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Summary 
 

Open Source Software is a component or an application whose source code is freely 

accessible and changeable by the users, subject to constraints expressed in a number of 

licensing modes.  It implies a global alliance for developing quality software with quick 

bug fixing along with quick evolution of the software features. 

In the recent year tendency toward adoption of OSS in industrial projects has swiftly 

increased.  Many commercial products use OSS in various fields such as embedded 

systems, web management systems, and mobile software’s.  In addition to these, many 

OSSs are modified and adopted in software products. According to Netcarf survey more 

than 58% web servers are using an open source web server, Apache.  The swift increase 

in the taking on of the open source technology is due to its availability, and affordability. 

Recent empirical research published by Forrester highlighted that although many 

European software companies have a clear OSS adoption strategy; there are fears and 

questions about the adoption. All these fears and concerns can be traced back to the 

quality and reliability of OSS. 

Reliability is one of the more important characteristics of software quality when 

considered for commercial use. It is defined as the probability of failure free operation of 

software for a specified period of time in a specified environment (IEEE Std. 1633-2008).  

While open source projects routinely provide information about community activity, 

number of developers and the number of users or downloads, this is not enough to convey 

information about reliability. 

Software reliability growth models (SRGM) are frequently used in the literature for the 

characterization of reliability in industrial software. These models assume that reliability 

grows after a defect has been detected and fixed. SRGM is a prominent class of software 

reliability models (SRM). SRM is a mathematical expression that specifies the general 

form of the software failure process as a function of factors such as fault introduction, 

fault removal, and the operational environment. Due to defect identification and removal 

the failure rate (failures per unit of time) of a software system generally decreases over 

time. Software reliability modeling is done to estimate the form of the curve of the failure 

rate by statistically estimating the parameters associated with the selected model. The 

purpose of this measure is twofold: 1) to estimate the extra test time required to meet a 

specified reliability objective and 2) to identify the expected reliability of the software 

after release (IEEE Std. 1633-2008).  
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SRGM can be applied to guide the test board in their decision of whether to stop or 

continue the testing. These models are grouped into concave and S-Shaped models on the 

basis of assumption about cumulative failure occurrence pattern. The S-Shaped models 

assume that the occurrence pattern of cumulative number of failures is S-Shaped: initially 

the testers are not familiar with the product, then they become more familiar and hence 

there is a slow increase in fault removing. As the testers’ skills improve the rate of 

uncovering defects increases quickly and then levels off as the residual errors become 

more difficult to remove. In the concave shaped models the increase in failure intensity 

reaches a peak before a decrease in failure pattern is observed. Therefore the concave 

models indicate that the failure intensity is expected to decrease exponentially after a 

peak was reached. 

From exhaustive study of the literature I come across three research gaps: SRGM have 

widely been used for reliability characterization of closed source software (CSS), but 1) 

there is no universally applicable model that can be applied in all cases, 2) applicability 

of SRGM for OSS is unclear and 3) there is no agreement on how to select the best model 

among several alternative models, and no specific empirical methodologies have been 

proposed, especially for OSS. My PhD work mainly focuses on these three research 

gaps. 

In first step, focusing on the first research gap, I analyzed comparatively eight SRGM, 

including Musa Okumoto, Inflection S-Shaped, Geol Okumoto, Delayed S-Shaped, 

Logistic, Gompertz and Generalized Geol, in term of their fitting and prediction 

capabilities. These models have selected due to their wide spread use and they are the 

most representative in their category. For this study 38 failure datasets of 38 projects 

have been used. Among 38 projects, 6 were OSS and 32 were CSS. In 32 CSS datasets 22 

were from testing phase and remaining 10 were from operational phase (i.e. field). The 

outcomes show that Musa Okumoto remains the best for CSS projects while Inflection S-

Shaped and Gompertz remain best for OSS projects.  Apart from that we observe that 

concave models outperform for CSS and S-Shaped outperform for OSS projects. 

In the second step, focusing on the second research gap, reliability growth of OSS 

projects was compared with that of CSS projects. For this purpose 25 OSS and 22 CSS 

projects were selected with related defect data. Eight SRGM were fitted to the defect data 

of selected projects and the reliability growth was analyzed with respect to fitted models.  

I found that the entire selected models fitted to OSS projects defect data in the same 

manner as that of CSS projects and hence it confirms that OSS projects reliability grows 

similarly to that of CSS projects.  However, I observed that for OSS S-Shaped models 

outperform and for CSS concave shaped models outperform.  
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To overcome the third research gap I proposed a method that selects the best SRGM 

among several alternative models for predicting the residuals of an OSS.  The method 

helps the practitioners in deciding whether to adopt an OSS component, or not in a 

project. We test the method empirically by applying it to twenty one different releases of 

seven OSS projects.  From the validation results it is clear that the method selects the best 

model 17 times out of 21. In the remaining four it selects the second best model. 

Following is the list of publications relevant to the subject of my thesis. 

 1. N. Ullah, M. Morisio, A. Vetro'.  A method for selecting software reliability 

growth model to predict Open Source Software residual defect. In: IEEE 

Computer Journal.  (in press) 

 2. N. Ullah. A method for predicting residual defects of Open Source Software. In: 

Software Quality Journal. (in press) 

 3. N. Ullah, M. Morisio .An Empirical analysis of Open Source Software Defect data 

through Software Reliability Growth Models. In: IEEE EUROCON 2013 in Zagreb, 

Croatia, 1-4 July 2013. 

 4. N. Ullah, M. Morisio . An Empirical Study of Reliability Growth of Open versus 

Closed Source Software through Software Reliability Growth Models. In: The 

19th Asia-Pacific Software Engineering Conference, Hong Kong, December 4-7, 

2012.  

 5.  N. Ullah, M. Morisio, A. Vetro'.  A Comparative Analysis of Software Reliability 

Growth Models using defects data of Closed and Open Source Software. In: 35th 

Annual IEEE Software Engineering Workshop, Heraclion, Crete, Greece, 12-13 

October 2012.  

6. N. Ullah, M. Morisio . An Empirical Study of Open Source Software Reliability 

Models. In: 2011 IEEE International Conference on Computational Intelligence 

and Computing Research, Cape Institute of Technology, Levengipuram, 

 Kanyakumari, India, Dec 15-18, 2011.
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1. Software reliability engineering concepts 
 

Software reliability engineering is related to a very important software quality 

attribute: reliability. Software reliability is defined as the probability of failure-

free operation for a specified period of time in specified environment. Software 

reliability is generally accepted as the key aspect in software quality since it 

quantifies software failure-which can make a powerful system inoperative.  As a 

result, reliability is an essential ingredient in customer satisfaction. 

In many engineering disciplines reliability engineering is a daily practiced 

technique.  For instance civil engineers use it to construct buildings and computer 

hardware engineers use it to design chips and computer. Using a similar concept 

in these disciplines, we define software reliability engineering (SRE) as the 

quantitative study of the operational behavior of software-based systems with 

respect to user requirements concerning reliability.  SRE therefore includes: 

1. Software reliability measurement, which includes estimation and 

prediction, with the help of software reliability models established in the 

literature. 

2. The attributes and metrics and product design, development process, 

system architecture, software operational environment, and their 

implications on reliability. 

This thesis composed of five chapters. 

1. Chapter 1 reviews reliability concepts, the major classification of software 

reliability models and model evaluation techniques that appear in the 

literature. 

2. Chapter 2 provides literature review and describes the three research gaps 

upon which my PhD research has focused. 

3. Chapters 3, 4, and 5 present the studies that overcome the three research 

gaps. 

1.1 Basic Definitions 
We notice three major components in the definition of software reliability: failure, 

time, and operational environment.  We now define these terms and SRE related 
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terminologies. These definitions have been taken from the handbook on software 

reliability engineering by lyu. 

Failures: A failure occurs when the user perceives an unexpected behavior of the 

software system. 

Fault:  The cause of failure is said to be a fault. It is also referred to a bug. 

In short, a software failure is an unexpected software behavior perceived by users, 

while a software fault is the identified cause of the software failure. 

Defects: When the distinction between fault and failure is not critical, defect can 

be used as a generic term to refer to either a fault (cause) or a failure (effect). 

Time: Reliability quantities are defined with respect to time. We are concerned 

with three types of time: the execution time for a software system is the CPU time 

that is actually spend by the computer in executing the software; the calendar 

time is the time people normally experience in terms of years, months, etc.; and 

the clock time is the elapsed time from start to end of computer execution in 

running the software.  In measuring clock time, the periods during which the 

computer is shut down are not counted. 

It is generally accepted that execution time is more adequate than calendar time 

for software reliability measurement and modeling.  However, reliability 

quantities must ultimately be related back to calendar time for easy human 

interpretation, particularly when managers, engineers and customers want to 

compare them across different systems. 

Operational Profile: The operational profile of a system is defined as the set of 

operations that the software can execute along with the probability with which 

they will occur. An operation is a group of runs which typically involve similar 

processing. 

Software reliability measurement:  Measurement of software reliability 

includes two types of activities: reliability estimation and reliability prediction. 

Estimation: This activity determines current software reliability by applying 

statistical inference techniques to failure data obtained during system test or 

during system operation.  This is a measure regarding the achieved reliability 
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from the past until the current point.  Its main purpose is to assess the current 

reliability and determine whether a reliability model is a good fit in retrospect. 

Prediction:  This activity determines future software reliability based upon 

available software metrics and measures.  Depending on the software 

development stage, prediction involves different techniques: 

1. When failure data are available (e.g., software is in system test or 

operation stage), the estimation techniques can be used to parameterize 

and verify software reliability models, which can perform future reliability 

prediction. 

2. When failure data are not available (e.g., software is in the design or 

coding stage), the metrics obtained from the software development process 

and the characteristics of the resulting product can be used to determine 

reliability of the software upon testing or delivery. 

The first definition is also referred to as reliability prediction and the second 

definition as early prediction. When there is no ambiguity in the text, only the 

word prediction will be used. 

Most current software reliability models fall in the estimation category to do 

reliability prediction.  Nevertheless, a few early prediction models were proposed 

and described in the literation.  A survey of existing estimation models and some 

early prediction models can be found later in this chapter. 

Software reliability model: A software reliability model specifies the general 

form of the dependence of the failure process on the principal factors that affect it: 

fault introduction, fault removal, and the operational environment. Figure 1.1 

shows the basic ideas of software reliability modeling.  

In Fig. 1.1, the failure rate of a software system is generally decreasing due to the 

discovery and removal of software failures. At any particular time (say, the point 

marks “present time”), it is possible to observe a history of the failure rate of the 

software.  Software reliability modeling forecasts the curve of the failure rate by 

statistical evidence.  The purpose of this measure is twofold: 1) to predict the 

extra time needed to test the software to achieve a specified objective; 2) to 

predict the expected reliability of the software when the testing is finished. 
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1.2 Classification of software reliability models 
The software reliability models are classified as Sharma et al. [26] described 

below: 

1. Early Prediction Model: This type of model uses characteristics of the 

software development process from requirements to test and extrapolate 

this information to predict the behavior of software during operation [1]. 

2. Software Reliability Growth Models (SRGM): This type of model, 

based on failure behavior of software during testing, determines its 

behavior during operation. Hence, this category of models uses failure 

data information and trends observed in the failure data collected from 

system testing to derive reliability predictions [2]. The SRGMs are further 

classified as failure rate models, and NHPP models. 

3. Input Domain Based Models: These models use properties of the input 

domain of the software to estimate a correctness probability from test 

cases that executed properly [3]. 

Failure Rate 

Testing time 

Present 

failure rate 

Projecting 

finishing time 

Present time 

Figure 1-1: Basic ideas on software reliability modeling 

Specified 

goal 
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4. Architecture Based Models: This type of model measures the reliability 

of software on the basis of the relationship among different components 

and its interaction. These models base on logical complexity, decision 

point, program length, operands and operators of software [4]. The 

architecture based software reliability models are further classified into 

state based models, path based models, and additive models. 

5. Hybrid Black Box Models: These models use the features of input 

domain based models, and SRGMs. Hence is said to be hybrid black box 

models. 

6. Hybrid White Box Models: These models use selected features from 

both white box models, and black box models. Since these models 

consider the architecture of the system for reliability prediction, these 

models are therefore said to be hybrid white box models. 

The proposed classification of software reliability models according to phases of 

Software development life cycle (SDLC) is shown in Fig. 1.2. The architecture 

based models are further classified by the method used to combine the 

architecture of the software with the failure behavior, whereas the SRGMs are 

further classified based on the software failure phenomenon, as given in Fig. 1.2.  

 

Software development life cycle 

Requirement Design Implementation Testing Validation 

Early 

Prediction 

Models 

Architecture 

Based 

Models 

Hybrid 

White Box 

Models 

Hybrid 

Black Box 

Models 

Software 

Reliability 

Growth Models 

Input Domain 

Based Models 

State Based 

Models 

Patch Based 

Models 

Additive 

Models 

Failure rate 

Models 

NHPP 

Models 

Figure 1-2: Classification of software reliability models 
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1.3 Comparison Criteria for Software Reliability Models 
A model can be judged according to its ability to reproduce the observed behavior 

of the software, and to predict the future behavior of the software from the 

observed failure data. To investigate the effectiveness of software reliability 

models, a set of comparison criteria is proposed to compare models quantitatively. 

Following are the comparison criteria that appear in the literature. 

 

1) The Bias is defined as [5], [6] 
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It is the sum of the difference between the estimated curve, and the actual data. 

 

2) The mean square error (MSE) measures the deviation between the predicted values 

with the actual observations, and is defined as [7] 
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3) The accuracy of estimation (AE) or Prediction Relative Error (PRE) can reflect the 

difference between the estimated numbers of all failures with the actual number of all 

detected failures. It is defined as [8] 
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where   , and   are the actual, and estimated cumulative number of detected failures 

after the test, respectively.   

 

4) The predictive-ratio risk (PRR) is defined as [40] 
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which measures the distance of model estimates from the actual data against the model 

estimate. 

 

5) The variance is defined as [5], [6] 
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which is the standard deviation of the prediction bias. 

 

6) The Root Mean Square Prediction Error (RMSPE) is a measure of the closeness with 

which the model predicts the observation. It is defined as [5], [6] 
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7)    can measure how successful the fit is in explaining the variation of the data. It is 

defined as [8] 
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8) The sum of squared failures (SSE) is defined as [9] 
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9) The Theil statistic (TS) is the average deviation percentage over all periods with regard 

to the actual values. The closer Theil’s Statistic is to zero, the better the prediction 

capability of the model. It is defined as [10] 
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In (1)–(9),   represents the sample size of the data set, and   is the number of parameters. 

 

1.4 Summary  
In this chapter the definitions of major terms in SRE are provided, and fundamental 

concepts in software reliability modeling and measurement are discussed. Further, major 

classes of software reliability models and their evaluation metrics are described. 
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2 Literature review1 
 

In this chapter we analyze the relevant literature. First we consider the issue of the 

selection of a model to characterize the reliability of a software product. Then we analyze 

the application of reliability modeling to open source software (OSS). 

2.1 Model Selection 
Over the past 40 years many Software reliability growth models (SRGM) have been 

proposed for software reliability characterization. With so many models available, the 

question is therefore which model to choose in a given context.   Musa et al. [27] have 

shown that some families of models have certain characteristics that are considered better 

than others; for example, the geometric family of models (i.e. models based on the hyper-

geometric distribution) have a better prediction quality than the other models. Goel [12] 

stated that different models predict well only on certain data sets; and the best model for a 

given application can be selected by comparing the predictive quality of different models.   

But there is also convincing evidence that there is no way to select a model a priori, in 

function of the characteristics of a project [26, 33, 11]. So, many authors propose 

methods for model selection [32, 33, 34]. Brocklehurst et al. [11] proposed that the nature 

of software failures makes the model selection process in general a difficult task. They 

observed that hidden design flaws are the main causes of software failures. Ghaly et al. 

[13] analyzed the predictive quality of 10 models using 5 methods of evaluation. They 

observed that different criteria of model evaluation select a different model as best 

predictor. Also, some of their methods were rather subjective as to which model was 

better than others.  Khoshgoftaar [14] suggested Akaike Information Criteria (AIC) as 

best model selection method. Subsequent work by Khoshgoftaar and Woodcock [15] 

proved the feasibility of using the AIC for best model selection.  Khoshgoftaar and 

Woodcock [16] proposed a method for the selection of a reliability model among various 

alternatives using the log-likelihood function (i.e. a function of the parameters of the 

models). They applied the method to the failure logs of a project. Lyu and Nikora [17] 

implemented Goodness-of-Fit (GOF) in their model selection tool. In [18] the authors 

have proposed a method for software reliability model selection based on experiences 

from past software projects, which considers the information about models used in past 

software projects.  But the problems in this method are how to measure the similarity of 

software projects and how to make full use of past project experiences. Stringfellow et al 

                                                           
1
 The content of this chapter has been modelled according to N. Ullah, Morisio M, Vetro'.A. A 

method for predicting residual defects of Open Source Software. In: Software Quality Journal. 
(in press) 



18 
 

[34] developed a method that selects the appropriate SRGM and may help in decision 

making on when to stop testing and release the software. 

 Table 2-1: Summary of papers about model selection 

Paper Models 

applied 

Focus of 

paper 

Project 

data set 

Empirical evaluation result 

Sharma et al., 

[26] 

16 SRGM Fitting  2 CSS Different models must be evaluated, 

compared and then the best one should 

be chosen 

Sukert, [33] 3 Non-

geometric 

models 

Prediction  4 CSS No universally applicable model 

available.  A model behaves different 

for different datasets. 

Brocklehurst 

et al., [11] 

9 SRGM Prediction 1 CSS A user cannot select a model a priori 

from the available models and know 

that it is the best for a given context. 

Ghaly et al., 

[13] 

10 SRGM Prediction 3 CSS Different methods of model evaluation 

select different model as best predictor. 

Khoshgoftaar, 

[14] 

5 SRGM Prediction  1 CSS During development in system test 

phase the models prediction were 

evaluated 5 times after different 

interval of time; 1 week, 3 weeks, 1 

week, and 5 weeks. 

5/5 selects best model 

Stringfellow 

et al., [34] 

4 SRGM  Prediction 3 CSS  The proposed method selects best 

model in all cases. 

 

Error! Reference source not found. summarizes papers about model selection that have 

n empirical evaluation. The first column reports the reference of the paper, the second 

column reports the reliability models applied, the third column reports the focus of the 

paper (fitting = evaluating models on goodness on fit, without considering their 

predictive capability, prediction = fitting models and evaluating them on their predictive 

capability), the fourth column reports the number and type (CSS = closed source 

software) of projects used for validation, and the rightmost column reports the key result 

of the paper. Overall there is agreement that models should be selected case by case. 

There is no universally accepted selection measuring criterion, and all the criteria 

reported have been evaluated on very few projects. 

2.2 Application of SRGM to Open Source Software 

More recently the literature has concentrated on OSS. The key research question is 

whether OSS behaves, from a reliability point of view, in the same way as CSS. If yes, 

the next question is which model, or family of models, should be used.  Mohamad et al. 

[19] examined the defect discovery rate of two OSS products with software developed in-
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house using 2 SRGM. They observed that the two OSS products have a different profile 

of defect discovery.  Zhou et al. [20] analyzed bug tracking data of 6 OSS projects. They 

observed that along their developmental cycle, OSS projects exhibit a similar reliability 

growth pattern with that of closed source projects. They proposed the general Weibull 

distribution to model the failure occurrence pattern of OSS projects. Rossi et al. [21] 

analyzed the failure occurrence pattern of 3 OSS products applying SRGM. They also 

proposed that the best model for OSS is the Weibull distribution. However, Rahmani et 

al. [22] obtained a different result: they compared the fitting and prediction capabilities of 

3 models using failure data of 5 OSS projects and they observed that Schneidewind 

model was the best while Weibull was the worst one. Fengzhong et al. [23] examined the 

bug reports of 6 OSS projects. They modelled the bug reports using nonparametric 

techniques and they suggested that Generalized Additive (GA) models and exponential 

smoothing methods are suitable for reliability characterization of OSS projects. In Li et 

al. [24] the results show that SRGM can be used for reliability characterization of OSS 

projects.  

Table 2-2: Summary of papers about reliability in OSS 

Paper Models 

applied 

Focus of 

paper 

Project 

data set 

Empirical evaluation result 

Mohamad 

et al., [19] 

2 SRGM Fitting 2 OSS 

& 1 

CSS 

OSS has different profile of defect arrival 

from CSS 

SRGM cannot be used for OSS 

Zhou et al., 

[20] 

Weibull 

distribution 

Fitting 8 OSS OSS has same profile as CSS 

Weibull distribution suitable for OSS 

Rossi et al., 

[21] 

6 SRGM Fitting  3 OSS  SRGM can be used for OSS, 

Best model is Weibull 

Rahmani et 

al.,  [22] 

3 SRGM Prediction 5 OSS Weibull fits best but does not predict well 

compared to the other selected models 

Fengzhong 

et al., [23] 

Non-

parameteriz

ed models 

Fitting 6 OSS Non-parameterized models are most 

suitable  

Li et al., 

[24] 

2 SRGM Fitting 6 OSS SRGM can be used for OSS 

 

Error! Reference source not found..2 (that has the same format as Error! Reference 

urce not found.) summarizes papers about the characterization of reliability in OSS that 

have an empirical evaluation. In summary the evidence is somehow conflicting, but also 

suggesting that OSS projects can be characterized by the same models used for CSS. 

From exhaustive study of literature we came across three research gaps, which are 

briefly described in figure 2.1. 
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 Research gaps: Herein we briefly describe the research gaps upon which my PhD 

research has focused. 

1. No universally applicable model available that can be used for reliability 

characterization of every project. 

2. The available literature regarding applicability of SRGM to OSS is limited and 

unclear. 

3. There is a dilemmas of model exist and a distinctive method is needed to be 

developed for selecting appropriate model among several alternative models that 

characterizes very well the reliability of an OSS component before its adoption. 

These three research gaps are addressed in chapter 3, 4 and 5 respectively. In the next 

section we comprehensively describe the SRGM. 

2.3 Background 

2.3.1 Software Reliability Growth Models (SRGM) 

In the literature software reliability models (SRM) are mainly classified as white box and 

black box approaches.  Architecture based models are known as white box models since 

these models attempt to measure the reliability of a software system based on its structure 

that is normally architected during the specification and design of the product. 

Relationships among software components are thus the focus for white box software 

2. 
SRGM applicability 
for OSS is unclear  

3. 
No method available 
for OSS reliability 

evaluation  

Literature Review 

3 Research gaps 

SRGM have widely been used for CSS but 

1. 
No universally 

applicable model 
available 

Figure 2-1: Literature review: Research 

gaps 
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reliability measurement. Based on architecture based models decision are being made as 

how to design reliability into system [28]. SRGM are known as black box models 

because these models treat the entire software system as a single entity, thus ignoring 

software structures and components interdependencies. These models quantify the 

reliability in testing phase and influence the release decision. The models rely on the 

testing data collected over an observed time period [28]. 

SRGM assume that reliability grows after a defect has been detected and fixed. SRGM 

can be applied to guide the test board in their decision of whether to stop or continue the 

testing. These models are grouped into concave and S-Shaped models on the basis of 

assumption about cumulative failure occurrence pattern. The S-Shaped models assume 

that the occurrence pattern of cumulative number of failures is S-Shaped: initially the 

testers are not familiar with the product, then they become more familiar and hence there 

is a slow increase in fault removing. As the testers’ skills improve the rate of uncovering 

defects increases quickly and then levels off as the residual errors become more difficult 

to remove. In the concave shaped models the increase in failure intensity reaches a peak 

before a decrease in failure pattern is observed. Therefore the concave models indicate 

that the failure intensity is expected to decrease exponentially after a peak was reached. 

There are some basic assumptions which are similar for all these kinds of models [29]. 

 When a defect is detected it is removed immediately. 

 A defect is corrected instantaneously without introducing new defect into the 

software. 

 The software is operated in a similar manner as that in which reliability 

predictions are to be made. 

 Every defect has the same chance of being encountered within a severity class 

as any other defect in that class. 

 The failures, when the defects are detected, are independent. 

  Software Reliability Growth Models measure and model the failure process itself. 

Because of this, they include a time component, which is characteristically based on 

recording times ti of successive failures i (i ≥1). Time may be recorded as execution time 

or calendar time. These models focus on the failure history of software. These models use 

a non-homogeneous Poisson process (NHPP) to model the failure process. The NHPP is 

characterized by its mean value function, m (t). This is the cumulative number of failures 

expected to occur after the software has executed for time t. Let {N (t), t> 0} denote a 

counting process representing the cumulative number of defects detected by the time t. A 

SRGM based on an NHPP with the mean value function (MVF)    ) can be formulated 

as [29]. 
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P {N (t) = n} =
   ) 

  
     ), n = 1, 2…….. 

Where     ) represent the expected cumulative number of defects detected by the time t. 

The MVF,    ) is non-decreasing in time t under the bounded condition    ) = a, 

where ‘a’ is the expected total number of defects to be eventually detected. Knowing its 

value can help us to determine whether the software is ready to be released to the 

customers and how much more testing resources are required. The MVF,    ) provides 

prediction of the expected total number of failures at time t. The MVF,    ) quite often 

is defined as a parametric function depending on two or more unknown parameters. 

Generally, we can get distinct NHPP models by using different non-decreasing mean 

value functions.  

For this thesis we selected eight SRGMs due to their wide spread use in literature and 

they are the most representative in their category.  Brief comprehensive descriptions of 

MVF,    )  for each model are given as fallow: 

      2.3.1.1 Musa Okumoto: 

This model was proposed by J. D. Musa and K. Okumoto. It assumes that failure 

occurrence pattern follows a concave shape and does not include the learning curve [30]. 

The MVF is 

    )          )             

Where ‘a’ is the expected total number of defects to be eventually detected and ‘b’ is the 

defect detection rate. 

      2.3.1.2 Inflection S-Shaped: 

It was proposed by Ohba and its underlying concept is that the observed software 

reliability growth becomes S-shaped if defects in a program are mutually dependent, i.e., 

some defects are not detectable before some others are removed [31]. The mean value 

function is 

    )    
           

     )         
 ,     )  

   

 
 

             

The parameter ‘r’ is the inflection rate that represents the ratio of the number of 

detectable defects to the total number of defects in the software, ‘a’ is the expected total 

number of defects to be eventually detected, ‘b’ is the defect detection rate, and Ψ is the 

inflection factor. 
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     2.3.1.3 Goel Okumoto: 

This model, proposed by Goel and Okumoto, is one of the most popular NHPP model in 

the field of software reliability modeling [29, 30, 31]. It is also called the exponential 

NHPP model. Considering defect detection as a NHPP with an exponentially decaying 

rate function, the mean value function is postulated in this model as 

    )              )          

Where ‘a’ is the expected total number of defects to be eventually detected and ‘b’ 

represents the defect detection rate. 

      2.3.1.4 Delayed S-Shaped: 

Delayed S-Shaped model is a modification of the NHPP to obtain an S-shaped curve in 

order to model the cumulative number of failures detected such that the failure rate 

initially increases and later decays [29, 31]. This model can be thought of as a 

generalized exponential model with failure rate first increasing and then decreasing. The 

software defect detection process described by such an S-shaped curve can be regarded as 

a learning process because the testers’ skills will gradually improve as time progresses. 

The MVF is 

    )           )         )          

Where ‘a’ and ‘b’ are the expected total number of defects to be eventually detected and 

the defect detection rate, respectively. 

      2.3.1.5 Logistic: 

Generally software reliability tends to improve and it can be treated as a growth process 

during the testing phase. This reliability growth occurs due to the fact that a defect is 

fixed when it is detected. Therefore, under some conditions, the models developed to 

predict economic population growth could also be applied to predict software reliability 

growth. These models simply fit the cumulative number of detected defects at a given 

time with a function of known form. Logistic growth curve model is one of them and it 

has an S-shaped curve [31]. Its MVF is 

    )  
 

            
              

Where ‘a’ is the expected total number of defects to be eventually detected and ‘k’ and 

‘b’ are parameters which can be estimated by fitting the defect data. 
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     2.3.1.6 Yamada Exponential: 

This model includes initial learning curve and belongs to S-shape class of SRGM [32]. 

The mean value function of this model is 

    )   (     (       ))               

The parameter ‘r’ is the inflection rate that represents the ratio of the number of 

detectable defects to the total number of defects in the software, ‘a’ is the expected total 

number of defects to be eventually detected, and ‘b’ is the defect detection rate. 

      2.3.1.7 Gompertz: 

It is one of the simplest S-shaped software reliability growth models. Due to its simplicity 

many Japanese computer manufacturers and software houses have adopted this model. 

Gompertz Growth Curve Model is used in the Fujitsu and Numazu work [31]. Its MVF is 

    )      
                  

Where ‘a’ is the expected total number of defects to be eventually detected, ‘b’ and ‘k’ 

are parameters whose values are estimated using regression analysis. 

      2.3.1.8 Generalized Goel: 

In order to describe the S-Shaped nature of software failure occurrence, Goel proposed a 

simple generalization of the Goel-Okumoto model with an additional parameter ‘c’ [31]. 

The mean value function is 

    )               )             . 

Where ‘a’ is the expected total number of defects to be eventually detected, ‘b’ and ‘c’ 

are parameters that reflect the quality of testing. 

The next section provides a quick refresher on software reliability modelling. 

2.3.2 Reliability Modeling 

Software reliability model (SRM) is a mathematical expression that specifies general 

form of failure occurrence as a function of fault introduction, fault removal and 

operational environment [25]. SRM can both assess and predict reliability. In reliability 

assessment SRM are fitted to the collected failure data using statistical techniques (e.g. 

Linear Regression, Non Linear regression) based on the nature of collected data. In 

reliability prediction, the total number of expected future failures is forecasted on the 

basis of fitted SRM. Both assessment and prediction need good data, which implies 

accuracy, i.e. data is accurately recorded at the time the failures occurred and pertinence, 

i.e. data relates to an environment that resembles to the environment for which the 
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forecast is performed [25].  For reliability modeling, software systems are tested in an 

environment that resembles to the operational environment. When a failure (i.e. an 

unexpected and incorrect behavior of the system) occurs during testing, it is counted with 

a time tag. Cumulative failures are counted with corresponding cumulative time. SRM is 

fitted to the collected data and the fitted models are then used to predict the total number 

of expected defects (i.e. fault on the execution of which failure occur) in the software.  

Hence, typically reliability modeling is composed of 5 steps: keeping a log of past 

failures, plotting the failures, determining a curve (i.e. Model) that best fits the 

observations, measuring how accurate the curve model is and then using the best fitted 

model predicting the future reliability in terms of predicting total number of expected 

defects in the software system.  

Figure 2.2 gives an overview of the reliability modeling. In first phase reliability 

objective is defined and operational profile is developed, then software is tested in the 

environment resemble to the operational one. Failure data is collected in such a way that 

each failure is counted with the time tag in which the failure is detected. Apply the SRM 

to the collected failure data and estimate the reliability, if the predefined reliability 

objectives meet, deploy the software otherwise continue testing.  After releasing the 

software the predicted reliability is validated in the field and feedback for next release is 

taken. 



26 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                     

              

           

     No                                                   

             

          

           

   Yes          

             

             

    

   

Determine Reliability Objective  Develop Operational Profile 
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Collect Failure Data

 Use Software Reliability Model to 

estimate current Reliability 
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Feedback to Next Release

Continue Testing 

Provided that Testing environment 

similar to Operational one 

Figure 2-2: Software reliability engineering process overview during testing phase 
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3. Comparison of software reliability growth 

models2 
 

Herein this chapter we focus on the first research gap: There is no agreement on what is 

the best reliability model for a given project, especially at its inception. Different models 

predict well only on certain data sets and the best model can be selected by comparing the 

predictive qualities of a number of models only at the end of a project. To overcome this 

research gap we briefly compare the reliability characterization and prediction quality of 

different SRGM in order to draw a general conclusion about the best fitting and best 

predictor models among them. Such knowledge will help project managers in the 

selection of a good SRGM model and in making an informed decision on the release of 

the product.   

3.1 Goal 
The goal and the research questions that have been driven to overcome the first research 

gap, can be summarized as given below using the GQM [51] template.  

 

Object of the study Analyze different SRGM models 

Purpose to compare  

Focus Their capability to characterize and predict the  reliability of 

a project  

Stakeholder from the point of view of maintenance and quality  

managers 

Context factors in the context of industrial and open source systems 

 

We describe the research questions and metrics that complete the GQM. The first step is 

analyzing the capability of models to simply fit the data sets. At this regard we define 

RQ1 and compare the fitting capability, in terms of goodness of fit (i.e. R2) of the models 

on the whole dataset. The second step is analyzing the capability of prediction. To this 

purpose we use the first two thirds of the data sets to fit models, and estimate the 

                                                           
2
The contents of this chapter have been modelled according to N. Ullah, Morisio M, Vetro'.A.  A 

Comparative Analysis of Software Reliability Growth Models using defects data of Closed and 
Open Source Software. In: 35th Annual IEEE Software Engineering Workshop, Heraclion, Crete, 
Greece, 12-13 October 2012.  
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remaining third. The two thirds threshold was selected following [50]. To the regard of 

prediction we have two different research question (RQ). RQ2 simply compares the 

models in terms of prediction relative error (PRE) and Theil’s Statistics (TS). RQ3 tries 

to help in selecting a model, taking the point of view of a project manager who only has 

available part of the dataset and needs to select a model for prediction. So RQ3 analyzes 

if a model with a good fit (high R
2
) is also a good predictor. 

The RQs are now presented in detail. 

3.1.1 RQ1: Which SRGM models fit best? 

Or, in operational terms, which SRGM has the best R
2
? Models are fitted on the whole 

data sets, and their R
2
 are analyzed and compared. Model fitting is required to estimate 

the parameters of the models and produce a prediction of failures. Fitting can be done 

using Linear or Non Linear Regression (NLR). In linear regression, a line is determined 

that fit to data, while NLR is a general technique to fit a curve through data. The 

parameters are estimated by minimizing the sum of the squares of the distances between 

data points and the regression curve. We use NLR fitting due to the nature of data. 

NLR is an iterative process that starts with initial estimated values for each parameter. 

The iterative algorithm then gradually adjusts these until to converge on the best fit so 

that the adjustments make virtually no difference in the sum-of-squares. A model’s 

parameters do not converge to best fit if the model cannot describe the data. On 

consequence the model cannot fit to the data.  On the contrary, in case of convergence of 

the iterative algorithm, the R2 is the metric that indicates how successful the fit is. R2 

takes a value between 0 and 1, inclusive.  The closer the R2 value is to one, the better the 

fit.  

We consider a good fit when R
2
 > 0.90. Given that the number of datasets is not 

statistically significant for at least Field datasets (10) and OSS datasets (6), we do not test 

the hypothesis.  Instead we analyze and rank models based on their R
2
. 

3.1.2 RQ2: Which SRGM models are good predictors? 

Or in operational terms, which models have best TS (for prediction accuracy) and PRE 

(for prediction correctness). Models are fitted on the first two thirds of the datasets, TS 

and PRE are computed on the remaining third.  

Prediction capability can be evaluated under two points of view, accuracy and 

correctness. Accuracy deals with the difference between estimated and actual over a time 

period. Correctness deals with the difference between predicted and actual at a specific 

point in time (e.g. release date).  A model can be accurate but not correct and vice versa. 
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For this reason we use the Theil’s Statistic (TS) for accuracy and Predicted Relative Error 

(PRE) for correctness.   

We consider a prediction as good if TS is below 10% and PRE is within the range [-10%, 

+10%] of total number of actual defects. As for RQ1, we do not build hypothesis testing 

given the low number of datasets in Field and OSS defect types, but we rank models 

based on their TS and PRE.  

3.1.3 RQ3: A model with good fit is also a good predictor? 

Or, in operational terms, a model with a good R
2
 also has good TS and PRE?  Models are 

fitted on two thirds of the data sets, the R
2
 is computed on this fit, TS and PRE are 

computed on the remaining third of the dataset. 

RQ2 tries to understand what models are best predictors, but takes an a posteriori view. 

RQ3 takes an a priori view, or uses the view of a project manager who has to decide what 

model to use before the end of the project (at two thirds of it), and only has the goodness 

of fit as a rationale for a decision. 

3.2 Collected datasets 
The goal of the study is to analyze the selected SRGM described in previous chapter 

using as many software failure data sets as possible.  For this purpose we collected failure 

data from the literature. We have searched papers on IEEE Explorer, ACM Digital 

Library and in three journals, i.e. Journal of Information and Software Technology, the 

Journal of System and Software and IEEE software. For papers searching these strings 

have been used:  

 Software failure rate  

 Software failure intensity 

 Software failure Dataset  

 Failure rate and Reliability 

 Failure intensity and Reliability 

 

We found 2100 papers, 19 of which relevant for our study because they contained failure 

data sets on 38 projects. Among these, 32 projects were closed source and 6 were Open 

Source.  In 32 closed source projects, 22 contain system test failure data and 10 contain 

field defect data collected from the operation phase. OSS projects data have no 

distinction between phases. Table 3.1 lists the references of the selected projects and their 

names.  We have selected both system test and field defect data sets in order to evaluate 

the best fitting and best predictor SRGM for both phases (i.e. system test, operation) 

because the software reliability models are used for the prediction of failure in both 
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phases and the phase may be a factor for model selection. Six data sets contain defect 

data of two OSS Projects, Apache and GNOME. Three data sets have been collected 

from different versions of each of the two OSS projects. 

  

           Table 3-1: Projects Details of the collected Data Sets 

Ref. Project Type Phase Dataset ID 

[35] Pocket Power View Software Closed Source System Test DS1 
[40] Network Management System, R1 Closed Source System Test DS2 

Network Management System, R2 Closed Source System Test DS3 
[44] NTDS Data Set-Musa’s Data Set Closed Source System Test DS4 
[46] Real Time Command & Control System Closed Source System Test DS5 

Dataset2 from Ohba’s Study 1984 Closed Source System Test DS6 
[37] Tandem Computer Software, R1 Closed Source System Test DS7 

Tandem Computer Software, R2 Closed Source System Test DS8 
Tandem Computer Software, R3 Closed Source System Test DS9 
Tandem Computer Software, R4 Closed Source System Test DS10 

[36] Real Time Control system-Musa’s Dataset1 Closed Source System Test DS11 
[44]  Musa’s Dataset2 Closed Source System Test DS12 
[49] Telecommunication Product Closed Source System Test DS13 
[46] Large Medical Record System, R1 Closed Source System Test DS14 

Large Medical Record System, R2 Closed Source System Test DS15 
Large Medical Record System, R3 Closed Source System Test DS16 

[48] Wireless Network Management System, R3 Closed Source System Test DS17 
[43] Telecommunication Product B Closed Source System Test DS18 

Telecommunication Product C Closed Source System Test DS19 
[38] Software Testing Data of Armored Force 

Eng. Institute, China 

Closed Source System Test DS20 

National Tactical Data System Closed Source System Test DS21 
[41] Wireless Telecommunication Product, R3 Closed Source System Test DS22 
[39] Stratus-I Closed Source Operational  DS1 

Stratus-II Closed Source Operational  DS2 
[40] Network Management System, R1 Closed Source Operational  DS3 
[48] Wireless Network Management System, R1 Closed Source Operational  DS4 

Wireless Network Management System, R2 Closed Source Operational  DS5 
Wireless Network Management System, R3 Closed Source Operational  DS6 

[42] Telecommunication Product for voice and 

Data 

Closed Source Operational  DS7 

[45]  PSO Product A Closed Source Operational  DS8 
[41] Wireless Telecommunication Product, R1 Closed Source Operational  DS9 

Wireless Telecommunication Product, R2 Closed Source Operational  DS10 
[47] 

 

GNOME V2.0 Open Source DS1 
GNOME V2.2 Open Source DS2 
GNOME V2.4 Open Source DS3 
 Apache V2.0.35 Open Source DS4 
 Apache V2.0.36 Open Source DS5 
 Apache V2.0.39 Open Source DS6 
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3.3 Results 
 

3.3.1 RQ1: Which SRGM models fit best? 

First we consider the basic capability of a model to fit the dataset (fits or not), 

irrespective of the goodness of fit (R
2
). Figure 3.1 reports for each model on the X axis 

the percentage of datasets fitted (axis Y) in each data group (colour bars). Musa Okumoto 

fitted to all data sets in each group, most models also fit, except Yamada exponential, 

Gompertz, Generalized Goel that fit poorly, especially field test and system test datasets.   

Now let’s analyze goodness of fit too. Figure 3.2 reports how many times a model is the 

one with best R
2
. For instance Musa Okumoto has the best R

2
 on 60% of field defect 

datasets.   Musa Okumoto is top performer on field defects data; Gompertz has very good 

results on OSS datasets. But apart from that there is no clear winner. 

However, analyzing the top performer only as in Figure 3.2 can be misleading, in case 

many models fit with a similar R
2 

the same dataset.  Therefore in boxplots of Figure 3.3 

we report the boxplots of R
2
 per model and per dataset category. It should be reminded 

however that boxplots of Figure 3.3 excludes the models that did not fit at all the datasets 

(Figure 3.1) and is therefore meaningful for all models except Yamada exponential, 

Gompertz, and Generalized Goel.  Musa Okumoto remains the best performer (no 

outliers and narrow boxplot on all categories of datasets).  Next to it the other models 

have also narrow boxplot (always better than 0.9, the threshold depicted as a red 

horizontal line) but some outliers. It should be noted that all models behave extremely 

well (R
2
 close to 1 and no outliers) on the OSS datasets. 

In summary: 

 Considering plain fitting (Fig 3.1), Musa Okumoto fits all datasets, Yamada 

exponential, Gompertz, Generalized Goel fit all OSS datasets but behaves 

poorly on the others, and the others fit at least 80% of the data sets. 

 

 Considering the R
2
 of models that fit the datasets (Figure 3.5). Musa Okumoto 

has always a very good fit (better than 0.9), the others, except Generalized 

Goel, also perform quite well but with outliers. 
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Figure 3-1: No of DS fitted by each Model 

 

 

Figure 3-2: Ranking on Best Fitting-R
2
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Figure 3-3: Box Plots of fitting (R
2
) values 

 

3.3.2 RQ2: Which SRGM models are good predictors? 

For models that could fit the data set we used the first two-third data points of the data 

sets to train the model, and predicted the last third. We analyse their predicting capability 

in terms of accuracy and precision.  

Accuracy 

Figure 3.4 shows the number of times a model is the best predictor in terms of TS. It is 

clear that Musa Okumoto outperforms the others in both the industrial datasets. The 

Logistic Model is directly behind it. On the contrary in the case of OSS we got several 

ties (this explains why the sum of percentage might be greater than 100%), and the best 

model is Logistic followed by Inflection S-Shaped and Gompertz.  
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Figure 3.5 reports the TS values for all datasets. The red line represents the 0.1 threshold, 

usually considered indicator of good accuracy. Figure 6 allows us to discuss good 

models, instead of best model as in Figure 3.4. 

In System Test data, all models show variations, however Musa Okumoto and Inflection 

S-Shaped have a median below the 0.1 threshold. This happens also for Gompertz and the 

Generalized Goel models; however they do not fit in several cases (Figure 1).  

In Field data sets all models except Delayed S-Shaped have a median below the 

threshold, but indeed show variation. Musa-Okumoto is the first in 60% of datasets.  In 

OSS the situation is completely different, only Gompertz and Inflection fit all data sets 

and have TS below 0.1. 

In summary: 

 On industrial data sets (System test and field data) accuracy is slightly better 

for Musa Okumoto and Inflection S Shaped, but all models have variations. 

 

 On OSS data sets only Gompertz and Inflection fit all data sets and provide 

nearly always TS below 0.1. 
 

 

 

Figure 3-4: Ranking on best prediction: TS 
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Figure 3-5: Box Plots of Prediction Accuracy (TS) values 

 

Correctness 

Correctness results are shown in the boxplots of Figure 3.7. The red lines represent the 

range ±10% of total number of actual defects. 

In System test only Musa Okumoto, Inflection S-Shaped, Goel Okumoto and Yamada 

Exponential are reasonably within the range ±10% (but Yamada fits less datasets). 

Worse, all the others tend to underestimate the actual number of faults.  

In field data, the same first three models (Musa Okumoto, Inflection S-Shaped, and Goel 

Okumoto) are reasonably within range. Gompertz is fully within range, but fits only 20% 

of data sets.  

Finally, in OSS, only Gompertz and Yamada fit all models and are within range. 
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Looking at ranks in the bar chart diagram in Figure 3.6, we observe that Musa Okumoto 

is the best model in terms of correctness in the majority of both system test and field 

defects dataset. Inflection S-Shaped is directly behind Musa Okumoto in the case of 

system test data sets while Logistic is directly behind this in the case of field defect data 

sets. On contrary in the case of OSS Logistic and Delayed S-Shaped are the best ones. 

In summary: 

 On industrial data sets, Musa Okumoto, Inflection S-Shaped and Goel 

Okumoto fit most datasets and provide good accuracy and prediction. 

 On OSS data sets Gompertz and Yamada fit all data sets and provide optimal 

accuracy and prediction. 

 

 

 

Figure 3-6: Ranking on best prediction:  PRE 
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Figure 3-7: Box Plots of Prediction Correctness (PRE) values 

 

3.3.3 RQ3: A model with good fit is also a good predictor?  

Here we fit models on two thirds of the data sets and we analyze if the ones with good R
2
 

are also good predictors. Table 3.2 reports models and data sets. A model is described by 

three cells per category of dataset. The first contains the number of times a model fits the 

dataset, with any R
2
 (information is also in Figure 1), the second shows how many times 

the model fits a data set with R
2
 better than 0.9 and predicts with TS < 0.1, the third 

shows how many times the model fits a data set with R
2
 better than 0.9 and predicts with 

PRE within 10%.  . We observe from Table 3.2 that: 

 On industrial datasets, Musa and Inflection are the ones with better prediction 

capability – however this happens only in a bit more than half the datasets. 
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 On OSS datasets Gompertz and Inflection have good prediction capability for 

all datasets, followed by Logistic and Delayed. 
 

Table 3-2: Fitting and prediction capability of models 

 System test DS Field DS OSS DS 

Model Fitted 
DS 

R2 >= 
0.9 AND 
TS <0.1 
 

R2 >= 0.9  
AND PRE 
within 
0.1 

Fitted 
DS 

R2 >= 
0.9 AND 
TS <0.1 
 

R2 >= 0.9  
AND PRE 
within 
0.1 

Fitted 
DS 

R2 >= 
0.9 AND 
TS <0.1 
 

R2 >= 0.9  
AND PRE 
within 
0.1 

Musa 22/22 13/22 12/22 10/10 7/10 5/10 6/6 3/6 1/6 

Inflection 22/22 15/22 10/22 9/10 6/10 4/10 6/6 6/6 6/6 

Goel 21/22 7/22 6/22 8/10 6/10 3/10 6/6 5/6 4/6 

Delayed 20/22 6/22 3/22 9/10 1/10 2/10 6/6 6/6 5/6 

Logistic 20/22 7/22 5/22 9/10 5/10 5/10 5/6 5/6 5/6 

Yamada 18/22 3/22 4/22 5/10 2/10 1/10 6/6 5/6 4/6 

Gompertz 14/22 6/22 3/22 2/10 2/10 2/10 6/6 6/6 6/6 

Generalized 10/22 2/22 1/22 1/10 1/10 0/10 6/6 4/6 2/6 

 

3.4 Discussion 
We have attempted to derive general conclusion about best fitter and best predicting 

SRGM model applying eight different models to a wide range of datasets on failures.  

Considering the three RQs the origin of datasets appears to be a factor. The performance 

of models differs slightly between System test and Field test datasets. On the other hand 

there is a clear difference between OSS and industrial data sets. The best performer 

models are Musa Okumoto and Inflection for industrial datasets, while Gompertz is the 

best for OSS datasets. This result should be inquired more in the future, especially 

because we consider only 6 OSS datasets. 

Considering the dichotomy between fitting and prediction, In general a good fitting 

model is not always also a good predictor, especially on industrial datasets. Musa 

Okumoto and Inflection fit nearly all datasets, but are good predictors only on a bit more 

than 50% of the datasets. The situation changes for OSS datasets, but again the number of 

datasets we have is very small.  

Results also show that models that have good performances in fitting and predicting in 

system tests are still good in fitting and predicting field defects. We think this is a very 

practical and important finding because quality and maintenance managers might choose 

only one model regardless of the phase of the software lifecycle data come from. 
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Results are quite different for the six open source data sets, where the Gompertz model 

obtained the best results, followed by Inflection. These results show that SRGM models 

also apply on OSS. However, given the low number of datasets, we need further research 

to generalize this finding. 

It is interesting to notice that Musa Okumoto, that is the best model for industrial 

datasets, does not apply in OSS. However, 

OSS datasets are significantly different from industrial datasets (there is no distinction 

between System Test failures and Field defects), so we cannot really derive any 

meaningful consequence. 

We finalize this discussion with a message to the maintenance and quality manager that 

might read this analysis. We provided ranks and boxplots to show to the readers that 

certain models got good fitting\prediction performances in several datasets. Although the 

high number of datasets used (38) might make our findings generalizable, we strongly 

suggest the reader to define her own thresholds for fitting, accuracy and correctness of 

predictions and re elaborate the results according to those thresholds, using the boxplot 

provided. In fact we are convinced that each context has unique combination of 

characteristics that make some thresholds more appropriate than others, thus the choice of 

the SRGM should be based on characteristics of the context and the data it is going to be 

applied.  

3.5 Threats to validity 
We recognize a first conclusion threat in the methodology we used to answer research 

questions, because we did not apply hypothesis testing due to the low cardinality of some 

datasets, and answers are given more in a qualitative way rather than in a quantitative 

one. Moreover the choice of threshold is also not grounded in the literature. 

This approach was conscious and deliberate though. We preferred to choose indicative 

thresholds and show all boxplots to not bias the reader: we strongly believe that 

classifying a model as good or bad is a task that strictly depends on the level of 

performances that the manager wants to achieve. Each reader might decide by herself 

whether the threshold we used is appropriate for her context or not, and classify 

differently the models by looking at the boxplots. However, we did not leave this threat 

uncontrolled and we provided the reader with ranks to identify the best model for each 

type of datasets and metric.  

 

We observe a construct threat in the impossibility to adequately compare industrial 

datasets with OSS datasets due to the lack of information on the defect detection phase 
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(system test, operation) in latter one: we could not build a proper control strategy except 

avoiding a structured comparison between industrial and OSS results. 

We notice a conclusion threat in the choice of not performing cross validation in 

prediction. However we grounded our choice in the literature. 

Finally, an external threat is the low number of datasets in for field defects and OSS 

datasets. However Apache and GNOME projects both have large and well organized 

communities, where a great number of developers contribute to the projects. The large 

sizes of these two projects make them the state-of-the-art in terms of management of OSS 

projects. 

3.6 Conclusions 
We have studied selected SRGM in generalized way for the purpose to derive general 

conclusion.  

We found that the Musa-Okumoto model is the best one in fitting and predictions in 

industrial datasets. Although also Inflection S-Shaped achieved very good results with 

respect to the metrics thresholds we adopted. The Musa-Okumoto model did not hold the 

same performances in OSS data, in which the Gompertz model applied better, followed 

by Inflection S-Shaped.  

We also observed two other interesting facts: 1) models which have good performances 

with system test data sets also good performances with field defect data, and 2) models 

that fit very well system test data not always predict with same performances.  The 

practical consequences and recommendations to quality and maintenance managers are: 

1) choose only one model regardless of the phase of the software lifecycle, 2) identify 

and choose a model that is flexible enough in case the quality process is under definition 

or in generable susceptible of important changes. 

Our future work will be devoted to the extension of the datasets used to increase the 

generalizability of these findings, especially in OSS projects where results and structure 

of datasets were very different from industrial ones. 
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4. Reliability growth of open versus closed source 

software3 
Herein this chapter we focus on the second research gap: applicability of SRGM for OSS 

is unclear. As clear from the literature review section (i.e. Chapter 2) different studies 

report different results for the applicability of software reliability models in OSS projects 

reliability characterization. To overcome this research gap we empirically compare the 

reliability growth of OSS with that of CSS in order to investigate whether or not OSS 

reliability grows in a different way compared to CSS.  

4.1 Goal 
To achieve the goal, we analyze these research questions, which are presented in detail: 

4.1.1 R.Q1: Does OSS behave, from a reliability point of view, in the same way as 

closed source software? 

 

Or, in operational terms, the OSS failure occurrence trend can be represented by SRGM 

such like CSS? Models are fitted on the failure datasets of OSS and CSS, and their R
2
 

(i.e. goodness of fit) are analysed and compared. Model fitting is required to estimate the 

parameters of the models and produce a prediction of failures. Fitting can be done using 

Linear or Non Linear Regression (NLR). We use NLR fitting due to the nature of data. 

 We use a commercial program for curve fitting of the models to the collected defect 

datasets.  In case of convergence of the curve fitting we use goodness of fit (GOF) test, 

R
2
 in order to determine how well curve fit to the data.  

   We consider a good fit when R
2
 > 0.90. This threshold categorizes the models as good 

and bad for OSS and CSS projects in term of fitting capability. We also rank models on 

their R
2
 in order to determine models that best fit to OSS and CSS. 

4.1.2 R.Q2: Which models should be used (for OSS)? 

Or in operational terms, which models have best TS (for prediction accuracy) and PRE 

(for prediction correctness). We use the partial failure history of the products to 

accomplish the prediction as [22]. The first two thirds data points of the each datasets 

following [50], is used to estimate the parameters.  These estimated values of the 

parameters are then applied to the entire time span for which failure data is collected in 

each dataset in order to compare the prediction qualities of the models. 

                                                           
3
 N. Ullah, M. Morisio . An Empirical Study of Reliability Growth of Open versus Closed Source 

Software through Software Reliability Growth Models. In: The 19th Asia-Pacific Software 
 Engineering Conference, Hong Kong, December 4-7, 2012.
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Prediction capability can be evaluated under two points of view, accuracy and 

correctness. Accuracy deals with the difference between estimated and actual over a time 

period. Correctness deals with the difference between predicted and actual at a specific 

point in time (e.g. release date).  A model can be accurate but not correct and vice versa. 

For this reason we use the Theil’s Statistic (TS) for accuracy and Predicted Relative Error 

(PRE) for correctness.  

4.2 Studied projects 

The goal is to analyze the reliability growth of OSS versus software developed in-house. 

Our focus is to derive more generalize results using as many software projects as 

possible.  For this purpose we used the failure data collected from the literature described 

in chapter 3 (for details see chapter 3).  We found 22 datasets of CSS but a little number, 

i.e. 6 datasets, about OSS projects from literature. We then extracted defect data about 

some other OSS projects from Apache repository. 

We identified two notable and active open source projects from apache.org 

(https://issues.apache.org/). These projects are C++ Standard Library and JUDDI. The 

Apache C++ Standard Library provides a free implementation of the ISO/IEC 14882 

international standard for C++ that enables source code portability and consistent 

behavior of programs across all major hardware implementations, operating systems, and 

compilers, open source and commercial alike. JUDDI is an open source Java 

implementation of the Universal Description, Discovery, and Integration (UDDI v3) 

specification for (Web) Services. Both of these projects are considered stable in 

production. The 66% of the reported issues in first project have been fixed while in the 

second project 95% of the reported issues have fixed and closed.  We collected defect 

data of the selected projects from apache.org using JIRA. JIRA is a commercial issue 

tracker. Issues can be bugs, feature requests, improvements, or tasks. JIRA track bugs and 

tasks, link issues to related source code, plan agile development, monitor activity, report 

on project status. 

For each version we have collected all the issues reported at our date of observation 

together with the date at which they were reported (date of opening). For each open 

source project, we have considered all the major versions until April 2012. For C++ 

Standard Library we were able to get eight (8) versions.  Unfortunately, JUDDI had not 

so many reports and versions we had to limit the versions to four (4) until October 2011.  

Table 4.1 lists the information of the projects. 

After a deep inspection of the repositories and of their documentation, we have decided 

to focus on those issues that were declared “bug” or “defect” excluding “enhancement,” 

“feature-request,” “task” or “patch”. For the same reason, we have considered only those 
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issues that were reported as closed or resolved after the release date of each version. 

Further, we excluded issues closed before the release date. These issues are typically 

found in the candidate (or testing) releases of projects.  

                              

        Table 4-1: OSS Projects Details 

Project Version Release Date 

C++ Standard Library V4.1.2 18/07/2005 

V4.1.3 30/01/2006 

V4.1.4 030/7/2006 

V4.2.0 29/10/2007 

V4.2.1 01/05/2008 

V4.2.2 30/06/2008 

V4.2.3 01/09/2008 

V5.0.0 31/05/2009 

JUDDI V0.9 14/06/2005 

V2.0 02/08/2009 

V3.0 26/10/2009 

V3.1.0 27/06/2011 

 

4.3 Results  

4.3.1 Models Fitting Results: (RQ1) 

First we consider the basic capability of the models to fit the datasets (fits or not), 

irrespective of the goodness of fit (R
2
). Table 4.2 reports models fitting results. A model 

is described by two cells per type of dataset. The first contains the number of times a 

model fits the dataset, with any R
2
, the second shows how many times the model fits a 

data set with highest R
2 

value among the entire fitted model to the given data set. Musa 

Okumoto and Inflection S-Shaped Models fitted to all data sets of in-house software. On 

contrary in the case of OSS beside these two models Goel Okumoto and Yamada 

Exponential also fitted to all data sets. Most models also fit, except Gompertz, 

Generalized Goel that fit poorly in datasets of software developed in-house. 

Now let’s analyse goodness of fit too. In table 4.2 the second cell of each model per 

category reports how many times a model is the one with best R2. For instance Musa 

Okumoto has the best R
2
 on only 23% of closed source software (CSS) datasets while 

Gompertz has the best R
2
 on 44% of OSS datasets.  But apart from that there is no clear 

winner. 

However, analysing the top performer only can be misleading, in case many models fit 

with a similar R2 the same dataset.  Therefore in Figure 4.1 we report the boxplots of R
2
 

per model for both types of datasets.  Musa Okumoto remains the best performer (no 
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outliers and narrow boxplot) for Closed Source Software (CSS) datasets. On contrary for 

OSS datasets Inflection and Gompertz remains the best performer. Next to it in the case 

of CSS datasets except Generalized the other models have also narrow boxplot (always 

better than 0.9, the threshold depicted as a red horizontal line) but some outliers. Whereas 

in the case of OSS datasets the models fitting boxplots are so narrow as like CSS datasets 

which clearly indicates that OSS failure occurrence pattern is not too similar to that of 

CSS failure occurrence pattern. 

 

In summary: 

 Considering plain fitting (table 4.2) Musa and Inflection fit all CSS datasets 

while along with Musa and Inflection, Yamada exponential and Goel Okumoto 

fit all OSS datasets. The others fit at least 80% of the data sets. 

 

 Considering the R
2
 of models that fit the datasets (Figure 4.1). All the models 

have very good fit (better than 0.9), except Generalized Goel but with outliers in 

the case of CSS while in OSS the median of Musa, Goel and Yamada are on the 

threshold. 

               Table 4-2: Results of the Models fitted to each type of Dataset 

 CSS DS OSS DS 

Model Fitted DS # of DS having 

Highest R
2
 Value 

 

Fitted DS # of DS having 

Highest R
2
 Value 

 

Musa 22/22 5/22 18/18 0/18 

Inflection 22/22 4/22 18/18 5/18 

Goel 21/22 0/22 18/18 0/18 

Delayed 20/22 2/22 16/18 1/18 

Logistic 20/22 3/22 15/18 1/18 

Yamada 18/22 0/22 18/18 0/18 

Gompertz 14/22 4/22 17/18 8/18 

Generalized 10/22 4/22 16/18 3/18 

 



45 
 

 

      Figure 4-1: Box Plots of fitting (R
2
) values 

4.3.2 Models Prediction Results: (RQ2) 

For models that could fit the data set we used the first two-third data points of the data 

sets to train the model, and predicted the last third. We analyse their predicting capability 

in terms of accuracy and precision.  

Accuracy 

   Table 4.3 reports models prediction results. A model is described by two cells per 

category of dataset. The first contains the number of times a model is the best predictor in 

terms of TS, the second contains the number of times a model is the best predictor in 

terms of PRE
 
value among the entire models for a given data set. It is clear that Musa 

Okumoto outperforms the others in the CSS datasets. On the contrary in the case of OSS 

Gompertz outperforms the others. We got several ties (this explains why the sum might 

be greater than total number of datasets). 

   Figure 4.2 reports the TS values for all datasets of both types. The red line represents 

the 0.1 threshold, usually considered indicator of good accuracy. Figure 4.2 allows us to 

discuss good models, instead of best model as in table 4.3. 

   In CSS data sets, Musa Okumoto and Inflection S-Shaped have a median below the 0.1 

threshold. This happens also for Gompertz and the Generalized Goel models; however 

they do not fit in several cases (table 4.2).   

   In OSS data sets only Gompertz have a median below 0.1 and Inflection S-Shaped have 

a median close to 0.1. These two models also outperform in fitting as in table 4.2. 

In summary: 
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 On CSS data sets accuracy is better for Musa Okumoto and Inflection S 

Shaped, but all models are close to the threshold. 

 

 On OSS data sets only Gompertz and Inflection fit all data sets and provide 

median below 0.1, but with some variation.  All other models have variations. 

 

 Correctness 

   Correctness results are shown in the boxplots of Figure 4.3. The red lines represent the 

range ±10% of total number of actual defects. 

   In CSS datasets only Musa Okumoto, Inflection S-Shaped, Goel Okumoto and Yamada 

Exponential are reasonably within the range ±10% (but Yamada fits less datasets). 

Worse, all the others tend to underestimate the actual number of faults.  

  In OSS datasets Inflection S-Shaped and Gompertz models are within the range but with 

outliers. All the others tend to underestimate the actual number of faults. 

 

In summary: 

 On CSS data sets, Musa Okumoto, Inflection S-Shaped and Goel Okumoto fit 

most datasets and provide good accuracy and prediction. 

 On OSS data sets Musa. Inflection, Goel, Yamada and Gompertz fit all data 

sets and provide optimal accuracy and prediction. 

 

       Table 4-3: Models Predictions Results 

 CSS DS OSS DS 

Model No of DS 

having lowest 

TS Value 

 

No of DS having 

Lowest PRE 

Value 

No of DS 

having lowest 

TS Value 

No of DS having 

Lowest PRE 

Value 

Musa 10/22 10/22 4/18 2/18 

Inflection 2/22 4/22 3/18 3/18 

Goel 3/22 3/22 1/18 3/18 

Delayed 2/22 2/22 4/18 3/18 

Logistic 4/22 2/22 5/18 3/18 

Yamada 2/22 3/22 1/18 3/18 

Gompertz 3/22 2/22 6/18 6/18 

Generalized 1/22 1/22 3/18 2/18 
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             Figure 4-2: Box Plots of Prediction Accuracy (TS) values 

 

          Figure 4-3: Box Plots of Prediction Correctness (PRE) values 

4.4 Discussion 
We have attempted to derive general conclusion about the reliability growth of OSS 

versus CSS applying eight different SRGM models to a wide range of datasets on 

failures.  

The performance of models differs slightly between CSS and OSS datasets. The results 

show a slightly difference between failure occurrence pattern of CSS and OSS, which 

indicates a slightly difference in the reliability growth of the OSS from CSS. However 

the results show that SRGM can be used for the reliability characterization OSS. We 

observed different behavior of the models for OSS as compared to CSS.  The best 

performer models are Musa Okumoto and Inflection for industrial datasets, while 

Gompertz and Inflection are the best for OSS datasets. This result should be inquired 
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more in the future, especially because we consider failure datasets of different versions of 

only 4 OSS projects. 

These results show that SRGM models also apply on OSS. However, we need further 

research to generalize this finding. 

It is interesting to notice that Musa Okumoto, that is the best model for CSS datasets, 

does not apply in OSS. However, OSS datasets are significantly different from CSS 

datasets (there is no distinction between System Test failures and Field defects), so we 

cannot really derive any meaningful consequence. 

4.5 Threats to validity 
We recognize a first conclusion is the choice of threshold is not grounded in the 

literature. 

We observe a construct threat is the impossibility to adequately compare industrial 

datasets with OSS datasets due to the lack of information on the defect detection phase 

(system test, operation) in latter one: we could not build a proper control strategy except 

avoiding a structured comparison between industrial and OSS results. 

We notice a conclusion threat in the choice of not performing cross validation in 

prediction. However we grounded our choice in the literature. 

4.6 Conclusions 
We have studied reliability growth of OSS versus CSS using SRGM in generalized way 

for the purpose to derive generalize conclusion.  

We observed from the model fitting results that there is a slightly difference between 

failure occurrence pattern of OSS and CSS. This a clear indication that OSS reliability 

grow slightly in a different way as compared to CSS.  This is because of the fact of 

changing the code frequently. Analyzing reliability growth of OSS versus CSS applying 

SRGM provided us the result of best model for CSS and OSS projects. We found that the 

Musa-Okumoto model is the best one in fitting and predictions in CSS datasets. Although 

also Inflection S-Shaped achieved very good results with respect to the metrics thresholds 

we adopted. The Musa-Okumoto model did not hold the same performances in OSS 

datasets, in which the Gompertz, Inflection S-Shaped and Goel Okumoto models applied 

better.  

Our future work will be devoted to the extension of the datasets used to increase the 

generalizability of these findings, especially in OSS projects where results and structure 

of datasets were very different from industrial ones. 
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5. Factors affecting open source software reliability 

growth4 
Herein focusing on the second research gap, we discuss the factor that affects the 

reliability growth of OSS projects. In OSS projects defects detection and fixing time for a 

defect is quite different from each other, which may affect the reliability growth. This 

difference in defect detecting and fixing time may be a reason of unclear results reported 

in literature regarding the applicability of SRGM for reliability characterization of OSS. 

We empirically analyze the reliability growth of OSS with respect to defect detecting 

time versus defect fixing time through SRGM. We therefore investigate the research 

question: 

5.1 Goal 
5.1.1 R.Q: Does defect detection and fixing time affect the reliability of an OSS 

project? 

In order to achieve the goal we focus on these research questions, which are presented in 

detail: 

5.1.1.1 R.Q1: Does defect detection and fixing time affect the SRGMs’ fitting 

capabilities for an OSS project? 

Or, in operational terms, the OSS defect occurrence trend can be represented by SRGM 

in a similar way such like OSS defect fixing trend? Models are fitted to the defects 

datasets collected with respect to defect detection date (DD DS) and to the defects 

datasets collected with respect to defect fixing date (DF DS), and their R
2
 are analysed 

and compared by adopting visual analysis and statistical hypothesis testing. Model fitting 

is required to estimate the parameters of the models and produce a prediction of failures. 

We use NLR for model fitting due to the nature of data. We use goodness of fit (GOF) 

test, R2 to determine how well curve fit to the data. R
2
 takes a value between 0 and 1, 

inclusive.  The closer the R
2
 value is to one, the better the fit. The R

2
-value is used for its 

simplicity and is motivated by the work of Gaudoin, O. et al [52], who evaluated the 

power of several statistical tests for GOF for a variety of reliability models. Their 

evaluation showed that this measure was as least as powerful as the other GOF tests 

analyzed.  

   For the purpose of visual representation, we use box plots: as they allow for an 

immediate comparison. We consider a good fit when R
2
 > 0.90 because the model fit 

                                                           
4
 The content of this chapter have been modelled according to N. Ullah, M. Morisio .An 

Empirical analysis of Open Source Software Defect data through Software Reliability Growth 
Models. In: IEEE EUROCON 2013 in Zagreb, Croatia, 1-4 July 2013. 
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might be considered good having R
2
 = 0.90. This threshold categorizes the models as 

good and bad in term of fitting capability. We also do hypothesis testing on the R
2
 of 

fitted models in order to determine statistical significant difference in models fitting 

values for both types of datasets. Therefore we formulate null and alternative hypothesis 

as follows. 

 

H00: The SRGM models’ fitting capabilities for OSS are not affected with defect 

detecting and fixing time (i.e. R
2
 of models fitted to DD DS is not different from 

R
2
 of models fitted to DF DS). 

 

H0a: The SRGM models’ fitting capabilities for OSS are affected with defect detecting 

and fixing time (i.e. R
2
 of models fitted to DD DS is better than R

2
 of models 

fitted to DF DS). 

 

    According to the recommendations in [53] we use the Mann-Whitney test in order to 

evaluate practical differences in models’ fitting capabilities for both types of datasets. 

The assumption to select was the not normal distribution of datasets comprising of R
2
 

values of fitted models. In the statistical testing, the significance level is checked by the 

given p-value. For rejecting or accepting the null hypothesis, we used the significance 

value α=5%. 

 

5.1.1.2 R.Q2: Does defect detection and fixing time affect SRGMs’ prediction 

qualities for an OSS project? 

Or in operational terms, the models prediction accuracy and correctness do not change 

with respect to defect detection and fixing time. We use the partial failure history (i.e. 

first portion of the collected defect datasets are used for model fitting and remaining 

portion of the datasets are used for prediction) of the products to accomplish the 

prediction as [22]. The first two thirds data points of the each datasets following [50], is 

used to estimate the parameters.  These estimated values of the parameters are then 

applied to the entire time span for which failure data is collected in each dataset in order 

to compare the prediction qualities of the models for both types of defect datasets.  

Prediction capability can be evaluated under two points of view, accuracy and 

correctness. Accuracy deals with the difference between estimated and actual over a time 

period. Correctness deals with the difference between predicted and actual at a specific 

point in time (e.g. release date).  A model can be accurate but not correct and vice versa. 

For this reason we use the Theil’s Statistic (TS) for accuracy and Predicted Relative Error 

(PRE) for correctness. 
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Similar to models fitting (i.e. R
2
), models prediction accuracy and correctness are 

visually represented through boxplots. We consider a prediction as good if TS is below 

10% and PRE is within the range [-10%, +10%] of total number of actual defects because 

10% range might be acceptable. These thresholds of TS and PRE categorize the models 

as good and bad in term of prediction accuracy and correctness. We also do hypothesis 

testing on the TS and PRE of fitted models in order to determine statistical significant 

difference in models prediction qualities for both types of datasets. Therefore we 

formulate null and alternative hypotheses as follows. 

H10: The SRGM models’ prediction qualities for OSS are not affected with defect 

detecting and fixing time (i.e. TS and PRE of models prediction for DD DS is not 

different from TS and PRE of models prediction for DF DS). 

 

H1a: The SRGM models’ prediction qualities for OSS are affected with defect 

detecting and fixing time (i.e. TS and PRE of models prediction for DD DS is 

better than TS and PRE of models prediction for DF DS). 

 

Similar to methodology adopted for RQ1, we use the Mann-Whitney test in order to 

evaluate practical differences in models’ prediction qualities for both types of datasets. 

The assumption to select was the not normal distribution of datasets comprising of TS 

and PRE values of fitted models. In the statistical testing, the significance level is 

checked by the given p-value. For rejecting or accepting the null hypothesis, we used the 

significance value α=5%. 

5.2 Data collection  
In OSS projects defects detection and fixing time for a defect is quite different from each 

other. We therefore investigate the reliability growth of OSS with respect to defect 

detection time versus defect fixing time.  We identified five notable and active open 

source projects from apache.org (https://issues.apache.org/). These projects are C++ 

Standard Library, JUDDI, HTTP Server, XML Beans, and Enterprise Social Messaging 

Environment (ESME). The Apache C++ Standard Library provides a free implementation 

of the ISO/IEC 14882 international standard for C++ that enables source code portability 

and consistent behavior of programs across all major hardware implementations, 

operating systems, and compilers, open source and commercial alike. JUDDI is an open 

source Java implementation of the Universal Description, Discovery, and Integration 

(UDDI v3) specification for (Web) Services. The Apache HTTP Server is an open-source 

HTTP server for modern operating systems including UNIX, Microsoft Windows, Mac 

OS/X and Netware.  XML Beans is a tool that allows you to access the full power of 

XML in a Java friendly way. ESME (Enterprise Social Messaging Environment) is a 

secure and highly scalable micro sharing and micro messaging platform that allows 

people to discover and meet one another and get controlled access to other sources of 
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information, all in a business process context. All these projects are considered stable in 

production. The 66%, 95%, 68%, 64% and 82% of the reported issues in these projects 

respectively, have been fixed and closed.  We collected defect data of the selected 

projects from apache.org using JIRA. JIRA is a commercial issue tracker. Issues can be 

bugs, feature requests, improvements, or tasks. JIRA track bugs and tasks, link issues to 

related source code, plan agile development, monitor activity, report on project status. 

For each release of the selected projects we have collected all the issues reported at our 

date of observation. For each project, we have considered all the major releases until 

October 2012. We were able to get eight (8) versions for C++ Standard Library, seven (7) 

versions for JUDDI, two (2) versions for HTTP Server, five (5) versions for XML Beans 

and three (3) versions for ESME.  Hence defects data of 25 different releases of 5 

projects were collected. Table 4.4 lists the information of the projects along with the 

selected releases and their time windows for each release.  

The tracking software records all the information regarding each issue, such as issue type, 

status, created date, updated date, affected version. After a deep inspection of the 

repositories and of their documentation, we have decided to focus on those issues that 

were declared “bug” or “defect” excluding “enhancement,” “feature-request,” “task” or 

“patch”. For the same reason, we have considered only those issues that were reported as 

closed or resolved after the release date of each version. Further, we excluded issues 

closed before the release date. These issues are typically found in the candidate (or 

testing) releases of projects. We filtered all the issues in order to collect only issues that 

have declared “defect” or “bug” as in [21, 23]. For the filtration of the collected issue 

from the online repository we used the aforementioned attributes. After refining the data 

we grouped the defects into cumulative defects by week. 

We developed two types of datasets for each release of each project. In first type of 

datasets (i.e. created date DS) we grouped the defects into cumulative defects by weeks 

with respect to created date of the defects while in second type of dataset (i.e. updated 

date DS) we grouped the defects into cumulative defects by weeks with respect to 

updated date of the defects. We divided the entire time span of each release into weeks 

and then counted detected defects in each week. For each release in first type of dataset 

we counted defects for each week with respect to created date (after this will call created 

date DS) and in second type of dataset we counted defects for each week with respect to 

updated date (after this will call updated date DS). In this way we developed 25 created 

date DS and 25 updated date DS for total of 25 selected releases of the five OSS projects. 
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           Table 5-1: Selected Projects Details 

Project Version Release Date 

C++ Standard Library V4.1.2 18/07/2005 

V4.1.3 30/01/2006 

V4.1.4 03/07/2006 

V4.2.0 29/10/2007 

V4.2.1 01/05/2008 

V4.2.2 30/06/2008 

V4.2.3 01/09/2008 

V5.0.0 31/05/2009 

JUDDI V2.0 02/08/2009 

V3.0 26/10/2009 

V3.0.1 01/02/2010 

V3.0.2 17/05/2010 

V3.0.3 22/07/2010 

V3.0.4 06/11/2010 

V3.1.0 27/06/2011 

HTTP Server V3.1.4 13/02/2005 

V3.2.7 13/02/2006 

XMLBeans V2.0 30/06/2005 

V2.1 16/11/2005 

V2.2 23/03/2006 

V2.3 01/06/2007 

V2.4 08/07/2008 

ESME V1.1 09/10/2010 

V1.2 14/03/2011 

V1.3 29/08/2011 

 

5.3 Results  

5.3.1 Models Fitting Results: (RQ1) 

In Figure 4.4 we report the boxplots of R
2
 (i.e. Goodness of Fit values) per model for 

both types of datasets of each release of the selected projects.  For RQ1, observing the 

box plots in Figure 4.4 it appears that there is clear difference. Medians of all the models 

are above the threshold in case of created date DS and all the models have also narrow 

boxplot (always better than 0.9, the threshold depicted as a red horizontal line) but some 

outliers. On contrary in case of updated date DS the boxplots of R
2
 values show clear 

variation.  It is clear from the Figure 4.4 that models fitting capabilities increase in case 

of created date DS. Hence it is suggested that for the reliability characterization of OSS 

through SRGMs defects created date should be considered. 

We also test the hypothesis H00 with Mann-Whitney test for differences. The test reports 

a p-value = 0.0006344 which is below the threshold, α. Therefore, we reject the null 

hypothesis, indicating that there is significant difference of models fitting between the 



54 
 

defects created and updated date DS, which is also visually represented through boxplots 

in Figure 4.4.  

In summary: 

 

  All the models have very good fit (better than 0.9), but with outliers in the 

case of created date DS while in updated date DS only the median of 

Inflection, Logistic, Gompertz and Generalized are above the threshold. 

 

 There is practical significant difference in models fitting capabilities when 

defects created date is used in developing OSS defects datasets for the 

reliability characterization. 
 

 

              Figure 5-1: Box Plots of fitting (R
2
) values 

 

 

 

5.3.2 Models Prediction Results: (RQ2) 

In order to analyze the models prediction qualities we used the first two-third data points 

of the data sets to train the model, and predicted the last third. The choice of two-third 

data points was motivated with the wood’s suggestion for model stability [2]. We analyse 

the models prediction qualities in terms of prediction accuracy and correctness.  

Accuracy 

   Figure 4.5 reports the TS values for all datasets of both types. The red line represents 

the 0.1 threshold, usually considered indicator of good accuracy.  
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   In created date DS, all the models have very good prediction accuracy and have narrow 

boxplot (always the medians lie on the threshold 0.1, the threshold depicted as a red 

horizontal line).  In updated date DS all the models have not good prediction accuracy 

and the boxplots show the variations in their prediction accuracy. It is clear from the 

Figure 4.5 that models prediction accuracy increase in case of created date DS. Hence it 

is suggested that for the reliability characterization of OSS through SRGMs defects 

created date should be considered. 

  We test the hypothesis H10 with Mann-Whitney test for differences. The test reports a p-

value < 2.2e-16 for TS values of both types of datasets, which is below the threshold, α. 

Therefore, we reject the null hypothesis, indicating that there is significant difference of 

models prediction qualities in term of prediction accuracy between the defects created 

and updated date DS, which is also visually represented through boxplots in Figure 4.5. 

In summary: 

 In created date DS all models are close to the threshold while in updated 

date DS all other models have variations. 

 

 There is practical significant difference in models prediction accuracy 

when defects created date is used in developing OSS defects dataset for the 

reliability characterization. 

 

 

            Figure 5-2: Box Plots of Prediction Accuracy (TS) values 
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Correctness 

   Correctness results are shown in the boxplots of Figure 4.6. The red lines represent the 

range ±10% of total number of actual defects. 

In created date DS all models have narrow boxplots and their medians lie within the 

range ±10% of selected threshold. On contrary in updated date DS all the models tend to 

underestimate the actual number of defects.  Only inflection S-Shaped has median lies in 

the selected range. It is clear from the Figure 4.6 that models prediction correctness 

increase in case of created date DS. Hence it is suggested that for the reliability 

characterization of OSS through SRGMs defects created date should be considered. 

  We test the hypothesis H10 with Mann-Whitney test for differences. The test reports a p-

value = 9.709e-05 for PRE values of both types of datasets, which is below the threshold, 

α. Therefore, we reject the null hypothesis, indicating that there is significant difference 

of models prediction qualities in term of prediction correctness between the defects 

created and updated date DS, which is also visually represented through boxplots in 

Figure 4.6. 

 

In summary: 

 

 On created date DS all the models provide good accuracy and prediction while 

for updated date DS all the models behave inversely.  

 There is practical significant difference in models prediction accuracy when 

defects created date is used in developing OSS defects dataset for the reliability 

characterization. 
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            Figure 5-3: Box Plots of Prediction Correctness (PRE) values 

5.4 Threats to validity 
We recognize a first conclusion threat is the choice of threshold is not grounded in the 

literature. However we provided boxplots to show to the readers that certain models got 

good fitting\prediction performances in several datasets. Although the high number of 

datasets used (50) might make our findings generalizable, we strongly suggest the reader 

to define her own thresholds for fitting, accuracy and correctness of predictions and re 

elaborate the results according to those thresholds, using the boxplot provided. We notice 

another conclusion threat in the choice of not performing cross validation in prediction. 

However we grounded our choice in the literature. 

The number of release and the time windows of the observations are different in the five 

OSS. This was due to some time constraints and the availability of the data in the 

repositories. As we do not compare the five OSS, but we rather want to understand 

whether there is a pattern of reliability in each OSS, this difference is not crucial. 

We used open on-line repository to collect data of five different projects. We intensively 

cleaned the data we collected to limit the bias associated with the open nature of these 

repositories. 

5.5 Discussion and conclusion 
We have attempted to derive general conclusion about the reliability growth of OSS 

applying eight different SRGM models to a wide range of OSS defects datasets. We 

evaluate the reliability growth pattern of OSS using SRGMs. The performance of models 

differs between created date and updated date datasets. The results show a huge 
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difference between failures occurrence patterns of created date DS and updated date DS, 

which indicates a clear cut difference in the reliability growth of the OSS with respect to 

defect creating date and defect fixing date.  From the results of this study it is suggested 

that for reliability characterization of OSS defects created date should be considered 

because the reliability of OSS directly increases with defects created date. The results 

also show that SRGM can be used for the reliability characterization OSS and their fitting 

capabilities and prediction qualities directly related to defects creating date instead of 

defects updating/fixing date. This study makes the unclear results reported in the 

literature regarding the applicability of SRGMs for OSS reliability characterization, 

clearer. 

In our previous studies [54, 55] we have observed different behavior of the best models 

for OSS as compared to CSS (Closed Source Software).  The best performer models were 

Musa Okumoto and Inflection for industrial datasets, while Gompertz and Inflection were 

the best for OSS datasets. We therefore deeply investigate the models fitting and 

prediction results focusing on this observation.  We observed that all the S-Shaped 

models fitting and prediction qualities for OSS is better than concave shaped that is why 

Musa is best former for CSS but not for OSS because of its concave nature.  While 

Gompertz and Inflection belong to S-Shaped category and as such it indicates an initial 

learning phase in which the community of end-users and reviewers of the open source 

project does not react promptly to new release. So because of this S-Shaped nature 

Inflection S-Shaped and Gompertz outperformed for OSS than Musa Okumoto Model.  

These results of this study show that SRGM models can characterize the OSS reliability 

growth.  For reliability modelling of OSS the defect creating date should be used for 

developing defect data sets of OSS in order to characterize their reliability growth 

through software reliability models. 
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6. Method for predicting OSS residual defects5 
 

Herein this chapter we focus on third research gap: No method available that can be used 

to evaluate the reliability of an OSS before its adoption. In order to support practitioners 

in characterizing the reliability (in terms of remaining or residual defects) of an OSS 

component or application an empirical method is needed to be developed that might be 

used for reliability evaluation of an OSS.  The reliability of the OSS 

component/application is one of the factors for the decision of a project manager about 

using the OSS or not in a project. SRGMs can be used at this purpose. 

6.1 Goal 
We detail here the goal using the GQM template [51].  

 

Object of the study A method for selecting best SRGM  

Purpose to support practitioners in decision about the adoption of an 

OSS   

Focus characterizing OSS reliability in terms of remaining defects  

Stakeholder from the point of view of project  managers 

Context factors in the context of OSS  

 

We derive a research question (RQ) on the object of the study that completes the GQM.  

RQ: Does the proposed method select the best (i.e. that predicts more precisely the 

number of residual defects) SRGM? 

We describe our proposed method in detail in section 0. Section 0 shows the application 

of the method to twenty one different releases of seven OSS projects using eight SRGMs. 

Section 5 presents the validation of the method. Here in next section we give a quick 

refresher on reliability modeling and brief description about SRGMs that are used in this 

study. 

                                                           
5
 The content of this chapter have been modelled according to N. Ullah, Morisio M, Vetro'.A. A 

method for selecting software reliability growth model to predict Open Source Software 
residual defect. In: IEEE Computer Journal. (In press) 



60 
 

6.2 The proposed method 
The method proposed aims to select the SRGM, which best predicts the residual defects 

of an OSS. The idea to develop the method has been inspired by the work of Stringfellow 

et al [34]. They have developed a method that selects the best model to help in decision 

making when to stop testing and deploy the software. The following points indicate the 

main risks while applying SRGMs for predicting the residual defects of an OSS: 

 All model assumptions listed in the background section may not apply exactly to 

OSS development.  This will result in models fitting capabilities that may not fit 

or may have low goodness of fit (GOF) value. 

 There is a limited amount of defects data from OSSs.   The smaller the amount of 

data the longer the time may take the models to stabilize, or even not to fit the 

data. 

To handle these risks, our method uses several SRGMs and selects the models which best 

fit the data.   

The method is defined by the following steps (see also Error! Reference source not 

ound.and Error! Reference source not found.)  

1. The first step is to select the release of the OSS project of interest and collect the 

issues from the online repositories. There are many online repositories, such as 

sourceforge, apache, bugzilla etc, which contain issues and defects data of OSS 

projects.  

2. The second step is to extract defects from the issues collected in step 1. Issues 

can be bugs, feature requests, improvements, or tasks. The issues need to be 

filtered in order to include only those issues that have been declared as a “bug” or 

a “defect” and exclude “enhancements,” “feature-requests,” “tasks” or “patches”. 

Further, only defects that were reported as closed or resolved are considered, 

open or reopen defects are excluded. Finally, duplicate defects must be excluded 

too. The defects data of the whole release interval [0, T] are grouped into 

cumulative defects by weeks.   

3. The third step is to apply the SRGMs (i.e. Musa, Inflection, Goel, Delayed, 

Logistic, Yamada, Gompertz and Generalized) to the defects data obtained from 

step 2.  The models are fitted to the defect data of 3/4T; that is represented as 

‘model fitting window’ in Error! Reference source not found.. Fitting is done 

sing Non Linear Regression (NLR) techniques. NLR is a general technique to fit 

a curve through the data. The parameters are estimated by minimizing the sum of 

the squares of the distances between the data points and the regression curve.  

NLR is an iterative process that starts with an initial estimated value for each 
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parameter. The iterative algorithm then gradually adjusts these parameters until 

they converge on the best fit so that the adjustments make virtually no difference 

in the sum-of-squares. If the model’s parameters do not converge to the best fit, 

then the model cannot fit the data. If a curve can be fitted to the data for a model, 

the goodness of fit (GOF) is evaluated using the R
2
-value. The R

2
-value is used 

for its simplicity and is motivated by the work of Gaudoin, O. et al [52], who 

evaluated the power of several statistical tests for GOF for a variety of reliability 

models. Their evaluation showed that this measure was at least as powerful as the 

other GOF tests analyzed. The larger the R
2
 value, the better the fitted model 

explains the variation in the data.  
Model fitting estimates best fitted values for all parameters of the model. The 

value of parameter ‘a’ represents the expected total number of defects. For model 

fitting we used the commercial program PRISM. 
4. In this step models are passed through model rejection criteria. First criterion is 

about GOF, R
2 

> 0.95. Second criteria is estimated defects >= actual defects. 

Models that do not satisfy both criteria are rejected.   Our choice for setting the 

GOF value threshold at 0.95 is motivated by the work of Stringfellow, et al [34]. 

If a model does not have a high GOF then the collected defects data is 

insufficient for reliability modeling and additional data is required. The second 

criterion is added to keep only ‘safer’ models.            

5. In this step models are evaluated in term of prediction stability.  A prediction is 

stable if the prediction for week j is within ±10% of the prediction for week j-1. 

Setting a threshold for stability is based on subjective judgment. One may require 

higher or lower values for this threshold. Our rationale for setting this threshold 

at 10% is motivated by Wood’s suggestion of using 10% as a stability threshold 

[2]. If no model has a stable prediction that is within the stability threshold 

defined, this means that the collected defects data is insufficient for reliability 

modeling and additional data is required. 

To check model stability the time window from 3/4 T to T is used; that is 

represented as ‘model stability check window’ in Error! Reference source not 

ound.. For instance, the model stability is checked as follows: in cumulative 

defects of the 3/4T, add one week defect, i.e. 3/4T+1week, then fit all the models 

that have passed the rejection step, to cumulative defects of 3/4T+1weeks, the 

value of parameter ‘a’ is the prediction of the model for the expected total 

number of defects. Similarly another week is added, i.e. 3/4T+2weeks, and so on 

till T. A model is stable if its prediction for week j is within ±10% of the 

prediction for week j-1, for all weeks. 
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Figure 6-1: The proposed method: steps 
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Figure 6-2: The proposed method: time frames 

6. The sixth step is to select the best SRGM. The model which gives the highest 

number of predicted defects among all stable models is selected. It is a 

conservative choice, but the rationale is to select a safer model. In practice that 

model is considered suitable which overestimate the actual number of defects 

because defect fixing cost before adoption of an OSS would be lesser than the 

defects fixing cost after the adoption of the OSS. If there is a large difference in 

values for the prediction between different models, one may want to either 

augment this analysis with other quality assessment methods, as shown in [56], 

or choose a subset of models based on the GOF.  

7. In this step using the selected SRGM the residual defects of the OSS are 

computed.  In function of the number of residual defects the project manager may 

decide to adopt the OSS, wait some more time (i.e. wait for more defects to be 

found and fixed), adopt another OSS or closed source component. 

6.3 Application of the Method  
Here we apply our method to the selected OSS projects to show in practice how it works. 

Section 2.1 describes the OSS projects selected, and section 2.2 gives the results. 

6.3.1 OSS projects selected 

Thousands of OSS projects are undergoing development, so, it is important to select the 

most representative ones. We selected seven projects of a different nature having large 

and well organized communities. Among our selected seven OSS projects, the defect data 

of two projects, i.e. Apache and GNOME, were available in open literature.  We took 

defect data about three different releases of Apache and three different releases of 

GNOME projects published by Li et al [24]. Both Apache and Gnome have a great 

number of developers having the right to update and change files freely. The large sizes 

of these two projects make them the state-of-the-art in terms of management of OSS 

projects. Apache 2.0.35 has been available to the public since 2002 and this is the first 

release of Apache’s major release 2.0. As for the GNOME project, GNOME 2.0 is a 
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major upgrade which includes the introduction of the human interface guidelines.  The 

first two steps of our method do not apply because defect data were published [24]. 

Besides these two projects, we used the issues of the five notable and active open source 

projects that have been downloaded from apache.org (https://issues.apache.org/) for our 

pervious study (see chapter 4 table 4.4). These projects are C++ Standard Library, 

JUDDI, HTTP Server, XML Beans, and Enterprise Social Messaging Environment 

(ESME). All these projects are considered stable in production. The 66%, 95%, 68%, 

64% and 82% of the reported issues in these projects respectively, have been fixed and 

closed.  All the issues about the selected projects have been collected from apache.org 

using JIRA. JIRA is a commercial issue tracker. Issues can be bugs, feature requests, 

improvements, or tasks. JIRA tracks bugs and tasks, links issues to related source code, 

plans agile development, monitors activity and reports on project status. 

We selected three releases of C++ Standard Library, three releases of JUDDI, two 

releases of HTTP Server, four releases of XML Beans and three releases of ESME.  In 

the downloaded issue the tracking software (i.e. JIRA) records all the information 

regarding each issue, among which the following are the more useful attributes that we 

used for selecting defects from issues: 

 Project: Contains the project name;  

 Key:  The unique identity of each issue.  

 Summary:  Gives a comprehensive description of the issue.  

 Issue Type: Describes the type of issue, which may be bug, task, improvement, or 

new feature request.  

 Status: Describes the current status of the issue.  It may be resolved, closed, open 

or reopened.   

 Resolution: Shows the resolution of the issue, which may be fixed, duplicate, or 

invalid. 

 Created:  Shows the created date and time of the issue.  

 Updated: Shows the updated/fixing date and time of the issue. 

 Affects Version: Gives the release/version of the project that contains the issue. 

All the issues were filtered to eliminate duplicate and invalid issues.  We focused only on 

those issues that were declared “bug” or “defect” excluding “improvement,” “feature-

request,” or “task”. We considered only those issues that were reported as closed or 

resolved after the release date of each version and removed issues that were reported as 

open or reopened because their status is not clear: they are either defects/bugs or 

improvement/feature-request/task.  We collected defects according to their creation date 

(i.e. date of opening) and then grouped cumulative defects by week. We filtered all the 

https://issues.apache.org/
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issues in order to collect only issues that have been declared “defect” or “bug” as in [21, 

37].  Due to space limitation the full defect data sets of each release are available online 

(http://softeng.polito.it/najeeb/IEEE/DataSets.pdf).    

6.3.2 Results 

Due to space limitations we show here (Table 5.1) the results of the application of the 

method to one release of a project. The results for all releases of all projects are available 

here: http://softeng.polito.it/najeeb/IEEE/Remaining_results.pdf.  Table 5.2 shows the 

summary of all results. The method has been applied using, for each release of each 

project, 2/3rds of the time window available, and of the corresponding defects. The 

remaining 1/3 is used for validation, as explained in section 3. 

Let’s start by discussing the application of the method to GNOME release 2.0 (Table 

5.1). The time interval available is 24 weeks. As said we use 2/3 of this time frame for 

model selection, or 16 weeks. Of these, we use the last 1 /4 for model stability check, or 

weeks 12 to 16. Table 5.1 contains a row for each week, from 12 to 16. For each week 

the table shows, in the columns, from left to right: the cumulative number of actual defect 

found in that week, and, for each of the eight SRGMs, the number of total defects 

predicted, and the R
2
 value.  

Each of the eight models is fitted each week. When a model fails the stability check it is 

rejected (this is indicated by letter ‘R’). The week a model stabilizes is indicated by an 

‘S’. If a model becomes unstable after being stable, this is indicated by a ‘D’.  The model 

selected by the method is underlined. 

Table 6-1: Model fitting for stability check, for release 2.0 of GNOME project 

Weeks 

after 

release 

Actual 

Defects 
Musa Inflection Goel Delayed Logistic Yamada Gompertz Generalized 

Pred.    R2 Pred.    R2 Pred.    R2 Pred.    R2 Pred.    R2 Pred.    R2 Pred.    R2 Pred.    R2 
12 58 945 0.9806 66 0.9859 926 0.9806 68 0.974 59 0.9937 1743 0.9806 73 0.9889 105 0.9819 

13 58 446D 0.9836 791D 0.9836 455D 0.9836 71S 0.9781 63S 0.9937 883D 0.9836 74 0.9909 100 0.9852 

14 66       78 0.9764 69 0.9879   84D 0.9891 202D 0.9866 

15 72       86 0.9747 77 0.9844       

16 74       90 0.9772 83 0.986       

  

In Table 5.1 GOF values of all the models show that all the models perform very well in 

terms of fitting and pass the rejection criteria but their predictions are different. Musa, 

Inflection, Goel, and Yamada destabilize at week 13 whereas Gompertz and Generalized 

destabilize at week 14. All these models overestimate by a very large amount.  

From Table 5.1 it is also clear that the Delayed S-shaped and Logistic models stabilize 

first at week 13 and remain stable up to week 16 (i.e. throughout the whole stability 

check window). The Delayed S-Shaped and Logistic models predict the number of 

http://softeng.polito.it/najeeb/IEEE/DataSets.pdf
http://softeng.polito.it/najeeb/IEEE/Remaining_results.pdf
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defects at week 16 as 90 and 83 respectively.  Since the Delayed S-shaped model predicts 

more residual defects than Logistic, it is selected.  

Table 5.2 summarizes the selected models for all releases of all projects. The table shows 

also for each model selected the GOF value and the total number of defects estimated.  

      

Table 6-2: Summary of selected Models 

Project Release Selected Model  Model’s estimated total 

number of defects 

R
2
 Value 

GNOME V2.0 Delayed 90 0.9772 

V2.2 Goel 57 0.9776 

V2.4 Inflection 59 0.9876 

Apache 2.0.35 Gompertz 78 0.9929 

2.0.36 Generalized 56 0.9623 

2.0.39 Goel 60 0.9896 

C++ Stand. 

Lib 

4.1.3 Inflection 54 0.9887 

4.2.3 Gompertz 15 0.9526 

5.0.0 Yamada 15 0.9580 

JUDDI 3.0 Delayed 40 0.9553 

3.0.1 Delayed 41 0.9570 

3.0.4 Goel 57 0.9532 

HTTP 

Server 

3.2.7 Goel 46 0.9709 

3.2.10 Logistic 19 0.9651 

XML 

Beans 

2.0 Delayed & Gompertz 36 0.9871, 0.9882 

2.2 Logistic 34 0.9696 

2.3 Logistic 23 0.9690 

2.4 Gompertz 20 0.9828 

ESME 1.1 Goel 48 0.9767 

1.2 Gompertz 12 0.9569 

1.3 Inflection, Generalized & Goel 11 0.9543, 0.9523 

 

The proposed method uses R
2
 based GOF to filter out unsuitable model (i.e. step 4) in 

terms of fitness.  A useful model is required to be stable in prediction, because if a model 

says there are 50 residual defects one week and 200 the next, no one is going to believe 

either prediction. For a model to be accepted by management, its prediction should not 

vary significantly. Therefore, in stability check (i.e. step 5) the method filters out 

unsuitable models in terms of their prediction. Among all the stable models, instead of 

best fitting (the model with best R
2
) conservative choice (the model with maximum 

prediction) is used for selecting the best model. The rationale behind this choice is to 

select safer model. From our previous study [54] we know that the best fitted model is 

not necessarily the best predictor model. This is also clear from the Table 5.1, the 

Logistic is best fitted (i.e. R
2
=0.986) compared to Delayed S-Shaped (i.e. R

2
=0.9772), but 
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Delayed S-Shaped predicts best. We underline here some points regarding the application 

of the method. 

 Most of the time models are rejected due to prediction instability instead of GOF 

value. This could be explained by the fact that not enough defect data is 

available. However the method usually overcomes this problem with the wide 

number of models available. 

 The stability evaluation is a heuristic way; a stable model can become unstable, 

and vice versa and there is some likelihood that the choice will lead to bad 

predictions.  However, the method usually overcomes this problem with the wide 

number of models available, and applying the models to whole stability check 

window (3/4T to T). 

 S-Shaped models outperform concave ones in 14 out of 21 cases, which also 

confirm the results of our previous studies [54, 55].  S-Shaped models are better 

probably because initially the community of end-users and reviewers of the open 

source projects do not react promptly to a new release. This is modeled by the 

learning phase included in the S-Shaped models.  

 Time unit (i.e. day or week) has no effect on the application of the method 

because for SRGM the test time can be measured using calendar time, the 

number of tests run, or execution time.  However, it is suggested to group defect 

data by weeks because the smaller the amount of data the longer the time may 

take the models to stabilize, or even not to fit the data. 

 There is at least one model that fits the defect data after 5 weeks (in terms of the 

method, at least a model passes step 4 after 5 weeks). So 5 weeks could be the 

suggested delay from release before doing any analysis about reliability. 

6.4 Validation 
We apply our method to 2/3 of each release interval defect data to select the best model.  

The remaining defect data of each release are used for validation. The choice of 2/3 

release interval for the estimation of model parameters was motivated by Wood’s 

suggestion that the model parameters do not become stable until about 60% of the way 

through the test [2].   

As a measure to validate the prediction capability of a model we use the PRE (Prediction 

Relative Error) indicator.  
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Where Predicted is the total number of defects predicted by a model, as fitted at 2/3 of 

the time interval available, and Actual number of defects is the number of defects at the 

end of the time interval.  

For each release and each project we compute PRE for each model, and rank the models 

accordingly. The model with minimum PRE is considered the best predictor model for 

that release.  

Table 5.3 shows the validation results: for each project and each release the best model 

on PRE, and the best model according to the method.  We observe that 17 out of 21 

times, the model selected by the method corresponds to the best model. In the remaining 

four cases (see underlined model names in the table) the best model has a negative PRE, 

and for this reason was rejected by the method. However, in these four cases the model 

selected by the method is the one with the lowest positive PRE (the lowest negative for 

C++ 4.2.3). So in these four cases the method selects the second best model.  

Table 6-3: Best predictor model selected by our method vs. best predictor selected on prediction PRE 
Project Relea

se 

                   PRE of the model  

 Musa   Inf.      Goel       Delay.      Log.       Yama.     Gomp.    General.     

Best model on PRE  Best model selected by 

proposed method 
GNOME V2.0 0.19 0.08 0.18 0.01 -0.02 0.18 0.05 -0.85 Delayed Delayed 

V2.2 0.09 -0.07 0.00 -0.11 -0.10 0.00 -0.10 -0.47 Goel, Yamada Goel 

V2.4 0.14 0.01 0.04 -0.03 -0.02 0.03 -0.01 -0.28 Inflection, Gompertz Inflection 

Apache 2.0.35 0.17 0.07 0.12 -0.01 -0.01 0.12 0.03 -0.53 Delayed, Logistic Gompertz 

2.0.36 0.18 0.03 0.09 0.01 0.01 0.09 0.01 0.01 Delay, Log, Gompertz, General. Generalized 

2.0.39 0.15 0.00 0.00 -0.02 -0.02 0.02 -0.01 0.00 Inflection, Goel, General. Goel 

C++ 

Stand. 
Lib 

4.1.3 -0.22 -0.25 -0.39 -0.52 -0.45 -0.34 -0.41 -0.31 Musa Inflection 

4.2.3 -0.01 -0.05 -0.12 -0.20 -0.07 -0.09 -0.03 0.06 Musa Gompertz 

5.0.0 -0.28 -0.16 -0.66 -0.98 -0.92 -0.16 -0.83 -0.16 Inflection, Yamada, General. Yamada 

JUDDI 3.0 0.00 0.24 0.00 0.00 0.26 0.00 0.00 0.13 Musa, Goel, Delay, Yama, Gomp  Delayed 

3.0.1 -0.02 -0.32 -0.10 -0.02 -0.05 -0.10 -0.27 -0.29 Musa, Delayed Delayed 

3.0.4 -0.30 -0.33 -0.27 -0.72 -0.67 -0.34 -0.59 -0.33 Goel Goel 

HTTP 

Server 

3.2.7 0.04 -0.10 0.02 -0.18 -0.16 -0.05 -0.11 -0.05 Goel Goel 

3.2.10 0.23 0.22 0.23 0.01 0.01 0.23 0.13 0.23 Delayed, Logistic Logistic 

XML 

Beans 

2.0 0.17 0.02 0.17 -0.02 -0.14 0.17 0.01 0.07 Gompertz Delayed & Gompertz 

2.2 -0.04 0.04 -0.04 -0.29 0.01 -0.03 0.11 -0.02 Logistic Logistic 

2.3 0.00 0.05 0.00 -0.25 0.00 0.00 0.01 0.00 Musa, Goel, Log, Yama, General. Logistic 

2.4 0.24 -0.12 0.24 0.06 -0.16 0.24 0.06 -0.11 Delayed, Gompertz Gompertz 

ESME 1.1 -0.03 -0.23 -0.03 -0.32 -0.34 -0.14 -0.29 -0.23 Musa, Goel Goel 

1.2 -0.26 -0.33 -0.41 -0.57 -0. 09 -0.37 -0.09 -0.16 Logistic, Gompertz Gompertz 

1.3 0.18 0.07 0.07 -0.02 -0.02 0.08 -0.02 0.07 Delayed, Logistic, Gompertz Inflection, Goel, Generalized 

 

6.5 Threats to validity 
We discuss here validity threats for this work, using the classification suggested by [57].  

The first construct threat comes from the issues data sets used. Our work is second level, 

so we have no control on the quality of the issues collected and reported. Issues could be 
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missing; others could have been miss-reported, either on time or on content. The subset 

of issues classified as defects by the project community could be imprecise too, both for 

false positives and false negatives.  Overall we have tried to reduce this threat by 

selecting established Open Source projects and communities. Most of the data sets have 

also been used in other similar works.   

The second construct threat comes from the defect data sets used.  While developing 

defect data sets (in step 2 of the method) discarding not closed issues may affect the 

models fitting and prediction. However, we selected the projects considered stable in 

production and more than 64% (i.e. 64%, 66%, 68%, 95%, and 82%) of the reported 

issues in each project have been fixed and closed.      

Still on construct validity, we have considered each release of a project as a separate 

project, independent of others. This choice is in line with [24, 26, 34, 54, 56] and 

corresponds to the goal of the method: users of OSS select and use a specific release. As 

a cross validation of this independence it should be noted that different releases of the 

same project are best fitted by different SRGMs.  

The time span covered by the datasets of projects, and project versions, is quite different. 

We assume this is not critical, especially because we do not compare project versions, but 

we consider each project version independently.  

 We recognize one external threat to validity. We have evaluated our method on 21 

projects. This is one of the largest datasets in literature (see chapter 2) but we cannot 

generalize the results to all projects.  In particular the method could just be not applicable 

to a project because curve fitting, satisfaction of GOF or stability thresholds could fail.  

In these cases the thresholds can be changed, or more time should pass so that more 

defect data is available.  

6.6 Conclusion 
The goal of this work was to support practitioners in characterizing the reliability (in 

terms of residual defects) of an OSS component or application, to help a project manager 

in deciding whether using the OSS or not in a project. To achieve the goal we proposed a 

pragmatic approach, which selects best model both on its fitting capability, and on the 

stability of its prediction over time. The model selected with our proposed method, 

among several alternative models predicts very precisely the residual defects of an OSS. 

Empirical evaluation has shown that the research question (RQ) derived on the object of 

the study has been satisfied. The results show that the method selects the best model (i.e. 

the model with the better precision in the estimation of the residuals), or second best 

model, in all cases. 
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We believe that the key contribution of our work lies in the systematic approach (eight 

SRGMs have been considered) and in the extent of validation (21 releases of seven 

projects). As it is clear from chapter 2 no other study has achieved this level of coverage. 

There are also some side contributions to be underlined. 

 The method tested in such a generalized way that the unclear results regarding 

the applicability of SRGM for reliability characterization of OSS reported in the 

literature (see chapter 2) are made clear. 

 No model is clearly superior to others. In fact, in the 21 data sets no model ranks 

as the best one in more than a few cases, and each of the eight models is the best 

one at least once.  

 Even more surprisingly, different releases of the same project (see for instance 

XML Beans in Table 5.2) are each fitted by different models. This result seems 

to suggest that only the history of defects (and not any other project 

characteristic) counts for the model selection. 

 S-Shaped models outperform concave ones in OSS projects, probably because of 

the learning curve, or the time needed by the OSS community to report defects.  

 Five weeks of defect data from the release is the time frame needed to fit a 

model. This could be used as an initial rule of thumb by managers in decisions 

about reliability. 

The method we propose sets some parameters: the GOF minimal threshold for fitting 

(0.95), the stability threshold (10%), the time frames (last 1/4 of defect data for fitting 

and stability check).  These parameters were set using suggestions from the literature and 

seem to perform well.  

There are three directions of future research work.  First future work could perform some 

kind of sensitivity analysis on them to further improve the results. Second future work is 

the development of a tool to automate the method. However, filtering out issues to isolate 

defects (step 2 in the method) is a time consuming task that cannot be automated. The 

method we developed helps project manager in deciding whether using the OSS or not in 

a project.  For that purpose we selected all the OSS projects and versions that have been 

released. Another possible line of future research is to investigate the research question, 

is the proposed method also applicable to early OSS projects in predicting the residual 

defects to decide the first stable release? 
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