
Figure 4.12: Early stage dynamics involving 7933 neurons. For each cell, electrical synapses
exist among nearest-neighbour neurons and the chemical ones are 75% of links among cells
belonging to a circle having radius 1/16. The whole network is initially at rest but, after a
while, a continuum external current I = 0.1 is applied to 319 of them randomly chosen. In
the second frame, neurons which receive the injected current become apparent. In the third
snapshot, a propagating phenomenon arises

where, with respect to (4.6), we write f(v, r) = f̂(v, r) + I, so that

f̂(v, r) = −v(v−a)(v−1)−r, g(v, r) = bv−cr, I = I(x, t) (an applied current).

In particular we will discuss the existence and uniqueness of solution of the correspond-

ing initial-boundary value problem up to any final TF > 0. We will also prove that the

solution stays bounded for all times.

4.3.1 Mathematical formulation

We assume that the region occupied by the neurons is a bounded open connected set

Ω ⊂ R
m, with m = 1, 2, or 3. Let u = (v, r, s)T be the vector collecting the three

unknowns, i.e., u(x, t) = (v(x, t), r(x, t), s(x, t))T . We are interested in solving (4.9)

from time t0 = 0 to some TF , so we think u as defined in Ω̄× [0, TF ] with values in R
3.

For any fixed t ∈ [0, TF ], u(t) will denote the function u(·, t) : Ω̄ → R
3.

It is convenient to introduce the function

h(v, s) := αH∞(v − vT )(1− s) ,
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Figure 4.13: Snapshots concerning the evolution of the solution represented in Figure 4.12. In
particular, the synchronous excitation phenomenon is shown. The evolution of this dynamics
is depicted in Figure 4.14
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Figure 4.14: Final stages of the solution exhibited in Figure 4.12-4.13. In contrast to what
happens in Figure 4.11 no new excitatory synchronous events appear. It is due to the strong
inhibition selected by imposing vIsyn = −0.9 to the inhibitory neurons, which energetically
discourages the propagation of the excitation
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and the operator K(v, s) defined as

[K(v, s)](x, t) := −gsyn
(

∫

y∈B(x)
w(x, y)s(y, t)(v(x, t) − vsyn(y)) dy

)

.

Thus, (4.9) can be written as

∂v

∂t
− d∗∆v = f̂(v, r) +K(v, s) + I

∂r

∂t
+ cr = bv ,

∂s

∂t
+ βs = h(v, s) ,

(4.10)

i.e., introducing the linear operator Au = (−d∗∆v, cr, βs)T and the nonlinear operator

F (u) = (f̂(v, r) +K(v, s), bv, h(v, s))T , and setting I = (I, 0, 0)T , we write the system

in vector form as
∂u

∂t
+Au = F (u) + I . (4.11)

The system has to be supplemented by an initial condition

u(0) = u0, i.e., u(x, 0) = u0(x) = (v0(x), r0(x), s0(x))
T . (4.12)

Furthermore, the presence of the diffusion operator −d∗∆ applied to the potential v

calls for a boundary condition for this variable. We assume that v is prescribed at

the boundary ∂Ω for all times (Dirichlet boundary conditions); applying a suitable

change of unknown, it is actually not restrictive to assume that v = 0 on ∂Ω × [0, TF ].

Obviously, other boundary conditions could be enforced instead, such as the periodicity

conditions already used in Ω = B in previous chapters.

Recalling the weak formulation of the heat equation submitted to homogeneous

Dirichlet boundary conditions, we introduce the Sobolev space H1
0 (Ω) = {v ∈ L2(Ω) :

∇v ∈ (L2(Ω))m (in the sense of distributions) and v = 0 on ∂Ω} equipped with the

norm ‖v‖H1
0 (Ω) = ‖∇v‖(L2(Ω))m , and we define the Hilbert space

V := H1
0 (Ω)× L2(Ω)× L2(Ω)

equipped with the product norm

‖u‖V :=
(

‖v‖2H1
0 (Ω) + ‖r‖2L2(Ω) + ‖s‖2L2(Ω)

)1/2
.
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We will also set

H := L2(Ω)× L2(Ω)× L2(Ω) ,

which we identify with its dual H ′ via the Riesz operator; consequently, the dual of V

is

V ′ = H−1(Ω)× L2(Ω)× L2(Ω) ,

where H−1(Ω) denotes the dual of H1
0 (Ω). It is well known that the operator −∆ is an

isomorphism between H1
0 (Ω) and H

−1(Ω); therefore,

A : V → V ′

is an isomorphism, too (since by assumption d∗ > 0, c > 0, β > 0). In particular, the

following coercivity inequality holds: setting γ := min(d∗, c, β) one has

〈Av, v〉 ≥ γ‖v‖2V for all v ∈ V , (4.13)

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω).

Concerning the nonlinear operator F , we have the following properties. The term

f̂(v, r) behaves like −v3−r for large |v|; thus, thanks to the embedding H1(Ω) ⊂ L6(Ω)

for m ≤ 6, we have

‖f̂(v, r)‖L2(Ω) ≤ C1‖v‖3H1
0 (Ω) + ‖r‖L2(Ω)

provided v ∈ H1(Ω) and r ∈ L2(Ω). On the other hand, for the term K(v, s) we observe

that the weights w(x, y) are uniformly bounded in Ω× Ω, so that a.e. in Ω one has

|[K(v, s)](x)| ≤ gsyn





∣

∣

∣

∣

∣

∫

y∈B(x)
w(x, y)s(y, t) dy

∣

∣

∣

∣

∣

|v(x)|+

+

∣

∣

∣

∣

∣

∫

y∈B(x)
w(x, y)s(y, t)vsyn(y) dy

∣

∣

∣

∣

∣





≤ C2‖s‖L2(Ω)

(

|v(x)| + ‖vsyn‖L2(Ω)

)

,

whence

‖K(v, s)‖L2(Ω) ≤ C3‖s‖L2(Ω)

(

‖v‖L2(Ω) + ‖vsyn‖L2(Ω)

)

,

provided v, vsyn and s belong to L2(Ω). Finally, we obviously have ‖h(v, s)‖L2(Ω) ≤
C4‖s‖L2(Ω) + C5 if s ∈ L2(Ω). Summarizing, the nonlinear term F (u) belongs to H

whenever u ∈ V .
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This proves that if (4.9) admits at time t a solution u(t) ∈ V , and if I(t) ∈ L2(Ω),

then ∂u
∂t (t) = −Au(t) + F (u(t)) + I(t) ∈ V ′. Furthermore, if we assume that u ∈

L2(0, TF ;V ) with its first component v ∈ L6(0, TF ;H
1
0 (Ω)), and if the external current

I satisfies I ∈ L2(0, TF ;L
2(Ω)), then Au ∈ L2(0, TF ;V

′) and F (u), I ∈ L2(0, TF ;H) ⊂
L2(0, TF ;V

′), hence, from equation (4.11) we deduce that ∂u
∂t ∈ L2(0, TF ;V

′). This

implies u ∈ C0([0, TF ];H), hence, the initial value u(0) is well-defined in H, and we are

let to assume the initial datum u0 ∈ H.

In conclusion, we consider the following

Mathematical formulation of model (4.9). Given u0 ∈ H, vsyn ∈ L2(Ω) and I ∈
L2(0, TF ;L

2(Ω)), we look for u ∈ L2(0, TF ;V )∩C0([0, TF ];H) with its first component

v ∈ L6(0, TF ;H
1
0 (Ω)) such that u(0) = u0 and

∂u

∂t
+Au = F (u) + I in L2(0, TF ;V

′) . (4.14)

4.3.2 Regularized problem

The mapping F is not continuous in the third component, due to the presence of the

Heaviside function H∞; indeed, the third equation in (4.10) is an instance of a differ-

ential equation with discontinuous righthand side (see [16] where ordinary differential

equations are treated; our situation is a bit more complex, due to the dependence of

all functions on the spatial variable x as well). On the other hand, the first component

of F is locally but not globally Lipschitz continuous, due to the presence of algebraic

nonlinearities. Therefore, we proceed by regularizing and approximating F , in order to

get a family of problems which admit existence and uniqueness of the solution; next,

we will discuss the limit behaviour of this family.

Given any constant M > 0, let χM : R → R be the cut-off function

χM(z) =











z if |z| ≤M,

M
z

|z| if |z| > M,

and let χM (ϕ) denote its composition χM ◦ ϕ with a real function ϕ. We modify

the right-hand side of the first equation in (4.10) by replacing f̂(v, r) by f̂M (v, r) :=

f̂(χM (v), r), and K(v, s) by KM (v, s) := K(χM (v), χM (s)).

On the other hand, given any constant L > 0, let HL : R → R denote the regularized
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Heaviside function, defined as

HL(z) =























0 if z ≤ 0,

Lz if 0 < z < 1/L,

1 if z ≥ 1/L,

which is Lipschitz-continuous with Lipschitz constant L and pointwise converges to the

Heaviside function H∞ as L→ ∞. We modify the right-hand side of the third equation

in (4.10) by replacing h(v, s) by hM,L(v, s) := αHL(v − vT )(1 − χM (s)).

In conclusion, we introduce the nonlinear operator

FM,L(u) := (f̂M (v, r) +KM (v, s), bv, hM,L(v, s))
T

and we easily note that

‖FM,L(u)‖H ≤ C1‖v‖L2(Ω) + C2‖r‖L2(Ω) + C3‖s‖L2(Ω) + C4

for suitable constants C1, . . . , C4 > 0 (independent of L but with C1 and C4 monoton-

ically depending upon M); this proves that FM,L : H → H. Furthermore, using the

Lipschitz continuity of the functions χM and HL, one can easily prove that FM,L is

Lipschitz continuous, precisely one has

‖FM,L(u1)− FM,L(u2)‖H ≤
(

C5M
2 + C6gsynM + b+ αL(M − 1)

)

‖v1 − v2‖L2(Ω)

+‖r1 − r2‖L2(Ω)

+
(

gsynM + gsyn‖vsyn‖L2(Ω)) + α
)

‖s1 − s2‖L2(Ω) ,

for constants C5, C6 > 0 independent of M and L. For further reference, we will denote

by CL,M the Lipschitz constant of F , i.e., it holds

‖FM,L(u1)− FM,L(u2)‖H ≤ CM,L‖u1 − u2‖H for all u1, u2 ∈ H . (4.15)

Let us define u0,M = (χM (v0), r, χM (s0))
T . Then, the well-posedness of the regu-

larized version of Problem (4.14) is assured by the following theorem.

Theorem 4.1. Given u0 ∈ H, vsyn ∈ L2(Ω) and I ∈ L2(0, TF ;L
2(Ω)), there exists one
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and only one uM,L ∈ L2(0, TF ;V ) ∩ C0([0, TF ];H) such that uM,L(0) = u0,M and

∂uM,L

∂t
+AuM,L = FM,L(uM,L) + I in L2(0, TF ;V

′) . (4.16)

Proof. We just give few hints for the proof. Consider the sequence ϕp, p = 1, 2, . . . , of

the eigenfunctions of the Laplacian operator with Dirichlet boundary conditions, which

form a basis in L2(Ω) and in H1
0 (Ω). Set wp = (ϕp, ϕp, ϕp) ∈ H. For any fixed P > 0,

let uPM,L(x, t) =
∑P

p=1 ûh(t)ϕh(x) be the solution of the Galerkin problem

〈
∂uPM,L

∂t
+AuPM,L, v〉 = 〈FM,L(u

P
M,L) + I, v〉, for all v ∈ V P = span {ϕ1, . . . , ϕP } ;

let the initial condition uPM,L(·, 0) be the L2-orthogonal projection of u0,M upon V P . The

stated problem corresponds to a system of ordinary differential equations, which admit

existence and uniqueness since A is linear and FM,L is globally Lipschitz-continuous. In

order to pass to the limit as P → ∞, we observe that by difference two such solutions

uPM,L and uQM,L satisfy

1

2

d

dt
‖uPM,L − uQM,L‖2H + γ‖uPM,L − uQM,L‖2V ≤ CM,L‖uPM,L − uQM,L‖2H ,

where we have used (4.13) and (4.15); hence, by Gronwall’s lemma they form a Cauchy

sequence in L2(0, Tf ;V )∩C0([0, TF ],H). This guarantees the existence of a limit func-

tion, which is easily identified as a solution of (4.16). Uniqueness of this solution follows

from the already invoked coercivity of A and Lipschitz-continuity of FM,L.

4.3.3 Limit with respect to the regularization parameter M

Hereafter, we investigate the effect of letting the regularization parameter M tend to

∞. We show that under suitable assumptions on the initial data, the solution uM,L of

Problem (4.16) is independent of M provided M is chosen large enough.

From now on, let us assume that the initial data and the applied currrent are

bounded functions, precisely that u0 ∈ (L∞(Ω))3 and I ∈ L∞(Ω× (0, TF )). Let us first

consider the third equation in (4.16), which reads

∂sM,L

∂t
= αHL(vM,L − vT )(1− χM (sM,L))− βsM,L .

Note that if sM,L ≤ 0, then the right-hand side is ≥ 0, whence sM,L is non-decreasing.
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On the other hand, if M ≥ 1 and sM,L ≥M , then

αHL(vM,L − vT )(1 − χM(sM,L))− βsM,L ≤ αHL(vM,L − vT )(1 −M)− βM < 0 ,

whence sM,L is strictly decreasing. It follows that sM,L is bounded for all t ≥ 0 uniformly

in M and L. It follows that for M large enough, sM,L satisfies

∂sM,L

∂t
= αHL(vM,L − vT )(1− sM,L)− βsM,L ,

the only possible dependence onM being given by the argiment vM,L in the regularized

Heaviside function.

In order to assess the independence on M of vM,L and rM,L for M large enough, we

notice that it is enough to consider the reduced equations

∂vM,L

∂t
= f̂(χM (vM,L), rM,L) + I −K(χM (vM,L), sM,L) ,

∂rM,L

∂t
= g(vM,L, rM,L) ;

(4.17)

indeed, the addition of the diffusive term d∗∆vM,L to the first equation does not increase

the maximum positive value of vM,L nor decreases its minimum negative value, thanks

to the Maximum Principle. (This argument can be made rigorous e.g. by considering a

splitting method to advance in time the equations, in which one solves alternately the

reduced equations and the heat equation in the first variable.)

We preliminary observe that f̂(v, r) behaves like −v3 − r for |v| large enough. On

the other hand, |K(v, sM,L)| ≤ C7|v|+C8 for any v, since we already noticed that sM,L

is bounded uniformly with respect to M and L. Therefore, the function ϕ(v, r) :=

f̂(v, r) + I −K(v, sM,L) still behaves like −v3 − r for |v| large enough.

Consider the vector field Φ(v, r) = (ϕ(v, r), g(v, r)) in R
2. Introducing the domain

D = {(v, r) ∈ R
2 : |v| ≤ V, |r| ≤ R} and carefully inspecting the behaviour of Φ on its

boundary ∂D, it is easily seen that whenever V and R are large enough, with R < V 3,

then Φ invariably points towards the interior of D (see Figure 4.15; see also Example

2 at page 209 in [46] for a similar argument). This means that the dynamical system

(4.17) has a positive invariant trapping region D, so that in particular |vM,L| ≤ M if

M is large enough.

We conclude that for M large enough the solutions uM,L given in Theorem 4.1 are

indeed independent of M , so that we can write uM,L =: uL. They satisfy the perturbed
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Figure 4.15: The phase portrait in (v, r) relative to equations (4.9). The rows describe the
presence of a sufficiently large invariant rectangle

systems
∂vL
∂t

− d∗∆vL = f̂(vL, rL) +K(vL, sL) + I

∂rL
∂t

+ crL = bvL ,

∂sL
∂t

+ βsL = hL(vL, sL) ,

(4.18)

where hL(v, s) := αHL(v − vT )(1 − s). For further reference, we write these equations

in compact form as
∂uL
∂t

+AuL = FL(uL) + I ,

where FL(u) = (f̂(v, r) +K(v, s), bv, hL(v, s))
T .

Concerning uniqueness, it is immediate that if u1L and u2L are two bounded solutions

of these equations with the same initial data, they also satisfy (4.16) forM large enough,

hence, they coincide.

We summarize the partial results obtained so far in the following theorem.

Theorem 4.2. Given u0 ∈ (L∞(Ω))3, vsyn ∈ L2(Ω) and I ∈ L∞(Ω × (0, TF )), there

exists one and only one uL ∈ L2(0, TF ;V ) ∩ C0([0, TF ];H) ∩ (L∞(Ω × (0, TF )))
3 such

that uL(0) = u0 and

∂uL
∂t

+AuL = FL(uL) + I in L2(0, TF ;V
′) . (4.19)
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Remark 3. It is easily seen that the norms of uL in the spaces L2(0, TF ;V ), C0([0, TF ];H)

and (L∞(Ω× (0, TF )))
3 can be bounded independently of L. This property allows us to

extract from the family {uL} a sequence, say uLn , that for n → ∞ converges in some

weak sense to a limit function u in these spaces.

Proving that such u solves equations (4.9) is a mathematically delicate matter,

which hinges upon additional regularity results on the solutions uL, uniform in L; this

detailed study goes beyond the purpose of this thesis. Let us just remark that the

third equation is satisfied in the sense of differential inclusions, namely introducing the

set-valued function h∗ defined in Ω× (0, TF ) such that

h∗(x, t) =























{0} if v(x, t) < vT ,

[0, 1] if v(x, t) = vT ,

{1} if v(x, t) > vT ,

one has
∂s

∂t
+ βs ∈ α(1− s)h∗ a.e. in Ω× (0, TF ) .
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Chapter 5
Modelling multispecies networks

The set up of computer simulations describing complex networks with a huge number of

nodes is a formidable challenge. The intrinsic difficulties of such a task may be handled

to some extent by identifying one or more hierarchical structures within the networks;

this allows one to describe and simulate several scales by exploiting different models.

Within a multiscale framework, the co-existence of discrete and continuous models is a

natural option, leading to significant savings. Higher-level nodes, or interactions, may

be affordable given an individual description (e.g., by a system of coupled ordinary

differential equations), whenever their number is small to moderate. On the contrary,

this approach would be computationally prohibitive for the description of lower-level

nodes or interactions, if their number is exceedingly large. In this case, a possible

alternative may consist in modelling the huge cell population by a continuum, confined

in some spatial region, and describing its behaviour by means of a limited number of

variables, e.g., submitted to satisfy partial differential equations. One recognizes here

a process underlying the mathematical description of many physical phenomena, e.g.,

in Fluid Dynamics.

Our multiscale approach differs from conventional ones in literature, where multi-

scale phenomena, in either time or space are involved in a precise manner. Regarding

time, the need of a multiscale modelling is due to different time scales which are in-

volved in many phenomena at the cellular and synaptic level. In particular, the wide

interest about timescales in the neuroscientific community is due to the strict relation

with the synaptic plasticity phenomenon, as presented in [11]-[23]. Regarding space,

the main issue in describing different spatial areas concerns the definition of boundary

conditions where the areas modelled by the microscale and the macroscale submodels

interface to each other, as described in [28].
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Our notion of multiscale becomes suitable to model neuronal networks involving two

or more populations characterized by a high density difference; we call them multispecies

networks. In order to present how to formalize such networks, we start with describing

a concrete example: the Golgi-Granular cell loop network in the Cerebellum.

5.1 Golgi-Granular cell network

The Cerebellum is one of the most fascinating areas in the brain. Its description and

modelling begins at the end of sixties with two outstanding researches by Marr [39]

and Albus [2]. Interests on Cerebellum is due to its peculiar structure which compre-

hends series of highly regular, repeating units, each of which contains the same basic

microcircuit. The similarity in repeating units, from architectural and physiological

perspectives, implies that different regions perform similar computational operations

on different inputs. These inputs originate from different parts of the brain and spinal

cord projecting into the Cerebellum. In turn, the Cerebellum projects to different motor

systems.

Few cellular populations are collected in this geometrically regular framework and

they are located over two layers called molecular and granular. Despite the regularity

of the Cerebellum facilitates his description, it remains a complex network which shows

a high degree of heterogeneity among cells, and whose potentialities and functionalities

are not yet fully understood.

In order to tackle the presentation and application of the multispecies modelling to

a realistic network, let us focus on the Golgi-Granular cell network in the Cerebellum.

We focus on this network given that it involves two populations interacting with each

other with a high density difference. Notably, it is a loop network, as described in

Figure 5.1, where both Granular cells (GrCs) and Golgi cells (GoCs) receive external

excitatory inputs by the Mossy fibers (MFs) from other brain areas and spinal cords.

Since MFs excite both cell populations, two pathways work. The first one consists in

MFs exciting GrCs. These, in turn, excite GoCs through the parallel fibers (PFs), and

GoCs inhibit GrCs. In a compact writing: MF-GrCs-PFs-GoCs-GrCs. The second

is constituted by the excitatory input from MFs to GoCs which terminates inhibiting

GrCs. This pathway is MF-GoCs-GrCs.

For our interests, the key point is that the number of GoCs highly differs from that

of GrCs: GoCs are very few compared to the GrC quantity. Thus, by virtue of this high

density difference, the exploitation of combined discrete and continuum models becomes

reasonable. The variables described by the discrete model are relative to the single GoC
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Figure 5.1: Loop involving GrCs and GoCs. External current to the system originates from
MFs which synapse GrCs, as depicted, and GoCs. Furthermore, GrCs excite GoCs through
PFs and, in turn, GoCs inhibit GrCs. This figure is a zoom of Figure 42-6 in [33]

i, i.e., (vi, ri, si), while the corresponding quantities in the continuum configuration, say,

(ω, ρ, σ), are continuous functions in space (and time). Thus, ω = ω(ξ, t) as well as σ

and ρ.

Since each single cell in the network is modelled by the FitzHugh-Nagumo equations,

it follows that the specific properties of the Golgi cells (GoCs) and of the Granular cells

(GrCs) are not taken into account. In other words, they are described as excitable type

II cells having features described in Chapter 1. Aware that this is a sever simplification,

we refer to forthcoming works for single cell descriptions more adherent to the reality.

Inspired by assumptions in [45] and for modelling purposes, we consider the two

populations belonging to two-dimensional square parallel layers, as described in Figure

5.3. The bottom one is constituted by GrC continuum and the upper one collects GoCs.

A third layer, above them, collects PFs. In reality, GoC somata and GrCs are located

in the just mentioned granular layer while the site where GoC dendrites receive input

from the GrC axons (PFs) in the molecular one.

Let us now define the topology in the GoC-GrC network. Each GoC arborized axon

reaches the granular layer throughout a cylindrical volume (whose projection on the

two-dimensional granular layer is a circle), see Figure 5.2, (right). It inhibits all GrCs

laying inside the circle. On the contrary, GrC axons, i.e., PFs, overcome the molecular

layer and bifurcate. We suppose that PFs run parallel to the x-axis. One PF synapses

onto all GoC dendrites along its path. Assuming that GoC dendrites branch out in all

directions, GrC in ξ̄ influences all GoCs in a small rectangle depicted in Figure 5.2 (left).
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Figure 5.2: Connection topology between GrCs and GoGs from a presynaptic neuron perspec-
tive. Left, GrC excites through its PF all GoCs lying in the rectangle having a reasonably small
height and the PF projection as the symmetry axis. Right, GoC inhibits all GrCs in the gran-
ular layer standing on a circle having a reasonable small fixed radius and the GoC projection
as the center

Figure 5.3: Connection topology between GrCs and GoGs from a postsynaptic neuron perspec-
tive. Left, the i GoC is excited through PFs by all GrCs in the B(i) rectangle. Right, GrC in
ξ̄ is inhibited by all GoCs in the upper face of an ideal cylinder having a fixed radius
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Notably, GoGs receive chemical excitatory synapses by GrCs. Furthermore, GoCs are

linked among each other by gap junctions.

As specified before, thanks to the high density difference between GoCs and GrCs,

the latter are modelled as a continuum. The fact that GrCs constitute a continuum

introduces a novelty in the coupling term for the discrete model. In order to build up

the model, let us recall that all equations we used in the present work describe the

postsynaptic neuron dynamics. Thus, the suitable point of view is the opposite of the

one applied in Figure 5.2, and it is depicted in Figure 5.3. The whole external input

term for each i-th GoC is determined as follows:

IGoC,i = dN
∑

j∈Q(i)

(vj − vi)− gsyn,i

(

∫

B(i)
π(i, y)σ(y) dy

)

(vi − ωE
syn) ,

where the first term follows from Approach I in Chapter 2, and the integral takes into

account the continuum nature of the σ variable. Another ingredient in the integral

term is π(i, y) which describes the connection weight, as explained in Chapter 3. Let

us recall that, in the continuum model (3.5), the reversal potential depends upon the

presynaptic neurons and, thus, it must be included in the integral term. However,

since only GrCs influences GoCs by means of chemical synapses, we suppose ωE
syn to

be constant and we bring it out of the integral. The set B(i) determines the areas

containing those GrCs which synapse onto the i-th Golgi cell. Taking into account that

GrCs excite GoCs through the Parallel Fibers, as specified above, we consider B(i) as a
thin rectangle whose horizontal symmetry axis is determined by the i-th cell projection.

The rectangle area is chosen by fixing the rectangle height which is reasonably small.

The discrete model describing GoC dynamics has the following form:

dvi
dt

= f(vi, ri) + d
∑

j∈Q(i)

(vj − vi)− gsyn,i

(

∫

B(i)
π(i, y)σ(y) dy

)

(vi − ωE
syn) + IGoC

mossy,i ,

dri
dt

= g(vi, ri) ,

dsi
dt

= αi(1− si)H∞(vi − vT )− βisi ,

(5.1)

where an excitatory input from Mossy Fibers, Imossy,i, is considered.

Simultaneously, the model describing the GrC continuum has to be introduced.

As known from GrC literature, synapses among GrCs do not exist. However, studies

in the last years claim the presence of ephaptic coupling among, in general, cortical

neurons. Some references are [3, 32]; notably, the second is nowadays a fundamental
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reference about this topic. The ephaptic transmission is mediated by electrical coupling

between cells without specialized synapses, i.e., without the presence of a gap-junction.

This kind of coupling is due to the extracellular electrical field which feeds back onto

the electric potential across the neuronal membrane. It is widespread in a number of

pathological situations, and so far only two clear demonstrations in healthy tissues have

been highlighted: the case of the Mauthner cell and Purkinje cell, explained in [31, 32].

Despite ephaptic effects on GrCs are not yet demonstrated, we conjecture an extremely

weak ephaptic transmission between GrCs due to their axonal close apposition in the

cerebellar granular layer. Furthermore, concerning the coupling term between the two

populations, it is well known that GrCs receive inhibitory chemical synapses from GoCs.

Thus, the coupling term is

IGrCs(ξ, t) = δ∆Ω − γsyn

(

∑

j∈P(ξ)

p(ξ, j)sj

)

(ω(ξ) − vIsyn) , (5.2)

where P(ξ) collects the GoCs which influence the GrC continuum. Since a GoC axon

reaches a circular area of granular layer, centered in itself, we impose:

P(ξ) := {i ∈ N : ‖xi − ξ‖ ≤ ri,ξ} . (5.3)

The ri,ξ value is chosen as reasonably small. Let us stress that, as above, the reversal

potential of presynaptic GoCs is supposed to be constant and then it is not involved

in the summation. By putting together all ingredients, the continuum model takes the

following form:

∂ω

∂t
(ξ, t) = f(ω(ξ, t), ρ(ξ, t)) + δ∆ω − γsyn

(

∑

j∈P(ξ)

p(ξ, j)sj

)

(ω(ξ)− vIsyn) + IGrCs
mossy(ξ) ,

∂ρ

∂t
(ξ, t) = g(ω(ξ, t), ρ(ξ, t)) ,

∂σ

∂t
(ξ, t) = α(1 − s(ξ, t))H∞(ω(ξ, t)− ωT )− βσ(ξ, t) .

(5.4)

As in the discrete model, an excitatory input fromMossy Fibers, Imossy(ξ), is considered.

5.1.1 Numerical results

Numerical simulations have been performed with the aim of presenting how the joint

models (5.1)-(5.4) work. GoCs and GrCs are collected over two squared domain whose

FEM decompositions involve two different refinements. Exploiting the triangular mesh
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generator BBTR, described in [6], this corresponds to set RefiningOptions parameter

to 0.01 for the GoC sparse grid, and to 0.0001 for the GrC fine one. This translates

into considering 94 GoCs and 7933 nodes for GrCs in the domain [0, 1]2. Inspired by

magnitude order values in [45, 50], we set

gsyn,i = 1, d = 0.05 , (5.5)

for the Golgi cell discrete model, and

γsyn = 0.05, δ = 0.005, IGrC
mossy = 0.1 , (5.6)

for the Granular cell continuous one. In particular, IGrC
mossy is applied to 10% of GrC

nodes. The threshold vT and ωT for GoCs and GrCs, respectively, is equals to 0.5.

Since cells are described by the FitzHugh-Nagumo model, it is important to recall that

the threshold is not involved in the single neuron dynamics but it concerns presynap-

tic neuron at the synapse level. Indeed, when the presynaptic neuron overcomes the

threshold, neurotransmitter release starts and influences the postsynpatic one. Let us

stress that in this first simulation, only GrCs receive an excitatory input through MFs.

In particular, the current is supposed to be continuous for t > 0. For time passing, a

portrait of GoC-GrC dynamics has been obtained by exploiting (5.1)–(5.4), as shown

in Figure 5.4. GoC potentials are described with bars while GrC dynamics is shown

with a continuous representation. In order to make the dynamics clear, GoC potential

are multiplied by a factor 3. Therefore, the reason why GoC potentials reach larger

value than GrCs is simply graphical. Excitation triggered by MFs to GrCs induces an

increase in GoC potentials. A subsequent inhibition in GrCs is then involved and this

dynamics is reproduced with a given period. It is interesting noting that synchronous

phenomena arise.

As well known, MFs input GoCs, as well as GrCs. To generate dynamics more close

to reality, we consider that 10% of GoCs receive IGoC
mossy = 0.1. The current is supposed

to be continuous for t > 0.5. In the meanwhile, MF current is maintained active to 10%

of GrCs from t > 0. The fact that continuous currents start to be injected at different

time translates into an out-of-phase GoC and GrC single cell dynamics. It is worth

noting that the injection of the external current to GoCs too converts the synchronous

dynamics depicted in Figure 5.4 in an interesting dynamics where excitatory waves

travel in the whole domain involving both GoCs and GrCs.

As mentioned before, we consider that GrCs influence each other via ephaptic cou-

pling. It means that extracellular fields feed back onto the electric potential across
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Figure 5.4: GrCs are represented with the coloured continuous graph; GoCs are described with
bars showing potentials multiplied by a factor 3 for graphical reasons. A constant currents
IGrCs
Mossy = 0.1 is injected to 10% of GrCs for t > 0. Synchronous phenomena within each
population arise. For t > 6.9, GoC bars return to zero and snapshots for t ∈ [0.1, 6.9] are
reproduced.
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Figure 5.5: GrCs are represented with the coloured continuous graph; GoCs are described
with bars showing potentials multiplied by a factor 3 for graphical reasons. A constant current
IGrCs
Mossy = IGoCs

Mossy = 0.1 is injected to 10% of GrCs and 10% of GoCs for t > 0 and t > 0.5,
respectively. By adding excitatory external input to GoCs, a travelling waves phenomena arise
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the neuronal membranes, independent of synapses. Notably, we model this coupling

as a diffusive phenomenon described in the first term of 5.2, where δ is the diffusion

coefficient. Dynamics in Figures 5.4-5.5 are obtained by setting δ = 0.005. In order

to make clear the effect due to ephaptic coupling, let us vary the coupling strength δ.

By exploiting the set up used to obtained the dynamics in Figure 5.4, in Figure 5.6

we show the evolution of membrane potential activities by considering δ = 0.00005 in

(a), δ = 0.005 in (b) and δ = 0.05 in (c). To allow the comparison with the dynamics

in Figure 5.4, snapshots are taken at the same time. What we can observe is that the

dynamics arisen by setting δ = 0.0005 or δ = 0.00005 are similar. In particular, as time

passes, the excitation obtained by δ = 0.00005 is more noticeable. Furthermore, by in-

creasing the diffusion coefficient, in cases (b) and (c), we recognise a GrC lower activity.

Let us stress that such excitatory reduction is in full agreement with the diffusive effect

that leads to an excitation spread. Similarly, by comparing Figure 5.5 and Figure 5.7,

we appreciate how much the diffusion coefficient affects dynamics when GoCs, as well

as GrCs, receive MF inputs.

As δ varying, the 5.5 corresponding dynamics are collected in Figure 5.7. As in

the previous comparison, we set δ = 0.00005 in (a), δ = 0.005 in (b) and δ = 0.05

in (c). As observed before referring to the case of no MF inputs to GoCs, dynamics

in Figures 5.5 and 5.7, case (a), qualitatively describe a similar phenomenon, which is

characterized by travelling waves. Different behaviours arise while δ increases. Indeed,

the GrC activity becomes less apparent. Nonetheless, an excitation to GoCs is provided

from MFs. Thanks to this contribution, a more evident excitation in the GoC network,

with respect to case (c) in 5.6, is displayed. In this configuration, the intervention of

GoCs inhibition is able to elicit a rebound excitation of GrCs highlighted in Figure 5.7,

case (c).

5.2 Center-surround and time-windowing

Over the recent years several studies on the GoCs-GrCs network have been focused on

the analysis of how GrCs respond to both inputs they receive: the MF excitatory and

the GoC inhibitory ones. In other words, the GoC inhibitory contribution modulates the

excitation in GrCs triggered by MFs. It emerges from [14] that GrCs have an excitatory

activity limited in space by lateral inhibition (center-surround) and bounded in time

by feed-forward inhibition (time-windowing), both of them caused by GoCs.

This section is devoted to present center-surround and time-windowing noticeable

phenomena reproduced by models (5.1)-(5.4). Furthermore, significant comparisons
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(a)

(b)

(c)

Figure 5.6: The set up used to obtain dynamics in Figure 5.4 is here exploited. Notably,
diffusion coefficient δ concerning the ephaptic coupling among GrCs is set to δ = 0.00005,
δ = 0.005, δ = 0.05 in cases (a), (b), (c), respectively. A gradual reduction in GrC excitation
becomes apparent as δ increases
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(a)

(b)

(c)

Figure 5.7: The set up used to obtain dynamics in Figure 5.5 is here exploited. Notably,
diffusion coefficient δ concerning the ephaptic coupling among GrCs are set to δ = 0.00005,
δ = 0.005, δ = 0.05 in cases (a), (b), (c), respectively. Reductions in GrC excitation become
apparent as δ increases
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with results in [50] are presented. The aim of such comparisons is to stress that our

models produce qualitatively similar dynamics to those shown in reference articles in

the field.

In order to better reflecting the reality, we change the connection topology. Indeed,

despite [2] is an eminent reference, recent studies have highlighted that GoC axons lying

on a thin rectangle oriented along the sagittal axis, instead of on a circle. Notably, as

specified in [7], the ratio between the rectangle’s edges is 3.5.

Let us first focus on the center-surround phenomenon. To do this, we consider MFs

exciting GrCs in a circle, having radius 1/10, located in the center of the domain, and

the 5% of others in the rest of the layer. No excitatory inputs from MFs reach GoCs.

On the contrary, GoCs are excited by GrCs through the PFs. In turn, each active GoC

inhibits GrCs laying on a thin rectangle. Notably, we set the edge on the x axis to 1/4

while the other one has length 1.

In Figure 5.8 both GoC and GrC populations are represented. In Figure 5.9, the

same dynamics is presented by zooming on the center of the domain. Snapshot times

are the same as in Figure 5.8. In order to qualitatively compare our result with those

in [14], let us show in Figure 5.10 two significant snapshots. The left one shows our

frame at t = 0.6. The right one is one snapshot in Figure 5, in [50]. Let us recall that

our models (5.1)-(5.4) have been subjected to severe hypotheses which do not allow

us to take into account the wide variety of phenomenon in the single cell and in the

whole network. Furthermore, the GrC layer has been modelled by exploiting a model

reformulated as a continuum. Nonetheless, the remarkable result obtained is that our

models combined together are able to reproduce the benchmark dynamics on the right,

at least in the significant instant in which the center-surround phenomenon arises.

Concurrently, the delayed activation of GoCs allows the response of GrCs to the

stimuli to survive till the GoCs inhibition arise. This configures a time window where

GrCs are allowed to transfer their activity to the subsequent network layers. The

intervention of GoCs inhibition closes this window resetting the GrCs activity and

making them ready to reliably transmit a new stimulus.

As stressed in Chapter 1, the FitzHugh-Nagumo model describes nondimensional

variables. This means that time and space scales (as well as the dependent variable

values) do not reflect any biophysical-based value. In order to quantify the advantages in

terms of computational costs by exploiting our model compared with others in literature,

we have to evaluate our integration time in terms of a realistic time scale. We perform

this by evaluating the time delay in signal transmission between two cells which belong

to the Golgi and Granular populations. By analyzing simulation results, we are able
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Figure 5.8: Snapshots describing center surround phenomenon in the whole domain. GrCs
centered in a circle of radius 1/10 receive constant external current from MFs. GoCs, described
by blue bars, receive excitation from GrCs. Each GoC inhibits, in turn, all GrCs in a small
rectangle having itself as the center, the smaller edge is set to 1/4 while the bigger one has
length as the whole domain. Lateral inhibition by GoCs limited in space GrC excitation. An
external current to GrCs in the circle, located in the center of the domain, and to the 5% of
others is injected for t > 0, and it continues until the simulation ends
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