Accuracy of Microwave Transistor f_T and f_{MAX} Extractions

Original
Accuracy of Microwave Transistor f_T and f_{MAX} Extractions / Valeria Teppati; Stefano Tirelli; Rickard Lovblom; Ralf Fluckiger; Maria Alexandrova; C. R. Bolognesi. - In: IEEE TRANSACTIONS ON ELECTRON DEVICES. - ISSN 0018-9383. - STAMPA. - 61(2014), pp. 984-990.

Availability:
This version is available at: 11583/2536694 since:

Published
IEEE / Institute of Electrical and Electronics Engineers

Published DOI:10.1109/TED.2014.2306573

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Accuracy of Microwave Transistor f_T and f_{MAX}

Extractions

Valeria Teppati, Senior Member, IEEE, Stefano Tirelli, Rickard Lövblom, Ralf Flückiger, Maria Alexandrova, and C. R. Bolognesi, Fellow, IEEE

Abstract—We present a complete methodology to evaluate the accuracy of microwave transistor figures-of-merit f_T (current gain cut-off frequency) and f_{MAX} (maximum oscillation frequency). These figures-of-merit are usually extracted from calibrated S-parameter measurements affected by residual calibration and measurement uncertainties. Thus, the uncertainties associated with f_T and f_{MAX} can be evaluated only after an accurate computation of the S-parameters uncertainties. This was done with the aid of two recently released software tools. In the uncertainty propagation, the standard de-embedding techniques are assumed to be error free, but still contributing to the final uncertainty budget with their measurement uncertainty. We also present an analysis on how different interpolation/extrapolation methodologies affect uncertainty. In addition, an overview of the possible causes of errors and suggestions on how to avoid them are given. With the continued rise of reported f_T/f_{MAX} values, this study has become necessary in order to evaluate the accuracy of these figures-of-merit both by adding confidence intervals to their values and by identifying possible extraction errors.

Index Terms—Integrated circuit measurements, measurement uncertainty, millimeter wave devices, millimeter wave technology, millimeter wave transistors.

I. INTRODUCTION

AlTHOUGH a vast literature regarding uncertainty evaluation of S-parameter measurements exists [1]–[7] it was only recently that two software tools able to perform a complete uncertainty evaluation of S-parameter measurements – including covariance information – became available.

The tools in question are VNA Tools II [8], provided by the Swiss Metrological Institute (METAS) and available at [9] (SW1), and MMS4 [10], developed by HFE [11] (SW2).

These two tools differ profoundly in their approach and implementation, however, after a careful comparison presented in [12], it has been proven that they both provide consistent results as long as the input sources of uncertainty (noise, connection repeatability and standard uncertainty) are properly set. Because of their proven reliability, these tools can be used to compute the uncertainties of derived quantities. A relevant example is represented by the uncertainty propagation to f_T (current gain cut-off frequency) and f_{MAX} (maximum oscillation frequency) of a microwave transistor. Quantifying uncertainties is crucial in this case because these parameters are often used as benchmarks: to effectively compare results from different sources, one should take into account not only their absolute values, but also their associated uncertainties.

In general, the uncertainty of a derived quantity depends on the procedure used to compute the relevant quantities, in our case the S-parameters, starting from the raw data output from the instrument. This involves instrument calibration and additional computational steps to shift the reference planes closer to the Device Under Test (DUT) active area (de-embedding). Our work focuses on on-wafer devices, but the methodology we present can in principle be applied to any measurement environment.

This paper is structured as follows. Section II reports how S-parameter uncertainty is computed and propagated with full covariance matrices. Section III describes how uncertainties propagate through the de-embedding. Section IV deals with some general considerations about the propagation of uncertainties to f_T and f_{MAX} whereas Section V highlights the effect of using different parameters for the extraction. In Section VI, considerations on the possible causes of error are given, with suggestions on how to avoid them. Finally Section VII draws the conclusions to this work.

II. S-PARAMETER UNCERTAINTY EVALUATION

The software tools used in this work to compute S-parameters uncertainty take into account the following contributions:

- Vector Network Analyzer (VNA) noise,
- Probe contact repeatability,
- Uncertainty of calibration standard definitions.

A thorough discussion on the evaluation of the three contributions listed above was presented in [12], and the results were applied to this work.

The VNA noise contribution was estimated by performing repeated VNA measurements, and was found to be typically negligible with respect to the other sources of uncertainty.

For what concerns probe repeatability, 40A-GSG-150-P and 110H-GSG-150 (Picoprobe) mounted on manual probe stations were characterized as described in [10]. For each standard, the probes were raised and lowered 20 times, each time changing slightly their position and the amount of overtravel, to achieve a good statistics for repeatability. The results are $1+\nu_T$ and ν_R variances (as defined in [10], equation (32) and following) of 0.08 dB and -50 dB respectively at 40 GHz for the 40A-GSG-150-P and of 0.06 dB and -43 dB at 110 GHz for the 110H-GSG-150.
The last contribution, i.e. the uncertainty of the calibration standards, was defined by a-priori knowledge on the fabrication tolerances of the standards. This data is sometimes made available by the calibration substrate manufacturers or otherwise needs to be assumed on the basis of experience or previous measurements.

These contributions are taken into account by the two tools with an important difference. SW1 provides complete covariance matrices with correlation among different frequencies, whereas SW2 provides only correlation between the different S-parameters. The main contribution to frequency correlation is typically due to the uncertainty of standard definition and is taken into account with SW1.

The subsequent propagation of the uncertainty was performed through the library tool Metas.UncLib \cite{8, 13, 14} provided free of charge by METAS.

The junction Bipolar Transistor (DHBT) is shown in Fig. 1. It is typically due to the uncertainty of standard definition and is taken into account with SW1.

The subsequent propagation of the uncertainty was performed through the library tool Metas.UncLib \cite{8, 13, 14} provided free of charge by METAS.

III. UNCERTAINTY PROPAGATION THROUGH A TRADITIONAL DEVICE DE-EMBEDDING

A common strategy to remove the parasitic effects of the interconnects between on-wafer probes and the active region of the DUT is to perform a de-embedding procedure after a VNA calibration at the probe tips. This is done using open and short structures, fabricated simultaneously with the DUT.

More complex de-embedding techniques, not considered in this paper \cite{15, 16}, can also involve thrus or loads.

\[Z_{DUT,os} = (Y_{DUT} - Y_O)^{-1} - (Y_S - Y_O)^{-1} \] (1)

or

\[Y_{DUT,so} = (Z_{DUT} - Z_S)^{-1} - (Z_O - Z_S)^{-1} \] (2)

to compute the DUT impedance matrix \(Z_{DUT,os} \) or its admittance matrix \(Y_{DUT,so} \), where \(Y_S \) (\(Z_S \)), \(Y_O \) (\(Z_O \)) and \(Y_{DUT} \) (\(Z_{DUT} \)) are the short, open and DUT admittance (impedance) matrices, respectively.

A comparison of open-short de-embedded and non-de-embedded data for a common-emitter InP Double Heterojunction Bipolar Transistor (DHBT) is shown in Fig. 1. It can be noticed how de-embedding generally increases the uncertainty bars. In particular, for several analyzed data sets, it was found that the uncertainty on the de-embedded S-parameters \(S_11 \), \(S_12 \) and \(S_{22} \) can increase by 20-50 % with respect to the non-de-embedded data, while the uncertainty on \(S_{21} \) (a typically larger quantity) might be even lower after de-embedding.

With these tools it is also possible to evaluate the uncertainty related to the fabrication of the de-embedding structures. A possible approach is to model the de-embedding structures with a lumped element equivalent circuit where each element value has an associated uncertainty. If resistive elements are left out from the model, \(f_{MAX} \) is practically insensitive to the uncertainty of the reactive embedding network elements. On the other hand, uncertainties on inductances and capacitances propagate to \(f_T \), but are typically highly reduced. For example an uncertainty of 10 % on the reactive elements results in an uncertainty of 1-2 % on \(f_T \).

IV. UNCERTAINTY PROPAGATION TO \(f_T \) AND \(f_{MAX} \)

A. Quantities of Interest Definition

The extraction process of \(f_T \) and \(f_{MAX} \) involves in all cases an elaboration of the measured S-parameters of the transistor, within a chosen frequency range and at a given bias point.

From common practice, it is well known that \(f_T \) and \(f_{MAX} \) are extremely sensitive to the type of calibration applied to compute the S-parameters and on the de-embedding strategy adopted. For example, as shown in \cite{17}, up to 10% difference on \(f_{MAX} \) can be observed using different calibration types.

The following analysis quantifies how \(f_T \) and \(f_{MAX} \) are affected by the measurement uncertainty, taking into account for the first time the complete covariance matrices of the input S-parameters of the DUT and the de-embedding structures.

The extraction is performed from the following quantities:

- Transmission hybrid parameter (\(H_{21} \)),
- Unilateral gain (\(U \)),
- Maximum Stable Gain (MSG) if \(k < 1 \),
- Maximum Available Gain (MAG) if \(k >= 1 \),

where \(k \) is the stability factor (see Appendix A for the complete expressions). \(f_{MAX} \) is defined as the frequency at which \(U \) or MSG/MAG are equal to 0 dB. \(f_T \) is defined as the frequency point where the short-circuit current gain \(H_{21} \) is equal to 0 dB. An alternative definition for \(f_T \) is through the Gummel method \cite{18} - where \(f_T \) is extracted from the inverse of the low frequency slope of \(\text{Im} \left\{ \frac{1}{f_{MAX}} \right\} \).

Whatever method is used, \(f_T/f_{MAX} \) and their uncertainties depend in first place on whether a single frequency point or an interpolation/extrapolation of measured data, using \(n > 1 \) measured points are used.

B. Case 1: Single Point Approach

When \(f_T \) or \(f_{MAX} \) are already represented by a data point belonging to the measured set, the uncertainty of the quantity of interest is determined directly from the measurement uncertainty of that point. This is also the case when a single data point is used for the extraction, for example when \(f_{MAX} \)
is extracted from the highest frequency point because \(k < 1 \) over the entire measurement range. Alternatively, single-point determination of \(f_T/f_{\text{MAX}} \) is also often used in manufacturing environments for the sake of expediency.

We now focus on how two popular calibration algorithms impact the results, while keeping the same extraction method, and give some typical figures for uncertainties.

The device considered for this comparison was an InP DHBT biased with 1.6 V collector-emitter voltage and a base current of 500 \(\mu \)A. \(f_T \) was computed by extrapolating the last measured frequency point (40 GHz) of \(H_{21} \) with a -20 dB/decade slope as a function of frequency, and \(f_{\text{MAX}} \) by extrapolating the last measured frequency point of \(U \), in a similar way, with a -20 dB/decade slope.

Table I reports the results obtained for \(f_T \) and \(f_{\text{MAX}} \) using a Short Open Load Reciprocal (SOLR) and a Thru Reflect Match (TRM) calibration. The intermediate results obtained before open-short (OS) or short-open (SO) de-embedding are also shown. It can be noted that the two calibrations are metrologically compatible, as uncertainty intervals always overlap, even if they do not give always the same results.

<table>
<thead>
<tr>
<th>(f_{\text{MAX}}) (no de-emb.)</th>
<th>TRM</th>
<th>SOLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>414 ± 12 (2)</td>
<td>411 ± 20 (5)</td>
<td></td>
</tr>
<tr>
<td>(f_{\text{MAX}}) (OS de-emb.)</td>
<td>428 ± 16 (2)</td>
<td>428 ± 27 (7)</td>
</tr>
<tr>
<td>(f_{\text{MAX}}) (SO de-emb.)</td>
<td>432 ± 19 (3)</td>
<td>454 ± 34 (9)</td>
</tr>
<tr>
<td>(f_T) (no de-emb.)</td>
<td>389 ± 6 (1)</td>
<td>382 ± 11 (3)</td>
</tr>
<tr>
<td>(f_T) (OS de-emb.)</td>
<td>410 ± 9 (1)</td>
<td>409 ± 17 (4)</td>
</tr>
<tr>
<td>(f_T) (SO de-emb.)</td>
<td>405 ± 9 (1)</td>
<td>412 ± 17 (4)</td>
</tr>
</tbody>
</table>

It was found that neglecting probe repeatability reduces the uncertainties dramatically (see Table I, values in bold). As expected, de-embedding increased the uncertainty and SOLR algorithm showed larger uncertainties than the TRM in all cases.

C. Case 2: Multiple Points Approach.

When more frequency points are used to compute \(f_T \) or \(f_{\text{MAX}} \), the uncertainty heavily depends on the number of points used for the interpolation/extrapolation, and on the correlation between the various points, whereas the extracted \(f_T \) or \(f_{\text{MAX}} \) value often changes just slightly.

As an example, we focus on the computation of \(f_{\text{MAX}} \) for a GaN HEMT, which is performed by interpolating measurement data in a range close to the actual \(f_{\text{MAX}} \) value. The uncertainty associated with multiple point extraction for a DHBT will be shown in Section V.

The measured MAG and \(U \) with their associated 1\(\sigma \) uncertainties are shown in Fig. 2. In the 90-110 GHz range, MAG and \(U \) coincide, as well as their uncertainties, and the data fits well to a -20 dB/decade slope line. The estimated value for \(f_{\text{MAX}} \) was consistently found to lie between 110 and 112 GHz. When the covariance matrices between the different frequency points were neglected, the uncertainty dropped from 5.2 (one point) to 1.2 GHz (40 points). This is

![Fig. 2. MAG (black) and \(U \) (grey) with uncertainty (1\(\sigma \)). The interpolating line (dashed) was computed in the range 90-110 GHz, with 20 points (only a subset of the actually measured points is shown). The result of this extraction and its uncertainty, \(f_{\text{MAX}} = (110.5 \pm 5.3) \) GHz, is also shown.](image)

mainly due to the mean operation involved when considering more than one point. When correlation was taken into account, the uncertainty increased to a more realistic value of 5.4 GHz.

As expected, multiple points extractions require covariance information between different frequency points. This information is provided by SW1 and not by SW2, which in this case may underestimate the uncertainty.

V. Uncertainty Dependence On The Extraction Parameter

\(f_T \) and \(f_{\text{MAX}} \) can be extracted from different device parameters, each having different sensitivities to measurement uncertainty. The final \(f_T \) and \(f_{\text{MAX}} \) uncertainties are affected by the choice of the extraction parameter, as will be shown in this Section.

In the following, we compare the results obtained for an InP DHBT and a GaN HEMT. The DHBT was measured at \(I_B = 400 \) \(\mu \)A and \(V_{CE} = 1.2 \) V while the HEMT was measured at \(V_{GS} = -0.75 \) V and \(V_{DS} = 5 \) V. The S-parameters of the DHBT are those reported in Fig. 1.

A. \(f_T \) Uncertainty

Fig. 3 shows \(H_{21} \) and \(\text{Im}\left\{\frac{1}{H_{21}}\right\} \), for the two transistors. For the HEMT, the uncertainty of \(H_{21} \) rapidly increases for low frequency. The reason appears clear by looking at the denominator of \(H_{21} \), see equation (A.4) in Appendix A.

At low frequencies, while \(S_{21} \) at the numerator remains finite, the denominator goes to zero, because \(S_{11} \) tends to 1 and \(S_{12} \) vanishes. Therefore, \(H_{21} \) goes to infinity and so does its derivative. The increase in the derivative reflects on the rapid increase of the uncertainty.

For the DHBT under test, \(S_{11} \) is almost constant (\(\sim 0.55 \) in magnitude for the entire measurement range, as can be seen in Fig. 1), while for the HEMT \(S_{11} \) tends to one for low frequency.

\[\text{Im}\left\{\frac{1}{H_{21}}\right\} \], shown in Fig. 3(b), has a similar behavior for both the HEMT and the DHBT. In this case, we find a reversed behavior with respect to the uncertainty of \(H_{21} \). The uncertainty of its imaginary inverse increases as \(S_{21} \) tends to zero, i.e. typically for high frequency (or low \(S_{21} \) transistors).

Table II summarizes the extracted \(f_T \) values and their uncertainties, obtained with the different methods for the
two transistors. For H_{21} of the DHBT, a -20 dB/dec linear fit was chosen as extrapolation method, using the highest frequency points (80-110 GHz, 31 points). For the HEMT, no extrapolation was needed as f_T is included in the measurement frequency range. f_T was extracted by simply interpolating the two points closest to the $|H_{21}|$ zero crossing. The chosen extrapolation ranges for the Gummel method were 1 to 15 GHz for the DHBT and 0 to 5 GHz for the HEMT. In general, it was found that this method has a higher uncertainty and can be affected by large errors, strongly depending on the interpolation range.

B. f_{MAX} Uncertainty

Fig. 4 shows a comparison of the behavior of U and MSG/MAG, for the same GaN HEMT and InP DHBT.

The U parameter uncertainty has a completely different behavior for the two transistors. The reason, as for f_T, is that the S_{11} parameter of the HEMT tends to one as frequency decreases. For frequencies above 40 GHz, U tends to have the same uncertainty level for both transistors.

V. Possible Causes of Error

We now discuss certain conditions that can lead to significant errors in the extraction of f_T/f_{MAX}.

First we consider errors depending on the choice of the range used for the extrapolation and on extrapolation type. Fig. 5 shows a typical situation for a GaN HEMT. In general, problems can arise when the extraction is performed extrapolating data in the frequency range where the stability factor k is close to 1, or the slope has not reached the nominal -20 dB/dec value [19], [20]. In the considered example, significant errors are made if the extraction is performed in the range 38-85 GHz (between the vertical dashed lines in Fig. 5). If measurements are stopped at \sim64 GHz, f_{MAX} will be 158 GHz, instead of 110 GHz. Even the extraction of f_{MAX} from U can be critical. A relevant error would be introduced if measurements were performed only up to 40 GHz, with $f_{\text{MAX}} = 140$ GHz and an overestimation of 30 GHz with respect to the actual value. Therefore, for an accurate estimation of f_{MAX}, both the uncertainties and the behavior of the DUT within the available measurement range must be taken into account.

Also the choice of the extrapolation method is crucial and leads to different results. A typical critical situation is when the available frequency range is not sufficiently extended to reach the region where the extrapolating parameter has a well defined slope. The H_{21} of the DHBT in Fig. 3 is a good example. Its behavior is clearly that of a 1-pole function, which can be used for the fitting instead of a -20 dB/dec line. Even when
Fig. 5. Typical behavior of MSG/MAG and U versus frequency of a GaN HEMT. If the highest frequency data point lies between the vertical dashed lines (i.e. the range 38-85 GHz) the extracted value would largely overestimate f_{MAX}.

In addition to these errors, a reliable estimate of f_T and f_{MAX} must also take into account the suitability of the extrapolation with respect to the transistor behavior. Deviations from the -20 dB/dec slope can arise due to device behavior, especially for very high f_{MAX} [21], [22], and this can be as well considered as a source of error.

Another possible critical situation is the one depicted in Fig. 6, where data is digitized from [23] and [24]. The U data show a recurrent “resonance” pattern for measurements performed on different devices, at different times. Ripple in U data (spikes of 4-5 dB) can considerably affect f_{MAX} extraction. Unless this error is somehow removed, it can actually be considered and treated as uncertainty. In such a case, the measurement uncertainty due to VNA noise, contact repeatability and standard definition as considered in the present paper, appears to be a second order effect.

Since f_{MAX} was extracted with a single-pole least-square fit of the data, a possible estimation of uncertainty in such a case could be given by the following expression:

$$\delta U = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (U_i - p_i)^2}$$ \hspace{1cm} (3)

where n is the number of samples, U_i is the i^{th} sample and p_i is the value of the single pole least square fit on sample i.

The dotted lines in Fig. 6 represent the single pole least square fit, while dashed line represent its uncertainty bounds computed with (3). The extracted f_{MAX} is then (775 ± 130) GHz for [23] (with $\delta U = 1.4$ dB) and (885 ± 100) GHz for [24] (with $\delta U = 1$ dB).

Table III reports the values of f_T obtained with the two extrapolation functions, for different frequency ranges. The 1-pole fitting causes a relatively small error in excess (7 GHz) when measurements are stopped at 40 GHz, while the -20 dB/dec fitting causes a large error, underestimating f_T by 35 GHz.

Table III: f_T of the INP DHBT of Section V (Fig. 3), extracted from different frequency ranges and extrapolation types. Values in GHz.

<table>
<thead>
<tr>
<th>1-pole fit range</th>
<th>f_T</th>
<th>-20 dB/dec extrapol. range</th>
<th>f_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-40</td>
<td>433</td>
<td>30-40</td>
<td>391</td>
</tr>
<tr>
<td>0-67</td>
<td>431</td>
<td>40-67</td>
<td>412</td>
</tr>
<tr>
<td>0-110</td>
<td>426</td>
<td>80-110</td>
<td>418</td>
</tr>
</tbody>
</table>

In addition to these errors, a reliable estimate of f_T and f_{MAX} must also take into account the suitability of the extrapolation with respect to the transistor behavior. Deviations from the -20 dB/dec slope can arise due to device behavior, especially for very high f_{MAX} [21], [22], and this can be as well considered as a source of error.

Another possible critical situation is the one depicted in Fig. 6, where data is digitized from [23] and [24]. The U data show a recurrent “resonance” pattern for measurements performed on different devices, at different times. Ripple in U data (spikes of 4-5 dB) can considerably affect f_{MAX} extraction. Unless this error is somehow removed, it can actually be considered and treated as uncertainty. In such a case, the measurement uncertainty due to VNA noise, contact repeatability and standard definition as considered in the present paper, appears to be a second order effect.

Since f_{MAX} was extracted with a single-pole least-square fit of the data, a possible estimation of uncertainty in such a case could be given by the following expression:

$$\delta U = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (U_i - p_i)^2}$$ \hspace{1cm} (3)

where n is the number of samples, U_i is the i^{th} sample and p_i is the value of the single pole least square fit on sample i.

Finally, as also shown in [25], another possible cause of error is due to de-embedding inaccuracies. This can be easily recognized when the open-short (1) and short-open (2) techniques start to give different results (typically for frequencies exceeding 50 GHz). For an accurate evaluation of f_T / f_{MAX} this error must be corrected, e.g. by increasing the number of cascaded de-embedding sections in the extrinsic parameter model, as proposed in [25], or via more complex de-embedding strategies, as for example [15], [16]. An analysis of how different de-embedding techniques can lead to different results was presented in [26].

VII. CONCLUSIONS

We presented the first complete evaluation of the accuracy of microwave transistors f_T and f_{MAX}. The uncertainty was propagated from the measured S-parameters of the DUT and de-embedding structures, using two recently released software tools. We identified the major contributions to the uncertainties and proved that covariance information between different frequencies is crucial for a proper evaluation. Errors and uncertainties due to different extrapolation methods were analyzed in details, identifying the most critical extraction conditions. The presented analysis allows for a consistent benchmarking of modern microwave transistors, especially as f_T and f_{MAX} reach increasingly high values.

APPENDIX A

We report here the expressions of the the quantities of interest MSG, MAG, k, H_{21} and U in terms of the device S-parameters. The stability factor k is

$$k = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |S_{11}S_{22} - S_{12}S_{21}|^2}{2|S_{12}S_{21}|}$$ \hspace{1cm} (A.1)

and the Unilateral Gain is expressed as

$$U = \frac{1}{2k} \left(\frac{S_{21}}{S_{12}} \right)^2 - \text{Re} \left(\frac{S_{21}}{S_{12}} \right)$$ \hspace{1cm} (A.2)
MAG and MSG are expressed as

\[\text{MAG} = \left(k - \sqrt{k^2 - 1} \right) \frac{S_{21}}{S_{12}}, \quad \text{MSG} = \left| \frac{S_{21}}{S_{12}} \right|. \]

(A.3)

Finally, the hybrid parameter \(H_{21} \) is:

\[H_{21} = \frac{-2S_{21}}{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}. \]

(A.4)

APPENDIX B

A thorough propagation of the uncertainty with frequency covariance, as the one shown in this work, always provides the most accurate and reliable results. However, for quick and practical estimation of the uncertainty of an extracted cut-off frequency \(f_x \), we introduce a “rule of thumb” based on the following simplified assumptions:

- the extraction of \(f_x \) is performed using a -20 dB/decade slope interpolation/extrapolation of measured points,
- the points considered for the interpolation/extrapolation all have the same \(\delta y_{dB} \) uncertainty (expressed in dB),
- the measured frequency points are perfectly correlated.

Under these assumptions we can approximate the uncertainty of \(f_x \) with the following expression:

\[\delta f_x = \pm f_x \left(10^{\frac{\delta y_{dB}}{20}} - 1 \right). \]

(B.1)

With this expression, the relative uncertainty \(\frac{\delta f_x}{f_x} \) is \(\pm 3\% \) for \(\delta y_{dB} = \pm 0.25 \text{ dB} \) and \(\pm 6\% \) for \(\delta y_{dB} = \pm 0.5 \text{ dB} \). Table IV shows some results for absolute uncertainty.

<table>
<thead>
<tr>
<th>(f_x) (GHz)</th>
<th>(\delta f_x) (GHz) for (\delta y_{dB} = \pm 0.25 \text{ dB})</th>
<th>(\delta f_x) (GHz) for (\delta y_{dB} = \pm 1 \text{ dB})</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>(\pm 1.5)</td>
<td>(\pm 6)</td>
</tr>
<tr>
<td>200</td>
<td>(\pm 6)</td>
<td>(\pm 25)</td>
</tr>
<tr>
<td>400</td>
<td>(\pm 12)</td>
<td>(\pm 49)</td>
</tr>
<tr>
<td>800</td>
<td>(\pm 23)</td>
<td>(\pm 98)</td>
</tr>
<tr>
<td>1000</td>
<td>(\pm 30)</td>
<td>(\pm 122)</td>
</tr>
</tbody>
</table>

TABLE IV

UNCERTAINTY “RULE OF THUMB”.

ACKNOWLEDGMENTS

The authors wish to thank the developers of the software tools used in this work, Marco Garelli (HFE) and Michael Wollensack (METAS), for their help and support.

REFERENCES

