (refer to Fig. 3.8), causing the total number of clusters to increase rapidly.

Values of 0.3 < portFraction < 0.8 o↵er a good trade-o↵.

3.8.3 Sensitivity to k and minPoints

Finally, we show the sensitivity of k and minPoints in Figures 3.10 and 3.11, respec-

tively. Plots report the overall accuracy, number of clusters, and the fraction of clustered

flows from left to right, the Client and Server flows on the top and bottom plots, re-

spectively. Figure 3.10 shows that accuracy is typically higher than 90% except for very



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 47

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0  5  10  15  20  25  30

A
cc

u
ra

cy
 [
%

]

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 100

 120

 140

 160

 180

 200

 220

 240

 0  5  10  15  20  25  30

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0  5  10  15  20  25  30

C
lu

st
e
re

d
 f
lo

w
s 

[%
]

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0  5  10  15  20  25  30

A
cc

u
ra

cy
 [
%

]

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 100

 120

 140

 160

 180

 200

 220

 240

 0  5  10  15  20  25  30

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0  5  10  15  20  25  30

C
lu

st
e
re

d
 f
lo

w
s 

[%
]

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Figure 3.11: Sensitivity to MinPoints.

small values of k. Larger values of k improve accuracy, since SeLeCT is allowed to form

more clusters. This is confirmed by the total number of clusters which increases almost

linearly with k up to a saturation point. However, fragmenting flows into many clusters

causes cluster size to be small. Hence, the parameter setting, minPoints = 20, filters

a larger fraction of flows, causing the percentage of clustered flows to decrease. Finally,

notice that Dataset-3C and Dataset-4C are the two most critical scenarios due to the

mix of protocols that is present in this network and the relatively weaker descriptiveness

of the layer-4 features for client flows.

A similar reasoning applies when varying minPoints. It has limited impact on the

overall accuracy as already noticed in Figure 3.3, while the number of clusters and the

fraction of clustered flows exhibit an inverse dependence on minPoints: small values

cause both of these metrics to grow quickly, while minPoints higher than 15-20 starts



Chapter 3. SeLeCT: Self-Learning Classifier for Internet Tra�c 48

showing a saturation. This is true especially for the Server datasets.

Overall, the choice of k andminPoints is not critical; choosing k = 100 andminPoints =

20 allows a good trade-o↵ between high accuracy, limited number of clusters, and large

fraction of clustered flows.

3.8.4 Complexity

The complexity of SeLeCT is mainly driven by the complexity of the k-means algorithm.

To find the optimal solution considering n objects, k clusters, and a d dimensional space,

the problem can be optimally solved in O(ndk+1 log n), which would turn out to be

definitively too much for real time applications. However, by considering the centroids

computation and re-clustering steps for a fixed number of iterations, the computational

time is deterministic. In our case, we choose the number of iteration to be smaller

than 1,000,000, and we repeat the k-means 10 times to avoid possible bias do to bad

initial centroid choice. Considering these settings, for Dataset-4S, the scenario with the

highest flow arrival rate, SeLeCT was able to complete the processing of batch n before

the collection of flows of batch n + 1 was complete, thus enabling real-time operation

even if the current prototype is not optimised. Notice that only flows that have at least

6 data packets are passed to SeLeCT, i.e., 70-90% of flows are actually not considered

in practice, see Fig. 3.1. As a final note, several functions of SeLeCT can also be run in

parallel.



Chapter 4

Analysis of Twitter Data Using a

Multiple-Level Clustering

Strategy

In recent years, social networks and online communities have become a powerful source

of knowledge. Social network users are used to publish and continuously update multi-

media resources, posts, blogs, etc. Actions undertaken by Web users reflect their habits,

personal interests, and professional skills. Hence, the analysis of the user-generated con-

tent coming from social networks has received an increasingly high attention in several

application contexts. For instance, data mining techniques have already been applied

to recommend personalized services and products based on social annotations [37], [38],

[39], organize and make social knowledge accessible [40], and perform email spamming

based on social networks [41]. In particular, data mining from UGC published on the

popular Twitter micro-blogging Website has achieved promising results in the analysis

of most notable user behaviors [42], [43] and topic trends [44].

Twitter textual data (i.e., tweets) can be analysed to discover user thoughts associated

with specific events, as well as aspects characterizing events according to user perception.

Clustering techniques can provide a coherent summary of tweets, which can be used to

provide summary insight into the overall content of the underlying corpus. Nevertheless

clustering is a widely studied data mining problem in the text domain, clustering twitter

messages imposes new challenges due to their inherent sparsness.

This Chapter proposes a data analysis framework to discover, in a data collection with

a variable distribution, cohesive and well-separated groups of tweets. Our framework

exploits a multiple-level clustering strategy that iteratively focuses on disjoint dataset

portions and locally identifies clusters. The density-based DBSCAN algorithm [45] has

been adopted because it allows the identification of arbitrarily shaped clusters, is less

susceptible to noise and outliers, and does not require the specification of the number

49



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 50

of expected clusters in the data. To highlight the relevance of specific words for a given

tweet or set of tweets, they have been represented in the Vector Space Model (VSM)

[46] using the TF-IDF weighting score [46]. The cluster content has been compactly

represented with the most representative words appearing in their tweets based on the

TF-IDF weight. Association rules representing word correlations are also discovered

to point out in a compact form the information characterizing each cluster. To our

knowledge, this work is the first study addressing a jointly exploitation of a multiple-

level clustering strategy with association rules for tweet analysis.

As a reference case study, the proposed framework has been applied to two real datasets

retrieved from Twitter. The results showed that, starting from a tweet collection, the

framework allows the identification of clusters containing similar messages posted on an

event. The multiple-level strategy iterated for three levels compute clusters that pro-

gressively contain longer tweets describing the event through a more varied vocabulary,

talking about some specific aspects of the event, or reporting user emotions associated

with the event.

4.1 Motivating example

Tweets are short, user-generated, textual messages of at most 140 characters long and

publicly visible by default. For each tweet a list of additional features (e.g., GPS coor-

dinates, timestamp) on the context in which tweets have been posted is also available.

This Chapter focuses on the analysis of the textual part of Twitter data (i.e., on tweets)

to provide summary insight into some specific aspects of an event or discover user

thoughts associated with specific events. Clustering techniques are used to identify

groups of similar tweets. Cluster analysis partitions objects into groups (clusters) so

that objects within the same group are more similar to each other than those objects

assigned to di↵erent groups [13]. Each cluster is then compactly described through the

most representative words occurring in their tweets and the association rules modeling

correlations among these words. Association rules [47] identify collections of itemsets

(i.e., sets of words in the tweet analysis) that are statistically related in the underlying

dataset. Association rules are usually represented in the form X ! Y , where X and Y

are disjoint itemsets (i.e., disjoint conjunctions of words).

A simplified example of the textual part of two Twitter messages is shown in Figure 4.1.

Both tweets regard the Paralympic Games that took place in London in year 2012. As

described in Section 4.3.1, to suit the textual data to the subsequent data mining steps,

tweets are preprocessed in the framework by removing links, stopwords, no-ascii chars,

mentions, and replies.

Our proposed framework assigns the two example tweets to two di↵erent clusters, due

to their quite unlike textual data. Both example tweets contain words as



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 51

{paralympics, olympic, stadium}, overall describing the paralympics event. In addition,

{fireworks, closingceremony} and

{amazing, athletics} are the representative word sets for Tweets 1 and 2, respectively,

reporting the specific subject of each message. The association rules

{closingceremony ! fireworks} and

{amazing ! athletics} model correlations among representative words in the two

tweets. They allow us to point out in a compact form the representative information

characterizing the two messages. While the first tweet talks about a specific event in

the closing ceremony (i.e., the fireworks), the second one reports a positive opinion of

people attending the event.

TWEET 1 - text: {Fireworks on! paralympics closingceremony at Olympic Stadium}

TWEET 2 - text: {go to Olympic Stadium for amazing athletics at Paralympics}

Figure 4.1: Two simplified example tweets

4.2 Related work

The application of data mining techniques to discover relevant knowledge from the User

Generated Content (UGC) of online communities and social networks has become an

appealing research topic. Many research e↵orts have been devoted to improving the

understanding of online resources [42, 48], designing and building query engines that

fruitfully exploit semantics in social networks [49, 50], and identifying the emergent

topics [43, 51]. Research activity has been carried out to on Twitter data to discover

hidden co-occurrences [42] and associations among Twitter UGC [44, 52, 53], and analyse

Twitter UGC using clustering algorithms [54–56].

Specifically, in [42] frequently co-occurring user-generated tags are extracted to discover

social interests for users, while in [53] association rules are exploited to visualize relevant

topics within a textual document collection. [44] discovers trend patterns in Twitter

data to identify users who contribute towards the discussions on specific trends. The

approach proposed in [52], instead, exploits generalized association rules for topic trend

analysis. A parallel e↵ort has been devoted to studying the emergent topics from Twitter

UGC [43, 51]. For example, in [43] bursty keywords (i.e., keywords that unexpectedly

increase the appearance rate) are firstly identified. Then, they are clustered based on

their co-occurrences.

Research works also addressed the Twitter data analysis using clustering techniques.

[54] proposed to overcome the short-length tweet messages with an extended feature

vector along with a semi-supervised clustering technique. The wikipedia search has



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 52

been exploited to expand the feature set, while the bisecting k-Means has been used

to analyze the training set. In [55], the Core-Topic-based Clustering (CTC) method

has been proposed to extract topics and cluster tweets. Community detection in social

networks using density-based clustering has been addressed in [56] using the density-

based OPTICS clustering algorithm.

Unlike the above cited papers, our work jointly exploits a multiple-level clustering tech-

nique and association rules mining to compactly point out, in tweet collections with a

variable distribution, the information posted on an event.

4.3 The Proposed Multiple-Level Clustering Framework

The proposed framework to analyse Twitter data is shown in Figure 4.2 and detailed in

the following subsections.

The textual content of Twitter posts (i.e., the tweets) is retrieved through the Twitter

Stream APIs (Application Programming Interfaces) and preprocessed to make it suitable

for the subsequent mining steps. The multiple-level clustering approach is then applied

to discover, in a dataset with a variable distribution, groups of tweets with a similar

informative content. The DBSCAN algorithm has been exploited for the cluster analysis.

Clustering results are evaluated through the Silhouette [57] quality index, balancing both

intra-cluster homogeneity and inter-cluster separation. To analyse tweets contained in

the cluster set, each cluster has been characterized with the most representative words

appearing in its tweets and the association rules modeling correlations among these

words. We validated both the meaning and the importance of the information extracted

from the tweet datasets with the support of news available on the web. This allows us

to properly frame the context in which tweets were posted.

4.3.1 Twitter Data Collection and Preprocessing

Tweet content and their relative contextual data are retrieved through the Stream Appli-

cation Programming Interfaces (APIs). Data is gathered by establishing and maintaining

a continuous connection with the stream endpoint.

To suit the raw tweet textual to the following mining process, some preliminary data

cleaning and processing steps have been applied. The textual message content is first

preprocessed by eliminating stopwords, numbers, links, non-ascii characters, mentions,

and replies. Then, it is represented by means of the Bag-of-Word (BOW) representation

[46].

Tweets are transformed using the Vector Space Model (VSM) [46]. Each tweet is a vector

in the word space. Each vector element corresponds to a di↵erent word and is associated

with a weight describing the word relevance for the tweet. The Term Frequency (TF)

- Inverse Document Frequency (IDF) scheme [46] has been adopted to weight word



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 53

Twitter data 
collection 

and 
preprocessing    

Tweet 
dataset

Cluster analysis

Representative 
Words and 

Rules extraction

Representative 
Words and Rules

Cluster set

Cluster 
evaluation

News
on the event

Extracted 
knowledge

Data collection and Preprocessing

Cluster analysis

Cluster evaluation

Figure 4.2: The proposed multiple-level clustering framework for tweet analysis

frequency. This data representation allows highlighting the relevance of specific words

for each tweet. It reduces the importance of common terms in the collection, ensuring

that the matching of tweets is more influenced by discriminative words with relatively

low frequency in the collection. In short-messages as tweets, the TF-IDF weighting score

could actually boild down to a pure IDF due to the limited word frequency within each

tweet. Nevertheless, we preserved the TF-IDF approach to consider also possible word

repetitions.

The tweet collection is then partitioned based on trending topics, identified by analysing

the most frequent hashtags. A dataset partition is analyzed as described in the following

sections.

4.3.2 Cluster Analysis

Di↵erently from other clustering methods, density-based algorithms can e↵ectively dis-

cover clusters of arbitary shape and filter out outliers, thus increasing cluster homogene-

ity. Additionally, the number of expected clusters in the data is not required. Tweet

datasets can include outliers as messages posted on some specific topics and clusters can

be non-spherical shaped. Besides, the expected number of clusters can be hardly guessed

a priori, because our aim is discovering groups of similar tweets through an explorative

data analysis. For these reasons, the DBSCAN density-based method has been selected

for tweet cluster analysis.

In the DBSCAN algorithm [45], clusters are identified as dense areas of data objects

surrounded by an area of low density. Density is evaluated based on the user-specified



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 54

parameters Eps andMinPts. A dense region in the data space is a n-dimensional sphere

with radius Eps and containing at least MinPts objects. DBSCAN iterates over the

data objects in the collection by analyzing their neighborhood. It classifies objects as

being (i) in the interior of a dense region (a core point), (ii) on the edge of a dense region

(a border point), or (iii) in a sparsly occupied region (a noise or outlier point). Any two

core points that are close enough (within a distance Eps of one another) are put in the

same cluster. Any border point close enough to a core point is put in the same cluster

as the core point. Outlier points (i.e., points far from any core point) are isolated.

One single execution of DBSCAN discovers dense groups of tweets according to one

specific setting of the Eps and MinPts parameters. Tweets in lower density areas are

labeled as outliers and not assigned to any cluster. Hence, di↵erent parameter settings

are needed to discover clusters in datasets with a variable data distribution as the one

considered in this study.

In application domains where data collections have a variable distribution, clustering

algorithms can be applied in a multiple-level fashion [58]. In this study we coupled a

multiple-level clustering approach with association rule mining to discover representative

clusters and the information characterizing them. Our approach iteratively applies the

DBSCAN algorithm on di↵erent (disjoint) dataset portions. The whole original dataset

is clustered at the first level. Then, at each subsequent level, tweets labeled as outliers

in the previous level are re-clustered. The DBSCAN parameters Eps and MinPts are

properly set at each level by addressing the following issues. To discover representative

clusters for the dataset, we aim at avoiding clusters including few tweets. In addition,

to consider all di↵erent posted information, we aim at limiting the number of tweets

labeled as outliers and thus unclustered.

The cosine similarity measure has been adopted to evaluate the similarity between tweets

represented in the VSM model using the TF-IDF method. This measure has been often

used to compare documents in text mining [46].

4.3.3 Cluster Evaluation

The discovered cluster set is evaluated using the Silhouette index [59]. Silhouette allows

evaluating the appropriateness of the assignment of a data object to a cluster rather

than to another by measuring both intra-cluster cohesion and inter-cluster separation.

The silhouette value for a cluster C is the average silhouette value on all its tweets.

Negative silhouette values represent wrong tweet placements, while positive silhouette

values a better tweet assignments. Clusters with silhouette values in the range [0.51,0.70]

and [0.71,1] respectively show that a reasonable and a strong structure have been found

[59]. The cosine similarity metric has been used for silhouette evaluation, since this

measure was used to evaluate tweet similarity in the cluster analysis (see Section 4.3.2).



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 55

Each cluster has been characterized in terms of the words appearing in its tweets and

the association rules modeling strong correlations among these words. News available

on the web are used to properly frame the context in which tweets were posted and

validate the extracted information. Specifically, the most representative words for each

cluster are highlighted. These words are the relevant words for the cluster based on

the TF-IDF weight. They occur with higher frequency in tweets in the cluster than in

tweets contained in other clusters.

The quality of an association rule X ! Y , with X and Y disjoint itemsets (i.e., sets of

words in this study), is usually measured by rule support and confidence. Rule support

is the percentage of tweets containing both X and Y . Rule confidence is the percentage

of tweets with X that also contain Y , and describes the strength of the implication.

To rank the most interesting rules, we also used the lift index [13], which measures the

(symmetric) correlation between sets X and Y . Lift values below 1 show a negative

correlation between sets X and Y , while values above 1 indicate a positive correlation.

The interest of rules having a lift value close to 1 may be marginal. In this work, to

mine association rules representing strong word correlations, rules with high confidence

value and lift grater than one have been selected.

4.4 Experimental results

This section presents and discusses the preliminary results obtained when analysing two

real collections of twitter messages with the proposed framework.

4.4.1 Datasets

We evaluated the usefulness and applicability of the proposed approach on two real

datasets retrieved from Twitter. Our framework exploits a crawler to access the Twitter

global stream e�ciently. To generate the real Twitter datasets we monitored the public

stream endpoint o↵ered by the Twitter APIs over a 1-month time period and tracked

a selection of keywords ranging over two di↵erent topics, i.e., Sport and Music. The

crawler establishes and maintains a continuous connection with the stream endpoint to

collect and store Twitter data.

For both Twitter data collections, we analyzed the most frequent hashtags to discover

trending topics. Among them, we selected the following two reference datasets for our

experimental evaluation: the paralympics and the concert datasets. The paralympics

dataset contains tweets on the Paralympic Games that took place in London in year

2012. The concert dataset contains tweets on the Madonna’s concert held in September

6, 2012, at the Yankee Stadium located at The Bronx in New York City. Madonna is an

American singer-songwriter and this concert was part of the ”Mdna 2012 World Tour”.

Tweets in each dataset are preprocessed as described in Section 4.3.1. Hashtags used for



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 56

tweets selection have been removed from the corresponding dataset, because appearing

in all its tweets.

The main characteristics of the two datasets are as follows. The paralympics dataset

contains 1,696 tweets with average length 6.89. The concert dataset contains 2,960

tweets with average length 6.38.

4.4.2 Framework Configuration

In the proposed framework, the procedures for data transformation and cluster evalua-

tion have been developed in the Java programming language. These procedures trans-

form the tweet collection into the VSM representation using the TF-IDF scheme and

compute the silhouette values for the cluster set provided by the cluster analysis. The

DBSCAN [45] and FPGrowth [47] algorithms available in the RapidMiner toolkit [14]

have been used for the cluster analysis and association rule extraction, respectively.

To select the number of iterations for the multiple-level clustering strategy and the

DBSCAN parameters for each level, we addressed the following issues. We aim at

avoiding clusters including few tweets, to discover representative clusters, and at limiting

the number of unclustered tweets, to consider all posted information. For both datasets

we adopted a three-level clustering approach, with each level focusing on a di↵erent

dataset part. The Eps and MinPts values at each iteration level for the two datasets

are reported in Section 4.4.3.

To extract association rules representing strong correlations among words appearing in

tweets contained in each cluster, we considered a minimum confidence threshould greater

than or equal to 80%, lift greater than 1, and a minimum support threshold greater than

or equal to 10%.

4.4.3 Analysis of the Clustering Results

Starting from a collection of Twitter data related to an event, the proposed framework

allows the discovery of a set of clusters containing similar tweets. The multiple-level

DBSCAN approach, iterated for three levels, computed clusters progressively containing

longer tweets, that (i) describe the event through a more varied vocabulary, (ii) focus on

some specific aspects of the event, or (ii) report user emotions and thoughts associated

with the event.

First-level clusters contain tweets mainly describing general aspects of the event. Second-

level clusters collect more diversified tweets that describe some specific aspects of the

event or express user opinions about the event. Tweets become progressively longer

and more focused in third-level clusters, indicating that some additionally specific as-

pects have been addressed. Since at each level clusters contain more specific messages,

a lower number of tweets are contained in each cluster and the cluster size tends to



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 57

reduce progressively. By further applying the DBSCAN algorithm on the subsequent

levels, fragmented groups of tweets can be identified. Clusters show good cohesion and

separation as they are characterized by high silhouette values. Both the meaning and

the importance of the information extracted from the two datasets has been validated

with the support of news on the event available on the web.

Cluster properties are discussed in detail in the following subsections. Tables 4.1 and

4.2 report, for each first- and second-level cluster in the two datasets, the number of

tweets, the average tweet length, the silhouette value, and the most representative words.

Representative association rules are also reported, pointing out in a compact form the

discriminative information characterizing each cluster. Clusters are named as Ci
j

in the

tables, where j denotes the level of the multiple-level DBSCAN approach providing the

cluster and i locally identifies the cluster at each level j.

4.4.3.1 Tweet Analysis in the Paralympics Dataset.

First-level clusters can be partitioned into the following groups: clusters containing

tweets that (i) post general information about the event (clusters C11 and C21), (ii) re-

gard a specific discipline (C31) or team (C41 and C51) among those involved in the event,

(iii) report user emotions (C61), and (iv) talk about the closing ceremony (C71).

Specifically, clusters C11 and C21 mainly contains information about the event loca-

tion (rule {london} ! {stadium, olympics}). Clusters C41 is about the Great Britain

team taking part in the Paralympics event (rule {teamgb} ! {olympic}). Clusters

C31 and C61 focus on the athletics discipline. While cluster C31 simply associates ath-

letics with the Olympic event, users in cluster C61 express their appreciation on the

athletics competitions they are attending (rule {athletics} ! {amazing, day}). Finally,

tweets in cluster C71 talk about the seats of people attending the final ceremony (rule

{closingceremony, stadium} ! {seats}).

Second-level clusters contain more diversified tweets. The following categories of clusters

can be identified: clusters with tweets posting information on (i) specific events in the

closing ceremony (clusters C12 and C22), (ii) specific teams (cluster C32) or competitions

(cluster C42) in Paralympics, and (iii) thoughts of people attending Paralympics (cluster

C52).

More in detail, cluster C12 focuses on the flame that was put out on the day of the clos-

ing celebration (rule {stadium, london} ! {flame, closingceremony}), while cluster

C22 is on the fireworks that lit up London’s Olympic stadium in the closing ceremony

(rule {stadium, closingceremony} ! {fireworks}). Cluster C32 is about the Great

Britain team taking part to athletics discipline (rule {teamgb, park} ! {athletics}).

Tweets in cluster C42 address the final basketball competition in the North Green-

wich Arena. They contain the information about the event location and the German



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 58

women’s team involved in the competition (rules {final} ! {north, germany} and

{final} ! {basketball, germany}). Tweets in cluster C52 show an enthusiastic feeling

on Paralympics (rule {stadium, olympic} ! {london, fantasticfriday}) and the desire

to share pictures on them (rule {pic, dreams} ! {stadium, time}).

Third-level clusters (with DBSCAN parameters MinPts = 15, Eps = 0.65) show a

similar trend to second-level clusters. For example, clusters contain tweets on some

specific aspects of the closing ceremony, as the participation of the ColdPlay band (rule

{london} ! {coldplay, watching}), or tweets about a positive feeling on the Paralympics

event (rules {love} ! {summer, olympics} and {gorgeous} ! {day}). By stopping the

multiple-level DBSCAN approach at this level, 808 tweets labeled as outliers remain

unclustered, with respect to the initial collection of 1,696 tweets.

4.4.3.2 Tweet Analysis in the Concert Dataset.

Among first-level clusters, we can identify groups of tweets mainly posting information on

the concert location (clusters C11 , C21 , and C31 with rule {concert,mdna} ! {yankee}).

The remaining clusters talk about some aspects of the concert. For example, cluster C41

regards the opening act (rule {yankee, stadium} ! {opening, act}). Cluster C51 is

on the participation of the Avicii singer (rule {wait} ! {yankee, avicii}), cluster C61

on the ”forgive” writing on Madonna’s back (rule {forgive} ! {stadium, nyc}), and

cluster C71 is about the raining weather (rule {rain} ! {yankee, stadium}). Finally,

cluster C81 regards people sharing concert pictures (rule {queen} ! {instagram}).

In second-level clusters, tweets focus on more specific aspects related to the concert. For

example tweets in cluster C22 refer to Madonna with the ”madge” nickname typically

used by her fans (rule {singing} ! {stadium,madge}).

Similar to the paralympics dataset, also in the concert dataset third-level clusters (with

DBSCAN parameter Eps=0.77 and MinPts=23) show a similar trend to second-level

clusters. For example, clusters contain tweets regarding some particular songs. At this

stage, 1660 tweets labeled as outliers remain unclustered, with respect to the initial

collection of 2,960 tweets considered at the first level.

4.4.4 Performance Evaluation

Experiments were performed on a 2.66 GHz Intel(R) Core(TM)2 Quad PC with 8 GB

main memory running linux (kernel 3.2.0). The run time of DBScan at the first, second,

and third level is respectively 2 min 9 sec, 1 min 9 sec, and 48 sec for the paralympics

dataset, and 4 min 4 sec, 1 min 53 sec, and 47 sec for the concert dataset. The run time

progressively reduces because less tweets are considered at each subsequent level. The

time for association rule extraction is about 24 sec for the cluster set at each level.



Chapter 4. Analysis of Twitter Data Using a Multiple-Level Clustering Strategy 59

Table 4.1: First- and second-level clusters in the paralympics dataset (DBSCAN
parameters MinPts=30, Eps=0.39 and MinPts=25, Eps=0.49 for first- and second-

level iterations, respectively)

First-level clusters

Cluster Tweets Avg Avg Words Association Rules
Length Sil

C11 70 3 1 olympic, stadium olympic! stadium
C21 30 7.33 0.773 olympics, london, stadium london! stadium, olympics

C31 124 4.47 0.603 london, park, athletics, day
london, day! athletics
olympic! park, athletics

C41 30 6.67 0.710 heats, teamgb, olympic
teamgb! olympic
heats! teamgb

C51 30 5.67 0.806 mens, olympic, stadium mens! olympic

C61 40 6 0.620 day, pic, amazing, athletics
athletics! amazing, day
day, pic! stadium

C71 36 5.72 0.804 closingceremony, seats, park, stadium
closingceremony, stadium! seats
olympic, park! closingceremony

Second-level clusters

Cluster Tweets Avg Avg Words Association Rules
Length Sil

C12 90 5.67 0.398
flame, closingceremony,

london, stadium
stadium,london! flame,closingceremony

C22 36 6.67 0.616
fireworks, closingceremony,

hart, stadium
stadium,closingceremony! fireworks
fireworks, hart! stadium

C32 26 6.08 0.722
teamgb, athletics, park,

olympic, london

teamgb, park! olympic
teamgb, park! athletics
olympic, park! teamgb, london

C42 34 9.65 0.502
greenwich, north, arena, basketball

germany, final, womens

final! north, germany
final! basketball, germany
final! womens, germany

C52 40 6.5 0.670
fantasticfriday, dreams, time, pic

olympic, london, stadium

pic, dreams! stadium,time
stadium,olympic! london, fantas-
ticfriday

Table 4.2: First- and second- level clusters in the concert dataset (DBSCAN parame-
ters MinPts=40, Eps=0.41 and MinPts=21, Eps=0.62 for the first- and second-level

iterations, respectively)

First-level clusters

Cluster Tweets Avg Avg Words Association Rules
Length Sil

C11 148 5.05 0.817 concert, mdna, yankee, stadium
concert, yankee! stadium
concert, mdna! yankee

C21 340 4 1 bronx, yankee, stadium yankee, stadium! bronx
C31 160 3 1 yankee, stadium stadium! yankee

C41 40 6 0.950
opening, act, mdna,
yankee, stadium

act! opening
yankee, stadium! opening, act

C51 60 6 0.779 avicii, wait, concert wait! yankee, avicii
C61 84 6.19 0.794 forgive, nyc, mdna, stadium forgive! stadium, nyc
C71 40 7 0.986 rain, yankee, stadium rain! yankee, stadium
C81 40 6 0.751 queen, instagram, nyc queen! instagram

Second-level clusters

Cluster Tweets Avg Avg Words Association Rules
Length Sil

C12 60 6.67 0.523 raining, mdna, stop raining! mdna, stop

C22 40 7 0.667 madge, dame, named, singing
singing! stadium, madge
madge, singing, named! stadium,
dame

C32 44 7.64 0.535
surprise, brother, birthday,

avicii, minute
yankee, stadium, surprise! birthday

C42 22 8.55 0.893
style, way, vip, row
livingthedream

style! vip, livingthedream





Chapter 5

Analyzing Twitter

User-Generated Content Changes

In the previous Chapter, we proposed a novel analysis framework to discover, in a data

collection with a variable distribution, cohesive and well-separated groups of tweets.

Besides that, Twitter user-generated content consists of a large collection of short textual

messages (i.e., the tweets) posted by Web users and their contextual information (e.g.,

publication time and date). Since the Twitter user-generated content and contextual

data continuously evolve over time, a relevant research issue is the application of data

mining techniques to discover most significant pattern changes. Dynamic itemset mining

[60] entails discovering itemsets that (i) frequently occur in the analyzed data, and (ii)

may change from one time period to another. The history of the main itemset quality

indexes reflects the most relevant temporal data correlation changes. However, the

sparseness of the analyzed data makes dynamic itemset mining from UGC a challenging

task. In fact, potentially relevant itemsets discovered at a certain time period are likely

to become infrequent (i.e., their support value becomes lower than a given threshold)

in at least another one. Hence, the information associated with the discovered itemsets

may be lost, unless lowering the support threshold and mining a huge amount of other

(potentially redundant) itemsets.

This Chapter presents the TwiChI (Twitter Change mIner) system that aims at support-

ing experts in the analysis of Twitter UGC changes targeted to user behavior and topic

trend analysis. TwiChI exploits the Twitter Application Programming Interfaces (APIs)

to retrieve both tweet textual contents and their contextual features (i.e., publication

date, time, place). Data crawling is continuously executed using the Twitter Public

stream endpoint to track the temporal evolution of the frequent itemsets occurring in

the analyzed data. The retrieved data is analyzed by the proposed HiGen Miner algo-

rithm [61], which discovers compact patterns, named the History Generalized Patterns

(HiGens). HiGens represent the evolution of frequent itemsets across consecutive time

61



Chapter 5. Analyzing Twitter User-Generated Content Changes 62

Timestamped tweet dataset ItemSet Support(%)
DJan2012 (Place, New York City), (Time, 3.45 p.m.) 20%

(Keyword, Obama), (Place, New York City) 10%
DFeb2012 (Place, New York State), (Time, from 3 to 6 p.m.) 50%

(Keyword, President of USA), (Place, New York City) 16%

Table 5.1: Example of HiGens extracted by enforcing the minsup = 10%.

periods. To avoid the discarding of rare but potentially relevant knowledge, itemsets

that become infrequent in a certain time period with respect to the minimum support

threshold are generalized at a higher level of abstraction by exploiting a taxonomy (i.e.,

a set of is-a hierarchies built on data items). A generalized version of a traditional item-

set is an itemset that represents the same knowledge at a higher level of aggregation

according to a given taxonomy [62]. Hence, the knowledge associated with itemsets that

rarely occur at certain time periods is still maintained by replacing the low level itemset

versions with their frequent generalizations with least abstraction level.

Consider, for instance, tweet messages and related contextual information (e.g., publi-

cation time, geographical location) retrieved in the period January and February 2012.

The tweet collection may be partitioned into two distinct monthly time periods. Ana-

lyzing the two sub-collections, the TwiChI framework may discover the HiGens reported

in Table 5.1. Suppose that (Keyword, Obama), (Place, New York City) is the reference

itemset under analysis. Since it occurs frequently in January 2012 according to the

enforced minimum support threshold (i.e., a minimum frequency of occurrence in the

source data), then it is reported for the corresponding time period as is. Instead, since in

February 2012 the reference itemset becomes infrequent, it is generalized by exploiting

an analyst-provided taxonomy. In particular, item (Keyword, Obama) is generalized as

the corresponding government role and the corresponding high level version of the ref-

erence itemset (Keyword, President of USA), (Place, New York City) is reported. Note

that by generalizing the reference itemset at a higher level of abstraction, its associated

information becomes frequent with respect to the support threshold and is kept instead

of the infrequent version.

Experiments, performed on real Twitter datasets, show the applicability of the proposed

system to real-life use-cases. For instance, the HiGen reported in Table 5.1 may be used

to discover which Twitter message topics (e.g., politics) are more likely to be matter of

contention in certain time slots. The achieved experimental results show that TwiChI

is particularly suitable for supporting domain expert analysis targeted to user behavior

analysis and topic trend detection.



Chapter 5. Analyzing Twitter User-Generated Content Changes 63

5.1 Related work

This section overviews main state-of-art approaches related to (i) generalized itemset

mining, (ii) dynamic data mining, and (iii) data mining from user-generated content.

5.1.1 Generalized itemset mining

Frequent itemset mining is a widely exploratory data mining technique that allows the

identification of hidden and interesting correlations among data. Introduced in the con-

text of market basket analysis, this mining activity nowadays finds applications in a wide

range of di↵erent contexts (e.g., network tra�c characterization [63], context-aware ap-

plications [64]. However, the suitability of data mining approaches for business decisions

strictly depends on the abstraction level of the analyzed data. Traditional frequent item-

set mining algorithms (e.g., Apriori [65], FP-Growth [47]) are sometimes not e↵ective in

mining valuable knowledge, because of the excessive detail level of the mined informa-

tion. In fact, to make the mining processcomputationally tractable a minimum support

threshold is commonly enforced to select only the patterns that frequently occur in the

analyzed data. Hence, rare but potentially relevant knowledge is discarded.

Generalized itemsets [62] are patterns that represent high level correlations among data.

By exploiting a taxonomy (i.e., a set of is-a hierarchies) that aggregates data items

into upper level generalizations, generalized itemsets are generated by combining items

belonging to di↵erent abstraction levels. Generalized itemsets may allow better sup-

porting the expert decision process than traditional ones, because they provide a high

level view of the analyzed data and also represent the knowledge covered by their low

level infrequent descendants.

The first generalized association rule mining algorithm, namely Cumulate, was presented

in [62]. It is an Apriori-based algorithm that generates generalized itemsets by consid-

ering, for each item, all its parents in the hierarchy. One step further towards a more

e�cient extraction process for generalized association rule mining was based on new op-

timization strategies [66, 67]. In [67] a faster support counting is provided by exploiting

the TID intersection computation, which is common in rule mining algorithms designed

for the vertical data format. Di↵erently, in [66] an optimization based on top-down

hierarchy traversal and multiple-support thresholds is proposed. It aims at identifying

in advance generalized itemsets that cannot be frequent by means of an Apriori-like ap-

proach. To further increase the e�ciency of generalized rule mining algorithms, in [68]

a FP-tree based algorithm is proposed, while in [69] both subset-superset and parent-

child relationships in the lattice of generalized itemsets are exploited to avoid generating

meaningless patterns. More recently, in [70] authors propose an algorithm that performs

support-driven itemset generalization, i.e., a frequent generalized itemset is extracted

only if it has at least an infrequent (rare) descendant.



Chapter 5. Analyzing Twitter User-Generated Content Changes 64

This work focuses on analyzing the temporal evolution of generalized itemsets mined

from Twitter data. The mining algorithm integrated in TwiChI [61] extends the gen-

eralization procedure first proposed in [70] to a dynamic context. However, unlike [70],

it does not extract all frequent generalizations of an infrequent low level itemset, but

considers only the ones characterized by minimum abstraction level.

5.1.2 Dynamic data mining

Traditional itemset and association rule mining approaches do not take the temporal

evolution of the extracted itemsets/association rules into account. Instead, dynamic

data mining focuses on tracing the evolution of the main itemset and/or association rule

quality indexes to figure out the most significant temporal changes.

The problem of discovering relevant changes in the history of itemsets or association

rules has already been addressed by a number of previous works [60, 61, 71–74]. For

instance, active data mining [60] has been the first attempt to represent and query the

history collection of the discovered association rule quality indexes. Rules are mined from

datasets collected at consecutive time periods and evaluated based on well-known quality

indexes (e.g., support, confidence). Then, the analyst is in charge of specifying a history

pattern in a trigger which is fired when such a pattern trend is exhibiting. The history

patterns are exploited to track most notable pattern index changes. More recently, other

time-related data mining frameworks tailored to monitor and detect changes in rule

quality measures have also been proposed [71, 72, 74]. For instance, in [72], patterns are

evaluated and pruned based on both subjective and objective interestingness measures,

while in [71] authors focus on monitoring pattern mining with a limited computational

e↵ort. To this aim, new patterns are observed as soon as they emerge, while old patterns

are removed from the rule base as soon as they become extinct. Furthermore, at one

time period a subset of rules is selected and monitored, while data changes that occur in

subsequent periods are measured by their impact on the rules being monitored. Similarly,

the work proposed in [74] also addresses itemset change mining from time-varying data

streams. Di↵erently, in [73] authors deal with rule change mining by discovering two

main types of rules: (i) stable rules, i.e., rules that do not change a great deal over time

and, thus, are likely to be reliable and could be trusted, and (ii) trend rules, i.e., rules

that indicate some underlying systematic trends of potential interest.

Since all the above-mentioned approaches do not consider itemsets/rules at di↵erent

abstraction levels, their ability in capturing relevant data correlation changes may be

biased by the support threshold enforcement. In fact, some relevant trends may be dis-

carded, because the underlying recurrences become infrequent at a certain time period.

To overcome this issue, in [61] a dynamic itemset mining approach has recently been



Chapter 5. Analyzing Twitter User-Generated Content Changes 65

proposed. It discovers History Generalized Patterns, which represent a sequence of gen-

eralized itemsets extracted in consecutive time periods. Each HiGen is mainly focused

on a reference itemset, whose support index values are traced in the consecutive time

periods. In case an itemset becomes infrequent in a certain time period, its generaliza-

tion with least abstraction level is maintained to avoid discarding potentially relevant

knowledge. This Chapter proposes a data mining system that discovers History Gener-

alized Patterns from Twitter UGC and exploits them to drive the knowledge discovery

process.

5.1.3 Data mining from user-generated content

The proliferation of the UGC, posted by Web users in di↵erent data formats (e.g., posts,

tags, videos), has increased the attention of the research community in developing new

methods to manage and analyze this huge amount of information. The UGC coming from

social networks and online communities is a powerful resource of information which can

be analyzed by means of di↵erent data mining approaches. Even if the most significant

research e↵orts have been devoted to improving the performance of recommendation and

categorization systems, in the last several years the analysis and the identification of the

evolution of the UGC content, user behaviors and interests have been received more and

more attention by the research community. In particular, the proposed approaches are

mainly addressed to (i) improve the knowledge discovery processes from online resources,

(ii) discover topic trends of the news published online and (iii) understand the dynamics

behind social networks and online communities.

One of the main research directions is the discovery of most relevant online community

user behaviors [75, 76]. For instance, in [75] common user activities (e.g., universal

searches, message sending, and community creation) are discovered by means of click-

stream data analysis. Di↵erently, [76] study the UGC lifetime by empirically analyzing

the workloads coming from three popular knowledge-sharing online social networks, i.e.,

a blog system, a social bookmark sharing network, and a question answering social

network.

The UGC published on social networks, such as Facebook and Twitter, can be very

useful for profiling user behaviors and discovering patterns valuable for further analysis.

In particular, several new approaches have been proposed to support knowledge discovery

from Twitter by means of data mining techniques. For instance, TwitterMonitor [43] is

focused on the detection of topic trends from Twitter streams. This system first identifies

and clusters the “bursty” keywords (i.e., keywords that appear in tweets at unusually

high rate), and then performs contextual knowledge extraction to compose an accurate

description of the identified trends. Trend patterns can also be exploited to support

decision-making and recommendation processes. For instance, [44] analyze the trend of



Chapter 5. Analyzing Twitter User-Generated Content Changes 66

Figure 5.1: The TwiChI framework

the topics and the demographics of the sets of Twitter users who contribute towards

the discussion of particular trends to support decision-making activities. Di↵erently,

[77] combine RSS news and UGC coming from microblogs into a news recommendation

system. In particular, they mine Twitter message content to identify emerging topics

and breaking events. The RSS stories have been ranked based on a weighted score that

takes the Lucene tf-idf score of each article term and the information provided by tweets

into account.

Similarly, this Chapter also presents a data mining system to perform knowledge discov-

ery from messages posted on Twitter. Unlike previous approaches it exploits both the

content and the contextual information associated with Twitter posts to perform user

behavior and topic trend analysis. To this aim, it extracts generalized dynamic patterns

that represent the evolution of the most relevant patterns over consecutive time periods

at di↵erent abstraction levels.

5.2 The TwiChI framework

The TwiChI (Twitter Change mIner) is a data mining system aimed at supporting

the discovery of dynamic patterns that represent the historical evolution of the most

valuable correlations among textual content and publication context of messages posted

on Twitter (tweets). The extracted patterns can represent the changes in user behaviors

and/or topic trends. In Figure 5.1 the TwiChI framework architecture is shown, while

the main blocks of the system are briefly described in the following.

Twitter data crawling and representation. This block aims at retrieving and pre-

processing user-generated messages (tweets) posted on Twitter. Tweets are partitioned



Chapter 5. Analyzing Twitter User-Generated Content Changes 67

in a sequence of collections according to their publication date. For each collection, the

main tweet features are modeled into two di↵erent representations: (i) a relational data

schema, and (ii) a taxonomy model. The relational data schema includes both content

(i.e., the message words) and contextual (e.g., the geographical location) features. The

taxonomy model is composed of a set of hierarchies built over the tweet contextual and

content features and is generated by a semi-automatic process. In particular, aggrega-

tion functions based on hierarchical models are exploited to aggregate values of lower

level features (e.g., the GPS coordinates) into their higher level aggregations (e.g., cities

and regions). Aggregation functions may be generated by exploiting either established

knowledge bases (e.g., WordNet) or Extraction, Loading, and Transformation (ETL)

processes.

History Generalized pattern mining. This block focuses on discovering History

Generalized patterns (HiGens) from the sequence of timestamped tweet collections by

exploiting the recently proposed HiGen Miner algorithm [61]. HiGens represents the

most significant data correlation changes by also considering knowledge at di↵erent

abstraction levels.

Pattern classification. The last block focuses on categorizing the extracted HiGens

based on their main characteristics to ease the expert in-depth analysis. HiGens are

classified as (i) stable HiGens, (ii) monotonous HiGens, and (iii) oscillatory HiGens,

according to the time-related trend. In particular, the evolution trend of the abstrac-

tion level at which patterns are represented within each time period is considered as

discriminative feature.

In the following sections a more detailed description of the main TwiChI framework

blocks is given.

5.2.1 Twitter data crawling and representation

This block addresses the retrieval and preprocessing of the tweets posted on Twitter.

User-generated tweets are at most 140 characters long and publicly visible by default.

Moreover, they are enriched by several contextual features (e.g., publication location

in terms of GPS coordinates, date, and hour) which are peculiar characteristics of the

context in which tweets are posted. Since data retrieved by Twitter Stream APIs (Appli-

cation Programming Interfaces) is not suitable for being directly analyzed by a dynamic

miner, an ad-hoc crawling procedure and a preprocessing phase are needed. In the

following, the data representation and the Twitter crawler of the TwiChI system are

presented.



Chapter 5. Analyzing Twitter User-Generated Content Changes 68

5.2.1.1 Twitter data representation

Given a collection of retrieved tweets, we define two di↵erent data representations which

will be exploited by the subsequent TwiChI mining step: (i) a relational data schema,

and (ii) a taxonomy model. In the following each data representation is better for-

malized. Relational data schema. Tweets belonging to a retrieved collection are

composed of the textual message and a set of contextual features (e.g. publication date,

time, location). To represent tweets into a relational schema both message words and

contextual feature values are modeled as data items, where an item (li, vi) is a couple

(attribute, value) and the value vi belongs to the discrete domain attribute of the at-

tribute li. When coping with continuous attributes, the value range is discretized into

intervals and the intervals are mapped to consecutive positive integers. Items represent

either the textual message content, (e.g., text word “travel”), or a contextual feature

value (e.g., Date, 2012-07-28). A tweet could be represented as a set of items, called

record, as stated in the following.

Definition 1. Record. Let L = l1, l2, . . . , ln be a set of attributes and ⌦ = ⌦1,⌦2, . . . ,⌦n

the corresponding domains. A record r is a set of items that contains at most one item

for each attribute in L. Each record is characterized by a time stamp t.

The time stamp t is defined by the analyst during the crawling process and may represent

the tweet publication date or time. A set of records (tweets) whose time stamps belong

to a fixed time period T is called timestamped relational tweet collection.

Definition 2. Timestamped relational tweet collection. Let L = l1, l2, . . . , ln be a set of

attributes and ⌦ = ⌦1,⌦2, . . . ,⌦n the corresponding domains. A relational tweet col-

lection DT is a collection of records, where each record r has a time stamp that belongs

to the time period T.

For instance, when considering as timestamp the tweet publication date and as time

period T = [July 1st 2012, July 31st 2012] each crawled tweet that has been published

in July 2012 is included in the timestamped tweet collection relative to T.

To enable the dynamic mining process, tweets are organized in a sequence of times-

tamped relational tweet collections relative to consecutive time periods. For instance,

tweets crawled in the first trimester of the year 2012 may be partitioned in a sequence

of three timestamped collections, each one related to a distinct monthly time period.

Taxonomy model. Semantic relationships between attribute values belonging to a

tweet collection are usually not defined in the relational data schema. To drive the

generation of generalized itemsets we define a taxonomy, which is a hierarchical model

that represents the is-a relationships holding between data instances (i.e., the data items)

relative to the same concept (i.e., the attributes). To aggregate attribute values into

higher level concepts, we introduce the notion of aggregation tree, i.e., an aggregation

hierarchy built on the domain of one attribute of the relational tweet collection.



Chapter 5. Analyzing Twitter User-Generated Content Changes 69

Figure 5.2: Examples of aggregation trees.

Definition 3. Aggregation tree. Let li be an attribute and ⌦i its domain. An aggregation

tree Ai is a tree representing a predefined set of aggregations over values in ⌦i. Ai leaves

are all the values in ⌦i. Each non-leaf node in Ai is an aggregation of all its children.

The root node ? aggregates all values for attribute li.

Figure 5.2 reports two examples of aggregation trees built on the Place and Time at-

tributes, respectively.

We define a taxonomy as a set of aggregation trees built over distinct data attributes.

Despite a taxonomy may potentially include many aggregation trees over the same at-

tribute, for the sake of simplicity in the following we exclusively consider taxonomies

that contain at most one aggregation tree Ai in⇢ per attribute li inL. Given a taxon-

omy �, we formalize the concept of generalized item as an item (li, ei) such that ei is a

non-leaf node in some Ai in�.

Definition 4. Generalized item. Let li be an arbitrary attribute, ⌦i its domain, and Ai

an aggregation tree built on values in ⌦i. A generalized item (li, ei) assigns the value

ei to attribute li . ei is a non-leaf node in Ai which defines an aggregation value over

values in ⌦i. leaves(ei) ✓ ⌦i is the set of items whose values are leaf nodes descendant

of ei in Ai.

The support of a generalized item (li, ei) in a relational tweet collection dt is the (ob-

served) frequency of leaves(ei) in DT .

For instance, if the words “Boots” and “Tennis Shoes” occur, respectively, in half and

one third of the tweets of a collection, their supports are 50% and 33%. If “Boots”

and “Tennis Shoes” are the only descendants of the common generalization “Shoes”,

according to a given taxonomy, the support of “Shoes” is 50%.

The two data representations are generated by the Twitter crawler described in the fol-

lowing, which also partitions the retrieved data into collections based on the publication

timestamp.

5.2.1.2 Twitter crawler

Twitter APIs are general-purpose tools that allow the e�cient retrieval of tweets from the

Web. However, tweets inherent to the submitted queries are retrieved disregarding the



Chapter 5. Analyzing Twitter User-Generated Content Changes 70

temporal and semantic relationships among their content. Moreover, tweets are provided

in a data format which is commonly unsuitable for further analysis. For instance, the

tweet geographical provenance is provided as a couple of GPS coordinates, but the

related city, region, and/or state are usually missing. Furthermore, it may be not easy

to di↵erentiate between tweets published in close time periods (e.g., during the last 12

hours) from the ones that are rather far from (e.g., the tweets published the day before).

Since our system addresses the analysis of the dynamic data correlation changes that

occur in the messages posted by the community, we exploit a tweet crawler that auto-

matically collects and organizes timestamped relational tweets relative to a sequence of

given time periods. To this aim, D is defined as the original set of tweets collections and

DT is a collection of tweets whose time stamps are contained in the time period T. The

tweet crawler has the following parameters: (i) the sequence of time periods whereby

tweets are partitioned, and (ii) a set of filtering parameters. Filtering parameters include

all the parameters provided by Twitter APIs, such as the selection of keywords and the

geographical radius used to select the tweets of interest from the Public stream. The

crawler continuously monitors the stream and retrieves tweets according to the search

parameters. At the end of a given time period, a new collection DT is defined according

to the predefined time scheduling.

Since data is retrieved in the JSON format, a preprocessing step is applied to suit tweets

to the two-way data representation (see Section “Twitter data representation”). The

relational data schema is generated by a data cleaning process which discards useless and

redundant information and correctly manages missing values. For each tweet, the textual

message is tailored to the Bag-of-Word (BOW) representation. It includes only the terms

selected by a stemming algorithm. The stemming method integrated in the TwiChI

system discards noisy data such as stopwords, numbers, and links. The relational data

schema, composed of the set of distinct terms belonging to the BOW representation, is

then enriched with the set of contextual information (e.g., GPS coordinates, publication

date, Twitter username) provided by the Twitter APIs.

To build a taxonomy over the Twitter relational data distinct aggregation trees are

built over each tweet feature (e.g, spatial information, and message words). To properly

manage data associated with distinct attributes, the aggregation values used for gener-

alizing low level item values are extracted by means of semi-automatic procedures called

aggregation functions. In particular, we exploit a set of ad-hoc aggregation functions

tailored to each attribute domain. To prevent discarding useful information and enrich

the tweet features, the aggregation functions can exploit established semantics-based

models, such as controlled vocabularies or lexical/domain-specific databases. For in-

stance, an aggregation function that accesses a geographical database is used to define

the relationship between the GPS coordinates and their corresponding region or state.

Similarly, the WordNet lexical database (http://wordnet.princeton.edu) is queried to



Chapter 5. Analyzing Twitter User-Generated Content Changes 71

retrieve the most relevant semantic relationships holding between tweet term couples.

More specifically, we focus on the hyponyms (i.e., is-a-subtype-of relationships). Terms

belonging to these relationships are considered as generalizations of the original term.

Consider, as an example, the term “dog”. Since the semantic relationship <dog> is-a-

subtype-of <domestic animal> is retrievable from the WordNet database, then the term

“domestic animal” is selected as the upper level generalization of the term “dog”. To

enrich the aggregation tree built over textual features, the database querying process is

deepened to find all the possible upper level aggregations (e.g., < dog > is-a-subtype-of

<animal>). If no semantics-based model is available for a given attribute, the ag-

gregation functions may extract is-a relationships by simply parsing the corresponding

attribute domain values, by exploiting an approach similar to the Extraction, Trans-

formation and Load (ETL) processes used in data warehousing (Kimball et al., 2002).

Consider, for instance, the “ Date” attribute and its high level aggregation “Semester”.

The corresponding mapping may be simply derived by parsing the lower level “Date”

domain values (e.g., 2012-07-28) and generating upper level concepts (e.g.,2nd Semester

2012) according to the corresponding aggregation function (i.e., Date ! Semester). The

generalization hierarchies extracted by means of the above-mentioned aggregation func-

tions are combined in a taxonomy, which will be used to drive the dynamic generalized

itemset mining process, as described in the following.

5.2.2 History Generalized pattern mining

This block aims at discovering from the collection of timestamped relational tweet col-

lections dynamic patterns, namely the History Generalized patterns (HiGens) that rep-

resent the evolution of the most notable data correlation changes.

Correlations among the tweet content and context collected within each time period

are represented in the form of generalized itemsets. A formal definition of generalized

itemset follows.

Definition 5. (Generalized) itemset. Let L be a set of attributes, ⌦ the corresponding

domains, and � a taxonomy defined on values in ⌦. An itemset I is a set of items (lk,

ek) in which each attribute lk 2 L may occur at most once. A generalized itemset is an

itemset that includes at least a generalized item (tk, ek) such that ek 2 � .

For instance, (Place, New York), (date, October 2010) is a generalized itemset of length

2 (i.e., a generalized 2-itemset).

A (generalized) itemset covers a given record (tweet) with timestamp t if all its (possibly

generalized) items x 2 X are either contained in r or ancestors of items i 2 r (i.e., i

leaves(x), i 2 r). The support of a (generalized) itemset X in a timestamped relational

tweet collection DT is given by the number of tweets r 2 DT covering X divided by the

cardinality of DT .



Chapter 5. Analyzing Twitter User-Generated Content Changes 72

The generalization level of a (generalized) itemset is a↵ected by the highest generalized

item level according to the given taxonomy.

Definition 6. (Generalized) itemset level. Let X = {(t1, e1), . . . , (tk, ek)} be a (general-

ized) k-itemset. Its level L[X] is the maximum item generalization level by considering

items in X, i.e., L[X] = max1jkL[(lj , ej)].

It follows that the level of a not generalized itemset is 1.

A descendant of an itemset represents part of its knowledge at a lower aggregation level.

Definition 7. (Generalized) itemset descendant/ancestor. Let Q be taxonomy. A (gen-

eralized) itemset X is a descendant of a generalized itemset Y if (i) X and Y have the

same length and (ii) for each item y 2 Y there exists at least an item x 2 X that is a

descendant of y with respect to Q. If X is a descendant of Y then Y is an ancestor of

X.

Consider the generalized itemset (Place, New York State), (date, from 3 to 6 p.m.).

According to the taxonomy reported in Table 5.1, its level is 2 because (Place, New

York) and (date, from 3 to 6 p.m.) have levels 2. Furthermore, it is an ancestor of

(Place, New York City), (date, 3.45 p.m.). If (Place, New York State), (date, from 3 to

6 p.m.) covers half of the tweets contained in the analyzed timestamped collection, its

support is 50%.

The generalized itemset mining task entails discovering all itemsets (generalized and not)

that satisfy a minimum support threshold minsup, i.e., the itemsets whose frequency of

occurrence is above or equal to minsup. Itemsets satisfying the above constraint are said

to be frequent.

To analyze changes in the evolution of the extracted itemsets in consecutive time peri-

ods, TwiChi discovers the dynamic patterns, namely the History Generalized patterns

(HiGens), proposed in [61].

Definition 8. HiGen. Let D = {D1, . . . , Dn} an ordered sequence of timestamped re-

lational tweet collections, � a taxonomy built on D, it a not generalized itemset,

namedreference itemset, and minsup a minimum support threshold. A HiGen HGit

relative to it is an ordered sequence of generalized itemsets g1, . . . , gn such that:

• if it is frequent in Di 2 D then gi = it

• else gi is an frequent ancestor characterized by minimal generalization level with

respect to � among the frequent ancestors of it

Each HiGen is associated with a (not generalized) reference itemset and describes its

evolution, in terms of its main quality indexes, from one time period to another. Notice

that, by Definition 8, each not generalized itemset may be associated with one or more

HiGens. In case the considered reference itemset becomes infrequent with respect to

the support threshold in a given time period, it is substituted by its generalization(s)



Chapter 5. Analyzing Twitter User-Generated Content Changes 73

with minimal level. Hence, the knowledge covered by the considered pattern is still

maintained at a higher level of abstraction for this time period.

For instance, the HiGens, reported in Table 5.1, may represent the evolution of the refer-

ence itemset {(Place, New York City), (Time, 3.45 p.m.)} over two example timestamped

relational tweet collections DJan2012 and DFeb2012, retrieved in two consecutive monthly

time period (January and February 2012, respectively), by enforcing a minimum support

threshold equal to 20% and by exploiting the taxonomy reported in Figure 5.2. Since the

reference itemset, which is frequent in DJan2012 , becomes infrequent in DFeb2012 with

respect to the support threshold its frequent generalization {(Place, New York State),

(Time, from 3 to 6 p.m.)} is kept in place of it.

A brief description of the algorithm exploited to extract HiGens is given in the following.

5.2.3 The HiGen miner algorithm

Given a sequence of timestamped relational tweet collections, a taxonomy, and a min-

imum support threshold, HiGen Miner discovers all HiGens, according to Definition

8.

To avoid extracting HiGens as a postprocessing step that follows the traditional gen-

eralized itemset mining phase, HiGen Miner exploits an Apriori-based support-driven

generalized itemset mining approach in which the generalization procedure is triggered

on infrequent itemsets only. The generalization process does not generate all possible

ancestors of an infrequent itemset at any abstraction level, but it stops at the general-

ization level in which at least a frequent ancestor occurs. Furthermore, the taxonomy

evaluation procedure over a pattern is postponed after its support evaluation in all

timestamped collections to avoid multiple (computationally expensive) evaluations.

A pseudo-code of the HiGen MINER is reported in Algorithm 1. At an arbitrary it-

eration k, HiGen MINER performs the following three steps: (i) k-itemset generation

from each timestamped collection in D (line 3), (ii) support counting and generalization

of infrequent (generalized) k-itemsets of increasing level (lines 6-37), (iii) generation of

candidate itemsets of length k+1 by joining k-itemsets and infrequent candidate pruning

(line 39). After being generated, frequent k-itemsets are included in the corresponding

HiGens contained in the HG set (line 9), while infrequent ones are generalized by means

of the taxonomy evaluation procedure (line 17). Given an infrequent itemset c of level

l and a taxonomy, the taxonomy evaluation procedure generates a set of generalized

itemsets of level l+1 by applying, on each item the corresponding generalization hierar-

chy. All the itemsets obtained by replacing one or more items in c with their generalized

versions of level textitl+1 are generated and included into the Gen set (line 21). Finally,

generalized itemset supports are computed by performing a dataset scan (line 26). Fre-

quent generalizations of an infrequent candidate c, characterized by level l+1, are first



Chapter 5. Analyzing Twitter User-Generated Content Changes 74

added to the corresponding HiGen set and then removed from the Gen set when their

lower level infrequent descendants in each time period have been fully covered (lines

27- 32). In such a way, their further generalizations at higher abstraction levels are

prevented. Hence, the taxonomy evaluation over an arbitrary candidate of length k is

postponed when the support of all candidates of length k and generalization level l in

each timestamped dataset is known. The sequence of support values of an itemset that

is infrequent in a given time period is store and reported provided that (i) it has at least

a frequent generalization in the same time period, and (ii) it is frequent in at least one

of the remaining time periods. The generalization procedure stops, at a certain level,

when the Gen set is empty, i.e., when either the taxonomy evaluation procedure does

not generate any new generalization or all the considered generalizations are frequent

in each time period and, thus, have been pruned (line 30) to prevent further knowledge

aggregations. The algorithm ends the mining loop when the set of candidate itemsets is

empty (line 40).

5.2.4 Pattern classification

Domain experts are usually in charge of analyzing the results of the data mining process

to discover patterns valuable for targeted analysis. TwiChi provides to the experts a

selection of dynamic generalized patterns, i.e., the HiGens, which represents potentially

valuable Twitter data correlation changes. However, the amount of the discovered pat-

terns may be large, especially when low support threshold values are enforced. Hence,

a preliminary pattern classification is desirable to ease the knowledge discovery process.

TwiChi categorizes the extracted HiGens based on their time-related trend in the se-

quence of timestamped relational collection. In particular, to better highlight the tem-

poral evolution of the knowledge associated with the HiGen reference itemset, HiGens

are classified as: (i) stable HiGens, i.e., HiGens that include generalized itemsets belong-

ing to the same generalization level, (ii) monotonous HiGens, i.e., HiGens that include a

sequence of generalized itemsets whose generalization level shows a monotonous trend,

and (iii) oscillatory HiGens, i.e., HiGens that include a sequence of generalized itemsets

whose generalization level shows a variable and non-monotonous trend.

Since a generalized itemset of level l may have several generalizations of level l + 1 and

taxonomies may have unbalanced data item distributions, stable HiGens are further

partitioned in: (i) strongly stable HiGens, i.e., stable HiGens, in which items contained

in its generalized itemsets and belonging to same data attribute, are characterized by

the same generalization level, and (ii) weakly stable HiGens, i.e., stable HiGens in which

items contained in its generalized itemsets and belonging to the same attribute, may be

characterized by di↵erent generalization levels.



Chapter 5. Analyzing Twitter User-Generated Content Changes 75

Input: sequence of timestamped relational tweet collection D = D1, D2, .., Dg,
minimum support threshold minsup, taxonomy �
Output: set of HIGENs HG

1: k = 1 // Candidate length
2: HG = HiGen set;
3: Ck = set of distinct k-itemsets in D
4: repeat
5: for all c in CK do
6: scan all Di in D and count the support of c in Di

7: end for
8: Li

k = itemsets c in Ck that satisfy minsup for any Di

9: HG = update HIGEN set(Lik, HG)
10: l = 1 // Candidate generalization level
11: Gen = generalized itemset container
12: repeat
13: for all c in Ck of level l do
14: Dinf

c = Di in D — c is infrequent in Di

15: if Dinf
c is empty then

16: gen(c) = set of new generalizations of itemset c of level l+1
17: gen(c) = taxonomy evaluation(c,�)
18: for all gen in gen(c) do
19: gen.desc = c
20: end for
21: Gen = Gen [ gen(c)
22: end if
23: end for
24: if Gen is not empty then
25: for all gen 2 Gen do
26: scan all Di in Dinf gen.desc and count the support of gen in Di

27: for all gen frequent in any Di in Dinf
gen.desc do

28: HG = update HIGEN set(gen, HG)

29: if gen is frequent in all Di in Dinf
gen.desc then

30: remove gen from Gen
31: end if
32: end for
33: end for
34: Ck = Ck [ Gen
35: end if
36: l = l + 1
37: until Gen is empty
38: k = k + 1
39: Ck+1 = candidate generation(Ck)
40: until Ck is empty
41: return HG

Algorithm 4: The HiGen Miner algorithm



Chapter 5. Analyzing Twitter User-Generated Content Changes 76

Collection ItemSet Support(%)
Strongly Stable HiGen

Reference itemset: (Place, New York City), (Time, 3.45 p.m.)
DJan2012 (Place, New York City), (Time, 3.45 p.m.) 20%
DFeb2012 (Place, New York City), (Time, 3.45 p.m.) 50%
DMar2012 (Place, New York City), (Time, 3.45 p.m.) 25%

Weakly Stable HiGen
Reference itemset: (Place, New York City), (Time, 4.00 p.m.)

DJan2012 (Place, New York State), (Time, from 3 to 6 p.m.) 27%
DFeb2012 (Place, New York City), (Time, from 3 to 6 p.m.) 21%
DMar2012 (Place, New York State), (Time, from 3 to 6 p.m.) 25%

Monotonous HiGen
Reference itemset: (Place, New York City), (Time, 5.00 p.m.)

DJan2012 (Place, New York City), (Time, from 5.00 p.m.) 28%
DFeb2012 (Place, New York City), (Time, from 3 to 6 p.m.) 25%
DMar2012 (Place, New York City), (Time, p.m.) 21%

Oscillatory HiGen
Reference itemset: (Place, New York City), (Time, 6.00 p.m.)

DJan2012 (Place, New York City), (Time, from 6.00 p.m.) 20%
DFeb2012 (Place, New York City), (Time, from 3 to 6 p.m.) 24%
DMar2012 (Place, New York City), (Time, from 6.00 p.m.) 21%

Table 5.2: HiGen examples. Minsup = 20%.

In Table 5.2 a HiGen example relative to each category is reported. HiGens have been

extracted from an example sequence of tweet collections by enforcing a minimum support

threshold equal to 20% and by exploiting the taxonomy reported in Figure 5.2. For each

HiGen the corresponding reference itemset is also reported. Notice that the itemsets

contained in the strongly and weakly stable HiGens are all characterized by the same

generalization level (i.e., 1 and 2, respectively) while for the monotonous HiGen the level

of the reported itemsets increases from 1 to 3 from January to March 2012. Finally, for

the oscillatory HiGen the generalization level varies with a non-monotonous trend.

Examples of HiGens mined from a real-life Twitter dataset are reported in Section

“Expert validation”.

5.3 Experimental Results

In the previous sections, we introduced and thoroughly described the TwiChI framework.

To assess the e↵ectiveness of the devised approach, in this section we report and describe

a set of experiments we performed on real datasets coming from Twitter.

All the experiments were performed on a 3.2 GHz Pentium IV system with 8 GB RAM,

running Ubuntu 12.04.



Chapter 5. Analyzing Twitter User-Generated Content Changes 77

5.3.1 Evaluated datasets and taxonomy

The TwiChi frameworks exploits a crawler to e↵ectively access to Twitter’s global stream

of Tweet data. We monitored the public streams endpoint o↵ered by the Twitter API,

covering the time period from 2012-07-07 to 2012-07-23 and tracking a selection of key-

words ranging over di↵erent topics (e.g., weather, finance, sport). The crawler establishes

and maintains a continuous connection with the stream endpoint to collect and store

the Twitter data. As described in Section Twitter crawler, the tweets are preprocessed

to represent the data into the relational data format and extract the taxonomies over

content and context features.

In our crawling session, we collected 5047 tweets over 13 consecutive days in the time

period [07/07/2012, 23/07/2012] posted by 708 distinct users located in 101 di↵erent

GPS coordinates. To build the taxonomy model over the tweet textual content, we

used the semantic generalizations of 3-levels Wordnet hyponym (i.e., is-a-subtype-of).

Similarly, over the spatial attribute, a geographical hierarchy, which aggregates single

locations into larger regions (province, region, state, continent) was built as well. Since

the tweets contain only the GPS coordinates from which tweet are posted, we mapped

the coordinates to the nearest location (i.e., city). Finally, the twitting date and time

are analyzed by the aggregation functions to derive a hierarchy over the corresponding

attributes (i.e., time, day, period).

5.3.2 Characteristics of the mined patterns

TwiChi analyzes sequences of timestamped tweet collections to discover the most sig-

nificant pattern changes. We analyzed the characteristics of the patterns generated by

TwiChi by setting two di↵erent temporal configurations: the former configuration, de-

noted in the following as Configuration A, aggregates tweets relative to the 13 considered

time periods as follows: [2012-07-07, 2012-07-12], [2012-07-13, 2012-07-17], [2012-07-18,

2012-07-23]. The latter configuration (Configuration B) aggregates tweets based on the

following time periods: [2012-07-07, 2012-07-09], [2012-07-10, 2012-07-13], [2012-07-14,

2012-07-18], [2012-07-19, 2012-07-23].

Figure 5.3 reports the number of HiGens mined from the real-life collections by varying

the minimum support threshold in the range [0.5%, 5%] and by setting Configurations

A and B. The number of mined HiGens increases more than linearly when lowering the

support threshold due to the combinatorial increase of the number of generated combi-

nations. To have a deep insight into the achieved results, we also analyzed the per level

distribution of the itemsets contained in the mined HiGens. When rather low support

thresholds (e.g., 0.5%) are enforced, many HiGens (53%) exclusively contain level-1 (not

generalized) itemsets representing the reference itemset in each considered time period.

When increasing the support threshold, the reference itemset becomes infrequent in



Chapter 5. Analyzing Twitter User-Generated Content Changes 78

Figure 5.3: Number of mined HiGens.

Configuration Minsup (%) Number of Stable HiGens (%) Number of
monotonous
HiGens (%)
(%)

Number of
oscillatory
HiGens(%)

Weak Strong Total
0.15% 15 41 56 18 26

A 1 % 23 14 37 27 36
5 % 30 11 41 24 45
0.5% 13 46 59 11 30

B 1% 27 9 36 21 43
5% 35 8 43 13 44

Table 5.3: HiGen per category distribution.

some time periods. Hence, it is generalized by exploiting the given taxonomy and upper

level itemsets are also included in the mined HiGens. For instance, at medium support

thresholds (e.g., 1%) at least two out of three HiGens contain a generalized itemset and

the percentage of level-2 itemsets contained in the mined HIGens is rather high (66%).

When high support thresholds are enforced (e.g., 5%) most of the mined HiGen (78%)

exclusively contain generalized itemsets and the number of itemsets with level higher

than 2 becomes significant (39%). Notice that the high level information covered by the

generalized itemsets is representative of the one associated with the low level reference

itemset discarded due to the support threshold enforcement.

Since TwiChi classifies the extracted dynamic patterns based on their temporal trends

(see Section “Pattern classification”), we also analyzed the per category distribution of

the extracted HiGens. Table 5.3 reports the percentages of HiGens classified as strongly

stable, weakly stable, monotonous, and oscillatory mined by enforcing three di↵erent

support thresholds, i.e., 0.5%, 1%, and 5%.



Chapter 5. Analyzing Twitter User-Generated Content Changes 79

When low support thresholds are enforced, the majority of the extracted patterns are

stable because, in many cases, the knowledge covered by the reference itemset remains

frequent in all the considered time periods. Di↵erently, when medium and large support

thresholds are enforced, the number of monotonous and oscillatory HiGens increases

due to the higher selectivity of the support threshold. At high support thresholds (e.g.,

5%) the number of stable HiGen still slightly increases because some of the extracted

HiGens contain (possibly generalized) itemsets with the same level in all the considered

time periods. The percentages of extracted monotonous and oscillatory HiGens are also

a↵ected by the number of considered time periods, as comes out from the comparison

between Configuration A (3 time periods) and B (4).

5.3.3 Real-life use-case study

In this section, we present two real use-cases for the TwiChi system targeted to user

behavior and topic trend analysis. Examples of the discovered HiGens are also given.

5.3.3.1 Weather forecasting service profiling

Consider an application scenario for the TwiChi system in which experts are interested in

discovering peculiar user behaviors in order to shape service provisioning to the actual

user interests and needs. Through the TwiChi system, analysts may automatically

retrieve tweet collections posted by users coming from di↵erent cities in consecutive

time periods and figure out the most relevant data correlation changes.

Consider, as an example, the real-life collections and taxonomy described in Section

“Evaluated datasets and taxonomy”. By setting the configuration A (see Section “Cha-

racteristics of the mined patterns”) and the minimum support threshold to 1% the

HiGens 1 and 2 reported in Table 5.3 are extracted. Users coming from Los Ange-

les (California, USA) frequently posted weather information during the analyzed time

period. Hence, they may be likely to be interested in receiving automatic weather fore-

casting information. Similarly, people from Philadelphia frequently posted information

about daily temperatures. The information may be deemed useful for profiling weather

forecasting services to actual user needs. Notice that the interest about temperature

information decreases in the second and third time periods. However, the weather topic,

which is a generalization of the former one, remains of interest in the considered city.

5.3.3.2 Service shaping

Consider again the previous application scenario. Suppose that analysts are now in-

terested in shaping the bandwidth of an online weather forecast service to improve

the e�ciency of the provided service. Analysts may focus on the HiGens that show a



Chapter 5. Analyzing Twitter User-Generated Content Changes 80

Time period ItemSet Support(%)
Strongly Stable HiGen 1

Reference itemset: (Place, Los Angeles), (Word, Rain)
[07-07, 07-12] (Place, Los Angeles), (Word, Rain) 1%
[07-13, 07-17] (Place, Los Angeles), (Word, Rain) 1.3%
[07-18, 07-23] (Place, Los Angeles), (Word, Rain) 1%

Monotonous HiGen 2
Reference itemset: (Place, Philadelphia), (Word, Temperature)

[07-07, 07-12] (Place, Philadelphia), (Word, Temperature) 1.2%
[07-13, 07-17] ( Place, Philadelphia), (Word, Weather) 1.6%
[07-18, 07-23] ( Place, Philadelphia), (Word, Weather) 1%

Monotonous HiGen 3
Reference itemset: (Place, New York City), (Word, Weather)

[07-07, 07-12] ( Place, New York State), (Word, Weather) 1%
[07-13, 07-17] ( Place, USA), (Word, Weather) 2.1%
[07-18, 07-23] ( Place, USA), (Word, Weather) 1.8%

Table 5.4: HiGen selection. Configuration A. minsup = 1%.

monotonous or oscillatory trend to figure out which user groups, coming from specific

cities or regions, are less used to request for weather forecasts.

Consider, for instance, the HiGen 3 reported in Table 5.4. It turns out that the interest

in the weather service in the New York State becomes rather low in the second and

third time periods. In fact, the location is generalized as USA, because the correlation

with the New York State remains infrequent in the considered time periods. Indeed, the

discovery of the reported HiGen may prompt service bandwidth reallocation in order to

optimize resource usage.



Chapter 6

TUCAN: Twitter User Centric

ANalyzer

In Chapter 4 and Chapter 5 we addressed the analysis of user-generated content from

the Twitter micro-blogging Website. And, as we have discussed, most of previous works

on Twitter focus on the analysis of “a community of twitters”, whose tweets are analysed

using text and data mining techniques to identify the topics, moods, or interests. [43,

51, 78–80].

In this Chapter we take a di↵erent angle: we focus on the analysis of a Twitter target

user. We consider set of tweets that appear on his Twitter public page, i.e., the target

user’s timeline, and define a methodology to explore exposed content and extract possible

valuable information. Which are the tweets that carry the most valuable information?

Which are the topics he/she is interested into? How do this topics change over time? A

further goal is to compare the Twitter activity of two (or more) target users. Do they

share some common traits? Is there any shared interest? What is the most common

interest of these two users, regardless of the time they are interested in it?

We propose a graphical framework which we term as TUCAN - Twitter User Centric

ANalyzer. TUCAN highlights correlations among tweets using intuitive visualization,

allowing exploration of the information exposed in them, thus enabling the extraction

of valuable information from user’s timeline. Given a number of limitations on the

topic analysis of Twitter messages, such as limited length of messages, prevalent use

of non-dictionary words (i.e., abbreviations, mentions, hashtags, re-tweets, slang, and

cultural words), and lack of contextual resources (e.g., due to extensive use of Twitter for

“private” purposes [81]), lots of ingenuity is required to automatically extract significant

information out of tweets. From a methodology stand-point, we build upon text mining

techniques, adapting them to cope with the specific Twitter characteristics.

As input, we group a user’s tweets based on a window of time (e.g., a day, or a week) so

to form bird songs, one for each time window. At the next step, filtering is applied to

81



Chapter 6. TUCAN: Twitter User Centric ANalyzer 82

each bird song using either simple stop-word removal, stemming, lemmatization, or more

complicated transformations based on lexical databases. Next, terms in bird songs are

scored using classic Term Frequency-Inverse Document Frequency (TF-IDF) [82] to pin-

point those terms that are particularly important for the target user. Each pair of birds

songs are finally compared by computing a similarity score, so to unveil those bird songs

that contain overlapping, and thus persistent, topics. The output is then represented

using a coloured matrix, in which cell colour represents the similarity score. As a result,

TUCAN o↵ers a simple and natural visual representation of extracted information that

easily unveils the most interesting bird songs and the persistent topics the target user

is interested into during a given time period. Moreover, comparisons among bird songs

give intuitions on the transition of user interests as well as the significance of topics to

the user.

The framework is naturally extended to find and extract similarities among tweets of

two or more target users. TUCAN computes and graphically shows the similarity among

bird songs generated from the timelines of the pairs of target users, revealing similarities

and common interests that are present possibly during di↵erent time periods.

TUCAN demonstrates to be useful to highlight correlation among tweets, which in turn

proves very valuable in identifying topics of interest in the Twitter timeline of a user.

This is very instrumental in generic individual profiling or surveillance applications,

where the information hidden inside the target user’s flow of tweets has to naturally

emerge. TUCAN is also very powerful to compare individuals, to examine their time-

lines in parallel, hunting for similarities, pinpointing common interests, and observing

changes, deviations, etc. For instance, comparing a well-known public profile timeline,

e.g., President Barack Obama, against a generic target user would unveil if they share

common political interests. Alternatively, two casual targets can be compared to see

if some common trait/interest exist (possibly at di↵erent time), e.g., to evaluate the

success of an Internet dating or marriage.

To demonstrate the e↵ectiveness of TUCAN on real-world microblogs, we applied it to

two month long history of 712 Twitter users. Results show that the correlation among

tweets turns out to be a key point in the identification and analysis of twitter users over

time; analyzing tweet messages of a politician, we were able to confirm that his topics

and topic durations well matched with ongoing political events at the time. Comparing

his tweets against tweets from the US government, a subset of topics that are in-line

with the government’s positions were picked up. Analysis on topic changes revealed

transitions in users’ social relationships.



Chapter 6. TUCAN: Twitter User Centric ANalyzer 83

6.1 Related work

The increasing availability of valuable information from microblogging platforms pushed

the research community to investigate e↵orts for mining textual information from them.

Text topic extraction and modeling. A plurality of works ([81, 83–87]) is based on a

well known topic modeling technique called, the Latent Dirichlet Allocation (LDA) [88].

[85] extends LDA to infer descriptions of entities (e.g., authors) separately from their

relationships. [81] incorporates supervision to LDA, leveraging hashtags of Twitter for

topic labeling. Generalizing topic extraction to Tweets without hashtags, [86] directly

applies LDA to individual sentence within each Tweet message.

To further enhance the performance of topic extraction from short and sparse messages,

author-topic (AT) model was proposed [89, 90]. By creating topic mixture at the level

of authors rather than individual documents, AT is claimed to obtain more stable set

of topics than LDA. [80] conducts empirical comparisons of LDA, AT, and simple TF-

IDF on aggregates of Tweet messages. The work discovers that the accuracy of the topic

models are highly influenced by the length of the documents. It also finds that with long

enough documents, the model based approaches become less e↵ective compared to the

baseline TF-IDF. Based on the observations, we design TUCAN to flexibly aggregate

messages into bird songs. With e↵ectively formed bird songs, TUCAN can provide

powerful topic analysis even with generic TF-IDF.

Time-series analysis in microblogs. Many literatures on topic analysis ([51, 81,

86]) focus on detecting emergence of anomalous topics or prominent shifts on topic

trends. Leveraging groups of semantically associated document tags, [51] discovers

temporally emergent topics from Twitter data stream. [81] defines four types of Tweet

categories and classifies streamed messages into them. Because these time-series analysis

work on the entire group of users as a whole and do not distinguish single users, they

cannot express topical relationships across individuals. We, on the other hand, focus on

building dynamic relationships among the users. Aimed at similar goal, [91] proposes

to detect topical relationships across entities over time. However, they only focus on

time correlated co-occurring events. Instead, TUCAN aims to detect topic correlations

even if they occur at di↵erent time frames. Recently, [92] proposed an interactive tool

to analyse topic extracted from a stream of tweets organized in adjacent time slices of

equal length. LDA is applied to mine topics and cosine similarity is leveraged to align

them from the di↵erent time bins. Again, TUCAN is more user-centric and flexible

enough to reveal topic correlations from time periods not strictly consecutive in time.



Chapter 6. TUCAN: Twitter User Centric ANalyzer 84

6.2 Framework

The TUCAN architecture includes three modules: (i) bird song generator, (ii) cross-

correlation computation engine, and (iii) dashboard visualizer. A set of target Twitter

users, e.g., their screen names or user-ids, is provided to the system as an input. The

system collects tweets related to such users on which various analytics are executed.

Their outcome is visualized to enable the operator to gain knowledge about the users

and the topics they are twitting about.

6.2.1 Bird song generation and cleaning process

Let TW (u) be the set of tweets of a single user u that are retrieved from Twitter,

time stamped with their generation time, stored and organized in a repository in binary

format, to be easily accessed and further analyzed when necessary. Bird songs are

created by aggregating tweets from TW (u) generated within a time period T , to then

be analyzed. We define the i-th bird song for the user u, BS(u, i), as the subset of tweets

in TW (u) that appear in the i-th time period of duration T , i.e., the set of tweets that

are generated in the [(i� 1)T, (i)T ), i > 0 window of time.

A “plain cleaning” pre-processing is applied to bird songs to discard stopwords, HTML

tag entities, and links. Plain cleaning can be possibly substituted by more advanced

text cleaning mechanisms; the following are also considered in this work: (i) removal

of Twitter ‘mentions’, (ii) stemming, (iii) lemmatization, and (iv) ontology-based lexi-

con generalization. TUCAN allows the analyst to select the most appropriate cleaning

method to take advantage of di↵erent e↵ects of them in di↵erent contexts. Twitter men-

tions are words that begins with @ signs representing the mentioning of some named

entities. The intuition behind removing the mentions comes from the fact that they

do not provide insight in the topics being addressed, being just Twitter-ID of other

users. Stemming and lemmatization are common text processing techniques aiming at

reducing a word to its root form to lower sparseness present in a text document. The

main di↵erence between stemming and lemmatization is that the former is based on

the heuristic of removing the trailing part of a word, while the latter brings a word to

a canonical form based on a vocabulary and a morphological analysis the word. Here

the Porter stemming algorithm [93] was deployed, while lemmatization is derived from

the well-established Wordnet lexical database [94]. At last, our ontology-based lexicon

generalization method leverages the Wordnet database to derive the most general con-

cept for each word in the bird song. For instance, “gun” and “rifle” are replaced by

the more generic term “weapon”. The impact of the di↵erent cleaning methods will be

exemplified by the experimental results presented in Section 6.3.



Chapter 6. TUCAN: Twitter User Centric ANalyzer 85

Top Freq Words (R)

1. gun
2. #nowisthetime
3. @flotus
4. #iserve
5. background
6. violence
7. reduce
8. @obamainaugural
9. proposals

10. #mlkday
11. newtown
12. #mlk
13. jan
14. concert
15. school
16. clear
17. volunteered
18. package
19. letters
20. elementary
21. ceiling
22. reads
23. citizen
24. nasa
25. biden
26. kids
27. spending
28. service
29. inaugural
30. require
31. cabinet
32. vice
33. plan
34. announce
35. project
36. kid
37. children
38. conference
39. letter
40. open
41. agree
42. mrs
43. tonights
44. thisraising
45. smartphone
46. #desmoines
47. @allegrooch
48. @natlparkservice
49. mural
50. @jjulesjenks
51. @pointsoflight
52. everlasting
53. delivering
54. #nowis
55. authorize
56. julia
57. glance
58. @chprpipr
59. entrance
60. soup
61. cautiousto
62. fortunate
63. chiefs
64. purchase
65. headquarters
66. #dcfooddrive
67. fingerprinted
68. perfect
69. outer
70. #woonsocket
71. @highlights
72. @cityyear
73. ymca
74. committ
75. cochairs
76. complicated
77. @lilybolourian
78. cups
79. righ
80. leverage
81. threatening
82. @gleeonfox.
83. shell
84. burrville
85. cochair
86. sandwiches
87. responsibly

Choose cleaning method: Plain cleaning cosine

whitehouse - W-1

w
hi

te
ho

us
e 

- W
-1

whitehouse - W-2

w
hi

te
ho

us
e 

- W
-2

whitehouse - W-3

w
hi

te
ho

us
e 

- W
-3

whitehouse - W-4

w
hi

te
ho

us
e 

- W
-4

whitehouse - W-5

w
hi

te
ho

us
e 

- W
-5

whitehouse - W-6

w
hi

te
ho

us
e 

- W
-6

whitehouse - W-7

w
hi

te
ho

us
e 

- W
-7

whitehouse - W-8

w
hi

te
ho

us
e 

- W
-8

whitehouse - W-9

w
hi

te
ho

us
e 

- W
-9

whitehouse - W-10

w
hi

te
ho

us
e 

- W
-1

0

whitehouse - W-11

w
hi

te
ho

us
e 

- W
-1

1

whitehouse - W-12

w
hi

te
ho

us
e 

- W
-1

2

whitehouse - W-13

w
hi

te
ho

us
e 

- W
-1

3

whitehouse - W-14

w
hi

te
ho

us
e 

- W
-1

4

whitehouse - W-15

w
hi

te
ho

us
e 

- W
-1

5

whitehouse - W-16

w
hi

te
ho

us
e 

- W
-1

6

whitehouse - W-17

w
hi

te
ho

us
e 

- W
-1

7

whitehouse - W-18

w
hi

te
ho

us
e 

- W
-1

8

whitehouse - W-19

w
hi

te
ho

us
e 

- W
-1

9

whitehouse - W-20

w
hi

te
ho

us
e 

- W
-2

0

whitehouse - W-21

w
hi

te
ho

us
e 

- W
-2

1

whitehouse - W-22

w
hi

te
ho

us
e 

- W
-2

2

whitehouse - W-23

w
hi

te
ho

us
e 

- W
-2

3

whitehouse - W-24

w
hi

te
ho

us
e 

- W
-2

4

whitehouse - W-25

w
hi

te
ho

us
e 

- W
-2

5

whitehouse - W-26

w
hi

te
ho

us
e 

- W
-2

6

whitehouse - W-27

w
hi

te
ho

us
e 

- W
-2

7

whitehouse - W-28

w
hi

te
ho

us
e 

- W
-2

8

whitehouse - W-29

w
hi

te
ho

us
e 

- W
-2

9

whitehouse - W-30

w
hi

te
ho

us
e 

- W
-3

0

whitehouse - W-31

w
hi

te
ho

us
e 

- W
-3

1

whitehouse - W-32

w
hi

te
ho

us
e 

- W
-3

2

whitehouse - W-33

w
hi

te
ho

us
e 

- W
-3

3

whitehouse - W-34

w
hi

te
ho

us
e 

- W
-3

4

whitehouse - W-35

w
hi

te
ho

us
e 

- W
-3

5

whitehouse - W-36

w
hi

te
ho

us
e 

- W
-3

6

whitehouse - W-37

w
hi

te
ho

us
e 

- W
-3

7

whitehouse - W-38

w
hi

te
ho

us
e 

- W
-3

8

whitehouse - W-39

w
hi

te
ho

us
e 

- W
-3

9

whitehouse - W-40

w
hi

te
ho

us
e 

- W
-4

0

whitehouse - W-41

w
hi

te
ho

us
e 

- W
-4

1

whitehouse - W-42

w
hi

te
ho

us
e 

- W
-4

2

whitehouse - W-43

w
hi

te
ho

us
e 

- W
-4

3

whitehouse - W-44

w
hi

te
ho

us
e 

- W
-4

4

whitehouse - W-45

w
hi

te
ho

us
e 

- W
-4

5

whitehouse - W-46

w
hi

te
ho

us
e 

- W
-4

6

whitehouse - W-47

w
hi

te
ho

us
e 

- W
-4

7

whitehouse - W-48

w
hi

te
ho

us
e 

- W
-4

8

whitehouse - W-49

w
hi

te
ho

us
e 

- W
-4

9

whitehouse - W-50

w
hi

te
ho

us
e 

- W
-5

0

whitehouse - W-51

w
hi

te
ho

us
e 

- W
-5

1

whitehouse - W-52

w
hi

te
ho

us
e 

- W
-5

2

whitehouse - W-53

w
hi

te
ho

us
e 

- W
-5

3

whitehouse - W-54

w
hi

te
ho

us
e 

- W
-5

4

whitehouse - W-55

w
hi

te
ho

us
e 

- W
-5

5

Top Freq Words (C)

1. oath
2. #inaugquote
3. @flotus
4. journey
5. inaugural
6. complete
7. gun
8. freedom
9. inauguration

10. swearingin
11. truths
12. equal
13. citizens
14. task
15. seize
16. takes
17. sworn
18. god
19. imperfect
20. guides
21. countrys
22. carry
23. star
24. ceremony
25. generations
26. personnel
27. violence
28. created
29. #nowisthetime
30. happiness
31. term
32. hangout
33. words
34. liberty
35. lead
36. google+
37. power
38. history
39. mcdonough
40. substitute
41. officially
42. patriots
43. reserved
44. @a_r_marshall
45. privileges
46. absolutism
47. bless
48. lasting
49. fireside
50. spectacle
51. obligations
52. selfevident
53. resolve
54. retweet
55. tyranny
56. cared
57. bible
58. sisters
59. pioneers
60. childrenknow
61. wives
62. creed
63. selfexecuting
64. evident
65. understood
66. compel
67. require
68. united
69. reducing
70. knowing
71. reduce
72. pride
73. soldier
74. replace
75. harm
76. principles
77. independence
78. times
79. treated
80. enduring
81. founding
82. lucky
83. admins
84. joe
85. precious
86. gay
87. declaration

TUCAN - Twitter User Centric ANalyzer

W1 W4 W7 W1
0

W1
3

W1
6

W1
9

W2
2

W2
5

W2
8

W3
1

W3
4

W3
7

W4
0

W4
3

W4
6

W4
9

W5
2

W5
5

0

50

100

150

200

Bird  songs

#  
tw
ee
ts

(a) TUCAN Main Interface

Top Freq Words (R) Choose cleaning method: Plain cleaning cosine

whitehouse - W-1

w
hi

te
ho

us
e 

- W
-1

whitehouse - W-2

w
hi

te
ho

us
e 

- W
-2

whitehouse - W-3

w
hi

te
ho

us
e 

- W
-3

whitehouse - W-4

w
hi

te
ho

us
e 

- W
-4

whitehouse - W-5

w
hi

te
ho

us
e 

- W
-5

whitehouse - W-6

w
hi

te
ho

us
e 

- W
-6

whitehouse - W-7

w
hi

te
ho

us
e 

- W
-7

whitehouse - W-8

w
hi

te
ho

us
e 

- W
-8

whitehouse - W-9

w
hi

te
ho

us
e 

- W
-9

whitehouse - W-10

w
hi

te
ho

us
e 

- W
-1

0

whitehouse - W-11

w
hi

te
ho

us
e 

- W
-1

1

whitehouse - W-12

w
hi

te
ho

us
e 

- W
-1

2

whitehouse - W-13

w
hi

te
ho

us
e 

- W
-1

3

whitehouse - W-14

w
hi

te
ho

us
e 

- W
-1

4

whitehouse - W-15

w
hi

te
ho

us
e 

- W
-1

5

whitehouse - W-16

w
hi

te
ho

us
e 

- W
-1

6

whitehouse - W-17

w
hi

te
ho

us
e 

- W
-1

7

whitehouse - W-18

w
hi

te
ho

us
e 

- W
-1

8

whitehouse - W-19

w
hi

te
ho

us
e 

- W
-1

9

whitehouse - W-20

w
hi

te
ho

us
e 

- W
-2

0

whitehouse - W-21

w
hi

te
ho

us
e 

- W
-2

1

whitehouse - W-22

w
hi

te
ho

us
e 

- W
-2

2

whitehouse - W-23

w
hi

te
ho

us
e 

- W
-2

3

whitehouse - W-24

w
hi

te
ho

us
e 

- W
-2

4

whitehouse - W-25

w
hi

te
ho

us
e 

- W
-2

5

whitehouse - W-26

w
hi

te
ho

us
e 

- W
-2

6

whitehouse - W-27

w
hi

te
ho

us
e 

- W
-2

7

whitehouse - W-28

w
hi

te
ho

us
e 

- W
-2

8

whitehouse - W-29

w
hi

te
ho

us
e 

- W
-2

9

whitehouse - W-30

w
hi

te
ho

us
e 

- W
-3

0

whitehouse - W-31

w
hi

te
ho

us
e 

- W
-3

1

whitehouse - W-32

w
hi

te
ho

us
e 

- W
-3

2

whitehouse - W-33

w
hi

te
ho

us
e 

- W
-3

3

whitehouse - W-34

w
hi

te
ho

us
e 

- W
-3

4

whitehouse - W-35

w
hi

te
ho

us
e 

- W
-3

5

whitehouse - W-36

w
hi

te
ho

us
e 

- W
-3

6

whitehouse - W-37

w
hi

te
ho

us
e 

- W
-3

7

whitehouse - W-38

w
hi

te
ho

us
e 

- W
-3

8

whitehouse - W-39

w
hi

te
ho

us
e 

- W
-3

9

whitehouse - W-40

w
hi

te
ho

us
e 

- W
-4

0

whitehouse - W-41

w
hi

te
ho

us
e 

- W
-4

1

whitehouse - W-42

w
hi

te
ho

us
e 

- W
-4

2

whitehouse - W-43

w
hi

te
ho

us
e 

- W
-4

3

whitehouse - W-44

w
hi

te
ho

us
e 

- W
-4

4

whitehouse - W-45

w
hi

te
ho

us
e 

- W
-4

5

whitehouse - W-46

w
hi

te
ho

us
e 

- W
-4

6

whitehouse - W-47

w
hi

te
ho

us
e 

- W
-4

7

whitehouse - W-48

w
hi

te
ho

us
e 

- W
-4

8

whitehouse - W-49

w
hi

te
ho

us
e 

- W
-4

9

whitehouse - W-50

w
hi

te
ho

us
e 

- W
-5

0

whitehouse - W-51

w
hi

te
ho

us
e 

- W
-5

1

whitehouse - W-52

w
hi

te
ho

us
e 

- W
-5

2

whitehouse - W-53

w
hi

te
ho

us
e 

- W
-5

3

whitehouse - W-54

w
hi

te
ho

us
e 

- W
-5

4

whitehouse - W-55

w
hi

te
ho

us
e 

- W
-5

5

Top Freq Words (C)

TUCAN - Twitter User Centric ANalyzer

W1 W4 W7 W1
0
W1
3
W1
6
W1
9
W2
2
W2
5
W2
8
W3
1
W3
4
W3
7
W4
0
W4
3
W4
6
W4
9
W5
2
W5
5

0

50

100

150

200

Bird songs

# 
tw

ee
ts

Bird Song Content
Sun Jan 27 16:37:52 +0000 2013 Watch: President Obama on his nomination of Mary Jo White to lead 
the SEC &amp; Richard Cordray to cont as @CFPB Director http://t.co/SgXmjcU6
Mon Jan 28 16:27:18 +0000 2013 Today at 1:40 ET: President Obama welcomes @KingJames, @DwyaneWade 
&amp; the NBA Champion @MiamiHEAT to the WH. Watch live: http://t.co/u95tzH8r
Mon Jan 28 18:28:26 +0000 2013 RT @MiamiHEAT And we are @whitehouse bound! Stay tuned! 
#HEATatWhiteHouse // Watch live at 1:40 ET: http://t.co/u95tzH8r
Mon Jan 28 23:14:42 +0000 2013 Video: President Obama welcomes the NBA champion @MiamiHEAT to the 
White House: http://t.co/EfIh3snE #HEATatWhiteHouse
Tue Jan 29 03:30:05 +0000 2013 Photo of the Day: President Obama accepts a basketball from 
@KingJames during a ceremony to honor the Miami #Heat: http://t.co/d0267Kob
Tue Jan 29 14:31:44 +0000 2013 President Obama announces additional humanitarian aid for the 
Syrian people: http://t.co/od2uBD46 Watch: http://t.co/dz9q5uN1 #SyriaAid
Tue Jan 29 17:13:17 +0000 2013 Watch live at 2:55 ET: President Obama speaks on the need to fix 
the broken immigration system: http://t.co/C4iYk2oW #ImmigrationReform
Tue Jan 29 19:42:51 +0000 2013 Happening now: President Obama speaks on immigration reform from 
Las Vegas, Nevada. Watch: http://t.co/u95tzH8r #ImmigrationReform
Tue Jan 29 19:45:12 +0000 2013 "I’m here today because the time has come for common-sense, 
comprehensive #ImmigrationReform. Now is the time." —President Obama
Tue Jan 29 19:47:27 +0000 2013 "We define ourselves as a nation of immigrants." —President Obama, 
http://t.co/u95tzH8r #ImmigrationReform
Tue Jan 29 19:48:14 +0000 2013 Obama: "Now is the time to find a better way to welcome the 
striving, hopeful immigrants who still see America as the land of opportunity."
Tue Jan 29 19:49:11 +0000 2013 President Obama: "We have to make sure that every business &amp; 
every worker in America is playing by the same set of rules" #ImmigrationReform
Tue Jan 29 19:51:13 +0000 2013 "@Instagram was started with the help of an immigrant who studied 
here and stayed here." —President Obama on #ImmigrationReform
Tue Jan 29 19:53:21 +0000 2013 President Obama: "For the first time in many years – Republicans 
&amp; Democrats seem ready to tackle this problem together."#ImmigrationReform
Tue Jan 29 19:56:13 +0000 2013 "First, I believe we need to stay focused on enforcement." —
President Obama #ImmigrationReform
Tue Jan 29 19:56:51 +0000 2013 "Second, we have to deal with the 11 million individuals who are 
here illegally." —President Obama #ImmigrationReform
Tue Jan 29 19:58:06 +0000 2013 Obama: "Third, we have to bring our legal immigration system into 
the 21st century because it no longer reflects the realities of our time"

(b) Bird song detail

Figure 6.1: TUCAN Web Interface showing the analysis of the WhiteHouse o�cial
account. T = 7 days, plaing cleaning and Cosine similarity are considered.



Chapter 6. TUCAN: Twitter User Centric ANalyzer 86

6.2.2 Cross-correlation computation

Each pre-processed bird song is tailored in a Bag-Of-Words (BoW) model, a common

representation used in information retrieval and natural language processing. The bird

song is tokenized in an unordered set of words, disregarding their sequence and position.

Each word is then scored according to a weighting scheme. In this work, the Term

Frequency-Inverse Document Frequency (TF-IDF) score is adopted as past literature

has shown it to produce good results [80]. TF-IDF is computed as the product of the

frequency of a term in its bird song and the inverse of the frequency of the term in the

set of documents (i.e., all bird songs) being analyzed. TF-IDF provides a measure of

the importance of a term in a specific bird song (first factor) put in perspective with

how common the term is in the whole collection of bird songs. The intuition behind this

weighting scheme is that, if a word appears in a huge number of bird songs in a given

collection, its discriminative power is very low and is probably not useful to represent

the content of the bird song, even if it often appears in it. Hence, words that are frequent

in a bird song but rare in the collection are assigned with higher weights.

Bird songs are then transformed into a vector space model V S(u, i), in which each word is

given a fixed position. In this space, each word in the bird song BS(u, i) is characterized

by its TF-IDF score. Words that do not appear in BS(u, i) are characterized by a null

score.

To evaluate the similarity V S(u, i) ⌦ V S(v, j) among a pair of bird song vectors the

Cosine similarity measure is applied.

Given any two term document vectors, the Cosine similarity is the cosine of the angle

between them. The closer two vectors are to one other, the smaller the angle between

them will be, i.e., the higher their similarity. Intuitively, the Cosine similarity of two

very similar bird songs will be close to one. Instead, if no common words appear in two

bird songs, their Cosine similarity will be 0.

6.2.3 Dashboard visualizer

In order to pinpoint similarities among bird songs, independently of the time the user

posted them, TUCAN computes the similarity score for all possible pairs of bird songs.

In total, N2 similarity scores are computed and stored in a matrix form, where each cell

represents V S(u, i) ⌦ V S(u, j), i, j 2 [1, N ]. To help identifying correlation, the matrix

is presented to the analyst in a graphical format using a web interface. Each cell is

represented by a square whose color reflects the similarity score between the i-th and

j-th bird songs. In particular, let

m = max
i,j,i 6=j

V S(u, i)⌦ V S(u, j),



Chapter 6. TUCAN: Twitter User Centric ANalyzer 87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
o
si

n
e
 s

im
ila

ri
ty

Bird Song Pairs

T = 1 day
T = 2 days
T = 3 days
T = 5 days
T = 7 days

T = 10 days
T = 14 days

(a) Barack Obama

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
o
si

n
e
 s

im
ila

ri
ty

Bird Song Pairs

T = 1 day
T = 2 days
T = 3 days
T = 5 days
T = 7 days

T = 10 days
T = 14 days

(b) User A

Figure 6.2: E↵ect of di↵erent time window sizes T . Plain cleaning and Cosine simi-
larity.

cells are colored with di↵erent intensity, using a linear scale, so that the cell with sim-

ilarity equal to m has the darkest color (see Figure 6.1(a) for an example). Bird songs

are organized in increasing time window from left to right (and top to bottom).

As shown in Figure 6.1(a), when a cell is clicked, the web interface displays the top-

ranked words appearing in BS(u, i) and BS(u, j), i 6= j on the left and right panes next

to the matrix. Words that appear in both bird songs are highlighted. When clicking

on the cells in the main diagonal (presented always in black1), the analyst is o↵ered a

popup showing the content of the original tweets of the i-th bird song. The GUI also

shows a histogram below the matrix reporting n(u, i) 8i to allow the analyst to easily

gauging variations in the bird song size, e.g., due to the user changing his twitting habits

during a holiday period. At the top of the matrix, the analyst is o↵ered a drop-down

menu to select the cleaning pre-processing to be applied.

6.3 Experimental results

Applying TUCAN to real world data from Twitter, we conducted an extensive study

examining its capability on analyzing user centric topics. We begin by presenting a

description on our dataset and how we collected it. Then we provide a series of sensitivity

evaluation on various parameters of TUCAN, followed by a number of use cases with

emphasis on di↵erent aspects of user centric topic analysis.

6.3.1 Dataset description

To perform user centric analysis through TUCAN, we monitor 712 randomly selected

Twitter users for two or more months starting from the Summer 2012. The actual

Tweet period covered for each user depends on the combination of the user’s activity and

crawling limitations imposed by Twitter API. Additionally, we monitor 28 well-known

1
Note that by definition, V S(u, i)⌦ V S(u, i) = 1.



Chapter 6. TUCAN: Twitter User Centric ANalyzer 88

public figures, selected among politicians, news media, tech blogs, etc. In total, we collect

740 twitter timelines leveraging Twitter REST APIs2. Specifically, we access each user’s

public timeline and retrieve tweet STATUS objects which contains monograms (messages

he puts on his page with no destined user), mentions of other users, conversations with

follower/followees, and status updates.

From a total of 810,655 tweets, it emerges that 15% of them contain hashtags, 25%

contain replies and 12% hyperlinks to other web pages. Similar proportions of message

types are reported in the literature, suggesting our dataset presents no bias towards

any particular types of tweets. About 300 users (40%) twitted more than twice in each

week. Out of them, 20 users posted more than 400 tweets per week (i.e., more than 57

tweets/day). This already suggests that the window size parameter T has to be tailored

to each user twitting habit when forming bird songs. Section 6.3.3 presents sensitivity

tests on T .

6.3.2 The TUCAN GUI

Revisiting Figure 6.1, we present how TUCAN GUI is used for our analysis with an

example of 56 week long history of o�cial White House tweets. The reader can appreciate

the correlation that TUCAN highlights among bird songs along the main diagonal. The

darker areas indeed show that the correlation among top-words in bird songs is high,

unveiling persistent topics. For instance, the top-words presented in the left and right

lists easily allow to see the topics the White House was twitting about, i.e., violence

and inauguration (Week-41). Those tweets refer to the second half of January 2013

during (i) the Inaugural Address by President Barack Obama, and (ii) the debate on

violence and weapon possession started after the Newtown school tragedy. For reference,

consider (part of) the tweets that form the bird song referring the 21st of January 2013

on Figure 6.1(b). Intuitively, extracting and summarizing information from the original

tweets is much more complicated than by observing TUCAN output. Other areas of high

correlation are clearly visible. Those refer to the Sandy hurricane, London Olympics

games, etc. TUCAN allows to easily spot these major events that last for several weeks.

Notice the Week-6/Week-46 dot with high similarity. Topics in those weeks refer to bills,

insurance, gas price, and cost of education.

6.3.3 Parameter sensitivity analysis

We begin our analysis on TUCAN by showing e↵ects of tuning di↵erent parameters:

time window sizes, preprocessing methods, and inclusion of Twitter mentions. Results

are presented showing, for all bird songs pairs of user u, the similarity score sorted in

2
https://dev.twitter.com/docs/api



Chapter 6. TUCAN: Twitter User Centric ANalyzer 89

Rank single Tweet T = 1 day T = 7 days T = 14 days

1 photo lead #immigrationreform #immigrationreform
2 day international immigration gun
3 bo @cfpb gun immigration
4 snow cordray violence violence
5 mary comprehensive comprehensive
6 snow @whlive @whlive
7 nominates broken broken
8 sec @vp reform
9 richard representative representative
10 white reform @vp

Table 6.1: Top-words ranked by TF-IDF, Barack Obama.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

C
o
si

n
e
 s

im
ila

ri
ty

Bird Song Pairs

Plain
Stemming

Lemmatization
Lexical generalization

(a) Barack Obama

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

C
o
si

n
e
 s

im
ila

ri
ty

Bird Song Pairs

Plain
Stemming

Lemmatization
Lexical generalization

(b) User B

Figure 6.3: E↵ect of di↵erent cleaning methods. Cosine similarity and T = 7 days.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

C
o
si

n
e
 s

im
ila

ri
ty

Bird Song Pairs

Plain with mentions
Plain without mentions

(a) Barack Obama

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

C
o
si

n
e
 s

im
ila

ri
ty

Bird Song Pairs

Plain with mentions
Plain without mentions

(b) User C

Figure 6.4: E↵ect of mention removal. T = 7 days, plain cleaning, and Cosine
similarity.

decreasing order. The X-axis displays the bird song rank normalized to the number of

bird songs N(u). The Y-axis shows absolute values of similarity score.

E↵ect of di↵erent time window sizes. The time window size T determines the size

of bird song – a highly important parameter for topic models to perform optimally [80].

Figure 6.2 shows comparisons of time windows sizes for a public figure (Barack Obama,

on the left) and a randomly chosen normal user (User A, on the right). As we vary



Chapter 6. TUCAN: Twitter User Centric ANalyzer 90

window size from T = 1 day to T = 14 days, we expect that the overall similarity scores

become strictly higher. Indeed, Figure 6.2 clearly shows this; for instance, for Barack

Obama, the average (max) score of T = 1 day is 0.03 (0.87), average score of T = 14 days

is 0.11 (0.38). Same observation holds for normal users as shown in Figure 6.2(b). Notice

that higher similarity score is not always welcome; a too large aggregation time window

tends to create very large birds songs, in which similarity is artificially inflated, and the

analysis blurred. As previously stated, T should be matched to twitting habits of the

target.

On the other end, too short aggregation time window makes similarity interesting only

on a small subset of bird song pairs, focusing the analysis on a too small groups of bird

songs. Artifacts are also possibly created. For instance, notice the high similarity score

at x = 0 in Figure 6.2(a) when T = 1 day. The reason for this outlier is that bird songs

are formed by only a handful of terms; if three or four of those happened to co-occur in

two bird songs, their similarity score turns out to be extremely high.

Further inspection on topic words also supports the importance of aggregation of tweets

into bird songs. Table 6.1 shows up to ten top-words extracted from Barack Obama’s

bird songs (as previously mentioned). When tweets are used as they are (without aggre-

gation), we not only observe that the number of common words are small, i.e., the tweet

has too few words to allow successful analysis; but we also observe that the relationship

among the words are loose. Similarly, for T = 1 day, no clear topic emerge. In contrary,

when T = 7 or T = 14 days, the top-words are much more coherent (especially between

‘gun’, ‘violence’, and ‘broken’) pinpointing to a clear topic.

In summary, both the general trend of small similarity, and possible existence of outliers

suggest to use quite large time window for analysis. As observed in Table 6.1, and from

other tests run on a large number of users, T = 7 days usually gives the same amount of

meaningful keywords as larger window sizes (e.g., T = 14 days). For that reason, from

here on, we use T = 7 days unless otherwise noted. Once similarity has been pinpointed,

the analyst can drill down by lowering T .

E↵ect of di↵erent pre-processing methods. Many researchers on information ex-

traction have proposed di↵erent pre-processing methods to sanitize original documents.

On the particular application to Twitter document analysis, however, no work identi-

fied the optimal method. Therefore, we evaluate the performance of three well-known

sanitization methods – stemming, lemmatization, lexical generalization – applied on the

top of plain cleaning. Figure 6.3 compares the cleaning methods considering one public

and one normal Twitter users as before. For the profile of Barack Obama, Figure 6.3(a)

suggests that stemming and lexical generalization work better than lemmatization and

plain cleaning. However, the overall gap between the two groups of curves is less than

0.05 in similarity score. In the case of a normal user, Figure 6.3(b) shows that lexi-

cal generalization tend to perform better than other pre-processing methods (by about



Chapter 6. TUCAN: Twitter User Centric ANalyzer 91

0.05). Notice that the increase in similarity is predominant for those pairs whose simi-

larity is already quite large, and thus possibly less useful. By investigating further, we

notice that lexical generalization tends (by definition) to return more general topics.

In summary, we observe small impact of the filtering process, and results are marginally

a↵ected by this choice. As such, TUCAN has been designed to o↵er the analyst the

choice of the cleaning method that he consider the best for the case under analysis.

Plain cleaning is the default choice.

E↵ect of including Twitter mentions. Among many specific mechanisms Twitter

o↵ers, “mentions” play an important role in the analysis of user conversations [95]. From

our analysis, we noticed an interesting contrasts when mentions are included or excluded.

As Figure 6.4(a) shows, for public figure’s tweets (Barack Obama), results of including

and not including mentions do not make much di↵erence in similarity distributions. This

is because of the usage of mentions by public profiles: either those are rarely used (e.g.,

in news media), or they are used to mention i) to lots of di↵erent users, or ii) to always

the same group of users (this is the case for Barack Obama). However, for a normal user,

as seen in Figure 6.4(b), proportion of mentions can get up to 70% and clearly makes

distinction on the similarity distribution. The reason for similarity being higher when

mentions are included is because the mentions themselves works as keywords (as in the

case of ‘@whlive’ or ‘@vp’ from Table 6.1 that are however the Twitter profiles of White

House Live and of the Vice President), resulting in (unnaturally) increased similarity

scores. In Section 6.3.4, we will demonstrate cases where inclusion of mentions can

indicate a particular pattern of a normal user’s social relationship. Unless explicitly

denoted, however, we include mentions in our analysis.

6.3.4 User centric analysis

To demonstrate the e↵ectiveness of TUCAN on user analysis, we present results of

case studies. Unless mentioned otherwise, we use the following settings by default: (i)

windows size of 7 days, (ii) pre-processing with plain cleaning, and (iii) similarity scoring

using Cosine similarity measure.

Analysis on timeline of a single user. Figure 6.5 shows correlation matrices repre-

senting similarities between pairs of bird songs of a single user. Figure 6.5(a) shows a

matrix on the bird songs of Barack Obama. It highlights three blocks of highly corre-

lated period of Tweets. The larger block [A] at the upper left corner represents Obama

tweets during US presidential election in 2012. With a maximum Cosine similarity score

of 0.33, it is clear that he has been tweeting a lot on a few correlated topics (voting,

Romney, convention, health, etc. being among the most recurrent top terms). Block

[B] refers to periods when Obama was interested in fiscal cli↵. Finally, block [C] relates



Chapter 6. TUCAN: Twitter User Centric ANalyzer 92

week 1                                    week 10                                      week 20 

Barack Obama 

w
e

e
k

 1
                                    w

e
e

k
 1

0
                                      w

e
e

k
 2

0
 

B
a

ra
c
k
 O

b
a

m
a

 

(a) Barack Obama - Max similarity = 33%

week 1                                    week 10                                      week 20 

User D 

w
eek 1                                    w

eek 10                                      w
eek 20 

U
ser D 

(b) User D - Max similarity = 31%

week 1                                                                             week 10 

User E 

w
eek 1                                                                          w

eek 10 

U
ser E 

(c) User E - Max similarity = 26%

Figure 6.5: Similarity among bird songs for di↵erent type of users. T = 7 days, plain
cleaning, Cosine similarity.

to the shooting in the Newtown elementary school, during which Obama’s major topic

terms were gun, violence, and weapon.

The correlation matrix in Figure 6.5(b) shows an interesting behavior of a normal “user

D” (as opposed to a public figure or news media). As discussed in Section 6.3.3, mentions

are very frequent among common users. Analyzing user D’s bird songs without filtering

out mentions, the plot highlights two blocks, [A] and [B]. The similarity of bird songs are

dominated by the use of mentions to particular follower/followee of his. Investigating

key terms in the time period of block [A], user D was exchanging messages with one of

his follower. After one week of pause, in block [B], user D then mentions about another

follower of his (and never refers to the follower in [A]). We suppose that user D’s sudden

change in his mentions indicates a change in his social relationship, e.g., change of his

dating partner.



Chapter 6. TUCAN: Twitter User Centric ANalyzer 93

Lastly, Figure 6.5(c) shows a typical correlation matrix of generic “normal users”. Com-

pared to a public figure’s correlation matrix (Figure 6.5(a)), the size of correlated blocks

is small and more uniform. Likewise, the maximum similarity score is also lower at 0.26.

This can be explained by di↵erent use of Twitter between public figures and normal

users; public figures use Twitter to deliver messages with substantial topics ( [79, 81]),

whereas normal users use Twitter to socialize (with messages on status updates, social

signals, messages indicating mood, etc.) as noted in [81].

Finally, TUCAN can also be instrumented to highlight artificial similarity among a user’s

tweet that were generated by automatic tools like Foursquare check-in, auto-tweet tools,

etc. We do not report their examples for sake of brevity.

Analysis across di↵erent users. Besides the per-user analysis, TUCAN can infer

semantic relationships across a multiple of users when applied to a group of target users.

We select ten public figures and media blogs and report the cross-similarity matrix

in Figure 6.6. The latest six bird songs with T = 14 days are considered, referring

to a common period of time. Each bird song is checked against each other. Results

are represented as a colored matrix, using di↵erent color scales (and normalization) for

blocks outside the main diagonal and in the main diagonal (where same-user’s bird songs

are compared). Focusing on the former, two pairs of users emerge as mostly correlated:

{Barack Obama, White House} and {idownloadblog, iMore}.

Zooming in and increasing the resolution by selecting T = 7 days, Figure 6.6(b) compares

{Barack Obama, White House} in detail over 25 weeks of tweeting. First, notice that

during Barack Obama’s campaign (ref. Figure 6.5(a)) the correlation with White House

is marginal. After elections, four periods of high correlations are pinpointed, highlighting

the periods Barack Obama and White House publicize similar topics. The block [A]

indicates the period of educational cost cut. [B] indicates the massacre at Newtown.

[C] refers to fiscal cli↵, and [D] on reformation of US immigration laws. The discovery

of both well-correlated and non-correlated periods allows us to quantify periods of time

the President spoke for himself (and his political party) and the government of the US.

Similar consideration holds when zooming in {idownloadblog, iMore} comparison in Fig-

ure 6.6(c). Both users are blogs reporting news on Apple products. Also in this case

T = 7 days, for 25 bird songs. Only the cross-similarity macro block is shown for the

sake of brevity. Notice the large similarity in the main diagonal; it indicates that the

two profiles report the same news, whose duration last for short period of time. The

behavior is justified by the fact that both accounts work as sources of technology news.



Chapter 6. TUCAN: Twitter User Centric ANalyzer 94

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Barack$Obama$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$iMore$
idownloadblog$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$White$House$$$$$$idow

nloadblog$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$W
hite$House$$

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Barack$O
bam

a$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$iM
ore$

(a) Famous users vs famous users. T = 14 days.

week 1            week 10           week 20   week 1           week 10             week 20 

Barack Obama White House 

w
eek 1            w

eek 10           w
eek 20   w

eek 1           w
eek 10             w

eek 20 

Barack O
bam

a 
W

hite House 

(b) Barack Obama vs White House. T = 7 days.

week 1                                    week 10                                      week 20 

iMore 

w
eek 1                                  w

eek 10                                      w
eek 20 

Idow
nload blog 

(c) idownloadblog vs iMore. T = 7 days.

Figure 6.6: Similarity among users over di↵erent bird songs. Plain cleaning and
Cosine similarity.



Chapter 7

Personalized Tag

Recommendation Based on

Generalized Rules

Recommender systems help users find desirable products or services by analyzing user

profiles and their similarities, or by finding products that are similar to those the users

expressed interest in. The di↵usion of the collaborative tagging systems (e.g., Del.icio.us,

Flickr, Zooomr) has recently focused the attention of the research community on the

problem of tag recommendation. Tags are keywords that provide meaningful descriptors

of a Web resources. Recommending tags to a user who is annotating a resource is

a challenging research issue that has been recently investigated in di↵erent real-life

contexts (e.g., photo annotation [96, 97], blog post tagging [98], bookmark tagging [50]).

Given a set of user-defined tags, a relevant research issue is the recommendation of ad-

ditional tags to partially annotated Web resources. Accomplishing this task e↵ectively

has the twofold aim at automating the annotation process by suggesting to the user an

ordered set of pertinent tags and improving the e↵ectiveness and the e�ciency of query-

ing retrieval systems (e.g., [99–101]). Recommendation of additional tags may be either

exclusively based on collective knowledge, i.e., independently of the knowledge about the

user who annotated the resources [50, 97, 102], or personalized [96, 98]. To figure out

valuable correlations between previously annotated and recommendable tags rule-based

approaches have shown to achieve fairly good performance against probabilistic and co-

occurrence-based machine learning strategies [50]. To enhance the performance of the

tag recommendation systems in the context of photo tag recommendation, the combined

usage of user-specific and collective knowledge has also been recently addressed [103].

However, the lack of a controlled vocabulary from which tags could be selected during the

annotation process makes the sets of previously assigned annotations very sparse [50, 97]

and, thus, unsuitable for being successfully coped with most of the information retrieval

95



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 96

and data mining techniques.

This Chapter presents a novel rule-based recommendation system that addresses the

task of recommending additional tags to partially annotated Flickr photos. It combines

combines the knowledge provided by the personal and collective contexts, i.e, the history

of the past personal and collective photo annotations. To address this issue, it discovers

and exploits high level tag correlations, in the form of generalized association rules, from

the collections of the past user annotations. To the best of our knowledge, this is the

first attempt to exploit generalized rules in tag recommendation. Generalized association

rules X ! Y represent correlations among tag sets X and Y such that (i) frequently

occur in the analyzed dataset, i.e., the observed frequency (the support) ofX[Y is above

a given threshold, (ii) almost hold in the source data, i.e., the strength of the implication

between X and Y (the confidence) is higher than a given threshold, and (iii) may also

include items belonging to di↵erent abstraction levels (i.e., tags may be generalized

as the corresponding categories). The use of tag generalization hierarchies allows the

discovery of relevant tag associations that may remain hidden at the level of individual

tags. Hence, it may e↵ectively counteract the issue of data sparsity, thus, allowing

the recommendation of meaningful and pertinent tags, as shown in the experimental

evaluation (see Section 7.4).

7.1 Motivating example

In the following the use of generalized rules in tag recommendation is explained with

the help of a running example.

Motivating example 1 Consider a photo, published on Flickr, of the Guildhall,

which is a famous building situated in the center of London (U.K.). Our goal is to

recommend to a given user pertinent additional photo tags to annotate, knowing that

his first user-specified annotation is London. A graphical representation of the consid-

ered use-case is shown in Figure 7.1. To perform tag recommendation, we exclusively

consider, as preliminary step, the collection of the past user-specified annotations (i.e.,

the personal knowledge base) while temporarily disregarding the collective knowledge

provided by annotations made by the other system users. A traditional association

rule mining process may discover the rule {London} ! {Guildhall}, where London and

Guildhall are tags. Since the user has already annotated the photo with the tag London,

Guildhall is an example of subsequent tag to recommend. The quality of the proposed

recommendation could be evaluated in terms of well-known rule quality indexes (e.g.,

the rule support and confidence [104]). As discussed in [50], the analysis of the strength

of the discovered implications is the core part of rule-based recommendation systems.

In particular, frequent and high-confidence rules are deemed the most reliable ones for



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 97

Figure 7.1: Example of use-case.

being used in tag recommendation. Enforcing a minimum frequency of occurrence of

the selected rules reduces the sensitivity of the rule-based model to noise and data over-

fitting, However, data sparsity still makes the discovery of potentially relevant rules a

computationally intensive task, because specific rules often occur rarely in the analyzed

data [50, 102]. The use of generalization hierarchies built over the history tags, as the

ones reported in Figure 7.1, may allow the generation of high level tag associations that

occur more frequently than their low level versions. For instance, by aggregating the

tag London into the corresponding state U.K. the generalized (high level) rule {U.K.}

! {Guildhall} may prompt the suggestion of the same annotation while considering a

higher level view of the analyzed pattern.

To discriminate among potentially pertinent tags, two distinct rule sets are generated:

(i) a user-specific rule set, which represents the personalized knowledge base and includes

(generalized) rules extracted from the past annotations made by the user to which the

recommendation is targeted, and (ii) a collective rule set, which represents the collective

knowledge and includes (generalized) rules mined from the past annotations made by

the other users. Tags mainly referable to user-specific rules are deemed the most suitable

ones for additional tag recommendation. However, their significance strictly depends on

user activeness and ability in photo tagging [103]. To overcome this issue, in our system

we consider tag recommendations based on collective knowledge as well. Collective

knowledge also plays a key role in specializing high level associations discovered from

the user-specific context, as shown in the following example.



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 98

Motivating example 2 Consider again the use-case shown in Figure 7.1. Suppose

now that the first user-specified annotations are London and Roman age. If the rule

{London, Roman age} ! {Monument} is selected from the user-specified rule set, any

descendant of Monument (e.g., Colosseum, Guildhall) is an eligible tag to recommend.

The presence in the collective rule set of the rule {London, Roman age} ! {Guildhall}

may push the recommendation of the tag Guildhall as deemed worthy of notice by the

community.

The e↵ectiveness of the proposed system has been validated on real-life and benchmark

photo collections retrieved from Flickr. The use of generalized rules allows significantly

improving the performance of state-of-the-art approaches.

7.2 Related work

The success of social networks and online communities has relevantly increased the

attention to the problem of recommending Web resource annotations, i.e., the tags. Tag

recommendation systems focus on suggesting tags to a user who is annotating a resource

by combining the information coming from one or more contexts. In particular, collective

tag recommendation analyzes the knowledge provided by the past resource annotations

independently of the user who annotated each resource [50, 97, 102], while personalized

tag recommendation addresses tag recommendation by considering the user context [96,

98]. This chapter addresses tag recommendation by combining both personalized and

collective knowledge.

A significant research e↵ort has been devoted to personalized tag recommendation. For

instance, in [98] the author presents a collaborative filtering method to address personal-

ized blog post tag recommendation. It analyzes the information about users’ behaviors,

activities, or preferences to predict what users will like based on their similarity to other

users. Analogously to most of the collaborative filtering methods (e.g., [105]), it as-

sumes that similar users share similar tastes. Similarity between posts, users, and tags

is evaluated by exploiting information retrieval techniques. In [106] the combination

of a graph-based and collaborative filtering method is proposed. A User-Resource-Tag

(URT) graph is indexed by means of an ad-hoc indexing strategy derived from the pop-

ular PageRank algorithm [107]. To reduce the sparsity of the generated graphs, the

use of Singular Value Decomposition (SVD) methods has been also investigated [108].

Di↵erently, the application of content-based strategies has been studied in [109–111].

They focus on recommending tags that are similar to those that a user annotated in

the past (or is annotating in the present). For instance, in [110] the authors present

an application for large scale automatic generation of personalized annotations. They

automatically select from the main Web page keywords personalized tags based on their

relevance to the content of both the considered page and the other documents residing



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 99

on the surfer’s Desktop. Similarly, in [109, 112, 113] multimedia content related to the

annotated Web resource is analyzed and used to drive the tag recommendation process.

For instance, in [112, 113] the information discovered from both Web page content and

related annotations is exploited for tag recommendation purposes, while, in [109], the

authors analyze interpersonal relations, image text, and visual content together. Di↵er-

ently, in [111] an hybrid collaborative filtering method is proposed and integrated in a

scalable architecture. The issue of interactive Flickr tag recommendation is addressed

in [96]. Suggested tags are first selected from the set of previously assigned ones based

on co-occurrence measures. Next, based on the recommendation, the candidate set is

narrowed down to make the suggestion more specific. However, co-occurrence methods

are challenged by data sparsity as either the computational complexity may increase

exponentially with the number of tags or the score associated with each tag may be not

directly comparable. Unlike previous approaches, to counteract the sparsity of the tag

collections this chapter proposes to exploit generalized rules.

A parallel issue has been devoted to collective tag recommendation [50, 97, 102, 111].

For instance, in [97], additional tags are recommended to partially annotated Flickr

photo by using co-occurrence measures to analyze the collective knowledge. The work

proposed in [103] extends the previous system by analyzing the knowledge coming from

di↵erent contextual layers, including the personal and the collective ones. Di↵erently,

authors in [50] reformulate the task of content-based tag recommendation as a (su-

pervised) classification problem. Using page text, anchor text, surrounding hosts, and

available tag information as training data, they train a classifier for each tag they want

to predict. Even though their approach is able to achieve fairly high precision, the

overall training time may become significant when the cardinality of the considered tags

increases. This work is also the first attempt to address collective tag recommenda-

tion by means of association rules. Association rules allow the discovery of strong tag

associations that may be profitably exploited in tag recommendation. Similarly, other

approaches (e.g., [114]) focus on rule-based collective tag recommendation. However,

the commonly high sparsity of the collections of past annotations limits the e↵ectiveness

of the proposed approaches as the most specific (and possibly interesting) rules may

remain hidden. This chapter proposes to overcome the above issue by discovering tag

associations at di↵erent abstraction levels. To the best of our knowledge, this is the

first attempt to exploit generalized rules in tag recommendation. Authors in [102] also

address the same issue by adopting an approach based on Latent Dirichlet Allocation

(LDA). The proposed strategy is proved to very e↵ective in tackling the cold start prob-

lem for tagging new resources for which no tag has been assigned yet. Di↵erently, this

chapter specifically addresses personalized tag recommendation of partially annotated

resources.



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 100

In recent years, a notable research e↵ort has been devoted to discovering generalized

association rules from (possibly large) data collections. Generalized association rules

have been first introduced in [62] in the context of market basket analysis as an extension

of the traditional association rule mining task [104]. By evaluating a set of hierarchies of

aggregation built over the data items, items belonging to the source data are aggregated

based on di↵erent granularity concepts. Each generalized rule, which is a high level

representation of a “lower level” rule, provides a higher level view of a pattern hidden in

the analyzed data. The first generalized association rule mining algorithm [62] follows

the traditional two-process for generalized rule mining: (i) frequent generalized itemset

mining, driven by a minimum support threshold, and (ii) generalized rule generation,

from the previously mined frequent itemsets, driven by a minimum confidence threshold.

Candidate frequent itemsets are generated by exhaustively evaluating the generalization

hierarchies. To reduce the complexity and improve the e�ciency of the mining process,

several optimizations strategies and more e�cient algorithms have been proposed [62, 66,

68–70, 115, 116]. This chapter discovers and exploits generalized rules in personalized tag

recommendation by adopting an Apriori-based strategy [62] that integrates, as itemset

mining step, the approach recently proposed in [70].

7.3 The recommendation system

This chapter presents a novel personalized photo tag recommendation system. Given a

photo and a set of user-defined tags, the system proposes novel pertinent tags to assign

to the photo based on both the user-specific preferences (i.e., the tags already annotated

by the same user to any photo) and the remaining part of collective knowledge (i.e., the

annotations provided by the other users). Its main architectural blocks are shown in

Figure 7.2. A brief description of each block follows.

Preprocessing. This block aims at making the collections of the previous tag anno-

tations suitable for the generalized rule mining process. The tag set is tailored to a

transactional data format, where each transaction corresponds to the annotations per-

formed by a user to a given photo and includes the corresponding set of assigned tags.

Over the history tag collection a set of generalization hierarchies is also derived from

the established Wordnet lexical database [94].

Generalized association rule mining. This block focuses on discovering high level

tag correlations, in the form of generalized association rules, from the transactional rep-

resentation of the tag set. The available tag generalization hierarchies are also evaluated

to discover tag correlations at di↵erent abstraction levels. Two distinct rule sets are gen-

erated: (i) a user-specific rule set, which includes generalized rules extracted from the



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 101

Figure 7.2: The recommendation system architecture

past annotations made by the user to which the recommendation is targeted, (ii) a col-

lective rule set, which includes generalized rules mined from the past annotations made

by the other users.

Tag selection and ranking. Given a photo and a set of tags already assigned by

the user, this block aims at generating a ranked list of additional tags to suggest. To

this aim, from the user-specific and collective rule sets generalized rules pertinent to the

already assigned tags are selected. The ranked list of suggested tags is derived from the

set of selected rules based on their main quality indexes.

7.3.1 Problem statement

Given a set of photos P , a set of tags T , and a set of users U the ternary relation X =

P ⇥T ⇥U represents the user assignments of tags in T to photos in P . The set ⌧(pi,uj)

✓ T includes the tags assigned by user uj 2 U to pi 2 P and could be defined as follows:

⌧(pi, uj) = ⇡t�p
i

,u
j

X (7.1)

where ⇡ and � are the commonly used projection and selection primitive operators of

the relational algebra [117].

To discriminate between past assignments made by the user uj and collective ones (i.e.,

¬uj), the ternary relation X may be partitioned as follows:



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 102

X(uj) = ⇡t�u
j

X (7.2)

X(¬uj) = ⇡t�U\u
j

X (7.3)

We denote as user-specific and collective knowledge bases the sets X(uj) and X(¬uj)

such that X(uj) [X(¬uj)=X. Given a set ⌧(pi,uj) of user-defined tags and the user-

specific and collective knowledge bases X(uj) and X(¬uj), the personalized tag recom-

mendation task addressed by this work focuses on suggesting to user uj new tags in T \

⌧(pi,uj) for a photo pi.

7.3.2 Preprocessing

Flickr is an online photo-sharing system whose resources are commonly annotated by the

system users. The analysis of the past photo annotations is crucial for recommending

novel tags to users who are annotating a photo. However, data retrieved from the Web

is commonly unsuitable for being directly analyzed by means of data mining algorithms.

Indeed, a preprocessing step is needed to tailor the retrieved tag sets to a suitable data

format.

To enable the association rule mining process, the collection of past Flickr photo an-

notations is tailored to a transactional data format. A transactional dataset is a set of

transactions, where each transaction is a set of items of arbitrary size. To map a tag

set to a transactional data format, the annotations made by a user to a given photo are

considered as a transaction composed of the set of (not repeated) assigned tags. A more

formal definition of the transactional tag set is given in the following.

Definition 7.3.1. Transactional tag set. Let X = P ⇥ T ⇥ U be the ternary relation

representing the assignments of tags in T made by users in U to photos in P . Let

⌧(pi,uj) ✓ T be the set of all (distinct) tags assigned by user uj 2 U to pi 2 P . A

transactional tag set T is a set of transactions, where each transaction corresponds to a

set ⌧(pi, uj) for a certain combination of user uj 2 U and photo pi 2 P occurring in X.

For instance, if the user uj assigns to the photo pi the tags Guildhall and London the

corresponding transaction is ⌧(pi, uj)={Guildhall, London}. The transactional tag set

T including the set of all distinct ⌧(pi, uj) occurring in X is the full list of all past photo

annotations.

Given a user uj to which the personalized tag recommendation is targeted, the trans-

actional tag set T is partitioned between the annotations made by uj and not, i.e., dis-

tinct transactional representations of X(uj) and X(¬uj), denoted as T (u|) and T (¬u|)



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 103

throughout the chapter, are generated. The separate analysis of T (u|) and T (¬u|) al-

lows the discovery of both user-specific and collective tag associations, in the form of

generalized rules.

To enable the process of generalized rule mining from T (u|) and T (¬u|), a set of hier-

archies of aggregations (i.e., the generalization hierarchies) is built over the transaction

tag set T .

Definition 7.3.2. Generalization hierarchy. Let T be the set of tags occurring in the

transactional tag set T . A generalization hierarchy GH built over T is a predefined

hierarchy of aggregations over T . The leaves of GH are all the tags in T . Each non-

leaf node in GH is an aggregation of all its children. The root node (denoted as ?)

aggregates all the tags occurring in T .

The Wordnet lexical database [94] is queried to retrieve the most relevant semantic rela-

tionships holding between a tag in T and any other term. More specifically, the following

semantic relationships are considered: hyponyms (i.e., is-a-subtype-of relationships) and

meronyms (is-part-of relationships). Terms to which any selected relationship is directed

are considered as generalizations of the original tag. For instance, consider the exam-

ple tag London. If the following semantic relationship is retrieved from the Wordnet

database

<London> is-part-of <U.K.>

then the term London is selected as the upper level generalization of the tag U.K.. Next,

the database querying process is deepened to find possible upper level aggregations

(e.g., <U.K.> is-part-of <Europe>). The above procedure allows the construction

of meaningful generalized hierarchies, according to Definition 7.3.2, built over a given

transactional tag set. Extracts of some example generalization hierarchies are reported

in Figure 7.1. The generalization hierarchies will be used to drive the generalized rule

mining process, as described in the following.

7.3.3 Generalized association rule mining

This block focuses on discovering high level associations, in the form of generalized

association rules, from the transactional tag sets T (u|) and T (¬u|). Association rules

represent significant correlations among the analyzed data [104]. More specifically, an

association rule is an implication A ) B, where A and B are itemsets, i.e., sets of data

items. In the transactional representation of the tag set, items are tags in T associated

with any photo included in the collection.

Generalized association rules [62] are rules that may include items at higher levels of

abstraction, i.e., the generalized items. By considering the generalization hierarchies

built over the transactional tag set (Cf. Definition 7.3.2), any concept that aggregates



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 104

one or more tags in T at a higher abstraction level is considered as a generalized item.

For instance, consider again the semantic relationship <London> is-part-of <U.K.>.

If London is a tag (item) that occurs in the transactional tag set, U.K. is an example

of generalized item. Similarly, generalized itemsets are itemsets (tag sets) including at

most one generalized item (e.g., {Guildhall, U.K.}). A more formal definition follows.

Definition 7.3.3. Generalized itemset. Let T be a transactional tag set and T the

corresponding item domain, i.e., the set of tags occurring in T . Let ⇢ = {GH1, . . .,

GHm} be a set of generalization hierarchies built over T and E the set of generalized

items (high level tag aggregations) derived by all the generalization hierarchies in ⇢. A

generalized itemset I is a subset of T
S

E including at least one generalized item (high

level tag aggregation) in E.

Generalized itemsets are characterized by a notable quality index, i.e., the support,

which is defined in terms of the itemset coverage with respect to the analyzed data.

Definition 7.3.4. Generalized itemset coverage. Let T be a transactional tag set and

⇢ a set of generalization hierarchies. A (generalized) itemset I covers a given transaction

tr 2 T if all its (possibly generalized) items (tags) x 2 I are either included in tr or

ancestors (generalizations) of items (tags) i 2 tr with respect to ⇢.

The support of a (generalized) itemset I is given by the ratio between the number of

transactions tr 2 T covered by I and the cardinality of T .

A (generalized) itemset I is said to be a descendant of another generalized itemset Y if

(i) I and Y have the same length and (ii) for each item y 2 Y there exists at least an

item i 2 I that is a descendant of y.

The concept of generalized association rule extends traditional association rules to the

case in which they may include either generalized or not generalized itemsets. A more

formal definition follows.

Definition 7.3.5. Generalized association rule. Let A and B be two (generalized)

itemsets. A generalized association rule is represented in the form R : A ) B, where A

and B are the body and the head of the rule respectively.

A and B are also denoted as antecedent and consequent of the generalized rule A )

B. Generalized association rule extraction is commonly driven by rule support and

confidence quality indexes. While the support index represents the observed frequency

of occurrence of the rule in the transactional tag set, the confidence index represents the

rule strength.

Definition 7.3.6. Generalized association rule support. Let T be a transactional

tag set and ⇢ a set of generalization hierarchies. The support of a generalized rule

R : A ) B is defined as the support (i.e., the observed frequency) of A [B in T .

Definition 7.3.7. Generalized association rule confidence. Let T be a transactional

tag set and ⇢ a set of generalization hierarchies. The confidence of a rule R : A ) B



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 105

is the conditional probability of occurrence in T of the generalized itemset B given the

generalized itemset A.

For instance, the generalized association rule {U.K.} ! {Guildhall} (s=10%,c=88%)

states that the tag generalization U.K. co-occurs with the tag Guildhall in 10% of the

transactions (annotations) of the collection and the implication holds in 88% of the

cases.

To address generalized association rule mining task [62] from the tag history collections

T (u|) and T (¬u|), we performed the traditional two-step process: (i) generalized itemset

mining, driven by a minimum support threshold minsup and (ii) generalized association

rule generation, from the set of previously extracted itemsets, driven by a minimum

confidence threshold minconf. A generalized association rule is said to be strong if it

satisfies both minsup and minconf.

Given a set of generalization hierarchies built over the tags in X, a minimum support

threshold minsup, and a minimum confidence threshold minconf, the generalized rule

mining process is performed on T (u|) and T (¬u|) separately. More specifically, given

a photo pi, a user uj , and a set of user-specific tags ⌧(pi,uj), the main idea behind our

approach is to treat strong high level correlations related to the annotations made by

the user uj di↵erently from that made by the other users. To this aim, two distinct rule

sets are generated: (i) a user-specific rule set, which includes all strong generalized rules

extracted from the past annotations made by the user to which the recommendation

is targeted, (ii) a collective rule set, which includes all strong generalized rules mined

from the past annotations made by the other users. To accomplish the generalized

itemset mining task e�ciently and e↵ectively, we exploit our implementation of a recently

proposed mining algorithm, i.e., the GenIO algorithm [70]. A brief description of the

adopted algorithm is given in Section 7.3.3.1.

7.3.3.1 The GenIO Algorithm

GenIO [70] is a generalized itemset mining algorithm that addresses the discovery of a

smart subset of all the possible frequent (generalized) itemsets. Given a source dataset, a

set of generalization hierarchies ⇢, and a minimum support threshold minsup it discovers

all frequent not generalized itemsets and all frequent generalized itemsets having at least

an infrequent descendant, i.e., a descendant that does not satisfy minsup. To achieve

this goal, the generalization process is support-driven, i.e., it generalizes an itemset only

if it is infrequent with respect to the minimum support threshold. A more through

description of the main algorithm steps follows.

GenIO is an Apriori-based algorithm [104] that performs a level-wise itemset generation.

More specifically, at arbitrary iteration k, the Apriori-based itemset mining steps are

the following: (i) candidate generation, in which all possible k-itemsets are generated



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 106

from the (k�1)-itemsets and (ii) candidate pruning, which is based on the property that

all the subsets of frequent itemsets must also be frequent in the source data, to early

discard candidate itemsets that cannot be frequent. Candidate generation is known to

be the most computationally and memory intensive step The actual candidate support

value is counted by performing a dataset scan. GenIO follows the same level-wise

pattern. However, it manages rare itemsets by lazily evaluating the given generalization

hierarchies. The generalization process is performed by applying on each item (tag)

contained in an (infrequent) itemset I the corresponding generalization hierarchies. All

itemsets obtained by replacing one or more items in I with their generalized versions

are generalized itemsets of I. Hence, the generalization process on itemset I potentially

generates a set of generalized itemsets. The generalization process of I is triggered if

and only if I is infrequent with respect to the minimum support threshold. Since the

GenIO algorithm has been first proposed in the context of structured datasets, a few

straightforward modifications to the original algorithm have been adopted to make it

applicable to transactional data as well.

7.3.3.2 Rule generation

The generalized rule generation task entails the discovery of all generalized association

rules satisfying a minimum confidence threshold minconf, starting from the set of fre-

quent (generalized) itemsets discovered by the GenIO algorithm.

The proposed recommendation system accomplishes the rule generation task by perform-

ing the second step of the traditional Apriori algorithm [104]. To achieve this goal, we

exploited our more e�cient implementation of the generalized rule generation procedure

first proposed in [62].

7.3.4 Tag selection and ranking

Given a photo pi, a set of user-defined tags ⌧(pi,uj) assigned by user uj to pi, and the

sets of generalized rules RT (u|) and RT (¬u|) mined, respectively, from T (u|) and T (¬u|),

this block entails the selection and the ranking of the additional tags to recommend to

uj for pi. For the sake of clarity, in the following we discuss how to e↵ectively tackle the

selection and ranking problems separately.

7.3.4.1 Selection

The selection step focuses on selecting additional tags to suggest to user uj for the

partially annotated photo pi from the rules belonging to the user-specific and the col-

lective rule sets RT (u|) or RT (¬u|). A pseudo-code of the selection procedure is given in

Algorithm 5.



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 107

Require: the user-specific rule set RT (u|), the collective rule set RT (¬u|), and the user-specified tags ⌧(p
i

,u
j

)

Ensure: the tag selection C
1: covered rules(u

j

) = select pertinent user-specific rules(RT (u|), ⌧(pi,uj

))

2: covered rules(¬u
j

) = select pertinent collective rules(RT (¬u|), ⌧(pi,uj

))

3: for all user-specific rules R in covered rules(u
j

) do
4: insert tags in R.consequent into C
5: for all generalized tags g in C do
6: for all collective rules R2 in covered rules(¬u

j

) do
7: if R2.consequent includes any tag t⇤ in g.leafdescendant then
8: insert t⇤ in C
9: end if
10: end for
11: end for
12: end for
13: remove generalized tags from C
14: return C

Algorithm 5: Tag selection

To select tags that are strongly associated with the user-specified ones, only a subset

of the extracted rules is deemed worth considering for additional tag recommendation.

More specifically, the strong generalized rules in RT (u|) and RT (¬u|) whose rule an-

tecedent covers, at any level of abstraction, the user-specified tag set ⌧(pi,uj) or any

of its subsets are selected and included in the corresponding rule sets covered rules(uj)

and covered rules(¬uj) (see lines 1-2). According to Definition 7.3.4, the coverage of (a

portion of) the tag set ⌧(pi,uj) may be due to the presence in the rule antecedent of

either an exact matching (i.e., the same tags) or one of its generalized versions. Any

rule that does not fulfill the above-mentioned constraint is not considered in subsequent

analysis.

Table 7.1: Generalized rules used for recommending to user uj tags subsequent to
Rome.

ID Generalized rule Support Confidence
(%) (%)

Annotations made by user uj
1 {London} ) {Guildhall} 2.5% 100%
2 {London} ) {Historical age} 1.4% 85%
3 {U.K.} ) {Royal family} 1.8% 91%

Annotations made by the other users
4 {London} ) {Guildhall, Royal family} 1.5% 95%
5 {U.K.} ) {Roman Age} 1.3% 80%
6 {London} ) {Tourism} 1.2% 72%

Consider, for instance, a photo pi annotated by the user uj with the tag London. In

Table 7.1 is reported the selection of generalized rules taken from the set of rules mined

from, respectively, the past user annotations T (uj) and T (¬uj) by exploiting the gen-

eralization hierarchies reported in Figure 7.1 and by enforcing, respectively, a minimum

support threshold equal to 1% and a minimum confidence threshold equal to 50%. No-

tice that any selected rule contains the tag London or its generalization U.K. as rule



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 108

antecedent. Consider now the case in which the set of user-specified tags ⌧(pi,uj) is

{London, Roman age}. Rules including either {London, Roman age}, {U.K., Roman

age}, {London, Historical age}, or {U.K., Historical age} as rule antecedent are consid-

ered as well together with that covering only one of the user-specified tags London or

Roman age or their relative generalizations.

Not generalized tags belonging to the consequent of the selected user-specific or collec-

tive rules in RT (u|) or RT (¬u|) are eligible tags to recommend. Since we consider the

tag associations mainly referable to the user-specific context the most reliable ones for

personalized tag recommendation, we first select the collection C of generalized and not

generalized tags contained in the consequent of any rule in RT (u|) (line 4). Then, we

refine the selection by replacing generalized tags with the most pertinent not generalized

descendants derivable from the collective knowledge base (line 8).

Recalling the previous example, the set C of candidate tags is first initialized as follows:

{Guildhall, Historical age, Royal family}. Readers could notice that Guildhall and

Royal family are tags, while Historical age is an upper level generalization. Since the

generalization Historical age could not directly recommended, it is replaced with one (or

more) of its low level tags. The selection of the eligible descendants of any generalization

in C is driven by the collective knowledge. For instance, since, among the two low

level descendants of Historical age (i.e., the tags Roman Age and Modern age), only

Roman Age occurs at least once in the consequent of any of the selected collective

rules in RT (¬u|) (see Table 7.1), the tag Historical age is exclusively replaced by its leaf

descendant Roman Age, as it is strongly recommended by the community.

The selection procedure performs two nested loops. The outer loop (lines 5-11) iterates

over the generalizations occurring in the candidate set C, while the inner one (lines 6-10)

iterates over the collective rule sets and selects the leaf descendants of any generalization

in C. While leaf descendants are included in C as pertinent additional tags to recommend

(line 8), any generalization in C is discarded (line 13). Finally, the updated set C of

selected candidate tags is returned (line 14).

7.3.4.2 Ranking

The last but not the least task in tag recommendation is the ranking of the candidate

recommendable tags in C. Tag ranking should reflect (i) the tag significance with respect

to the user-defined tags in ⌧(pi,uj), (ii) the tag relevance according to the past user-

specific preferences, and (iii) the tag relevance based on the past collective knowledge

related to other system users.

To evaluate the significance with respect to ⌧(pi,uj) we propose a tag ranking strategy

that considers the interestingness of the rules in RT (u|) and RT (¬u|) from which they have

been selected. Generalized rule interestingness is evaluated in terms of its confidence



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 109

index value [104], i.e., the rule strength in the analyzed dataset (Cf. Definition 7.3.7) in

both the personal and collective knowledge base.

Formally speaking, let c 2 C be an arbitrary candidate tag and Rc
T (u|)

✓ RT (u|),

Rc
T (¬u|)

✓ RT (¬u|) be, respectively, the subsets of rules in RT (u|) and RT (¬u|) whose

antecedent covers c (at any level of abstraction). The ranking score of c in T (u|) and

T (¬u|) is defined as the average confidence of the rules in Rc
T (u|)

and Rc
T (¬u|)

, respec-

tively.

rankscore(c, T (u|)) =

P
ru|2R

c
T (u|)

co\{(ru|)

|R

c
T (u|)

|

rankscore(c, T (¬u|)) =

P
r¬u|2R

c
T (¬u|)

co\{(ru|)

|R

c
T (¬u|)

|

Roughly speaking, the ranking scores rankscore(c, T (u|)) and rankscore(c, T (¬u|)) re-

flect the average significance of the tag c in the personal and collective contexts. To

combine the individual tag ranks achieved in di↵erent contexts in a unified ranking list

we adopted an aggregation method based on the Borda Count group consensus func-

tion [118]. The chosen approach first assigns descending integer scores to the elements of

each individual rank and then combines the voting scores to generate a unique ranking.

To e↵ectively deal with ranking lists of di↵erent lengths, in our Borda Count implemen-

tation we assign to the first element of each rank the same value equal to the length of

the longest of all the input ranks.

The recommendation system returns the ranked list of candidate tags in C produced by

the Borda Count method.

7.4 Experimental results

We performed a large set of experiments addressing the following issues: (i) a perfor-

mance comparison between our system and a set of recently proposed methods, (ii)

a discussion about the impact of the generalization process on the recommendation

performance, (iii) an analysis of a real-life use-case for our system and the discovered

generalized tag associations, and (iv) the analysis of the impact of the main system

parameters on the recommendation performance.

7.4.1 Photo collections

To test recommendation system performance, we used a benchmark and a real-life

dataset.



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 110

California

Financial district

U.S.A.

   Bay of 

S. Francisco

Union Square

Figure 7.3: Portion of an example generalization hierarchy built over the photo col-
lection tags

The used benchmark dataset is the MIR Flickr 2008 image collection, which was of-

fered by the LIACS Medialab at Leiden University and introduced by the ACM MIR

Committee in 2008 [119]. It collects 25,000 images and the related annotating users and

tags.

The real-life collection is generated by retrieving, by means of the Flickr APIs, 5,000

real photos. The selected photos were chosen based on a series of high level geographical

topics, i.e., New York, San Francisco, London, and Vancouver. The retrieved dataset is

made available for research purposes1.

Since for both the benchmark and the real-life datasets the majority (i.e, around 80%)

of the contained photos have at least 5 tags, to perform a fair performance evaluation

(see Section 7.4.2) we focus our analysis on this photo subset.

By following the strategy described in Section 7.3.2 a set of generalization hierarchies is

derived from the Wordnet lexical database over the collected photo tags. A portion of

one of the generated generalization hierarchies is reported in Figure 7.3.

7.4.2 Experimental design

Our system retrieves a ranked list of pertinent additional tags based on the extracted

frequent generalized rules to tackle the tag recommendation ranking problem. Given

a photo pi and a set of user-defined tags ⌧(pi,uj), the system has to recommend tags

that describe the photo based on both user-specific and collective past annotations. To

1
http://dbdmg.polito.it/wordpress/research/recommendation-systems/



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 111

perform personalized recommendation, from both the tested photo collections the user-

specific annotations made by 10 users who annotated at least 15 photos are considered

separately. Once a user-specific annotation subset is selected, the rest of the collection is

considered as the collective set. For each analyzed user collection, the evaluation process

performs a hold-out train-test validation, i.e., the user-specific collection is partitioned in

a training set, including the 75% of the whole annotations, whereas the remaining part

is chosen as test set. To evaluate the additional tag recommendation performance of our

system, for each test photo two random tags are selected as initial (user-specified) tag set

and the recommended tag list is compared with the held-out test tags. A recommended

tag is judged as correct if it is present in the held-out set. Since held-out tags need not

to be the only tags that could be assigned to the photo, the evaluation method actually

gives a lower bound of the system performance.

To evaluate the performance of both our recommendation system and its competitors, we

exploited three standard information retrieval metrics, previously adopted in [97, 103] in

the context of additional Flickr tag recommendation. The selected measures are deemed

suitable for evaluating the system performance at di↵erent aspects. Let Q be the set of

relevant tags, i.e. the tags really assigned by the user to the test photo, and C the tag

set recommended by the system under evaluation. The adopted evaluation measures are

defined as follows.

Mean Reciprocal Rank (MRR). This measure captures the ability of the system to

return a relevant tag (i.e., a held-out tag) at the top of the ranking. The measure is

averaged over all the photos in the testing collection and is computed by:

MRR = maxq2Q
1

cq
(7.4)

where cq is the rank achieved by the relevant tag q.

Success at rank k (S@k). This measure evaluates the probability of finding a relevant

tag among the top-k recommended tags. It is averaged over all the test photos and is

defined as follows:

S@k =

8
<

:
1 if Q \ Ck 6= ;,

0 otherwise
(7.5)

where q 2 Q is a relevant tag and Ck is the set of the top-k recommended tags.

Precision at rank k (P@k). This metric evaluates the percentage of relevant tags

over the set of retrieved ones. The measure, averaged over all test photos, is defined as

follows:

P@k =
|Q \ Ck|

|Q|

(7.6)



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 112

Notice that the combined use of precision and success highlights the system ability to

get a set of tags that is globally appreciable from the user’s point of view, while MRR

measures the quality of the top tag selection. To perform a fair evaluation, on each

test photo measure estimates are averaged over several runs, where, within each run, a

di↵erent (randomly generated) held-out tag set ranking is considered.

7.4.3 Performance comparison

The aim of this section is twofold. First, it experimentally demonstrates the e↵ectiveness

of our system against a state-of-the-art approach. Secondly, it evaluates the impact of

the generalization process on the recommendation performance. To achieve these goals,

we compared the performance of our system, in terms of the evaluation metrics described

in Section 7.4.2, on both benchmark and real-life datasets with: (i) five di↵erent variants

of the recently proposed personalized Flickr tag recommendation system [103], which

specifically addresses the problem of additional photo tag recommendation given a set

of user-specified tags, and (ii) a baseline version of our approach, which does not exploit

generalized knowledge.

The system presented in [103] is a personalized recommender system that proposes

additional photo tags, pertinent to a number of di↵erent user contexts, among which

the personal and the collective ones. The system generates a list of recommendable tags

based on a probabilistic co-occurrence measure for each context and then aggregates

the results achieved within each context in a final recommended list by exploiting the

Borda Count group consensus function [118]. To the best of our knowledge, it is the most

recent work proposed on the topic of personalized additional Flickr tag recommendation.

To perform a fair comparison, we evaluated the performance of the approach presented

in [103] (denoted as Probabilistic prediction in the following) when coping with the

combination of collective and personalized contexts. Moreover, within each context

(personalized or collective), we tested di↵erent co-occurrence measures as well. More

specifically, we also integrated and tested four co-occurrence measures, i.e., Sum, V ote,

Sum+ (Sum + Promotion), and V ote+ (Vote + Promotion), previously proposed by the

same authors in [97] in the context of collective additional tag recommendation. The

additional measures are taken as representatives of di↵erent co-occurrence measures that

could be adopted to aggregate and select tags pertinent to each context.

To demonstrate the usefulness of generalized rules in tag recommendation, we also com-

pared the performance of our system with that of a baseline version, which exploits

traditional (not generalized) association rules [104] solely. More specifically, the baseline

method performs the same steps of the proposed approach, while disregarding the use

of tag generalizations in discovering significant tag associations (see Section 7.3.4.1).



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 113

To test the performance of our approach we consider as standard configurations for the

tested datasets the following settings: minsup=50% and minconf=40% for the real-

life dataset and minsup=20% and minconf=35% for the benchmark dataset. A more

detailed analysis of the impact of the above-mentioned parameters on the proposed

recommendation performance is reported in Section 7.4.5. Even for the baseline version

of our system we tested several support and confidence threshold values. For the sake

of brevity, in the following we select as representative and report just the configuration

that achieved the best results in terms of MMR measure (i.e., minimum support and

confidence thresholds equal to 50%).

The overall results achieved by the performance evaluation session on the real-life and the

benchmark datasets are summarized in Tables 7.2 and 7.3, respectively. They report

the success and the precision at ranks from 1 to 5 (i.e., S@k, P@k k 2 [1,5]) as well

as the Mean Reciprocal Rank (MRR) achieved by both our system and all the tested

competitors. Similarly to what previously done in [97, 103], for the sake of brevity we

choose not to report ranks with k higher than 5. To validate the statistical significance

of the achieved performance improvements the Student t-test has been adopted [120] by

using as p-value 0.05. Significant worsening in the comparisons between our system and

the other tested competitors are starred in Tables 7.2 and 7.3. For each tested measure,

the result(s) of the best system(s) is written in boldface.

Our recommendation system significantly outperforms both its baseline version and all

the other tested competitors in terms of MRR, S@1, S@2, and P@k (for any tested value

of k) on the real-life dataset and in terms of MRR, S@k, and P@k for k > 1 on the

benchmark dataset. Furthermore, it performs as good as Probabilistic prediction [103],

V ote+, Sum, and Sum+ in terms of S@k for k � 3 on the real-life dataset and as good as

Probabilistic prediction in terms of P@1/S@1 on the benchmark dataset. Performance

improvements in terms of P@k remain statistically significant for for any k  9 on the

real-life dataset, while in terms of P@k and S@k they are significant for any tested value

of k in the range [2,10] on the benchmark dataset.

To have a deep insight into the achieved results, in Figures 7.4 and 7.5 we also plot the

variations of the precision and the success at rank k by varying k in the range [1,5] for

the real-life and the benchmark datasets, respectively. Results achieved on the real-life

crawled data show that our approach performs best for any tested value of k in terms of

precision at rank k (see Figure 7.4(b)). Furthermore, it also performs best for k equal

to 1 and 2 in terms of success, while its performance is comparable to the one of the

other approaches for k � 3. A slightly di↵erent performance trend comes out on the

benchmark dataset. Our system is slightly less accurate than its best competitor in

first tag prediction, while it performs significantly better than all the others (including

Probabilistic prediction) in recommending all the subsequent tags.



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 114

Table 7.2: Real-life dataset. Performance comparison in terms of S@k, P@k, and
MRR metrics. Statistically relevant worsening in the comparisons between our system

and the other approaches are starred.

Probabilistic Prediction Vote Vote+ Sum Sum+ Baseline Generalized rule-based
Precision at rank k

P@1 0.6956* 0.5652* 0.6521* 0.6086* 0.6086* 0.6956* 0.8044
P@2 0.6195* 0.4782* 0.5543* 0.5760* 0.5543* 0.6630* 0.7282
P@3 0.5434* 0.4202* 0.5289* 0.5000* 0.5434* 0.6086* 0.6667
P@4 0.4619* 0.3858* 0.4619* 0.4891* 0.4782* 0.5434* 0.6087
P@5 0.4434* 0.3869* 0.4173* 0.4739* 0.4391* 0.4826* 0.5304

Success at rank k

S@1 0.6956* 0.5652* 0.6521* 0.6086* 0.6086* 0.6956* 0.8044
S@2 0.8043* 0.7608* 0.8043* 0.7826* 0.8043* 0.7608* 0.8478
S@3 0.8478 0.7826* 0.8260 0.8043* 0.8260 0.7608* 0.8478
S@4 0.8478 0.8043 0.8478 0.8478 0.8478 0.7826* 0.8478
S@5 0.8478 0.8260 0.8478 0.8478 0.8478 0.7826* 0.8478

MRR

0.7681* 0.6837* 0.7429* 0.7159* 0.7219* 0.7337* 0.8261

Table 7.3: Benchmark dataset. Performance comparison in terms of S@k, P@k, and
MRR metrics. Statistically relevant worsening in the comparisons between our system

and the other approaches are starred.

Probabilistic Prediction Vote Vote+ Sum Sum+ Baseline Generalized rule-based
Precision at rank k

P@1 0.7660 0.4468* 0.4894* 0.4681* 0.4894* 0.5319* 0.7447
P@2 0.6809 0.3936* 0.4255* 0.3936* 0.4255* 0.4787* 0.6996
P@3 0.6170* 0.3333* 0.3759* 0.3475* 0.3789* 0.4468* 0.6383
P@4 0.5638* 0.2979* 0.3298* 0.3032* 0.3298* 0.3989* 0.5904
P@5 0.4978* 0.2681* 0.2851* 0.2638* 0.2851* 0.3574* 0.5191

Success at rank k

S@1 0.7660 0.4468* 0.4894* 0.4681* 0.4894* 0.5319* 0.7447
S@2 0.7872* 0.4894* 0.5106* 0.4894* 0.5106* 0.5957* 0.8723
S@3 0.8298* 0.5106* 0.5319* 0.5106* 0.5319* 0.5957* 0.8936
S@4 0.8298* 0.5106* 0.5319* 0.5106* 0.5319* 0.5957* 0.8936
S@5 0.8298* 0.5106* 0.5319* 0.5106* 0.5319* 0.5957* 0.8936

MRR

0.7908* 0.4752* 0.5071* 0.4858* 0.5071* 0.5638* 0.8156

In summary, results show that our approach, on average, selects the most suitable rec-

ommendable tags at the top of the ranking and precisely identify the potential user

interests.

7.4.4 Real-life use-case

In this section we analyze the results achieved by our system in a real-life use-case.

Consider a user that is annotating a Flickr photo of the St. Mary Church, located at

the Financial District of San Francisco (California, U.S.A.) nearby the Financial Center.

The photo is taken from the real-life photo collection described in Section 7.4.1. Over

the photo annotations a set of generalization hierarchies, whose extract is shown in

Figure 7.3, is built by our recommendation system (see Section 7.3.2).



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 115

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5

P
re

ci
si

o
n

 a
t 

ra
n

k 
k 

(P
@

k)

k

Probabilistic
Vote

Vote+
Sum

Sum+
Baseline

Generalized

(a) Precision at rank k (P@k).

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1  2  3  4  5

S
u

cc
e

ss
 a

t 
ra

n
k 

k 
(S

@
k)

k

Probabilistic
Vote

Vote+
Sum

Sum+
Baseline

Generalized

(b) Success at rank k (P@k).

Figure 7.4: Real-life dataset. Performance comparison by varying the reference rank
k.



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 116

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5

P
re

ci
si

o
n

 a
t 

ra
n

k 
k 

(P
@

k)

k

Probabilistic
Vote

Vote+
Sum

Sum+
Baseline

Generalized

(a) Precision at rank k (P@k).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4  5

S
u

cc
e

ss
 a

t 
ra

n
k 

k 
(S

@
k)

k

Probabilistic
Vote

Vote+
Sum

Sum+
Baseline

Generalized

(b) Success at rank k (P@k).

Figure 7.5: Benchmark dataset. Performance comparison by varying the reference
rank k.

The user is interested in tagging the photo with good descriptors so that the Flickr

querying system may e↵ectively retrieve its content based on the user-provided infor-

mation. Suppose that the user has already annotated the photo with the following tags

⌧(pi, uj)={St. Mary Square, Financial District}. The system analyzes the user-specific

and collective knowledge bases to suggest additional tags to recommend. By setting

the standard configuration (minimum support threshold minsup=50%, minimum con-

fidence threshold minconf=40%) the following strong rule is discovered by our system

from the collective transactional tag set:

1. {St. Mary Square, Financial District} ) {Financial center} (support = 40%,

confidence = 100%).



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 117

Hence, Financial center is a candidate additional tag to recommend suggested by the

community. However, due to the sparsity of the user-specific knowledge base none

of the not generalized rules includes {St. Mary Square, Financial District} as rule

antecedent since the combination of the two tags rarely occurs in the analyzed collection.

Nevertheless, the following strong generalized rules are extracted:

2. {San Francisco Bay, Financial District} ) {St. Mary} (support = 42%, confi-

dence = 99%)

3. {San Francisco Bay, Financial District} ) {Business} (support = 55%, confi-

dence = 100%)

Both rules represent correlations between the previously assigned and the potentially

relevant future tag annotations at a higher abstraction level. Rule (A) suggests the rec-

ommendation of the pertinent tag St. Mary as additional tag, while rule (B) highlights

a high level tag category that is worth considering in the recommendation process. In

particular, the latter rule states that, among the past user annotations, a correlation

between the category Business and the previously annotated tags holds. Indeed, the

user would willingly annotate the photo with a tag belonging to that category. The

knowledge about the community behavior addresses the system to recommend the tag

Financial center as it is a lower level descendant of the category Business.

7.4.5 Parameter analysis

We also analyzed the impact of the main system parameters on the tag recommendation

performance. To this aim, in Figures 7.6(a) and 7.6(b) we plot the average MRR,

S@1/P@1, and P@5 measures, as representatives among all the tested measures (see

Section 7.4.2), achieved by our system on the real-life collection by varying the minimum

support and confidence threshold enforced during the generalized rule mining process,

respectively. Curves, not reported here for the sake of brevity, relative to di↵erent

evaluation measures and dataset show similar trends.

When relatively high support thresholds (e.g., 70%) are enforced, the percentage of

not generalized rules is quite limited (e.g., 13% of the user-specific rule set mined from

the training photo collection described in Section 7.4.1) and many informative rules

(generalized and not) are discarded. Nevertheless, the use of generalizations may prevent

the discarding of the most informative recurrences thanks to the extraction of high level

associations from the user-specific knowledge base. In the opposite case, i.e., when

relatively low support thresholds (e.g., 20%) are enforced, many low level tag associations

become frequent (e.g., 1.0% of the user-specific rule set from the same training data) and,

thus, are extracted by our system. However, the sparsity of the analyzed tag collections

still left some of the most peculiar associations among tags hidden. Aggregating tags



Chapter 7. Personalized Tag Recommendation Based on Generalized Rules 118

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.2  0.3  0.4  0.5  0.6  0.7

E
va

lu
a
tio

n
 s

co
re

Minimum support threshold

MMR
S@1 - P@1

S@5

(a) Impact of the support threshold. minconf=40%.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.3  0.4  0.5  0.6  0.7

E
v
a
lu

a
ti
o
n
 s

c
o
re

Minimum confidence threshold

MRR
S@1 - P@1

S@5

(b) Impact of the confidence threshold. minsup=50%

Figure 7.6: Parameter analysis. MRR, S@1/P@1, and P@5 measures.

into high level categories allows achieving the best balancing between specialization and

generalization of the discovered associations and, thus, improves recommender system

performance.

The confidence threshold may slightly a↵ect the recommendation system performance.

By enforcing very low confidence threshold values (e.g., 30%), a large amount of (possibly

misleading) low-confidence rules is selected. Indeed, the quality of the rule-based model,

at the top of which the recommendation system is built, worsens. Di↵erently, when

increasing the confidence threshold a more selective pruning of the low quality rules

may allow enhancing the recommender system performance. As an extreme case, when

enforcing very high confidence thresholds (e.g., 90%), rule pruning selectivity becomes

too high to generate a considerable amount of interesting patterns.

Best values of support and confidence threshold actually depend on the analyzed data

distribution. For instance, when coping with the benchmark dataset the best minimum

support threshold values are around 20%, because the analyzed dataset is relatively

sparse.

Success at rank k (e.g., see S@5 in Figures 7.6(a) and 7.6(b)) is shown to be, on average,

less a↵ected by support and confidence thresholds than precision at rank k, because

the probability of finding a relevant tag in the top-k recommended tags is more weakly

influenced by the rule-based model quality than the percentage of retrieved relevant

tags.



Chapter 8

Misleading Generalized Itemset

Discovery

Generalized itemset mining [62] is an established data mining technique that focuses on

discovering knowledge hidden in the analyzed data at di↵erent abstraction levels. By

exploiting a taxonomy (i.e. a set of is-a hierarchies built over the analyzed data) the

mining process entails discovering patterns, i.e. the frequent generalized itemsets, that

(i) have a frequency of occurrence (support) in the analyzed data higher than or equal to

a given threshold and (ii) can include items at any level of abstraction. Low-level item-

sets represent rather specific and detailed data correlations for which the corresponding

support is unlikely to exceed the given threshold. On the other hand, high-level (gen-

eralized) itemsets provide a high-level view of the underlying data correlations. Hence,

they could represent, at a high granularity level, the knowledge that remains hidden at

a lower abstraction level. The interestingness of an itemset is commonly measured in

terms of the strength of the correlation between its items [121–123]. To evaluate itemset

correlation, in this Chapter we exploit an established correlation measure, i.e. the Kul-

czynsky (Kulc) correlation measure [124]. This measure has recently been adopted to

perform high-level itemset correlation analysis [125]. Itemset correlation values are usu-

ally clustered in three di↵erent correlation types. Specifically, if an itemset X occurs less

than expected in the analyzed data (i.e. the item correlation value is between 0 and a

given threshold max neg cor) then X is said to be negatively correlated ; if it occurs more

than expected (i.e. the item correlation value is above a given threshold min pos cor)

then X shows a positive correlation, otherwise (i.e. whenever there is neither a positive

nor a negative item correlation) X is said to be not correlated. Unfortunately, to sup-

port domain experts in making decisions not all of the mined high-level patterns can be

trusted. Indeed, some misleading high-level itemsets could be included in the mining

result. A generalized itemset X is, to some extent, misleading if (some of) the low-level

X’s descendants have a correlation type in contrast to those of X.

119



Chapter 8. Misleading Generalized Itemset Discovery 120

For example, let us consider the structured dataset that is reported in Table 8.1.

Each record contains the record identifier (rid), the city, and the product descrip-

tion. The itemset mining process can be driven by the taxonomy in Figure 8.1, which

generalizes cities and products as the corresponding nations and product categories.

Table 8.2 reports the set of frequent generalized itemsets that are mined by enforc-

ing a support threshold min sup=1 and two correlation thresholds max neg cor=0.65

and min neg cor=0.8. The frequent generalized itemset X={(Product, Wearing), (City,

Italy)} has a positive correlation type, whereas its frequent low-level descendant item-

set Y={(Product, T-shirt),(City, Rome)} is negatively correlated (see Table 8.2). To

estimate the extent to which X is misleading we evaluate the percentage of dataset

records that are covered by both X and any of its contrasting low-level correlations. For

example, the record with rid 3 is covered by both X and Y . In other words, 25% of

the records that are covered by {(Product, Wearing), (City, Italy)} are in common with

those covered by {(Product, T-shirt),(City, Rome)}.

In this Chapter we propose: (i) a novel generalized itemset type, namely the Misleading

Generalized Itemset (MGI); (ii) a MGI quality measure called Not Overlapping Degree

(NOD) which indicates the extent to which the high-level pattern is misleading compared

to its low-level descendants; and (iii) an approach to discovering a worthwhile subset

of MGIs with NOD less than or equal to a maximum threshold max NOD. Specifi-

cally, each MGI, hereafter denoted as X . E , represents a frequent generalized itemset

X and its set E of low-level frequent descendants for which the correlation type is in

contrast to those of X. Experts need to analyze the misleading high-level data corre-

lations separately from the traditional generalized itemsets and exploit such knowledge

by making di↵erent decisions. To make this analysis possible, MGIs are extracted only

if the low-level descendant itemsets that represent contrasting correlations cover almost

the same portion of data as the high-level (misleading) ancestor X, i.e only if X repre-

sents a “clearly misleading” pattern. To do so, a maximum NOD constraint is enforced

during the MGI mining process. Hence, unlike previous approaches (e.g. [122, 125]), we

evaluate the degree of overlapping between the sets of records that are covered by a gen-

eralized itemset and its low-level (descendant) contrasting correlations. An algorithm

to mine MGIs at the top of traditional generalized itemsets is also proposed.

The e↵ectiveness of the proposed approach and the usability of the discovered pat-

terns for supporting domain expert decisions are demonstrated by experiments per-

formed on real-life data coming from two mobile applications and the UCI data repos-

itory [126]. Furthermore, the scalability of the algorithm has also been evaluated on

synthetic datasets.



Chapter 8. Misleading Generalized Itemset Discovery 121

Table 8.1: Example dataset D.

Id City Product

1 Turin T-shirt
2 Turin T-shirt
3 Rome T-shirt
4 Paris Jacket
5 Paris Jacket
6 Cannes Book
7 Turin T-shirt

Figure 8.1: Example taxonomy built on D’s attributes

(a) Aggregation tree AT
location

defined on the
Location attribute

(b) Aggregation tree AT
product

defined on the
Product attribute

8.1 Related work

The generalized itemset and association rule mining problem was first introduced in [62]

in the context of market basket analysis. The authors proposed an Apriori-based al-

gorithm [65] to discover frequent itemsets and association rules at di↵erent abstraction

levels from datasets that were supplied with taxonomies. However, since the mining

process evaluates the input taxonomy exhaustively a large number of (possibly redun-

dant) item combinations is generated. A step beyond towards the generation of a more

compact and humanly manageable pattern set has been made in [69, 116, 127, 128].

The proposed approaches enforce mining constraints to discover a worthwhile subset

of frequent generalized itemsets or association rules. For example, in [116] the authors

propose to push boolean constraints, which enforce the presence or the absence of an

arbitrary item combination, into the mining process. In [69] the authors also take subset-

superset and parent-child taxonomic relationships into account to avoid generating all

the item combinations. More recently, an important research e↵ort has also been de-

voted to discovering closed and maximal generalized itemsets [127, 128], which represent

notable itemset subsets [129]. The authors in [70] propose to select only the frequent

generalized itemsets that have at least one infrequent descendant to also consider rare

but potentially interesting knowledge. Unlike [62, 69, 116, 127, 128], our approach does

not focus on itemset pruning but rather it addresses the complementary issue of high-

lighting misleading high-level itemsets, which are represented, to a large extent, by their

low-level contrasting correlations.



Chapter 8. Misleading Generalized Itemset Discovery 122

Table 8.2: MGI mined from D. min sup = 1, max neg cor= 0.65, min pos cor= 0.80,
and max NOD = 100%.

Frequent generalized Frequent Not
itemset (level�2) descendant overlapping

[correlation type (Kulc value)] [correlation type (Kulc value)] degree (%)
{(City, Italy)} {(City, Turin)} -
[positive (1)] [positive (1)]

{(City, Rome)}
[positive (1)]

{(City, France)} {(City, Paris)} -
[positive (1)] [positive (1)]

{(City, Cannes)}
[positive (1)]

{(Product, Wearing)} {(Product, T-shirt)} -
[positive (1)] [positive (1)]

{(Product, Jacket)}
[positive (1)]

{(Product, Education)} {(Product, Book)} -
[positive (1)] [positive (1)]

{(Product, Wearing), (City, Italy)} {(Product, T-shirt), (City, Turin)} 75
[positive (5/6=0.83)] [positive (7/8=0.88)]

{(Product, T-shirt), (City, Rome)}
[negative (5/8=0.63)]

{(Product, Wearing), (City, France)} {(Product, Jacket), (City, Paris)} 0
[negative (1/2=0.50)] [positive (1)]

{(Product, Education), (City, France)} {(Product, Book), (City, Cannes)} 0
[negative (2/3=0.66)] [positive (1)]

A significant e↵ort has also been devoted to discovering frequent item correlations among

large datasets [121–123, 125]. In this context, a pioneering work [122] proposes to eval-

uate association rule significance via the chi square test for correlation. The authors

also exploit the upward closure of the chi square measure to discard some uninteresting

candidate itemsets early. To extract negatively correlated item correlations, which are

usually characterized by low support value [130], in [121, 123, 131] two novel itemset

correlation measures, namely collective strength and support expectation, have also been

proposed and used to perform indirect negative association rule mining. To evaluate

item correlation independently of the dataset size in [124] a null-invariant Kulczynsky

measure has also been proposed [132]. In [125] the same measure has been exploited to

discover flipping correlations among data that were supplied with taxonomies. Flipping

correlations are itemsets for which the correlation type flips from positive to negative

(or vice versa) when items are generalized to a higher level of abstraction for every

generalization step. However, when coping with real-life data, item correlation flippings

are not likely to occur at every generalization step. Furthermore, a generalized item-

set may have many low-level contrasting correlations which are worth considering all

together. Unlike [125], this chapter addresses the complementary issue of discovering a

worthwhile subset of misleading high-level itemsets which are covered, to a large extent,

by contrasting correlations at lower abstraction levels.

Parallel research e↵orts have also been devoted to proposing optimization strategies to

e�ciently address generalized itemset mining [66–68, 133]. While the authors in [66]

propose an Apriori-based top-down traversal of the search space, an FP-Growth-like



Chapter 8. Misleading Generalized Itemset Discovery 123

approach to generalized itemset mining [68] and a mining algorithm [67] that exploits

the vertical data format [134] have also been presented. In contrast, in [133] an e�cient

data structure is used to store and generalize low-level itemsets and association rules.

Furthermore, the discovery of a succinct and non-redundant subset of frequent item-

sets [135–138] has also been investigated. Since the above approaches do not address

misleading generalized itemset mining, their goal is somehow related to but di↵erent

from those addressed by this work.

8.2 Preliminary definitions and notations

This chapter addresses the problem of generalized itemset mining from structured data

that are supplied with taxonomies. A structured dataset is a set of records. Each

record is a set of items, which are defined as pairs (attribute name, value). While at-

tribute name is the description of a data feature, value represents the associated infor-

mation and belongs to the corresponding attribute domain. Since continuous attribute

values are unsuitable for use in itemset mining, continuous values are discretized by a

traditional preprocessing step [13]. For instance, Table 8.1 reports an example of struc-

tured dataset D that is composed of 3 attributes: the record identifier (rid), the city,

and the product description.

A taxonomy is a set of is-a hierarchies built over the data attribute items. It consists

of a set of aggregation trees, one or more for each dataset attribute, in which the items

that belong to the same attribute domain are aggregated in higher level concepts. For

example, let us consider the taxonomy that is reported in Figure 8.1. It includes two

aggregation trees, one for each attribute in D. By construction, we disregard the rid

attribute for the subsequent analysis. For each aggregation tree the leaf nodes are labeled

with values belonging to the corresponding attribute domain, whereas each non-leaf node

aggregates (a subset of) lower level nodes and is labeled with a value that is not in the

attribute domain. Aggregation tree root nodes are labeled with the special value ?.

A pair (attribute name, aggregation value), where aggregation value is a non-leaf node

label, is called generalized item. For instance, (City, France) is a generalized item that

corresponds to a taxonomy non-leaf node which aggregates all of the French cities that

occur in D (see Table 8.1 and Figure 8.2(a)). For the sake of simplicity, hereafter we

consider only taxonomies that are composed of one aggregation tree per attribute.

A k-itemset (i.e. an itemset of length k) is defined as a set of k distinct items [104]. For

instance, {(City, Turin), (Product, T-shirt)} is an example of itemset that occurs in D

(see Table 8.1). Similarly, when dealing with structured datasets that are supplied with

taxonomies, a generalized k-itemset is a set of k distinct items or generalized items. For

instance, given the taxonomy reported in Figure 8.1, {(City, Italy), (Product, Wearing)}

is an example of generalized 2-itemset.



Chapter 8. Misleading Generalized Itemset Discovery 124

Generalized itemsets are characterized by many properties [62]. For our purposes, we

recall some notable properties in the following.

Coverage and support. A generalized itemset I is said to cover a given record ri 2 D

if all of its (generalized) items are either contained in ri or ancestors of items in ri. I’s

support in D is defined as the ratio between the number of records in D that are covered

by I and the total number of records in D [62]. A generalized itemset for which the

support exceeds a given threshold min sup is said to be frequent. For example,{(City,

Italy), (Product, Wearing)} has support 4
7 in D because it covers the records with rids 1,

2, 3, and 7 (see Table 8.1). Given a set of generalized itemsets I, for our purposes we also

define the coverage of I with respect to D, hereafter denoted as cov(I,D), as the ratio

between the number of records in D that are covered by any itemset in I and the total

number of records in D. For example, together the itemsets {(City, Italy), (Product,

Wearing)} and {(City, France), (Product, Wearing)} have coverage 6
7 in D, because they

cover all records in D except for the one with rid 6. Given a single generalized itemset,

from the above definitions it trivially follows that its coverage and support values in D

are the same.

Level-sharing itemset. The level of an arbitrary (generalized) item ij with respect to

a taxonomy � is defined as the height of the �’s subtree rooted in ij . It indicates the

item abstraction level according to the given taxonomy. Similar to [66, 125], we target

the item correlations at same abstraction level, i.e. the itemsets that exclusively contain

items with the same level. Such patterns are denoted as level-sharing itemsets [66]. The

level of a level-sharing itemset I with respect to the taxonomy �, i.e. L[I, �], corresponds

to that of any of its items.

Experts are expected to provide balanced taxonomy trees to e↵ectively highlight con-

trasting correlations at di↵erent taxonomy levels. If the experts do not provide bal-

anced taxonomy trees, as in [125], we rebalanced those taxonomy aggregation trees in

the performed experiments. Specifically, given a taxonomy with maximal aggregation

tree height Hmax, for each aggregation tree with height H < Hmax we performed a

depth-first visit. For each tree branch with depth less than Hmax we added multiple

copies of the top-level item i as i’s ancestors up to depth Hmax.

Descent relationship. Given two generalized k-itemsets I1 and I2, I1 is said to be a

descendant of I2, i.e. I1 2 Desc[I2,�] if for every item ij 2 I1 there exists an item

ik 2 I2 such that either ij=ik or ij is a descendant of ik with respect to the given

taxonomy. For example, {(City, Turin), (Product, T-shirt)} is a descendant of {(City,

Italy), (Product, Wearing)}.

Correlation. The itemset correlation measures the strength of the correlation between

its items. In this chapter, similar to [125], we evaluate the correlation of a generalized k-

itemset I by means of the Kulczynsky (Kulc) correlation measure [124], which is defined

as follows:



Chapter 8. Misleading Generalized Itemset Discovery 125

kulc(I) =
1

k

kX

j=1

sup(I,D)

sup(ij ,D)
(8.1)

where sup(I,D) is I’s support in D and ij [1  j  k] is the j-th item in I.

From Equation 8.1 it follows that Kulc values range between 0 and 1. Unlike many other

traditional itemset correlation measures, Kulc has the null (transaction)-invariant prop-

erty, which implies that the correlation measure is independent of the dataset size [124].

By properly setting maximum negative and minimum positive Kulc thresholds, hereafter

denoted as max neg cor and min pos cor, the generalized itemsets may be classified as

negatively correlated, uncorrelated, or positively correlated itemsets according to their

correlation value. More specifically, generalized itemsets for which Kulc is between

max neg cor and min pos cor consist of items that are not correlated with each other

(i.e. their items are statistically independent), generalized itemsets for which Kulc is

below max neg cor show negative item correlation, whereas generalized itemsets for

which Kulc is above min pos cor indicate a positive item correlation, i.e. their items

co-occur more than expected. For the sake of brevity, we hereafter denote the above-

mentioned correlation types as uncorrelated, negative, and positive, respectively.

8.3 The Misleading Generalized Itemset mining problem

Given a structured dataset D that is supplied with a taxonomy � and a minimum support

threshold min sup, the traditional frequent generalized itemset mining problem entails

discovering all of the frequent generalized itemsets from D.

Frequent generalized itemsets represent data correlations at di↵erent abstraction levels.

On the one hand, low-level itemsets commonly represent rather specific and detailed

data correlations. Unfortunately, they are unlikely to be frequent with respect to the

enforced minimum support threshold. On the other hand, high-level itemsets provide

a high-level viewpoint of the analyzed data, which could be useful for representing the

infrequent knowledge at a higher abstraction level. However, some high-level itemsets

could be deemed to be misleading, because their correlation type is in contrast to that of

their low-level descendants. For instance, consider the example dataset and taxonomy

reported in Table 8.1 and Figure 8.1, respectively. The frequent generalized itemset

{(Product, Wearing), (City, Italy)} has a positive correlation type, whereas its frequent

low-level descendant itemset {(Product, T-shirt), (City, Rome)} is negatively correlated

(see Table 8.2). Since the type of the mined data correlation changes unexpectedly while

performing a drill-down, the high-level itemset is, to some extent, misleading.

To allow domain experts to discover and analyze the misleading high-level itemsets sep-

arately, we propose a new generalized pattern type, namely the Misleading Generalized

Itemset (MGI). MGIs are patterns in the form X . E , where X is a frequent generalized



Chapter 8. Misleading Generalized Itemset Discovery 126

itemset of level l � 2 with either positive or negative correlation type, while E is the set

of frequent level-(l� 1) X’s descendants for which the correlation type is in contrast to

that of X. A more formal definition follows.

Definition 8.1. MGI. Let D be a structured dataset and � a taxonomy. Let min sup

be a minimum support threshold and max neg cor and min pos cor a maximum nega-

tive and a minimum positive correlation threshold. Let LSGI be the subset of frequent

level-sharing generalized itemsets in D that are either positively or negatively corre-

lated. Given a frequent level-sharing generalized itemset X 2 LSGI of level l � 2, let

Desc⇤[X,�] be the subset of level-(l� 1) X’s descendants for which the correlation type

is in contrast to that of X. An MGI is a pattern in the form X . E , where X 2 LSGI

and E=Desc⇤[X,�].

For example, setting min sup = 1, max neg cor=0.65, and min pos cor=0.8, the MGI

{(Product, Wearing), (City, Italy)} . {(Product, T-shirt), (City, Rome)} is mined from

the example dataset in Table 8.1, because {(Product, Wearing), (City, Italy)} has a

positive correlation (0.83), whereas its descendant itemset {(Product, T-shirt), (City,

Rome)} is negatively correlated (0.63).

We define the level of an MGI X . E with respect to the input taxonomy � as X’s level,

i.e. L[X.E , �] = L[X, �]. For example, {(Product, Wearing), (City, Italy)} . {(Product,

T-shirt), (City, Turin)} is a level-2 MGI because {(Product, Wearing), (City, Italy)}

has level 2.

Since a generalized itemset could have many low-level descendants that represent con-

trasting correlations, we evaluate the interest of an MGI X .E as the relative di↵erence

between the support of the ancestor generalized itemset X and the coverage of its low-

level contrasting data correlations in E . We denote this measure as the Not Overlapping

Degree (NOD).

Definition 8.2. MGI’s NOD measure. Let X . E be an MGI. Let sup(X,D) be

X’s support in D and cov(E,D) the coverage of E in D. The Not Overlapping Degree

(NOD) of X . E is defined by: sup(X,D)�cov(E,D)
sup(X,D) .

Since the inequality sup(X,D)-cov(E ,D) � 0 holds, it trivially follows that the MGI

NOD values are between 0 and 1. The lower the NOD value is, the more significant

the degree of overlapping between the contrasting low-level correlations in E and their

common ancestor X. As an extreme case, when the contrasting descendant itemsets

cover every record covered by X the MGI NOD value is 0. For example, the MGI

{(Product, Wearing), (City, Italy)} . {(Product, T-shirt), (City, Rome)} has a NOD

value equal to 4�1
4 = 3

4 because {(Product, Wearing), (City, Italy)} covers four records in

D (i.e. the records with rids 1, 2, 3, and 7), whereas its descendant {(Product, T-shirt),

(City, Rome)} covers one of them (i.e. the record with rid 3).



Chapter 8. Misleading Generalized Itemset Discovery 127

Experts could be interested in analyzing only theMGIs with a relatively low NOD value,

because they represent clearly misleading high-level data correlations. Hence, we enforce

a maximum NOD constraint to select only the subset of MGIs with a NOD value less

than or equal to a maximum NOD threshold max NOD. As shown in Section 8.5, this

worthwhile MGI subset is useful for supporting the expert-driven knowledge discovery

process in a real-life application scenario.

Problem statement. Given a structured dataset D, a taxonomy, a minimum support

threshold, a maximum negative, and a minimum positive correlation threshold, and a

maximum NOD threshold max nod, the mining task addressed by this chapter entails

discovering from D all of the MGIs for which the NOD value is less than or equal to

max NOD.

8.4 The Misleading Generalized Itemset Miner algorithm

The Misleading Generalized Itemset Miner (MGI Miner) algorithm addresses the

MGI mining problem that is stated in Section 8.3. The MGI extraction process entails

the following steps: (i) Traditional frequent level-sharing generalized itemset mining and

(ii) MGI extraction at the top of the previously extracted itemsets. MGI extraction is

performed level-wise, i.e. level-1 MGIs are generated first. Next, at each step, MGIs

with increasing level are generated until the top of the taxonomy is reached. Algorithm 6

reports a pseudo-code for the MGI Miner algorithm.

Frequent level-sharing itemset mining. Frequent level-sharing generalized item-

sets are used to drive the MGI mining process (see line 1) because each MGI con-

sists of a combination of them (see Definition 8.1). The traditional itemset extraction

task is accomplished by an established projection-based itemset miner, i.e. the LCMv2

algorithm [139], which is an extension of the traditional FP-Growth algorithm [47].

Projection-based itemset mining relies on the following steps: (i) creation and in-memory

storage of an FP-tree-based dataset representation and (ii) frequent itemset extraction

by recursively visiting the conditional FP-tree projections. We applied the following

main modifications to a traditional FP-tree-based itemset miner [139]: (1) To e�ciently

cope with structured dataset, the itemset miner prevents the generation of the candi-

date itemsets that include couples of items corresponding to the same attribute. (2)

To suit the traditional LCM implementation to generalized itemset mining, we adopted

the strategy, first proposed in [62], of extending the dataset records by appending to

each record all of its item generalizations in �. (3) To prevent the generation of not

level-sharing itemsets, the generation procedure of the conditional FP-tree projections

related to a level-l item disregards the not level-l items. Frequent level-sharing general-

ized itemsets are stored in LSGI (line 1).



Chapter 8. Misleading Generalized Itemset Discovery 128

Require: a structured dataset D, a taxonomy �, a maximum NOD threshold max NOD, a minimum support
threshold min sup, a maximum negative and a minimum positive Kulc thresholds max neg cor and
min pos cor

Ensure: the subset of all the MGIs MGI
1: LSGI = mineTraditionalLevelSharingGeneralizedItemsets(D, �, min sup)
2: MGI = ;
3: {Generate MGIs X . E with level l > 1}
4: for l=2 to maxlevel do
5: {for each frequent level-sharing generalized itemset one candidate MGI is generated}
6: for all X in LSGI[l] do
7: {Create a level-l candidate MGI X . E}
8: insert the candidate MGI (X . E) in C[l]
9: end for
10: {Populate the E set of the level-l candidate MGI}
11: for all it in LSGI[l � 1] do
12: {Retrieve the candidate itemset genit of level l that is ancestor of it and update genit.E}
13: genit = retrieveAncestor(LSGI[l],it,l,�);
14: cor type genit=ComputeKulc(genit,D,max neg cor,min pos cor)
15: cor type it=ComputeKulc(it,D,max neg cor,min pos cor)
16: {If the level-(l � 1) itemset it has a correlation type di↵erent from its ancestor genit then it must be

added to genit.E}
17: if cor type genit 6= cor type it then
18: insert it into genit.E
19: end if
20: end for
21: {Select the level-l candidate MGIs with NOD less than or equal to max NOD}
22: for all c in C[l] do
23: c.NOD = ComputeNOD(c,D,�);
24: if c.NOD  max NOD then
25: insert c into MGI[l]
26: end if
27: end for
28: end for
29: return MGI

Algorithm 6: MGI Miner algorithm

MGI mining: Once all the frequent level-sharing itemsetsX are extracted,MGIMiner

generates candidate MGIs in the form X . E and populates their E part with X’s

descendants for which the correlation type is in contrast to those of X. MGIs are mined

by following a level-wise approach, i.e. climbing up the taxonomy stepwise until the top

of the taxonomy is reached (lines 4-28). Performing a level-wise taxonomy evaluation

prevents the need for multiple itemset scans. Indeed, level-l MGIs are generated from

the sets of level-l and level-(l�1) frequent level-sharing itemsets LSGI[l] and LSGI[l�1].

While the level-l itemsets are used to populate the X part (lines 6-9), the level-(l � 1)

itemsets that represent contrasting correlations are used to fill the E set (lines 11-20).

Hence, while mining level-l MGIs all of the traditional frequent itemsets that have a

level strictly less than l � 1 can be discarded early. Finally, level-l MGIs for which the

NOD value is less than or equal to max NOD are selected and added to the output set

(lines 22-27).

8.5 Experimental results

We performed a large suite of experiments to evaluate: (i) the usefulness of the MGIs

mined from data that were acquired from a real-life context with the help of a domain



Chapter 8. Misleading Generalized Itemset Discovery 129

expert (see Section 8.5.2); (ii) the impact of the algorithm parameters on the MGI

Miner performance on benchmark datasets (see Section 8.5.3); and (iii) theMGIMiner

algorithm scalability on synthetic datasets (see Section 8.5.4).

The experiments were performed on a 3.30 GHz Intel R� Xeon R� CPU E31245 PC with

16 GB main memory running Linux (kernel 3.2.0).

8.5.1 Datasets

A brief description of the evaluated datasets is reported in the following paragraphs.

Real-life mobile datasets

To validate the usefulness of the proposed patterns, we ran experiments on two real

mobile datasets that were collected by a research hub of an international leader in the

telecommunication area. The two datasets were acquired by logging the user requests for

two di↵erent mobile applications, namely Recs and TeamLife. The applications provide

users with a set of services (e.g. weather forecasting, restaurant recommendations, and

photo and movie uploads) through their mobile devices (i.e. smartphones or tablet PCs).

Service requests coming from each application were collected in a separate log file (i.e.

dataset). A more thorough description of the analyzed datasets and their corresponding

taxonomies follows.

Recs The Recs application is a recommender system that provides recommendations

to users on entertainment activities (e.g. restaurants and museums). Each user can

request a recommendation, vote for an item (i.e. an entertainment center), update

a vote, upload a file or a photo to provide useful information about an item (i.e. a

restaurant or a museum), and post a comment. Hence, a set of services is provided to

the end users to perform the described operations/services. The dataset contains the

user requests that were submitted and that were obtained by logging the user requests

over the time period of three months. For Recs, the following aggregation trees have

been considered:

• date ! month ! trimester ! year

• time stamp ! hour ! time slot (2-hour time slots)! day period (AM/PM)

• user ! gender

• service ! service category

TeamLife The TeamLife dataset was generated by logging the TeamLife application

requests. TeamLife users can upload files, photos, and videos, share them with other



Chapter 8. Misleading Generalized Itemset Discovery 130

system users, and post short messages. The uploading services (i.e. file, photo, and video

uploading services) are aggregated into the UploadData service category. The dataset

collects the user requests that were submitted over a time period of three months. For

TeamLife we used a taxonomy that is similar to the one previously described for the

Recs dataset.

UCI benchmark datasets

To analyze theMGIMiner algorithm performance we exploited a set of UCI benchmark

datasets [126] with di↵erent characteristics in terms of number of records and attributes.

The main dataset characteristics are summarized in Table 8.3.

The taxonomies built over the UCI datasets were generated as follows. To build the

aggregation trees over the continuous data attributes, we applied several equi-depth

discretization steps with finer granularities [13]. Specifically, the finest discretized values

were considered to be the data item values and thus became the taxonomy leaf nodes,

while the coarser discretizations were exploited to aggregate the corresponding low-level

values into higher level values. For the UCI datasets reported in Table 8.3 we created

a 3-level taxonomy by applying a 10-bin equal frequency discretization to generate the

level-1 items and a 5-bin discretization to generate the level-2 items. At the top of

the hierarchy, the level-2 items were aggregated into the root node. In contrast, the

aggregation trees built over the nominal data attributes were analyst-provided. The

items for which no meaningful aggregation is available were aggregated directly into the

root node.

A description of a representative UCI dataset coming from the census domain and its

corresponding taxonomy follows.

Adult dataset. Adult collects census data about American people (e.g. education,

occupation, marital status, race, and sex). We defined the following aggregation trees

for the nominal attributes Education, Marital-status, and Native-country.

• Education (Preschool, 1st-4th grades, . . . , 12th grade ! Pre High School / HS-

grad ! High School / Assoc-acdm, Assoc-voc, Some College, Bachelors, Masters,

Prof-school, Doctorate ! Post High School)

• Marital-status (Civil married, Church married ! Married / Separated, Divorced,

Widowed ! Unmarried)

• Native-country (England, Germany, . . .! Europe / China, Japan, Thailand, . . .!

Asia / United-States, Canada, Mexico, . . .! America / South Africa, . . .! Africa)

For the remaining nominal attributes no item aggregations (disregarding the root node)

have been defined.



Chapter 8. Misleading Generalized Itemset Discovery 131

Table 8.3: UCI and real mobile dataset characteristics and number of mined MGIs
with max neg cor=0.6 and min pos cor=0.7.

Number of items Gen.
Dataset Rec. Attr. with with min sup Itemsets max NOD MGIs

level=1 level>1 (level>1)

U
C
I

Adult 32,561 15 166 135 1% 353,622
1% 26
5% 33

Breast 699 11 742 45 1% 11,454
1% 9
5% 36

Cleve 303 14 110 20 1% 240,941
1% 1
5% 1

Crx 690 16 98 27 1% 1,457,397
1% 32
5% 36

Glass 214 11 306 44 1% 24,872
1% 25
5% 25

Heart 270 14 73 25 1% 630,495
1% 1
5% 1

Letter
20,000 17 160 80 1% 503,328

1% 6
recognition 5% 6

Pima 768 9 85 40 1% 10,596
1% 3
5% 3

Pendigits 10,992 17 160 80 1% 437,364
1% 1
5% 2

Shuttle 43,500 10 89 42 1% 6,747
1% 81
5% 108

Vehicle 846 19 154 90 1% 4,717,399
1% 32
5% 40

Waveform 5,000 22 89 54 1% 13,589,519
1% 11
5% 11

Wine 178 14 133 65 1% 2,406,612
1% 5
5% 5

M
ob

il
e TeamLife 1,197 4 1,293 31 1% 225

10% 1
15% 2

Recs 5,668 4 3,979 39 0.15% 475
10% 1
15% 1

Synthetic datasets

We used the function 2 of the Quest IBM synthetic dataset generator [140], which was

first exploited in [141] in the context of data classification, to generate synthetic data.

The data generator automatically produces structured datasets that are composed of a

user-specified number of records and attributes. To automate the taxonomy generation

procedure we extended the data generator source code as follows. Once a user has

specified the required taxonomy height H, for each attribute the item values are treated

as taxonomy leaf nodes, sorted into lexicographical order, and clustered into a subset

of equal-frequency bins. Each bin is associated with a generalized item that aggregates

all group members. Next, the high-level bins are further aggregated to each other and

the procedure iterates until all the items are clustered in a unique node (i.e. the root

node). At each generalization level the bin frequency is automatically derived from the

taxonomy height and the attribute domain cardinality. For example, setting H to 3 a

27-value attribute domain is partitioned into 9 equal-frequency bins at level 1, 3 equal-

frequency bins at level 2 and a unique bin at level 3. The extended generator code is

available at [142].



Chapter 8. Misleading Generalized Itemset Discovery 132

8.5.2 Expert-driven MGI validation in a mobile application scenario

We evaluated the usefulness of the MGIs mined from the real-life data taken from a

mobile scenario with the help of a domain expert. Table 8.4 reports two MGIs that

were extracted from the TeamLife dataset by enforcing min sup=1%, max neg cor=0.6,

min pos cor=0.7, and max NOD=15%. As an example, in this section we discuss their

usability for supporting experts in planning marketing campaigns and resource alloca-

tion.

Table 8.4: Examples of MGIs mined from TeamLife.

ID MGI support NOD X’s correlation
(%) (%) type (Kulc value)

MGI 1 {(User, Male), (Service, UploadData)} . 70.0% 7.63% positive (0.86)
{ {(User,UserA), (Service,Photo)},
{(User,UserB), (Service,Photo)},

. . .
{(User,UserZ), (Service,File)},

{(User,UserZ), (Service,Photo)} }
MGI 2 {(Date, May), (Service, UploadData)} . 58.3% 12.9% positive (0.76)

{ {(Date,2009-05-01), (Service,Photo)},
{(Date,2009-05-06), (Service,File)},

. . .
{(Date,2009-05-29), (Service,Photo)},
{(Date,2009-05-31), (Service,Photo)} }

Each of the MGIs reported in Table 8.4 consists of a positively correlated level-2 gen-

eralized itemset X and a set E of negatively correlated low-level (descendant) itemsets.

Let us consider the MGI 1 first. The traditional high-level itemset X={(User, Male),

(Service, UploadData)} indicates that the UploadData mobile services (i.e. Photo, File,

and Video) are frequently requested by male users. The domain expert could exploit

such information for marketing purposes. For instance, he may recommend to male users

services that belong to the UploadData category, while disregarding the specific type of

service each user is actually interested in. However, analyzing MGI 1 the above pattern

turns out to be misleading. In fact many of X’s descendants (i.e. many combinations of

a user with a specific UploadData service) show an opposite trend. Specifically, many

male users appear to be negatively correlated with at least one of the services that belong

to the UploadData category. Hence, recommending to male users all the UploadData

services indiscriminately could be a suboptimal choice for marketing purposes. On the

contrary, the expert should consider the correlation type of each descendant itemset

separately in order to perform targeted recommendations. Note that the NOD value

of the MGI 1 is 7.63%. Hence, the service requests that are covered by itemsets that

represent contrasting correlations are approximately 92% of those that are covered by

the (misleading) high-level itemset. Therefore, discovering MGIs rather than traditional

itemsets allows analysts to avoid planning non-personalized and possibly ine↵ective mar-

keting campaigns. On the other hand, the domain expert may further investigate the



Chapter 8. Misleading Generalized Itemset Discovery 133

interest of some specific users that show a contrasting correlation with one or more

services of the UploadData category in order to o↵er them personalized promotions.

The domain expert deemed the MGI 2 to be interesting to support resource alloca-

tion/shaping. The generalized itemset X={(Date, May), (Service, UploadData)} in-

dicates a positive correlation between the UploadData category and a specific month.

Experts could exploit such knowledge to allocate dedicated resources to the UploadData

service category in May, while disregarding the individual user’s interests. However, an-

alyzing MGI 2 may prompt the expert to perform a more conservative and accurate

resource allocation and shaping. More specifically, it turns out that some UploadData

services are requested less than expected during the early days of May. Since the subset

of negatively correlated frequent descendants covers approximately 87% of the records

that are covered by {(Date, May), (Service, UploadData)}, the high-level ancestor could

be considered to be a misleading high-level pattern. Rather than allocating the resources

for all the UploadData services indiscriminately, the network resource manager should

perform a more selective resource allocation according to the actual daily service usage.

For example, since the Photo service appears to be, on average, underused during most

of the days of May, the manager should allocate a portion of its currently dedicated

bandwidth to any other service of the same category (e.g., File or Video).

8.5.3 Algorithm parameter analysis

We analyzed the impact of the main MGI Miner algorithm parameters on the number

of MGIs mined from the UCI datasets. In the following section, the e↵ect of each

algorithm parameter will be discussed separately.

8.5.3.1 E↵ect of the maximum NOD threshold

The maximum NOD threshold allows experts to select only the MGIs that represent an

unexpected and clearly misleading pattern. It indicates the maximum portion of data

that are covered by a generalized itemset and that are not covered by any of its low-level

contrasting correlations.

Figures 8.3(a) and 8.3(b) plot the number of MGIs mined by varying the max NOD

value in the range [0, 10%] on two representative UCI datasets, i.e. Adult and Pima, re-

spectively. As expected, lowering the maximum NOD threshold the number of extracted

MGIs decreases more than linearly because of the higher selectivity of the enforced con-

straint. Note that even setting a relatively high max NOD threshold value (e.g. 10%)

the number of extracted MGIs remains limited (e.g. around 130 for the Adult dataset).

Similar results were obtained for the mobile dataset and the other UCI datasets. To

provide an insight into the achieved results, Table 8.3 summarizes the results that were

achieved by setting two representative max NOD values.



Chapter 8. Misleading Generalized Itemset Discovery 134

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  2  4  6  8  10

N
u

m
b

e
r 

o
f 

M
G

Is

max_NOD%

max_neg_cor=0.5, min_pos_cor=0.6
max_neg_cor=0.2, min_pos_cor=0.4
max_neg_cor=0.5, min_pos_cor=0.7

(c) Adult

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0  2  4  6  8  10

N
u

m
b

e
r 

o
f 

M
G

Is

max_NOD%

max_neg_cor=0.2, min_pos_cor=0.3
max_neg_cor=0.2, min_pos_cor=0.4
max_neg_cor=0.3, min_pos_cor=0.5

(d) Pima

Figure 8.2: Impact of the maximum NOD threshold on the number of mined MGIs.
min sup=1%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

N
u

m
b

e
r 

o
f 

M
G

Is

max_neg_cor

min_pos_cor=0.6
min_pos_cor=0.7

min_pos_cor=0.8

(a) Adult

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

N
u

m
b

e
r 

o
f 

M
G

Is

max_neg_cor

min_pos_cor=0.6
min_pos_cor=0.7

min_pos_cor=0.8

(b) Pima

Figure 8.3: Impact of the maximum negative threshold max neg cor on the number
of mined MGIs. max NOD=1%, min sup=1%.

8.5.3.2 E↵ect of the correlation thresholds

Enforcing di↵erent maximum negative and minimum positive correlation thresholds can

a↵ect MGI Miner algorithm performance and the characteristics of the mined patterns.

To analyze the impact of the positive and negative correlation thresholds separately, in

Figures 8.3(a) and 8.3(b) we plotted the number of MGIs mined by varying max neg cor

and by setting three representative min pos cor values on Adult and Pima, while in

Figures 8.4(a) and 8.4(b) we analyzed the opposite situation, i.e. we varied min pos cor

by setting three representative values for max neg cor on the same datasets. Note that

since max neg cor < min pos cor some curve points are missing.

As expected, the itemset correlation changes occur more frequently while setting closer

max neg cor and min pos cor values. Moreover, the itemset correlation values appear

to be unevenly distributed among the analyzed data. Specifically, the majority of the

frequent generalized itemsets have a Kulc value between 0.4 and 0.7. Hence, setting

max neg cor and min pos cor in such a value range yields a significant increase in the

number of extracted MGIs, because the generalization process is likely to change the



Chapter 8. Misleading Generalized Itemset Discovery 135

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.5  0.6  0.7  0.8  0.9

N
u

m
b

e
r 

o
f 

M
G

Is

min_pos_cor

max_neg_cor=0.5
max_neg_cor=0.6

max_neg_cor=0.7

(a) Adult

 0

 10

 20

 30

 40

 50

 60

 0.5  0.6  0.7  0.8  0.9

N
u

m
b

e
r 

o
f 

M
G

Is

min_pos_cor

max_neg_cor=0.5
max_neg_cor=0.6

max_neg_cor=0.7

(b) Pima

Figure 8.4: Impact of the minimum positive threshold min pos cor on the number of
mined MGIs. max NOD=1%, min sup=1%.

correlation type. On the other hand, setting the positive and the negative thresholds

out of the above-mentioned value range yields a mined set cardinality reduction.

 0

 20

 40

 60

 80

 100

 120

 140

 0.5  1  1.5  2  2.5

N
u

m
b

e
r 

o
f 

M
G

Is

min_sup

max_neg_cor=0.5, min_pos_cor=0.6
max_neg_cor=0.2, min_pos_cor=0.4
max_neg_cor=0.5, min_pos_cor=0.7

(a) Adult

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.5  1  1.5  2  2.5

N
u

m
b

e
r 

o
f 

M
G

Is

min_sup

max_neg_cor=0.2, min_pos_cor=0.3
max_neg_cor=0.2, min_pos_cor=0.4
max_neg_cor=0.3, min_pos_cor=0.5

(b) Pima

Figure 8.5: Impact of the minimum support threshold min sup on the number of
mined MGIs. max NOD=1%.

8.5.3.3 E↵ect of the minimum support threshold

The minimum support threshold min sup significantly a↵ects the characteristics of the

results of the traditional itemset mining algorithms (e.g. Apriori [104], FP-Growth [47]).

For this reason, we also analyzed the impact of min sup on the characteristics of the

mined patterns. Figures 8.5(a) and 8.5(b) report the number of MGIs extracted from

Adult and Pima by varying min sup in the range [1%,10%] and by setting three repre-

sentative pairs of min pos cor and max neg cor values.

The number of mined MGIs increases while lower min sup values are enforced. This

trend is mainly due to the combinatorial increase in the number of generated item

combinations which yields a super-linear increase in the number of frequent traditional



Chapter 8. Misleading Generalized Itemset Discovery 136

 0

 10

 20

 30

 40

 50

 60

 100  200  300  400  500  600  700  800  900  1000

E
xe

cu
tio

n
 t

im
e

 (
s)

Number of records (x1000)

taxon. height=5
taxon. height=4
taxon. height=3

(a) Scalability with the number of records. Num. of
attributes=15.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10  12  14  16  18  20

E
xe

cu
tio

n
 t

im
e

 (
s)

Number of attributes

num. records=1M
num. records=500K
num. records=100K

(b) Scalability with respect to the number of at-
tributes. Taxonomy height=5.

 0

 20

 40

 60

 80

 100

 120

 140

 2  3  4  5  6  7  8

E
xe

cu
tio

n
 t

im
e

 (
s)

Taxomony height

num. records=1M
num. records=500K
num. records=100K

(c) Scalability with respect to the taxonomy height.
Num. of attributes=15.

Figure 8.6: MGIMiner scalability. min sup=1%, max NOD=1%, max neg cor=0.6,
min pos cor=0.7.

generalized itemsets. Although the curve slopes depend on the analyzed data distribu-

tion and the enforced correlation thresholds (see Section 8.5.3.2), the results that were

achieved on datasets with di↵erent characteristics show rather similar trends.

8.5.4 Scalability

We analyzed the MGI Miner algorithm scalability, in terms of execution time, on

synthetic data with (i) the number of records, (ii) the number of attributes, and (iii) the

taxonomy height.

To evaluate the scalability with the number of records we varied the data cardinality in

the range [105, 106] while setting the number of attributes to 15 and three representative

taxonomy height values (i.e, 3, 4, and 5). The results, reported in Figure 8.6(a), show

that the MGI Miner execution time scales roughly linearly with the number of records,

because the data distribution remains approximately unchanged while increasing the

dataset cardinality.

We also analyzed the impact of the number of attributes and the taxonomy height on the

MGI Miner execution time. In the former case, we varied the dataset dimensionality in

the range [10, 20], while considering a 5-level taxonomy and three representative dataset



Chapter 8. Misleading Generalized Itemset Discovery 137

cardinalities (i.e. 105, 5⇥105, 106). In the latter, we varied the taxonomy height between

2 and 8, while considering three 15-attribute datasets with di↵erent size. The results,

reported in Figures 8.6(b) and 8.6(c), show that the MGI Miner execution time scales

more than linearly with both the number of attributes and the taxonomy height because

of the combinatorial increase in the number of generated combinations. However, the

execution time remains acceptable even when coping with rather complex datasets and

taxonomies (e.g. approximately 140s for a 15-attribute dataset with 106 records and an

8-level taxonomy).





Chapter 9

SeARuM: a Cloud-Based Service

for Association Rule Mining

The capability of modern applications (e.g., social networks, computer networks, wire-

less sensor applications) of generating and collecting data has been rapidly increasing,

as we already discussed in previous chapters. Since data mining focuses on studying

e↵ective and e�cient algorithms to transform huge amounts of data into useful and

actionable knowledge, the interest in data mining is continuously growing both in the

industrial and research domains. Industries are attracted by the business opportunities

arising from the exploitation of the extracted knowledge, while researchers are interested

in the challenging issues coming from the application of data mining techniques to new

scenarios. Di↵erent data analytics tools rely on data mining algorithms to gain interest-

ing insights from large volumes of semi-structured or unstructured data. Data mining

techniques allow extracting previously unknown interesting patterns such as groups of

data objects (cluster analysis), unusual objects (anomaly detection) and dependencies

(association rule mining) [13].

When dealing with huge data collections like those of “Big Data”, the computational

cost of the data mining process (and in some cases the feasibility of the process itself) can

potentially become a critical bottleneck in data analysis. For example, association rule

mining algorithms, which find application in a wide range of di↵erent domains including

medical images [143], biological data [144], and network tra�c data [63], are charac-

terized by computationally intensive tasks. Thus, parallel and distributed approaches

can be adopted to increase the mining e�ciency and improve algorithm scalability. The

current trend explored by cloud providers, such as Windows Azure, is o↵ering an in-

creasingly heterogeneous portfolio of online services in the cloud, spanning traditional

IaaS (Infrastructure-as-a-Service) and PaaS (Platform-as-a-Service) as well as business

analytics-oriented cloud-based tools.

Association rule mining is a two-step process: (i) frequent itemset extraction and (ii)

139



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 140

association rule generation from frequent itemsets [65]. Since the first phase represents

the most computationally intensive knowledge extraction task, e↵ective solutions have

been widely investigated to parallelize the itemset mining process both on multi-core

processors [145–148] and with a distributed architecture [149–152]. However, when a

large set of frequent itemsets is extracted, the generation of association rules from this

set becomes a critical task.

We aim to design and develop an association rule mining framework as a SaaS (Software-

as-a-Service) service model, to o↵er a data analytics service to cloud users. To our knowl-

edge, the association rule generation from frequent itemsets on a distributed architecture

has not been investigated yet, and represents a core contribution of this work. More

specifically, this Chapter presents a cloud-based service, named SeARuM (a Cloud-

Based Service for Association Rule Mining), to e�ciently mine association rules on a

distributed computing model. SeARuM consists of a series of distributed MapReduce

jobs run in the cloud. Each job performs a di↵erent step in the association rule mining

process.

As a reference case study, the proposed approach has been applied to two real network

datasets. The analysis of the large amount of Internet tra�c data is an important task,

since a huge amount of interesting knowledge can be automatically mined to e↵ectively

support both service providers and Internet applications. To profile network commu-

nications, we analyzed tra�c metrics and statistical measurements computed on tra�c

flows. The results showed the e↵ectiveness and e�ciency of the SeARuM architecture

in mining interesting patterns on a distributed computing model.

9.1 Related work

The mining task in association rule extraction entails two subtasks, the frequent itemset

generation and the subsequent association rule extraction. The former subtask is more

computationally intensive than the latter [65], and it has been paid more attention by

the research community, leading to the definition of e�cient algorithms.

Initial parallel and distributed itemset extraction stemmed from algorithms based on

the Apriori approach [145]. Further improvements include FP-Tree [47], which exploits

prefix-tree-like structures, and a multi-tree approach proposed in [146]. Parallel pro-

cessing flows perform a sequence of three steps: firstly a horizontal subset of the data

is analyzed, then a local FP-Tree is built, finally the mining process is carried out on

the local FP-Tree. The candidate pattern bases from di↵erent processing flows are

then merged together. The good e�ciency and scalability of this approach are counter-

balanced by large memory requirements and node traversal redundancy with a high

number of parallel processing flows. [149] proposes an enhanced version of the merging

algorithm specifically addressing the cluster computing environment. [153] discusses a



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 141

tree partition approach based on a single tree. In the context of very large datasets,

di↵erent constraints have been proposed in the parallel itemset extraction algorithm by

[150], leading to good scalability on a 32-processor cluster. Better hardware resource

exploitation and improvement of the itemset extraction on multiple-core processors have

been addressed by [147, 148]. A path tiling technique has been devised to enhance the

FP-Tree algorithm in terms of performance, by improving the temporal locality of data

accesses at di↵erent memory levels. Cache hint optimization was firstly addressed by

this technique in [148], which then found application also in the parallel itemset mining

context [147].

Large-scale mining based on the MapReduce paradigm [154] is based on algorithms that

distribute data and computation across a distributed architecture [151, 152]. A parallel

FP-Growth algorithm has benn proposed in [151]. The algorithm, named PFP, aimed

at supporting e�cient query recommendation for search engines. PFP consists of two

separate MapReduce jobs (i.e., no computational dependencies exists between them)

and achieves an almost linear speedup. [152] proposes some improvements with respect

to [151], particularly addressing e�cient load balance strategies, thus achieving higher

speedup and better performance.

9.2 Problem statement

Let D be a dataset whose a generic record r is a set of features. Each feature, also

called item, is a couple (attribute, value). Since we are interested in analyzing statistical

features computed on tra�c flows, each feature models a measurement describing the

network flow (e.g., Round-Trip-Time (RTT ), number of hops).

An itemset is a set of features. The support count of an itemsets I is the number of

records containing I. The support s(I) of an itemset I is the percentage of records

containing I. An itemset is frequent when its support is greater than, or equal to, a

minimum support threshold MinSup. Association rules identify collections of item-

sets (i.e., set of features) that are statistically related (i.e., frequent) in the underlying

dataset. Association rules are usually represented in the form X ! Y , where X (also

called rule antecedent) and Y (also called rule consequent) are disjoint itemsets (i.e.,

disjoint conjunctions of features). Rule quality is usually measured by rule support and

confidence. Rule support is the percentage of records containing both X and Y . It

represents the prior probability of X [ Y (i.e., its observed frequency) in the dataset.

Rule confidence is the conditional probability of finding Y given X. It describes the

strength of the implication and is given by c(X ! Y ) = s(X[Y )
s(X) [13].

Given a dataset D, a support threshold MinSup, and a confidence threshold MinConf ,

the mining process discovers all association rules with support and confidence greater

than, or equal to, MinSup and MinConf , respectively.



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 142

Furthermore, to rank the most interesting rules, we used the lift index [13], which mea-

sures the (symmetric) correlation between antecedent and consequent of the extracted

rules. The lift of an association rule X ! Y is defined as [13]

lift(X,Y) =
c(X ! Y )

s(Y)
=

s(X ! Y )

s(X)s(Y)
(9.1)

where s(X ! Y ) and c(X ! Y ) are respectively the rule support and confidence, and

s(X) and s(Y ) are the supports of the rule antecedent and consequent. If lift(X,Y)=1,

itemsets X and Y are not correlated, i.e., they are statistically independent. Lift values

below 1 show a negative correlation between itemsets X and Y, while values above 1

indicate a positive correlation. The interest of rules having a lift value close to 1 may be

marginal. In this work the mined rules are ranked according to their lift value to focus

on the subset of most (positively or negatively) correlated rules.

9.3 The SeARuM architecture

SeARuM consists of a series of distributed jobs run in the cloud. Each job receives as

input the result of one or more preceding jobs and performs one of the steps required for

association rule mining. Currently, each job is performed by one or more MapReduce

tasks run on a Hadoop cluster.

The SeARuM architecture contains the following jobs, described in details in the sub-

sequent sections:

• Network measurement acquisition

• Data pre-processing

• Item frequency computation

• Itemset mining

• Rule extraction

• Rule aggregation and sorting

Since our case study is based on network tra�c analysis, we thoroughly describe the

SeARuM architecture in this application scenario. Furthermore, in the current design,

SeARuM addresses a specific class of association rules, whose consequent consists of a

single item.

9.3.1 Network measurement acquisition

The first step to analyse network tra�c is is collecting network measurements. To this

aim, a passive probe is located on the access link (vantage point) that connects an edge



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 143

network to the Internet. The passive probe sni↵s all incoming and outgoing packets

flowing on the link, i.e., packets directed to a node inside the network and generated

by a node in the Internet, and vice versa. The probe runs Tstat [10, 155], a passive

monitoring tool allowing network and transport layer measurement collection. Tstat

rebuilds each TCP connection by matching incoming and outgoing segments. Thus, a

flow-level analysis can be performed [155]. A TCP flow is identified by snooping the

signaling flags (SYN, FIN, RST). The status of the TCP sender is rebuilt by matching

sequence numbers on data segments with the corresponding acknowledgement (ACK)

numbers.

To evaluate the SeARuM cloud-based service in a real-world application, we focus on a

subset of measurements describing the tra�c flow among the many provided by Tstat.

The most meaningful features, selected with the support of domain experts, are detailed

in the following:

• the Round-Trip-Time (RTT ) observed on a TCP flow, i.e., the minimum time lag

between the observation of a TCP segment and the observation of the correspond-

ing ACK. RTT is strongly related to the distance between the two nodes

• the number of hops (Hop) from the remote node to the vantage point observed

on packets belonging to the TCP flow, as computed by reconstructing the IP

Time-To-Live1

• the flow reordering probability (P{reord}), which can be useful to distinguish

di↵erent paths

• the flow duplicate probability (P{dup}), that can highlight a destination served by

multiple paths2

• the total number of packets (NumPkt), the total number of data packets (DataPkt),

and the total number of bytes (DataBytes) sent from both the client and the server,

separately (the client is the host starting the TCP flow)

• the minimum (WinMin), maximum (WinMax), and scale (WinScale) values of

the TCP congestion window for both the client and the server, separately

• the TCP port of the server (Port)

• the class of service (Class), as defined by Tstat, e.g., HTTP, video, VoIP, SMTP,

etc.
1
The initial TTL value is set by the source, typical values being 32, 64, 128 and 255.

2
P{reord} and P{dup} are computed by observing the TCP sequence and acknowledgement numbers

carried by segments of a given flow. We refer the reader to [155] for more details.



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 144

Based on measurements listed above, an input data record is defined by the following

features: RTT , Hop, P{reord}, P{dup}, NumPkt, DataPkt, DataBytes, WinMax,

WinMin, WinScale, Port, Class. To obtain reliable estimates on reordering and dupli-

cate probabilities, only TCP flows which last more than P = 10 packets are considered.

This choice allow focusing the analysis on long-lived flows, where the network path has

a more relevant impact, thus providing more valuable information.

9.3.2 Data pre-processing

This step performs the following two activities:

• Value discretization

• Transactional format conversion

Associaton rule mining requires a transactional dataset of categorical values. The dis-

cretization step converts continuously valued measurements into categorical bins. Then,

data are converted from the tabular to the transactional format. An example is reported

in Table 9.1.

Automatic discretization approaches can exploit state-of-the-art techniques (e.g., clus-

tering, statistical-based algorithms, etc.) to select appropriate bins depending on data

distribution. These approaches yielded poorly significant bins on network data consid-

ered in this study. More specifically, the most frequent values were split into too many

bins with respect to the real applicative interest. Hence, discretized bins are fixed-size

and determined by domain experts based on the significance in the networking context.

The fixed-size bins have been determined as follows:

• RTT : a bin each 5 ms for values from 0 ms to 200 ms, an additional bin for values

higher than 200 ms.

• Hop: a bin for each value from 1 to 20, an additional bin for values exceeding 20.

• P{reord}: a bin each 0.1 from 0 to 1.

• P{dup}: a bin each 0.1 from 0 to 1.

• NumPkt, DataPkt, and DataBytes: logarithmic bins, base 10, e.g., 5432 falls in

the 3-4 bin since the value is between 103 and 104.

• WinMax and WinMin: a bin for each multiple N of 4 Kb, where N is a power of

2, e.g., the bin 8-16 means that the TCP window is between 8 and 16 times 4 Kb.

• WinScale, Port, and Class: a bin for each value (no discretization).



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 145

Both the value discretization and the transactional format conversion are performed by a

single map only job. Each record is processed by the map function and, if the number of

packets is above the threshold (10 packets), the corresponding discretized transaction is

emitted as a result of the mapping. This task entails an inherently parallel elaboration,

considering that can be applied independently to each record.

RTT NumPkt P{reord}
original 7 5432 0.88
discretized 5-10 3-4 0.9
transactional RTT=5-10 NumPkt=3-4 P{reord}=0.9

Table 9.1: Pre-processing example

9.3.3 Item frequency computation

A second job is exploited to compute the item frequency from the transactions emitted

by the pre-processing phase. An example is reported in Tables 9.2 and 9.3. Table 9.2 has

three sample transactions that represent a possible output of the pre-processing phase.

A map function is exploited to process each transaction: the map emits a (key, value)

pair for each item in the transaction, where the key is the item itself (e.g., RTT=5-10),

and the value is its count, i.e., always 1. A reduce function is then executed to sum

all the values for each key, hence computing the support count of each item. This is

a typical group-by query performed as a distributed MapReduce job. As a running

example, we will consider the sample result of this job reported in Table 9.3, as obtained

by the sample transactions in Table 9.2.

transaction 1 RTT=5-10 NumPkt=3-4 Hop=10
transaction 2 RTT=5-10 Hop=11
transaction 3 RTT=5-10 NumPkt=3-4
transaction 3 RTT=5-10 NumPkt=3-4 Hop=11

Table 9.2: Sample transactions

item sup count sup
RTT=5-10 4 100%
NumPkt=3-4 3 75%
Hop=10 1 25%
Hop=11 2 50%

Table 9.3: Sample items



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 146

9.3.4 Itemset mining

A third job performs the itemset mining by exploiting the parallel FP-growth algorithm,

as described in [151]. This step consists of multiple MapReduce tasks. From the sample

items of Table 9.3, a result of this job is reported in Table 9.4, where only itemsets with

support higher than 50% have been extracted.

ID itemset sup count sup
1 RTT=5-10 4 100%
2 RTT=5-10 NumPkt=3-4 3 75%
3 RTT=5-10 Hop=11 2 50%
4 NumPkt=3-4 3 75%
5 Hop=11 2 50%

Table 9.4: Sample itemsets

9.3.5 Rule extraction

The rule extraction step, to the best of the authors knowledge, is a novel contribution

as a distributed cloud-based service. It consists of a MapReduce job, as detailed in the

following. For each itemset of length k (k-itemset), the map function emits:

• a (key,value) pair with

– key: the k-itemset itself

– value: the k-itemset support count

• for each (k � 1)-itemset, a (key,value) pair with

– key the (k � 1)-itemset

– value the pair (k-itemset, support count of the k-itemset).

Then, the reduce function performs the actual rule extraction. Since each (k�1)-itemset

emitted as key contains its k-itemset and the k-itemset support count as value, the

missing item in the (k � 1)-itemset with respect to the k-itemset is the rule consequent

(head), whereas the (k � 1)-itemset is the antecedent (rule body). The support count

values of the k-itemset, the (k�1)-itemset and the consequent item are used to compute

the support, confidence, and lift of the rule, as defined in Section 9.2. Table 9.5 reports

the rules extracted from the itemsets of the running example (see Table 9.4).

9.3.6 Rule aggregation and sorting

A final step is executed by means of a MapReduce job to sort and aggregate the rules

according to the consequent and the quality measure. As discussed in Section 9.2, we



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 147

rule sup count sup conf lift
RTT=5-10 ! NumPkt=3-4 3 75% 75% 0.75
NumPkt=3-4 ! RTT=5-10 3 75% 100% 1.33

RTT=5-10 ! Hop=11 2 50% 50% 0.50
Hop=11 ! RTT=5-10 2 50% 100% 2.00

Table 9.5: Sample rules

selected the lift as rule quality measure. Sorting and aggregating on the consequent

helps in analyzing the extracted rules for finding significant correlations. A sample

output based on our running example is reported in Table 9.6.

antecedent consequent
Hop=11, NumPkt=3-4 ! RTT=5-10

RTT=5-10 ! NumPkt=3-4
RTT=5-10 ! Hop=11

Table 9.6: Sample rules, sorted and aggregated

9.4 Experimental results

A set of preliminary experiments have been performed analyzing SeARuM behavior on

real datasets. SeARuM has been applied to two real datasets obtained by performing

di↵erent capture stages on a backbone link of a nation-wide ISP in Italy that o↵ers

us three di↵erent vantage points. ISP vantage points expose tra�c of three di↵erent

Points-of-Presence (POP) in di↵erent cities in Italy; each PoP aggregates tra�c from

more than 10,000 ISP customers, which range from home users to Small O�ce Home

O�ce (SOHO) accessing the Internet via ADSL or Fiber-To-The-Home technology. It

represents therefore a very heterogeneous scenario. We will refer to each dataset as D1

or D2 as shown in Table 9.7, where the number of TCP flows and the size of each dataset

are also reported.

Dataset Number of TCP flows Size [Gbyte]
D1 11,325,006 5.28
D2 413,012,989 192.56

Table 9.7: Network tra�c datasets

MapReduce jobs of the SeARuM workflow (see Section 9.3) have been developed in

Java using the Hadoop Java API. Part of the code has been developed as an extension

of the Apache Mahout project [156], which provides a limited implementation of the

parallel itemset mining algorithm FP-Growth to mine the top-k closed itemsets [151].



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 148

Job$1$
Time:$46%$

Volume:$413M$

Job$2$
Time:$27%$

Volume:$151M$$

Job$3$
Time:$25%$

Volume:$151M$

1%$

1%$

Job1:$Data$pre;processing$ Job$2:$Item$frequency$computaDon$

Job$3:$Itemset$Mining$ Job$4:$Rule$extracDon$

Job$5:$Rule$aggregaDon$and$sorDng$

Figure 9.1: Dataset D2: Execution time distribution among jobs for MinSup=30%
and MinConf=50%

Rule extraction, instead, is a novel contribution of the authors. Experiments have been

performed on a cluster of 5 nodes running Cloudera’s Distribution of Apache Hadoop

(CDH4). Each cluster node is a 2.67 GHz six-core Intel(R) Xeon(R) X5650 machine

with 32 Gbyte of main memory running Ubuntu 12.04 server with the 3.5.0-23-generic

kernel. All reported execution times are real times, including both system and user time,

obtained from the Cloudera Hadoop web administration control panel.

9.4.1 Execution time distribution among jobs

Since SeARuM consists of a sequential workflow, we analyzed how much time is spent

at each step. Figure 9.1 shows the percentage of the total execution time for each job

of the SeARuM architecture.

The pre-processing job represents the most expensive step with almost 50% of the time.

This behavior is due to the higher data volume to be processed at this stage with respect

0"

0,5"

1"

1,5"

2"

2,5"

3"

3,5"

4"

4,5"

5"

1"node" 3"nodes" 5"nodes"

Sp
ee
du

p"

Number"of"nodes"

Figure 9.2: SeARuM speedup on D2 dataset



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 149

1,E+00&

1,E+01&

1,E+02&

1,E+03&

1,E+04&

1,E+05&

1,E+06&

1,E+07&

1,E+08&

1,E+09&

Fr
eq

ue
nc
y&

Feature&

(a) Item distribution for the P{reord} feature

0,0E+00%

5,0E+06%

1,0E+07%

1,5E+07%

2,0E+07%

2,5E+07%

3,0E+07%

RT
T=
0/
5:
%

RT
T=
10

/1
5:
%

RT
T=
20

/2
5:
%

RT
T=
30

/3
5:
%

RT
T=
40

/4
5:
%

RT
T=
50

/5
5:
%

RT
T=
60

/6
5:
%

RT
T=
70

/7
5:
%

RT
T=
80

/8
5:
%

RT
T=
90

/9
5:
%

RT
T=
10

0/
10

5:
%

RT
T=
11

0/
11

5:
%

RT
T=
12

0/
12

5:
%

RT
T=
13

0/
13

5:
%

RT
T=
14

0/
14

5:
%

RT
T=
15

0/
15

5:
%

RT
T=
16

0/
16

5:
%

RT
T=
17

0/
17

5:
%

RT
T=
18

0/
18

5:
%

RT
T=
19

0/
19

5:
%

RT
T=
>2
00

:%

Fr
eq

ue
nc
y%

Feature%

(b) Item distribution for the RTT feature

Figure 9.3: Dataset D2

 0

 50

 100

 150

 200

 250

 30  35  40  45  50

#
 it

e
m

se
ts

MinSup (%)

D1

(a) Number of extracted itemsets for di↵erent MinSup val-
ues

 0

 100

 200

 300

 400

 500

 600

 700

 50  55  60  65  70  75  80  85  90

#
 r

u
le

s

MinConf (%)

MinSup=50%
MinSup=45%
MinSup=40%
MinSup=35%
MinSup=30%

(b) Number of extracted rules for di↵erent values of
MinConf and MinSup

Figure 9.4: Dataset D1: E↵ect of MinSup and MinConf thresholds

to the subsequent steps: pre-processing filters flows with less than 10 packets, thus

reducing the data volume from 413 millions of records to 151 millions of transactions.

Note that the pre-processing job is executed only once for each discretization bin set,

while it provides results that can be used many times by subsequent jobs, e.g., to mine

itemsets and rules with di↵erent MinSup and MinConf constraints.

When the MinSup value decreases, the computational complexity of the itemset mining

job may significantly increase, since a very large number of itemsets may be generated.

As a reference, Figure 9.1 reports times for MinSup=30% and MinConf=50% on dataset

D2.

9.4.2 Evaluation of association rule mining

To evaluate the e↵ectiveness of SeARuM in association rule mining, we measured the

achieved speedup for di↵erent numbers of nodes. We considered 3 configurations: 1



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 150

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 30  35  40  45  50

#
 it

e
m

se
ts

MinSup (%)

D2

(a) Number of extracted itemsets for di↵erent values of
MinSup

 0

 100

 200

 300

 400

 500

 600

 50  55  60  65  70  75  80  85  90

#
 r

u
le

s

MinConf (%)

MinSup=50%
MinSup=45%
MinSup=40%
MinSup=35%
MinSup=30%

(b) Number of extracted rules for di↵erent values of
MinConf and MinSup

Figure 9.5: Dataset D2: E↵ect of MinSup and MinConf thresholds

node, 3 nodes, and 5 nodes. Dataset D2 has been used since it is the largest. Figure 9.2

reports the speedup when MinSup = 30% and MinConf = 50% are applied.

The first histogram in the figure (i.e., 1 node) corresponds to an execution of SeARuM

on a single node. The speedup evaluation for increasing numbers of nodes is compared

to the single-node performance.

The achieved speedup is the result of job distribution. The contribution of the for-

mer is especially relevant when considering large datasets and/or low minimum support

thresholds (MinSup), which make the mining activity more computationally intensive.

As reported in Figure 9.2 the SeARuM performance progressively improves when dis-

tributing the mining task on an increasing number of nodes. For instance, a 5-node

cluster achieves a speedup of 4.5, showing that SeARuM has promising attitude to

scale in larger clouds.

9.4.3 Network knowledge characterization

We evaluated the e↵ectiveness of the proposed approach on real network tra�c traces. In

particular, we analyzed: (i) the usefulness of the extracted association rules in supporting

the knowledge discovery process, and (ii) the item frequency distribution.

As example, the following two rules R1 and R2 are generated from dataset D1 and D2,

respectively. Both rule have high confidence values and lift greater than 1 (rule support,

confidence, and lift are reported in brackets after each rule).

R1 : {Port = 80, P{reord} = 0 � 0.1, DataPkt = 1 � 2, DataBytes = 4 � 5} !

Class = HTTP (0.313, 0.999, 1.765)

R2 : {P{dup} = 0 � 0.1, NumPkt  1, DataPkt  1, Class = SSL} ! Port = 443

(0.013, 0.993, 4.944)



Chapter 9. SeARuM: a Cloud-Based Service for Association Rule Mining 151

Based on rule R1, the HTTP protocol is mainly used to transmit a set of TCP flows sent

by the server through the TPC port 80. For these flows, the number of packets is in the

range 10÷100 and a large number of bytes is transmitted (from 10,000 to 100,000). These

flows can be generated when very large files are downloaded (e.g., YouTube videos).

Rule R2 reports that the TCP Port 443 (HTTPS) is mainly used to transmit flows with

SSL/TLS coded protocol and less than 10 packets. These flows can be generated when

logging into websites through a secure connection (e.g., Facebook, Twitter).

We also analyzed the item frequency distribution to characterize the network activity.

Figure 9.3 considers the Round-Trip-Time (RTT ) and the flow reordering probability

(P{reord}), which are discussed as representative features.

The item distribution for the P{reord} feature is characterized by a very frequent item

which models most TCP flows: they have a very low P{reord}, i.e., from 0 to 0.1. This

data distribution analyzed over time and for di↵erent (sub)networks may be exploited

to identify periods of time or (sub)networks that become less reliable or whose packets

change path more frequently than usual.

The item distribution for the RTT , instead, shows four peaks:

• the first peak around 5-20 ms may represent local network tra�c

• the second peak around 100 ms may represent external tra�c inside the same ISP

or in the same geographical zone (e.g., country, continent)

• the third peak around 170 ms may represent tra�c towards long-distance destina-

tions (e.g., other continents)

• finally, the last peak over 200 ms may represent network problems or unresponsive

services

9.4.4 E↵ect of the support and confidence thresholds

Minimum support (MinSup) and confidence (MinConf) thresholds significantly a↵ect

the number of extracted itemsets and association rules.

When decreasing the MinSup value, the number of frequent itemsets grows non linearly

[65] and the complexity of the frequent itemset extraction task significantly increases.

High MinConf values represent a tighter constraint on rule selection. Consequently,

when increasingMinConf less rules are mined, but these rules tend to represent stronger

correlations among data. High MinConf values should be often combined with low

MinSup values to lead the extraction of peculiar (i.e., not very frequent) but highly

correlated rules.

Figures 9.4(a) and 9.5(b) plot, for the two reference datasets, the number of extracted

itemsets when varying MinSup. Figure 9.4(b) and 9.5(b) report the number of associ-

ation rules for di↵erent MinConf values.





Chapter 10

Conclusions

The Internet is a complex and dynamic system with new protocols and applications

that arise at a constant pace. All these characteristics designate the Internet a valuable

and challenging data source and application domain for a research activity, both looking

at Transport layer, analyzing network tra�c flows, and going up to Application layer,

studying the ever-growing next generation services: blogs, micro-blogs, on-line social

networks, photo sharing services and many other applications (e.g., Twitter, Facebook,

Flickr, etc.).

In this thesis work we focused on the study, design and development of novel algorithms

and frameworks to support large scale data mining activities over huge and heteroge-

neous data volumes, with a particular focus on Internet data as data source and targeting

network tra�c classification, on-line social network analysis, recommendation systems

and cloud services and Big data.

At the beginning we addressed our research to the Transport layer and we presented a

novel Hierarchical classifier, based on classification algorithms, that achieves excellent

results even when considering fine grained classification of Internet TCP flows. We

implemented a proper feature selection, selected the best approach among 7 di↵erent

classification algorithms, tested the approach by ten-fold cross validation and t-test

to check the significance of the experiments. Considering real tra�c traces captured

from operative networks, we have shown the benefit of using a hierarchical approach:

i) classification performance is boosted, ii) computational complexity is reduced, iii)

robustness to the training set is achieved. Results demonstrate that behavioral classifiers

can be finally considered a reliable means for fine grained tra�c classification in the real

world.

Afterwards, to cope with the limitations of a supervised approach, we introduced Se-

LeCT, a semi-automated Internet flow tra�c classifier which leverages unsupervised

clustering algorithms to automatically groups flows into clusters. Given that using un-

supervised clustering algorithms does not result in high accuracy, we showed that adding

153



Chapter 10. Conclusions 154

a filtering phase after clustering significantly improves the performance and coverage.

Moreover, alternating the clustering and filtering phases further results in very homo-

geneous clusters, while providing very high coverage. Labels for di↵erent clusters in

SeLeCT can be bootstrapped using several di↵erent approaches (DPI, behavioral tech-

niques, or human-in-the-middle). Once labels for some flows are provided, SeLeCT

inherits previously labeled flows to automatically label new clusters. Furthermore, it

adapts the model to tra�c changes, and is able to automatically increase its knowledge.

Extensive experiments showed that SeLeCT simplifies the manual bootstrapping of la-

bels that, once provided to the system, lead to excellent performance: accuracy is close

to 98% in most datasets, with worst case still higher than 90%. Furthermore, SeLeCT

was able to automatically identify classes of tra�c that an advanced DPI-based classifier

was ignoring like, e.g., the Apple iOS push notification protocol, or some Bot/Trojan

tra�c.

Next, we moved our attention to the Application Layer. In this context, in the last

years, on-line social network analysis has attracted the attention of di↵erent research

communities, including database, information retrieval, pattern recognition, and data

mining. Many research e↵orts have significantly contributed to improve the applicability

of data mining techniques to social network and online community analysis.

Hence, we focus our research on the micro-blogging service Twitter. First, we described

a framework for the analysis of Twitter data aimed at discovering, in a compact form, the

information posted by users about an event as well as the user perception of the event.

Our experimental evaluation, performed on two real datasets, shows the e↵ectiveness

of the approach in discovering interesting knowledge. Other interesting future research

directions, to further improve the performance of our framework, will be considering also

the additional features (e.g., GPS coordinates) available in Twitter data. Furthermore,

a real-time and distributed analysis of Twitter data can be addressed to support the

analysis of huge data collection, also regarding parallel events.

A related research topics is the analysis of the dynamics behind the evolution of so-

cial network data. We proposed TwiChi, a data mining system that addresses Twitter

user-generated content mining targeted to user behavior and topic trend analysis. A

dynamic data mining algorithm is exploited to mine patterns which represent the evo-

lution of most significant correlations among data in consecutive time periods. To avoid

discarding relevant patterns that suddenly become infrequent in a certain time period,

a taxonomy is used to generalize patterns at a higher level of abstraction and repre-

sent their associated knowledge at the proper generalization level. TwiChi performance

has been evaluated on real-life Twitter datasets. The usability and functionality of the

proposed system have been validated in di↵erent use cases, among which topic trend de-

tection and user behavior analysis. The discovered HiGens have shown to be particularly

suitable for supporting the experts in the analysis of the Twitter UGC, because they



Chapter 10. Conclusions 155

may be exploited to drive domain experts in performing a number of di↵erent targeted

actions. The proposed approach could be extended in a number of directions, among

which (i) the automatic generation of taxonomies suitable for driving the generalization

process, (ii) the pushing of user-provided constraints to reduce the amount of extracted

patterns, and (iii) the application of the proposed framework to perform context-aware

user profiling and shaping of social network services. The taxonomies exploited to gen-

eralize items are usually provided by a domain expert. Since the taxonomy generation

process is a complex task, automatic or semi-automatic taxonomy generation algorithms

should be developed and integrated in the proposed system. Finally, the discovered pat-

terns may be also deemed suitable for performing social network service shaping. In

particular, based on the context in which the user has published the UGC, the proposed

system may suit service provision to the actual user needs.

Moreover, taking a di↵erent angle from the mainstream of previous works, we presented

TUCAN, a framework to graphically represent semantic correlations of individual Twit-

ter users’ timelines. Building on text mining techniques, TUCAN analyses “bird songs”,

i.e., group of tweets belonging to the same time period, and compares their similar-

ity. The analyst is o↵ered a GUI to investigate the impact of di↵erent pre-processing.

Experiments conducted on actual Twitter users show the ability to pinpoint recurrent

topics, or correlations among users. There are several avenues for future work. First, we

would like to expand our framework to be able to model patterns of topic durations and

transitions. Leveraging the measurements revealing the correlation durations of topics,

accumulating the statics for long-term can reflect changes in the user’s interests. Second,

we are interested in inferring users’ social relationships based on their topical relations.

A further challenging research topic addressed in the Application layer during this the-

sis work is Tag recommendation, that is the task of predicting folksonomy tags for a

given user and item, based on past user behavior (and possibly other information). Tag

recommendation is focused on recommending useful tags to a user who is annotating

a Web resource. We presented a novel personalized tag recommendation system that

performs additional tag recommendations to partially annotated Flickr photos by ex-

ploiting generalized association rules extracted from the collections of the past personal

and collective annotations. The use of high level associations is focused on counteract-

ing the impact of data sparsity, as it may highlight correlations among tags that could

remain hidden at the level of individual tags. A set of experiments has been conducted

on real-life Flickr photo collections. The e↵ectiveness of the proposed approach has been

validated against a recently proposed tag recommendation system. Experiments show

that the use of the generalizations in rule-based tag recommendation yields significant

performance improvements. Our system has so far not been concerned with the analysis

of the textual content related to the annotated Web resources (e.g., photo descriptions,

related blogs or articles). We plan to extend it by also considering the user-generated



Chapter 10. Conclusions 156

textual content coming from social networks and online communities. Furthermore, to

take the evolution of photo annotations over time we will investigate the integration of

incremental rule mining approaches as well.

As we have seen through many of our proposed approach, frequent generalized itemset

mining is a data mining technique utilized to discover a high-level view of interesting

knowledge hidden in the analyzed data. By exploiting a taxonomy, patterns are usually

extracted at any level of abstraction. However, some misleading high-level patterns could

be included in the mined set. We proposed a novel generalized itemset type, called

Misleading Generalized Itemsets (MGIs), from structured datasets that are supplied

with taxonomies. MGIs represent misleading frequent high-level data correlations that

are worth analyzing apart from traditional itemsets. Each MGI represents a frequent

generalized itemset X and its subset of low-level frequent descendants for which the

correlation type is in contrast to those of X. An MGI interestingness measure, named

Not Overlapping Degree (NOD), is also proposed to select only the (misleading) high-

level itemsets that represent almost the same portion of data that is covered by their low-

level contrasting correlations. Furthermore, an algorithm to mineMGIs at the top of the

traditional itemsets has also been proposed. The experimental results demonstrate the

usefulness of the proposed approach for discovering interesting misleading itemsets from

real mobile datasets. We plan to extend our research work in the following directions:

(i) the study of the applicability of the proposed approach to other real-life contexts

(e.g. social network analysis [76], medical data analysis [157]), (ii) the use of di↵erent

correlation measures (e.g. coherence [124]), and (iii) the pushing of more complex mining

constraints into the MGI extraction process.

Finally, to cope with the large volume of data that are being produced by various mod-

ern web applications we presented our first implementation of a cloud-based service

for association rule mining. Both the horizontal scalability of the approach and the

meaningfulness of the extracted knowledge have been addressed. Since preliminary ex-

periments performed on two real datasets showed promising results, a more complete and

optimized implementation of the proposed approach as a SaaS (Software-as-a-Service)

service model may be envisioned in the long term to o↵er an e�cient association rule

mining algorithm to cloud users. In particular, future works will aim at optimizing the

MapReduce workflow and expanding the workbench of the cluster architecture.



Bibliography

[1] Luigi Grimaudo, Marco Mellia, and Elena Baralis. Hierarchical learning for fine

grained internet tra�c classification. In Wireless Communications and Mobile

Computing Conference (IWCMC), 2012 8th International, pages 463–468. IEEE,

2012.

[2] Luigi Grimaudo, Marco Mellia, Elena Baralis, and Ram Keralapura. SeLeCT:

Self-learning classifier for internet tra�c. Network and Service Management, IEEE

Transactions on, 2014.

[3] Elena Baralis, Tania Cerquitelli, Silvia Chiusano, Luigi Grimaudo, and Xin Xiao.

Analysis of twitter data using a multiple-level clustering strategy. In Model and

Data Engineering, pages 13–24. Springer, 2013.

[4] Luca Cagliero, Luigi Grimaudo, and Alessandro Fiori. Analyzing twitter user-

generated content changes.

[5] Luigi Grimaudo, Han Song, Mario Baldi, Marco Mellia, and Maurizio Munafo.

Tucan: Twitter user centric analyzer. In Proceedings of the 2013 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining,

pages 1455–1457. ACM, 2013.

[6] Luca Cagliero, Alessandro Fiori, and Luigi Grimaudo. Personalized tag recom-

mendation based on generalized rules. ACM Transactions on Intelligent Systems

and Technology (TIST), 5(1):12, 2013.

[7] Luca Cagliero, Tania Cerquitelli, Paolo Garza, and Luigi Grimaudo. Misleading

generalized itemset discovery. Expert Systems with Applications, 41(4):1400–1410,

2014.

[8] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Silvia Chiusano, and Luigi Gri-

maudo. Searum: a cloud-based service for association rule mining. In Trust,

Security and Privacy in Computing and Communications (TrustCom), 2013 12th

IEEE International Conference on, pages 1283–1290. IEEE, 2013.

157



Bibliography 158

[9] Hyunchul Kim, Kimberly C Cla↵y, Marina Fomenkov, Dhiman Barman, Michalis

Faloutsos, and KiYoung Lee. Internet tra�c classification demystified: myths,

caveats, and the best practices. In Proceedings of the 2008 ACM CoNEXT con-

ference, page 11. ACM, 2008.

[10] Alessandro Finamore, Marco Mellia, Michela Meo, Maurizio M Munafo, and Dario

Rossi. Experiences of internet tra�c monitoring with tstat. Network, IEEE, 25

(3):8–14, 2011.

[11] Tstat home page. URL http://tstat.polito.it.

[12] Marcin Pietrzyk, Jean-Laurent Costeux, Guillaume Urvoy-Keller, and Taoufik En-

Najjary. Challenging statistical classification for operational usage: the adsl case.

In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement

conference, pages 122–135. ACM, 2009.

[13] Pang-Ning Tan et al. Introduction to data mining. Pearson Education, 2006.

[14] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler.

Yale: Rapid prototyping for complex data mining tasks. In Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 935–940. ACM, 2006.

[15] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. Blinc:

multilevel tra�c classification in the dark. In ACM SIGCOMM Computer Com-

munication Review, volume 35, pages 229–240. ACM, 2005.

[16] Laurent Bernaille, Renata Teixeira, and Kave Salamatian. Early application iden-

tification. In Proceedings of the 2006 ACM CoNEXT conference, page 6. ACM,

2006.

[17] David J Hand. Principles of data mining. Drug safety, 30(7):621–622, 2007.

[18] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual

information criteria of max-dependency, max-relevance, and min-redundancy. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1226–1238,

2005.

[19] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for internet

tra�c classification using machine learning. Communications Surveys & Tutorials,

IEEE, 10(4):56–76, 2008.

[20] Thomas G Dietterich. Approximate statistical tests for comparing supervised

classification learning algorithms. Neural computation, 10(7):1895–1923, 1998.



Bibliography 159

[21] Je↵rey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey Williamson.

O✏ine/realtime tra�c classification using semi-supervised learning. Performance

Evaluation, 64(9):1194–1213, 2007.

[22] Xiaojin Zhu. Semi-supervised learning literature survey. Computer Science, Uni-

versity of Wisconsin-Madison, 2:3, 2006.

[23] Ayhan Demiriz, Kristin P Bennett, and Mark J Embrechts. Semi-supervised clus-

tering using genetic algorithms. Artificial neural networks in engineering (ANNIE-

99), pages 809–814, 1999.

[24] Rozita Dara, SC Kremer, and DA Stacey. Clustering unlabeled data with soms

improves classification of labeled real-world data. In Neural Networks, 2002.

IJCNN’02. Proceedings of the 2002 International Joint Conference on, volume 3,

pages 2237–2242. IEEE, 2002.

[25] Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill. Flow clustering

using machine learning techniques. In Passive and Active Network Measurement,

pages 205–214. Springer, 2004.

[26] Je↵rey Erman, Anirban Mahanti, and Martin Arlitt. Internet tra�c identifica-

tion using machine learning. In Global Telecommunications Conference, 2006.

GLOBECOM’06. IEEE, pages 1–6. IEEE, 2006.

[27] Je↵rey Erman, Martin Arlitt, and Anirban Mahanti. Tra�c classification using

clustering algorithms. In Proceedings of the 2006 SIGCOMM workshop on Mining

network data, pages 281–286. ACM, 2006.

[28] Yu Wang, Yang Xiang, and Shun-Zheng Yu. An automatic application signature

construction system for unknown tra�c. Concurrency and Computation: Practice

and Experience, 22(13):1927–1944, 2010.

[29] Jing Yuan, Zhu Li, and Ruixi Yuan. Information entropy based clustering method

for unsupervised internet tra�c classification. In Communications, 2008. ICC’08.

IEEE International Conference on, pages 1588–1592. IEEE, 2008.

[30] Pedro Casas, Johan Mazel, and Philippe Owezarski. Minetrac: mining flows for

unsupervised analysis & semi-supervised classification. In Proceedings of the 23rd

International Teletra�c Congress, pages 87–94. ITCP, 2011.

[31] Jun Zhang, Chao Chen, Yang Xiang, Wanlei Zhou, and A Vasilakos. An e↵ective

network tra�c classification method with unknown flow detection. 2013.



Bibliography 160

[32] Jun Zhang, Yang Xiang, Wanlei Zhou, and Yu Wang. Unsupervised tra�c classifi-

cation using flow statistical properties and ip packet payload. Journal of Computer

and System Sciences, 79(5):573–585, 2013.

[33] Gianluca Iannaccone, Christophe Diot, Ian Graham, and Nick McKeown. Moni-

toring very high speed links. In Proceedings of the 1st ACM SIGCOMM Workshop

on Internet Measurement, pages 267–271. ACM, 2001.

[34] Ionut Trestian, Supranamaya Ranjan, Aleksandar Kuzmanovic, and Antonio

Nucci. Googling the internet: profiling internet endpoints via the world wide

web. IEEE/ACM Transactions on Networking (TON), 18(2):666–679, 2010.

[35] Pedro Casas, Pierdomenico Fiadino, and Arian Bar. Ip mining: Extracting knowl-

edge from the dynamics of the internet addressing space. In Teletra�c Congress

(ITC), 2013 25th International, pages 1–9. IEEE, 2013.

[36] Marios Iliofotou, Michalis Faloutsos, and Michael Mitzenmacher. Exploiting dy-

namicity in graph-based tra�c analysis: techniques and applications. In Proceed-

ings of the 5th international conference on Emerging networking experiments and

technologies, pages 241–252. ACM, 2009.

[37] Qing Li, Jia Wang, Yuanzhu Peter Chen, and Zhangxi Lin. User comments for

news recommendation in forum-based social media. Information Sciences, 180

(24):4929–4939, 2010.

[38] Andriy Shepitsen, Jonathan Gemmell, Bamshad Mobasher, and Robin Burke. Per-

sonalized recommendation in social tagging systems using hierarchical clustering.

In Proceedings of the 2008 ACM conference on Recommender systems, pages 259–

266. ACM, 2008.

[39] Yuan Xue, Chen Zhang, Changzheng Zhou, Xun Lin, and Qing Li. An e↵ective

news recommendation in social media based on users’ preference. In Education

Technology and Training, 2008. and 2008 International Workshop on Geoscience

and Remote Sensing. ETT and GRS 2008. International Workshop on, volume 1,

pages 627–631. IEEE, 2008.

[40] Gjergji Kasneci, Maya Ramanath, Fabian Suchanek, and Gerhard Weikum. The

yago-naga approach to knowledge discovery. ACM SIGMOD Record, 37(4):41–47,

2009.

[41] Ho-Yu Lam and Dit-Yan Yeung. A learning approach to spam detection based on

social networks. PhD thesis, Hong Kong University of Science and Technology,

2007.



Bibliography 161

[42] Xin Li, Lei Guo, and Yihong Eric Zhao. Tag-based social interest discovery. In

Proceedings of the 17th international conference on World Wide Web, pages 675–

684. ACM, 2008.

[43] Michael Mathioudakis and Nick Koudas. Twittermonitor: trend detection over

the twitter stream. In Proceedings of the 2010 ACM SIGMOD International Con-

ference on Management of data, pages 1155–1158. ACM, 2010.

[44] Marc Cheong and Vincent Lee. Integrating web-based intelligence retrieval and

decision-making from the twitter trends knowledge base. In Proceedings of the 2nd

ACM workshop on Social web search and mining, pages 1–8. ACM, 2009.

[45] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In KDD,

volume 96, pages 226–231, 1996.

[46] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of docu-

ment clustering techniques. In KDD workshop on text mining, volume 400, pages

525–526. Boston, 2000.

[47] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In ACM SIGMOD Record, volume 29, pages 1–12. ACM, 2000.

[48] Zhijun Yin, Rui Li, Qiaozhu Mei, and Jiawei Han. Exploring social tagging graph

for web object classification. In Proceedings of the 15th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 957–966. ACM,

2009.

[49] Matthias Bender, Tom Crecelius, Mouna Kacimi, Sebastian Michel, Thomas Neu-

mann, Josiane Xavier Parreira, Ralf Schenkel, and Gerhard Weikum. Exploiting

social relations for query expansion and result ranking. In Data Engineering Work-

shop, 2008. ICDEW 2008. IEEE 24th International Conference on, pages 501–506.

IEEE, 2008.

[50] Paul Heymann, Daniel Ramage, and Hector Garcia-Molina. Social tag predic-

tion. In Proceedings of the 31st annual international ACM SIGIR conference on

Research and development in information retrieval, pages 531–538. ACM, 2008.

[51] Foteini Alvanaki, Sebastian Michel, Krithi Ramamritham, and Gerhard Weikum.

See what’s enblogue: real-time emergent topic identification in social media. In

Proceedings of the 15th International Conference on Extending Database Technol-

ogy, pages 336–347. ACM, 2012.



Bibliography 162

[52] Luca Cagliero and Alessandro Fiori. Discovering generalized association rules from

twitter. Intelligent Data Analysis, 17(4):627–648, 2013.

[53] AA Lopes, Roberto Pinho, Fernando Vieira Paulovich, and Rosane Minghim. Vi-

sual text mining using association rules. Computers & Graphics, 31(3):316–326,

2007.

[54] Qing Chen, Timothy Shipper, and Latifur Khan. Tweets mining using wikipedia

and impurity cluster measurement. In Intelligence and Security Informatics (ISI),

2010 IEEE International Conference on, pages 141–143. IEEE, 2010.

[55] Sungchul Kim, Sungho Jeon, Jinha Kim, Young-Ho Park, and Hwanjo Yu. Finding

core topics: Topic extraction with clustering on tweet. In Cloud and Green Com-

puting (CGC), 2012 Second International Conference on, pages 777–782. IEEE,

2012.

[56] Kumar Subramani, Alexander Velkov, Irene Ntoutsi, P Kroger, and H Kriegel.

Density-based community detection in social networks. In Internet Multimedia

Systems Architecture and Application (IMSAA), 2011 IEEE 5th International

Conference on, pages 1–8. IEEE, 2011.

[57] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and vali-

dation of cluster analysis. Journal of computational and applied mathematics, 20:

53–65, 1987.

[58] Dario Antonelli, Elena Baralis, Giulia Bruno, Tania Cerquitelli, Silvia Chiusano,

and Naeem Mahoto. Analysis of diabetic patients through their examination his-

tory. Expert Systems with Applications, 2013.

[59] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction

to cluster analysis, volume 344. Wiley. com, 2009.

[60] Rakesh Agrawal and Giuseppe Psaila. Active data mining. In KDD, pages 3–8,

1995.

[61] Luca Cagliero. Discovering temporal change patterns in the presence of tax-

onomies. Knowledge and Data Engineering, IEEE Transactions on, 25(3):541–555,

2013.

[62] Ramakrishnan Srikant and Rakesh Agrawal. Mining generalized association rules.

In VLDB, volume 95, pages 407–419, 1995.

[63] Mario Baldi, Elena Baralis, and Fulvio Risso. Data mining techniques for e↵ective

and scalable tra�c analysis. In Integrated Network Management, 2005. IM 2005.

2005 9th IFIP/IEEE International Symposium on, pages 105–118. IEEE, 2005.



Bibliography 163

[64] Elena Baralis, Luca Cagliero, Tania Cerquitelli, Paolo Garza, and Marco

Marchetti. Context-aware user and service profiling by means of generalized as-

sociation rules. In Knowledge-Based and Intelligent Information and Engineering

Systems, pages 50–57. Springer, 2009.

[65] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules in large databases. In Proceedings of the 20th International Conference on

Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994.

Morgan Kaufmann Publishers Inc. ISBN 1-55860-153-8. URL http://dl.acm.

org/citation.cfm?id=645920.672836.

[66] Jiawei Han and Yongjian Fu. Mining multiple-level association rules in large

databases. Knowledge and Data Engineering, IEEE Transactions on, 11(5):798–

805, 1999.

[67] Jochen Hipp, Andreas Myka, Rüdiger Wirth, and Ulrich Güntzer. A new algorithm

for faster mining of generalized association rules. Springer, 1998.

[68] Iko Pramudiono and Masaru Kitsuregawa. Fp-tax: Tree structure based general-

ized association rule mining. In Proceedings of the 9th ACM SIGMOD workshop

on Research issues in data mining and knowledge discovery, pages 60–63. ACM,

2004.

[69] Kritsada Sriphaew and Thanaruk Theeramunkong. A new method for finding

generalized frequent itemsets in generalized association rule mining. In Comput-

ers and Communications, 2002. Proceedings. ISCC 2002. Seventh International

Symposium on, pages 1040–1045. IEEE, 2002.

[70] Elena Baralis, Luca Cagliero, Tania Cerquitelli, Vincenzo D’Elia, and Paolo Garza.

Support driven opportunistic aggregation for generalized itemset extraction. In

Intelligent Systems (IS), 2010 5th IEEE International Conference, pages 102–107.

IEEE, 2010.

[71] Ste↵an Baron, Myra Spiliopoulou, and Oliver Günther. E�cient monitoring of

patterns in data mining environments. In Advances in Databases and Information

Systems, pages 253–265. Springer, 2003.

[72] Mirko Böttcher, Detlef Nauck, Dymitr Ruta, and Martin Spott. Towards a frame-

work for change detection in data sets. In Research and Development in Intelligent

Systems XXIII, pages 115–128. Springer, 2007.

[73] Bing Liu, Yiming Ma, and Ronnie Lee. Analyzing the interestingness of asso-

ciation rules from the temporal dimension. In Data Mining, 2001. ICDM 2001,

Proceedings IEEE International Conference on, pages 377–384. IEEE, 2001.



Bibliography 164

[74] Yingying Tao and M Tamer Özsu. Mining frequent itemsets in time-varying data

streams. In Proceedings of the 18th ACM conference on Information and knowledge

management, pages 1521–1524. ACM, 2009.

[75] Fabŕıcio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virǵılio Almeida.

Characterizing user navigation and interactions in online social networks. In-

formation Sciences, 195:1–24, 2012.

[76] Lei Guo, Enhua Tan, Songqing Chen, Xiaodong Zhang, and Yihong Eric Zhao.

Analyzing patterns of user content generation in online social networks. In Proceed-

ings of the 15th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 369–378. ACM, 2009.

[77] Owen Phelan, Kevin McCarthy, Mike Bennett, and Barry Smyth. Terms of a

feather: Content-based news recommendation and discovery using twitter. In

Advances in Information Retrieval, pages 448–459. Springer, 2011.

[78] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: un-

derstanding microblogging usage and communities. In Proceedings of the 9th We-

bKDD and 1st SNA-KDD 2007 workshop on Web mining and social network anal-

ysis, pages 56–65. ACM, 2007.

[79] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twit-

ter, a social network or a news media? In Proceedings of the 19th international

conference on World wide web, pages 591–600. ACM, 2010.

[80] Liangjie Hong and Brian D Davison. Empirical study of topic modeling in twitter.

In Proceedings of the First Workshop on Social Media Analytics, pages 80–88.

ACM, 2010.

[81] Daniel Ramage, Susan T Dumais, and Daniel J Liebling. Characterizing mi-

croblogs with topic models. In ICWSM, 2010.

[82] Gerard Salton and Michael J McGill. Introduction to modern information retrieval.

1986.

[83] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D Manning. La-

beled lda: A supervised topic model for credit attribution in multi-labeled corpora.

In Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing: Volume 1-Volume 1, pages 248–256. Association for Computational

Linguistics, 2009.

[84] Yan Liu, Alexandru Niculescu-Mizil, and Wojciech Gryc. Topic-link lda: joint

models of topic and author community. In Proceedings of the 26th Annual Inter-

national Conference on Machine Learning, pages 665–672. ACM, 2009.



Bibliography 165

[85] Jonathan Chang, Jordan Boyd-Graber, and David M Blei. Connections between

the lines: augmenting social networks with text. In Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

169–178. ACM, 2009.

[86] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei Yan,

and Xiaoming Li. Comparing twitter and traditional media using topic models.

In Advances in Information Retrieval, pages 338–349. Springer, 2011.

[87] Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu Horiguchi. Learning to classify

short and sparse text & web with hidden topics from large-scale data collections.

In Proceedings of the 17th international conference on World Wide Web, pages

91–100. ACM, 2008.

[88] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.

the Journal of machine Learning research, 3:993–1022, 2003.

[89] Michal Rosen-Zvi, Thomas Gri�ths, Mark Steyvers, and Padhraic Smyth. The

author-topic model for authors and documents. In Proceedings of the 20th confer-

ence on Uncertainty in artificial intelligence, pages 487–494. AUAI Press, 2004.

[90] Michal Rosen-Zvi, Chaitanya Chemudugunta, Thomas Gri�ths, Padhraic Smyth,

and Mark Steyvers. Learning author-topic models from text corpora. ACM Trans-

actions on Information Systems (TOIS), 28(1):4, 2010.

[91] Anish Das Sarma, Alpa Jain, and Cong Yu. Dynamic relationship and event

discovery. In Proceedings of the fourth ACM international conference on Web

search and data mining, pages 207–216. ACM, 2011.

[92] Alison Smith, Jianyu Li, Panagis Pano Papadatos, and Sana Malik. Topicflow:

Visualizing topic alignment of twitter data over time. 2012.

[93] Martin F Porter. An algorithm for su�x stripping. Program: electronic library

and information systems, 14(3):130–137, 1980.

[94] Christiane Fellbaum. Wordnet: An electronic lexical database. WordNet is avail-

able from http://www. cogsci. princeton. edu/wn, 1998.

[95] C Honey and Susan C Herring. Beyond microblogging: Conversation and collabo-

ration via twitter. In System Sciences, 2009. HICSS’09. 42nd Hawaii International

Conference on, pages 1–10. IEEE, 2009.

[96] Nikhil Garg and Ingmar Weber. Personalized, interactive tag recommendation

for flickr. In Proceedings of the 2008 ACM conference on Recommender systems,

pages 67–74. ACM, 2008.



Bibliography 166

[97] Börkur Sigurbjörnsson and Roelof Van Zwol. Flickr tag recommendation based

on collective knowledge. In Proceedings of the 17th international conference on

World Wide Web, pages 327–336. ACM, 2008.

[98] Gilad Mishne. Autotag: a collaborative approach to automated tag assignment

for weblog posts. In Proceedings of the 15th international conference on World

Wide Web, pages 953–954. ACM, 2006.

[99] Shenghua Bao, Guirong Xue, Xiaoyuan Wu, Yong Yu, Ben Fei, and Zhong Su.

Optimizing web search using social annotations. In Proceedings of the 16th inter-

national conference on World Wide Web, pages 501–510. ACM, 2007.

[100] Ritendra Datta, Weina Ge, Jia Li, and James Ze Wang. Toward bridging the

annotation-retrieval gap in image search. IEEE MultiMedia, 14(3):24–35, 2007.

[101] Pavel A Dmitriev, Nadav Eiron, Marcus Fontoura, and Eugene Shekita. Using an-

notations in enterprise search. In Proceedings of the 15th international conference

on World Wide Web, pages 811–817. ACM, 2006.

[102] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. Latent dirichlet allocation for

tag recommendation. In Proceedings of the third ACM conference on Recommender

systems, pages 61–68. ACM, 2009.

[103] Adam Rae, Börkur Sigurbjörnsson, and Roelof van Zwol. Improving tag recom-

mendation using social networks. In Adaptivity, Personalization and Fusion of

Heterogeneous Information, pages 92–99. LE CENTRE DE HAUTES ETUDES

INTERNATIONALES D’INFORMATIQUE DOCUMENTAIRE, 2010.

[104] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In ACM SIGMOD Record, volume 22,

pages 207–216. ACM, 1993.

[105] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based

collaborative filtering recommendation algorithms. In Proceedings of the 10th in-

ternational conference on World Wide Web, pages 285–295. ACM, 2001.

[106] Robert Jäschke, Leandro Marinho, Andreas Hotho, Lars Schmidt-Thieme, and

Gerd Stumme. Tag recommendations in folksonomies. In Knowledge Discovery in

Databases: PKDD 2007, pages 506–514. Springer, 2007.

[107] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Computer networks and ISDN systems, 30(1):107–117, 1998.



Bibliography 167

[108] Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos. Tag

recommendations based on tensor dimensionality reduction. In Proceedings of the

2008 ACM conference on Recommender systems, pages 43–50. ACM, 2008.

[109] Stefanie Lindstaedt, Viktoria Pammer, R Morzinger, Roman Kern, H Mulner, and

Claudia Wagner. Recommending tags for pictures based on text, visual content

and user context. In Internet and Web Applications and Services, 2008. ICIW’08.

Third International Conference on, pages 506–511. IEEE, 2008.

[110] Paul-Alexandru Chirita, Stefania Costache, Wolfgang Nejdl, and Siegfried Hand-

schuh. P-tag: large scale automatic generation of personalized annotation tags for

the web. In Proceedings of the 16th international conference on World Wide Web,

pages 845–854. ACM, 2007.

[111] Marek Lipczak and Evangelos Milios. E�cient tag recommendation for real-life

data. ACM Transactions on Intelligent Systems and Technology (TIST), 3(1):2,

2011.

[112] Ziyu Guan, Jiajun Bu, Qiaozhu Mei, Chun Chen, and Can Wang. Personalized

tag recommendation using graph-based ranking on multi-type interrelated objects.

In Proceedings of the 32nd international ACM SIGIR conference on Research and

development in information retrieval, pages 540–547. ACM, 2009.

[113] Yu-Ta Lu, Shoou-I Yu, Tsung-Chieh Chang, and Jane Yung-jen Hsu. A content-

based method to enhance tag recommendation. In IJCAI, pages 2064–2069, 2009.

[114] Guilherme Vale Menezes, Jussara M Almeida, Fabiano Belém, Marcos André

Gonçalves, Ańısio Lacerda, Edleno Silva De Moura, Gisele L Pappa, Adriano

Veloso, and Nivio Ziviani. Demand-driven tag recommendation. In Machine

Learning and Knowledge Discovery in Databases, pages 402–417. Springer, 2010.

[115] Jeremy Mennis and Jun Wei Liu. Mining association rules in spatio-temporal data:

An analysis of urban socioeconomic and land cover change. Transactions in GIS,

9(1):5–17, 2005.

[116] Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining association rules

with item constraints. In KDD, volume 97, pages 67–73, 1997.

[117] Elmasri Ramez. Fundamentals of database systems. Pearson Education India,

1994.

[118] Merijn Van Erp and Lambert Schomaker. Variants of the borda count method

for combining ranked classifier hypotheses. In IN THE SEVENTH INTERNA-

TIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION.



Bibliography 168

2000. AMSTERDAM LEARNING METHODOLOGY INSPIRED BY HUMAN’S

INTELLIGENCE BO ZHANG, DAYONG DING, AND LING ZHANG. Citeseer,

2000.

[119] Mark J Huiskes and Michael S Lew. The mir flickr retrieval evaluation. In Proceed-

ings of the 1st ACM international conference on Multimedia information retrieval,

pages 39–43. ACM, 2008.

[120] Mark Sanderson and Justin Zobel. Information retrieval system evaluation: e↵ort,

sensitivity, and reliability. In Proceedings of the 28th annual international ACM

SIGIR conference on Research and development in information retrieval, pages

162–169. ACM, 2005.

[121] Charu C Aggarwal and Philip S Yu. A new framework for itemset generation. In

Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems, pages 18–24. ACM, 1998.

[122] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets:

generalizing association rules to correlations. In ACM SIGMOD Record, volume 26,

pages 265–276. ACM, 1997.

[123] Ashok Savasere, Edward Omiecinski, and Shamkant Navathe. Mining for strong

negative associations in a large database of customer transactions. In Data En-

gineering, 1998. Proceedings., 14th International Conference on, pages 494–502.

IEEE, 1998.

[124] Tianyi Wu, Yuguo Chen, and Jiawei Han. Re-examination of interestingness mea-

sures in pattern mining: a unified framework. Data Mining and Knowledge Dis-

covery, 21(3):371–397, 2010.

[125] Marina Barsky, Sangkyum Kim, Tim Weninger, and Jiawei Han. Mining flip-

ping correlations from large datasets with taxonomies. Proceedings of the VLDB

endowment, 5(4):370–381, 2011.

[126] Uci repository of machine learning databases. URL http://archive.ics.uci.

edu/ml.

[127] Daniel Kunkle, Donghui Zhang, and Gene Cooperman. Mining frequent gener-

alized itemsets and generalized association rules without redundancy. Journal of

Computer Science and Technology, 23(1):77–102, 2008.

[128] Kritsada Sriphaew and Thanaruk Theeramunkong. Fast algorithms for mining

generalized frequent patterns of generalized association rules. IEICE Transactions

on Information and Systems, 87(3):761–770, 2004.



Bibliography 169

[129] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering fre-

quent closed itemsets for association rules. In Database Theory—ICDT’99, pages

398–416. Springer, 1999.

[130] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right in-

terestingness measure for association patterns. In Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

32–41. ACM, 2002.

[131] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Indirect association: Min-

ing higher order dependencies in data. Springer, 2000.

[132] Robert J Hilderman and Howard J Hamilton. Knowledge discovery and measures

of interest. 2001.

[133] Chieh-Ming Wu and Yin-Fu Huang. Generalized association rule mining using an

e�cient data structure. Expert Systems with Applications, 38(6):7277–7290, 2011.

[134] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, Wei Li,

et al. New algorithms for fast discovery of association rules. In KDD, volume 97,

pages 283–286, 1997.

[135] Komate Amphawan, Philippe Lenca, and Athasit Surarerks. Mining top-¡ i¿ k¡/i¿

regular-frequent itemsets using database partitioning and support estimation. Ex-

pert Systems with Applications, 39(2):1924–1936, 2012.

[136] Toon Calders and Bart Goethals. Mining all non-derivable frequent itemsets. In

Principles of Data Mining and Knowledge Discovery, pages 74–86. Springer, 2002.

[137] Michael Mampaey, Nikolaj Tatti, and Jilles Vreeken. Tell me what i need to

know: succinctly summarizing data with itemsets. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

573–581. ACM, 2011.

[138] Nikolaj Tatti. Probably the best itemsets. In Proceedings of the 16th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

293–302. ACM, 2010.

[139] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. Lcm ver. 2: E�cient mining

algorithms for frequent/closed/maximal itemsets. In FIMI, volume 19, page 30,

2004.

[140] IBM Quest Synthetic Data Generation Code, 2009. URL http://www.almaden.

ibm.com/.



Bibliography 170

[141] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. Sliq: A fast scalable classi-

fier for data mining. In Advances in Database Technology—EDBT’96, pages 18–32.

Springer, 1996.

[142] Database and data mining group website, paper page, year = 2013, url =

http://dbdmg.polito.it/wordpress/research/misleading-generalized-itemsets/.

[143] Maria-Luiza Antonie, Osmar R Zaiane, and Alexandru Coman. Application of

data mining techniques for medical image classification. In MDM/KDD, pages

94–101, 2001.

[144] Gao Cong, Anthony K. H. Tung, Xin Xu, Feng Pan, and Jiong Yang. Farmer:

finding interesting rule groups in microarray datasets. In ACM SIGMOD ’04,

2004.

[145] Mohammed J Zaki. Parallel and distributed association mining: A survey. Con-

currency, IEEE, 7(4):14–25, 1999.

[146] Osmar R Zäıane, Mohammad El-Hajj, and Paul Lu. Fast parallel association

rule mining without candidacy generation. In Data Mining, 2001. ICDM 2001,

Proceedings IEEE International Conference on, pages 665–668. IEEE, 2001.

[147] Li Liu, Eric Li, Yimin Zhang, and Zhizhong Tang. Optimization of frequent

itemset mining on multiple-core processor. In Proceedings of the 33rd international

conference on Very large data bases, pages 1275–1285. VLDB Endowment, 2007.

[148] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy, Daehyun Kim, An-

thony Nguyen, Yen-Kuang Chen, and Pradeep Dubey. Cache-conscious frequent

pattern mining on modern and emerging processors. The VLDB Journal, 16(1):

77–96, 2007.

[149] Iko Pramudiono and Masaru Kitsuregawa. Tree structure based parallel frequent

pattern mining on pc cluster. In Database and Expert Systems Applications, pages

537–547. Springer, 2003.

[150] Mohammad El-Hajj and Osmar R Zäıane. Parallel bifold: Large-scale parallel

pattern mining with constraints. Distributed and Parallel Databases, 20(3):225–

243, 2006.

[151] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y Chang. Pfp:

parallel fp-growth for query recommendation. In Proceedings of the 2008 ACM

conference on Recommender systems, pages 107–114. ACM, 2008.



Bibliography 171

[152] Le Zhou, Zhiyong Zhong, Jin Chang, Junjie Li, JZ Huang, and Shengzhong Feng.

Balanced parallel fp-growth with mapreduce. In Information Computing and

Telecommunications (YC-ICT), 2010 IEEE Youth Conference on, pages 243–246.

IEEE, 2010.

[153] Dehao Chen, Chunrong Lai, Wei Hu, WenGuang Chen, Yimin Zhang, and Weimin

Zheng. Tree partition based parallel frequent pattern mining on shared memory

systems. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.

20th International, pages 8–pp. IEEE, 2006.

[154] Je↵rey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[155] Marco Mellia, Michela Meo, Luca Muscariello, and Dario Rossi. Passive analysis

of tcp anomalies. Computer Networks, 52(14):2663–2676, 2008.

[156] The apache mahout machine learning library, 2013. URL http://mahout.apache.

org/.

[157] Jesmin Nahar, Tasadduq Imam, Kevin S Tickle, and Yi-Ping Phoebe Chen. As-

sociation rule mining to detect factors which contribute to heart disease in males

and females. Expert Systems with Applications, 2012.


