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Abstract

The Internet is evolving with us along the time, nowadays people are more dependent
of it, being used for most of the simple activities of their lives. It is not uncommon
use the Internet for voice and video communications, socialnetworking, banking
and shopping.

Current trends in Internet applications such as Web 2.0, cloud computing, and
the internet of things are bound to bring higher tra�c volume and more heteroge-
neous tra�c. In addition, privacy concerns and network security traits have widely
promoted the usage of encryption on the network communications. All these factors
make network management an evolving environment that becomes every day more
di�cult.

This thesis focuses on helping to keep track on some of these changes, observing
the Internet from an ISP viewpoint and exploring several aspects of the visibility of
a network, giving insights on what contents or services are retrieved by customers
and how these contents are provided to them. Generally, inferring these information,
it is done by means of characterization and analysis of data collected using passive
tra�c monitoring tools on operative networks.

As said, analysis and characterization of tra�c collected passively is challenging.
Internet end-users are not controlled on the network tra�c they generate. Moreover,
this tra�c in the network might be encrypted or coded in a way that is unfeasible
to decode, creating the need for reverse engineering for providing a good picture to
the Internet operator. In spite of the challenges, it is presented a characterization of
P2PÂTV usage of a commercial, proprietary and closed application, that encrypts
or encodes its tra�c, making quite di�cult discerning what i s going on by just
observing the data carried by the protocol. Then it is presented DN-Hunter, which
is an application for rendering visible a great part of the network tra�c even when
encryption or encoding is available. Finally, it is presented a case study of DN-
Hunter for understanding Amazon Web Services, the most prominent cloud provider
that o�ers computing, storage, and content delivery platforms. In this paper is
unveiled the infrastructure, the pervasiveness of contentand their tra�c allocation
policies. Findings reveal that most of the content residingon cloud computing and
Internet storage infrastructures is served by one single Amazon datacenter located
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in Virginia despite it appears to be the worst performing onefor Italian users. This
causes tra�c to take long and expensive paths in the network.Since no automatic
migration and load-balancing policies are o�ered by AWS among di�erent locations,
content is exposed to outages, as it is observed in the datasets presented.
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Chapter 1

Introduction

The Internet have been with us for several years and will stayfor longer. Along
all this time, Internet has evolved drastically as culture trend, market and politics
evolve as well. The changes on the Internet are re�ected on several levels, from
how the end-users interacts on the network, to how content isdelivered and the
transmission capacity is getting available to everybody. Considering just the tech-
nological part, Internet has changed because of end-users now can buy cheap and
powerful computing devices, wireless connections are in anywhere providing con-
nectivity to anything, video transmission, which represents tons of data, is quite
popular thanks to cheap devices able to capture high resolution digital video, cheap
storage devices which allows to save tons of data, high-speed networks which makes
feasible content sharing and infrastructures, like Youtube, which can host unlimited
audiovisual content for free almost no matter the duration of the �lm, and thanks to
high-res displays which make users being more interested onbetter video content.
Therefore understanding what end-users do when they are online and the impact
of their actions in a network, from the point of view of an operator, or commonly
known ISP (Internet Service Provider), is essentially for providing Internet access
to end-users. This knowledge empowers ISP permitting a better administration of
the network, the creation of new business and to react fasterto Internet changes as
well as failures in the network. It also helps to software engineers, which develop
on-line applications, to develop better applications thatare able to coexist with the
rest.

This thesis explores several aspects of the visibility of a network, giving insights
on what contents or services are retrieved by customers and how these contents are
provided to them. Generally, inferring these information,it is done by means of
passive network monitoring of operative networks, from where tra�c is collected
to then being characterized and analysed. From the point of view of who analyse
the Internet, this is not a simple task. Internet is a quite tangled and confusing
place in which many actors are involved, and the informationavailable about it is
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1 � Introduction

not complete, e.g. some Internet tra�c is encrypted or encoded in a obscure way.
Particularly, the core of this thesis is organized in three di�erent chapters: (i) in
chapter 2 is studied the human factor and its impact on the network, by unveil-
ing the usage P2P-TV applications over the Internet, (ii) inchapter 3 is presented
DN-Hunter a generic tool that permits association of network connections to con-
tent/service, even in cases which there is encryption or unknown coding, �nally (iii)
in chapter 4 is presented a study of Amazon infrastructure, which is one the big
players providing content/service to end-users.

Among the most prominent �ndings covered in this thesis, in chapter 2 is shown
evidence on why users in an European country select one channel instead of other,
which is the most popular content to watch on P2P television and how these com-
bined with the application design, impact together the network in terms of tra�c
locality. Moreover it is demonstrated that without high speed peers in the P2P
overlay, broadcasting of real-time content becomes di�cult. In 3 is presented a tool,
completely projected and coded by the author, which allows to associate the real
used domain name with a network connection in real-time. Together with this, there
is demonstrated how vague is reverse lookup for detecting the service or content of
a given connection and the amount of information that an operator can access for
free from DNS tra�c in its network. Last, in chapter 4 a study case of DN-Hunter
is presented, putting particular attention to Amazon Web Services, which o�er ded-
icated Cloud Computing, Internet storage and a Content Delivery Network. This
chapter also introduces a generic methodology to assess thegeographical location of
an IP address which becomes useful to determine the locationof the di�erent Ama-
zon datacenters, permitting in this way understand from where the tra�c is coming,
to where is exported, which are the datacenters performing worst, and thanks to
DN-Hunter understand which content performs worst and where are located the
di�erent contents. Among all the �ndings, it is interesting that most of content
generated by the Cloud Computing infrastructure is imported from America, being
available datacenters for cloud-computing in Europe.

Finally, this thesis is concluded with chapter5, which brie�y describes the expe-
rience during three years of monitoring actively the Internet at the edge, recalling
the di�culties on characterizing the interactions in the Internet and commenting
some toughs of the author.

Methodology and Collaborations

All the works presented through this thesis are based mostlyon traces of network
tra�c collected from passive measurements on operative ISPnetworks. Basically,
the analysis an characterization of tra�c from passive measurements has the ad-
vantage that what is being observed is not bias and represents normal behavior
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1 � Introduction

of real end-users. On the other hand, virtual hosting of content or service mixed
with privacy and security concerns make this task di�cult. E.g. consider someone
is interested on Facebook tra�c, most of it is encrypted using TLS/SSL and it is
hosted using several IP addresses. This is the same that happens with other not
very well-known applications generating tra�c, e.g. tra�c generated by a botnet,
could you tell what is going on when tra�c protocol is obscured intentionally?

In this work, Tstat DPI developed in Politecnico di Torino has been used ex-
tensively. It has capabilities of classi�cation, generates statistics about TCP/UDP
connections providing hundred of features of a �ow, as well as other statistics related
to some speci�c protocols and content. Signatures forTstat classi�er are written by
hand and are the result of hard reverse engineering of the protocols. In this context
Tstat has been placed in several vantage points spread over Europe. Thanks to
Network-Aware P2P-TV Application over Wise Networks (NAPAWINE) a Seventh
Framework Programme project and the collaboration with of some partners, with
the scope of understanding P2P-TV applications and the attitude of end-users to-
wards it, someTstat probes has been placed in Telekomunikacja Polska (now Orange
Polska, Poland), Magyar Telekom (Hungary), in Fastweb (Italy) and in Politecnico
di Torino (Italy). Then thousands of end-users have been monitored with the scope
to unveil and characterize P2P-TV usage.

Given the second problem of generic tra�c being obscured or coded in an un-
known fashion, there is a collaboration with Narus Inc. (USA), in which DN-Hunter
has been developed. This collaboration has as scope the creation of a labeler for au-
tomatic generated signatures of protocols, but comes out that DN-Hunter was more
than a labeler for this speci�c application, providing visibility to the encrypted or
coded tra�c to the network operator. DN-Hunter has been included in one private
version ofTstat for research purposes. Therefore using some available probes able
to run Tstat, it was possible to understand better such as big infrastructures as
Amazon Web Services, providing insights of its overall performance and the way
this company distribute its content to end-users.

Main Contributions

Throughout the chapter 2 you may �nd evidence that supports that P2P-TV ac-
tivity in Europe is high correlated with sports events, particularly football matches
being broadcast on paid TV. It is noted that are cultural biases on channel selection,
in which end-users running P2P-TV applications prefer to retrieve the same content
from channels with audio in particular languages, even though alternatives, broad-
casting essentially the same content, are available. This has implications on tra�c
that remains naturally in a particular geographical region, notwithstanding P2P-TV
applications do not favor or promote any kind geographical tra�c enclosing. On the
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1 � Introduction

other hand, it happens when content is not available in the local language end-users,
they retrieve content from another channel broadcasting the content. This have
negative implications for geographical tra�c allocation, for instance when channel
content is being transmitted in English, which is the language most spoken as a sec-
ondary language, the spatial distribution of peers is sparse, then end-users the same
happen to tra�c allocation, where a lot of the tra�c is being e xported/imported
from abroad. It is observed that there is a constant churningrate, which means
peers or end-users leaving the channels. This is important to have in mind for scal-
ing P2P-TV infrastructure, since P2P applications rely on end-user capability to
replicate the information over the P2P overlay. Moreover, the behavior of peers is
quite synchronized. That is an e�ect of �ashÂcrowd when events starts and high
churning when broadcast event, e.g. football match ends. Inspite of generic P2P
applications, there are two particular methodologies which allowed to �nd all the
already described results. The �rst is a methodology that permits the isolation of
P2P-TV tra�c by channels, and the second one is a methodologyto estimate the
the size of a P2P swarm in a scenario in which the peer discovery is not forced, that
is, with the same probability each peer in the swarm may exchange some tra�c with
any other peer in the swarm.

On chapter3 is presented DN-Hunter, which allows the association any TCP/UDP
�ow with its corresponding Fully Quali�ed Domain Names (FQDN). A FQDN may
provide granular information about the service or content associated with a network
connection, even though a network connection is encrypted.It has been imple-
mented as part of DPI solutions, asTstat a open-source DPI developed at Politectino
di Torino and it is inside Narus Insight, a commercial DPI solution developed at
Narus Inc. In this thesis contains a brief description of DN-Hunter, which includes
internals of DN-Hunter and algorithms for giving visibility of the network using the
FQDN annotated connections. Among the algorithms presented here, an automatic
port labeling is described which mixes �ow features as a destination TCP/UDP port
number, with the domain names associated to the connectionsusing some particular
ports, in a way that DN-Hunter provides labels for unknown ports being used in
the network, pointing out information for a network administrator. Moreover, it has
been used to label kind of tra�c which share a particular signature, in the context
of an automatic application signature learner, DN-Hunter provides labels for the
new protocols it founds in the network. Heuristics for content discovery and how
di�erent content is being hosted on di�erent infrastructures is shown, presenting
�ndings related to web services which operate di�erently according to the geograph-
ical location they are serving. Also, it is shown that DN-Hunter allows to a network
administrator to have a grasp on the kind of content being provided by a general
purpose cloud. An example of Google Appspot, a general purpose cloud for running
applications for free on Google machines, shows that with DN-Hunter is possible

4



1 � Introduction

to determine that this cloud is abused by BitTorrent trackers for sharing proba-
bly copyrighted content. This is particularly astonishingsince content is served by
Google IP addresses which are well known to serve �bad� content, moreover other
legacy service run on the same IP addresses, then blocking trackers by their IP
address would break the whole connectivity to other innocuous applications.

Chapter 4 is a complete study of one big player of the Internet nowadaysas
observed from the point of view of an ISP. This is the case of Amazon Web Services
(AWS), from which tra�c directed to it is passively gathered from all the tra�c. One
of the main contributions is a heuristics for determining the location of an Internet
address as observed from a particular location, bypassing in this way any particular
routing con�guration which could trick some other accuratemethodologies like [1],
which uses several probes spread on di�erent geographical locations. Using DN-
Hunter, this chapter provides insights on performance of the di�erent datacenters,
performance of the di�erent services hosted on AWS cloud as well as content hosted
on their Content Delivery Network, hosting policies and pricing for customers with
implications on geographical tra�c allocation and eventually on QoS for end-users,
which have to import tra�c from long distances when it could be available from
nearest datacenters. In spite of this, it is found that Italian end-users import near the
85% of tra�c volume from America, when a datacenter is available in Ireland. This
impairs the quality of communication with the servers specially for the case of TCP
connections. In addition, it is shown which kind of content/service is responsible
for such tra�c importing, �nding that mostly online social g ames are quite popular
among Italian end-users and that those applications are mostly hosted in Amazon
datacenter located in North Virginia, near to Washington.
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Chapter 2

Inferring Internet end-user
attitude

2.1 Introduction

As the Internet changes, in the recent years we have witnessed the success of P2P-
TV applications, bringing TV channels, some of which live, to the users' home
through the Internet. Several commercial P2P-TV systems are available and some
are popular among users because they feature cheaper video broadcasting than other
solutions, e.g., IPTV or pay-TV. Unfortunately, most of the successful P2P-TV
applications rely on proprietary protocols and unknown algorithms, so that the
understanding of such systems is intrinsically complex. Thus P2P-TV tra�c char-
acterization has become a topic of great interest for the research community and for
network operators. Both are interested in understanding the positive and negative
aspects of P2P-TV applications, to understand how these complex systems work
and to improve their design and e�ectiveness.

Service providers, network operators and designers, are interested in assessing
the potential impact of this tra�c on the network of today, im pact that might
turn out to be disruptive, given the possible large number ofusers and high band-
width requirement combined with the tra�c being loosely controlled with respect
to network conditions. Researchers are interested in the investigation of end-users
attitude towards these new services to foresee new trends inthe future usage of the
Internet, and to augment the design of their application. A deep understanding of
P2P-TV tra�c and its characterization is therefore an important task that can con-
tribute to the design of network elements, including tra�c engineering mechanisms,
component dimensioning, resource management strategies.

In P2P-TV systems, three di�erent graphs can be identi�ed. The �rst graph rep-
resents the users that run the applications forming a �social network graph�. Where
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2 � Inferring Internet end-user attitude

are the users? When and for how long do they run the application? Is churning
relevant for P2P-TV systems? These and others are all relevant questions whose
answer allows researchers to design more robust applications, e.g., by exploiting
natural localization properties of users.

Peers form then an �overlay topology�, a second graph where peers are intercon-
nected by logical links. Peers interested in the same channel then form a �swarm�;
independent overlay topologies are built for di�erent swarms. Which are the prop-
erties of the swarms? Are the peer neighbors carefully selected or are they randomly
chosen? By understanding the overlay topology graph properties it is possible to un-
derstand the P2P-TV system properties, its robustness to churning or its scalability
with respect to the number of peers.

Finally, the subset of the overlay links that are used by peers to exchange the
video tra�c forms the third graph, the �distribution graph� . Is the video data being
downloaded from neighbors in the same Autonomous System to reduce the network
provider cost? Are neighbors with larger upload capacity preferentially selected to
download content from? What is the fraction of high capacitypeers in a swarm?
Recall indeed that the total available upload capacity plays a key role in the success
of P2P-TV content distribution since the video stream must be downloaded at an
almost constant rate by each peer.

To answer most of the latter questions, this chapter contributes to the charac-
terization of P2P-TV tra�c by analyzing the tra�c due to popu lar applications
(SopCast, TV-Ants and PPLive), in the operative links of four networks in opera-
tion in Europe, three of which provide ADSL access, the forthone employs FTTH
(Fiber-To-The-Home) technology. Di�erently from the measurement works present
in the literature, here there is adopted a pure passive methodology to observe nor-
mal usage of P2P-TV applications by customers. Collecting tra�c for more than
one year, it is found that SopCast is the largely preferred application by customers
in these networks. Furthermore, the usage of these applications is still very much
discontinuous and often associated to events, such as sportevents, that are popular
but expensive to retrieve through normal TV broadcasting systems.

As a study case, then focus on two months during which the UEFAChampions
League 2009 �nal matches were held. Investigating deeper into the SopCast traces,
it is reported tra�c and peer volumes, swarm evolution, peers geo-localization and
lifetime, and their contribution to the video distribution . Results suggest that the
implications of tra�c burstiness, the peer population and their evolution might be-
come challenging for the network, should these applications become widely popular.

Methodologically, it is proposed a general heuristic to identify swarms corre-
sponding to TV channels; observing churning associated to SopCast events, �nding
out that users stay connected to the P2P-TV system for the whole duration of the
event, but they can frequently change swarm seeking for better channels broadcast-
ing the same event.
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2 � Inferring Internet end-user attitude

In spite of the peer discovery process in the overlay topology, it is found out that
SopCast implements a simple random discovery which is very robust. Conversely, the
distribution graph is severely biased by peer upload capacity and by the Autonomous
System a peer belongs to. Results suggest that the implications of tra�c burstiness,
peer population and their evolution over time might become challenging to face.

Some key aspects highlighted in this chapter include:
� Despite the average bandwidth usage of P2P-TV applicationsis not signi�cant,
it can be substantial during periods in which popular eventsare shown. Today, a
few tens of users can contribute to 15% of total aggregate tra�c generated by more
than 20,000 users on a network access link.
� Node churning during the lifetime of a stream is not signi�cant, but there is a
�ash crowd entering the system at the beginning of the event and a rush towards
exit at the end. This clearly has an impact on the design of P2P-TV applications.
� Evidence shows that often high-speed residential networksand University networks
altruistically serve content to residential peers with highly asymmetric bandwidth.
Without the contribution of those peers, the P2P-TV system would not sustain the
service at all.
� Geo-locality of social network graphs is deeply a�ected by cultural and language
trait of customers. This biases the tra�c distribution graph that is inherently geo-
graphically localized.

The latter two facts clearly impact the ability to localize P2P tra�c, a theme
that is currently debated in the research community.

2.2 P2P-TV Usage

In this section usage and popularity of P2P-TV among Internet end-users. Fig.2.1
report the P2P-TV average incoming bitrate versus time, fordi�erent timescales
observed at the EU2-ADSL vantage point. Results are qualitatively similar in other
monitored PoPs. On average, the tra�c generated by these applications is marginal,
but the burstinessof tra�c re�ects P2P-TV usage that is concentrated during short
periods of time. This is when the amount of tra�c generated can reach very high and
possibly disruptive peaks. Moreover, it is observed that P2P-TV activity typically
coincides with the transmission of popular sport events, e.g. UEFA Champions
League during Wednesday and Thursday or Premier League (England First Division)
on Saturday and Sunday. It is observed that even the most popular events reach as
much as a hundred of same PoP end-users, which correspond to less than 0.5% of
all monitored end-users connected to the vantage point. Still, the download bitrate
often exceeds 15% of total PoP incoming tra�c during those events. P2P-TV bitrate
during peaks is larger than the aggregated YouTube bitrate consumed by customers
in the same network. Nevertheless P2P-TV usage is disruptive and consume lot
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2 � Inferring Internet end-user attitude

of network resources, only a few end-users connected to PoPsrun these P2P-TV
applications. This �bursty� user behavior, which can be pretty di�cult to handle,
is also very di�erent from normal TV and IPTV usage pattern, that is typically
smoother and more evenly distributed during the day. Noticealso the abrupt drop
of tra�c that happens after 20:30, i.e., after the event ends. This hints that �ash
crowd phenomena are not negligible in P2P-TV systems, as it discussed in next
sections.

On all the monitored vantage points it is observed at the timein which the mea-
surements were collected, that in these European networks SopCast is by large the
most popular P2P-TV application among others like PPLive and TV-Ants, which
tra�c signatures can be identi�ed using Tstat DPI. Therefor e, in the following, the
analysis of P2P-TV is restricted to some of the largest traces of SopCast tra�c,
which remains statistically more relevant. Since SopCast adopts a proprietary pro-
tocol and relies on encryption mechanisms, reverse engineering of the application
protocol and algorithms are avoided. Instead, all the characterization of the appli-
cation and its usage is devised using simple methodology that can be leveraged to
study other P2P applications too.

2.3 Channel Identi�cation

The information on whether the observed peers are watching the same �channel�,
i.e. peers watching di�erent channels belong to di�erent disjoint swarms, is inter-
esting since it can be leveraged to better characterize and categorize the di�erent
channels and users. Unfortunately, identifying the channel turns out to be complex
from passive monitoring of uncontrolled peers. Worst, SopCast adopts its own pro-
prietary protocol and uses encryption mechanisms, that makes harder the channel
identi�cation by inspection of protocol messaging.

In order to avoid complex (and questionable) reverse engineering of the SopCast
protocol, it is de�ned a methodology that allows to cluster peers in swarms, that is a
group of peers watching the same channel. This methodology is generic and can be
leveraged for most P2P systems as well. The intuition at the base of this solution is
that peers in a given channel contact other peers that are part of the same channel
too. Then it is de�ned the concept ofneighborhoodof a peer, as the set of peers that
have established any connection with the peer. Formally it is claimed that peers
with similar neighborhoods belongs to the same channel. Forinstance consider two
peersa and b which have a lot of neighbors in common, both belongs to the same
channel. On the other hand, consider a third peerc which have only a few neighbors
in common, it is said that c belongs to a di�erent channel.

Let a and b denote two internal peers and letP(a) be the set of peerscontacted
by a, i.e., peers whicha sent a packet to. The amount of common peers among
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(c) Average 60s bitrate over one evening.

Figure 2.1: P2P-TV Tra�c at Di�erent Time-scales in the TP Po P.

a and b is then C(a; b) = jP(a) \ P(b)j, where j � j is the cardinality operator. It
is de�ned then the common peer matrixM , as a matrix in which element (i; j ) is
M ij = C(i; j ).

If each row (column) on theM matrix represents a monitored peer, then by
sorting peers, so that two adjacent rows (columns) inM refer to peers that have a
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large number of common peers and their neighborhoods are similar as well, then it
is easy to identify the di�erent swarms by just looking at therows (columns) of the
matrix. Neighborhood similarity is computed using the number of contacted peers
in common, in a way that it gives similarity score if two peersa and b have external
peers in common, but it gives an even higher score if there is athird peer c which
also shares peers witha and b, and a forth d which do not have peers in common
neither with a, b and c. Let Va be the vector of common peers ofa with all other
monitored internal peers, i.e., thea-th row of M . Denote by V T

a the transposed of
Va, i.e., the a-th column of M . The product,

S(a; b) = 2
VaV T

b

VaV T
a + VbV T

b
(2.1)

is a measure of the similarity between the neighborhoods ofa and b. By iteratively
sorting the list of peers and moving closer those with largersimilarity, it is obtained
the swarming matrix, i.e., an ordered common peer matrixM 0 that depicts in a clear
way how peers are clustered together.

Fig. 2.2 reports the swarming matrix considering 133 peers active for more than
600 s during 2-hours event on the 5th of May 2009. Each cell is colored according to
the amount of common peers it represents. The numbers along the main diagonal
correspond to the total number of contacted peers,P(a). The swarming matrix
shows that there are several groups of peers that share a large fraction of common
peers, identi�ed by the darker blocks. The largest block includes peers from 0
to 70 (named swarm A), the second group corresponds to peers from 105 to 126
(swarm B), then peers from 90 and 105 (swarm C). The magnitudeof well de�ned
clusters of peers with intersections of neighborhood suggests that they correspond
to di�erent swarms, or channels. Moreover it is possible to understand the swarming
matrix as an adjacency matrix, where each peer is a node in a graph and dark cells
represent connections between peers of the same channel. Inthe same way, dark
blocks represent very well connected components or in P2P-TV jargon, a channel.
It is inferred that during the 5th of May event users were watching di�erent channels
that were possibly broadcasting the same event. Then, each identi�ed swarm is also
characterized by very di�erent properties, which corroborate this claim.

Swarming matrices allow grouping of users watching the samechannel. As a �rst
result, it clari�es that some channels are more popular in the monitored network.
Interestingly, it is possible to observe from the matrix that during the same short
period of time, several channels were active, probably transmitting same content.
This assertion is enforced by the observation of peers changing from one channel
to another, as you can read in section Sec.2.3.1. Probably these channels provide
essentially same content, but some features such as video quality, sound quality,
channel stability or even channel, could be di�erent.
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Figure 2.2: Swarming matrix for 5th of May trace. Darker blocks refer to peers in
the same swarm.

The swarm analysis is repeated over all the traces, identifying several swarms. In
this section the analysis and results are restricted to the subset of swarms reported in
Tab. 2.1, which are the largest swarms in terms of number of present internal peers.
The table summarizes prominent swarm characteristics: thenumber of internal
peers observed in the channel and the estimated amount of external peers in the
channel, the total amount of received (RX) and transmitted (TX) data, estimated
video rate, probe country code (CC) location and the portionof external peers that
belong to the same Autonomous System (AS) the probe was located in. Note that
channels are sorted by decreasing values of the last metric.Note that all the largest
swarms were observed in the EU2-ADSL traces, being P2P-TV usage more popular
in EU-CC1 than in the other two European countries. Nonetheless, in swarm 11 and
swarm 14 is identi�ed one peer that was monitored in EU3-ADSLand EU1-ADSL2,
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respectively. These are listed in the two bottom rows of the Table.
The number of external peers in the channels are estimated using a metric ex-

plained in detail in Sec.2.4.3. Video rate, is computed considering the number of
peers watching the channel and the total amount of video dataobserved, during a
window time of 1 minute. The video data is discriminated fromthe signaling data by
taking advantage of the very biased distribution of packet size of SopCast. Further-
more packets which hold more than 1000 bytes in their payloads are considered as
video packets. Results show that the video rate is typicallylower than 480kbps, i.e.,
low quality video. Other metrics reported in the table are straightforward computed
from traces.

Table 2.1: List of the largest swarms

Swarm Internal External RX TX Video Rate CC PL
ID Peers Peers [GB] [GB] [kbps] AS %
0 35 15489 8 2 330 PL 32
1 29 19701 8 2 400 PL 31
2 50 32757 15 3 450 PL 28
3 33 25575 9 2 400 PL 27
4 41 33320 15 3 400 PL 27
5 69 60502 23 5 420 PL 25
6 66 76416 24 5 470 PL 23
7 19 20662 8 2 350 PL 21
8 77 68264 30 6 400 PL 19
9 11 10371 3 1 440 PL 10
10 5 12288 1.5 0.2 320 PL 9
11 12 18684 5 1 430 PL 9
12 10 20930 2 0.2 370 PL 8
13 8 13591 2.6 0.4 450 PL 8
14 16 39948 4.3 0.4 380 PL 6
15 13 39718 4 0.3 450 PL 5
16 25 54830 5 1 470 PL 4
17 8 23333 2.7 0.3 480 PL 3
18 10 30026 3 0.5 330 PL 2
19 9 27195 2.1 0.5 400 PL 2
11 1 8049 0.5 0.2 430 HU N/A
14 1 5122 0.3 0.1 380 IT N/A
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2.3.1 Detecting Channel Switching

Usually when someone watches TV use to change channel often.This behavior is
commonly known as zapping, which is using the remote controldevice to switch
across channels or TV programs. Motivated on �nding di�erences between P2P-TV
and normal TV, the user satisfaction is studied in this section, measuring how much
are like the users to change the channel that they were watching. From the swarming
matrix, there are still some peers which share some common peers with others in
disjoint channels. For instance, peer 123 at Fig.2.2 as a large number of common
peers with both, swarm A and swarm B. Has this peer watched both channels at
the same time, or somehow it switched from channel A to B or vice-versa during
the 2 hours of monitoring?
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Figure 2.3: A�nity of peer 123 to swarm A and B during the 5th of May trace.

To support the hypothesis that a peer had jumped from one channel to another,
instead of watching both contemporary, it is de�ned the following test. Let X and
Y be the sets of internal peers that belong to di�erent swarms.Then,

P(X; �Y) = [ x2 X P(x) n [ y2 Y P(y) (2.2)

is the set of unique external peers contacted by peers of swarm X but not by peers
of swarmY. Let P� T (a) be the set of peers contacted by the internal peera during
time � T. It is de�ned the swarm a�nity of peera to swarm X and not to Y as

A � T (a; X; �Y) = 100
jP(X; �Y) \ P� T (a)j

jP� T (a)j
(2.3)

Fig. 2.3shows the a�nity of peer 123 to swarm A and swarm B, considering � T = 5
minutes moving along the event duration. The plot shows thatpeer 123 exhibits
a high swarm a�nity towards swarm B from 18:30 until 20:10, time at which its
a�nity to swarm B drops and the one to swarm A increases. Notice peer 123 left
swarm B to join swarm A at 20:10. Identical results are obtained when considering
other peers showing same connection pattern. Finally thereis evidence of chan-
nel switching when there are other available channels providing same content with
di�erent features.
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2.3.2 Natural Churning and Flash Crowds

Di�erently to normal TV, on P2P-TV is observed a very like event driven behavior
among P2P-TV users Fig.2.1. When someone runs SopCast it is probably that
some particular TV show or event is being broadcast at that time, so that a �ash
crowd e�ect is present when an event starts. Users then keep running SopCast for
the whole event duration, and then suddenly stop using it at the event end. This is
con�rmed by Fig. 2.4which reports the Cumulative Distribution Function (CDF) of
the time which internal peers are active using P2P-TV duringan event. This time
is called the lifetime of the peer. Both separated and aggregated CDFs are reported.
Results show that users lifetime is very similar for di�erent events, and it is rather
long, e.g., 90% of users have a lifetime longer than 30 minutes. As highlighted by
the horizontal lines, 50% of users have a lifetime within 90 min and 130 min, which
corresponds to the typical duration of a soccer event. Only less than 10% of users
run SopCast for more than 150 min.
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Figure 2.4: User lifetime CDF; the thick line refers to the aggregate statistic.

It has already addressed that some users switch channel during their lifetime,
but how much often this happen during the lifetime of an event? To answer this
question, Fig.2.5 shows the churning percentage over time. Both peers that change
channel and peers that close the application are considered. Two di�erent events
are considered in top and bottom plots. Results are obtainedby computing the
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swarming matrix for di�erent time slots. In detail, M (tn ) is computed every time
period tn of 5 min; then M (tn ) and M (tn� 1) are compared to count peers entering
or leaving a channel and peers switching channel. Finally, the churning percentage
is computed with respect to the number of active peers at timetn .

Fig. 2.5 shows that the number of users switching channel is not negligible, e.g.,
around 8-10% of users changes channel every 5 min. Interestingly, the percentage
of peers that change channel is higher at the beginning, whenpossibly users are
seeking for a good channel to follow the whole event which they are interested
in. The churning percentage of users leaving the system is small, but it suddenly
increases at the event end when more than 50% of users leave the system at the
same time.
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Figure 2.5: Percentage of peers changing channel and leaving the system during two
soccer matches.

These results highlight the �human-factor� implication when designing a P2P-
TV system. Both �ash crowd and sudden peer departures are notnegligible, so that
algorithms must explicitly deal with them.

16



2 � Inferring Internet end-user attitude

2.4 Peer Discovery Process

In this section, is of interest to understand some properties regarding with the overlay
graph underneath a P2P-TV channel. Most of P2P-TV systems (SopCast included)
implement a peer discovery algorithm based on gossiping protocols [2]. In SopCast
a continuous discovery process is carried out by peers that look for new peers at a
practically constant rate. In the overlay graph, an edge is created every time a peer
exchanges information with another peer. To assess what arethe properties of the
SopCast overlay graph, the peer discovery process is observed.

2.4.1 Peer Discovery by Access Technology

The �rst question that arise regarding to peer discovery is,do all peers discovery
others with the same rate? To answer this question, the number of peers contacted
by internal peers in a period of time �T is measured during the events. The dis-
covery rate depends on the rate with which the peer is contacted by or contacts
other peers. Fig.2.6 shows an example of measurement for peers in swarm 14. The
�gure shows the average discovery rate of peers for TP and IT-FTTH data sets. It
is chosen a �T = 60s. Focusing �rst on the TP peers, all peers in this data set
perform the same kind of discovery process. In contrast, thediscovery rate of the
IT-FTTH peer is much larger than the TP peer rate. It also shows a signi�cant
variation during peer lifetime. Similar results are observed when comparing low and
high upload capacity peers: the formers exhibit smaller discovery rate than the lat-
ter. This suggests that SopCast implements some algorithmsto exploit the upload
bandwidth of high capacity peers.
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Figure 2.6: Number of peers contacted every 60s by internal peers.

To corroborate this hypothesis, a controlled test-bed experiment is set in the
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University Campus network. The setup of the experiment consists on two peers
watching the same channel at the same time. Both peers are connected to the
Internet via the same router which limits the upload rate to 256kb/s and 32Mb/s,
respectively. Note that the download rate should be limitedby the video rate,
in the case that protocol signaling overhead is not considered. The evolution over
time of the discovering rate of the two peers is observed, showing identical results on
Fig. 2.6: the peer with higher upload capacity exhibits a much higherpeer discovery
rate. Therefore, there is enough evidence to say that the discovery rate on SopCast
depends on the peer upload capacity.

2.4.2 Bias of Peer Discovery Process

The scope of this section, is to unveil if there is any preference in the discovering
process, based on the peer geo-location, distance or any other property. Fig. 2.7
shows the geographical breakdown of peers contacted by di�erent internal peers
during their whole lifetime. Left and right groups of bars refer to swarm 11 and
14, respectively. For each swarm, it is reported the breakdown for i) two internal
peers selected at random from the TP dataset, ii) all peers inthe TP dataset,
and iii) one peer in the MT and IT-FTTH dataset. Results show that there is
no statistically signi�cant di�erence, even if peers are located in di�erent countries
(PL or HU for swarm 11, PL or IT for swarm 14) or are connected through di�erent
access technologies (PL-ADSL vs IT-FTTH for swarm 14). However, the breakdown
changes in the two events. This suggests that the SopCast peer discovery mechanism
is not driven by any preference related to any peer property,but it re�ects only
the natural distribution of users around the world. That is, the peer discovery
mechanism follows a random process in which the probabilityof contacting (or
being contacted) by a peer is independent from other peers. This is a very robust
choice which allows SopCast to deal with the high churning rate seen in the previous
section.

2.4.3 Channel Size Identi�cation

Leveraging on the SopCast peer discovery process, in the following it is exploited
a simple model to estimate the channel size, that is the number of peers actually
watching the channel across the world. Let consider independent observation periods
of duration � T. Over each period, the internal peers watching the same channel are
monitored. The discovering process can be modeled as a random walk at constant
rate de�ned by the access technology of each internal peer. Then each internal peer
in the same network discover a random set of external peers every � T. Thus given
any two internal peersa and b, the amount of common external peersC(a; b) they
discover follows a Poisson distribution with mean value determined by the degree
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Figure 2.7: External peer spatial distribution.

jP(a)j and jP(b)j of a and b, as well the sizeN of the channel:

C(a; b) =
jP(a)jjP(b)j

N
(2.4)

Given a channel and an observation time �T, it is measuredC(a; b); P(a); P(b) for
each possible pair of internal peersa; b. From (2.4) it is possible to estimate the
total number of peers in the swarm; let this estimation be denoted by N̂ (a; b).

N̂ (a; b) =
CaCb

Ca;b
(2.5)

Since there are several internal peer pairs, it is computed the average and stan-
dard deviation among the estimationsN̂ = E[N̂ (a; b)] and � N = std[N̂ (a; b)]. N̂ is
the estimated swarm size, i.e., the number of vertexes in theoverlay graph.

The sampling time � T plays a key role, since it de�nes the result of the discovery
process: on the one hand, �T should be large enough to allow a correct estimation
of C(a; b); on the other hand, � T should be small to minimize the impact of peers
churning and channel switching. Sensitivity analysis on the impact of � T throws
that a good trade o� is obtained at � T larger than 2 min and shorter than 10 min.
In the following, it is choosen � T = 360s. Fig. 2.8 reports the CDF of C(a; b) for
all the pairs a; b of internal peers in a swarm during a single observation period.
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Figure 2.8: Common peer distribution as observed during a �T = 360s time interval.

C(a; b) closely follows a Poisson distribution with mean value 36,con�rming that
(2.4) o�ers a good approximation.
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Figure 2.9: Estimated overlay graph size and total number ofdiscovered peers.
� T = 360s.

Fig. 2.9 depicts the estimated average and standard deviation of theestimated
channel size. It is contrasted with the amount of unique peers M discovered by
all internal peers during the same observation time �T. This �gure reports the
evolution of swarm 6, which was previously reported in bottom plot of Fig. 2.1. N̂
quickly grows at the beginning when the �ash crowd phenomenon starts. During
the event, N̂ is then stable since the swarm population remains constant.Finally, at
the event end an abrupt departure of peers is observed. This �ndings are coherent
with results regarding the user habits on P2P-TV, which has been already noticed
in Fig. 2.1. Comparing N̂ with M , it is observe that the latter does not provide a
good estimation of the swarm size during the initial transient. In regime situation,
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M is comparable with N̂ . Because more than 60 internal peers are present, the
aggregated discovery process they perform allows to practically �nd all peers in
the swarm in 360 s only. However, when the number of internal peers is small,M
provides a lower bound toN .

2.5 Spatial Analysis

In this section the spatial characteristics of external peers are investigated, in order
to discover whether there is any localization mechanism that drives peer discovery,
selection process, or whether or not any cultural bias in�uences the P2P-TV overall
distribution characteristics. Each observed external peer is geographically located
using information provided by MaxMind GeoIP lite databases[3] which are coher-
ent in date to the traces used. Note that even if MaxMind GeoIPdatabase has
been controversial because its accuracy, for the case of residential IP addresses this
database remains accurate.

2.5.1 Peer Discovery by Channel

Fig. 2.10shows the geographical location of contacted peers during agiven event for
two di�erent ISPs. Note that the results depicted in the �gures correspond to the
tra�c reported for the event, that is all the tra�c from chann els has been aggregated.
Top plot refers to a trace collected in EU-CC1, while bottom plot refers to a trace
collected in EU-CC2. As it can be observed, the countries of peers interested in the
event are very di�erent. For instance lot of peers are found in EU-CC1, Germany
and U.K. in top plot, while bottom plot shows very few peers inEU-CC1 and U.K.
Regardless subdivision of channels, from a global point of view seems that users
from di�erent countries will choose di�erent channels.
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