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Figure 2.3: Top: expectation of a discrete-beta distribution with n = 10, plotted for (µ, φ) ∈
(0, 1) × (0, 20]. Bottom: variance of a discrete-beta distribution with n = 10, plotted for
(µ, φ) ∈ (0, 1)× (0, 20]. Two different views of the same plot are shown.
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2.2 Symmetric property

Using the relation

Ix(a, b) = 1− I1−x(b, a), (2.10)

we can show that

P (Y = k) = I k+1
n+1

(a, b)− I k
n+1

(a, b)

= 1− I1− k+1
n+1

(b, a)−
[
1− I1− k

n+1
(b, a)

]
= In−k+1

n+1
(b, a)− In−k

n+1
(b, a) (2.11)

where a = µφ and b = (1 − µ)φ. Eq. (2.11) is the probability that a discrete-beta

distribution with parameters (1 − µ, φ) assumes the value n − k. Thus, if µ = 1
2 , the

pmf is symmetric with respect x = n
2 and, if n is even we have a single maximum in

x = n
2 , if n is odd, we have two equal maxima in x = bn2 c and x = bn2 c+ 1.

2.3 Identifiability of the model

We say that a model is identifiable if it is theoretically possible to learn the true value

of the model’s underlying parameter after obtaining an infinite number of observations

from it. Mathematically, a parameter θ for a family of distributions {f(x|θ) : θ ∈ Θ}
is identifiable if distinct values of θ correspond to distinct probability density functions

or probability mass functions [13]. Identifiability is a property of the model, not of an

estimator or estimation procedure. If the model is not identifiable, there is difficulty in

doing inference. In the following, we prove that discrete-beta family is identifiable.

Let n = 2. Suppose that there exist (µ1, φ1) 6= (µ2, φ2) such that

P (Y1 = 0) = P (Y2 = 0);

P (Y1 = 1) = P (Y2 = 1);

P (Y1 = 2) = P (Y2 = 2); (2.12)

where Y1 ∼ Dbeta(µ1, φ1) and Y2 ∼ Dbeta(µ2, φ2). For the sake for clarity, let

a1 = µ1φ1; b1 = (1− µ1)φ1; a2 = µ2φ2; b2 = (1− µ2)φ2. (2.13)
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From eq. (2.12) we obtain that

I 1
3
(a1, b1) = I 1

3
(a2, b2); (2.14)

I 2
3
(a1, b1)− I 1

3
(a1, b1) = I 2

3
(a2, b2)− I 1

3
(a2, b2); (2.15)

1− I 2
3
(a1, b1) = 1− I 2

3
(a2, b2) (2.16)

whence we have

I 1
3
(a1, b1) = I 1

3
(a2, b2) and I 2

3
(a1, b1) = I 2

3
(a2, b2). (2.17)

Eq. (2.17) implies that the latent variables have at least 3 intersections: at least one

between
(

0, 13

)
, at least one between

(
1
3 ,

2
3

)
and at least one between

(
2
3 , 1
)
. However,

it is not possible that two different beta distributions have more than two intersection

between (0, 1). Thus, we have that the distributions coincide and

a1 = a2 and b1 = b2, (2.18)

which implies, from eq. (2.2), that

µ1 = µ2 and φ1 = φ2, (2.19)

and discrete-beta model is identifiable. The result can be easily extended to n > 2

repeating the same argumentation on

I 1
n+1

(a1, b1) = I 1
n+1

(a2, b2) and I n
n+1

(a1, b1) = I n
n+1

(a2, b2). (2.20)

Indeed, when n = 2, expected and observed relative frequencies coincide and we have

a saturated model, since we have two parameters plus a constrain on the sum of the

probabilities and just three relationships.

2.4 Comparison with binomial distribution and beta-binomial

distribution

In this section, we compare our discrete-beta distribution with other two discrete distri-

butions, the binomial and the beta-binomial defined on the same support [0, 1, . . . , n].
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Let X be a random variable that follows a binomial distribution with parameters n and

p. Its probability mass function (pmf) is defined as

P (X = k) =

(
n

k

)
pk (1− p)n−k , k = 0, · · · , n; (2.21)

where p ∈ [0, 1] is called the probability of success. Let Y be a random variable with a

beta-binomial density with parameters n, a and b, that is

P (Y = k) =

(
n

k

)
B (a+ x, b+ n− x)

B (a, b)
, k = 0, · · · , n; (2.22)

where B(p, q) is the beta function (2.5), and a and b are two positive parameters. Thus

we have that

E[X] = np, (2.23)

Var[X] = np (1− p) , (2.24)

E[Y ] = n
a

a+ b
, (2.25)

Var[Y ] = n
ab

(a+ b)2
a+ b+ n

a+ b+ 1
. (2.26)

It is known that, if X and Y have the same expected value, i.e. p = a
a+b , the variance

of Y is greater than the variance of X for all values of a and b. Substituting p = a
a+b in

eq. (2.26), we have

Var[Y ] = np (1− p) a+ b+ n

a+ b+ 1
= Var[X]

a+ b+ n

a+ b+ 1
, (2.27)

and with n > 1 (in other words we exclude the Bernoulli case) the ratio in (2.27) is

always greater than one. Due to this reason, the beta-binomial model is a popular and

analytically tractable alternative to the binomial that captures over-dispersion with

respect to the binomial model.

Let Z to be a random variable with discrete-beta density (2.3). Let E[Z] = µ
′

= np.

We can write Var[Z] (2.9) in the following way

Var[Z] = (2n+ 1)
n∑
i=1

Ii − 2
n∑
i=1

iIi −

 n∑
i=1

Ii

2
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=
(
n− µ′

)(
n+ µ

′
+ 1
)
− 2

n∑
i=1

iIi, (2.28)

where Ii = I i
n+1

(
µφ, (1− µ)φ

)
and (µ, φ) is a couple of parameters which satisfy E[Z] =

µ
′ . We have the minimum variance when the pmf is, in the limit case, concentrated

in a single point of the set [0, 1, . . . , n] and the point is equal to µ′ (obviously it is a

degenerated pmf). It is obtained by discretizing, for example, a beta distribution with

µ = µ
′

n+1 + 1
2

1
n+1 and φ → +∞ (the limit case where the variance of the beta latent

variable tends to zero). In this case, we have

2
n∑
i=1

iIi → 2
n∑

i=µ′+1

i · 1 = 2

 n∑
i=1

i−
n∑

i=µ′

i


= 2

(n) (n+ 1)

2
−

(
µ
′
)(

µ
′
+ 1
)

2


= n2 + n− µ′

2
− µ′ (2.29)

and eq. (2.28) tends to zero.

On the other hand, U-shapes are admitted by discrete-beta distribution. For a fixed

µ
′ , every (µ, φ), such that E[Z] = µ

′ and φ < min
(

1
µ ,

1
1−µ

)
1, generates a U-shape

distribution (it follows from the properties of the beta latent distribution [41]). Thus,

it can be over-dispersed. Since the variance is a continuous function of µ and φ, and

E[Z] = µ
′ is also a continuous curve2, we have that discrete-beta distribution can be

under-dispersed, over-dispersed or it can have the same variance of a binomial with its

same mean value.

Thus, if we set E[Z] = µ
′ and Var[Z] = σ2

′, where µ′ and σ2′ are admissible values,

1The existence of such points can be proved graphically intersecting the surface plotted in Figure
2.3 with the plane z = µ

′
in the domain

D(µ, φ) =

φ < 1
1−µ , if 0 < µ ≤ 1

2

φ < 1
µ
, if 1

2
< µ < 1

2This curve is the intersection between the surface plotted in Figure 2.3 and the plane z = µ
′
.
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in order to find µ and φ we have to solve the following system
n−

∑n
i=1 I i

n+1

(
µφ, (1− µ)φ

)
= µ

′(
n− µ′

)(
n+ µ

′
+ 1
)
− 2

∑n
i=1 iI i

n+1

(
µφ, (1− µ)φ

)
= σ2

′
.

(2.30)

This is a non-linear system and we have not found a closed form solution. One way to

solve it is using algorithms such as the Broyden Secant method, where the matrix of

derivatives is updated after each major iteration using the Broyden rank 1 update, or

full Newton method, where the Jacobian matrix of derivatives is recalculated at each

iteration [21]. It is also possible to solve the minimization problem linked to this system

min
µ,φ

[(
E[Z]− µ′

)2
+
(
Var[Z]− σ2′

)2]
, (2.31)

with, for example, a quasi-Newton method (also known as a variable metric algorithm),

that is based on Newton’s method to find the stationary point of a function, where the

gradient is 0, but the Hessian matrix does not need to be computed, or a conjugate

gradients method. Details of these methods, also with constrains, can be found in [57].

In Figures 2.4 and 2.5 comparisons, for different combinations of mean and variance,

between discrete-beta distribution and beta-binomial distribution and binomial distri-

bution, respectively, are shown.

2.5 Comparison with MUB distribution

In this section, we compare the variance of the discrete-beta distribution with that of

the MUB distribution. Let X be a random variable with a MUB density (1.6) on the

points [1, . . . ,m]. Then, the variance is

Var[X] = (m− 1)

πξ (1− ξ) + (1− π)

[
m+ 1

12
+ π (m− 1)

(
1

2
− ξ
)2
] . (2.32)

Note that X can be written as [60]

X = π
(
Bin(m− 1, 1− ξ) + 1

)
+ (1− π)Ud(m), (2.33)
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Figure 2.4: Comparison between discrete-beta distribution and beta-binomial distribution for
different combinations of mean and variance. They coincide in the case of uniform distribution.
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Figure 2.5: Discrete-beta distribution and binomial distribution plotted for different combina-
tions of mean and variance.
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Figure 2.6: A binomial distribution with both under-dispersion and over-dispersion case of
discrete-beta distribution with the same expected value.

where Bin(m−1, 1−ξ) is the binomial distribution and Ud(m) is a uniform (rectangular)

random variable defined over [1, . . . ,m]. The formula (2.32) can be decomposed in three

parts (which can also be obtained by the classical variance decomposition [39])

Part1 = π (m− 1) ξ (1− ξ) (2.34)

Part2 = (1− π)
m2 − 1

12
(2.35)

Part3 = π(1− π) (m− 1)2
(

1

2
− ξ
)2

. (2.36)

Part3 is always non-negative. Part1 and Part2 are the variances respectively of Bin(m−
1, 1− ξ) + 1 and Ud(m) multiplied by their weights, respectively π and 1−π. Moreover,

we have that the variance of Bin(m − 1, 1 − ξ) + 1 is less or equal to the variance of

Ud(m), that is

(m− 1) ξ (1− ξ) ≤ m2 − 1

12

ξ (1− ξ) ≤ m+ 1

12

ξ2 − ξ +
m+ 1

12
≥ 0 (2.37)
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where eq. (2.37) is verified for all ξ ∈ (0, 1) and m ≥ 2. Thus,

Var[X] = Part1 + Part2 + Part3

≥ Part1 + Part2 = π (m− 1) ξ (1− ξ) + (1− π)
m2 − 1

12

≥ π (m− 1) ξ (1− ξ) + (1− π) (m− 1) ξ (1− ξ)

= (m− 1) ξ (1− ξ) (2.38)

where eq. (2.38) is the variance of [Bin(m− 1, 1− ξ) + 1] that is equal to Var[Bin(m−
1, 1 − ξ)]. Then, a MUB distribution has a variance greater or equal to a binomial

distribution and it can not be under-dispersed as a discrete-beta distribution could be

(we showed this property in the previous section).

In Figure 2.7 the different shapes assumed by both distribution, with the same ex-

pectation and variance, are shown. Since their support are different, in order to compare

the shapes, we choose first the expectation and variance for the CUB distribution on

the set [1, . . . ,m]. Then, for the discrete-beta distribution we set

• the expectation equal to that of MUB distribution decreased by one unit;

• the same variance of the MUB distribution;

• n = m− 1.

Finally, we plot together on the same support [1, . . . ,m] (but the real support of the

discrete-beta distributions is [0, . . . ,m− 1]). We can see that, in general, MUB distri-

bution has tails heavier than those of discrete-beta.



2.5 Comparison with MUB distribution 29

Figure 2.7: Comparison between discrete-beta distribution (shifted by 1) and MUB distribution
for different combinations of mean and variance.
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Figure 2.8: Intersection between discrete-beta, beta-binomial, CUB and binomial distribution.

Conclusion

In Figure 2.8 the results are summarised through a diagram. As we showed, only the

discrete-beta distribution can be under-dispersed respect to the binomial case. If the

outcomes reduced to a Bernoulli case, all the previous distributions tend to coincide.

The uniform case is taken into account by all three discrete-beta distribution, CUB

model and beta-binomial distribution. When the modalities are greater then three,

MUB distribution and discrete-beta distribution can have very different behaviors since

uncertainty is take into account in various ways. Instead, beta-binomial and binomial

distributions can be well approximated by discrete-beta distribution, as we can see in

the previous sections.



Chapter 3

Models with discrete-beta

distribution

In this chapter, we investigate the problem of parameter estimation in both cases of a

single population and in the presence of covariates. Let N be the sample size; in the

first case we assume that individual responses follow the same distribution, with fixed

parameters, in the latter case they can have different parameters. In both situations,

we will use the maximum likelihood method for parameter estimation.

3.1 Single population

One of the primary uses of statistics is to estimate population parameters when the

population is too large for a census to be practical. To accomplish this, a random

sample of values from the population data set is drawn and the sample statistic is

calculated to draw inferences to estimate the value of unknown population parameters.

Assuming that Yi, the response random variable of the ith individual, follows a

discrete-beta distribution, Dbeta(µ, φ, n), we have that

P (Yi = yi) =

∫ yi+1

n+1

yi
n+1

Γ(φ)

Γ(µφ)Γ((1− µ)φ)
xµφ−1(1− x)(1−µ)φ−1 dx

= I yi+1

n+1

(
µφ, (1− µ)φ

)
− I yi

n+1

(
µφ, (1− µ)φ

)
, (3.1)

i = 1, 2, · · · , N.

31
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In case of independent individuals, if y = (y1, ..., yN ) is the vector of the observed values,

we can compute the likelihood as

L(µ, φ| y) = P (Y1 = y1, Y2 = y2, . . . , YN = yN | µ, φ)

=
N∏
i=1

∫ yi+1

n+1

yi
n+1

Γ(φ)

Γ(µφ)Γ((1− µ)φ)
xµφ−1(1− x)(1−µ)φ−1 dx

=

N∏
i=1

[
I yi+1

n+1

(
µφ, (1− µ)φ

)
− I yi

n+1

(
µφ, (1− µ)φ

)]

=

n∏
k=0

[
I k+1
n+1

(
µφ, (1− µ)φ

)
− I k

n+1

(
µφ, (1− µ)φ

)]nk
, (3.2)

where nk is the absolute frequency of the k value in the sample.

The log-likelihood function is given by

l(µ, φ| y) = logL(µ, φ| y)

= log


n∏
k=0

[
I k+1
n+1

(
µφ, (1− µ)φ

)
− I k

n+1

(
µφ, (1− µ)φ

)]nk
=

n∑
k=0

nk log

[
I k+1
n+1

(
µφ, (1− µ)φ

)
− I k

n+1

(
µφ, (1− µ)φ

)]
. (3.3)

Let θ = [µ, φ]. Following the maximum likelihood method, we have that θ̂(y) =

[µ̂(y), φ̂(y)], the maximum likelihood estimator (MLE) of θ, is computed as

θ̂(y) = arg max
θ
L(µ, φ| y) = arg max

θ
l(µ, φ| y)

= arg max
θ

n∑
k=0

nk log

[
I k+1
n+1

(
µφ, (1− µ)φ

)
− I k

n+1

(
µφ, (1− µ)φ

)]
. (3.4)

Since the system of equations 
∂

∂µ
l(µ, φ| y) = 0

∂

∂φ
l(µ, φ| y) = 0

(3.5)

has no closed form solutions, we prefer to maximize directly eq. (3.4) with a quasi-

Newton method. We choose the algorithm implemented in optim function in the R
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software. The choice of “L-BFGS-B” method in the optim function allows box con-

straints, that is each variable can be given a lower and/or upper bound; this method

is described in detail in [12]. Good starting points for µ and φ is given by (µ0, φ0) =(
1

n+1

∑
i yi
N , (n+ 1) N−1∑

i(yi−µ0)2

)
, since µ is related to the mean end φ to the inverse of the

variance.

In order to derive confidence intervals for µ and φ, we recall the asymptotic properties

of maximum likelihood estimators. In particular, it is well known that the asymptotic

variance-covariance matrix V(θ) of the ML estimators θ̂ of the parameter θ is obtained

by inverting the negative of the expectation of the second derivatives (the Hessian) of

the log-likelihood function (eq. (3.3)). Since the expected Fisher information matrix,

when the operations of integration with respect to x and differentiation with respect to

θ can be interchanged in the expectation[26], can be written as

{
I(θ)

}
ij

= −E

[
∂2

∂θi∂θj
l(θ| y)

]
, (3.6)

we have that

V(θ) =
[
I(θ)

]−1
. (3.7)

An alternative method, which shares the same asymptotic properties, is based on the

observed information matrix J (θ), that is the negative of the second derivatives (the

Hessian matrix) of the log-likelihood function

{
J (θ̂)

}
ij

= − ∂2

∂θi∂θj
l(θ| y)

∣∣∣∣∣∣
θ=θ̂

. (3.8)

It is a sample-based version of the Fisher information. It is known that

θ̂N ≈ N
(
θ, (J (θ̂N )−1

)
(3.9)

where the subscript N is introduced to remind us that it is obtained by a sample of

N individuals. Since what users actually do in multiparameter situation is to focus on

confidence interval for single parameter, we obtain the following intervals(
θ̂Nj − zα

2

√(
(J (θ̂N )−1

)
jj
, θ̂Nj + zα

2

√(
(J (θ̂N )−1

)
jj

)
(3.10)
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where zα
2
, as usual, is the (1− α

2 ) quantile of a standard normal distribution.

In our case,

J (θ̂) = −


∂2

∂µ2
l(θ| y)

∂2

∂µ∂φ
l(θ| y)

∂2

∂φ∂µ
l(θ| y)

∂2

∂φ2
l(θ| y)


θ=θ̂N

(3.11)

and we have that

∂

∂θr
l(θ| y) =

∂

∂θr

 n∑
k=0

nk logP (Y = k)


=

n∑
k=0

nk
∂

∂θr
logP (Y = k), (3.12)

∂2

∂θr∂θs
l(θ| y) =

n∑
k=0

nk
∂2

∂θr∂θs
logP (Y = k), (3.13)

r = 1, 2; s = 1, 2

with θ1 = µ, θ2 = φ and

logP (Y = k) = log
Γ(φ)

Γ(µφ)Γ((1− µ)φ)

∫ k+1
n+1

k
n+1

xµφ−1(1− x)(1−µ)φ−1 dx

= log Γ(φ)− log Γ(µφ)− log Γ((1− µ)φ)+

+ log

∫ k+1
n+1

k
n+1

xµφ−1(1− x)(1−µ)φ−1 dx. (3.14)

For the sake of clarity, we will use the following notation

xµφ−1(1− x)(1−µ)φ−1 = h(x, µ, φ) (3.15)

and we compute the first derivatives as

∂

∂µ
logP (Y = k) = −φψ(µφ) + φψ((1− µ)φ)+

+

∫ k+1
n+1

k
n+1

h(x, µ, φ)φ log

(
x

1− x

)
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx

(3.16)
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∂

∂φ
logP (Y = k) = ψ(φ)− µψ(µφ)− (1− µ)ψ((1− µ)φ)+

+

∫ k+1
n+1

k
n+1

h(x, µ, φ)
[
µ log x+ (1− µ) log(1− x)

]
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx

(3.17)

where ψ(t) is the digamma function, that is defined as the logarithmic derivative of the

gamma function

ψ(t) =
d

dt
log Γ(t). (3.18)

Thus, the second derivatives can be written as

∂2

∂µ2
logP (Y = k) = −φ2ψ1(µφ) + φ2ψ1((1− µ)φ)+

+

∫ k+1
n+1

k
n+1

h(x, µ, φ)φ2 log2
(

x

1− x

)
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx

+

−


∫ k+1

n+1

k
n+1

h(x, µ, φ)φ log

(
x

1− x

)
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx


2

(3.19)

∂2

∂φ2
logP (Y = k) = ψ1(φ)− µ2ψ1(µφ)− (1− µ)2ψ1((1− µ)φ)+

+

∫ k+1
n+1

k
n+1

h(x, µ, φ)
[
µ log x+ (1− µ) log(1− x)

]2
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx

+

−


∫ k+1

n+1

k
n+1

h(x, µ, φ)
[
µ log x+ (1− µ) log(1− x)

]
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx


2

(3.20)

∂2

∂φ∂µ
logP (Y = k) = ψ1(µφ)− µφψ1(µφ) + ψ1((1− µ)φ) + (1− µ)φψ1((1− µ)φ)+
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+

∫ k+1
n+1

k
n+1

h(x, µ, φ)
[
µ log x+ (1− µ) log(1− x)

]
φ log

(
x

1− x

)
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx

+

−

∫ k+1
n+1

k
n+1

h(x, µ, φ)
[
µ log x+ (1− µ) log(1− x)

]
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx

∗

∗

∫ k+1
n+1

k
n+1

h(x, µ, φ)φ log

(
x

1− x

)
dx

∫ k+1
n+1

k
n+1

h(x, µ, φ) dx

(3.21)

where ψ1(t) is the trigamma function defined as

ψ1(t) =
d2

d2t
log Γ(t). (3.22)

Substituting eq. (3.19), (3.20) and (3.21) in eq. (3.13), we can compute J (θ̂). Since

the derivatives involve integrations, which have to be computed in a numerical way, it

is also possible to estimate them using the quasi-Newton algorithm used to solve the

problem (3.4).

3.1.1 Validation by simulation

In order to have a validation by simulation, we followed the steps showed below:

• we choose a couple of values for (µ∗, φ∗);

• we generated a random sample by a discrete-beta distribution with µ = µ∗ and

φ = φ∗;

• we estimated (µ, φ) following the maximum likelihood method described in this

section.

We used the R-script showed in Appendix A. Four cases are showed below. All intervals

are calculated at 95% confidence level.
With µ = 0.3 and φ = 6, we obtain



3.2 Covariates 37

$mu

estimate lower bound upper bound Wald test

[1,] 0.29985 0.26541 0.33429 17.06363

$phi

estimate lower bound upper bound Wald test

[1,] 5.92539 4.18542 7.66536 6.67457

With µ = 0.65 and φ = 3.5, we obtain

$mu

estimate lower bound upper bound Wald test

[1,] 0.65491 0.61171 0.6981 29.71521

$phi

estimate lower bound upper bound Wald test

[1,] 3.62504 2.62831 4.62176 7.12827

With µ = 0.5 and φ = 2, (discrete uniform distribution) we obtain

$mu

estimate lower bound upper bound Wald test

[1,] 0.50868 0.45429 0.56307 18.32997

$phi

estimate lower bound upper bound Wald test

[1,] 2.15492 1.58366 2.72618 7.39339

With µ = 0.1 and φ = 20, we obtain

$mu

estimate lower bound upper bound Wald test

[1,] 0.10267 0.08809 0.11726 13.79562

$phi

estimate lower bound upper bound Wald test

[1,] 19.37949 10.76797 27.99101 4.41073

We noted that µ is generally well estimated, while φ̂ has a larger uncertainty than

µ̂.

3.2 Covariates

This section regards the introduction of covariates, i.e. concurrent variables of the

outcome that improve both the results and the interpretation of the models. We do not

follow the approach of generalized linear models, in which it is allowed for an arbitrary

function (the link function) of the mean of response variable, g(E[Y ]), to vary linearly
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with the predicted values (rather than assuming that the response itself must vary

linearly). In fact, in our case where Y follows a discrete-beta distribution, for a given

n, several pairs of different (µ, φ), generate the same expectation, as we have shown in

the previous chapter. In a natural way, according to CUB model framework, we prefer

to directly introduce covariates for µ and φ, parameters of the latent variable, without

a direct reference to the expectation of this random variable. It is reasonable to assume

that the parameters of the latent variable vary with the subjects characteristics as, for

instance, gender, age, etc. In order to specify a correspondence among the values of

covariates and the supports of µ and φ, we proposed the following mappings:

logit (µi) = β0 + xµi β or equivalently µi =
1

1 + e−β0−x
µ
i β

(3.23)

log (φi) = γ0 + xφi γ or equivalently φi = eγ0+xφi γ (3.24)

i = 1, · · · , N ;

where xµi and xφi are the vectors of covariates of the ith individual for, respectively,

µi and φi, and β and γ are the vector of the “regression” coefficient (β1, β2, · · · , βp−1)
and (γ1, γ2, · · · , γq−1) ( p − 1 and q − 1 are the number of covariates for, respectively,

µi and φi). xµi and xφi are allowed to be different vectors. For example, let Yi to be

the ith individual’s response of a product satisfaction survey, with outcomes in the set

{0, 1, 2, 3}, xµi to be the vector which has for components the values of age, sex, marital

status and xφi to be a null vector, we have

logit (µi) = β0 + β1age + β2 sex + β3m.status; (3.25)

log (φi) = γ0. (3.26)

Note that the greater xµi β the greater is µi. Thus, in this situation, it is not convenient to

change signs as in the cumulative logistic proportional odds models, but it is preferable

the mapping we showed. Similarly, the greater xφi γ the greater is φi. In a vector

notation, we can write

logit (µ) = Xµβ or equivalently µ =
1

1 + e−Xµβ
(3.27)

log (φ) = Xφγ or equivalently φ = eX
φγ (3.28)
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where µ and φ are the N × 1 vectors that contain respectively the µ-values and the φ-

values of all N individuals, β = (β0, β1, · · · , βp) and γ = (γ0, γ1, · · · , γp), i.e. we add the

intercept term to the previous vector, Xµ and Xφ are the design matrices, respectively,

(N × p) and (N × q) matrices, in which the ith row is the vector of the ith individual

covariates.

If we assume that the responses of individuals are independent of one another given

the discrete-beta probabilities, i.e. Yi ∼ Dbeta(µi, φi, n), the likelihood is given by

L(β,γ| y) = P (y = y| β,γ)

=
N∏
i=1

 Γ
(
ex

φ
i γ
)

Γ

(
1
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i
β
ex

φ
i γ

)
Γ
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(
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µ
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φ
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µ
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)
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φ
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), (3.29)

and the log-likelihood is written as

l(β,γ| y) = logL(β,γ| y)

=

N∑
i=1

log

I yi+1

n+1

(
1

1 + e−x
µ
i β
ex

φ
i γ ,

(
1− 1

1 + e−x
µ
i β

)
ex

φ
i γ

)
+

− I yi
n+1

(
1

1 + e−x
µ
i β
ex

φ
i γ ,

(
1− 1

1 + e−x
µ
i β

)
ex

φ
i γ

). (3.30)

Let θ = (β,γ). In order to maximize eq. (3.30), finding estimate of θ̂, with θ̂ = (β̂ ,

γ̂), and to compute the p-values associated to the parameters estimates, we follow the
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same way showed for the model without covariates. In particular, we have that

∂l

∂βc
=

N∑
i=1

∂

∂βc
f(µ, φ, yi); c = 1, · · · , p; (3.31)

∂2l

∂βd∂βc
=

N∑
i=1

∂2

∂βd∂βc
f(µ, φ, yi); c = 1, · · · , p; d = 1, · · · , p; (3.32)

∂l

∂γc
=

N∑
i=1

∂

∂γc
f(µ, φ, yi); c = 1, · · · , q; (3.33)

∂2l

∂γd∂γc
=

N∑
i=1

∂2

∂γd∂γc
f(µ, φ, yi); c = 1, · · · , q; d = 1, · · · , q; (3.34)

∂2l

∂γd∂βc
=

N∑
i=1

∂2

∂γd∂βc
f(µ, φ, yi); c = 1, · · · , p; d = 1, · · · , q; (3.35)

where f(µ, φ, yi) denotes the function f(µ, φ, yi) = logP (Yi = yi|µ, φ). We can compute

the first derivatives using the chain rule derivation

∂f

∂βc
=
∂f

∂µ

∂µ

∂βc
+
∂f

∂φ

∂φ

∂βc
=
∂f

∂µ

∂µ

∂βc
, c = 1, · · · , p; (3.36)

∂f

∂γc
=
∂f

∂µ

∂µ

∂γc
+
∂f

∂φ

∂φ

∂γc
=
∂f

∂φ

∂φ

∂γc
, c = 1, · · · , q. (3.37)

and the second derivatives as

∂2l

∂βd∂βc
=

∂

∂βd

(
∂f

∂βc

)
=

∂

∂βd

(
∂f

∂µ

∂µ

∂βc

)
=

∂2l

∂µ2
∂µ

∂βd

∂µ

∂βc
+
∂f

∂µ

∂2µ

∂βd∂βc
, c = 1, · · · , p; d = 1, · · · , p; (3.38)

∂2l

∂γd∂γc
=

∂

∂γd

(
∂f

∂γc

)
=

∂
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(
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∂φ
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)
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, c = 1, · · · , q; d = 1, · · · , q; (3.39)
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=
∂2l

∂φ∂µ

∂φ

∂γd

∂µ

∂βc
c = 1, · · · , p; d = 1, · · · , q. (3.40)

The derivatives with respect to µ and φ are the same written in the previous section.

We also have that

∂µ

∂βc
=

xc

2
(
1 + cosh(xβ)

) , c = 1, · · · , p; (3.41)

∂2µ

∂βd∂βc
=
−xdxc sinh(xβ)

4
(
1 + cosh(xβ)

)2 , c = 1, · · · , p; d = 1, · · · , p; (3.42)

∂φ

∂γc
= xce

xγ , c = 1, · · · , q; (3.43)

∂2φ

∂γd∂γc
= xdxce

xγ , c = 1, · · · , q; d = 1, · · · , q; (3.44)

where xl denote the value of the vector x at the position l.

As in the previous section, it is possible to estimate them directly during the quasi-

Newton algorithm. We suggest as starting values for the algorithm a vector with all

components equal to 0.1, since, due the mappings 3.23, we not expect large values of

parameters. We also ran the algorithm with different initial values and we found that

our proposal is a good compromise.

3.2.1 Model selection

A general way to compare models is by means of the Akaike information criterion (AIC),

that is a measure of the relative quality of a statistical model, for a given set of data.

In general case, AIC is defined as

AIC = 2k − 2l, (3.45)

where k is the number of parameters in the statistical model, and l is the maximized

value of the log-likelihood function for the estimated model. Given a set of candidate

models for the data, the preferred model is the one with the minimum AIC value. Hence

AIC not only rewards goodness of fit, but also includes a penalty that is an increasing
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function of the number of estimated parameters. The AICc, is AIC with a correction

for finite sample sizes

AICc = AIC +
2k(k + 1)

N − k − 1
, (3.46)

where N denotes the sample size. Thus, AICc is AIC with a greater penalty for extra

parameters. In [11] it is strongly recommended using AICc, rather than AIC.

For nested models, it is also possible to use likelihood ratio statistic. It is a very

useful tool for judging the usefulness of inserting a single or a group of variable in the

estimated models. Consider two models, m0 and m1, where m0 is a submodel of model

m1, that is, m0 is simpler than m1 and m0 is nested in m1. The likelihood ratio statistic

for the comparison of m0 and m1 is

LR = −2(l0 − l1), (3.47)

where l0 is the log-likelihood of the simpler model and l1 is the log-likelihood of the more

complex model. The likelihood ratio statistic measures the evidence in the data for the

extra complexity in m1 relative to m0 [14]. The likelihood ratio statistic asymptotically

follows a χ2 distribution with degrees of freedom equal to the difference in the number

of parameter of m0 and m1 [81].

3.3 Case study

We study the responses of seventy-one patients with gastroesophageal reflux disease

(GERD). The GERD patients group comprises forty GERD patients with grade A

esophagitis (ERD) according to the Los Angeles classification, and thirty-one patients

with GERD who had nonerosive reflux disease (NERD), but 2 day wireless Bravo pH

system monitoring (Medtronic A/S, Skovlunde, Denmark) positive for pathological acid

exposure. The Bravo probes were placed using standard techniques as recommended by

the manufacturer. The pH-monitoring was intended to record data for 48 hours. Food

intake, typical GERD symptoms and supine period data where recorded in a diary.

The receiver and the diary were returned after a 48-hours recording period. The pH

study data were uploaded to a computer and were analysed using the software provided

by Medtronic. Patients were considered to have had episodes of reflux when pH was

less than 4 for at least six seconds; episodes were considered to have ended when pH

reached 5. The total number of reflux episodes, number of reflux episodes longer than
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five minutes, and the mean duration of reflux episodes were also determined.

All patients that entered the study were evaluated (by water load test) before and

after four weeks of standard therapy with proton pump inhibitors (esomeprazole, 40

mg per day). Endoscopy was performed to evaluate carefully the distal portion of the

esophagus to determine the presence of any mucosal injury.

As a control group, 30 healthy volunteers with no abdominal symptoms or history

of upper gastrointestinal disorders were recruited. Non of the patients and controls had

previously undergone abdominal surgery, except appendectomy.

The study were carried out according to local ethical rules, after receiving patients

and controls’ informed consent, and in accordance with the recommendations of the

Helsinki Declaration (Edinburgh revision, 2000).

Water load test (WLT) Before starting the test, the participants completed a

symptom visual analogue scale (VAS, 0-10 cm; 0= absent, 10= maximal) to score the

following: heartburn, postprandial fullness, vomiting, early satiety, nausea, bloating,

epigastric pain, belching, epigastric burning.

After an overnight fast, WLT was performed by having subjects drink-room-temperature

water for 5 minute or until they perceiving the “full” stomach sensation. Water was con-

sumed from an unmasked flask that was taken from the subjects and refilled after each

drink. The volume required to refill the flask to the initial level was recorded and the

total volume consumed was determined by summing these volumes.

Recently, the water load test has been proposed as a non-invasive method to assess

gastric sensation. The test is economic, easily performed, well tolerated and reproducible

in healthy subjects and in patients with functional dyspepsia or gastroesophageal reflux

disease. In [4] are showed that in GERD patients, with mild erosive esophagitis and non

erosive reflux disease, the WLT is abnormal, similar but non identical to that reported

in patients with functional dyspepsia.

3.3.1 Model comparison

In the following section, we analysed the data sets, presented in the previous section,

adopting different models:

• the cumulative link model (1.5) estimated with the R-package ordinal; we used

the function clm with the logistic link function and flexible cut-points;
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Figure 3.1: An example of VAS.

• the GAMLSS (Generalized Additive Models for Location, Scale and Shape) model

[71]; we used the function gamlss from the R-package gamlss, with family=BB,

i.e. we set the beta-binomial family;

• the CUB model, eq. (1.6); we use the R-script CUB_3.0.R kindly sent to us by

Maria Iannario;

• the discrete-beta model, eq. (3.2); the script of the function bdmod is shown in

the Appendix A.

We decided to analyse the score, VAS, of the patients before the therapy. In particular,

the score of nausea, heartburn (pyrosis), vomiting, postprandial fullness, early satiety,

bloating, epigastric pain and belching. We do not show the analysis of epigastric burning

since covariates were proved to be insignificant. Due the predominance of 0 in the scores,

we also do not include controls in the analysis (they have not abdominal symptoms or

history of upper gastrointestinal disorder). Thus, our Yi will be the score of the ith

individual and the covariates should be BMI, age, sex, level of disease (ERD, NERD)

and the volume of the water load test.

Nausea

Using the values of nausea as Yi, we obtain with clm:

formula: nausea ~ BMI + Sesso

data: gerd_pre_fac

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 71 -115.31 252.61 8(1) 3.19e-11 2.4e+06

Coefficients:

Estimate Std. Error z value Pr(>|z|)
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BMI -0.5132 0.1686 -3.044 0.00233 **

Sessom -0.6594 0.4569 -1.443 0.14892

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -18.053 4.595 -3.929

2|3 -16.367 4.498 -3.639

3|4 -16.163 4.491 -3.599

4|5 -15.678 4.470 -3.507

5|6 -15.544 4.464 -3.482

6|7 -15.420 4.458 -3.459

7|8 -14.736 4.431 -3.326

8|9 -13.951 4.409 -3.164

9|10 -13.169 4.381 -3.006

with gamlss

Family: c("BB", "Beta Binomial")

Call: gamlss(formula = cbind(nausea, 10 - nausea) ~ BMI, sigma.formula = formulaphi,

family = BB)

Fitting method: RS()

-------------------------------------------------------------------

Mu link function: logit

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7847 3.4801 3.386 0.001189

BMI -0.3978 0.1327 -2.997 0.003824

-------------------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5992 0.3757 -1.595 0.11546

Sessom -0.9388 0.5383 -1.744 0.08576

-------------------------------------------------------------------

No. of observations in the fit: 71

Degrees of Freedom for the fit: 4

Residual Deg. of Freedom: 67

at cycle: 5

Global Deviance: 240.4093

AIC: 248.4093

SBC: 257.4601
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*******************************************************************

with CUB:

=======================================================================

============== CUB Program: version 3.0 (September 2013) ==============

=======================================================================

=====>>> C U B (p,q) model <<<===== ML-estimates via E-M algorithm

=======================================================================

Covariates for pai ==> p= 1 and Covariates for csi ==> q= 2

=======================================================================

*** m= 11 *** Sample size: n= 71 *** Iterations= 15 (maxiter=500)

=======================================================================

parameters ML-estimates stand.errors Wald-test p-value

=======================================================================

beta_0 41.95214 16.19664 2.59018 0.009592576

beta_1 -1.54891 0.60845 -2.54567 0.01090682

gamma_0 -7.90875 2.91469 -2.71341 0.006659466

gamma_1 1.08501 0.39022 2.78051 0.005427359

gamma_2 -0.75267 0.37507 -2.00675 0.04477629

gamma_3 0.20597 0.11453 1.79839 0.07211523

=======================================================================

Log-lik(beta^,gamma^)= -116.4404

Mean Log-likelihood = -1.640006

-----------------------------------------------------------------------

AIC-CUBpq = 244.8809

BIC-CUBpq = 258.4569

=======================================================================

with discrete-beta model

bdmod(cbind(nausea,10-nausea),formulamu,formulaphi, gerd_pre)

$MU

Estimate Sd_error Wald_Test Pval codemu

(Intercept) 9.4404285 2.8216381 3.345726 0.0008206741 ***

BMI -0.3146795 0.1082288 -2.907539 0.0036428470 **

$PHI

Estimate Sd_error Wald_Test Pval codephi

(Intercept) 0.9361496 0.3345929 2.797877 0.005143977 **

Sessom 1.0854145 0.4920932 2.205709 0.027404350 *

Esofagite1 -0.8391630 0.4866712 -1.724291 0.084655278 .

$AICc

[1] 249.2929

$AIC

[1] 248.3698
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For each type of family model, we selected the one with the lower AIC and with the

largest possible number of significant covariates. All comparisons are made with respect

to the AIC index. When dropping the not significant covariates we obtain the same

results with an AIC index larger, we prefer to present the model with also the not

significant covariates but AIC index lower: this is the reason for which are also presented

not significant covariates. clm tells us that BMI is significant and that the larger its

value the larger the probability of the outcome to be in a lower rather than in a higher

category. Discrete-beta and gamlss agree on this prediction. In addiction, our model

states that males are more precise than females in the score (sex covariate is significant

at 95%). In CUB model BMI, (β1 value) plays an important role in π variable, the

larger its value the larger the uncertainty. CUB also tells us that males have lower

outcomes (γ1 value) but ERD patients (significant at 95%) select a higher score than

NERD patients.

Pyrosis

Using the values of nausea as Yi, we obtain with clm:

formula: pirosis ~ Sesso + Max.vol..ml.

data: gerd_pre_fac

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 71 -112.20 244.40 7(2) 9.36e-13 8.5e+07

Coefficients:

Estimate Std. Error z value Pr(>|z|)

Sessom -1.83857 0.49357 -3.725 0.000195 ***

Max.vol..ml. 0.01121 0.00466 2.405 0.016152 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

with gamlss:

-------------------------------------------------------------------

Mu link function: logit

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.058899 1.300610 -0.04529 0.9640161

Sessom -1.492741 0.340654 -4.38198 0.0000431

Max.vol..ml. 0.006076 0.003321 1.82935 0.0718640

-------------------------------------------------------------------

Sigma link function: log
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Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.51344 2.531444 -2.573 0.01234

Max.vol..ml. 0.01278 0.006194 2.064 0.04298

-------------------------------------------------------------------

Global Deviance: 235.3411

AIC: 245.3411

SBC: 256.6545

with CUB:

=======================================================================

parameters ML-estimates stand.errors Wald-test p-value

=======================================================================

beta_0 1.47632 0.55479 2.66104 0.00778997

beta_1 -1.47461 0.75106 -1.96337 0.0496032

gamma_0 39.23346 10.41457 3.76717 0.0001651086

gamma_1 1.55284 0.56187 2.7637 0.005715006

gamma_2 -7.14897 1.75627 -4.07054 4.690429e-05

=======================================================================

Log-lik(beta^,gamma^)= -123.9466

Mean Log-likelihood = -1.745726

-----------------------------------------------------------------------

AIC-CUBpq = 257.8931

BIC-CUBpq = 269.2065

=======================================================================

and with descrete-beta model:

$MU

Estimate Sd_error Wald_Test Pval codemu

(Intercept) -0.807761034 1.016133907 -0.7949356 4.266510e-01

Sessom -1.324496171 0.272239596 -4.8651856 1.143494e-06 ***

Max.vol..ml. 0.007424267 0.002611504 2.8429091 4.470382e-03 **

$PHI

Estimate Sd_error Wald_Test Pval codephi

(Intercept) 7.34821057 2.147437606 3.421851 0.0006219649 ***

Max.vol..ml. -0.01503162 0.005246766 -2.864930 0.0041710102 **

$AICc

[1] 246.2236

$AIC

[1] 245.3006

clm shows us that males are more likely to assign higher score than females and that

patients who drink more water in WLT have a higher probability to score an higher value
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of pyrosis. Discrete-beta and gamlss agree on these interpretations and, in addiction,

tell us that the larger the value of the WLT the larger the variability (note that in

gamlss the covariates are added on σ which is related to the reciprocal of the precision

parameter: for this reason we have the opposite sign in covariate estimation respect to

descrete-beta model). CUB agrees on the prediction of clm but states also that males

have higher uncertainty than female.

Vomiting

Using the values of vomiting as Yi, we obtain with clm:

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 71 -148.75 321.50 5(1) 6.25e-07 2.1e+06

Coefficients:

Estimate Std. Error z value Pr(>|z|)

Sessom 0.7877 0.4332 1.818 0.0690 .

BMI -0.3547 0.1452 -2.443 0.0146 *

with gamlss:

--------------------------------------------------------------

Mu link function: logit

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.3702 2.6544 2.777 0.007115

BMI -0.3199 0.1025 -3.122 0.002652

-------------------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.9113 3.27 2.725 0.008190

BMI -0.3868 0.13 -2.975 0.004075

-------------------------------------------------------------------

Global Deviance: 297.6984

AIC: 305.6984

SBC: 314.7491

with CUB:

=======================================================================

parameters ML-estimates stand.errors Wald-test p-value
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=======================================================================

pai 0.43299 0.09164 4.7249 2.302286e-06

gamma_0 -37.24858 11.46304 -3.24945 0.001156284

gamma_1 1.62872 0.48567 3.35355 0.00079782

gamma_2 -3.4383 1.00161 -3.43277 0.0005974487

gamma_3 -2.25042 0.89331 -2.51919 0.01176252

=======================================================================

Log-lik(pai^,gamma^) = -154.2587

Mean Log-likelihood = -2.172658

-----------------------------------------------------------------------

AIC-CUB0q = 318.5174

BIC-CUB0q = 329.8308

with discrete-beta model:

$MU

Estimate Sd_error Wald_Test Pval codemu

(Intercept) 6.9281974 2.45264541 2.824786 0.004731227 **

BMI -0.2998144 0.09436039 -3.177333 0.001486360 **

$PHI

Estimate Sd_error Wald_Test Pval codephi

(Intercept) -7.5106124 2.7592793 -2.721947 0.006489852 **

BMI 0.3302617 0.1081348 3.054166 0.002256875 **

$AICc

[1] 305.4879

$AIC

[1] 304.8819

CUB states that BMI (γ1) is inversely proportional to the score and that males (γ2)

and ERD patients (γ3) have higher probability to score higher outcomes than NERD

patients. The other three models agree on BMI interpretation: the larger its value the

larger the probability to be in a lower category of vomiting score. In addiction, gamlss

and discrete-beta models state that a larger value of BMI also increases the precision,

the accuracy of responses.

Postprandial fullness

Using the values of postprandial fullness as Yi, we obtain with clm:

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 71 -134.94 295.87 6(1) 2.80e-10 6.9e+05
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

Sessom -0.67983 0.45616 -1.490 0.136135

EtÃ -0.07320 0.02105 -3.477 0.000507 ***

Esofagite1 -0.91591 0.45190 -2.027 0.042684 *

with gamlss:

Mu link function: logit

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.18246 0.80470 5.198 2.187e-06

Sessom -0.53376 0.32596 -1.637 1.064e-01

EtÃ -0.05219 0.01491 -3.499 8.475e-04

Esofagite1 -0.72118 0.32775 -2.200 3.134e-02

-------------------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.79422 2.229721 -2.150 0.03527

Max.vol..ml. 0.00947 0.005376 1.762 0.08284

-------------------------------------------------------------------

Global Deviance: 275.7001

AIC: 287.7001

SBC: 301.2762

with CUB:

Covariates for pai ==> p= 2 and Covariates for csi ==> q= 2

=======================================================================

*** m= 11 *** Sample size: n= 71 *** Iterations= 20 (maxiter=500)

=======================================================================

parameters ML-estimates stand.errors Wald-test p-value

=======================================================================

beta_0 1.10129 0.53259 2.0678 0.03865883

beta_1 -2.19267 0.73644 -2.97739 0.002907139

gamma_0 -1.24335 3.30461 -0.37625 0.706731

gamma_1 0.08638 0.02932 2.94611 0.003217979

gamma_2 -0.21406 0.11045 -1.93807 0.05261468

=======================================================================

Log-lik(beta^,gamma^)= -140.596

Mean Log-likelihood = -1.980225

-----------------------------------------------------------------------

AIC-CUBpq = 291.192

BIC-CUBpq = 302.5054

=======================================================================
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with discrete-beta model:

$MU

Estimate Sd_error Wald_Test Pval codemu

(Intercept) 3.74079080 0.69375592 5.392085 6.964487e-08 ***

Sessom -0.45848689 0.27686134 -1.656016 9.771852e-02 .

EtÃ -0.04602106 0.01282738 -3.587722 3.335799e-04 ***

Esofagite1 -0.67810256 0.28088377 -2.414175 1.577089e-02 *

$PHI

Estimate Sd_error Wald_Test Pval codephi

(Intercept) 5.53554948 2.117477774 2.614218 0.008943183 **

Max.vol..ml. -0.01122309 0.004986512 -2.250689 0.024405229 *

$AICc

[1] 287.6956

$AIC

[1] 286.3831

According to all models, younger patients have higher probability to have higher values

than older patients and, except the CUB model, that ERD patients have an higher

probability to score lower category than NERD patients. CUB states that the higher

the BMI value (γ1) the higher the probability to have an higher outcome and that ERD

patients have lower precision in choosing the score than NERD patients. Discrete-beta

tells us that patients who drink more water in WLT have more uncertainty.

Early satiety

Using the values of early satiety as Yi, we obtain with clm:

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 71 -142.61 309.22 7(2) 4.92e-12 8.5e+06

Coefficients:

Estimate Std. Error z value Pr(>|z|)

EtÃ -0.02958 0.01941 -1.524 0.12761

BMI -0.39867 0.13327 -2.991 0.00278 **

with gamlss:

Mu link function: logit

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.7829 2.85941 3.421 0.001066
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EtÃ -0.0276 0.01439 -1.918 0.059329

BMI -0.2992 0.10384 -2.881 0.005320

-------------------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

-0.654221 0.228772 -2.859701 0.005648

-------------------------------------------------------------------

Global Deviance: 298.704

AIC: 306.704

SBC: 315.7547

with CUB:

parameters ML-estimates stand.errors Wald-test p-value

=======================================================================

pai 0.38807 0.07692 5.04511 4.532605e-07

gamma_0 -83.34086 19.24562 -4.33038 1.488522e-05

gamma_1 2.71526 0.62492 4.34497 1.392947e-05

gamma_2 0.16901 0.05503 3.07123 0.002131789

gamma_3 2.04906 0.70224 2.91789 0.003524086

=======================================================================

Log-lik(pai^,gamma^) = -149.832

Mean Log-likelihood = -2.11031

-----------------------------------------------------------------------

AIC-CUB0q = 309.664

BIC-CUB0q = 320.9774

with discrete-beta model:

$MU

Estimate Sd_error Wald_Test Pval codemu

(Intercept) 8.7735021 2.62505651 3.342215 0.0008311278 ***

EtÃ -0.0259903 0.01319649 -1.969486 0.0488972688 *

BMI -0.2649545 0.09518169 -2.783670 0.0053747641 **

$PHI

Estimate Sd_error Wald_Test Pval codephi

(Intercept) 0.6680276 0.1875855 3.561189 0.0003691787 ***

$AICc

[1] 306.1333

$AIC

[1] 305.5272

The value of BMI is significant for all the models and the higher its value the higher

the probability to have a lower category. CUB and discrete-beta models state that the
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age is also significant and that the younger patients have an higher probability to score

lower values. According to CUB and to expressed values, males declare to suffer less

than females.

Bloating

Using the values of bloating as Yi, we obtain with clm:

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 71 -150.39 324.78 6(1) 6.32e-12 1.7e+08

Coefficients:

Estimate Std. Error z value Pr(>|z|)

Max.vol..ml. -0.022057 0.005301 -4.161 3.17e-05 ***

Sessom 0.974014 0.451901 2.155 0.0311 *

with gamlss:

Mu link function: logit

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.82409 1.360187 4.282 6.047e-05

Max.vol..ml. -0.01531 0.003493 -4.382 4.237e-05

Sessom 0.71046 0.307266 2.312 2.385e-02

-------------------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

-2.486e-03 5.698e-04 -4.363e+00 4.529e-05

-------------------------------------------------------------------

Global Deviance: 318.3123

AIC: 326.3123

SBC: 335.363

with CUB:

=======================================================================

parameters ML-estimates stand.errors Wald-test p-value

=======================================================================

pai 0.38938 0.09113 4.2728 1.930336e-05

gamma_0 -152.6155 28.22168 -5.40774 6.382499e-08

gamma_1 -2.49755 0.75319 -3.31596 0.000913289

gamma_2 -2.25987 0.8711 -2.59427 0.009479201

gamma_3 25.75097 4.76509 5.40409 6.513823e-08

=======================================================================
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Log-lik(pai^,gamma^) = -158.4807

Mean Log-likelihood = -2.232122

-----------------------------------------------------------------------

AIC-CUB0q = 326.9614

BIC-CUB0q = 338.2748

=======================================================================

with discrete-beta model:

$MU

Estimate Sd_error Wald_Test Pval codemu

(Intercept) 5.5703534 1.221067935 4.561870 5.069999e-06 ***

Max.vol..ml. -0.0145575 0.003143373 -4.631172 3.636018e-06 ***

Sessom 0.6562378 0.277251504 2.366941 1.793581e-02 *

$PHI

Estimate Sd_error Wald_Test Pval codephi

Max.vol..ml. 0.002377821 0.0004109034 5.786812 7.17346e-09 ***

$AICc

[1] 326.6533

$AIC

[1] 326.0472

Males seem to have higher probability to have higher values than female and the

higher the volume of water the higher the probability to have a lower score. According

to CUB, ERD patients have higher values than NERD patients. Discrete-beta and

gamlss state also that the higher the result of WLT the higher the precision of the

score. Note that in CUB model we do not use WLT as covariate, but we prefer to

add log(WLT) in order to avoid numerical problems (and because this transformation

accelerates convergence).

Epigastric pain

Using the values of epigigastric pain as Yi, we obtain with clm:

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 71 -141.91 305.83 6(1) 8.57e-13 1.1e+08

Coefficients:

Estimate Std. Error z value Pr(>|z|)

Max.vol..ml. -0.009392 0.004530 -2.073 0.0382 *

Sessom 0.705979 0.446095 1.583 0.1135

with gamlss:
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Mu link function: logit

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.880554 1.112603 0.7914 0.43148

Max.vol..ml. -0.004654 0.002787 -1.6701 0.09956

-------------------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.6439 1.38886 -3.344 0.001357

EtÃ 0.0624 0.02664 2.342 0.022150

-------------------------------------------------------------------

Global Deviance: 288.1491

AIC: 296.1491

SBC: 305.1998

with CUB:

==================================================================

parameters ML-estimates stand.errors Wald-test p-value

=======================================================================

beta_0 -282.161 583.5373 -0.48354 0.6287124

beta_1 14.24849 30.70544 0.46404 0.6426191

beta_2 39.18762 89.27738 0.43894 0.660705

beta_3 -1.97223 4.68276 -0.42117 0.6736309

gamma_0 -18.97485 6.6563 -2.85066 0.004362859

gamma_1 1.81832 1.04025 1.74796 0.08047095

gamma_2 0.36205 0.11137 3.25088 0.001150484

gamma_3 -0.47379 0.25938 -1.82663 0.06775542

=======================================================================

Log-lik(beta^,gamma^)= -137.2926

Mean Log-likelihood = -1.933698

-----------------------------------------------------------------------

AIC-CUBpq = 290.5851

BIC-CUBpq = 308.6866

=======================================================================

with discrete-beta model:

$MU

Estimate Sd_error Wald_Test Pval codemu

(Intercept) 2.122572117 0.970055583 2.188093 0.028662807 *

Max.vol..ml. -0.007460842 0.002464474 -3.027357 0.002467024 **

$PHI

Estimate Sd_error Wald_Test Pval codephi

(Intercept) 3.29249069 0.78620792 4.187812 2.816571e-05 ***
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EtÃ -0.04079131 0.01672173 -2.439420 1.471087e-02 *

$AICc

[1] 300.5093

$AIC

[1] 299.9032

Discrete-beta and clm agree on the fact that WLT value is significant. In addition,

CUB states also that males (γ3) have higher probability to have a lower value than

females. According to gamlss and our model, younger are more precise than older in

giving the score.

Belching

Using the values of belching as Yi, we obtain with clm:

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 71 -146.96 315.91 7(2) 2.70e-12 1.2e+08

Coefficients:

Estimate Std. Error z value Pr(>|z|)

Max.vol..ml. 0.011204 0.004815 2.327 0.0200 *

Esofagite1 -0.882794 0.475115 -1.858 0.0632 .

with gamlss:

Mu link function: logit

Mu Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.056102 1.222433 -1.682 0.09730

Max.vol..ml. 0.006784 0.003267 2.076 0.04175

Esofagite1 -0.560593 0.305048 -1.838 0.07060

-------------------------------------------------------------------

Sigma link function: log

Sigma Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.543903 2.061249 -2.204 0.03098

Max.vol..ml. 0.008863 0.005084 1.743 0.08595

-------------------------------------------------------------------

Global Deviance: 323.3348

AIC: 333.3348

SBC: 344.6482
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with CUB:

Covariates for pai ==> p= 2 and Covariates for csi ==> q= 4

=======================================================================

*** m= 11 *** Sample size: n= 71 *** Iterations= 22 (maxiter=500)

=======================================================================

parameters ML-estimates stand.errors Wald-test p-value

=======================================================================

beta_0 12.13277 24.53702 0.49447 0.6209743

beta_1 -1.56719 4.0673 -0.38531 0.7000078

beta_2 -0.0716 0.04198 -1.70557 0.08808817

gamma_0 64.71603 11.65825 5.55109 2.838939e-08

gamma_1 -13.45796 2.31666 -5.80921 6.276832e-09

gamma_2 1.99731 0.52652 3.79342 0.0001485865

gamma_3 0.06062 0.0234 2.5906 0.009580878

gamma_4 0.42286 0.17195 2.4592 0.0139247

=======================================================================

Log-lik(beta^,gamma^)= -156.5554

Mean Log-likelihood = -2.205006

-----------------------------------------------------------------------

AIC-CUBpq = 329.1109

BIC-CUBpq = 347.2123

with discrete-beta model:

$MU

Estimate Sd_error Wald_Test Pval codemu

(Intercept) -2.362550299 1.055355413 -2.238630 0.025180000 *

Max.vol..ml. 0.007512181 0.002862533 2.624313 0.008682399 **

Esofagite1 -0.550401594 0.270108595 -2.037705 0.041579459 *

$PHI

Estimate Sd_error Wald_Test Pval codephi

(Intercept) 4.803144878 1.629845778 2.946993 0.00320880 **

Max.vol..ml. -0.009633547 0.003985001 -2.417451 0.01562963 *

$AICc

[1] 334.6105

$AIC

[1] 333.6875

All the models agree on the significance of WLT values, but only CUB and our model

state that ERD patients have higher probability to have lower values than NERD pa-

tients. In addition, CUB tells us that age (γ3) and BMI (γ4) are significant. On the

other hand, for discrete-beta model patients who drink more water in WLT are less

precise in giving the score.
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3.3.2 Conclusion

Table 3.1: Summary of the result of the previous section. Models are presenting in non-
decreasing order of the score.

Nausea Model AIC Pirosis Model AIC Vomiting Model AIC

CUB 244.88 clm 244.40 D-beta 304.88

D-beta 248.36 D-beta 245.30 gamlss 305.69

gamlss 248.41 gamlss 245.34 CUB 318.51

clm 252.61 CUB 257.89 clm 321.50

P.fullness Model AIC E. satiety Model AIC Bloating Model AIC

D-beta 286.38 D-beta 305.52 clm 324.78

gamlss 287.70 gamlss 306.70 D-beta 326.04

CUB 291.19 clm 308.22 gamlss 326.31

clm 295.87 CUB 309.66 CUB 326.96

Epig p. Model AIC belching Model AIC

CUB 290.58 clm 315.91

gamlss 296.14 CUB 329.11

D-beta 299.90 gamlss 333.33

clm 305.83 D-beta 333.68

In the table are summarized the result of AIC for each analysis. As we can note,

discrete-beta models seems to be a good competitor with respect to the other standard

methods. In the previous section we also note that the predictions of our model are very

similar to those of clm and, above all, to those of gamlss model.





Chapter 4

Longitudinal ordinal data

One of the most common medical research designs is a pre-post study in which a single

baseline health status measurement is obtained, an intervention is administered, and a

single follow-up measurement is collected. The primary advantage of these studies is

that they can investigate the changes in the outcomes. For example, if some subjects are

given placebo while others are given an active drug, the two groups can be compared to

see if the change in the outcome is different for those subjects who are actively treated

as compared to control subjects. This design can be viewed as the simplest form of a

prospective longitudinal study.

A longitudinal study refers to an investigation where participant (or object) outcomes

are collected at multiple follow-up times.

Longitudinal studies generally yield multiple or repeated measurements on each

subject. For example, HIV patients may be followed over time and monthly measures

such as CD4 counts1 or viral load are collected to characterize immune status and di-

sease burden respectively. Such repeated measures data are correlated within subjects

and thus require special statistical techniques for valid analysis and inference.

4.1 Discrete-beta model with random effects

In order to take into account this correlation between the repeated responses, we add

random effects to the model (2.3) presented in the previous chapter. Mixed models have

become very popular for the analysis of longitudinal data because they are flexible and
1CD4 cells are a type of white blood cell that fights infection. The CD4 count measures the number

of CD4 cells in a sample of blood.
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widely applicable. They assume that measurements from a single subject share a set of

latent, unobserved, random effects which are used to generate an association structure

between the repeated measurements [80].

Let yit, yit ∈ {0, . . . , n}, be the outcome of the longitudinal ordinal variable Yit,

where i ∈ {0, 1, ..., N} refers to individuals and t ∈ {0, 1, ..., Ti} to the time; let yi
denote an Ti × 1 vector of responses for the ith individual and assume that Yit, given

µit and φit, follows a discrete-beta distribution, i.e.
(
Yit|µit, φit

)
∼ Dbeta(µit, φit, n).

These kinds of models are also called two-stage models. In the first stage, we assume

that

logit(µi) = Xµ
i β + Zµi biµ (4.1)

log(φi) = Xφ
i γ + Zφi biφ (4.2)

i = 1, · · · , N ;

where µi and φi are the Ti × 1 vectors, respectively of µit and φit. The population

parameters β and γ are treated as fixed effects, while biµ and biφ are random effects.

Since we are in longitudinal case, random effects will be link to the time. Finally, Xµ
i

and Xφ
i are design matrices, respectively of Ti × p and Ti × q dimensions, linking the

fixed effects to µi and φi; Zµi and Zφi are the matrices of between-subject covariates,

respectively of Ti × kµ and Ti × kφ dimensions, associated to the random effects. If we

suppose that the Ti values of yi, for the ith individual, are independent conditional on

biµ, biφ and the fixed-effects, the likelihood for the ith individual is

Li(β,γ| yi,biµ,biφ) = P (Yi = yi|β,γ,biµ,biφ)

=

Ti∏
j=1

I yij+1

n+1

(
µijφij , (1− µij)φij

)
− I yij

n+1

(
µijφij , (1− µij)φij

).
(4.3)

At the second stage, we add assumptions on random effects. In particular, in our

model biµ is taken to be N (0, σ2µDµ), and biφ is taken to be N (0, σ2φDφ), independently
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to each other and that satisfy the following condition

bi =

biµ

biφ

 iid∼ N


0

0

 ,D =

Dµ 0

0 Dφ


 , (4.4)

that is, its density function is

fbi(bi) =
1√

(2π)kµ+kφ |D|
exp

(
−1

2
bTi D−1bi

)
. (4.5)

Here Dµ are kµ×kµ and Dφ are kφ×kφ positive-definite covariance matrices, and |D| is
the determinant of D. In this case, we have a “conditional-independence model”, since

it implies that the Ti responses on individual i are independent conditional on bi and

the fixed effects β and γ. Note that there is no requirement for balance in the data

and that such “two-stage” model allows explicit modelling and analysis of between- and

within- individual variation. Stage 1 allows modeling the within-subject variation (or

occasion-to-occasion variation) separately for each subject. At Stage 2 we model the

between-subject variation by postulating a distribution for the individual parameters

bi.

Let θ to be the vector of variance e covariance parameters found in Dµ and Dφ,

i.e. its length is
[
kµ(kµ + 1)/2 + kφ(kφ + 1)/2

]
, the classical approach is based on the

maximum likelihood estimation of β, γ and θ from the marginal distribution of yT =

(yT1 , ...,y
T
N ) [46, 79, 72]. Due to the chain rule2 and the independence of biµ and biφ

we have

f(Yi,bi)(yi,bi) = P (Yi = yi|bi)fbi(bi)

= P (Yi = yi|bi)fbiµ(biµ)fbiφ(biφ). (4.6)

2In probability theory, the chain rule permits the calculation of any member of the joint distribution
of a set of random variables using only conditional probabilities.

P

 n⋂
k=1

Ak

 =

n∏
k=1

P

Ak
∣∣∣∣∣
k−1⋂
j=1

Aj

 , k ≥ 2.
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Thus, the marginal distribution of yi is given by

P (Yi = yi) =

∫
Rµ

∫
Rφ
P (Yi = yi|bi)fbiµ(biµ)fbiφ(biφ) dbiµdbiφ. (4.7)

If we assume that observations on different individuals are independent, we obtain that

the marginal likelihood of the data can be written in the following way

L(β,γ,θ|y) =

N∏
i=1

P (Yi = yi)

=

N∏
i=1

∫
Rµ

∫
Rφ
P (Yi = yi|bi)fbiµ(biµ)fbiφ(biφ) dbiµdbiφ

=

N∏
i=1

∫
Rµ

∫
Rφ
Li(β,γ| yi,biµ,biφ)fbiµ(biµ)fbiφ(biφ) dbiµdbiφ, (4.8)

and the log-likelihood is

l(β,γ,θ|y) = logL(β,γ,θ|y)

=
N∑
i=1

log

∫
Rµ

∫
Rφ
Li(β,γ| yi,biµ,biφ)fbiµ(biµ)fbiφ(biφ) dbiµdbiφ. (4.9)

Note that while the random effects bi are not parameters, they are estimable quan-

tities. The interest and focus on the unknown quantities β, γ, θ and bi depend on the

objectives of the research. In a clinical trial the fixed treatment effects are usually of

importance. In a biological application where the cluster of observations corresponds

to a certain animal, or breed, the interest is in ranking the random effects and the best

animal or breed. For genetic data the focus is on θ which contains the components of

genetic variability [79].

4.2 EM Algorithm

It is not trivial to maximize the likelihood (4.8): no closed-form expression is available

and its computation involves multidimensional integrations. In this case, the estimators

η̂ = (β̂, γ̂, θ̂) that maximize eq.(4.8) can be obtained using an EM algorithm. Its name

stands for expectation-maximization, and it is so named because it alternates between

calculating conditional expected values and maximized simplified likelihoods [68].
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The EM algorithm [20] is a general-purpose optimization routine for computing

maximum likelihood estimates. It was designed to be used for maximum likelihood

estimation for situation in which augmenting the data set leads to a simpler problem.

The actual data set is typically called the incomplete data in application of the EM

algorithm. In the longitudinal data setting, the EM algorithm provides a convenient

approach to computation, since the individual parameters biµ and biφ can be viewed as

missing data.

If we were to observe biµ, biφ in addition to yi, we could find simple closed-form

maximum likelihood estimates of the component of θ:

D̂µ =
1

N

N∑
i=1

biµb
T
iµ D̂φ =

1

N

N∑
i=1

biφb
T
iφ, (4.10)

or equivalently

D̂ =
1

N

N∑
i=1

bib
T
i , (4.11)

taking care to set bijbik equal to zero for all j = 1, · · · kµ and k = kµ+1, · · · , kµ+kφ (we

have to remind condition (4.4)). For simplicity this condition is omitted from notation

throughout this section, but when we write bib
T
i we mean the matrix with this condition

applied. Eq. (4.11) follows from the fact that, if biµ and biφ were observed, their

likelihood would have the exponential-family form with sufficient statistic
∑N

i=1 bib
T
i ,

since they are known to have zero mean. If estimates of β̃, γ̃, and θ̃, of, respectively, β,

γ and θ are available, we can use them to compute “estimates” of the missing sufficient

statistics, by setting them equal to their expectations, conditional on the observed data

vector y. For example, if we denote t2 =
∑N

i=1 bTi bi, then we have

t̃2 = E

 N∑
i=1

bTi bi

∣∣∣∣∣yi, β̃, γ̃, θ̃
 . (4.12)

Substituting the numerator of (4.11) with the result of (4.12), we obtain a new θ̃, and,

consequently β̃ and γ̃.

In a more formal way, at each iteration the expected of the augmented data log-

likelihood is computed, conditional on the observed data and the current parameter

values (E-step), than this pseudo-likelihood function is maximized to provide the next
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parameter values (M-step). This gives an iterative scheme, as described in detail in

the next two sections, that is used until it converges. Convergence is guaranteed under

relatively unrestricted condition [83].

4.2.1 E-step

In the E-step we compute the expectation of the log-likelihood of the augmented data

(yi,bi) conditional on the observed data and the current parameter values β̃, γ̃ and θ̃.

Let

Q (β,γ,θ) = E
[
l (β,γ,θ; y,b) |y, β̃, γ̃, θ̃

]
. (4.13)

Under the hypothesis of independence, we have that

L(β,γ,θ|y,b) =

N∏
i=1

f(Yi,bi)(yi,bi)

=
N∏
i=1

P (Yi = yi|bi)fbiµ(biµ)fbiφ(biφ)

=
N∏
i=1

Li(β,γ| yi,biµ,biφ)fbiµ(biµ)fbiφ(biφ) (4.14)

and consequently

l(β,γ,θ|y,b) = logL(β,γ,θ|y,b)

= log

 N∏
i=1

Li(β,γ| yi,biµ,biφ)fbiµ(biµ)fbiφ(biφ)


=

N∑
i=1

log
[
P (Yi = yi|bi)fbiµ(biµ)fbiφ(biφ)

]
=

N∑
i=1

[
logP (Yi = yi|bi) + log fbi(bi)

]
=

N∑
i=1

 Ti∑
t=1

logP (Yit = yit|bi) + log fbi(bi)


=

N∑
i=1

Ti∑
t=1

logP (Yit = yit|bi) +
N∑
i=1

log fbi(bi). (4.15)
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Thus, Q (β,γ,θ) can be written as:

Q (β,γ,θ) = E

 N∑
i=1

Ti∑
j=1

logP (Yit = yit|bi) +

N∑
i=1

log fbi(bi)

∣∣∣∣y, β̃, γ̃, θ̃


= E

 N∑
i=1

Ti∑
j=1

logP (Yit = yit|bi)
∣∣∣∣y, β̃, γ̃, θ̃

+ E

 N∑
i=1

log fbi(bi)

∣∣∣∣y, β̃, γ̃, θ̃


=
N∑
i=1

Ti∑
j=1

E

[
logP (Yit = yit|bi)

∣∣∣∣y, β̃, γ̃, θ̃
]

+
N∑
i=1

E

[
log fbi(bi)

∣∣∣∣y, β̃, γ̃, θ̃
]

= Q1 (β,γ) +Q2 (θ) , (4.16)

where the two terms Q1 (β,γ) and Q2 (θ) are

Q1 (β,γ) =
N∑
i=1

Ti∑
j=1

E

[
logP (Yit = yit|bi)

∣∣∣∣y, β̃, γ̃, θ̃
]

(4.17)

Q2 (θ) =

N∑
i=1

E

[
log fbi(bi)

∣∣∣∣y, β̃, γ̃, θ̃
]
. (4.18)

In order to compute the conditional expectations, we need the density of bi|yi. It

can be obtained by the Bayes’ formula

fbi|yi(bi|yi) =
P (Yi = yi|bi)fbi(bi)

P (Yi = yi)
. (4.19)

Substituting eq. (4.7) and (4.6) in eq. (4.19), we achieve the result.

The computation of the conditional expectations in eq. (4.17) and (4.18) is not

trivial because they involve multidimensional integrals. These expectations are not

available in closed form, but it possible to approximate these integrals by numerical

methods or Monte Carlo simulations. For dimensions less or equal to 2, Gaussian

quadrature may be used. We used cubature package in R software. This package

allows to compute multiple integrals in an adaptive way where integrations are based

on the algorithms described in [27, 6]. These algorithms are best suited for a moderate

number of dimensions (say, < 7), and is superseded for high-dimensional integrals by

other methods (e.g. Monte Carlo variants or sparse grids)[1]. An example of sparse grid

method can be found in [35].
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4.2.2 M-step

The M-step conveniently separates the estimation of the regression parameters β and

γ from the variance components θ. It has different interpretations for Q1 and Q2 from

the E-step.

To maximize Q2, note that this is the log-likelihood corresponding to N independent

observations from the “prior” random effects distribution fbi(bi) where the standard

sufficient statistics are replaced with their conditional expectations. In the case of a

diagonal D the estimates are

σ̂2g =
1

N

N∑
i=1

E
[
b2ig|yi, β̃, γ̃, θ̃

]
g = 1, · · · , kµ + kφ (4.20)

where σ̂2g denotes the g-element of the diagonal of D. In general case, when the variance-

covariance matrices Dµ and Dφ are unconstrained, Q2 is maximized by

D̂ =
1

N

N∑
i=1

E
[
bib

T
i |yi, β̃, γ̃, θ̃

]
, (4.21)

that is the same formula that we achieve combining eq. (4.12) and (4.11).

About the first term, Q1, we have not an analytic solution and we must use numerical

algorithms. As in the previous chapter, it is possible to maximize it with the quasi-

Newton algorithm.

The EM algorithm starts with a set of initial values for the parameters. A good

starting points for β and γ is given by a regression with no random effect (described

in the previous chapter). The initial value for D can be taken as the identity matrix.

The algorithm then iterates between these two steps until convergence. Note that,

due to the approximation of the E-step, the convergence of the log-likelihood is only

approximately monotone. The algorithm is considered to converge when all parameter

estimates become stable and no further improvements can be made to the likelihood

value. However, to reduce computational time, since the rate of convergence is very

slow [53], it is often common practice for the algorithm to be stopped before complete

convergence using heuristic approaches. For example, in [79] the algorithm is stopped

when the relative variation of all parameter values is less than 1 per cent (or after a

fixed number of steps), then convergence is assessed by visual inspection and the final

estimates are the average of the EM sequence over the convergent portion of the chain.
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4.3 Variance-covariance matrix estimation

As in the previous section, we estimate the variance-covariance matrix of the vector

β̂, γ̂, θ̂ trough the inverse of observed information matrix. The EM algorithm only

generates estimates and does not give the variance estimates as a byproduct, as do

the quasi-Newton method. To obtain variance estimate, extra computations must be

performed.

In [51], Louis derived a procedure for extracting the information matrix when the

EM is used. The technique requires computation of a complete-data gradient vector or

second derivatives matrix, but not those associated with the incomplete data likelihood.

Let ν = (β,γ,θ), then

I(ν) = E
[
−l̈(ν; y,b)|y,ν

]
− E

[
s(ν; y,b)s(ν; y,b)T |y,ν

]
, (4.22)

where l̈ and s denote the matrix of second and vector of first derivatives of l with respect

to ν. However, expectations must be computed. Thus, we preferred to estimate the

second derivatives directly from the marginal log-likelihood (4.8) in a numerical way.

Richardson’s extrapolation joint to finite differences is a method for calculating (usually)

accurate numerical first and second order derivatives. Simple difference method is also

an option: it is usually less accurate but is much quicker than Richardson’s extrapolation

and provides a useful cross-check. R-package numDeriv implements these methods.

4.4 Prediction of random effects

In some applications the magnitude of random effects is of interest. Estimation, or pre-

diction of random individual effects bi is obtained by using an empirical Bayes strategy

[72]

b̂i = E
[
bi|yi, ν̂

]
, (4.23)

with variance

v̂i = Var
[
bi|yi, ν̂

]
. (4.24)

Conditional on ν̂, the random effects b̂i depend only on yi, the data from cluster i.

Note that the asymptotic of ν̂ is governed by the number of individuals N , whereas the

asymptotic of b̂i is governed by the cluster size Ti.
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4.5 Case Study

Returning to the case study presented in the previous subsection 3.3, after the therapy

and the positive endoscopy, thirty-one patients (eighteen ERD patients and thirteen

NERD patients) undergone surgery. Nissen fundoplication3 (NF) is the most common

and effective surgical treatment for gastroesophageal reflux disease. Previous studies

have shown that after NF gastric emptying of solids and liquids is accelerated, the

resting pressure of the lower esophageal sphincter (LES) is increased and transient LES

relaxations are reduced.

After the surgery, the participants completed a symptom visual analogue scale (VAS,

0-10 cm; 0= absent, 10= maximal) to score the following: heartburn, postprandial

fullness, vomiting, early satiety, nausea, bloating, epigastric pain, belching, epigastric

burning.

Our Yi will be the score of the ith individual and the covariates should be BMI, age,

sex, level of disease (ERD, NERD) and the time (pre-post surgery).

4.5.1 Model comparison

In the following section, we analysed the data set, presented in the previous section,
adopting our model and a generalized linear model with binomial family. We present
only results on nausea symptom. With binomial model we obtain:

Generalized linear mixed model fit by the Laplace approximation

Formula: cbind(nausea, 10 - nausea) ~ BMI + esofagite + tempo + (1 | Paziente)

+ (0 + tempo | Paziente)

Data: Nissen_t

AIC BIC logLik deviance

145.4 162.4 -64.68 129.4

Random effects:

Groups Name Variance Std.Dev. Corr

Paziente (Intercept) 0.030433 0.17445

Paziente tempo0 1.653684 1.28596

tempo1 1.887979 1.37404 0.444

Number of obs: 62, groups: Paziente, 31

Fixed effects:

3In a fundoplication, the gastric fundus (upper part) of the stomach is wrapped, or plicated, around
the lower end of the esophagus and stitched in place, reinforcing the closing function of the lower
esophageal sphincter. The esophageal hiatus is also narrowed down by sutures to prevent or treat
concurrent hiatal hernia, in which the fundus slides up through the enlarged esophageal hiatus of the
diaphragm. In a Nissen fundoplication, also called a complete fundoplication, the fundus is wrapped
all the way 360 degrees around the esophagus.
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.7241 3.3869 1.395 0.1631

BMI -0.2339 0.1334 -1.753 0.0796 .

esofagiteS 0.9790 0.5028 1.947 0.0515 .

tempo1 -2.1056 0.3727 -5.650 1.6e-08 ***

---

and with discrete-beta model

$MU

Estimate Sd_error Pval

(Intercept) 1.65428385 0.9632638 0.08591093 .

Sessom 0.44350422 0.2489684 0.07485239 .

BMI -0.11338419 1.8939167 0.95226111

eta 0.01173522 0.9964852 0.99060384

tempo1 -1.83604170 0.9205365 0.04609369 *

$PHI

Estimate Sd_error Pval

(Intercept) -2.05315175 0.7548059 0.0065261101 **

eta 0.07459756 0.3748485 0.8422570700

tempo1 2.88745270 0.8230477 0.0004510739 ***

$VarcovMU

(Intercept) tempo1

(Intercept) 0.64283059 0.04961232

tempo1 0.04961232 0.70120039

$AIC

[1] 242.1153

Both models say that patients, after the surgery, have an higher probability to score

lower values than before the surgery. Our model also state that patients become more

precise after NF. As we note from the AIC, the discrete-beta models could be probably

improved eliminating some covariates.4

4Since the EM algorithm has a slow convergence, when we noted that the changes in β̂ and γ̂ have
a little influence on Q1, we stopped it. The we set θ̂F equal to the θ̂ obtained from the last step of the
EM and we maximized directly the marginal log-likelihood in order to obtain the final estimate of β̂F
and γ̂F with θ̂F . We also use the correction, proposed in [67], of second derivatives if it is necessary.
Other solutions to this numerical problem are under investigation.





Conclusions

In this work we proposed a new discrete probability distribution useful when we work

with ordered categorical data. The discrete-beta distribution, Dbeta(µ, φ, n), has a

highly flexible shape and it can be either over-dispersed or under-dispersed with respect

to the binomial distribution. It has only two parameters, µ and φ, which have a very

clear interpretation: µ is the mean of the beta latent variable and the greater its value

the higher the probability to obtain higher score; φ is a precision parameter (of the

latent variable) and the higher its value the lower the variance. For n > 2 the model is

identifiable and, adding directly covariates on parameters µ and φ (according to CUB

model framework), it is very suitable to regression.

The assumption of the equispaced cut-points, combined with the finite support of the

beta distribution, allows us to decrease the number of parameters in the model and to

obtain the flexible shapes described previously in this work. On the other hand, except

the U shapes, the model can not take into account bimodal shapes and so on. Thus,

in these cases our model is not recommended. Future improvements should regard

the mixture with an other distribution, such as an uniform distribution or another

beta distribution, in order to take into account more uncertainty and bimodal shapes.

Another idea is to change the set of cut-points, without increase exponentially the

number of parameters.

We also introduced random effects in order to take into account the correlations

in longitudinal data. An EM algorithm is proposed to find estimation of parameters.

Further investigations need to be done to increase the speed of convergence of the

algorithm and to achieve a better approximation of parameter estimates.

Other possible investigations involve the introduction of the Bayesian information

criterion (BIC), which is a criterion for model selection, based, in part, on the likeli-

hood function and closely related to the Akaike information criterion (AIC), and the

73
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comparisons with CUBE models. In this thesis, we restricted the comparisons between

the most used model, the cumulative logistic regression, and the other models with one

or two parameters (CUB, beta-binomial and binomial models).
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In this appendix, R-script for maximum likelihood estimation, for single population and

in presence of covariates are shown.
For single population:

x <- rbetadiscr(100,size,mu,phi)

t1 <- proc.time()

stima=optim(par=c(mean(x),1/var(x)), fn=verosim, x=x, size=size, method = "L-BFGS-B", hessian=T,

lower = c(2^{-1074}, 0+.Machine$double.eps),

upper = c(1-.Machine$double.eps, Inf))

t2 <- proc.time()

t2-t1

hess1 <- stima$hessian

hess3 <- solve(hess1)

sdval2 <- diag(hess3)

sdval <- sqrt(sdval2)

z<- qnorm(0.975)

interval_mu <- c( stima$par[1] - z*sdval[1], stima$par[1] + z*sdval[1])

interval_phi <- c( stima$par[2] - z*sdval[2], stima$par[2] + z*sdval[2])

sol_mu <- matrix(round(c(stima$par[1], interval_mu, stima$par[1]/sdval[1]),5), nrow=1)

dimnames(sol_mu)[[2]] <- c("estimate","lower bound", "upper bound", "Wald test")

sol_phi <- matrix(round(c(stima$par[2], interval_phi, stima$par[2]/sdval[2]),5), nrow=1)

dimnames(sol_phi)[[2]] <- c("estimate","lower bound", "upper bound", "Wald test")

list( mu= sol_mu, phi= sol_phi)

In presence of covariates:

bdmod <- function(y,formulamu, formulaphi, data)

{

#creo la matrice di design per mu

mat_mu <- model.matrix(formulamu, data)

mat_mup <<- mat_mu

75
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#creo la matrice di design per phi

mat_phi <- model.matrix(formulaphi, data)

mat_phip <<- mat_phi

n <- dim(data)[1]

size <- sum(y[1,])

# funzione di log verosim da massimizzare

logverosim <- function(par,x,size,mat_mu,mat_phi){

beta_mu <- par[1:dim(mat_mu)[2]]

beta_phi <- par[(dim(mat_mu)[2]+1) : (dim(mat_mu)[2]+dim(mat_phi)[2])]

mu <- 1/(1+exp(- (mat_mu %*% beta_mu))) #vettore dei mu

phi <- exp(mat_phi %*% beta_phi) #vettore dei phi

mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))

mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))

phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))

phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))

alfa1 <- mu*phi

alfa2 <- (1-mu)*phi

alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))

alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))

alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))

alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))

a <- pbeta(x/(size +1),alfa1,alfa2)

b <- pbeta((x+1)/(size +1),alfa1,alfa2)

#if ( sum(is.na(a))!= 0) cat("problema con mu=", mu, " e phi=", phi, "\n ")

#if ( sum(is.na(b))!= 0) cat("problema con mu=", mu, " e phi=", phi, "\n ")

l <- sum(log(b-a))

-l

}

stima = optim(par=rep(0.1, dim(mat_mu)[2] + dim(mat_phi)[2]) , fn=logverosim,

x=y[,1], size=size, mat_mu=mat_mu, mat_phi=mat_phi,

method = "BFGS", hessian=TRUE )

per_mu = matrix(stima$par[1:dim(mat_mu)[2]], ncol=1)

per_mu = data.frame(per_mu)

dimnames(per_mu)[[1]] <- dimnames(mat_mu)[[2]]

dimnames(per_mu)[[2]] <- c("Estimate")

per_phi = matrix(stima$par[(dim(mat_mu)[2]+1) : (dim(mat_mu)[2]+dim(mat_phi)[2])], ncol=1)

per_phi = data.frame(per_phi)
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dimnames(per_phi)[[1]] <- dimnames(mat_phi)[[2]]

dimnames(per_phi)[[2]] <- c("Estimate")

simm <- stima$hessian

simm <- solve(simm)

sdval <- diag(simm)

sdval <- sqrt(sdval)

pvalmu <- 2*(1-pnorm(abs(per_mu[,1]/sdval[1:dim(per_mu)[1]])))

pvalphi <- 2*(1-pnorm(abs(per_phi[,1]/sdval[-(1:dim(per_mu)[1])])))

codemu <- rep(" ", dim(per_mu)[1])

codemu[which(pvalmu<=0.001)] <- rep("***",length(pvalmu[pvalmu<=0.001]))

codemu[which(pvalmu>0.001 & pvalmu<=0.01)] <-

rep("**",length(which(pvalmu>0.001 & pvalmu<=0.01)))

codemu[which(pvalmu>0.01 & pvalmu<=0.05)] <-

rep("*",length(which(pvalmu>0.01 & pvalmu<=0.05)))

codemu[which(pvalmu>0.05 & pvalmu<=0.1)] <-

rep(".",length(which(pvalmu>0.05 & pvalmu<=0.1)))

codephi <- rep(" ", dim(per_phi)[1])

codephi[which(pvalphi<=0.001)] <- rep("***",length(pvalphi[pvalphi<=0.001]))

codephi[which(pvalphi>0.001 & pvalphi<=0.01)] <-

rep("**",length(which(pvalphi>0.001 & pvalphi<=0.01)))

codephi[which(pvalphi>0.01 & pvalphi<=0.05)] <-

rep("*",length(which(pvalphi>0.01 & pvalphi<=0.05)))

codephi[which(pvalphi>0.05 & pvalphi<=0.1)] <-

rep(".",length(which(pvalphi>0.05 & pvalphi<=0.1)))

per_mu <- cbind(per_mu, Sd_error= sdval[1:dim(per_mu)[1]],

Wald_Test=per_mu[,1]/sdval[1:dim(per_mu)[1]], Pval= pvalmu, codemu)

per_phi <- cbind(per_phi, Sd_error=sdval[-(1:dim(per_mu)[1])],

Wald_Test=per_phi[,1]/sdval[-(1:dim(per_mu)[1])], Pval=pvalphi, codephi)

k= length(stima$par)

N <- dim(data)[1]

AIC = 2*( k + stima$value)

AICc = AIC + + 2*k*(k+1)/(N -k -1)

list( MU = per_mu, PHI = per_phi, AICc = AICc, AIC= AIC)

}

Probability mass function, cumulative probability function, quantile function and
random function of a discrete-beta distribution.

#######################################################################
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#

# dbetadiscr(k,n,mu,sigma)

#

# k = outcome (between 0 and n)

# size = number of possibility

# mu = mean of the latent beta distribution

# phi = precision parameter (alpha + beta) of the lantent

# beta distribution

######################################################################

dbetadiscr <<- function(x,size,mu,phi,log=FALSE){

if (sum(x<0)!=0 | sum(x>size)!=0 | sum(round(x))!= sum(x))

cat ("ERROR: x must be integer between 0 and n \n")

else

if (size<=0 | round(size)!= size)

cat ("ERROR: size must be integer greater than 0 \n")

else

if (sum(mu<0)!=0 | sum(mu>1)!=0)

cat ("ERROR: mu must be between 0 and 1 \n")

else

if (sum(phi<0)!=0 )

cat ("ERROR: phi must be positive \n")

else

pbeta((x+1)/(size+1),mu*phi, (1-mu)*phi) -

pbeta((x)/(size+1),mu*phi, (1-mu)*phi)

}

#######################################################################

#

# pbetadiscr(x,size,mu,phi)

#

# x = real number or vector of real

# size = number of possibility

# mu = mean of the latent beta distribution

# phi = precision parameter (alpha + beta) of the lantent

# beta distribution

######################################################################

pbetadiscr <<- function(x,size,mu,phi,lower.tail = TRUE, log.p = FALSE){

if (size<=0 | round(size)!= size)

cat ("ERROR: size must be integer greater than 0 \n")

else

if (sum(mu<0)!=0 | sum(mu>1)!=0)

cat ("ERROR: mu must be between 0 and 1 \n")
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else

if (sum(phi<0)!=0 )

cat ("ERROR: phi must be positive \n")

else {

k = floor(x)

pbeta((k+1)/(size+1),mu*phi, (1-mu)*phi,lower.tail = lower.tail,

log.p = log.p)

}

}

#######################################################################

#

# qbetadiscr(u,n,mu,phi)

#

# u = quantile (between 0 and 1)

# size = number of possibility

# mu = mean of the latent beta distribution

# phi = precision parameter (alpha + beta) of the lantent

# beta distribution

######################################################################

qbetadiscr <<- function(p,size,mu,phi,lower.tail = TRUE, log.p = FALSE){

if (sum(p<0)!=0 | sum(p>1)!=0)

cat ("ERROR: p must be between 0 and 1 \n")

else

if (size<=0 | round(size)!= size)

cat ("ERROR: size must be integer greater than 0 \n")

else

if (sum(mu<0)!=0 | sum(mu>1)!=0)

cat ("ERROR: mu must be between 0 and 1 \n")

else

if (sum(phi<0)!=0 )

cat ("ERROR: phi must be positive \n")

else

{

ris = ceiling(qbeta(p, mu*phi, (1-mu)*phi,lower.tail = lower.tail,

log.p = log.p) * (size+1))-1

ris[ris==-1] = rep(0,length(ris[ris==-1]))

ris

}

}
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#######################################################################

#

# rbetadiscr(n,size,mu,phi)

#

# n = number of observations. If length(n) > 1, the length is taken to be

# the number required.

# size = number of possibility

# mu = mean of the latent beta distribution

# phi = precision parameter (alpha + beta) of the lantent

# beta distribution

######################################################################

rbetadiscr <<- function(n,size,mu,phi){

if (n<=0 | round(n)!= n)

cat ("ERROR: n must be integer greater than 0 \n")

else

if (size<=0 | round(size)!= size)

cat ("ERROR: size must be integer greater than 0 \n")

else

if (mu<0 | mu>1)

cat ("ERROR: mu must be between 0 and 1 \n")

else

if (phi<0)

cat ("ERROR: phi must be positive \n")

else

{

a <- rbeta(n, mu*phi, (1-mu)*phi)

sol <- floor(a*(size+1))

sol[sol==size+1] = rep(size,length(sol[sol==size+1]))

sol

}

}
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R-script for estimation in case of longitudinal data. In this script, random effects are
added only for µ.

bdmod <- function(y,formulamu, formulaphi, randommu, data)

{

library(Matrix)

library(mnormt)

library(cubature)

library(MCMCpack)

attach(data)

size <- sum(y[1,])

#creo la matrice totale di design per mu

mat_mutot <- model.matrix(formulamu, data)

#creo la matrice totale di design per phi

mat_phitot <- model.matrix(formulaphi, data)

#######################################################################

# matrice sparsa dei random effect per mu e matrici parziali

a <- all.vars(randommu[[2]])

eval(parse(text=paste("f <- ~ ", a[1], sep=" ")))

datasplit <- split(data, eval(parse(text=a[2])))

mat_mu <- NULL

r_mu <- NULL

T <- dim(datasplit[[1]])[1]

for (i in (1:length(datasplit)) ) {

r_mu[[i]] <- model.matrix(f,datasplit[[i]])

mat_mu[[i]] <- model.matrix(formulamu, datasplit[[i]])

}

nbmu <- dim(r_mu[[1]])[2]

r_mutot <- bdiag(r_mu)

# matrice sparsa dei random effect per phi e matrici parziali

mat_phi <- NULL

for (i in (1:length(datasplit)) ) {

mat_phi[[i]] <- model.matrix(formulaphi, datasplit[[i]])

}

############################################################################

detach(data)

lrmu <- dim(r_mu[[1]])[1]*(dim(r_mu[[1]])[1] +1)/2

theta <- rep(0, lrmu)

theta[ cumsum(rep(1, dim(r_mu[[1]])[1]) + c(0, (dim(r_mu[[1]])[1]-1):1))] = rep(1, dim(r_mu[[1]])[1])
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varcovmu <- xpnd( theta[ 1: lrmu])

verosimp <- function(par,x,size,mat_mu,mat_phi,r_mu,varcovmu){

beta_mu <- par[1:dim(mat_mu)[2]]

beta_phi <- par[-(1:dim(mat_mu)[2])]

fyi <- function(bstim,x,size,mat_mu,mat_phi,r_mu,varcovmu,beta_mu, beta_phi){

b_mu <- bstim

mu <- 1/(1+exp(- (mat_mu %*% beta_mu) - (r_mu %*% (b_mu))))

phi <- exp(mat_phi %*% beta_phi )

# controls

mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))

mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))

phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))

phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))

alfa1 <- mu*phi

alfa2 <- (1-mu)*phi

alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))

alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))

alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))

alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))

a <- pbeta(x/(size +1),alfa1,alfa2)

b <- pbeta((x+1)/(size +1),alfa1,alfa2)

l <- prod(abs(b-a))* dmnorm(b_mu, rep(0,dim(r_mu)[1]), varcovmu)

l

}

adaptIntegrate(fyi, lower=-10*diag(varcovmu), upper=10*diag(varcovmu), x=x,size=size,

mat_mu=mat_mu,mat_phi=mat_phi,r_mu=r_mu,varcovmu=varcovmu,beta_mu=beta_mu,

beta_phi=beta_phi, maxEval=15000 )$integral

}

### log-verosimiglianza totale

denominatore_fcondizionata <- function(par, y , T, size, datasplit, mat_mu, mat_phi, r_mu, varcovmu ){

lv <<- NULL

for (i in (1:length(datasplit)) ) {

lv <<- c(lv, verosimp(par=par,x=y[(i*T -T +1):(i*T),1],size=size,mat_mu=mat_mu[[i]],mat_phi=mat_phi[[i]],

r_mu=r_mu[[i]],varcovmu=varcovmu) )

}

lv

}

densityb2 <- function(bstim,b2,x,size,mat_mu,mat_phi,r_mu,varcovmu,beta_mu, beta_phi)

{

b_mu <- bstim

mu <- 1/(1+exp(- (mat_mu %*% beta_mu) - (r_mu %*% (b_mu))))

phi <- exp(mat_phi %*% beta_phi )

mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))

mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))

phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))

phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))
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alfa1 <- mu*phi

alfa2 <- (1-mu)*phi

alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))

alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))

alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))

alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))

a <- pbeta(x/(size +1),alfa1,alfa2)

b <- pbeta((x+1)/(size +1),alfa1,alfa2)

l <- prod(bstim[b2])* prod(abs(b-a))* dmnorm(b_mu, rep(0,dim(r_mu)[1]), varcovmu)

l

}

logverosim_cond <- function(par,x,size,mat_mu,mat_phi,r_mu,varcovmu,beta_muv, beta_phiv){

beta_mu <- par[1:dim(mat_mu)[2]]

beta_phi <- par[(dim(mat_mu)[2]+1) : (dim(mat_mu)[2]+dim(mat_phi)[2])]

finteg <- function(bstim,x,size,mat_mu,mat_phi,r_mu,varcovmu,beta_mu,beta_phi,beta_muv, beta_phiv){

b_mu <- bstim[1:dim(r_mu)[1]]

mu <- 1/(1+exp(- (mat_mu %*% beta_mu) - (r_mu %*% b_mu)))

phi <- exp(mat_phi %*% beta_phi)

mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))

mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))

phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))

phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))

alfa1 <- mu*phi

alfa2 <- (1-mu)*phi

alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))

alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))

alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))

alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))

a <<- pbeta(x/(size +1),alfa1,alfa2) E

b <<- pbeta((x+1)/(size +1),alfa1,alfa2)

c <- b-a

muv <- 1/(1+exp(- (mat_mu %*% beta_muv) - (r_mu %*% b_mu)))

phiv <- exp(mat_phi %*% beta_phiv)

muv[muv==1] <- rep(1-.Machine$double.eps, length(muv[muv==1]))

muv[muv==0] <- rep(2^(-1074), length(muv[muv==0]))

phiv[phiv==0] <- rep(2^(-1074), length(phiv[phiv==0]))

phiv[phiv==Inf] <- rep(2^(1023), length(phiv[phiv==Inf]))

alfa1v <- muv*phiv

alfa2v <- (1-muv)*phiv

alfa1v[alfa1v==0] <- rep(2^(-1074), length(alfa1v[alfa1v==0]))

alfa1v[alfa1v==Inf] <- rep(2^(1023), length(alfa1v[alfa1v==Inf]))

alfa2v[alfa2v==0] <- rep(2^(-1074), length(alfa2v[alfa2v==0]))

alfa2v[alfa2v==Inf] <- rep(2^(1023), length(alfa2v[alfa2v==Inf]))

av <<- pbeta(x/(size +1),alfa1v,alfa2v)

bv <<- pbeta((x+1)/(size +1),alfa1v,alfa2v)

cv <- bv-av

lik <- prod(abs(c))
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if (lik==0) lik=2^(-1074)

l <- log(lik)* prod(abs(bv-av))*dmnorm(b_mu, rep(0,dim(r_mu)[1]), varcovmu)

-l

}

adaptIntegrate(finteg, lower=-10*diag(varcovmu),

upper=+10*diag(varcovmu),

x=x,size=size,mat_mu=mat_mu,mat_phi=mat_phi,r_mu=r_mu,

varcovmu=varcovmu, beta_mu=beta_mu, beta_phi=beta_phi,beta_muv=beta_muv,beta_phiv=beta_phiv,

maxEval=15000 )$integral

}

fminim <- function(par, y , T, size, datasplit, mat_mu, mat_phi, r_mu, varcovmu, varcovphi,

beta_muv, beta_phiv ){

lg <<- NULL

for (i in (1:length(datasplit)) ) {

lg <<- c(lg, logverosim_cond(par=par,x=y[(i*T -T +1):(i*T),1],size=size,mat_mu=mat_mu[[i]],

mat_phi=mat_phi[[i]],r_mu=r_mu[[i]],varcovmu=varcovmu,beta_muv=beta_muv, beta_phiv=beta_phiv) )

}

sum(lg/lv)

}

log_ver0 <- -Inf

log_ver1 <- Inf

n_iter = 1

parbeta <- NULL

pargamma <- NULL

inizio <- function(par,x,size,mat_mu,mat_phi){

beta_mu <- par[1:dim(mat_mu)[2]]

beta_phi <- par[(dim(mat_mu)[2]+1) : (dim(mat_mu)[2]+dim(mat_phi)[2])]

mu <- 1/(1+exp(- (mat_mu %*% beta_mu)))

phi <- exp(mat_phi %*% beta_phi)

mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))

mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))

phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))

phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))

alfa1 <- mu*phi

alfa2 <- (1-mu)*phi

alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))

alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))

alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))

alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))

a <- pbeta(x/(size +1),alfa1,alfa2)

b <- pbeta((x+1)/(size +1),alfa1,alfa2)

l <- sum(log(b-a))

-l

}

stima = optim(par=rep(0.1, dim(mat_mu[[1]])[2] + dim(mat_phi[[1]])[2]) , fn=inizio, x=y[,1], size=size,

mat_mu=mat_mutot, mat_phi=mat_phitot, method = "BFGS" )

beta_mu <- stima$par[1:dim(mat_mu[[1]])[2]]

beta_phi <- stima$par[-(1:dim(mat_mu[[1]])[2])]

log_ver <- NULL

thetatot <- theta

while ( abs(log_ver1 - log_ver0) > 0.001 & n_iter<=30 ){

cat("E \n")
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theta1 <- matrix(rep(0, length(datasplit)*length(theta)), nrow= length(datasplit))

for (i in (1:length(datasplit)) ) {

k=1 #inizializzo il contatore della posizione di theta

for (j in (1: dim(varcovmu)[1]) ) { #ciclo su tutte le righe per theta-mu

for (s in (j:dim(varcovmu)[2])) {

theta1[i,k] <- adaptIntegrate(densityb2, lower=-10*diag(varcovmu),

upper=10*diag(varcovmu), b2= c(j,s),

x=y[(i*T -T +1):(i*T),1],size=size,mat_mu=mat_mu[[i]],mat_phi=mat_phi[[i]],r_mu=r_mu[[i]],

varcovmu=varcovmu,beta_mu=beta_mu, beta_phi=beta_phi, maxEval=15000 )$integral

k = k+1

}

}

}

lv <<- denominatore_fcondizionata(par=c(beta_mu,beta_phi), y=y , T=T, size=size, datasplit=datasplit,

mat_mu =mat_mu, mat_phi=mat_phi, r_mu=r_mu, varcovmu=varcovmu)

if( any(lv==0) ) cat("problema con il denominatore")

theta1 <- theta1 / (matrix(rep(lv, dim(theta1)[2]), ncol= dim(theta1)[2]))

theta <- apply(theta1, 2, sum)/length(lv)

cat("M \n")

t1=proc.time()

stima = optim(par=c(beta_mu,beta_phi), fn=fminim, y=y, size=size,

datasplit= datasplit, T=T, r_mu=r_mu, varcovmu=varcovmu,

mat_mu=mat_mu, mat_phi=mat_phi, beta_muv=beta_mu, beta_phiv=beta_phi, method = "BFGS" )

beta_mu <- stima$par[1:dim(mat_mu[[1]])[2]]

beta_phi <- stima$par[-(1:dim(mat_mu[[1]])[2])]

varcovmu <- xpnd( theta[ 1: lrmu])

log_ver0 <- log_ver1

log_ver1 <- stima$value

n_iter <- n_iter+1

parbeta <- rbind(parbeta,beta_mu)

pargamma <- rbind(pargamma,beta_phi)

log_ver <- c(log_ver, log_ver1)

thetatot <- rbind(thetatot, theta)

}

verosim_der2 <- function(par,theta, y,mat_mu,mat_phi,size,r_mu,low,up){

nbeta <- dim(mat_mu)[2]

ngamma <- dim(mat_phi)[2]

beta_mu <- par[1:nbeta]

beta_phi <- par[(nbeta+1) : (nbeta+ngamma)]

varcovmu <- xpnd(theta)

finteg <- function(bstim,x,size,mat_mu,mat_phi,r_mu,varcovmu,low,up,beta_mu,beta_phi){

b_mu <- bstim[1:dim(r_mu)[1]]

mu <- 1/(1+exp(- (mat_mu %*% beta_mu) - (r_mu %*% b_mu)))

phi <- exp(mat_phi %*% beta_phi)

mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))

mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))

phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))
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phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))

alfa1 <- mu*phi

alfa2 <- (1-mu)*phi

alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))

alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))

alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))

alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))

a <- pbeta(x/(size +1),alfa1,alfa2)

b <- pbeta((x+1)/(size +1),alfa1,alfa2)

c <- b-a

lik <- prod(abs(c))

if (lik==0) lik=2^(-1074)

l <- lik*dmnorm(b_mu, rep(0,dim(r_mu)[1]), varcovmu)

l

}

adaptIntegrate(finteg, lower=low, upper=up,

x=y,size=size,mat_mu=mat_mu,mat_phi=mat_phi,r_mu=r_mu,

varcovmu=varcovmu, beta_mu=beta_mu, beta_phi=beta_phi, maxEval=15000 )$integral

}

f <- function(par, theta, y , T, size, datasplit, mat_mu, mat_phi, r_mu, low, up){

ver <<- NULL

for (i in (1:length(datasplit)) ) {

#attach(datasplit[[i]]) #forse non mi serve

ver <<- c(ver, verosim_der2(par=par,theta=theta,y=y[(i*T -T +1):(i*T),1],size=size,

mat_mu=mat_mu[[i]],mat_phi=mat_phi[[i]],r_mu=r_mu[[i]], low=low,up=up) )

}

-sum(log(ver))

}

results <- optim(par=c(beta_mu,beta_phi) , fn=f,theta=theta, y=y, T=T, size=size, datasplit=datasplit,

mat_mu=mat_mu, mat_phi=mat_phi, r_mu=r_mu,low=low, up=up, method = "BFGS", hessian=T)

per_mu = matrix(results$par[1:dim(mat_mu[[1]])[2]], ncol=1)

per_mu = data.frame(per_mu)

dimnames(per_mu)[[1]] <- dimnames(mat_mu[[1]])[[2]]

dimnames(per_mu)[[2]] <- c("Estimate")

per_phi = matrix(results$par[-(1:dim(mat_mu[[1]])[2])], ncol=1)

per_phi = data.frame(per_phi)

dimnames(per_phi)[[1]] <- dimnames(mat_phi[[1]])[[2]]

dimnames(per_phi)[[2]] <- c("Estimate")

simm <- risults$hessian

simm <- PDFORCE(simm)

simm <- solve(simm)

sdval <- diag(simm)

sdval <- sqrt(sdval)

pvalmu <- 2*(1-pnorm(abs(per_mu[,1]/sdval[1:dim(per_mu)[1]])))

pvalphi <- 2*(1-pnorm(abs(per_phi[,1]/sdval[-(1:dim(per_mu)[1])])))

codemu <- rep(" ", dim(per_mu)[1])

codemu[which(pvalmu<=0.001)] <- rep("***",length(pvalmu[pvalmu<=0.001]))

codemu[which(pvalmu>0.001 & pvalmu<=0.01)] <- rep("**",length(which(pvalmu>0.001 & pvalmu<=0.01)))

codemu[which(pvalmu>0.01 & pvalmu<=0.05)] <- rep("*",length(which(pvalmu>0.01 & pvalmu<=0.05)))
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codemu[which(pvalmu>0.05 & pvalmu<=0.1)] <- rep(".",length(which(pvalmu>0.05 & pvalmu<=0.1)))

codephi <- rep(" ", dim(per_phi)[1])

codephi[which(pvalphi<=0.001)] <- rep("***",length(pvalphi[pvalphi<=0.001]))

codephi[which(pvalphi>0.001 & pvalphi<=0.01)] <- rep("**",length(which(pvalphi>0.001 & pvalphi<=0.01)))

codephi[which(pvalphi>0.01 & pvalphi<=0.05)] <- rep("*",length(which(pvalphi>0.01 & pvalphi<=0.05)))

codephi[which(pvalphi>0.05 & pvalphi<=0.1)] <- rep(".",length(which(pvalphi>0.05 & pvalphi<=0.1)))

per_mu <- cbind(per_mu, Sd_error= sdval[1:dim(per_mu)[1]], Pval= pvalmu, codemu)

per_phi <- cbind(per_phi, Sd_error=sdval[-(1:dim(per_mu)[1])], Pval=pvalphi, codephi)

k= length(c(risults$par,theta))

N <- dim(data)[1]

AIC = 2*( k + risults$value)

dimnames(varcovmu)[[1]] <- dimnames(r_mu[[1]])[[2]]

dimnames(varcovmu)[[2]] <- dimnames(r_mu[[1]])[[2]]

list( MU = per_mu, PHI = per_phi, VarcovMU = varcovmu, AIC= AIC)

}
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Abstract: Knowledge of markers in the human genome which show spatial patterns and display extreme correlation with different 
environmental determinants play an important role in understanding the factors which affect the biological evolution of our species. We 
used the genotype data of more than half a million single nucleotide polymorphisms (SNPs) from the data set Human Genome Diversity 
Panel (HGDP-CEPH -CEPH) and we calculated Spearman’s correlation between absolute latitude and one of the two allele frequen-
cies of each SNP. We selected SNPs with a correlation coefficient within the upper 1% tail of the distribution. We then used a criterion 
of proximity between significant variants to focus on DNA regions showing a continuous signal over a portion of the genome. Based 
on external information and genome annotations, we demonstrated that most regions with the strongest signals also have biological 
relevance. We believe this proximity requirement adds an edge to our novel method compared to the existing literature, highlighting 
several genes (for example DTNB, DOT1L, TPCN2, RELN, MSRA, NRG3) related to body size or shape, human height, hair color, and 
schizophrenia. Our approach can be applied generally to any measure of association between polymorphic frequencies and continuously 
varying environmental variables.

Keywords: adaptations, spatial patterns, latitude, point processes, outlier approach
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Introduction
From an evolutionary point of view, human bio-
logical variation can result from natural selection, 
genetic drift and demographic processes. In human 
population genetics, several ways have been found to 
highlight genes that may be subject to selective pres-
sures, and in recent years whole genome  scanning 
techniques have made it possible to find signatures 
of selection.1–4 The Human Genome Diversity  Project 
(HGDP-CEPH) database5 has been repeatedly inves-
tigated in order to identify markers in the human 
genome which show geographical patterns and to 
explain how different selective forces can shape 
human genetic variations across continents. One strat-
egy for the detection of spatial selection signatures is 
the outlier approach.2,6,7 Using genome-wide data sets 
genotyped in different human populations, genetic 
variables—such as single nucleotide polymorphisms 
(SNPs)—that exhibit extreme correlations with lati-
tude or with other environmental determinants are 
identified as candidate targets for selective pressure. 
By “extreme  correlation” we mean that the value of a 
certain statistic, measuring the strength of the relation-
ship between allele frequencies and latitude or other 
environmental variables, falls in the tails of the distri-
bution of the same statistic over the whole genome. 
Many choices are possible for the relevant statistic, 
ranging from a simple (either Pearson or Spearman) 
correlation coefficient between the latitude and the 
frequencies of either one or two alleles of a SNP to 
a Bayes factor comparing two models that do and 
do not, respectively, take into account the effect of a 
dichotomous environmental variable on the distribu-
tion of a genetic variant. From a technical point of 
view, the outlier approach is just a reformulation of 
the concept of statistical significance, ie, variation 
with respect to a reference distribution.

The outlier approach has been used to study sodium 
homeostasis balance as an example of adaptation. In 
hot and dry climates, genes influencing salt and water 
retention are favored by selection, explaining in this 
way large inter-ethnic differences in the prevalence 
of salt-sensitive hypertension.8,9 Other important 
research has been conducted to assess the correlation 
between four variables that summarize climate and 
the frequencies of 873 tag SNPs in 82 genes related to 
energy metabolic pathways.6 The outlier approach has 
also been used to demonstrate that allele frequencies 

of a subset of genes coding for blood group antigens 
vary with levels of pathogen richness, supporting the 
idea that these loci affect susceptibility to infectious 
diseases.10 This finding, which is compatible with 
previous evidences on the correlation between HLA 
class I diversity and pathogen richness,11 is important 
for stressing the role of diseases and pathogens, like 
virus protozoa fungi, in shaping human  variations.12 
Finally, a very comprehensive article on the 
 HGDP-CEPH database (enriched with the Hap Map 
and other human populations databases) has recently 
been published, in which the outlier approach is used 
to highlight polymorphisms and pathways correlated 
with ecoregion membership and diet.13

Our idea is to reinforce the outlier approach by 
considering a criterion of proximity between signif-
icant variants. In the search for targets of selective 
pressure, we believe it is important to focus on those 
DNA regions which repeatedly contain values which 
are labeled as significant by the outlier approach. 
In other words, we look for evidence of a continu-
ous signal over a portion of the genome which can 
strengthen the significance of a cluster of markers 
labeled as significant by the outlier approach alone 
and we built statistical tools.

In this paper we therefore adopt a search-
and-confirm approach which integrates the outlier 
approach by identifying regions of the genome where 
not just one, but a significant number of SNPs are 
located in the tails of the distribution of the relevant 
statistic, when compared to the number of SNPs origi-
nally genotyped in the same region. This is done in the 
following three steps, which are further illustrated in 
the complete workflow process diagram in Figure 1:

1. The outlier method: We identify 1% significant 
SNPs as having an absolute value of the Spearman 
correlation coefficient with latitude above its 99th 
percentile;

2. The proximity-based algorithm: Using the methods 
described in detail in the Materials and Methods 
section, we select candidate regions in the genome 
which exhibit the strongest signals, ie, the regions 
where the significant SNPs identified above are 
present at a significantly higher rate when compared 
to the number of originally genotyped SNPs;

3. Biological relevance: We investigate the biological 
relevance of the strongest signals by  comparing our 
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data with results from Genome Wide Association 
studies (GWAs),14 by studying the canonical path-
way processes through gene-annotation enrich-
ment analysis15 and by comparing our  analysis with 
previously published genomic scans for selective 
sweep.3,16

Materials and Methods
We describe here our methods with reference to the 
three-step process described in the Introduction.

Step 1: Our data and the outlier method
We used a data set of 660,832 SNPs genotyped in 
51 human populations distributed worldwide from 
the HGDP-CEPH panel.1 As underlined by a previ-
ous article,17 within the HGDP-CEPH panel there are 
some closely-related individuals; in order to over-
come this possible source of bias we excluded one 
member of each relative pair and we used 938 HGDP-
CEPH individuals. Information about sample sizes 
and latitudes of the populations can be found on the 

CEPH homepage http://www.cephb.fr/en/hgdp/table.
php.5 Only 22 autosomes are included in our  analysis; 
we also removed SNPs with more than 10% of miss-
ing genotypes and the ones that failed the Hardy-
 Weinberg equilibrium test in at least one  population. 
After  filtering, we use 545,209 SNPs. 

 Statistical analysis is performed using R.18 We calcu-
lated Spearman’s correlation (the correlation coefficient 
between the ranks of two variables) between absolute 
latitude and one of the two alleles of each SNP and, using 
the outlier approach, we identified those SNPs which 
have an absolute Spearman’s correlation coefficient fall-
ing in the upper 1% tail of the distribution (Fig. 2).

Step 2: The proximity-based algorithm
For each chromosome, we now have two sequences 
of serial positions: one for all genotyped SNPs and 
one for the significant SNPs, the latter of which are 
included in the former. Each chromosome is indexed 
by the sequence of base pairs: as an approximation, 
we can view a  chromosome as a linear segment and 

HGDP-CEPH data: 660,832 SNPs genotyped in 51 human populations
(autosomes only, filtered for unrelated, no missing and HW)

Calculate spearman’s correlation ρ between absolure latitute and each SNP frequency.
Selected those SNPs fallng in the upper 1% tail of the distribution of the absolure value of ρ

Apply the proximity-based algorithm: obtain U for each pair of SNPs more than 3 SNPs
apart and within 1000 Kb

Select 1000 SNPs in regions corresponding to highest U

Literature search for the biological relevance of those regions

Testing the robustness of the method by varying the parameter set

S
T
E
P
1

S
T
E
P
2

S
T
E
P
3

Figure 1. Graphical workflow process for the study.
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over all the SNPs. Using the outlier approach, we identify significant SNPs in the 1% upper tail of this distribution. 

the position of a SNP as a point of that linear segment. 
Based on the two sequences of points, we can define 
two cumulative counts depending on a generic point 
l, known in statistics as counting processes:

S(l) =  number of SNPs with a position smaller than 
or equal to l

S.01(l) =  number of significant SNPs with a position 
smaller than or equal to l

with l varying from 1 (the first bp in the chromosome) 
to the position of the last bp of the  chromosome. As 
an example, the two counting processes are plotted for 
chromosome 1 in Figure 3.  Cumulative counts are a 
convenient way to compare the incidences of the dif-
ferent kinds of SNPs over different genomic regions 
(a simple dot plot would not do it, due to the sheer 
number of SNPs involved). If, over a certain segment 
of the chromosome, there is a greater-than-usual inci-
dence of significant SNPs, then the relative increment 
of S.01(l) over that segment will be greater than the 
relative  increment of S(l) over the same  segment. In 

other words, the graph of the S.01(l) counting process 
will be steeper than S(l), up to a proportionality fac-
tor. Our proposal is to identify those genome regions 
which exhibit extreme concentrations of outlying 
SNPs.

We could formalize this search as a change-point 
problem for counting processes: in certain intervals to 
be estimated, the intensity of the S(l) point process—a 
function modelling the instantaneous rate of incidence 
of the process—would be higher than in other regions. 
Due to the size of the problem and to the approximate 
nature of our search- and -confirm approach, we pre-
fer a simpler proximity-based algorithm as follows.

For each pair of significant SNPs located at points 
l1 and l2, with l1 , l2 on the chromosome, we define

 
U l l

S l S l

S l S l
( , )

( ) ( )

( ) ( )
. .

1 2
01 2 01 1

2 1

=
−
−

ie, the observed incidence rate of significant SNPs per 
original SNP. This statistic over the sliding  window 
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Figure 3. Counting process representation of the location of the candidate regions of chromosome 1. 
notes: The thicker step function represents cumulative counts of all originally genotyped SNPS and refers to the main ordinate scale, on the left. The thin-
ner step function represents cumulative counts of significant SNPs and refers to the ordinate scale on the right. Sixteen regions identified by our method 
are shown as small vertical segments on the abscissa axis. The zooming box on the upper left part of the graph shows two of them (gray bands) located 
around position 202500 kb, as guided by the arrows.

(l1, l2) plays a central role in our proximity-based 
algorithm.

As a technical note, it would probably be a good 
idea to penalize large windows, for example by 
dividing the U(l1, l2) statistic above by a penalty term 
(l2–l1)

g with g equal to some number between 0 and 
1. The final results would not change a lot (results 
not shown) and it would be difficult to commit to a 
 specific g; therefore we decide to use the U(l1, l2) sta-
tistic without a penalty term.

For each chromosome and for each significant 
SNP in position l1, we computer U(l1, l2) for each of 
the other significant SNPs in position l2 within a dis-
tance of 1000 Kb from the original one. This is done 
to reduce the problem to a manageable size, under the 
assumption that relevant proximities are smaller than 
1000 Kb.

We built the new reference distribution of all U(l1, l2) 
values over all chromosomes,  excluding from the 

analysis all U(l1, l2) values relative to intervals (l1, l2) 
which included fewer SNPs than a  threshold s, which 
has been chosen to be equal to 3 in this work. This is 
done to avoid very high automatic values of U(l1, l2) 
when two significant SNPs happen to be  adjacent. 
We selected the first 1000 SNPs contained in regions 
corresponding to the highest U(l1, l2)  values. A fixed 
number, rather than a fix tail area, was  chosen to facil-
itate the discussion of the robustness of our method to 
varying parameters (see end of section Results).

Step 3: Biological relevance  
of the strongest signals
To accomplish step 3 as outlined in the Introduction, 
we proceeded to the biological cross-validation of 
our findings, which insofar had been based mainly on 
statistical grounds. We focused on the genes tagged 
by the SNPs we found, since our goal was to detect 
continuous signals coming from proximal groups of 
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SNPs belonging to the same gene. To link our findings 
to the results of genome wide data, we first compared 
our gene list with the June 2012 update of the Cata-
log of Publish ed GWAs.14 Next, we scanned our gene 
list using a bioinformatic enrichment tool named 
 Genecodis 2.015 to obtain a summary of the most 
enriched biological processes or pathways. Finally, 
we compared our analysis with previously published 
genomic scans for selective sweep in order to find 
possible overlaps in signals. 

Results
We calculated Spearman’s correlation between abso-
lute latitude and one of the two alleles of the SNPs 
found in the HGDP-CEPH panel and, following the 
outlier approach, we identified those SNPs which have 
an absolute Spearman’s correlation coefficient falling 
in the upper 1% tail of the distribution. The histogram 
of Spearman’s correlations ρ’s is plotted in Figure 2A. 
Its null distribution for 51 pairs of numbers has been 
overlaid on the same graph (Fig. 2A). It is a normal 
distribution with variance 1/50 due to a well-known 
result.19 The discrepancy between the two distribu-
tions is due to SNPs which are correlated with lati-
tude for reasons other than chance alone, for example 
due to environmental selection factors. Following the 
outlier approach, the upper 1% of the distribution of 
the absolute value of ρ, corresponding to |ρ| . 0.606, 
is identified in the histogram of the absolute value 
of ρ (Fig. 2B). It corresponds to 5452 outlying SNPs 
in the tails of the ρ distribution.

The candidate regions and the annotations emerg-
ing from the application of Step 2 described in the 
Introduction are contained in Additional 1 in the 
online supporting information. As an example, can-
didate regions which were identified in chromosome 
1 are shown in Figure 3. The 1000 top SNPs emerg-
ing from the proximity-based algorithm enabled us to 
identify 467 intergenic and 533 genic SNPs, harbor-
ing 146 genes. We found 23 coding non synonymous 
(NS) changes and 6 coding synonymous changes. 372 
were intronic and 107 were on the mRNA 3′UTR.

Finally, we gathered the biological knowledge 
of the strongest signals by comparing them to the 
 Catalog of Published Genome-Wide Association 
Studies updated to June 2012. The genes which appear 
on this Catalog and additionally appear in candidate 
regions according to our proximity-based algorithm, 

are shown in Additional file 2. A short list of the most 
interesting signals are shown in Table 1. Several genes 
shown in that table are associated with metabolism-
related phenotypes (like celiac disease for IL21 inter-
leukin 21, Gene id 59067)20 and adiposity (MSRA 
Gene id4482) or variants associated with hair color 
in Europeans, like TPCN2 gene (two pore segment 
channel 2, gene ID 219931)21 and several with schizo-
phrenia. At the same time, we compared our gene list 
with genes reported in OMIM. Several of our genes 
which show a correlation with latitude also implied 
some traits. For example, DOT1L gene (DOT1-like, 
histone H3 methyltransferase  Saccharomyces cer-
evisiae) gene ID 84444 is associated with height22 
or DTNB gene dystrobrevin, beta ID 1838 which is 
affecting adult human height.23 A complete table with 
the genes reported also in OMIM Disease database is 
in Additional file 3.

We analyzed Kyoto Encyclopedia of Genes 
and Genomes pathways (KEGG) using as refer-
ence set all genes in the Entrez-gene database and, 
as a statistical test, the hypergeometric one with a 
 Benjamini-Hochberg correction for multiple testing at 
significance level equal to 0.05. Several KEGG path-
ways reached significance. The first was the extra-
cellular matrix (ECM) receptor interaction (KEGG 
number: hsa04512) for the following genes: RELN 
reelin gene ID 5649; ITGB6 integrin beta 6 gene ID 
3694; COL6A3 collagen, type VI, alpha 3 gene ID 
1293. This pathway reaches a raw P-value of the 
hypergeometric test equal to 0.0011 and a P-value 
adjusted for multiplicity around 0.01. In order to 
look for overlaps with scans of the human genome 
for signals of positive natural selection, we compared 
our results with SNPs with significant composite of 
multiple signals (CMS) but only one intersection 
was found between the two gene lists concerning 
rs2256670 and rs2711853 both on RELN reelin, gene 
ID 5649.16 A variety of choices were made in the actual 
implementation of the proximity-based algorithm 
described in Step 2 in the previous section. The two 
most important parameters set to reasonable values 
are (a) the maximum distance over which we search, 
which is set to 1000 Kb in Step 2, and (b) the mini-
mum number of consecutive SNPs required, which is 
set to 3 in Step 2. In order to study the robustness of 
our method with respect to different values of these 
parameters, we varied the  maximum distance and 
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noticed (not shown) that the results where unchanged 
for distances down to 100 Kb.

The algorithm is instead sensitive to the minimum 
number of consecutive SNPs required: if we increase 
it from 3 to 5, for example (it would not make sense 
to consider a minimum much higher than 5), different 
SNPs and regions turn out to be significant, as shown 
in Table 2. For example, the number of selected SNPs 
shared when applying a minimum of 5 and when apply-
ing a minimum of 3 is 64%. This made us consider what 
would happen for varying this threshold. The changes 
are not dramatic (Table 2) but some interesting genes, 
like AGT, ADCY9 and WWOX would come out from 
the analysis with a threshold equal to 5.

Discussion
In this paper we examined the HGDP-CEPH data 
again by integrating the outlier approach with a novel 
proximity-based algorithm.

Only latitude was used for ecological conditions, 
rather than using a multiplicity of variables as in 
 Hancock et al6 for example. We made this choice 
for the sake of simplicity, since latitude is correlated 
with different variables like short wave radiation flux, 
mean winter and summer temperatures, rainfall and 
pathogen richness. It should therefore provide a good 
proxy for the selective pressures that shaped variation 
in our genome. Even though we use a simple correla-
tion measure such as Spearman’s ρ with latitude only, 
we emphasize that the resulting signal should be a 
continuous and persistent proportion of background 
information, represented by all originally genotyped 
SNPs. We believe this proximity requirement adds an 
edge to our novel method when compared to exist-
ing literature. Our approach is applicable to any mea-
sure of association between polymorphic frequencies 
and environmental variables. It could be applied, for 
example, to complex statistics such as the minimum 
rank statistic, based on Bayes Factors and on rank 
transformations, of Hancock et al.13

With our method we identifed different genes, 
some of them already reported in the literature, deal-
ing with different traits or diseases. GWAs include 
the scanning of all or most of the genes of different 
individuals aimed at finding susceptibility loci for 
traits or diseases. GWAs, so far, have allowed the 
identification of more than 7688 associated SNPs in 
humans. We compared our list of genes with GWAs 
results. Some interesting signals can be pointed out, 
for instance the correlation between skin pigmenta-
tion and latitude. It is well known that two coding 
variants in TPCN2 are associated with hair color in 
 Europeans.21 At the same time MSRA (methionine sul-
foxide reductase A gene) is related to the melanin for-
mation in the hair follicle melanocyte.24  Remarkably, 
MSRA gene is also related to schizophrenia25,26 but 
also with adiposity27 and hypertension.28

Several other genes in our list (see Additional 
file 1) can be associated with vitamin D related genes, 
known to show a latitude driven cline.7 An example 
is SMARCA2, (SWI/SNF related, matrix associated, 
act in dependent regulator of chromatin, subfamily 
a, member 2), described as a component of a human 
multiprotein complex that that interacts directly with 
the vitamin D receptor. Schizophrenia genes are cor-
related with latitude and in our list several schizophre-
nia genes appear, like GRID1,29,30 MAGI2,31 NRG3,32 
NRXN3,33 RARB and RELN.34

Region CYP19A1 in our list is known from GWAs 
to exhib it association with adult height35,36 whose 
distribution is related to latitude. Two more genes 
in our list, DOT1-like, histone H3 methyltransferase 
(S. cerevisiae)22,35 and dystrobrevin, beta23 are reported 
in OMIM to be related with height.

Several others genes are related to Celiac Dis-
ease (CD) which strongly correlates with latitude. 
 Infectious agents are implicated in the pathogenesis of 
many autoimmune diseases like CD. This observation 
may imply that there is a relationship between one or 
more infectious agents, latitude related environmental 
exposure to gluten and others genetic susceptibility 
loci, and the development of this disease. For a com-
plete review see Plot and Amital, 2009.37 The RUNX3 
gene and IL21, in our list, are implicated with CD.38 
In the same paper, another gene FRMD4B previously 
known as GRSP1, appearing in our Table 1 is also 
associated with CD.38 RUNX3 gene is also required 
for CD8 T cell development during thymopoiesis.39

Table 2. Percentage of common SNPs when varying the 
minimum number of consecutive SNPs required.

% concordance 3 snps 4 snps 5 snps
3 SNPs 100.00% 74.70% 64.00%
4 SNPs 100.00% 80.80%
5 SNPs 100.00%
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One of the most interesting genes highlighted by 
our work is ANK2 (ankyrin 2, neuronal) which is 
implicated in cardiac arrhythmias due to abnormal 
variations in QT interval.40 

Finally, the enrichment of genes in the KEGG path-
way called extracellular matrix (ECM) receptor interac-
tion (KEGG number: hsa04512) is note worth because 
these molecules are exploited by a number of patho-
genic micro-organisms as receptors for cell entry. This 
can be interpreted as a signal of different forces played 
by pathogens on living cells in different environments.

conclusions
Our study complements the growing body of knowl-
edge surrounding scans for natural selection in humans 
using a method that uses the proximity criterion in 
addition to the outlier approach. Our findings support 
the hypothesis that latitudinal genetic diversity gradi-
ents are present in humans and reflect genetic adapta-
tions to different environmental pressures that have 
shaped the human genome.
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##########################################################################
#
# proximity.R – by MU and MG, November 2012
#  R programs to analyze the HGDP-CEPH data according to
#  the proximity-based method in Di Gaetano et al.
#
##########################################################################

# the following instructions assume that data have been read from the
# text files from the web page http://hagsc.org/hgdp/files.html
# via, for example, read.table(“HGDP_Map.txt”) or read.csv2(“id2.csv”, 
sep = “,”)
# into a dataframe called “data”

### function to compute allele’s frequencies

freqfun<- function(data){
k<-0
freq <- namefreq <- NULL

for (i in dimnames(data)[[2]][-(1:3)]){

### do the frequency table
tav <- table(data[,3],data[,i])
### we exclude the tables with dim 1 or 2, in which
### there is no variation

### heterozygous, all homozygous and missing
if (dim(tav)[[2]]==4) {
# search of allele with greatest frequency
allmagg <- c(sum(tav[,2]),sum(tav[,4]))
if (allmagg[1] > allmagg[2]) magg <- 2 else magg <-4
freq <- cbind(freq, round((tav[,magg]+tav[,3]/2)/(tav[,2]+tav[,3]+tav[,4]),3))
# use the variable name for the table
namefreq <- c(namefreq,i)
}

### heterozygous, all homozygous and no missing
if (dim(tav)[[2]]==3 & (dimnames(tav)[[2]][1]!=“--”)) {
# search of allele with greatest frequency
allmagg <- c(sum(tav[,1]),sum(tav[,3]))
if (allmagg[1] > allmagg[2]) magg <- 1 else magg <-3

freq <- cbind(freq, round((tav[,magg]+tav[,2]/2)/(tav[,1]+tav[,2]+tav[,3]),3))
# use the variable name for the table
namefreq <- c(namefreq,i)
}
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dimnames(freq)[[2]] <- namefreq
cat(k <- k+1,”\n”)

}
freq
}

n_min = 5
finestra = 1000000

### Computation of U for chrom 1

ovr1_sig <- ovr1[ovr1[,”Lsig01”] == “sig01”,]
matrice_rappovr1 <- NULL

# loop over all significant SNPs

for (i in 1:(dim(ovr1_sig)[1]-1) ) { #last SNP is automatically processed

# p = number of subsequent snps to that processed
p <- n_min-1
while ( (i+p)<= dim(ovr1_sig)[1] & (ovr1_sig[i+p,4]-ovr1_sig[i,4])<= finestra )
{

iniz <- ovr1_sig[i,4]
fin <- ovr1_sig[i+p,4]
u <- (ovr1_sig[i+p,9]-ovr1_sig[i,9]+1)/(ovr1_sig[i+p,7]-ovr1_sig[i,7]+1)
x <- c(i,p+1,1,iniz,fin,u)
matrice_rappovr1 <- rbind(matrice_rappovr1,x)
p <- p+1

}

}
dimnames(matrice_rappovr1)[[2]] <- c(“SNP”,”n SNP”, “chrom”, “reg in”, “reg 
fin”,”U”)

### Selection of SNP
N = 1000

# union of results of all chromosomes
matrice_totale = rbind(matrice_rappovr1,matrice_rappovr2,matrice_rappovr3,

matrice_rappovr4,matrice_rappovr5,matrice_rappovr6, 
matrice_rappovr7,

matrice_rappovr8,matrice_rappovr9,matrice_rappovr10,matrice_rappovr11,

matrice_rappovr12,matrice_rappovr13,matrice_rappovr14,matrice_rappovr15,
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matrice_rappovr16,matrice_rappovr17,matrice_rappovr18,matrice_rappovr19,
matrice_rappovr20,matrice_rappovr21,matrice_rappovr22)

matrice_totale <- data.frame(matrice_totale)
# decreasing order
matrice_totale <- matrice_totale[order(matrice_totale$U,decreasing = TRUE),]

# loop to extract result
ovr_sig <- list(ovr1_sig,ovr2_sig,ovr3_sig,ovr4_sig,ovr5_sig,ovr6_sig,ovr7_sig,

ovr8_sig,ovr9_sig,ovr10_sig,ovr11_sig,ovr12_sig,ovr13_sig,ovr14_sig,
ovr15_sig,ovr16_sig,ovr17_sig,ovr18_sig,ovr19_sig,ovr20_sig,
ovr21_sig,ovr22_sig)

z = 1
selezione <- NULL
n_SNP = 0

while (n_SNP < N )
{
a = matrice_totale[z,1]
b = matrice_totale[z,2]
c = matrice_totale[z,3]

sel <- cbind( ovr_sig[[c]][a:(a+b-1),1], rep(c,b) )
selezione <- rbind(selezione, sel)

z <- z+1

# test to obtain unique solutions
selezione <- unique(selezione)

n_SNP <- dim(selezione)[1]
}

dimnames(selezione)[[2]] <- c(“name_SNP” , “chrom” )
selezione <- selezione[1:N,]
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Additional Files
Additional file 1: SNPs and regions from the prox-
imity-based algorithm.

Additional file 1 in the online supporting informa-
tion contains all regions selected by the proximity-
based method, duly annotated.

Additional file 2: The complete list of genes 
reported in previously published GWAs and show-
ing continuous correlation signals with our proximity 
based method.

Additional file 3: The complete list of genes 
reported in OMIM and showing continuous correla-
tion signals with our proximity based method.

Additional file 4: R scripts.
Additional file 4 in the online supporting infor-

mation contains R scripts to perform the necessary 
calculations.
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