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Abstract

The Internet is evolving with us along the time, nowadays people are more dependent
of it, being used for most of the simple activities of their lives. It is not uncommon
use the Internet for voice and video communications, social networking, banking
and shopping.

Current trends in Internet applications such as Web 2.0, cloud computing, and
the internet of things are bound to bring higher traffic volume and more heteroge-
neous traffic. In addition, privacy concerns and network security traits have widely
promoted the usage of encryption on the network communications. All these factors
make network management an evolving environment that becomes every day more
difficult.

This thesis focuses on helping to keep track on some of these changes, observing
the Internet from an ISP viewpoint and exploring several aspects of the visibility of
a network, giving insights on what contents or services are retrieved by customers
and how these contents are provided to them. Generally, inferring these information,
it is done by means of characterization and analysis of data collected using passive
traffic monitoring tools on operative networks.

As said, analysis and characterization of traffic collected passively is challenging.
Internet end-users are not controlled on the network traffic they generate. Moreover,
this traffic in the network might be encrypted or coded in a way that is unfeasible
to decode, creating the need for reverse engineering for providing a good picture to
the Internet operator. In spite of the challenges, it is presented a characterization of
P2PÂTV usage of a commercial, proprietary and closed application, that encrypts
or encodes its traffic, making quite difficult discerning what is going on by just
observing the data carried by the protocol. Then it is presented DN-Hunter, which
is an application for rendering visible a great part of the network traffic even when
encryption or encoding is available. Finally, it is presented a case study of DN-
Hunter for understanding Amazon Web Services, the most prominent cloud provider
that offers computing, storage, and content delivery platforms. In this paper is
unveiled the infrastructure, the pervasiveness of content and their traffic allocation
policies. Findings reveal that most of the content residing on cloud computing and
Internet storage infrastructures is served by one single Amazon datacenter located
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in Virginia despite it appears to be the worst performing one for Italian users. This
causes traffic to take long and expensive paths in the network. Since no automatic
migration and load-balancing policies are offered by AWS among different locations,
content is exposed to outages, as it is observed in the datasets presented.
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Chapter 1

Introduction

The Internet have been with us for several years and will stay for longer. Along
all this time, Internet has evolved drastically as culture trend, market and politics
evolve as well. The changes on the Internet are reflected on several levels, from
how the end-users interacts on the network, to how content is delivered and the
transmission capacity is getting available to everybody. Considering just the tech-
nological part, Internet has changed because of end-users now can buy cheap and
powerful computing devices, wireless connections are in anywhere providing con-
nectivity to anything, video transmission, which represents tons of data, is quite
popular thanks to cheap devices able to capture high resolution digital video, cheap
storage devices which allows to save tons of data, high-speed networks which makes
feasible content sharing and infrastructures, like Youtube, which can host unlimited
audiovisual content for free almost no matter the duration of the film, and thanks to
high-res displays which make users being more interested on better video content.
Therefore understanding what end-users do when they are online and the impact
of their actions in a network, from the point of view of an operator, or commonly
known ISP (Internet Service Provider), is essentially for providing Internet access
to end-users. This knowledge empowers ISP permitting a better administration of
the network, the creation of new business and to react faster to Internet changes as
well as failures in the network. It also helps to software engineers, which develop
on-line applications, to develop better applications that are able to coexist with the
rest.

This thesis explores several aspects of the visibility of a network, giving insights
on what contents or services are retrieved by customers and how these contents are
provided to them. Generally, inferring these information, it is done by means of
passive network monitoring of operative networks, from where traffic is collected
to then being characterized and analysed. From the point of view of who analyse
the Internet, this is not a simple task. Internet is a quite tangled and confusing
place in which many actors are involved, and the information available about it is
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1 – Introduction

not complete, e.g. some Internet traffic is encrypted or encoded in a obscure way.
Particularly, the core of this thesis is organized in three different chapters: (i) in
chapter 2 is studied the human factor and its impact on the network, by unveil-
ing the usage P2P-TV applications over the Internet, (ii) in chapter 3 is presented
DN-Hunter a generic tool that permits association of network connections to con-
tent/service, even in cases which there is encryption or unknown coding, finally (iii)
in chapter 4 is presented a study of Amazon infrastructure, which is one the big
players providing content/service to end-users.

Among the most prominent findings covered in this thesis, in chapter 2 is shown
evidence on why users in an European country select one channel instead of other,
which is the most popular content to watch on P2P television and how these com-
bined with the application design, impact together the network in terms of traffic
locality. Moreover it is demonstrated that without high speed peers in the P2P
overlay, broadcasting of real-time content becomes difficult. In 3 is presented a tool,
completely projected and coded by the author, which allows to associate the real
used domain name with a network connection in real-time. Together with this, there
is demonstrated how vague is reverse lookup for detecting the service or content of
a given connection and the amount of information that an operator can access for
free from DNS traffic in its network. Last, in chapter 4 a study case of DN-Hunter
is presented, putting particular attention to Amazon Web Services, which offer ded-
icated Cloud Computing, Internet storage and a Content Delivery Network. This
chapter also introduces a generic methodology to assess the geographical location of
an IP address which becomes useful to determine the location of the different Ama-
zon datacenters, permitting in this way understand from where the traffic is coming,
to where is exported, which are the datacenters performing worst, and thanks to
DN-Hunter understand which content performs worst and where are located the
different contents. Among all the findings, it is interesting that most of content
generated by the Cloud Computing infrastructure is imported from America, being
available datacenters for cloud-computing in Europe.

Finally, this thesis is concluded with chapter 5, which briefly describes the expe-
rience during three years of monitoring actively the Internet at the edge, recalling
the difficulties on characterizing the interactions in the Internet and commenting
some toughs of the author.

Methodology and Collaborations

All the works presented through this thesis are based mostly on traces of network
traffic collected from passive measurements on operative ISP networks. Basically,
the analysis an characterization of traffic from passive measurements has the ad-
vantage that what is being observed is not bias and represents normal behavior
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1 – Introduction

of real end-users. On the other hand, virtual hosting of content or service mixed
with privacy and security concerns make this task difficult. E.g. consider someone
is interested on Facebook traffic, most of it is encrypted using TLS/SSL and it is
hosted using several IP addresses. This is the same that happens with other not
very well-known applications generating traffic, e.g. traffic generated by a botnet,
could you tell what is going on when traffic protocol is obscured intentionally?

In this work, Tstat DPI developed in Politecnico di Torino has been used ex-
tensively. It has capabilities of classification, generates statistics about TCP/UDP
connections providing hundred of features of a flow, as well as other statistics related
to some specific protocols and content. Signatures for Tstat classifier are written by
hand and are the result of hard reverse engineering of the protocols. In this context
Tstat has been placed in several vantage points spread over Europe. Thanks to
Network-Aware P2P-TV Application over Wise Networks (NAPAWINE) a Seventh
Framework Programme project and the collaboration with of some partners, with
the scope of understanding P2P-TV applications and the attitude of end-users to-
wards it, some Tstat probes has been placed in Telekomunikacja Polska (now Orange
Polska, Poland), Magyar Telekom (Hungary), in Fastweb (Italy) and in Politecnico
di Torino (Italy). Then thousands of end-users have been monitored with the scope
to unveil and characterize P2P-TV usage.

Given the second problem of generic traffic being obscured or coded in an un-
known fashion, there is a collaboration with Narus Inc. (USA), in which DN-Hunter
has been developed. This collaboration has as scope the creation of a labeler for au-
tomatic generated signatures of protocols, but comes out that DN-Hunter was more
than a labeler for this specific application, providing visibility to the encrypted or
coded traffic to the network operator. DN-Hunter has been included in one private
version of Tstat for research purposes. Therefore using some available probes able
to run Tstat, it was possible to understand better such as big infrastructures as
Amazon Web Services, providing insights of its overall performance and the way
this company distribute its content to end-users.

Main Contributions

Throughout the chapter 2 you may find evidence that supports that P2P-TV ac-
tivity in Europe is high correlated with sports events, particularly football matches
being broadcast on paid TV. It is noted that are cultural biases on channel selection,
in which end-users running P2P-TV applications prefer to retrieve the same content
from channels with audio in particular languages, even though alternatives, broad-
casting essentially the same content, are available. This has implications on traffic
that remains naturally in a particular geographical region, notwithstanding P2P-TV
applications do not favor or promote any kind geographical traffic enclosing. On the
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other hand, it happens when content is not available in the local language end-users,
they retrieve content from another channel broadcasting the content. This have
negative implications for geographical traffic allocation, for instance when channel
content is being transmitted in English, which is the language most spoken as a sec-
ondary language, the spatial distribution of peers is sparse, then end-users the same
happen to traffic allocation, where a lot of the traffic is being exported/imported
from abroad. It is observed that there is a constant churning rate, which means
peers or end-users leaving the channels. This is important to have in mind for scal-
ing P2P-TV infrastructure, since P2P applications rely on end-user capability to
replicate the information over the P2P overlay. Moreover, the behavior of peers is
quite synchronized. That is an effect of flashÂcrowd when events starts and high
churning when broadcast event, e.g. football match ends. In spite of generic P2P
applications, there are two particular methodologies which allowed to find all the
already described results. The first is a methodology that permits the isolation of
P2P-TV traffic by channels, and the second one is a methodology to estimate the
the size of a P2P swarm in a scenario in which the peer discovery is not forced, that
is, with the same probability each peer in the swarm may exchange some traffic with
any other peer in the swarm.

On chapter 3 is presented DN-Hunter, which allows the association any TCP/UDP
flow with its corresponding Fully Qualified Domain Names (FQDN). A FQDN may
provide granular information about the service or content associated with a network
connection, even though a network connection is encrypted. It has been imple-
mented as part of DPI solutions, as Tstat a open-source DPI developed at Politectino
di Torino and it is inside Narus Insight, a commercial DPI solution developed at
Narus Inc. In this thesis contains a brief description of DN-Hunter, which includes
internals of DN-Hunter and algorithms for giving visibility of the network using the
FQDN annotated connections. Among the algorithms presented here, an automatic
port labeling is described which mixes flow features as a destination TCP/UDP port
number, with the domain names associated to the connections using some particular
ports, in a way that DN-Hunter provides labels for unknown ports being used in
the network, pointing out information for a network administrator. Moreover, it has
been used to label kind of traffic which share a particular signature, in the context
of an automatic application signature learner, DN-Hunter provides labels for the
new protocols it founds in the network. Heuristics for content discovery and how
different content is being hosted on different infrastructures is shown, presenting
findings related to web services which operate differently according to the geograph-
ical location they are serving. Also, it is shown that DN-Hunter allows to a network
administrator to have a grasp on the kind of content being provided by a general
purpose cloud. An example of Google Appspot, a general purpose cloud for running
applications for free on Google machines, shows that with DN-Hunter is possible
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to determine that this cloud is abused by BitTorrent trackers for sharing proba-
bly copyrighted content. This is particularly astonishing since content is served by
Google IP addresses which are well known to serve “bad” content, moreover other
legacy service run on the same IP addresses, then blocking trackers by their IP
address would break the whole connectivity to other innocuous applications.

Chapter 4 is a complete study of one big player of the Internet nowadays as
observed from the point of view of an ISP. This is the case of Amazon Web Services
(AWS), from which traffic directed to it is passively gathered from all the traffic. One
of the main contributions is a heuristics for determining the location of an Internet
address as observed from a particular location, bypassing in this way any particular
routing configuration which could trick some other accurate methodologies like [1],
which uses several probes spread on different geographical locations. Using DN-
Hunter, this chapter provides insights on performance of the different datacenters,
performance of the different services hosted on AWS cloud as well as content hosted
on their Content Delivery Network, hosting policies and pricing for customers with
implications on geographical traffic allocation and eventually on QoS for end-users,
which have to import traffic from long distances when it could be available from
nearest datacenters. In spite of this, it is found that Italian end-users import near the
85% of traffic volume from America, when a datacenter is available in Ireland. This
impairs the quality of communication with the servers specially for the case of TCP
connections. In addition, it is shown which kind of content/service is responsible
for such traffic importing, finding that mostly online social games are quite popular
among Italian end-users and that those applications are mostly hosted in Amazon
datacenter located in North Virginia, near to Washington.
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Chapter 2

Inferring Internet end-user
attitude

2.1 Introduction

As the Internet changes, in the recent years we have witnessed the success of P2P-
TV applications, bringing TV channels, some of which live, to the users’ home
through the Internet. Several commercial P2P-TV systems are available and some
are popular among users because they feature cheaper video broadcasting than other
solutions, e.g., IPTV or pay-TV. Unfortunately, most of the successful P2P-TV
applications rely on proprietary protocols and unknown algorithms, so that the
understanding of such systems is intrinsically complex. Thus P2P-TV traffic char-
acterization has become a topic of great interest for the research community and for
network operators. Both are interested in understanding the positive and negative
aspects of P2P-TV applications, to understand how these complex systems work
and to improve their design and effectiveness.

Service providers, network operators and designers, are interested in assessing
the potential impact of this traffic on the network of today, impact that might
turn out to be disruptive, given the possible large number of users and high band-
width requirement combined with the traffic being loosely controlled with respect
to network conditions. Researchers are interested in the investigation of end-users
attitude towards these new services to foresee new trends in the future usage of the
Internet, and to augment the design of their application. A deep understanding of
P2P-TV traffic and its characterization is therefore an important task that can con-
tribute to the design of network elements, including traffic engineering mechanisms,
component dimensioning, resource management strategies.

In P2P-TV systems, three different graphs can be identified. The first graph rep-
resents the users that run the applications forming a “social network graph”. Where
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2 – Inferring Internet end-user attitude

are the users? When and for how long do they run the application? Is churning
relevant for P2P-TV systems? These and others are all relevant questions whose
answer allows researchers to design more robust applications, e.g., by exploiting
natural localization properties of users.

Peers form then an “overlay topology”, a second graph where peers are intercon-
nected by logical links. Peers interested in the same channel then form a “swarm”;
independent overlay topologies are built for different swarms. Which are the prop-
erties of the swarms? Are the peer neighbors carefully selected or are they randomly
chosen? By understanding the overlay topology graph properties it is possible to un-
derstand the P2P-TV system properties, its robustness to churning or its scalability
with respect to the number of peers.

Finally, the subset of the overlay links that are used by peers to exchange the
video traffic forms the third graph, the “distribution graph”. Is the video data being
downloaded from neighbors in the same Autonomous System to reduce the network
provider cost? Are neighbors with larger upload capacity preferentially selected to
download content from? What is the fraction of high capacity peers in a swarm?
Recall indeed that the total available upload capacity plays a key role in the success
of P2P-TV content distribution since the video stream must be downloaded at an
almost constant rate by each peer.

To answer most of the latter questions, this chapter contributes to the charac-
terization of P2P-TV traffic by analyzing the traffic due to popular applications
(SopCast, TV-Ants and PPLive), in the operative links of four networks in opera-
tion in Europe, three of which provide ADSL access, the forth one employs FTTH
(Fiber-To-The-Home) technology. Differently from the measurement works present
in the literature, here there is adopted a pure passive methodology to observe nor-
mal usage of P2P-TV applications by customers. Collecting traffic for more than
one year, it is found that SopCast is the largely preferred application by customers
in these networks. Furthermore, the usage of these applications is still very much
discontinuous and often associated to events, such as sport events, that are popular
but expensive to retrieve through normal TV broadcasting systems.

As a study case, then focus on two months during which the UEFA Champions
League 2009 final matches were held. Investigating deeper into the SopCast traces,
it is reported traffic and peer volumes, swarm evolution, peers geo-localization and
lifetime, and their contribution to the video distribution. Results suggest that the
implications of traffic burstiness, the peer population and their evolution might be-
come challenging for the network, should these applications become widely popular.

Methodologically, it is proposed a general heuristic to identify swarms corre-
sponding to TV channels; observing churning associated to SopCast events, finding
out that users stay connected to the P2P-TV system for the whole duration of the
event, but they can frequently change swarm seeking for better channels broadcast-
ing the same event.
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In spite of the peer discovery process in the overlay topology, it is found out that
SopCast implements a simple random discovery which is very robust. Conversely, the
distribution graph is severely biased by peer upload capacity and by the Autonomous
System a peer belongs to. Results suggest that the implications of traffic burstiness,
peer population and their evolution over time might become challenging to face.

Some key aspects highlighted in this chapter include:
• Despite the average bandwidth usage of P2P-TV applications is not significant,
it can be substantial during periods in which popular events are shown. Today, a
few tens of users can contribute to 15% of total aggregate traffic generated by more
than 20,000 users on a network access link.
• Node churning during the lifetime of a stream is not significant, but there is a
flash crowd entering the system at the beginning of the event and a rush towards
exit at the end. This clearly has an impact on the design of P2P-TV applications.
• Evidence shows that often high-speed residential networks and University networks
altruistically serve content to residential peers with highly asymmetric bandwidth.
Without the contribution of those peers, the P2P-TV system would not sustain the
service at all.
• Geo-locality of social network graphs is deeply affected by cultural and language
trait of customers. This biases the traffic distribution graph that is inherently geo-
graphically localized.

The latter two facts clearly impact the ability to localize P2P traffic, a theme
that is currently debated in the research community.

2.2 P2P-TV Usage

In this section usage and popularity of P2P-TV among Internet end-users. Fig. 2.1
report the P2P-TV average incoming bitrate versus time, for different timescales
observed at the EU2-ADSL vantage point. Results are qualitatively similar in other
monitored PoPs. On average, the traffic generated by these applications is marginal,
but the burstiness of traffic reflects P2P-TV usage that is concentrated during short
periods of time. This is when the amount of traffic generated can reach very high and
possibly disruptive peaks. Moreover, it is observed that P2P-TV activity typically
coincides with the transmission of popular sport events, e.g. UEFA Champions
League during Wednesday and Thursday or Premier League (England First Division)
on Saturday and Sunday. It is observed that even the most popular events reach as
much as a hundred of same PoP end-users, which correspond to less than 0.5% of
all monitored end-users connected to the vantage point. Still, the download bitrate
often exceeds 15% of total PoP incoming traffic during those events. P2P-TV bitrate
during peaks is larger than the aggregated YouTube bitrate consumed by customers
in the same network. Nevertheless P2P-TV usage is disruptive and consume lot
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2 – Inferring Internet end-user attitude

of network resources, only a few end-users connected to PoPs run these P2P-TV
applications. This “bursty” user behavior, which can be pretty difficult to handle,
is also very different from normal TV and IPTV usage pattern, that is typically
smoother and more evenly distributed during the day. Notice also the abrupt drop
of traffic that happens after 20:30, i.e., after the event ends. This hints that flash
crowd phenomena are not negligible in P2P-TV systems, as it discussed in next
sections.

On all the monitored vantage points it is observed at the time in which the mea-
surements were collected, that in these European networks SopCast is by large the
most popular P2P-TV application among others like PPLive and TV-Ants, which
traffic signatures can be identified using Tstat DPI. Therefore, in the following, the
analysis of P2P-TV is restricted to some of the largest traces of SopCast traffic,
which remains statistically more relevant. Since SopCast adopts a proprietary pro-
tocol and relies on encryption mechanisms, reverse engineering of the application
protocol and algorithms are avoided. Instead, all the characterization of the appli-
cation and its usage is devised using simple methodology that can be leveraged to
study other P2P applications too.

2.3 Channel Identification

The information on whether the observed peers are watching the same “channel”,
i.e. peers watching different channels belong to different disjoint swarms, is inter-
esting since it can be leveraged to better characterize and categorize the different
channels and users. Unfortunately, identifying the channel turns out to be complex
from passive monitoring of uncontrolled peers. Worst, SopCast adopts its own pro-
prietary protocol and uses encryption mechanisms, that makes harder the channel
identification by inspection of protocol messaging.

In order to avoid complex (and questionable) reverse engineering of the SopCast
protocol, it is defined a methodology that allows to cluster peers in swarms, that is a
group of peers watching the same channel. This methodology is generic and can be
leveraged for most P2P systems as well. The intuition at the base of this solution is
that peers in a given channel contact other peers that are part of the same channel
too. Then it is defined the concept of neighborhood of a peer, as the set of peers that
have established any connection with the peer. Formally it is claimed that peers
with similar neighborhoods belongs to the same channel. For instance consider two
peers a and b which have a lot of neighbors in common, both belongs to the same
channel. On the other hand, consider a third peer c which have only a few neighbors
in common, it is said that c belongs to a different channel.

Let a and b denote two internal peers and let P (a) be the set of peers contacted

by a, i.e., peers which a sent a packet to. The amount of common peers among
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Figure 2.1: P2P-TV Traffic at Different Time-scales in the TP PoP.

a and b is then C(a, b) = |P (a) ∩ P (b)|, where | · | is the cardinality operator. It
is defined then the common peer matrix M , as a matrix in which element (i, j) is
Mij = C(i, j).

If each row (column) on the M matrix represents a monitored peer, then by
sorting peers, so that two adjacent rows (columns) in M refer to peers that have a
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large number of common peers and their neighborhoods are similar as well, then it
is easy to identify the different swarms by just looking at the rows (columns) of the
matrix. Neighborhood similarity is computed using the number of contacted peers
in common, in a way that it gives similarity score if two peers a and b have external
peers in common, but it gives an even higher score if there is a third peer c which
also shares peers with a and b, and a forth d which do not have peers in common
neither with a, b and c. Let Va be the vector of common peers of a with all other
monitored internal peers, i.e., the a-th row of M . Denote by V T

a the transposed of
Va, i.e., the a-th column of M . The product,

S(a, b) = 2
VaV T

b

VaV T
a + VbV

T
b

(2.1)

is a measure of the similarity between the neighborhoods of a and b. By iteratively
sorting the list of peers and moving closer those with larger similarity, it is obtained
the swarming matrix, i.e., an ordered common peer matrix M ′ that depicts in a clear
way how peers are clustered together.

Fig. 2.2 reports the swarming matrix considering 133 peers active for more than
600 s during 2-hours event on the 5th of May 2009. Each cell is colored according to
the amount of common peers it represents. The numbers along the main diagonal
correspond to the total number of contacted peers, P (a). The swarming matrix
shows that there are several groups of peers that share a large fraction of common
peers, identified by the darker blocks. The largest block includes peers from 0
to 70 (named swarm A), the second group corresponds to peers from 105 to 126
(swarm B), then peers from 90 and 105 (swarm C). The magnitude of well defined
clusters of peers with intersections of neighborhood suggests that they correspond
to different swarms, or channels. Moreover it is possible to understand the swarming
matrix as an adjacency matrix, where each peer is a node in a graph and dark cells
represent connections between peers of the same channel. In the same way, dark
blocks represent very well connected components or in P2P-TV jargon, a channel.
It is inferred that during the 5th of May event users were watching different channels
that were possibly broadcasting the same event. Then, each identified swarm is also
characterized by very different properties, which corroborate this claim.

Swarming matrices allow grouping of users watching the same channel. As a first
result, it clarifies that some channels are more popular in the monitored network.
Interestingly, it is possible to observe from the matrix that during the same short
period of time, several channels were active, probably transmitting same content.
This assertion is enforced by the observation of peers changing from one channel
to another, as you can read in section Sec. 2.3.1. Probably these channels provide
essentially same content, but some features such as video quality, sound quality,
channel stability or even channel, could be different.

11
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Figure 2.2: Swarming matrix for 5th of May trace. Darker blocks refer to peers in
the same swarm.

The swarm analysis is repeated over all the traces, identifying several swarms. In
this section the analysis and results are restricted to the subset of swarms reported in
Tab. 2.1, which are the largest swarms in terms of number of present internal peers.
The table summarizes prominent swarm characteristics: the number of internal
peers observed in the channel and the estimated amount of external peers in the
channel, the total amount of received (RX) and transmitted (TX) data, estimated
video rate, probe country code (CC) location and the portion of external peers that
belong to the same Autonomous System (AS) the probe was located in. Note that
channels are sorted by decreasing values of the last metric. Note that all the largest
swarms were observed in the EU2-ADSL traces, being P2P-TV usage more popular
in EU-CC1 than in the other two European countries. Nonetheless, in swarm 11 and
swarm 14 is identified one peer that was monitored in EU3-ADSL and EU1-ADSL2,
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respectively. These are listed in the two bottom rows of the Table.
The number of external peers in the channels are estimated using a metric ex-

plained in detail in Sec. 2.4.3. Video rate, is computed considering the number of
peers watching the channel and the total amount of video data observed, during a
window time of 1 minute. The video data is discriminated from the signaling data by
taking advantage of the very biased distribution of packet size of SopCast. Further-
more packets which hold more than 1000 bytes in their payloads are considered as
video packets. Results show that the video rate is typically lower than 480kbps, i.e.,
low quality video. Other metrics reported in the table are straightforward computed
from traces.

Table 2.1: List of the largest swarms

Swarm Internal External RX TX Video Rate CC PL
ID Peers Peers [GB] [GB] [kbps] AS %
0 35 15489 8 2 330 PL 32
1 29 19701 8 2 400 PL 31
2 50 32757 15 3 450 PL 28
3 33 25575 9 2 400 PL 27
4 41 33320 15 3 400 PL 27
5 69 60502 23 5 420 PL 25
6 66 76416 24 5 470 PL 23
7 19 20662 8 2 350 PL 21
8 77 68264 30 6 400 PL 19
9 11 10371 3 1 440 PL 10
10 5 12288 1.5 0.2 320 PL 9
11 12 18684 5 1 430 PL 9
12 10 20930 2 0.2 370 PL 8
13 8 13591 2.6 0.4 450 PL 8
14 16 39948 4.3 0.4 380 PL 6
15 13 39718 4 0.3 450 PL 5
16 25 54830 5 1 470 PL 4
17 8 23333 2.7 0.3 480 PL 3
18 10 30026 3 0.5 330 PL 2
19 9 27195 2.1 0.5 400 PL 2

11 1 8049 0.5 0.2 430 HU N/A
14 1 5122 0.3 0.1 380 IT N/A
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2.3.1 Detecting Channel Switching

Usually when someone watches TV use to change channel often. This behavior is
commonly known as zapping, which is using the remote control device to switch
across channels or TV programs. Motivated on finding differences between P2P-TV
and normal TV, the user satisfaction is studied in this section, measuring how much
are like the users to change the channel that they were watching. From the swarming
matrix, there are still some peers which share some common peers with others in
disjoint channels. For instance, peer 123 at Fig. 2.2 as a large number of common
peers with both, swarm A and swarm B. Has this peer watched both channels at
the same time, or somehow it switched from channel A to B or vice-versa during
the 2 hours of monitoring?
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Figure 2.3: Affinity of peer 123 to swarm A and B during the 5th of May trace.

To support the hypothesis that a peer had jumped from one channel to another,
instead of watching both contemporary, it is defined the following test. Let X and
Y be the sets of internal peers that belong to different swarms. Then,

P (X, Ȳ ) = ∪x∈XP (x) \ ∪y∈Y P (y) (2.2)

is the set of unique external peers contacted by peers of swarm X but not by peers
of swarm Y . Let P∆T (a) be the set of peers contacted by the internal peer a during
time ∆T . It is defined the swarm affinity of peer a to swarm X and not to Y as

A∆T (a, X, Ȳ ) = 100
|P (X, Ȳ ) ∩ P∆T (a)|

|P∆T (a)|
(2.3)

Fig. 2.3 shows the affinity of peer 123 to swarm A and swarm B, considering ∆T = 5
minutes moving along the event duration. The plot shows that peer 123 exhibits
a high swarm affinity towards swarm B from 18:30 until 20:10, time at which its
affinity to swarm B drops and the one to swarm A increases. Notice peer 123 left
swarm B to join swarm A at 20:10. Identical results are obtained when considering
other peers showing same connection pattern. Finally there is evidence of chan-
nel switching when there are other available channels providing same content with
different features.
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2.3.2 Natural Churning and Flash Crowds

Differently to normal TV, on P2P-TV is observed a very like event driven behavior
among P2P-TV users Fig. 2.1. When someone runs SopCast it is probably that
some particular TV show or event is being broadcast at that time, so that a flash
crowd effect is present when an event starts. Users then keep running SopCast for
the whole event duration, and then suddenly stop using it at the event end. This is
confirmed by Fig. 2.4 which reports the Cumulative Distribution Function (CDF) of
the time which internal peers are active using P2P-TV during an event. This time
is called the lifetime of the peer. Both separated and aggregated CDFs are reported.
Results show that users lifetime is very similar for different events, and it is rather
long, e.g., 90% of users have a lifetime longer than 30 minutes. As highlighted by
the horizontal lines, 50% of users have a lifetime within 90 min and 130 min, which
corresponds to the typical duration of a soccer event. Only less than 10% of users
run SopCast for more than 150 min.
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Figure 2.4: User lifetime CDF; the thick line refers to the aggregate statistic.

It has already addressed that some users switch channel during their lifetime,
but how much often this happen during the lifetime of an event? To answer this
question, Fig. 2.5 shows the churning percentage over time. Both peers that change
channel and peers that close the application are considered. Two different events
are considered in top and bottom plots. Results are obtained by computing the
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swarming matrix for different time slots. In detail, M(tn) is computed every time
period tn of 5 min; then M(tn) and M(tn−1) are compared to count peers entering
or leaving a channel and peers switching channel. Finally, the churning percentage
is computed with respect to the number of active peers at time tn.

Fig. 2.5 shows that the number of users switching channel is not negligible, e.g.,
around 8-10% of users changes channel every 5 min. Interestingly, the percentage
of peers that change channel is higher at the beginning, when possibly users are
seeking for a good channel to follow the whole event which they are interested
in. The churning percentage of users leaving the system is small, but it suddenly
increases at the event end when more than 50% of users leave the system at the
same time.
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Figure 2.5: Percentage of peers changing channel and leaving the system during two
soccer matches.

These results highlight the “human-factor” implication when designing a P2P-
TV system. Both flash crowd and sudden peer departures are not negligible, so that
algorithms must explicitly deal with them.
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2.4 Peer Discovery Process

In this section, is of interest to understand some properties regarding with the overlay
graph underneath a P2P-TV channel. Most of P2P-TV systems (SopCast included)
implement a peer discovery algorithm based on gossiping protocols [2]. In SopCast
a continuous discovery process is carried out by peers that look for new peers at a
practically constant rate. In the overlay graph, an edge is created every time a peer
exchanges information with another peer. To assess what are the properties of the
SopCast overlay graph, the peer discovery process is observed.

2.4.1 Peer Discovery by Access Technology

The first question that arise regarding to peer discovery is, do all peers discovery
others with the same rate? To answer this question, the number of peers contacted
by internal peers in a period of time ∆T is measured during the events. The dis-
covery rate depends on the rate with which the peer is contacted by or contacts
other peers. Fig. 2.6 shows an example of measurement for peers in swarm 14. The
figure shows the average discovery rate of peers for TP and IT-FTTH data sets. It
is chosen a ∆T = 60s. Focusing first on the TP peers, all peers in this data set
perform the same kind of discovery process. In contrast, the discovery rate of the
IT-FTTH peer is much larger than the TP peer rate. It also shows a significant
variation during peer lifetime. Similar results are observed when comparing low and
high upload capacity peers: the formers exhibit smaller discovery rate than the lat-
ter. This suggests that SopCast implements some algorithms to exploit the upload
bandwidth of high capacity peers.

 0

 100

 200

 300

 400

 500

 600

 700

18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00 21:15

D
eg

re
e

Time

TP
IT-FTTH

Figure 2.6: Number of peers contacted every 60s by internal peers.

To corroborate this hypothesis, a controlled test-bed experiment is set in the

17



2 – Inferring Internet end-user attitude

University Campus network. The setup of the experiment consists on two peers
watching the same channel at the same time. Both peers are connected to the
Internet via the same router which limits the upload rate to 256kb/s and 32Mb/s,
respectively. Note that the download rate should be limited by the video rate,
in the case that protocol signaling overhead is not considered. The evolution over
time of the discovering rate of the two peers is observed, showing identical results on
Fig. 2.6: the peer with higher upload capacity exhibits a much higher peer discovery
rate. Therefore, there is enough evidence to say that the discovery rate on SopCast
depends on the peer upload capacity.

2.4.2 Bias of Peer Discovery Process

The scope of this section, is to unveil if there is any preference in the discovering
process, based on the peer geo-location, distance or any other property. Fig. 2.7
shows the geographical breakdown of peers contacted by different internal peers
during their whole lifetime. Left and right groups of bars refer to swarm 11 and
14, respectively. For each swarm, it is reported the breakdown for i) two internal
peers selected at random from the TP dataset, ii) all peers in the TP dataset,
and iii) one peer in the MT and IT-FTTH dataset. Results show that there is
no statistically significant difference, even if peers are located in different countries
(PL or HU for swarm 11, PL or IT for swarm 14) or are connected through different
access technologies (PL-ADSL vs IT-FTTH for swarm 14). However, the breakdown
changes in the two events. This suggests that the SopCast peer discovery mechanism
is not driven by any preference related to any peer property, but it reflects only
the natural distribution of users around the world. That is, the peer discovery
mechanism follows a random process in which the probability of contacting (or
being contacted) by a peer is independent from other peers. This is a very robust
choice which allows SopCast to deal with the high churning rate seen in the previous
section.

2.4.3 Channel Size Identification

Leveraging on the SopCast peer discovery process, in the following it is exploited
a simple model to estimate the channel size, that is the number of peers actually
watching the channel across the world. Let consider independent observation periods
of duration ∆T . Over each period, the internal peers watching the same channel are
monitored. The discovering process can be modeled as a random walk at constant
rate defined by the access technology of each internal peer. Then each internal peer
in the same network discover a random set of external peers every ∆T . Thus given
any two internal peers a and b, the amount of common external peers C(a, b) they
discover follows a Poisson distribution with mean value determined by the degree
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Figure 2.7: External peer spatial distribution.

|P (a)| and |P (b)| of a and b, as well the size N of the channel:

C(a, b) =
|P (a)||P (b)|

N
(2.4)

Given a channel and an observation time ∆T , it is measured C(a, b), P (a), P (b) for
each possible pair of internal peers a, b. From (2.4) it is possible to estimate the
total number of peers in the swarm; let this estimation be denoted by N̂(a, b).

N̂(a, b) =
CaCb

Ca,b

(2.5)

Since there are several internal peer pairs, it is computed the average and stan-
dard deviation among the estimations N̂ = E[N̂(a, b)] and σN = std[N̂(a, b)]. N̂ is
the estimated swarm size, i.e., the number of vertexes in the overlay graph.

The sampling time ∆T plays a key role, since it defines the result of the discovery
process: on the one hand, ∆T should be large enough to allow a correct estimation
of C(a, b); on the other hand, ∆T should be small to minimize the impact of peers
churning and channel switching. Sensitivity analysis on the impact of ∆T throws
that a good trade off is obtained at ∆T larger than 2 min and shorter than 10 min.
In the following, it is choosen ∆T = 360s. Fig. 2.8 reports the CDF of C(a, b) for
all the pairs a, b of internal peers in a swarm during a single observation period.
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Figure 2.8: Common peer distribution as observed during a ∆T = 360s time interval.

C(a, b) closely follows a Poisson distribution with mean value 36, confirming that
(2.4) offers a good approximation.
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Figure 2.9: Estimated overlay graph size and total number of discovered peers.
∆T = 360s.

Fig. 2.9 depicts the estimated average and standard deviation of the estimated
channel size. It is contrasted with the amount of unique peers M discovered by
all internal peers during the same observation time ∆T . This figure reports the
evolution of swarm 6, which was previously reported in bottom plot of Fig. 2.1. N̂

quickly grows at the beginning when the flash crowd phenomenon starts. During
the event, N̂ is then stable since the swarm population remains constant. Finally, at
the event end an abrupt departure of peers is observed. This findings are coherent
with results regarding the user habits on P2P-TV, which has been already noticed
in Fig. 2.1. Comparing N̂ with M , it is observe that the latter does not provide a
good estimation of the swarm size during the initial transient. In regime situation,
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M is comparable with N̂ . Because more than 60 internal peers are present, the
aggregated discovery process they perform allows to practically find all peers in
the swarm in 360 s only. However, when the number of internal peers is small, M

provides a lower bound to N .

2.5 Spatial Analysis

In this section the spatial characteristics of external peers are investigated, in order
to discover whether there is any localization mechanism that drives peer discovery,
selection process, or whether or not any cultural bias influences the P2P-TV overall
distribution characteristics. Each observed external peer is geographically located
using information provided by MaxMind GeoIP lite databases [3] which are coher-
ent in date to the traces used. Note that even if MaxMind GeoIP database has
been controversial because its accuracy, for the case of residential IP addresses this
database remains accurate.

2.5.1 Peer Discovery by Channel

Fig. 2.10 shows the geographical location of contacted peers during a given event for
two different ISPs. Note that the results depicted in the figures correspond to the
traffic reported for the event, that is all the traffic from channels has been aggregated.
Top plot refers to a trace collected in EU-CC1, while bottom plot refers to a trace
collected in EU-CC2. As it can be observed, the countries of peers interested in the
event are very different. For instance lot of peers are found in EU-CC1, Germany
and U.K. in top plot, while bottom plot shows very few peers in EU-CC1 and U.K.
Regardless subdivision of channels, from a global point of view seems that users
from different countries will choose different channels.
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Figure 2.10: Contributing peers in Europe by ISP.

Now consider the case of different channels regardless the location of the vantage
point. The goal is to understand how different is the spatial distribution of peers on
different channels. Fig. 2.11 reports a breakdown of all external peers according to
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their origin country, identified by the Country Code. The set of countries has been
selected among the most frequent ones. To easy readability, in this figure swarms are
sorted according to the fraction of peers that belong to the same Polish Autonomous
System (labeled “same AS”) where the probe is located in.
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Figure 2.11: External peer spatial distribution by swarm.

Several considerations hold. First, the fraction of peers located in EU-CC1 is
larger than 50% up to Swarm 8. Then, it suddenly drops to less than 20%. Note that
the portion of peers in same AS with respect to the total Polish peers is very similar
across all channels. This fact reflects the market share of the ISP that this probe
was located in. Second, the fraction of peers found in other countries is variable.
For instance, channel 9 has a large fraction of users in Spain (and indeed over this
channel the broadcast content was a football match involving a Spanish team), while
channels from 16 to 19 have a clear predominance of United Kingdom users (and
they all correspond to “Premier League” events). his clearly shows that there is a
bias in the external peers contacted during each event, but it is naturally induced
by the actual distribution of users and not by the application; this, in its turn, is
highly dominated by cultural and language traits.
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2.5.2 Channel popularity

It was already found that some channels are dominated by the presence of some
geographical location peers because of the content, but what makes local users to
select one channel over another, when the content shown during the event on most
channels is the same. Let start showing the evolution of internal peers among
contemporary different channels observed in the same vantage point. Fig. 2.12
shows the peer evolution for three different contemporary channels in the EU2-
ADSL probe. Channel 5 is much more popular in the monitored PoP, reaching 60
coexisting internal peers (left y-axis); channels 10 and 14 are much less popular
(right y-axis). Nonetheless, the peers evolution is very similar, suggesting that users
are watching different channels, but the same event. Recall indeed that SopCast
(and P2P-TV systems in general) typically offers several channels that broadcast
the same event.
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Figure 2.12: Peer evolution for three swarms present at the same time.

Up to now there are evidences from the channeling matrix and the peer evolu-
tion, that at the same moment during an event there are contemporary channels
broadcasting the same. Now what makes users being more interested to one channel
instead of another?. The hypothesis is that channel popularity is biased by cultural
traits of a given country or community of people. Let Pl be “local channel popular-
ity”, i.e., the fraction of internal peers watching a specific channel over all internal
peers that were alive during an event. Let Pc be “Polish channel popularity”, i.e.,
the fraction of peers in Poland over the entire peer population that joined a chan-
nel. Pl is a measure of how popular is a channel in the vantage point (in Poland).
Pc instead is a measure of how popular a channel is among Polish with respect to
worldwide population, i.e. Pc measures how biased the peer distribution of a channel
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is towards Poland.
Fig. 2.13 shows Pc versus Pl for each channel. Interestingly there are two main

clusters of points: channels which are locally popular (large Pl) and mostly popular
in Poland (large Pc), and channels which are not locally popular (small Pl) but
popular worldwide (small Pc). The first subset corresponds to channels that exhibit
a high bias toward Polish interests, so that they are mainly popular in Poland. The
second subset, on the contrary, corresponds to channels which are less interesting
for Polish and more popular outside Poland. This hints that cultural and language
traits affect the channel selection.
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Figure 2.13: EU2-ADSL Popularity versus Country Popularity and Video Rate

However there is an exception to the rule. One channel shows high Pl but low Pc

(local channel popularity of 70%, Polish channel popularity 10%). This particular
channel results to be interesting for global audience, so that the fraction of Polish
over all peers is not predominant, despite the large interest of Polish toward the
content (indeed the event being broadcast at that time was the match of Liverpool
v.s. Arsenal in April 21th 2009).

2.6 Content retrieval

In this section is of interest the characterization of the content distribution graph,
that is characterize, regardless how peers are connected, from where the traffic
is coming or going. In this scope, it is investigated if there is any preference in
choosing from which contributing peer, the video content is downloaded. First,
it is investigated if any preference is given to contributing peers within the same
Autonomous System, then it is investigated contribution at country level, finishing
with peers in terms of their contributing capacity. This is a timely topic being
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investigated for both P2P and P2P-TV systems [4,5]; indeed, preference to peers in
the same AS would allow ISP to reduce peering costs.

2.6.1 Preference to same AS

For each channel, the set of all external peers are partitioned according to the AS
they belong to. By focusing on a particular AS, it is compared the fraction of
external peers belonging to the AS with the fraction of data transmitted/received
from internal peers. Any difference in these fractions is interpreted as an indication
of some form of preference given to internal peers. This analysis is made over
prominent ASes, that is ASes that contribute or receive more data from the internal
peers.

The results on Fig. 2.14(a) are derived focusing on peers that belong to the same
EU2-ADSL AS. Channels are sorted in decreasing order, considering as key value the
fraction of external peers in the same AS, as in Tab. 2.1. Focusing on transmitted
data: internal peers are likely to transmit a big portion of data to peers which are
located in the same AS. For example, for channel 0, more than 50% of transmitted
traffic goes to only the 32% of peers. Considering instead received data, it is observed
the opposite: in channel 0, 32% of peers can only provide less than 18% of traffic
to internal peers. Indeed, customers of the EU2-ADSL ISP are offered ADSL lines
and have small upload capacity. Since low-capacity peers can only upload a fraction
of the traffic they download, the rest of the traffic has to come from other ASes, in
which high upload capacity peers are present.

2.6.2 Preference to same CC

To quantify if there is a preference at the country level, another AS located in Poland
is considered. For this experiment it is called PL2 AS, which also its customers
are offered ADSL access lines. Results are reported in Fig. 2.14(b). Comparing
the fraction of peers in PL2 and the fraction of traffic transmitted to PL2, it is
noticed that this time the two curves are clearly similar. This shows that peers
in EU2-ADSL send an amount of traffic to peers in PL2 which is proportional to
the number of contacted PL2 peers, i.e., a peer in PL2 is selected with the same
probability of peers in any other AS. Considering the amount of traffic received from
PL2 peers, it is observed that it follows exactly the same trend seen on Fig. 2.14(a).
This is expected, since PL2 customers have the same upload capacity as EU2-ADSL
customers, so that they can provide only a fraction of the traffic. Repeating the
analysis considering other countries ADSL providers, similar results are obtained.
These results suggest that there is no preference based on the country the peers
belong to.
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2.6.3 Preference to faster peers

Fig. 2.14(c) and Fig. 2.14(d) refer to results considering two ASes with a large
fraction of high upload capacity peers. The first one is an educational Polish AS
- PL3, the second one is a commercial AS in Russia - RU1. It is clear that when
these high capacity peers are present, internal peers download from them a large
fraction of traffic. For example, on channel 1, peers from PL3 contribute to more
than 10% of downloaded traffic, despite they represent only 0.3% of external peers.
For the channels on the left, i.e., popular channels in Poland, it is easy to find peers
with high capacity in PL3 AS. On the contrary, for rightmost channels that are
unpopular channels in Poland, traffic is received from any AS, provided that peers
there have large upload capacity. This is the case of RU1.

Thus, it is found that SopCast peers tend to transmit traffic to peers in the same
AS they belong to. But if bandwidth availability in the AS is not sufficient, peers
fetch the content from any high bandwidth peer, whatever AS it belongs to.
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Figure 2.14: EU2-ADSL Aggregated AS Contribution to Channels

As realized on Sec. 2.6.3, uplink capacity of peers is a key factor for content
distribution over the P2P overlay. Moreover, it allows to understand the feasibility
and scalability of P2P-TV services. Indeed, the total available upload capacity
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offered by peers should be equal or larger to the total download capacity dictated
by the video rate and the number of peers in a channel. Today, ADSL peers lack
of upload capacity to sustain the video content diffusion, and high upload capacity
peers are required to supply it. What is then the access capacity of contributing
peers in SopCast overlay? To the best of the knowledge this characterization has
never been carried out.

To estimate path capacity between internal peers and external ones, it is used
the so called Probe Gap Model (PGM) [6]. The intuition is to observe the minimum
Inter-Packet Gap (IPG) of packets received by a given node, which, in case of pack-
ets sent back-to-back at the source, provides an estimation of the available capacity
C along the path. Several assumptions must be verified to obtain reliable measure-
ments: i) packets must be sent back-to-back by the transmitter; ii) measurement
must be repeated several times to estimate the minimum IPG; iii) time-stamping at
the receiver must be very accurate, and packets must not be artificially delayed at
the receiver by some buffering. To this extent, large packets are preferred, so that
the packet transmission time is large (a 40 Bytes long packet lasts only 320 ns on a
1 Gb/s link).

For each channel, an estimation of the upload capacity for all external contribut-
ing peers is obtained. Contributing peers that have transmitted at least 10 packets
larger than 1300B are considered, otherwise the estimation is considered not valid.
Such amount of data in a single data packet, suggest that those packets contain
video or audio data. Particularly, these video or audio packets are sent in bursts
by the transmitter. Given the preference already seen, in which the peers are prone
to download content from high capacity peers, it is expected that the estimation
can be performed only for a limited subset of contacted peers. Hence there is a
bias to assess higher capacity peers. Fig. 2.15 reports the estimated capacity versus
normalized peer ID; peers are ordered in decreasing estimated capacity. Log scale
is used on the y-axis. The aggregate distribution is also shown. For all channels,
it emerges that about 10% of peers have 1 Gb/s upload capacity, while [60,80]% of
them have a capacity smaller than 2 Mb/s, with more than 50% of peers having less
than 1 Mb/s capacity. This reflects the intuition that nowadays P2P-TV systems
rely on high capacity peers, which act as amplifiers, and help in re-distributing the
video stream to several peers. By trying to identify the heavy contributing peers, it
is verified by hand that that the majority of them are actually peers at University
campuses around the world.
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Figure 2.15: Contributing peer capacity for every swarm; the thickest line refers to
the aggregate statistic.

2.7 Conclusions

This chapter covered an extensive analysis and characterization of P2P-TV traffic,
as observed from the viewpoint of an ISP. Among all P2P-TV applications found in
the wild, SopCast is the more popular among Internet end-users in the monitored in
Europe, surpassing in traffic and audience other P2P-TV applications like PPLive
and TVAnts at the time in which the analysis was performed. It is important
to clarify that Tstat, the DPI monitoring tool used for classifying traffic in the
network studied, was able to detect traffic for all these already mentioned P2P-TV
application.

Therefore experiments shown results considering basically end-users habits when
they watch TV using SopCast. ISP customers use it to watch sport events that are
difficult or expensive to retrieve using traditional means. While the average traffic
due to these applications is overall marginal, few tens of users generate 15% of traffic
in the monitored PoP where more than 20,000 users are aggregated during popular
events.

Then it was investigated SopCast swarm formation, focusing on peer discovery
and data delivery processes. Findings indicate mainly two things. First, given
the nature of P2P-TV, the distribution of peers, and, hence, traffic, has significant
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locality properties deriving from users’ cultural and language traits. While this
was already noticed in the case of file-sharing applications, for P2P-TV systems
this phenomenon is even more visible. Second, data are mainly provided by high
capacity peers and P2P-TV provision would not be feasible without their support,
indeed ADSL connected peers can only contribute to about 1/5 of the required
traffic.

This means that, even if some network aware peer selection mechanism is en-
forced to localize traffic to any subset of peers, its effectiveness might be limited by
i) the already strong localization of peers enforced by users’ preference and ii) the
absence of sufficient capacity provided by the subset of peers. For example, ISPs
providing ADSL lines to their users that desire strong locality of traffic, might need
to deploy a few high capacity peers, acting as super peers, inside their network.
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Chapter 3

Passively bringing visibility of
content/service of network traffic

3.1 Introduction

In the past few years, the Internet has witnessed an explosion of cloud-based services
and video streaming applications. In both cases, content delivery networks (CDN)
and/or cloud computing services are used to meet both scalability and availability
requirements. An undesirable side-effect of this is that it decouples the owner of
the content and the organization serving it. For example, CNN or YouTube videos
can be served by Akamai or Google CDN, and Farmville game can be accessed from
Facebook while running on Amazon EC2 cloud computing platform, with static
content being retrieved from a CDN. This may be even more complicated since var-
ious CDNs and content owners implement their own optimization mechanisms to
ensure “spatial” and “temporal” diversity for load distribution. In addition, several
popular sites like Twitter, Facebook, and Google have started adopting encryption
(TLS/SSL) to deliver content to their users [7]. This trend is expected to gain more
momentum in the next few years. While this helps to protect end-users’ privacy, it
can be a big impediment for effective security operations since network/security ad-
ministrators now lack the required traffic visibility. The above factors have resulted
in “tangled” world wide web which is hard to understand, discern, and control.

In the face of this tangled web, network/security administrators seek answers
for several questions in order to manage their networks: (i) What are the various
services/applications that contribute to the traffic mix on the network? (ii) How to
block or provide certain Quality of Service (QoS) guarantees to select services?

While the above questions seem simple, the answers to these questions are non-
trivial. There are no existing mechanisms that can provide comprehensive solutions
to address the above issues. Consider the first question above. A typical approach
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currently used by network administrators is to rely on DPI (deep packet inspection)
technology to identify traffic based on packet-content signatures. Although this ap-
proach is very effective in identifying unencrypted traffic, it severely falls short when
the traffic is encrypted. Given the popularity of TLS in major application/content
providers, this problem will amplify over time, thus rendering typical DPI technol-
ogy for traffic visibility ineffective. A simple approach that can augment a DPI
device to identify encrypted traffic is to inspect the certificate during the initial
handshake, since during TLS negotiation, the server certificate contains a plain text
string with the name being signed. Although this approach gives some visibility into
the applications/services, it still cannot help in identifying specific services. For in-
stance, inspecting a certificate from Google will only reveal that it is Google service,
but cannot differentiate between Google Mail, Google Docs, Blogger, and Youtube.
Thus administrators need a solution that will provide fine-grained traffic visibility
even when the traffic is encrypted.

Focus now on the second question which is even more complex. Consider the
scenario where the network administrator wants to block all traffic to Zynga games,
but prioritize traffic for the DropBox service. Notice that both of these services are
encrypted, thus severely impairing a DPI-based solution. Furthermore, both of these
services use the Amazon EC2 cloud. In other words, the server IP-address for both of
these services can be the same. Thus using IP-address filtering does not accomplish
the task either. In addition the IP-address can change over time according to CDN
optimization policies. Another approach that can be used in this context is to
introduce certain policies directly into the local name servers. For example, the
name server does not resolve the DNS query for zynga.com in the above example,
thus blocking all traffic to Zynga. Although this approach can work effectively for
blocking certain services, it does not help when administrators are interested in
prioritizing traffic to certain services. Administrators face the same situation when
they want to prioritize traffic to mail.Google.com and docs.google.com, while de-
prioritizing traffic blogspot.com and youtube.com since all of these services can run
over HTTPS on the same Google platform.

This chapter describes DN-Hunter, a novel traffic monitoring system that ad-
dresses all of the above issues in a completely automated way. The main intuition
behind DN-Hunter is to correlate the DNS queries and responses with the actual
data flows in order to effectively identify and label the data flows, thus providing a
very fine grained visibility of traffic on a network. It helps network administrators
to keep track of the mapping between users, content owners, and the hosts serving
the content even when this mapping is changing over time, thus enabling them to
enforce policies on the traffic at any time with no manual intervention. In addition,
network administrators could use DN-Hunter to dynamically reroute traffic in order
to use more cost-effective links (or high bandwidth links as the policies might dic-
tate) even as the content providers change the hosts serving the content over time

32



3 – Passively bringing visibility of content/service of network traffic

for load balancing or other economic reasons.
At a high level, the methodology used in DN-Hunter seems to be achievable by

performing a simple reverse DNS lookup using the server IP-addresses seen in traffic
flows. However, using reverse DNS lookup does not help since it does not return
accurate domain (or the sub-domain) names used in traffic flows.

Some key aspects highlighted in this chapter include:
• DN-Hunteris a novel tool, that can provide fine-grained traffic visibility to network
administrators for effective policy controls and network management. Unlike DPI
technology, using experiments on real traces, it is demonstrated that DN-Hunter is
very effective even when the traffic is encrypted clearly highlighting its advantages
when compared to the current approaches. DN-Hunter can be used either for active
or passive monitoring, and can run either as a stand-alone tool or can easily be
integrated into existing monitoring systems, depending on the final intent.
• A key property of DN-Hunter is its ability to identify traffic even before the data

flow starts. In other words, the information extracted from the DNS responses can
help a network management tool to foresee what kind of flows will traverse the net-
work. This unique ability can empower proactive traffic management policies, e.g.,
prioritizing all TCP packets in a flow (including the critical three-way-handshake),
not just those packets that follow a positive DPI match.
• DN-Hunter can be used not only for providing real-time traffic visibility and policy
controls, but also for helping to gain better understanding of how the dynamic web is
organized and evolving today. In other words, many other applications of DN-Hunter
are presented throughout this chapter including: (i) Spatial Discovery: Mapping a
particular content to the servers that actually deliver them at any point in time. the
video service from Dailymotion uses Akamai CDN in Europe, but uses LimeLight in
the US. (ii) Content Discovery: Mapping all the content delivered by different CDNs
and cloud providers by aggregating the information based on server IP-addresses.
(iii) Service Tag Extraction: Associating a layer-4 port number to the most popular
service seen on the port with no a-priori information.
• Extensive experiments are conducted using five traffic traces collected from large
ISPs in Europe and North America. The traces contain full packets including the
application payload, and range from 3h to 24h. These ISPs use several different ac-
cess technologies (ADSL, FTTH, and 3G/4G) to provide service to their customers,
thus showing that DN-Hunter is effective in several different contexts. Furthermore,
DN-Hunter has been implemented and currently deployed in three operative vantage
points since March 2012.

Although DN-Hunter is a very effective tool in any network administrator ar-
senal to address issues that do not have a standard solution today, there are some
limitations as well. First, the effectiveness of DN-Hunter depends on the visibil-
ity into the DNS traffic of the ISP/enterprise. In other words, DN-Hunter will be
rendered useless if it does not have visibility into the DNS queries and responses
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along with the data flows from the end-users. Second, DN-Hunter does not help in
providing visibility into applications/services that do not depend on DNS. For in-
stance, some peer-to-peer applications are designed to work with just IP-addresses
and DN-Hunter will be unable to label these flows. Third, automatic and smart
algorithms must be devised to dig into the information exposed by DN-Hunter. In
this chapter the reader will find some examples of how the information extracted
from the DNS traffic can be used. The applications of DN-Hunter are not limited
to the ones presented in this thesis, and other novel applications can leverage the
information exposed by DN-Hunter.

The rest of this chapter is organized as follows: Sec. 3.2 introduces the datasets
used through this chapter. In Sec. 3.4 describes the architecture and design details of
DN-Hunter. Sec. 3.5 presents some of our advanced analytics modules while Sec. 3.6
provides extensive experimental results. Also, it is discussed correct dimensioning
and deployment issues in Sec. 3.7.

3.2 Experimental Datasets

Table 3.1: Dataset description.

Trace Start Duration Peak DNS #Flows
[GMT] Responses TCP

Rate

US-3G 15:30 3h 7.5k/min 4M
EU2-ADSL 14:50 6h 22k/min 16M
EU1-ADSL1 8:00 24h 35k/min 38M
EU1-ADSL2 8:40 5h 12k/min 5M
EU1-FTTH 17:00 3h 3k/min 1M

As in the previous chapter, all the experiments and further analysis are based on
datasets collected Points-of-Presence (PoP) of large ISPs where the end customers
are connected to the Internet. In addition to the set of vantage points used in the
last chapter, in this one it is included a dataset gathered in a cellular network in the
US. Used datasets are reported in Tab. 3.1. Again, in all of these traces activities
from several thousands of customers are monitored. These 5 datasets corresponds
to full packet traces including the application payload without any packet losses.
For the sake of brevity, Tab. 3.1 only reports the start time and trace duration, the
peak hour DNS response rate, and the number of TCP flows that were tracked. All
traces have been captured on sparse periods of 2011. The first dataset is a trace
collected from a large North American 3G/4G mobile operator GGSN aggregating
traffic from a citywide area. The second dataset originates from a European ISP
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(EU2) which has about 10K customers connected via ADSL technology. The last
three datasets correspond to traffic collected from different vantage points in the
same European ISP (EU1). The vantage points are located in three different cities
- two ADSL PoPs and one Fiber-To-The-Home (FTTH) access PoP.

Currently, DN-Hunter has been implemented in a commercial tool as well as
in Tstat [8]. The latter has been deployed in all the three vantage points in EU1
and has been successfully labeling flows since March 2012. Some of the results in
this paper are derived from this deployment.

3.3 DNS Terminology

DNS is a hierarchical distributed naming system for computers connected to the
Internet. It translates “domain names” that are meaningful to humans into IP-
addresses required for routing. A DNS name server stores the DNS records for
different domain names.

A domain name consists of two or more “labels” that are conventionally con-
catenated, and delimited by dots, e.g., www.example.com. These names provide
meaningful information to the end user. Therefore labels naturally convey informa-
tion about the service, content, and information offered by a given domain name.
The labels in the domain name are organized in a hierarchical fashion. The Top-
Level Domain (TLD) is the last part of the domain name - .com in the above
example; and sub-domains are then pre-pended to the TLD. Thus, example.com is
a subdomain of .com, and www.example.com is a subdomain of example.com. From
here and onwards it is referred to the first sub-domain after the TLD as “second
level domain”; it generally refers to the organization that owns the domain name
(e.g., example.com). Finally Fully Qualified Domain Name (FQDN) is the domain
name complete with all the labels that unambiguously identifies a resource, e.g.,
www.example.com.

When an application needs to access a resource, a query is sent to the local DNS
server. This server responds back with the resolution if it already has one, else it
invokes an iterative address resolution mechanism until it can resolve the domain
name (or determine that it cannot be resolved). The responses from the DNS server
carry a list of answers, i.e., a list of serverIP addresses that can serve the content
for the requested resource.

Local caching of DNS responses at the end-hosts is commonly used to avoid
initiating new requests to the DNS server for every resolution. The time for which
a local cache stores a DNS record is determined by the Time-To-Live (TTL) value
associated with every record. It is set by the authoritative DNS name server, and
varies from few seconds (e.g., for CDNs and highly dynamic services) to days. Also,
memory limits and timeout deletion policies can affect local caching at the client OS.
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However, as we will see later, in practice, clients cache DNS responses for typically
less than 1 hour.

3.4 DN-Hunter Architecture
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Figure 3.1: DN-Hunter architecture overview

A high level overview of DN-Hunter architecture is shown in Fig. 3.1. It con-
sists of two main components: real-time sniffer and off-line analyzer. As the name
indicates, the sniffer labels/tags all the incoming data flows in real time. The out-
put from the sniffer can be used for online policy enforcement (using any available
policy enforcing tool) and/or can be stored in a database for off-line analysis by the
analyzer component. Note that the sniffer can be a passive component instead of
being active if the policy enforcer is not implemented. During this, DN-Hunter will
be treated as a completely passive real-time domain sniffer, instead of being a policy
enforcer.

3.4.1 Real-Time Sniffer Component

The sniffer has two low-level sniffing blocks: (i) Flow sniffer which reconstructs layer-
4 flows by aggregating packets based on the 5-tuple Fid = (clientIP, serverIP,

sP ort, dP ort, protocol), and (ii) DNS response sniffer which decodes the DNS
responses, and maintains a local data structure called the DNS Resolver. The DNS
resolver maintains a mapping between client IP, domain names queried, and the
server IP(s) included in the DNS response. In particular, for each response, it stores
the set of serverIP addresses returned for the fully qualified domain name (FQDN)
queried, associating them to the clientIP that generated the query.
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All data flows reconstructed by the flow sniffer is passed on to the Flow Tagger

module. The flow tagger module queries the DNS resolver to tag the incoming
clientIP, serverIP pair. The flow tagger will tag the incoming flow with the “label”
(i.e., the FQDN) and sends the flow to the policy enforcer (to enforce any policy on
the flow including blocking, redirection, rate limiting, etc.) and/or the database for
off-line analysis.

DNS Resolver Design

Client IP

Map

Server IP

Maps FQDN Clist

213.254.17.14
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itunes.apple.com

216.74.41.8
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Figure 3.2: DNS Resolver data structures

The key block in the real-time sniffer component is the DNS Resolver. Its engi-
neering is not trivial since it has to meet real-time constraints. The goal of the DNS
Resolver is to build a replica of the client DNS cache by sniffing DNS responses from
the DNS server. Each entry in the cache stores the FQDN and uses the serverIP

and clientIP as look-up keys. To avoid garbage collection, FQDNs are stored in
a first-in-first-out FIFO circular list, Clist, of size L; a pointer identifies the next
available location where an entry can be inserted. L limits the cache entry lifetime
and has to properly match the local resolver cache in the monitored hosts.

Lookup is performed using two sets of tables. The first table uses the clientIP

as key to find a second table, from where the serverIP key points to the most recent
FQDN entries in the Clist that was queried by clientIP . Tables are implemented
using C++ maps1, in which the elements are sorted from lower to higher key value

1Unordered maps, i.e., hash tables, can be used as well to further reduce the computational
costs
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following a specific strict weak ordering criterion based on IP addresses. Let NC

and NS(c) represent the number of monitored clients and the number of servers
that client c contacts, respectively. Assuming L is well-dimensioned, the look-up
complexity is O(log(NC) + log(NS(c))). NC depends on the number of hosts in the
monitored network. NS(c) depends on the traffic generated by clients. In general,
NS(c) is in the order of a few hundreds. Note that when the number of monitored
clients increase, several load balancing strategies can be used. For instance, two
resolvers can be maintained for odd and even fourth octet value in the client IP-
address.

Fig. 3.2 depicts the internal data structures in the DNS resolver. Alg. 1 provides
the pseudo code of the “insert()” and “lookup()” functions that access the data
structures in Fig. 3.2. Since DNS responses carry a list of possible serverIP ad-
dresses, more than one serverIP can point to the same FQDN entry (line 11-22).
When a new DNS response is observed, the information is inserted in the Clist,
eventually removing old entries (line 12-15). In the actual implementation of DN-
Hunter, the information about the old FQDN is lost and may create some ambiguity.
Then, when an entry in the DNS circular array is overwritten, the old clientIP and
serverIP keys are removed from the maps before inserting the new one (line 25).

Despite the actual scenario of DN-Hunter, it could be devised to have some ambi-
guity under the scenario of a pair of IP addresses associated to several names, i.e. in
cases in which a monitored IP address, contemporary, is connecting to virtual servers
running behind the same IP address. For further details regarding characteristics of
DNS on the wire see Sec. 3.7 for more details.

DNS Traffic Characteristics

Using the Alg. 1 for tagging (or labeling) incoming data flows, some experiments
are conducted in order to accomplish the following goals: (i) Understand how much
information DNS traffic can expose in enabling traffic visibility, and (ii) Understand
how to correctly dimension the DNS resolver data structures.

To address the first goal, it is computed the DNS hit ratio. In other words, DNS
hit ratio represents the fraction of data flows that can be successfully associated with
a FQDN. The higher is the hit ratio, the more successful is DN-Hunter in enabling
traffic visibility. Intuition suggests that all client-server services/applications rely
on the DNS infrastructure and hence DN-Hunter will be able to accurately iden-
tify them. However, certain peer-to-peer services/applications do not use the DNS
infrastructure and thus are not detected by DN-Hunter. Some statistics shown in
Tab. 3.2 confirm this intuition. This table reports for each trace the number of DNS
hits and the corresponding percentage of flows that were resolved, considering differ-
ent classes of traffic such as HTTP, TLS, and P2P traffic (classification of traffic is
done by Tstat DPI). Particularly, for this experiment is considered a warm-up time
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Algorithm 1 DNS Resolver pseudo-code

1: INSERT(DNSresponse)
2: Input: DNSresponse
3: (FQDN, ClientIP, answerList)← decode(DNSresponse)
4: DNEntry ← newDNEntry(FQDN)
5: mapServer ← mapClient.get(clientIP )
6: if mapServer = null then
7: mapServer ← new MapServer()
8: mapClient.put(clientIP, mapServer)
9: end if

10: for all serverIP in answerList do
11: /* replace old references */
12: if exists mapSever.get(serverIP ) then
13: OLDEntry ← mapSever.get(serverIP )
14: OLDEntry.removeOldReferences()
15: end if
16: /* Link back and forth
17: references to the new DNSEntry */
18: mapServer.put(serverIP, DNEntry)
19: MSEntry ← mapServer.get(serverIP )
20: DNEntry.insert(MSEntry)
21: end for
22: /* insert next entry in circular array */
23: OldDNEntry ← Clist.nextEntry()
24: OldDNEntry.deleteBackreferences()
25: Clist.nextEntry ← DNEntry

26:

27: LOOKUP(ClientIP, ServerIP)
28: Input: ClientIP and ServerIP of a flow
29: Output: FQDN of ServerIP as requested by ClientIP

30: mapServer ← mapClient.get(clientIP )
31: if mapServer contains serverIP then
32: DNEntry ← mapServer.get(serverIP )
33: return DNEntry.FQDN

34: end if
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of 5 minutes, i.e., all flows are tracked, but the statistics contributed by the flows
in the first 5 mins of the trace are ignored. The reason of doing such a warm-up, is
because for some of the first flows their associated FQDN request, could take place
before starting the monitoring, and then impairing the quality of the statistics.

As expected, HTTP and TLS flows show a very high hit ratio, with the majority
of cache-miss occurring in the initial part of the trace when the end host operating
system local resolver cache resolves the query locally and limits the queries to the
DNS server. P2P data flows are hardly preceded by DNS resolutions, and hence it
results in a very low hit ratio. In this case P2P hits are related to BitTorrent tracker
traffic classified in this way by Tstat.

When considering only HTTP and TLS data flows, the hit ratio mostly exceeds
90% for all traces except US-3G. When considering only the last hour of each trace,
the DNS hit ratio increases further close to 100% in all traces but US-3G. For
the US-3G case, it has been verified a particular configuration when traces were
obtained. This configuration involved a load balancer through more than one inter-
face, therefore traffic has been gathered from not all of the interfaces, from which,
traffic has been split. Nevertheless the configuration, on device mobility scenario
may also affect these results, e.g. when DN-Hunter observes flows from devices
entering the coverage area after performing a DNS resolution outside the visibility
of our monitoring point. Thus DN-Hunter might miss the DNS response result-
ing in a cache-miss. More details about the DNS traffic characteristics that affects
DN-Hunter dimensioning is provided in Sec. 3.7.

Table 3.2: DNS Resolver hit ratio

Protocol EU1-ADSL1 EU1-ADSL2 EU1-FTTH

HTTP 92% (4.4M) 90% (2.7M) 91% (683k)
TLS 92% (0.4M) 86% (196k) 84% (50k)
P2P 1% (6k) 1% (1.3k) 0% (48)

EU2-ADSL US-3G

HTTP 97% (5.8M) 75% (445k)
TLS 96% (279k) 74% (83k)
P2P 1% (4.2k) 8% (8k)

DN-Hunter vs. DNS Reverse Lookup

The information that the sniffer component extracts is much more valuable than
the one that can be obtained by performing active DNS reverse lookup of serverIP

addresses. Recall that the reverse lookup returns only the designated domain name
record, which is intended to be used for administrative purposes mainly. Consider
Tab. 3.3 and EU1-ADSL2 dataset, 1,000 serverIP have been randomly selected
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from the set of IP addresses already associated to a FQDN. An active DNS reverse
lookup iteration over the randomly selected serverIP is performed and results are
compared with the returned FQDN that DN-Hunter was able to provide. In 29% of
cases, no answer was returned by the reverse lookup while in 26% of the lookups the
two answers were totally different from each other. All the other queries had at least
had a partial match. In fact, only 9% of the reverse lookups completely matched
the results from the sniffer while the rest of the 36% only matched the second-level
domain name. These results are not surprising since single servers are typically
serving several FQDNs (see Sec. 3.6). In addition to this, reverse lookup poses
scalability issues as well, since it is much more efficient to use information already
generated by users, than querying a DNS server each time a flow is monitored.

Table 3.3: DN-Hunter vs. reverse lookup

Same FQDN 9%
Same 2nd-level domain 36%

Totally different 26%
No-answer 29%

3.4.2 Off-Line Analyzer Component

Although the sniffer module provides deep visibility into the services/applications
on the wire in real-time, some analytics cannot be performed in real-time. In other
words, dissecting and analyzing the data in different ways can expose very inter-
esting insights about the traffic. The off-line analyzer component does exactly
this. It contains several intelligent analytics that can extract information from the
flows database by mining its content. Sample of possible analytics are presented in
Sec. 3.5, then real examples applying these implemented methodologies are shown
in Sec. 3.6.

3.5 Advanced Analytics

In this section some advanced analytics are described, using information stored in
the labeled flows database to automatically discover interesting information and
discern the tangled web.

3.5.1 Spatial Discovery of Servers

Today, CDNs and distributed cloud-based infrastructures are used to meet both
scalability and reliability requirements, decoupling the owner of the content and the
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organization serving it. In this context some interesting questions arise: (i) Given a
particular resource (i.e., a FQDN) what are all the servers or hosts that deliver the
required content?, (ii) Do these servers belong to the same or different CDNs?, and
(iii) Do CDNs catering to the resource change over time and geography? (iv) Are
other resources belonging to the same organization served by the same or different
set of CDNs?

DN-Hunter can easily answer all of the above questions. Alg. 2 shows the pseudo-
code for the Spatial Discovery functionality in DN-Hunter. The spatial discovery
module first extracts the second-level domain name from the FQDN (line 4), and
then queries the labeled flows database (line 5) to retrieve all serverIP addresses
in flows directed towards the second-level domain (i.e., the organization). Then,
for every FQDN that belongs to the organization, the spatial discovery module will
extract the serverIP addresses that can serve the request (line 6-9) based on the
DNS responses. This enables the module to: (i) Discover the information about the
structure of servers (single server, or one/many CDNs) that handle all queries for the
organization, (ii) Discover which servers handle a more specific resource. For exam-
ple, different data centres/hosts may be serving the content for mail.Google.com and
scholar.google.com, and (iii) Automatically keep track of any changes in serverIP

addresses that satisfy a given FQDN over time. Note that the ability of DN-Hunter
to easily track temporal and spatial changes in the FQDN-serverIP address map-
ping also enables some basic anomaly detection. While out of scope of this paper,
consider the case of DNS cache poisoning where a response for certain FQDN sud-
denly changes and is different from what was seen by DN-Hunter in the the past.
This scenario can be flagged as an anomaly, enabling the security operator to take
some action if required.

Algorithm 2 Spatial Discovery Analytics Algorithm

1: SPATIAL DISCOVERY(FQDN)
2: Input: The targeted FQDN
3: Output: ranked list of serverIP addresses
4: 2ndDomain← FQDN.split()
5: ServerSet← FlowDB.queryByDomainName(2ndDomain)
6: FQDNset← 2ndDomain.query()
7: for all FQDN in FQDNSet do
8: FQDN.ServerSet← FlowDB.queryByDomainName(FQDN)
9: end for

10: Return(FQDN.ServerSet.sort(), ServerSet.sort())
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3.5.2 Content Discovery

As previously observed in Sec. 3.5.1, a particular resource can be served by one
or more CDNs or cloud infrastructures, and the spatial discovery analytics module
provides deep insights into this. However, it is also important to understand tangle
from another perspective. In other words, we need to answer the following questions:
(i) Given a particular CDN what are the different resources that they host/serve?
(ii) What is the popularity of particular CDNs in different geographies? (iii) Given
two CDNs, what are the common resources that they both host?, and (iv) Does
a given CDN focus on hosting content for certain types of services (like real-time
multimedia streaming, mail, etc.)?

Once again DN-Hunter can answer the above questions easily based on the map-
ping stored in the flows database and using the whois database to associate IP
addresses to CDNs. The complete algorithm for the content discovery module is
shown in Alg. 3. The algorithm takes a ServerIP Set, i.e., the set of serverIP

addresses belonging to one or more CDNs, and extracts all the FQDNs associated
with them (line 4-7). Depending on the desired granularity level, either the complete
FQDN or only part of the FQDN (say, the second-level domain) can be considered.
If only the second-level domains are considered, then the algorithm will return all the
organizations served by the set of serverIP addresses provided as input. However,
if only service tokens are used (we will discuss this in the next sub-section), then
the algorithm will return which popular services are hosted by the input serverIP

addresses.

Algorithm 3 Content Discovery Analytics Algorithm

1: CONTENT DISCOVERY(ServerIPSet)
2: Input: The list of targeted serverIP

3: Output: The list of handled FQDNs
4: DomainNameSet← FlowDB.query(ServerIPSet)
5: for all FQDN in DomainNameSet do
6: T okenSet← DomainName.split(FQDN)
7: end for
8: for all T oken in T okenSet do
9: T oken.score.update()

10: end for
11: Return(T okens.sort())

3.5.3 Automatic Service Tag Extraction

Identifying all the services/applications running on a particular layer-4 port number
is a legacy problem that network administrators encounter. Even today there are
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no existing solutions that can identify all applications on any given layer-4 port
number. In fact, the network administrators depend on DPI solutions to address
this problem. DPI technology can only provide a partial solution to this problem due
to two reasons: (1) Several services/applications use encryption and hence bypass
DPIs, and (2) DPI devices can only identify those services/applications for which
they already have a signature, thus severely limiting the coverage.

DN-Hunter provides a simple and automated way to address the above issue.
The algorithm for extracting service tags on any layer-4 port number is shown
in Algorithm 4. The input to the algorithm are the target port number and the
k value for the top-k services to be identified. The algorithm first retrieves all
FQDNs associated to flows that are directed to dP ort (line 4). Each FQDN is
then tokenized to extract all the sub-domains except for the TLD and second-level
domain. The tokens are further split by considering non-alphanumeric characters as
separators. Numbers are replaced by a generic N character (lines 5-7). For instance,
smtp2.mail.Google.com generates the list of tokens {smtpN, mail}.

The frequency (support) of tokens is used as a metric of “relevance” of the token
for the targeted port (lines 8-10). To mitigate the bias due to some clients generating
a lot of connections to a FQDN having the same token X, it is used a logarithmic
score. Mathematically, let NX(c) be the number of flows originated by clientIP c

having the token X. Then the score of X is:

score(X) =
∑

c

log(NX(c) + 1) (3.1)

Tokens are then ranked by score and the top-k tokens are returned to the users
(line 11). Depending on the final goal, different criteria can be applied to limit the
list of returned tokens. For instance, the list can simply be limited to the top 5%,
or to the subset that sums to the n-th percentile. Typically, the score distribution
is very skewed, as it is shown in Sec. 3.6.

Algorithm 4 Service Tag Extraction Analytics Algorithm

1: TAG EXTRACTION(dPort, k)
2: Input: targeted dPort, k of tags to return
3: Output: The ranked list of tags
4: DomainNameSet← FlowDB.query(dPort)
5: for all FQDN in DomainNameSet do
6: T okenSet← DomainName.split(NoT LD|NoSLD)
7: end for
8: for all T oken in T okenSet do
9: T oken.score.update()

10: end for
11: Return(T okens.sort(k))
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3.6 Experimental Results

Previously methodologies on Sec. 3.5 intelligent analytics have been presented for
leveraging better information from FQDN. Now, this section presents results ob-
tained applying the analytics using DN-Hunter on the traces mentioned in Sec. 3.2.
The discussion is started by showing evidence of how tangled is the web today
in terms of content, providers, and hosts serving what end-users consume. Then
some results are selected, to show the current advantages of using DN-Hunter in an
operational network compared to the existing solutions for traffic visibility and pol-
icy enforcement. As a fact, DN-Hunter is currently implemented as module of two
different DPI tools, providing more traffic visibility to network operators. In the sec-
ond half of this section,results from our advanced analytics modules are presented,
demonstrating in this way the wide applicability and usefulness of DN-Hunter.

3.6.1 The Tangled Web

The basic hypothesis of this chapter is that the web today is intertwined with con-
tent, content providers, and hosts serving the content that are continually changing
over time and space. Hence we need a methodology that can assist in restoring
clarity to operators regarding their network traffic. The top plot of Fig. 3.3 reports,
for each FQDN, the overall number of serverIP addresses that serve it. In the bot-
tom plot of Fig. 3.3 we show the opposite - the number of different FQDNs a single
serverIP address serves. Fig. 3.3 was generated using the EU2-ADSL dataset, how-
ever, all the other datasets produced very similar result. From the figures one can
see that one single serverIP is associated to a single FQDN for 73% of serverIP s,
and 82% of FQDNs map to just one serverIP . But more important to note is
that there are FQDNs that are served by hundreds of different serverIP addresses.
Similarly a large number of FQDNs are served by one serverIP . Notice the x-axis
in this figure is presented in log scale.

Just looking at the one-to-many mapping between FQDN and serverIP ad-
dresses reveals only a small part of the complexity. But what if time is added into
the mix?. Fig. 3.4 shows the number of serverIP addresses that have been ob-
served responding to some selected well-known second-level domains. Here, time
bins of 10min are considered, covering a 24h period from EU1-ADSL2 dataset. For
some of the domains (like fbcdn.net and youtube.com) a clearly diurnal pattern is
spotted, with more serverIP s being used during late evening as compared to early
morning. Indeed, for youtube.com there is a big and sudden jump in the number of
serverIP s between 17:00 and 20:30. This reflects changes in the YouTube policies,
triggered by the peak-time load. The domain fbcdn.net (owned by Akamai and
serving Facebook static content) shows similar characteristics with more than 600
different serverIP addresses serving content in every 10min interval between 18:00
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Figure 3.3: Number of serverIP addresses associated to a FQDN (top) and number
of FQDN associated to a ServerIP (bottom). EU2-ADSL.

and 20:00. Finally, some of the other domains like blogspot.com (aggregating more
than 4,500 total FQDN) are served by less than 20 serverIP s even during peak
traffic hours.

Fig. 3.5 reports the number of different FQDNs that were served every 10min
by different CDNs and cloud providers over a period of 24h. The MaxMind orga-
nization database is used to associate serverIP addresses to organization (WHOIS
database could be used as well, since both databases provide coherent information at
organization level). First, it is observed that Amazon serves more than 600 distinct
FQDN in every 10 min interval during peak hours (11:00 to 21:00). Totally Amazon
served 7995 FQDNs during a day. While Akamai and Microsoft also serve significant
number of FQDNs during peak hours, other CDNs like EdgeCast are more specific
or less popular, serving less than 20 FQDNs a day.

Another aspect worth noting here is that association between FQDNs and CDNs
change over time and space (i.e., geography). However, all of the above results clearly
show why it is very hard to discern and control the traffic in today’s networks. In
fact, there is clear need for a solution like DN-Hunter that can track these changes
seamlessly to ensure traffic visibility at any point in time. Surprisingly, the results
presented in this section for motivating the need for a solution like DN-Hunter could
not have been produced without DN-Hunter.
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3.6.2 Traffic Visibility and Policy Enforcement

The key feature of DN-Hunter is to provide a “label” (i.e., the FQDN that the client
was contacting) to every flow in the network automatically. To show how this label-
ing evolves over time, Fig. 3.6 shows the growth of unique entities - FQDNs, second-
level domain names, and serverIP over a 18 days as observed from EU1-ADSL2
vantage point, which is one of the vantage points used to generate the datasets.
Once again, it clearly shows a diurnal pattern where the increase in unique entities
is much higher during the day than the night. After a steep growth during the first
few days, the number of unique serverIP addresses and second-level domains reach
a saturation point and do not grow much. This result basically indicates that the
same serverIP addresses are used to serve the contents for the same organizations
(i.e., second-level domains). However, a surprising result is regarding the unique
FQDNs. As it can be noticed, the number of unique FQDNs keeps increasing even
after 18 days of observation. In 18 days we saw more than 1.5M unique FQDNs and
it was still growing at the rate of about 100K per day. This reflects the fact that the
content being accessed on the Internet keeps growing, with new services popping
up regularly. The main take away point is that in order to get fine-grained traffic
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Figure 3.5: Number of FQDN served by CDNs through a day. EU1-ADSL2.

visibility (and thus be applied for policy enforcement), it is critical to use a tool like
DN-Hunter that can dynamically keep track of the content and their association
with content providers and the hosts serving the content.

3.6.3 The Case of Encrypted Traffic

One of the main advantages of DN-Hunter, when compared to traditional DPI so-
lutions, is its ability to label encrypted (TLS/SSL) flows. Traditional DPI solutions
cannot identify encrypted traffic by inspecting the packet content and matching it
against a signature. However, a DPI solution would eventually inspect for informa-
tion in the certificates exchanged during the TLS/SSL handshake, then somehow it
would figure out the FQDN associated to the connection as well as the organization
that will provide the content.

Then seems it appears so simple to extract FQDN using inspection on the
TLS/SSL certificates, it is devised an experiment to compare the certificate in-
spection approach with DN-Hunter. Thus, certificate inspection functionality is
implemented on Tstat. Tab. 3.4 compares certificate inspection approach with DN-
Hunter for all TLS flows in the EU1-ADSL2 dataset. Results show that DN-Hunter
clearly outperforms the certificate inspection approach. For 23% of the flows in
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the trace there was no certificate, while for 40% of the flows the server name in
the certificate was totally different from the FQDN. For the other 37% of the flows
that matched the second-level domain name in the FQDN, only 18% matched the
complete FQDN. The main problems with the certificate inspection approach are
three-fold: (i) The server name can be “generic”, e.g., ∗.Google.com, thus not giving
the fine-grained visibility into the actual services. (ii) The server name may indicate
the server used by the hosting CDN and may not reflect anything about the service,
e.g., a248.akamai.net in the certificate for providing Zynga content, and (iii) Cer-
tificate exchange might happen only the first time a TLS/SSL server is contacted
and all other flows following that will share the trust. Thus using such an approach
is almost infeasible.

3.6.4 Spatial Discovery of Servers

The main goal of the spatial discovery module is to track a particular resource
(FQDN or second-level domain) to understand which serverIP s and CDNs provides
the requested content. For the ease of exposition, in this section, two specific second-
level domains, LinkedIn and Zynga, are analyzed. Fig. 3.7 shows the mapping
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Table 3.4: Comparison between the server name extracted from TLS certificate-
inspection and the FQDN using DN-Hunter. EU1-ADSL2.

Certificate equal FQDN 18%
Generic certificate 19%

Totally different certificate 40%
No certificate 23%

between the various FQDNs of LinkedIn and the CDNs serving the content in US-
3G dataset. The oval nodes represent DNS tokens extracted from the FQDNs, while
arcs connect the tokens to reconstruct the FQDN. The numbers in these tokens are
represented as a generic letter, N . The rectangular nodes group tokens by the
CDN hosting them based on the information from the MaxMind database. To
illustrate the concept better let us consider the leftmost branch in Fig. 3.7. The
complete FQDN is the concatenation of all the tokens, i.e., mediaN.linkedin.com.
These FQDNs are served by Akamai CDN using 2 servers and accounts for 17% of
the total flows destined to linkedin.com. In order to limit the size of the figure, 7
different tokens are hidden in the rightmost branch of the tree given their marginal
traffic generated.

Akamai
Servers 2

Flows 17%

CDNetworks
Servers 15
Flows 3%

Edgecast
Servers 1

Flows 59%

Linkedin
Servers 3

Flows 22%

linkedin.com

mediaN media staticNmediaNplatform www7

Figure 3.7: LinkedIn domain structure served by two CDNs seen from US-3G.

From the figure, it is easy to see that LinkedIn relies on the service offered
by several CDN providers. Only the www.linkedin.com FQDN along with 7 other
FQDNs are served by LinkedIn managed servers. Most of the static content is served
by hosts in three different CDNs - Akamai, CDNetwork, and Edgecast. In fact,
EdgeCast serves 59% of all flows with a single serverIP address. On the contrary,
CDNetworks, serves only 3% of flows with 15 different serverIP addresses.

Consider now the second sample domain - Zynga (see Fig. 3.8). Here, some
Amazon EC2 cloud service machines are spotted providing computational resource
for gaming service, while Akamai CDN machines provide static content to end-
users. Some services/games like MafiaWars are served directly by Zynga owned
servers. Interestingly, around 500 Amazon serverIP addresses are contacted and
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they handle 86% of all Zynga flows. Akamai serves fewer requests (7%); yet, 30
different serverIP are spotted.

Akamai
Server 30
Flows 7%

Amazon
Servers 498
Flows 86%

Zynga
Server 28
Flows 7%

zynga.com

support

petville

static

treasure

frontierville

iphone.stats

fishville.facebook

frontier

cityville

cafe

fish

petville

toolbar

rewards

sslrewards

zbar

treasure

accounts

glb.zyngawithfriends

www|mwms|navN|zpayN|forum|secureN

track

streetracing.myspaceN

mafiawars

vampires

poker

assets

avatars

zgn

zpay

zbar

12

fb_client_N

fb_N

devN.cclough

myspace.esp

facebookN

facebook

mobile

Figure 3.8: Zynga domain structure served by two CDNs seen from US-3G.

Given that the off-line analyzer relies on actual measurement of network traffic,
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it is able to capture the service popularity among the monitored customers, the
bias induced by the server selection and load balancing mechanisms. To elaborate
this further, let consider Fig. 3.9. Each of the three sub-figures corresponds to a
different content provider (i.e., the second-level domain name). For each of these
content providers we plot the access patterns in three of our traces (EU1-ADSL1,
US-3G, and EU2-ADSL). In other words, the x-axis in each of these graphs are the
CDNs hosting the content and the y-axis represents different traces. Notice that for
every CDN, the figure shows all the accessed serverIP addresses that belong to the
CDN. Hence the width of the column representing each CDN is different. Also, the
gray scale of each block in the graph represents the frequency of access; the darker is
a cell, the larger is the fraction of flows that a particular serverIP was responsible
for. The “SELF” column reports cases in which the content providers and content
hosts are the same organization.

The top graph in Fig. 3.9 shows the access pattern for Facebook. Observe that
in all the dataset most of the Facebook content or services are provided by Facebook
servers. In addition, Facebook also relies on Akamai for providing content. Akamai
uses different serverIP in different geographical regions. On the other hand, the
second figure related to Twitter shows an access pattern a little different, regarding
on how the infrastructure relies on CDNs according to the spatial location of end-
users. Although, Twitter relies heavily on its own servers to provide content, equally
they also rely on Akamai to serve content to users in Europe. Nevertheless, the
dependence on Akamai is significantly less in the US. The bottom figure shows
the access patterns for Dailymotion, a video streaming site. Dailymotion heavily
relies on Dedibox to host content both in Europe and US. But it does not use any
of its servers to provide content to European end-users, as it does with American
end-users. Moreover, if other CDNs are considered, the distribution pattern change
according the location. In the USD Dailymotion relies on Meta and NTT, whereas
in Europe it relies a little on Edgecast.

3.6.5 Content Discovery

Although the spatial discovery module provides invaluable insight into how a par-
ticular resource is hosted on various CDNs, it does not help in understanding the
complete behavior of CDNs. In the content discovery module our goal is to un-
derstand the content distribution from the perspective of CDNs and cloud service
providers. Tab. 3.5 shows the top-10 second-level domains served by the Amazon
EC2 cloud in EU1-ADSL1and US-3G. Notice that one dataset is from Europe and
the other from US, and clearly the top-10 in the two datasets do not match. In fact,
some of the popular domains hosted on Amazon for US users like admarvel, mob-
clix, and andomedia are not accessed by European end-users, while other domains
like cloudfront, invitemedia, and rubiconproject are popular in both datasets. It is
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Figure 3.9: Organizations served by several CDN according to viewpoint.

found that popularity and access patterns of content/service for a cloud provider,
changes depending on geographical spatial location of end-users; therefore extrapo-
lating results from one geography to another might result in incorrect conclusions.

These variation in the patterns could be explained by two different phenomena.
First as the previous section pointed out, it could be a decision on the company
hiring different CDNs or clouds to reach end-users according to their location. Or
second reason, it could be that some content or services might be more interesting
for some particular population.
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Table 3.5: Top-10 domains hosted on the Amazon EC2 cloud.

Rank US-3G % EU1-ADSL1 %

1 cloudfront.net 10 cloudfront.net 20

2 invitemedia.com 10 playfish.com 16

3 amazon.com 7 sharethis.com 5

4 rubiconproject.com 7 twimg.com 4

5 andomedia.com 5 amazonaws.com 4

6 sharethis.com 5 zynga.com 4

7 mobclix.com 4 invitemedia.com 2

8 zynga.com 3 rubiconproject.com 2

9 admarvel.com 3 amazon.com 2

10 amazonaws.com 3 imdb.com 1

3.6.6 Automatic Service Tag Extraction

Another interesting application of DN-Hunter is in identifying all the services/applications
running on a particular layer-4 port number. This application is only feasible due
to the fined grained traffic visibility provided by DN-Hunter. To keep the tables
small, there are shown just the results extracted on a few selected layer-4 ports for
two data sets - EU1-FTTH (Tab. 3.6) and US-3G(Tab. 3.7). These tables show
the lists of terms along with the weights returned by the Service Tag Extraction
Analytics algorithm (Alg. 4). The last column in each of these tables is the ground
truth obtained using Tstat DPI and augmented by Google searches and our domain
knowledge.

Clearly from the both tables, it is observed that the that the most popular terms
extracted, in fact represents the application/service on the port. Some of them like
pop3, imap, and smtp are very obvious by looking at the top keyword. However,
some of the other are not very obvious, but can be derived very easily. For example,
consider the port 1337. TCP port 1337 is not a standard port for any service and
even a Google search for TCP port 1337 does not yield straight forward results.
However by adding “exodus” and “genesis”, the main keywords extracted in DN-
Hunter, to the Google search along with TCP port 1337 immediately shows that
this port in US-3G dataset is related to www.1337x.org BitTorrent tracker.

3.6.7 Case Study - appspot.com Tracking

In this section, it is presented a surprising phenomenon discovered using DN-Hunter’s
ability to track domains. Consider the domain appspot.com. Appspot is a free web-
apps hosting service provided by Google. The number of applications, CPU time
and server bandwidth that can be used for free are limited. Using the labels for
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Table 3.6: Keyword extraction example considering well-known ports. EU1-FTTH.

Port Keywords GT

25 (91)smtp, (37)mail, (22)mxN, (19)mailN,
(18)com, (17)altn, (14)mailin,
(13)aspmx, (13)gmail SMTP

110 (240)pop, (151)mail, (68)popM, (33)mailbus POP3

143 (25)imap, (22)mail, (12)pop, (3)apple IMAP

554 (1)streaming RTSP

587 (10)smtp, (3)pop, (1)imap SMTP

995 (101)pop, (37)popN, (31)mail, (20)glbdns
(20)hot, (17)pec POP3S

1863 (21)messenger, (5)relay, (5)edge, (5)voice,
(2)msn, (2)com, (2)emea MSN

Table 3.7: Keyword Extraction for frequently used ports; Well-known ports are
omitted. US-3G.

Port Keywords GT

1080 (51)opera, (51)miniN Opera Browser

1337 (83)exodus, (41)genesis BT Tracker

2710 (62)tracker, (9)www BT Tracker

5050 (137)msg, (137)webcs,
(58)sip, (43)voipa Yahoo Messager

5190 (27)americaonline AOL ICQ

5222 (1170)chat Gtalk

5223 (191)courier, (191)push Apple push services

5228 (15022)mtalk Android Market

6969 (88)tracker, (19)trackerN,
(11)torrent, (10)exodus BT Tracker

12043 (32)simN, (32)agni Second Life

12046 (20)simN, (20)agni Second Life

18182 (92)useful, (88)broker BT Tracker

various flows in the labeled flows database, all traffic associated with services is
extracted. This allows to understand the kind of applications and services that are
hosted in the Appspot cloud.

Fig. 3.10 shows the most relevant applications, in terms of connections, hosted
on appspot as a word cloud where the larger/darker fonts represent more popular
applications. Although appspot is intended to host legacy applications, it is easy
to see that users host applications like “open-tracker”, “rlskingbt”, and the like.
A little more investigation reveals that these applications actually host BitTorrent
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trackers for free. With the help of the information from DN-Hunter and also the
Tstat DPI deployed at the European ISP, it is found that there are several trackers
and other legacy applications running in the appspot.com site. These findings are
presented in Tab. 3.8 as well. As we can see, BitTorrent trackers only represent 7%
of the applications but constitute for more flows than the other applications. Also,
when considering the total bytes exchanged for each of these services, the traffic
from client-to-server generated by the trackers is a significantly large percentage of
the overall traffic.

Fig. 3.11 depicts a timeline (considering bins of 4 hours interval) of 18 days long.
This timeline shows when the trackers were active over that period. A dot represents
a tracker active on that time bin of 4 hours. On the Y-axis, trackers are identified
by an arbitrary ID, starting at 1 and increasing based on the time when the tracker
was first observed. Out of the 45 trackers seen in the 18 day period, about 33%
(colored in red, ids 1-15) stayed active for all the 18 days. Trackers with ids 26-31
(colored in blue) exhibit a unique pattern of on-off periods. In other words, all of
these trackers were accessed during the same time intervals. Such a synchronized
behavior indicates, with high probability, that one BitTorrent client was part of
a swarm, so that when the client was active, the tracker has been monitored by
DN-Hunter. Similar considerations hold for the trackers with ids 33-34 (colored in
green), which was seen accessed on May 5th for the first time.

Finally, trackers with ids larger than 33 highlight a birth process according to
which a new tracker is born and accessed by only a few BitTorrent clients. This is
due to the particular environment the trackers live: since Appspot limits the amount
of resource an application can use for free, new trackers are born once they run out to
resources. Indeed, checking the status of the trackers during May 15th 2012, it has
been verified that most of them, while still existing as FQDN, run out of resources
and made unavailable by Google. They live as zombies, and some BitTorrent clients
are still trying to access them.

Table 3.8: Appspot services. EU1-ADSL2 live.

Service Type Services Flows C2S S2C

Bittorrent 56 186K 202MB 370MB
Trackers

General 824 77K 320MB 5GB
Services
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Figure 3.10: Cloud tag of services offered by Google Appspot. EU1-ADSL2 during
live deployment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

01/04 03/04 05/04 07/04 09/04 11/04 13/04 15/04 17/04

id

time

Figure 3.11: Temporal evolution of the BitTorrent trackers running on Appspot.com.
EU1-ADSL2 during live deployment.

3.7 Dimensioning the FQDN Clist

In Sec. 3.4, it is presented the design of the DNS resolver. One of the key data
structures of the DNS resolver is the FQDN Clist. Choosing the correct size for the
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Figure 3.12: Time elapsed between DNS response and the first TCP flow associated
to it.

Clist is critical to the success of DN-Hunter. This section presents a methodology
to choose the correct value of L (size of the Clist) and the real-time constraint
implication.

Fig. 3.12 shows the Cumulative Distribution Function (CDF) of the “first flow
delay”, i.e., the time elapsed between the observation of the DNS response directed
to clientIP and the first packet of the first flow directed to one of the serverIP

addresses in the answer list. Semilog scale is used for the sake of clarity. In all
datasets, the first TCP flow is observed after less than 1s in about 90% of cases.
Access technology and sniffer placement impact this measurement; for instance,
FTTH exhibits smaller delays, while the 3G technology suffers the largest values.

Interestingly, in all traces, for about 5% of cases the first flow delay is higher
than 10s, with some cases larger than 300s. This is usually a result of aggressive
pre-fetching performed by applications (e.g., web browsers) that resolve all FQDNs
found in the HTML content before a new resource is actually accessed. Tab. 3.9
quantifies the fraction of “useless” DNS responses, i.e., DNS queries that were not
followed by any TCP flow. Surprisingly, about half of DNS resolutions are useless.
Mobile terminals are less aggressive thus resulting in lower percentage of useless
responses.
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Table 3.9: Fraction of useless DNS resolution.

Trace Useless DNS

EU1-ADSL1 46%
EU1-ADSL2 47%
EU1-FTTH 50%
EU2-ADSL 47%

US-3G 30%

Fig. 3.13 shows the CDF of the time elapsed between the DNS response and any

subsequent TCP flow the client establishes to any of the serverIP addresses that
appeared in the answer list. It reflects the impact of caching lifetime at the local
DNS resolver at clients. The initial part of the CDF is strictly related to the first
flow delay (Fig. 3.12); subsequent flows directed to the same FQDN exhibit larger
time gaps. Results show that the local resolver caching lifetime can be up to few
hours. For instance, to resolve about 98% of flows for which a DNS request is seen,
Clist must handle an equivalent caching time of about 1 hour.

Fig. 3.14 shows the total number of DNS responses observed in 10m time bins.
As it can be point out, at the peak time about 350,000 requests in EU1-ADSL1
dataset. In this scenario, considering a desired caching time of 1h, L should be
about 2.1M entries to guarantee that the DNS resolver has an efficiency of 98%.

Also it is checked the number of serverIP addresses returned in each DNS
response. Since the clientIP can choose (in most cases randomly) any one of the
serverIP addresses to open the data connection, all of the serverIP addresses must
be stored in the DNS resolver. The results from all the datasets are very similar with
about 40% of responses returning more than one serverIP address. About 20-25%
of responses include 2-10 different ip-addresses. Most of these are related to servers
managed by large CDNs and organizations. For example, up to 16 serverIP s are
returned when querying any Google FQDN. The maximum number exceeds 30 in
very few cases.

3.7.1 Collision Probability in Practice

Now it is considered the possibility of collisions, that is when when the same clientIP

is accessing two or more FQDNs hosted at the same serverIP . DN-Hunter actually
returns the last observed FQDN, thus possibly returning incorrect labels. This event
is called by the author as a “collision”. To assess such collision probability, traces
are examined to see frequently such situation occurs. It is observed that the most
common reason for this is due to HTTP redirection, e.g., google.com being redirected
to www.google.com and then to www.google.it, all FQDNs being served by the same
serverIP . Hence, two types of collisions are possible: (i) generic collision, and
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Figure 3.13: Time elapsed between a DNS response and any TCP flow associated
to it.

(ii) severe collision. The latter accounts for the cases in which the two conflicting
FQDNs have different second level domain names, e.g., google.com and youtube.com.

Table 3.10: DN-Hunter Collision Ratio

Trace Total Test Generic coll. Severe Coll

US-3G 1.3M 0.7% 0.6%
EU2-ADSL 11.9M 0.7% 0.3%
EU1-ADSL1 4.9M 0.01% 0.004%
EU1-ADSL2 2.6M 0.1% 0.05%
EU1-FTTH 680k 1.6% 0.9%

Collisions can occur in DN-Hunter when the same clientIP address contacts
the same serverIP address several times during the period of our traces. In the
second column of Tab. 3.10 it is reported the total number of flows that are potential
candidates for collision by DN-Hunter. Consider the case when there is no collision;
then two successive flows from the same <clientIP , serverIP > are associated to the
same FQDN. But, if the associated domain name is different, then it is declared that
a collision has occurred. Once a collision occurs, it is examined the domain names
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Figure 3.14: DNS responses observed during a day by intervals of 10 minutes in
EU1-ADSL1.

to determine if the collision is a generic one or a severe one. The second column
of Tab. 3.10 reports the total number of potential candidate flows for collision.
The third and the fourth columns report the percentage of the potential collision
candidates that translate into generic and severe collisions respectively. Clearly, the
collision rate is extremely low in all the traces used for evaluation. In fact, observe
that more than 70% of collisions occur within a 1 second interval, suggesting that
these collisions could be a result of HTTP redirection. Although, these are collisions
that might not impact the accuracy of DN-Hunter, in Tab. 3.10 still are considered
them to be collisions and give a conservative estimate. In summary, the problem of
collisions has minimal impact on the operational value of DN-Hunter.

Finally, note that it is possible to extend DN-Hunter to return all possible labels
associated to a flow instead of only the latest one, thus giving the network admin-
istrator the ability to resolve the collisions using more advanced policies than by
strictly using the latest FQDN.
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3.7.2 Implementation Issues

DN-Hunter is a passive sniffer which assumes to observe DNS and data traffic gen-
erated by the end-users. The natural placement of the sniffer is at the network
boundaries, where end-users’ traffic can be observed. The Flow Sniffer and the
DNS Response Sniffer may also be placed at different vantage points, e.g., the latter
may be located in front of (or integrated into) the internal DNS server to intercept
all DNS queries. Considering DNS traffic sniffing, DNSSEC [9] poses no challenge
since it does not provide confidentiality to DNS traffic. DNSCrypt [10], a recent
proposal to encrypt DNS traffic, on the contrary, would make the DNS Response
Sniffer ineffective. DNSCrypt is not yet widely deployed and it requires significant
DNS infrastructure [10] changes to be pragmatic in the near future [11].

DN-Hunter labels TCP flows using (clientIP, serverIP ) pair as the key. In sce-
narios where the same clientIP is shared by multiple end-hosts via NAT/connection
sharing tools, DN-Hunter may associate the wrong FQDN to the flow,causing a pos-
sible collision. Notice that this can happen only if the end-hosts are initiating
connection at almost the same time to the same serverIP (which has been returned
when requesting two different FQDN). This can also happen when a end-user is us-
ing multiple applications (e.g., multiple browsers windows/tabs opened at the same
time) to access different services running on the same serverIP at the same time.
It is not feasible to quantify how probable these events are in practice in the traces,
and given the very low collision probability (see Sec. 3.7.1), it is expected to be
a marginal problem in the considered scenarios. Even though in scenarios where
single households are allowed to share the internet connection among few termi-
nals, the collision probability is still marginal. However, in the scenario where there
are several hundreds (or thousands) of users behind NAT and the monitoring point
for DN-Hunter is after the NAT, DN-Hunter will be severely impaired. Deploying
DN-Hunter before the NAT will result in accurate results.
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3.8 Conclusions

Throughout this chapter DN-Hunter has been introduced. It is a novel tool that
links the information found in DNS responses to traffic flows generated during nor-
mal Internet usage. Explicitly aimed at discerning the tangle between the content,
content providers, and content hosts (CDNs and cloud providers), DN-Hunter un-
veils how the DNS information can be used to paint a very clear picture, providing
invaluable information to network/security operators. Moreover several applications
and heuristics of DN-Hunter are presented, ranging from automated network service
classification to dissecting content delivery infrastructures.

As notable examples, it is shown shown how DN-Hunter is helpful (i) in providing
a fine-grained traffic visibility even when the traffic is encrypted (i.e., TLS/SSL
flows), (ii) in identifying flows even before the flows begin, thus providing superior
network management capabilities to administrators, (iii) in observing and tracking
how CDNs and cloud providers host content for a particular resource over time,
and (iv) in discerning the services/contents hosted by a CDN or cloud provider.
Applications presented in this chapter are limited within the range of examples,
indeed DN-Hunter is not limited to the applications presented in this work.

DN-Hunter has been deployed in actual ISP networks, providing network admin-
istrators enhanced traffic visibility and the ability to perform detailed forensics if
required. A key challenge for the future is to devise automatic algorithms to mine
the amount of data exposed by DN-Hunter and by network monitoring tools in gen-
eral. In fact, this challenge is common to the network monitoring and measurement
community and modern tools have to be devised to dig into this enormous volume
of data.
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Chapter 4

Web services from the ISP
viewpoint

4.1 Introduction

Last years witnessed the growth of cloud-based services that provide computing,
storage and offloading capabilities on remote datacenters, offering the opportunity
to customers to reduce costs by virtualizing hardware management. The leading
position in this panorama is taken by Amazon, which offers a large gamma of cloud-
based services, named Amazon Web Services (AWS). Active since July 2002, they
offer computing and storage cloud solutions. The most well-know Amazon cloud
services are “Elastic Compute Cloud” (EC2), and “Simple Storage Service” (S3),
with “CloudFront” (CF), the Content Delivery Network (CDN), that has augmented
Amazon’s portfolio in late November 2008.

Following the definitions provided in [12], AWS represents an Infrastructure

Provider, and EC2 and S3 correspond to Infrastructure as Service products. In
other words, through virtualization, a large set of computing resources, such as
storing and processing capacities can be split, assigned, and dynamically sized to
satisfy customers’ demand. Customers are represented by companies aiming at of-
fering their content without carrying on costs and risks of building and managing
their own hardware and infrastructure. Given the great scalability and extremely
low costs of pay-as-you-go cloud services, many successful companies like Dropbox,
Zynga and Netflix to name a few, have been attracted by AWS and successfully
relies on them. Amazon indeed represents today one of the largest source of traffic
in nowadays Internet, accounting for about 3.1% of the total HTTP/HTTPS traffic
flows, i.e., one fifth of Google’s [13].

Given its success, AWS has gained a large interest within the research community.
In particular, many works specifically focus on the possibility of exploiting AWS
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EC2 for research purposes [14, 15]. Other works instead focus on evaluating the
performance of AWS computing and networking virtual resources [16–18]. However,
to the best of our knowledge, all the previous works focus on the benchmarking of
AWS services and infrastructure, and they all rely on “active” probing. What is
missing is the characterization of Amazon Web Services as perceived by the end-
users, where the actual workload and performances can be evaluated by means of
“passive” observation of traffic. Only by the passive characterization of services it
is possible to discover eventual performance degradation and, most of all, to gauge
their impact on end-users.

The goal of this paper is thus to provide an extensive study of AWS through
the passive analysis of network traffic collected from our University campus and
from three large Points of Presence (PoP) of an Italian national-wide Internet Ser-
vice Provider (ISP). Our datasets span more than 60 days during which the traffic
generated by more than 50.000 end-users has been observed.

In this work, we dig into a one week long portion of our dataset with a twofold
goal: first, we shed light on the AWS infrastructure itself, proposing a simple yet
accurate methodology to reveal the number of datacenters, their locations, and
resulting traffic allocation policies. Second, we evaluate which are the services that
run on AWS, and how they are accessed by end-users. Notice that providing such
characterizations is a challenging task due to the nature of cloud services, where
encryption schemes and proprietary solutions are very common, and virtualization
allows to share resources and dynamically move content and services over time.

This paper represents the first attempt of observing the Amazon cloud from
passive measures. We follow the direction suggested by other works that provide a
characterization of popular services such as social networks [19,20] or YouTube [21].
Our main findings are:
• Among the seven EC2 and S3 datacenters, the one placed in Virginia, close
to Washington DC, is the most used one, hosting more than 6.000 EC2 virtual
machines and 120 S3 nodes regularly accessed by end-users. It handles alone 85%
of total traffic generated by EC2 and more than 64% for S3 – serving daily more
than 15TB of data to the ISP end-users in Italy. Surprisingly, the datacenter in
Ireland is not the preferred one, and it serves only about 20% of AWS traffic to
Italian end-users.
• Web companies that offer their contents from EC2 and S3 systems tend to rely
upon one datacenter only. This makes the network to pay the large cost of carrying
information to far away end-users. Moreover, it represents a large risk in case of
failures, since no automatic load-balancing and migration are offered by AWS. This
is confirmed by the results we provide about the outage happened on the 30th of
June 2012, in Virginia.
• Performance of datacenters in terms of response time (for EC2) and goodput
(for S3) show that the most popular datacenter is also the worst performing one.
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Evidence shows that some contents suffer because of under-provisioned instances,
but we cannot exclude that the whole infrastructure may be overloaded.
• Considering CloudFront, 24 out of 33 different world-wide caches that build the
CDN infrastructure have been spotted in our traces. However, the cache selection
policies adopted by CloudFront wisely serve 98% of traffic from the cache placed
in Milan, the closest to Italian end-user. The remaining 2% of traffic comes from
worldwide caches. This happens to be due to CloudFront directing traffic to other
caches for load-balancing purpose. A minimal fraction can be due to incorrect DNS
configuration of end-user Clients [22].

We believe this paper provides useful insights about the infrastructure offered
by AWS, helping in understanding the properties of services relying on cloud-based
platform EC2, S3 and CloudFront. Provided information may result worthwhile for
developers aiming at entrust AWS to deploy their contents.

The rest of this paper is organized as follows: Sec. 4.2 describes products offered
by AWS, and Sec. 4.3 overviews the data collection procedure and the datasets
we study. In Sec. 4.4 and Sec. 4.5 we present the techniques and the metrics,
respectively, we employed for the analysis of our datasets. We then show the results
of our study, starting with a spatial characterization of AWS infrastructure (Sec. 4.6),
moving on the analysis of properties of hosted contents (Sec. 4.7) and ending with
the performance evaluation of AWS platform (Sec. 4.8). Finally, Sec. 4.9 concludes
the paper.

4.2 Amazon Web Services Primer

Amazon Web Services offers on-demand cloud computing services to its customers,
which are mostly Web companies. Often AWS are accessed through HTTP, REST
and SOAP protocols (of course other type of protocols are not discarded), which in
case it is necessary guaranteeing privacy on the network communications, TLS/SSL
can be implemented to encrypt the communications. This chapter is dedicated to
the three most popular AWS services which are used by Amazon’s customers to
reach Internet end-users:
•EC2 is an on-demand virtual computing environment supported by Xen virtual-
ization [23]; EC2 lets customers rent free-to-use virtual machines, called instances,
to run any application. At the time in which the all the Amazon monitoring has
performed, EC2 instances could be allocated on seven datacenters (called also data-

centers by AWS terminology1) world-widely distributed. Customers can choose any
datacenter as support for their instances. Still, Amazon provides different pricing

1http://aws.amazon.com/about-aws/globalinfrastructure/
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according to the processing power of the instance rented, the time the instance will
run and also, on which datacenter is selected by the customer to set the instance.
Inside an datacenter, AWS provides an optional DNS-based load-balancing service,
called Elastic Load Balancing, whose task is to uniform the workload over rented
instances. To the best of our knowledge, no automatic tool for migrating instances
among different datacenters has been implemented yet.

Examples of web applications relying on EC2 are social-gaming applications like
Zynga and Playfish, or social networks like FourSquare.
• S3 offers storage services through standard interfaces (REST, SOAP, and BitTor-
rent). Data are stored by means of “objects” whose size can span from 1B to 5TB
each. S3 is reported to store more than a trillion objects as of June 20122. EC2 and
S3 are co-located in each datacenter.
• CloudFront is the Amazon’s Content Delivery Network (CDN) for distribut-
ing content from locations near to end-users, thus guaranteeing low latency access
and high data transfer speeds. CloudFront can deliver dynamic, static as well as
streaming content, using a unknown number of caches placed at Internet Exchange
Points around the globe. An example of application supported by CloudFront is
Instagram, which exploits CloudFront network to distribute user-generated content
among end-users.

4.3 Experimental Datasets

As in the previous chapters, traces obtained by means of passively monitoring op-
erational networks using Tstat, the open-source traffic monitoring tool developed
at Politecnico di Torino. It analyses packets exchanged by actual end-users (inside
monitored vantage points [24]) and Internet servers.

Tstat was installed in four different vantage points where it has been collecting
measures from April to June 2012, observing more than 50,000 end-users normally
accessing the Internet. The resulting dataset is large enough to reveal significant
information about AWS infrastructure as well as about end-users habits and perfor-
mance of the content served by the AWS cloud.

Tab. 3.1 shows some details about the vantage points: its conventional name, the
type of access technologies, the daily number of TCP flows directed AWS, and the
number of unique IP address on monitored clients. EU1-ADSL2, EU1-ADSL1 and
EU1-FTTH datasets represent end-users of a same ISP collected from three regions
in the same European Country. EU1-ADSL2 and EU1-ADSL1 offer connectivity
to end-users via ADSL interfaces. Customers in the EU1-FTTH PoP are offered

2http://aws.typepad.com/aws/2012/06/amazon-s3-the-first-trillion-objects.html
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a Fiber to the Home (FTTH) interface instead. Given the ISP assign a static IP
address to each household, the number of observed IP addresses is a lower bound
on the number of monitored end-users.

EU1-CAMPUS refers instead to measurements performed at border routers of
the University Campus, including traffic from a campus-wide wireless access points
and student houses, where NAT and HTTP proxy-ing are often applied. About
10,000 end-users regularly access the Internet via a 1Gb/s link in this case.

For the sake of brevity, being all Italian datasets and the goal of this chapter the
understanding of AWS, the analysis of measurements is restricted to those gathered
from EU1-ADSL2 PoP which provides the largest dataset. EU1-ADSL2 is an ISP
PoP in a large city in Italy, where about 15,000 ADSL lines are active. The entire
week starting from April 1st, 2012 is considered, during which 6M TCP connections
where directed to AWS servers, for a total of more than 340GB of data exchanged
overall. The analysis is repeated considering traffic from other two ISP PoPs and
from EU1-CAMPUS, and over different periods of time. Findings on EU1-ADSL2
are general and not biased, being the results collected from the other datasets practi-
cally identical. Nevertheless, results presented in this thesis regarding this topic are
unfortunately biased, since traffic is observed from one single country. Then some
generalizations should be considered with prudence. Naturally, it is expected that
some of the findings change based on different cultural influence and geographical
location of the vantage point.

4.4 Analysis Methodology

Several challenges have to be faced when passively monitoring cloud services: the
separation between content and server makes it hard to identify which content
is actually accessed by the end-users. Formerly content could be easy associated
to a set of servers by their IP addresses, but as stated in the previous chapter
associations one-to-one between content and server are less common than before.
In spite of AWS which provides also cloud services, virtualization, load-balancing
and migration of resources do not allow to simply rely on information collected from
the Network Layer to identify the content, i.e., the server IP address and its official
owner (retrieved from whois) give no information on who is really using the server
and the content or service being provided.

In addition, the increasing adoption of TLS/SSL encryption by large content
providers (including most of those running in the AWS platforms [13]) makes classic
Deep Packet Inspection (DPI) useless.

For example, consider the same AWS server hosting www.acmegame.com and
www.acmeshop.com content over HTTPS. The IP addresses of instances hosting
them allow only to identify that both are handled by AWS (being the IPs registered
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to Amazon). Hence, no indication about handled contents can be achieved looking
at information from Network Layer. Furthermore, given that Amazon Web Services

is an infrastructure that comprises several datacenters around the Globe, identifying
which datacenter is being used for singular tasks or for hosting content is of interest.
Public available databases for geographical location of IPs have been controversial
on their accuracy. For instance MaXMind database used in the first chapter to locate
users of an P2P network, for the case of locating IP addresses of huge infrastructures
which provide content as Google, or Amazon in this case, provides the location of
the company headquarters instead of the datacenter location, which is completely
wrong. Understanding from/to traffic comes/goes is important from the point of
view of end-user as well as for Internet providers. Hence in this section a novel
technique is presented, overpass issues related with IP multicast, that would make
other accurate methodologies for IP geo-location fail.

4.4.1 Content Discovery

To identify the content retrieved by end-users from a AWS server, Tstat has been
augmented to implement DN-Hunter, as presented in the previous chapter, in such
a way that the improved Tstat snoops DNS queries performed by clients to resolve
URLs, and uses this information to tag network flows extracting the right Fully
Qualified Domain Name (FQDN). In the example above, end-user’s client has first
to resolve the www.acmegame.com hostname into a list of IP addresses by contacting
the DNS server. Once the list of IP addresses is obtained, the client contacts one of
them to fetch the actual content.

DN-Hunter is able to cache all DNS responses, and associates the original host-
name used by the end-user to the actual server IP addresses being contacted, as-
sociating www.acmegame.com to the observed TCP flows. This key feature allows
Tstat to recover the original content name requested by the client and being served
by an AWS server.

4.4.2 Datacenter and Service Discovery

Since AWS offers different services to its customers, that is Amazon S3, Amazon EC2

and Amazon CloudFront; to better understand AWS, it is necessary to separate and
individuate which part of traffic belongs to each one. This is analogous to the
process of channel identification of the first chapter. First of all, traffic owned
by Amazon is isolated based on the IP addresses retrieved from an organization
database. For this particular scope, WHOIS and MaxMind organization databases
are suitable and well accurate. Once Amazon traffic is separated, EC2, S3 and
Amazon CloudFront traffic is isolated. For some of the traffic going to these three
infrastructures, provided information by DNS becomes useful. AWS indeed follow
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a strict naming rule for EC2: the instance IP address a.b.c.d is registered with a
Type-A DNS record as ec2-a-b-c-d.XXXXX.amazonaws.com, where XXXXX is a
variable string. A simple DNS reverse lookup from the IP address allows to discover
that a.b.c.d hosts an EC2 instance.

Unfortunately, the Type-A record for an IP address of S3 and CloudFront does
not always reveal which service that server is providing. Hence, a quite simple
technique called HTTP-knocking is proposed in this chapter is used to identify such
services. HTTP-knocking send an HTTP HEAD request to the inspect the Server

field returned in the HTTP response by the server; either AmazonS3 or CloudFront

are always returned in the HTTP response, allowing easy classification of the service
hosted by that IP address.

The first finding is that the address spaced We have found that the address spaces
used by CloudFront and S3 servers are separated. Furthermore, it is verified that
the allocation of IP addresses to these services is “static”, allowing HTTP-knocking
to be performed once for each IP address.

Notice that HTTP-knocking cannot be employed for EC2 since instances are
managed by Amazon’s customers who are free to run different Operating Systems
as well as different flavours of HTTP servers.

HTTP-knocking and name reversing have been performed over any detected
Amazon IP address in the dataset, letting us identify every IP address associated
to EC2, S3 and CloudFront, observed from the vantage points.

4.4.3 Server Geolocation

As said previously, IP geographical location is difficult when the target are IP ad-
dresses which belong to huge organizations, which are able to play around with
route policies globally. Geolocation of IP addresses represents a well-known prob-
lem. Common public databases, such as RIPE3, ARIN4 or MaxMind, do not rep-
resent reliable sources when seeking for information about the physical location of
a machine associated to a given IP address [25]. CBG [1] geolocation technique is
far a very accurate technique to determine the location of an endpoint, but in this
context, since it relies on RTT between spread globally probes and the target IP,
it could be not accurate in cases that the same IP address belongs to two different
geographical locations according from where it is being contacted.

A simple, yet accurate, approach is to exploit again information provided by
the Type-A DNS record assigned to servers by Amazon administrators. Indeed, the
Type-A record returned when performing the reverse lookup of AWS IP addresses

3http://www.ripe.net/db/index.html
4http://www.arin.net
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often unveils information about server placement. In particular, the standard Inter-
national Air Transport Association (IATA) airport location identifiers are used by
Amazon in the form server-a-b-c-d.AIR.r.cloudfront.net, where AIR is the IATA
airport code of the nearest large airport. Unfortunately, not all Type-A entry of
AWS servers include the IATA code, e.g., s3-1.amazonaws.com.

To geolocate IP addresses for which no IATA code is found, it is proposed a
technique called Geolocation by Network Pivots (see Alg. 5). This technique is an
active measurement that uses traceroute towards the target IP address to discover
machines along the path. These machines along the path are called pivots and some
information about location can be leveraged, for instance using the domain names
associated to the interfaces of the machines. Similar to some Amazon domain names,
some of the pivots have domain names which can be easy associated to geographical
locations. This technique focus on the last in the path, machine domain name that
provides information about the location. By convenience this last machine is called
The Pivot. The difference of RTT from the Pivot to the targeted IP address is a
measure of the geographical distance among the two nodes, so that the smaller is
the delay, the smaller their distance. This allows to position IP addresses close to
well-known locations, using a single probe located in the same monitored network
or geographically near to the monitored network, avoiding in this way any strange
routing policy that could trick a geolocation technique as ANYCAST policies used
by some CDNs. The approximation obtained by running this simple algorithm have
been proven to be almost perfect on those AWS servers whose position has been
cross-checked via the IATA code (RTT errors below 1ms on average).

As convention, throughout the rest of this chapter datacenters will be identified
by it corresponding IATA codes instead to the conventional names assigned by
Amazon, as it is published in their web site.

4.5 Measurements Definition

4.5.1 Per-flow Metrics

When running on the vantage point, Tstat observes packets, rebuilds each TCP
flow, tracks it, and, at the flow end, logs more than 100 metrics [24]. Among
the different measurements, in this chapter is consider the server IP address, its
FQDN as retrieved by DN-Hunter, the flow RTT, the amount of bytes exchanged
at the Application Layer, and the presence of TLS/SSL at the Presentation Layer.
These metrics are straight-forward to monitor and we direct the reader to [24] and
references therein for more details.

More complicated metrics can be extracted from the log files. In particular, it is
defined:

71



4 – Web services from the ISP viewpoint

Algorithm 5 Path based IP Geolocator

GeoLocation(IP)
IP: Target IP Address
(Names, Delays)← traceroute(IP )
H ← sizeof(Delays)
T argetDelay ← Delays[H]
while H > 0 do

name← Name[H]
if getLocation(name) not null then

/* Return Pivot’s location and
delay difference between target
and Pivot as measure of confidence */
PivotLocation← getLocation(name)
PivotDistance← T argetDelay −Delays[H]
return (PivotLocation, P ivotDistance)

end if
H ← H − 1

end while
return null

Response Time

it is the time a server employs to start sending the reply after receiving the first
request from a client. Let TAck be the timestamp of the first TCP ACK message
sent by server with relative ACK number greater than 1, i.e., acknowledging the
reception of some data sent by the client. Let TReply be the timestamp of the first
TCP segment sent by the server and carrying application data.The response time is
defined as

∆R = TReply − TAck (4.1)

For HTTP flows, it represents an estimation of the time the server takes to elaborate
and to transmit the response to the first HTTP request 5 (e.g. an HTTP response).
For HTTPS flows, ∆R represents the time taken by the server during the SSL
handshake to send the first SSL message.

5The response time estimation can be affected by client requests that are longer than 1 TCP
segment. It is assumed that these cases are independent from the server, thus they do not bias the
comparison.
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Flow Goodput

it is defined as the rate at which information generated at Application Layer by
the server is delivered to the client. Let TF irst and TLast be the timestamps of the
first and the last packet sent by the server and carrying data. Let D be the size of
effective data sent by the server. The server goodput is thus defined as

G =
D

TLast − TF irst

(4.2)

To avoid the bias of short-lived flows and of Persistent-HTTP requests, the server
goodput is evaluated only on flows in which the client sent exactly one data packet,
and for which D > 500kB. Notice that HTTPS flows are automatically filtered
out (requiring more than 1 data packet on the client side to complete the SSL
handshake).

4.5.2 Network Cost

This metric aims at evaluating the cost sustained by the Internet to transport data
generated by AWS servers to the monitored end-users. To this extent, it is defined
the Network Cost as the weighted average of the distance traveled by information
units. Formally, given a flow, let b(c, s) be the number of Application Layer bytes
a client c exchanges with a server s, and let d(c, s) be the distance between client c

and server s. The resulting network cost β(s) for a given server s is computed as

β(s) =
∑

c d(c, s)b(c, s)
∑

c b(c, s)
. (4.3)

The average network cost of servers in a datacenter S results

β = E[β(s)|s ∈ S]. (4.4)

Observe that distance d(c, s) can be defined in different ways, e.g., considering i)
the average RTT, ii) the number of traversed AS on the path6 or iii) the geodetic
physical distance, leading respectively to dRT T (c, s), dAS(c, s), dkm(c, s). Given these
different definitions, we can obtain different network cost metrics βRT T , βAS, βkm,
respectively.

6The number of traversed AS is obtained running a traceroute and checking the AS of returned
routers.
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Table 4.1: Summary of Amazon’s datacenters hosting EC2, S3 services (top) and
top 14 CloudFront caches we located (bottom).

D
a
ta

ce
n
te

rs
ID #IPs Exchanged Data (%) Avg. RTT [ms] βRT T [ms] βAS βkm [km]

EC2 S3 EC2 S3 EC2 S3
IAD 6429 121 85.31% 64.22% 132.13 113.97 116.18 3 6709
DUB 1167 24 12.65% 35.14% 45.10 48.73 43.77 3 1365
SJC 632 12 1.71% – 203.06 182.14 174.81 4 9556
NAR 18 0 – – 298.67 – – 4 9843
SIN 71 0 0.03% – 235.60 228.10 – 3 10390
SEA 0 32 – 0.02% 196.04 – 214.79 4 8617

97.26GB 37.13GB

C
a
ch

es

ID #IPs Exchanged Data (%) Avg. RTT [ms] βRT T [ms] βAS βkm[km]
IAD 2 – 132.13 102.75 3 6709
DUB 222 0.05% 45.10 49.76 3 1365
SJC – – – – 4 9556
NAR 115 – 298.67 – 4 9843
SIN 51 – 235.60 – 3 10390
SEA 64 – 196.04 – 4 8617
SFO 253 0.83% 172.80 175.21 4 9537
CDG 246 0.13% 32.09 38.43 3 584
FRA 245 0.17% 19.56 21.87 2 566
MXP 232 98.03% 18.34 21.26 3 124
EWR 208 – 105.28 109.53 3 6380
AMS 205 0.04% 23.94 29.88 3 837
LHR 182 0.17% 31.84 31.60 3 920
ANR 151 0.56% 41.02 41.48 3 1734

104.19GB

4.6 Spatial Characterization

This section provides some aggregate information about the spatial distribution of
datacenters, the traffic they generated toward monitored end-users, and its cost for
the network.

Thanks to Geolocation by Network Pivots Sec. 4.4.3, Tab. 4.1 provides the break-
down of the AWS traffic distinguishing the identified datacenters.

4.6.1 EC2 and S3

The top part of the table reports the list of locations where both EC2, S3 services
were detected. Those located in Virginia (IAD), Ireland (DUB) and California
(SJC) appear to be the largest datacenters hosting AWS from the point of view of
our vantage points placed in Italy.

Several observations hold. Focusing on the number of IP addresses associated to
each datacenter, the number of detected IP addresses associated to EC2 service is
much larger than to any other service. This is due to the nature of EC2 service itself,
that, thanks to virtualization, is capable of allocating, re-sizing and switching on/off
independent EC2 instances, in general each provided and reachable by a different
public IP address.
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S3 and CloudFront, instead, offer storage services that are implemented at ap-
plication level, and data are made accessible through URI pathnames. The pool of
IP addresses needed to keep the service alive is much smaller then, as confirmed by
values in Tab. 4.1.

The large unbalance in the number of instances (number of IP addresses in EC2
column) suggests that somehow servers in IAD are the preferred among Amazon
customers for providing content to end-users, or the content and services which are
popular among European end-users, accidentally, is hosted on that datacenter. This
could suggest that allocate services on IAD datacenter is cheaper and that Amazon
does not promote that services must be allocated near to the end-users, which in
this particular case, are located in Europe. The column reporting the fractions of
data generated by EC2 services further confirms this, being the IAD datacenter
responsible for generating more than 85% of the total amount of data produced by
EC2. It is 7 times higher than the volume handled by the DUB (Dublin) datacenter,
the second largest in our ranking.

Interestingly, IAD EC2 (S3) generates more than 80GB (23GB) of data traffic
in one day. Considering the user population of the monitored PoP, it is possible to
extrapolate that the IAD datacenter serves about 15TB of data per day to the all
ISP end-users.

Surprisingly, such large amounts of data are exchanged with such a distant lo-
cation. Given that Ireland is much closer to Italy than US, indeed, one may expect
to be DUB the best candidate to host EC2/S3 instances for serving Italian (and
European) end-users. All but βAS network cost metrics, indeed, look sizeable for
IAD, from 233% to 491% more expensive than the DUB datacenter. This may sug-
gest that AWS customers, for the sake of a simple management, are more oriented
to set their servers on one datacenter. IAD may represent the first choice for AWS
customers because of its lower price7.

AWS offers load-balancing-based forwarders for incoming traffic to enhance per-
formance of instances, but no location-aware policy is offered. Furthermore, recall
that EC2 and S3 services are statically allocated to datacenters that are chosen by
customers, and no automatic migration policy for instances/objects among datacen-
ter is provided.

This at the expenses of network cost, and, possibly, user experience. Observe
how βAS looks comparable for all datacenters, suggesting that Amazon (and the
ISP) have good peering agreements with many providers.

Even though Tab. 4.1 presents an overall picture of how EC2 distribute content
among end-user, Fig. 4.1 enrich the vision, showing its evolution over time of the
volume of data traffic (top) and of the number of flows (bottom) seen from the top

7http://aws.amazon.com/ec2/spot-instances/
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Figure 4.1: Evolution over time of data traffic volume (top) and traffic flows (bot-
tom) for EC2 service.

three EC2 datacenters. One point refers to a 4h long time interval; the first five days
of the dataset, starting from Sunday, April 1st, 2012, are reported. Other datasets
and periods of time show very similar trends: a very periodic pattern that follows
busy period of end-users. IAD datacenter is consistently responsible for handling a
much larger amount of traffic with respect to DUB and SJC. This is consistent with
values presented in the top part of Table 4.1, and it confirms the static allocation
of EC2 instances to datacenters.

Same observation holds for S3 service, as reported in Fig. 4.2. In this case, DUB
exchanges an amount of data slightly lower than IAD (notice the log scale that
flattens differences).

Comparing the number of flows end-users exchange with EC2 and S3 (bottom
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Figure 4.2: Evolution over time of data traffic volume (top) and traffic flows (bot-
tom) for S3 service.

plot of Fig. 4.1 and Fig. 4.2, respectively), it is possible to notice that S3 traffic is
made of flows that carry more data than EC2 flows, i.e., more elephants than mice in
S3, and vice-versa for EC2. This is confirmed by observing the flow size Cumulative
Density Function (CDF), not reported here due to lack of space. Interestingly,
comparing the conditional CDF of different datacenters, marginal differences are
seen.
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Figure 4.3: Evolution over time of data traffic volume (top) and traffic flows (bot-
tom) for CloudFront service.

4.6.2 CloudFront

Let focus now on CloudFront traffic breakdown, reported in the second part of
Tab. 4.1. As expected from normal operation of a CDN, it is observed how biased is
the preference toward the MXP cache, located in Milan at less than 200 kilometers
from all the monitored end-users. This results to be the best cache considering any
definition of network costs. As for most CDN, this confirms that CloudFront relies
on DNS load-balancing to direct the user to the closer cache. Simply, whenever a
client queries the local DNS server for a CloudFront IP address, the local DNS server
forwards the query to the authoritative CloudFront’s DNS server, whose reply will
direct the client to the geographically closer cache. This happens regardless the type
of retrieved content.
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This has been confirmed by running an active experiment in which 100 different
FQDN are resolved. These FQDN are associated to CloudFront and for resolving
more than 2000 DNS servers scattered worldwide were considered. As a side dis-
covery of this process, at least 33 different CloudFront caches were identified, each
hosting a /24 subnet. The bottom part of Tab. 4.1 reports the top CloudFront
caches whose servers were detected in during the monitoring.

Focusing in the column reporting the location of detected caches, it can be seen
that EC2/S3 datacenters host also CloudFront caches, even if ISP end-users are
seldom directed to any of these.

Overall, CloudFront behaves as any normal CDN and performs as expected,
allowing cache selection effectively in a way that end-users are directed to the closest
cache in Milan. Of course some inefficiencies are observed. Near to 2% of traffic was
delivered from caches far away from end-users position. This can be explained by the
fact that some end-users could rely on alternative DNS servers different from those
provided by their ISP; the Amazon Authoritative DNS would reply directing traffic
to caches located close to the used DNS server, but eventually far from the ISP. For
instance, both OpenDNS and Google’s DNS servers causes requests from the ISP
end-users to be directed to FRA, since their servers are located in Amsterdam and
Frankfurt respectively (confirmed using the Pivot Geolocation Technique presented
in Sec. 4.4.3). This is consistent with findings in [22].

Fig. 4.3 reports the evolution over time of the volume of data traffic (top) and
of the number of flows (bottom) for the top three caches, i.e. MXP, SFO and
ANR. Regular patterns are present for caches placed in Milan and San Francisco.
However this does not hold for ANR, in Stockholm, where it presents an unusual
peak on the third day of measurements, precisely from 10pm of April 2 to 6pm of
April 3. Investigating further, it has been verified that this was not due to some
unusual DNS end-users’ setting, but to an intentional change in the Amazon DNS
policies. Indeed, many end-users and contents that were typically available from
MXP had been redirected to ARN during that period. This is similar to what has
been observed for YouTube CDN [21].

While it is impossible to know why this happens, it is observed that CloudFront
policies are dynamic, in contrast with the static allocation of the EC2/S3 content.

4.7 Content Analysis

Regarding the type of content hosted by the 3 different infrastructures, Fig. 4.5
depicts how different are the objects associated to AWS. Around 50% of objects
observed on CloudFront presents a size smaller than 10kB, mostly probably being
CSS or JavaScript files employed for the rendering of web pages. Other 20% of
contents, which present a size larger than 100kB, is binary data, e.g., Flash objects
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Figure 4.4: Distribution of response time for AWS infrastructure.

or images. Differences between sizes of contents served by different caches are neg-
ligible. Files hosted on S3 show in general the same size distribution of files hosted
by CloudFront. The average size of contents distributed by CloudFront and S3 is
78kB for both. Flows directed to EC2 carry smaller data in general, being the 60%
of them smaller than 1kB. These could be small XML files or messages directed
to APIs. For these files, the TCP three-way-handshake and tear-down procedures
last longer than the data transfer. Even for EC2, no significant difference among
different locations is evident. The average size of contents served by EC2 flows is
26kB.

Table 4.2: The top contents hosted by EC2 by number of flows or volume.

IAD DUB

Service %Flows %Vol. Service %Flows %Vol.

zynga 14 5 wooga 24 4
farmville 13 6 invitemedia 18 3
playfish 9 3 cdn.com 6 0.2
widdit 6 1 360yield 6 0.1

chartbeat 3 >0.1 mydlink 2 >0.1
dropbox 0.4 59 wetransfer >0.1 16
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Figure 4.5: Distribution of size of content/flow.

In Tab. 4.2 it is reported the most popular kind of contents served by EC2,
i.e., those contents which are generating the largest number of flows, or volume.
The type of content/service is quite heterogeneous, with the larger portion of flows
generated by social games, such as Zynga, Farmville, Wooga and DigitalChocolate,
and by advertising companies, e.g., InviteMedia, 360yield. Notice how none of these
services seem to be replicated among different datacenters, that is their traffic is
coming exclusively from a single datacenter. The only notable service found to
be present on both IAD and SJC datacenters is DigitalChocolate; interestingly,
digitalchocolate relies on IAD for the distribution and execution of games, while it
relies on SJC for the management of system logins and subscriptions. This level of
detail of the analysis is reached observing the less hierarchical domains associated
to digitalchocolate and running on EC2.

Considering the top services in terms of volume, the important presence of stor-
age services like Dropbox and WeTransfer. The former is responsible for 59% of
volume of data handled by EC2 alone, and it is only available from IAD!

Contents hosted by S3 presents similar properties of EC2 (Tab. 4.3). S3 contents
are in general services for storage, advertisement and social games, but even in this
case none of them results distributed over different datacenters.
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Table 4.3: The 5 services hosted by S3 generating the largest amounts of data traffic.

IAD DUB

Service % Service %

s3.amazonaws 24 wetransfer 33
castlemania-productions 11 s3-3-w.amazonaws 20

uploadus 5 adagiobanner 13
dotandad 4 village-it 4
softonic 3 fanpage 3

4.8 Performance Evaluation of AWS

Throughout this section, an evaluation of the performance of AWS based on data-
center and content is performed using information obtained from completely passive
monitoring.

4.8.1 Datacenters and Caches Performance Evaluation

Fig. 4.4 depicts the distribution of the estimated response time ∆R for EC2, S3 and
CloudFront on left, center and right plot, respectively. Top popular datacenters are
shown. Data refer to a single day of April 2012.

Focusing on the performance of different locations, EC2 in IAD shows values of
∆R larger than 100ms in 30% of the cases, resulting the worst performing datacenter
from the point of view of Italian end-users. These plots combined with information
about the large number of IPs allocated on IAD might suggest that popular instances
hosted in IAD are overloaded because of the large number of hosted EC2 instances,
or the instances hosted there are low profile in terms of processing power. Hence the
average bad performance of IAD could be caused by popular and poorly performing
contents running on congested instances.

DUB appears to be the best choice among datacenters for S3, while it competes
with SJC in the case of EC2.

Since a sizable part of content hosted on EC2 is encrypted using TLS/SSL (14%
of flows), it is reported the response time for HTTPS flows in left Fig. 4.4. Recall
that ∆R is a measure of the server reactiveness in the SSL handshake in this case.
Both IAD and SJC look very reactive, with 93% of the cases responding to SSL
initial negotiation almost with no delay. This conflicts with the hypothesis of IAD
being congested. On the other hand, for the 10% of the flows, DUB presents large
values of ∆R. It is found out that these impairing in the performance is related to
a single application or content hosted on that datacenter. This application is called
proxy.eu.mydlink.com and flows directed to it suffer from more than 10 seconds of
response time.
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This finding supports the idea that in general it is not the entire EC2 datacenter
to be congested, but rather some instances running on it.

Additionaly, Fig. 4.6 complements the findings already presented, reporting the
evolution over time of E[∆R] for EC2 for a period of one day for IAD and DUB.
From the figure it is observed that IAD consistently performing worse on average
than DUB. Notice that the average is i) a strongly non-stationary measure (being
it biased by the different contents retrieved at different times), and ii) practically
independent on the datacenter load.

Now considering the performance of the AWS CDN, depicted in Fig. 4.4 shows
in general very good performance, being 83% of requests satisfied in less than 20ms
in the worst case, i.e., FRA. MXP and ARN caches elaborate 80% of requests in
less than 3ms; SJC and FRA serve only 65% and 55% of request in less than 3ms,
respectively.

Fig. 4.7 compares the distributions of goodput G. Here, it is compared the per-
formance of two main datacenters for S3, IAD and DUB, together with CloudFront
MXP cache. The plot shows that more than 50% of flows get a goodput larger
than 2Mbit/s for S3 in DUB and CloudFront in MXP. For S3 in IAD, only 21% of
flows can achieve a goodput larger than 2Mbit/s. This difference can be due to the
larger RTT running from our vantage point to IAD, that affects the TCP congestion
control, thus, reducing achievable goodput.

4.8.2 Per-content Performance Evaluation

Fig. 4.8 reports the distribution of the response time ∆R for different social gaming
services hosted on different datacenters. Notice that all social games hosted by
IAD present poor performance with respect to those hosted by DUB and SJC. This
suggests again that IAD datacenter suffers somehow from congestion or the rented
instances for performing game tasks are of lesser processing power. Observe how the
instances of Farmville, a popular game, are indeed performing poorly. Notice that,
this lack in performance could make the service not suitable for real-time gaming
for instance, which requires broadcasting of data among players with as less latency
as possible.

Congestion may affect single instances. For example, Fig. 4.9 reports two exam-
ples of applications hosted by EC2 in DUB that suffer large average ∆R. These two
applications, SamsungMobile and MyDlink, show really impaired performance, with
average response time higher than 2s. Recall that DUB is the best performing dat-
acenter in our measurements (Fig. 4.4). This suggests that such poor performance
is due to a bad dimensioning of the instance or bad software design, and not due to
datacenter issues.
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Figure 4.6: Changes of response time over the day on different datacenters.

At last, it is shown the impaired performance following the outage of IAD dat-
acenter on June 30th, 20128. Selecting two contents hosted at IAD, and a third
one at DUB, Fig. 4.10 shows that i) not all contents where affected by the IAD
outage, ii) it had no impact on DUB, iii) affected instances suffer a 100 fold worse
performance during the failure, and iv) they kept suffering for performance issues
for several hours after the fault.

Focusing on the performance of CloudFront service, in Fig. 4.11 it is reported

8http://aws.amazon.com/message/67457/
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Figure 4.8: Distribution of response time ∆R for EC2 social gaming services.

the distribution of ∆R for different kinds of contents that end-users downloaded
from MXP cache. Static refers to static content for web pages (e.g. HTML files), js

represents JavaScript files, img refers to binary data such as images and Instagram

is referred to contents related to the well-known photo-sharing service. Aggregate

reports the behavior of all services together. As previously noticed, CloudFront
shows really good performance, being able to process 50% of requests in less than
2ms, independently on the kind of content.

However, ∆R is consistently better on average for static and JavaScript files,
whereas images and Instagram contents show larger response time. This may be
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Figure 4.10: Evolution over time of ∆R during the IAD outage.

due to the nature of the user-generated contents that are the most critical to man-
age for content delivery services, because of the size of the catalog, and of the small
popularity of each single content [26]. Finally, SSL flows show excellent ∆R, sug-
gesting that the cache, the path and the peering points are not congested.
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4.9 Conclusions

This chapter presents the first study of the traffic of Amazon Web Services (AWS)
in the wild on the Internet. This analysis assessed the growth of interest for cloud-
based platforms, which, thanks to virtualization technology, represents a scalable
and inexpensive solution for many web companies.

Through the study of traces captured from live networks, it was confirmed that
AWS represents a big player in nowadays Internet, being responsible for the gener-
ation of a sizeable portion of traffic.

It was shown an extensive characterization of AWS offerings, in particular for
EC2, S3 and Amazon’s CDN CloudFront. Results presented in this chapter show
that there is a big workload unbalance among different datacenters hosting both
EC2 and S3 products; in particular, the datacenter in Virginia was responsible for
85% of the total traffic sent to Italian end-users and it handled seven times the
traffic served by the datacenter in Ireland. Companies which relied on EC2 and
S3 tended to concentrate their content on one datacenter, with the drawbacks of
i) increasing the cost sustained by the network to carry data to faraway end-users
and, ii) increasing risk in case of failures. It was evaluated the performance of con-
tents hosted by EC2 and S3, in terms of servers reactiveness and network goodput,
providing comparison among datacenters and among different contents. The results
shown that the datacenter in Virginia presented in general poorer performance, but
was difficult to identify if it was due to an actual overloading caused by the large
population of EC2 instances, to congestion or under-dimensioned instances offering
particular content.
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It is found that CloudFront performed as any other CDN, being able to serve
98% of traffic to the best possible cache. However, it presented issues that are typical
of CDN systems: i) generic DNS servers returning caches far from end-users, that
lower perceived QoS and system’s efficiency; ii) lower performance when processing
unpopular user-generated contents.
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Chapter 5

Conclusions

During these three years of Internet traffic analysis, I observed changes on the way
the content or services are delivered to end-users. People studying Internet traffic
should realized a change in the paradigm on how content is delivered to end-users.
There was and increase of encrypted traffic over TLS/SSL and the extensive usage
of WEB 2.0, that made quite hard unveiling what was already unveiled. In spite
of this, it was presented DN-Hunter, which brings a little light into the visibility of
the things happening in the network, providing clues about the content or service
associated to a network flow. In this thesis were presented very particular heuristics
to understand traffic collected passively that somehow was obscured, getting very
detailed information about the protocols and infrastructures studied. However, these
heuristics presented do not scale up. An open research could be extending these,
formalizing and automatizing these processes for having a better picture of the
evolution of the Internet as seen from the viewpoint of an ISP. In this context I would
like to recognize the work started on the mPlane Seventh Framework Programme
project, which aims to build an “intelligent measurement plane for the Internet”.
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