Ordinal data: a new model with applications

Original

Availability:
This version is available at: 11583/2535701 since:

Publisher:
Politecnico di Torino

Published
DOI:10.6092/polito/porto/2535701

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

(Article begins on next page)
2.1 From latent variable to discrete variable

Figure 2.3: Top: expectation of a discrete-beta distribution with $n = 10$, plotted for $(\mu, \phi) \in (0, 1) \times (0, 20]$. Bottom: variance of a discrete-beta distribution with $n = 10$, plotted for $(\mu, \phi) \in (0, 1) \times (0, 20]$. Two different views of the same plot are shown.
2.2 Symmetric property

Using the relation

\[I_x(a, b) = 1 - I_{1-x}(b, a), \quad (2.10) \]

we can show that

\[
P(Y = k) = I_{k+1 \over n+1} (a, b) - I_{k \over n+1} (a, b)
= 1 - I_{1-k+1 \over n+1} (b, a) - \left[1 - I_{1-k \over n+1} (b, a) \right]
= I_{n-k+1 \over n+1} (b, a) - I_{n-k \over n+1} (b, a) \]

(2.11)

where \(a = \mu \phi \) and \(b = (1 - \mu) \phi \). Eq. (2.11) is the probability that a discrete-beta distribution with parameters \((1 - \mu, \phi)\) assumes the value \(n - k\). Thus, if \(\mu = \frac{1}{2} \), the pmf is symmetric with respect \(x = \frac{n}{2} \) and, if \(n \) is even we have a single maximum in \(x = \frac{n}{2} \), if \(n \) is odd, we have two equal maxima in \(x = \lfloor \frac{n}{2} \rfloor \) and \(x = \lfloor \frac{n}{2} \rfloor + 1 \).

2.3 Identifiability of the model

We say that a model is identifiable if it is theoretically possible to learn the true value of the model’s underlying parameter after obtaining an infinite number of observations from it. Mathematically, a parameter \(\theta \) for a family of distributions \(\{f(x|\theta) : \theta \in \Theta\} \) is identifiable if distinct values of \(\theta \) correspond to distinct probability density functions or probability mass functions [13]. Identifiability is a property of the model, not of an estimator or estimation procedure. If the model is not identifiable, there is difficulty in doing inference. In the following, we prove that discrete-beta family is identifiable.

Let \(n = 2 \). Suppose that there exist \((\mu_1, \phi_1) \neq (\mu_2, \phi_2)\) such that

\[
P(Y_1 = 0) = P(Y_2 = 0);
P(Y_1 = 1) = P(Y_2 = 1);
P(Y_1 = 2) = P(Y_2 = 2); \quad (2.12)
\]

where \(Y_1 \sim \text{Dbeta}(\mu_1, \phi_1) \) and \(Y_2 \sim \text{Dbeta}(\mu_2, \phi_2) \). For the sake for clarity, let

\[
a_1 = \mu_1 \phi_1; \quad b_1 = (1 - \mu_1) \phi_1; \quad a_2 = \mu_2 \phi_2; \quad b_2 = (1 - \mu_2) \phi_2. \quad (2.13)
\]
2.4 Comparison with binomial distribution and beta-binomial distribution

From eq. (2.12) we obtain that

\[I_{\frac{1}{3}}(a_1, b_1) = I_{\frac{1}{3}}(a_2, b_2); \]
\[I_{\frac{2}{3}}(a_1, b_1) - I_{\frac{1}{3}}(a_1, b_1) = I_{\frac{2}{3}}(a_2, b_2) - I_{\frac{1}{3}}(a_2, b_2); \]
\[1 - I_{\frac{2}{3}}(a_1, b_1) = 1 - I_{\frac{2}{3}}(a_2, b_2) \]
\[(2.14) \]
\[(2.15) \]
\[(2.16) \]

whence we have

\[I_{\frac{1}{3}}(a_1, b_1) = I_{\frac{1}{3}}(a_2, b_2) \quad \text{and} \quad I_{\frac{2}{3}}(a_1, b_1) = I_{\frac{2}{3}}(a_2, b_2). \]
\[(2.17) \]

Eq. (2.17) implies that the latent variables have at least 3 intersections: at least one between \((0, \frac{1}{3})\), at least one between \((\frac{1}{3}, \frac{2}{3})\) and at least one between \((\frac{2}{3}, 1)\). However, it is not possible that two different beta distributions have more than two intersection between \((0, 1)\). Thus, we have that the distributions coincide and

\[a_1 = a_2 \quad \text{and} \quad b_1 = b_2, \]
\[(2.18) \]

which implies, from eq. (2.2), that

\[\mu_1 = \mu_2 \quad \text{and} \quad \phi_1 = \phi_2, \]
\[(2.19) \]

and discrete-beta model is identifiable. The result can be easily extended to \(n > 2\) repeating the same argumentation on

\[I_{\frac{1}{n+1}}(a_1, b_1) = I_{\frac{1}{n+1}}(a_2, b_2) \quad \text{and} \quad I_{\frac{n}{n+1}}(a_1, b_1) = I_{\frac{n}{n+1}}(a_2, b_2). \]
\[(2.20) \]

Indeed, when \(n = 2\), expected and observed relative frequencies coincide and we have a saturated model, since we have two parameters plus a constrain on the sum of the probabilities and just three relationships.

2.4 Comparison with binomial distribution and beta-binomial distribution

In this section, we compare our discrete-beta distribution with other two discrete distributions, the binomial and the beta-binomial defined on the same support \([0, 1, \ldots, n]\).
Let X be a random variable that follows a binomial distribution with parameters n and p. Its probability mass function (pmf) is defined as

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, \ldots, n;$$ \quad (2.21)

where $p \in [0, 1]$ is called the probability of success. Let Y be a random variable with a beta-binomial density with parameters n, a and b, that is

$$P(Y = k) = \binom{n}{k} \frac{B(a+x, b+n-x)}{B(a,b)}, \quad k = 0, \ldots, n;$$ \quad (2.22)

where $B(p,q)$ is the beta function (2.5), and a and b are two positive parameters. Thus we have that

$$E[X] = np,$$ \quad (2.23)

$$\text{Var}[X] = np(1-p),$$ \quad (2.24)

$$E[Y] = n \frac{a}{a+b},$$ \quad (2.25)

$$\text{Var}[Y] = n \frac{ab}{(a+b)^2} \frac{a+b+n}{a+b+1}.$$ \quad (2.26)

It is known that, if X and Y have the same expected value, i.e. $p = \frac{a}{a+b}$, the variance of Y is greater than the variance of X for all values of a and b. Substituting $p = \frac{a}{a+b}$ in eq. (2.26), we have

$$\text{Var}[Y] = np (1-p) \frac{a+b+n}{a+b+1} = \text{Var}[X] \frac{a+b+n}{a+b+1},$$ \quad (2.27)

and with $n > 1$ (in other words we exclude the Bernoulli case) the ratio in (2.27) is always greater than one. Due to this reason, the beta-binomial model is a popular and analytically tractable alternative to the binomial that captures over-dispersion with respect to the binomial model.

Let Z to be a random variable with discrete-beta density (2.3). Let $E[Z] = \mu' = np$.

We can write $\text{Var}[Z]$ (2.9) in the following way

$$\text{Var}[Z] = (2n + 1) \sum_{i=1}^{n} I_i - 2 \sum_{i=1}^{n} i I_i - \left(\sum_{i=1}^{n} I_i \right)^2.$$
2.4 Comparison with binomial distribution and beta-binomial distribution

\[\left(n - \mu' \right) \left(n + \mu' + 1 \right) - 2 \sum_{i=1}^{n} i I_i, \quad (2.28) \]

where \(I_i = I_{i+1} \left(\mu \phi, (1 - \mu) \phi \right) \) and \((\mu, \phi)\) is a couple of parameters which satisfy \(\mathbb{E}[Z] = \mu' \). We have the minimum variance when the pmf is, in the limit case, concentrated in a single point of the set \([0, 1, \ldots, n]\) and the point is equal to \(\mu' \) (obviously it is a degenerated pmf). It is obtained by discretizing, for example, a beta distribution with \(\mu = \frac{\mu'}{n+1} + \frac{1}{2n+1} \) and \(\phi \to +\infty \) (the limit case where the variance of the beta latent variable tends to zero). In this case, we have

\[
2 \sum_{i=1}^{n} i I_i \to 2 \sum_{i=\mu'+1}^{n} i \cdot 1 = 2 \left(\sum_{i=1}^{n} i - \sum_{i=\mu'}^{n} i \right) = 2 \left(\frac{n(n+1)}{2} - \frac{(\mu') (\mu' + 1)}{2} \right) = n^2 + n - \mu'^2 - \mu' \tag{2.29}
\]

and eq. (2.28) tends to zero.

On the other hand, U-shapes are admitted by discrete-beta distribution. For a fixed \(\mu' \), every \((\mu, \phi)\), such that \(\mathbb{E}[Z] = \mu' \) and \(\phi < \min \left(\frac{1}{\mu'}, \frac{1}{1-\mu'} \right) \), generates a U-shape distribution (it follows from the properties of the beta latent distribution [41]). Thus, it can be over-dispersed. Since the variance is a continuous function of \(\mu \) and \(\phi \), and \(\mathbb{E}[Z] = \mu' \) is also a continuous curve\(^1\), we have that discrete-beta distribution can be under-dispersed, over-dispersed or it can have the same variance of a binomial with its same mean value.

Thus, if we set \(\mathbb{E}[Z] = \mu' \) and \(\mathbb{Var}[Z] = \sigma'^2 \), where \(\mu' \) and \(\sigma'^2 \) are admissible values,

\(^1\)The existence of such points can be proved graphically intersecting the surface plotted in Figure 2.3 with the plane \(z = \mu' \) in the domain

\[D(\mu, \phi) = \begin{cases} \phi < \frac{1}{1-\mu'} & \text{if } 0 < \mu \leq \frac{1}{2} \\ \phi < \frac{1}{\mu} & \text{if } \frac{1}{2} < \mu < 1 \end{cases} \]

\(^2\)This curve is the intersection between the surface plotted in Figure 2.3 and the plane \(z = \mu' \).
in order to find μ and ϕ we have to solve the following system

$$\begin{cases} n - \sum_{i=1}^{n} I_{\frac{i}{n+1}} (\mu\phi, (1-\mu)\phi) = \mu' \\
(n - \mu') (n + \mu' + 1) - 2\sum_{i=1}^{n} i I_{\frac{i}{n+1}} (\mu\phi, (1-\mu)\phi) = \sigma'^2. \end{cases} \tag{2.30}$$

This is a non-linear system and we have not found a closed form solution. One way to solve it is using algorithms such as the Broyden Secant method, where the matrix of derivatives is updated after each major iteration using the Broyden rank 1 update, or full Newton method, where the Jacobian matrix of derivatives is recalculated at each iteration [21]. It is also possible to solve the minimization problem linked to this system

$$\min_{\mu, \phi} \left[(\mathbb{E}[Z] - \mu')^2 + \left(\mathbb{V}[Z] - \sigma'^2 \right)^2 \right], \tag{2.31}$$

with, for example, a quasi-Newton method (also known as a variable metric algorithm), that is based on Newton’s method to find the stationary point of a function, where the gradient is 0, but the Hessian matrix does not need to be computed, or a conjugate gradients method. Details of these methods, also with constrains, can be found in [57].

In Figures 2.4 and 2.5 comparisons, for different combinations of mean and variance, between discrete-beta distribution and beta-binomial distribution and binomial distribution, respectively, are shown.

2.5 Comparison with MUB distribution

In this section, we compare the variance of the discrete-beta distribution with that of the MUB distribution. Let X be a random variable with a MUB density (1.6) on the points $[1, \ldots, m]$. Then, the variance is

$$\mathbb{V}[X] = (m - 1) \left\{ \pi\xi (1 - \xi) + (1 - \pi) \left[\frac{m + 1}{12} + \pi (m - 1) \left(\frac{1}{2} - \xi \right)^2 \right] \right\}. \tag{2.32}$$

Note that X can be written as [60]

$$X = \pi (\text{Bin}(m - 1, 1 - \xi) + 1) + (1 - \pi)U_d(m), \tag{2.33}$$
2.5 Comparison with MUB distribution

Figure 2.4: Comparison between discrete-beta distribution and beta-binomial distribution for different combinations of mean and variance. They coincide in the case of uniform distribution.
2. The discrete-beta distribution

Figure 2.5: Discrete-beta distribution and binomial distribution plotted for different combinations of mean and variance.
2.5 Comparison with MUB distribution

Figure 2.6: A binomial distribution with both under-dispersion and over-dispersion case of discrete-beta distribution with the same expected value.

where $\text{Bin}(m-1, 1-\xi)$ is the binomial distribution and $U_d(m)$ is a uniform (rectangular) random variable defined over $[1, \ldots, m]$. The formula (2.32) can be decomposed in three parts (which can also be obtained by the classical variance decomposition [39])

$$\text{Part}_1 = \pi (m - 1) \xi (1 - \xi) \quad (2.34)$$
$$\text{Part}_2 = (1 - \pi) \frac{m^2 - 1}{12} \quad (2.35)$$
$$\text{Part}_3 = \pi (1 - \pi) (m - 1)^2 \left(\frac{1}{2} - \xi \right)^2. \quad (2.36)$$

Part_3 is always non-negative. Part_1 and Part_2 are the variances respectively of $\text{Bin}(m - 1, 1 - \xi) + 1$ and $U_d(m)$ multiplied by their weights, respectively π and $1 - \pi$. Moreover, we have that the variance of $\text{Bin}(m - 1, 1 - \xi) + 1$ is less or equal to the variance of $U_d(m)$, that is

$$(m - 1) \xi (1 - \xi) \leq \frac{m^2 - 1}{12} \leq (1 - \xi) \leq \frac{m + 1}{12}$$
$$\xi^2 - \xi + \frac{m + 1}{12} \geq 0 \quad (2.37)$$
where eq. (2.37) is verified for all \(\xi \in (0, 1) \) and \(m \geq 2 \). Thus,

\[
\text{Var}[X] = \text{Part}_1 + \text{Part}_2 + \text{Part}_3 \\
\geq \text{Part}_1 + \text{Part}_2 = \pi (m - 1) \xi (1 - \xi) + (1 - \pi) \frac{m^2 - 1}{12} \\
\geq \pi (m - 1) \xi (1 - \xi) + (1 - \pi) (m - 1) \xi (1 - \xi) \\
= (m - 1) \xi (1 - \xi)
\]

where eq. (2.38) is the variance of \([\text{Bin}(m - 1, 1 - \xi) + 1]\) that is equal to \(\text{Var}[ext{Bin}(m - 1, 1 - \xi)]\). Then, a MUB distribution has a variance greater or equal to a binomial distribution and it can not be under-dispersed as a discrete-beta distribution could be (we showed this property in the previous section).

In Figure 2.7 the different shapes assumed by both distribution, with the same expectation and variance, are shown. Since their support are different, in order to compare the shapes, we choose first the expectation and variance for the CUB distribution on the set \([1, \ldots, m]\). Then, for the discrete-beta distribution we set

- the expectation equal to that of MUB distribution decreased by one unit;
- the same variance of the MUB distribution;
- \(n = m - 1 \).

Finally, we plot together on the same support \([1, \ldots, m]\) (but the real support of the discrete-beta distributions is \([0, \ldots, m - 1]\)). We can see that, in general, MUB distribution has tails heavier than those of discrete-beta.
2.5 Comparison with MUB distribution

Figure 2.7: Comparison between discrete-beta distribution (shifted by 1) and MUB distribution for different combinations of mean and variance.
Conclusion

In Figure 2.8 the results are summarised through a diagram. As we showed, only the discrete-beta distribution can be under-dispersed respect to the binomial case. If the outcomes reduced to a Bernoulli case, all the previous distributions tend to coincide. The uniform case is taken into account by all three discrete-beta distribution, CUB model and beta-binomial distribution. When the modalities are greater than three, MUB distribution and discrete-beta distribution can have very different behaviors since uncertainty is take into account in various ways. Instead, beta-binomial and binomial distributions can be well approximated by discrete-beta distribution, as we can see in the previous sections.
Chapter 3

Models with discrete-beta distribution

In this chapter, we investigate the problem of parameter estimation in both cases of a single population and in the presence of covariates. Let \(N \) be the sample size; in the first case we assume that individual responses follow the same distribution, with fixed parameters, in the latter case they can have different parameters. In both situations, we will use the maximum likelihood method for parameter estimation.

3.1 Single population

One of the primary uses of statistics is to estimate population parameters when the population is too large for a census to be practical. To accomplish this, a random sample of values from the population data set is drawn and the sample statistic is calculated to draw inferences to estimate the value of unknown population parameters.

Assuming that \(Y_i \), the response random variable of the \(i \)th individual, follows a discrete-beta distribution, \(\text{Dbeta}(\mu, \phi, n) \), we have that

\[
P(Y_i = y_i) = \int_{\frac{y_i + 1}{\mu + \phi}}^{\frac{n}{\mu + \phi}} \frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1 - \mu) \phi)} x^{\mu \phi - 1} (1 - x)^{(1 - \mu) \phi - 1} \, dx
\]

\[
= I_{\frac{y_i + 1}{\mu + \phi}} (\mu \phi, (1 - \mu) \phi) - I_{\frac{y_i}{\mu + \phi}} (\mu \phi, (1 - \mu) \phi), \quad (3.1)
\]

\[
i = 1, 2, \cdots, N.
\]
In case of independent individuals, if \(y = (y_1, \ldots, y_N) \) is the vector of the observed values, we can compute the likelihood as

\[
L(\mu, \phi \mid y) = P(Y_1 = y_1, Y_2 = y_2, \ldots, Y_N = y_N \mid \mu, \phi) \\
= \prod_{i=1}^{N} \int_{y_i}^{y_{i+1}} \frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1 - \mu) \phi)} x^{\mu \phi - 1} (1 - x)^{(1 - \mu) \phi - 1} dx \\
= \prod_{i=1}^{N} \left[I_{y_{i+1} \over n + 1} (\mu \phi, (1 - \mu) \phi) - I_{y_i \over n + 1} (\mu \phi, (1 - \mu) \phi) \right]^{n_k},
\]

(3.2)

where \(n_k \) is the absolute frequency of the \(k \) value in the sample.

The log-likelihood function is given by

\[
l(\mu, \phi \mid y) = \log L(\mu, \phi \mid y) \\
= \log \left\{ \prod_{k=0}^{n} \left[I_{k+1 \over n + 1} (\mu \phi, (1 - \mu) \phi) - I_{k \over n + 1} (\mu \phi, (1 - \mu) \phi) \right]^{n_k} \right\} \\
= \sum_{k=0}^{n} n_k \log \left[I_{k+1 \over n + 1} (\mu \phi, (1 - \mu) \phi) - I_{k \over n + 1} (\mu \phi, (1 - \mu) \phi) \right].
\]

(3.3)

Let \(\theta = [\mu, \phi] \). Following the maximum likelihood method, we have that \(\hat{\theta}(y) = [\hat{\mu}(y), \hat{\phi}(y)] \), the maximum likelihood estimator (MLE) of \(\theta \), is computed as

\[
\hat{\theta}(y) = \arg \max_{\theta} L(\mu, \phi \mid y) = \arg \max_{\theta} l(\mu, \phi \mid y) \\
= \arg \max_{\theta} \sum_{k=0}^{n} n_k \log \left[I_{k+1 \over n + 1} (\mu \phi, (1 - \mu) \phi) - I_{k \over n + 1} (\mu \phi, (1 - \mu) \phi) \right].
\]

(3.4)

Since the system of equations

\[
\begin{align*}
\frac{\partial}{\partial \mu} l(\mu, \phi \mid y) &= 0 \\
\frac{\partial}{\partial \phi} l(\mu, \phi \mid y) &= 0
\end{align*}
\]

(3.5)

has no closed form solutions, we prefer to maximize directly eq. (3.4) with a quasi-Newton method. We choose the algorithm implemented in \texttt{optim} function in the \texttt{R}
software. The choice of “L-BFGS-B” method in the optim function allows box constraints, that is each variable can be given a lower and/or upper bound; this method is described in detail in [12]. Good starting points for μ and ϕ is given by $(\mu_0, \phi_0) = \left(\frac{1}{n+1} \sum_{i=1}^{n+1} y_i, (n + 1) \sum_{i=1}^{N-1} (y_i - \mu_0)^2 \right)$, since μ is related to the mean end ϕ to the inverse of the variance.

In order to derive confidence intervals for μ and ϕ, we recall the asymptotic properties of maximum likelihood estimators. In particular, it is well known that the asymptotic variance-covariance matrix $V(\theta)$ of the ML estimators $\hat{\theta}$ of the parameter θ is obtained by inverting the negative of the expectation of the second derivatives (the Hessian) of the log-likelihood function (eq. (3.3)). Since the expected Fisher information matrix, when the operations of integration with respect to x and differentiation with respect to θ can be interchanged in the expectation[26], can be written as

$$\{ I(\theta) \}_{ij} = -\mathbb{E} \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} l(\theta | y) \right],$$

we have that

$$V(\theta) = [I(\theta)]^{-1}. \quad (3.7)$$

An alternative method, which shares the same asymptotic properties, is based on the observed information matrix $J(\theta)$, that is the negative of the second derivatives (the Hessian matrix) of the log-likelihood function

$$\left\{ J(\hat{\theta}) \right\}_{ij} = -\left. \frac{\partial^2}{\partial \theta_i \partial \theta_j} l(\theta | y) \right|_{\theta = \hat{\theta}}. \quad (3.8)$$

It is a sample-based version of the Fisher information. It is known that

$$\hat{\theta}_N \approx N \left(\theta, (J(\hat{\theta}_N))^{-1} \right) \quad (3.9)$$

where the subscript N is introduced to remind us that it is obtained by a sample of N individuals. Since what users actually do in multiparameter situation is to focus on confidence interval for single parameter, we obtain the following intervals

$$\left(\hat{\theta}_{Nj} - z_{\frac{a}{2}} \sqrt{\left(J(\hat{\theta}_N) \right)^{-1}}_{jj}, \hat{\theta}_{Nj} + z_{\frac{a}{2}} \sqrt{\left(J(\hat{\theta}_N) \right)^{-1}}_{jj} \right) \quad (3.10)$$
where \(z_{\alpha} \), as usual, is the \((1 - \alpha)\) quantile of a standard normal distribution.

In our case,

\[
J(\hat{\theta}) = -\left[\begin{array}{cc}
\frac{\partial^2}{\partial \mu^2} l(\theta | y) & \frac{\partial^2}{\partial \mu \partial \phi} l(\theta | y) \\
\frac{\partial^2}{\partial \phi \partial \mu} l(\theta | y) & \frac{\partial^2}{\partial \phi^2} l(\theta | y)
\end{array} \right]_{\theta = \hat{\theta}_N}
\]

and we have that

\[
\frac{\partial}{\partial \theta_r} l(\theta | y) = \frac{\partial}{\partial \theta_r} \left[\sum_{k=0}^{n} n_k \log P(Y = k) \right]
= \sum_{k=0}^{n} n_k \frac{\partial}{\partial \theta_r} \log P(Y = k),
\]

\[
\frac{\partial^2}{\partial \theta_r \partial \theta_s} l(\theta | y) = \sum_{k=0}^{n} n_k \frac{\partial^2}{\partial \theta_r \partial \theta_s} \log P(Y = k),
\]

\[
r = 1, 2; \quad s = 1, 2
\]

with \(\theta_1 = \mu, \theta_2 = \phi \) and

\[
\log P(Y = k) = \log \frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1 - \mu) \phi)} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} x^{n \phi - 1}(1 - x)^{(1 - \mu) \phi - 1} \, dx
= \log \Gamma(\phi) - \log \Gamma(\mu \phi) - \log \Gamma((1 - \mu) \phi) + \\
+ \log \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} x^{n \phi - 1}(1 - x)^{(1 - \mu) \phi - 1} \, dx.
\]

For the sake of clarity, we will use the following notation

\[
x^{n \phi - 1}(1 - x)^{(1 - \mu) \phi - 1} = h(x, \mu, \phi)
\]

and we compute the first derivatives as

\[
\frac{\partial}{\partial \mu} \log P(Y = k) = -\phi \psi(\mu \phi) + \phi \psi((1 - \mu) \phi) + \\
\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \log \left(\frac{x}{1 - x} \right) \, dx
\]

\[
+ \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \, dx
\]
\[\frac{\partial}{\partial \phi} \log P(Y = k) = \psi(\phi) - \mu \psi(\mu \phi) - (1 - \mu) \psi(1 - \mu \phi) + \]
\[\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \left[\mu \log x + (1 - \mu) \log(1 - x) \right] \ dx \]
\[+ \frac{\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \ dx}{\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \ dx} \] (3.17)

where \(\psi(t)\) is the *digamma* function, that is defined as the logarithmic derivative of the gamma function
\[\psi(t) = \frac{d}{dt} \log \Gamma(t). \] (3.18)

Thus, the second derivatives can be written as
\[\frac{\partial^2}{\partial \mu^2} \log P(Y = k) = -\phi^2 \psi_1(\mu \phi) + \phi^2 \psi_1((1 - \mu) \phi) + \]
\[\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \phi^2 \log^2 \left(\frac{x}{1 - x} \right) \ dx \]
\[+ \frac{\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \ dx}{\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \ dx} \] (3.19)

\[\frac{\partial^2}{\partial \phi^2} \log P(Y = k) = \psi_1(\phi) - \mu^2 \psi_1(\mu \phi) - (1 - \mu)^2 \psi_1((1 - \mu) \phi) + \]
\[\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \left[\mu \log x + (1 - \mu) \log(1 - x) \right]^2 \ dx \]
\[+ \frac{\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \ dx}{\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} h(x, \mu, \phi) \ dx} \] (3.20)

\[\frac{\partial^2}{\partial \phi \partial \mu} \log P(Y = k) = \psi_1(\mu \phi) - \mu \phi \psi_1(\mu \phi) + \psi_1((1 - \mu) \phi) + (1 - \mu) \phi \psi_1((1 - \mu) \phi) + \]
where $\psi_1(t)$ is the *trigamma* function defined as

$$\psi_1(t) = \frac{d^2}{dt^2} \log \Gamma(t). \quad (3.22)$$

Substituting eq. (3.19), (3.20) and (3.21) in eq. (3.13), we can compute $\mathcal{J}(\hat{\theta})$. Since the derivatives involve integrations, which have to be computed in a numerical way, it is also possible to estimate them using the quasi-Newton algorithm used to solve the problem (3.4).

3.1.1 Validation by simulation

In order to have a validation by simulation, we followed the steps showed below:

- we choose a couple of values for (μ^*, ϕ^*);
- we generated a random sample by a discrete-beta distribution with $\mu = \mu^*$ and $\phi = \phi^*$;
- we estimated (μ, ϕ) following the maximum likelihood method described in this section.

We used the R-script showed in Appendix A. Four cases are showed below. All intervals are calculated at 95% confidence level.

With $\mu = 0.3$ and $\phi = 6$, we obtain
3.2 Covariates

$\hat{\mu}$

<table>
<thead>
<tr>
<th>estimate</th>
<th>lower bound</th>
<th>upper bound</th>
<th>Wald test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.29985</td>
<td>0.33429</td>
<td>17.06363</td>
</tr>
</tbody>
</table>

$\hat{\phi}$

<table>
<thead>
<tr>
<th>estimate</th>
<th>lower bound</th>
<th>upper bound</th>
<th>Wald test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>5.92539</td>
<td>7.66536</td>
<td>6.67457</td>
</tr>
</tbody>
</table>

With $\mu = 0.65$ and $\phi = 3.5$, we obtain

$\hat{\mu}$

<table>
<thead>
<tr>
<th>estimate</th>
<th>lower bound</th>
<th>upper bound</th>
<th>Wald test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.65491</td>
<td>0.6981</td>
<td>29.71521</td>
</tr>
</tbody>
</table>

$\hat{\phi}$

<table>
<thead>
<tr>
<th>estimate</th>
<th>lower bound</th>
<th>upper bound</th>
<th>Wald test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>3.62504</td>
<td>4.62176</td>
<td>7.12827</td>
</tr>
</tbody>
</table>

With $\mu = 0.5$ and $\phi = 2$, (discrete uniform distribution) we obtain

$\hat{\mu}$

<table>
<thead>
<tr>
<th>estimate</th>
<th>lower bound</th>
<th>upper bound</th>
<th>Wald test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.50868</td>
<td>0.56307</td>
<td>18.32997</td>
</tr>
</tbody>
</table>

$\hat{\phi}$

<table>
<thead>
<tr>
<th>estimate</th>
<th>lower bound</th>
<th>upper bound</th>
<th>Wald test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>2.15492</td>
<td>2.72618</td>
<td>7.39339</td>
</tr>
</tbody>
</table>

With $\mu = 0.1$ and $\phi = 20$, we obtain

$\hat{\mu}$

<table>
<thead>
<tr>
<th>estimate</th>
<th>lower bound</th>
<th>upper bound</th>
<th>Wald test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>0.10267</td>
<td>0.11726</td>
<td>13.79562</td>
</tr>
</tbody>
</table>

$\hat{\phi}$

<table>
<thead>
<tr>
<th>estimate</th>
<th>lower bound</th>
<th>upper bound</th>
<th>Wald test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>19.37949</td>
<td>27.99101</td>
<td>4.41073</td>
</tr>
</tbody>
</table>

We noted that μ is generally well estimated, while $\hat{\phi}$ has a larger uncertainty than $\hat{\mu}$.

3.2 Covariates

This section regards the introduction of covariates, i.e. concurrent variables of the outcome that improve both the results and the interpretation of the models. We do not follow the approach of generalized linear models, in which it is allowed for an arbitrary function (the link function) of the mean of response variable, $g(\mathbb{E}[Y])$, to vary linearly
with the predicted values (rather than assuming that the response itself must vary linearly). In fact, in our case where Y follows a discrete-beta distribution, for a given n, several pairs of different (μ, ϕ), generate the same expectation, as we have shown in the previous chapter. In a natural way, according to CUB model framework, we prefer to directly introduce covariates for μ and ϕ, parameters of the latent variable, without a direct reference to the expectation of this random variable. It is reasonable to assume that the parameters of the latent variable vary with the subjects characteristics as, for instance, gender, age, etc. In order to specify a correspondence among the values of covariates and the supports of μ and ϕ, we proposed the following mappings:

$$\logit(\mu_i) = \beta_0 + x_i^\mu \beta \quad \text{or equivalently} \quad \mu_i = \frac{1}{1 + e^{-\beta_0 - x_i^\mu \beta}} \quad (3.23)$$

$$\log(\phi_i) = \gamma_0 + x_i^\phi \gamma \quad \text{or equivalently} \quad \phi_i = e^{\gamma_0 + x_i^\phi \gamma} \quad (3.24)$$

where x_i^μ and x_i^ϕ are the vectors of covariates of the ith individual for, respectively, μ_i and ϕ_i, and β and γ are the vector of the “regression” coefficient $(\beta_1, \beta_2, \cdots, \beta_{p-1})$ and $(\gamma_1, \gamma_2, \cdots, \gamma_{q-1})$ $(p - 1$ and $q - 1$ are the number of covariates for, respectively, μ_i and $\phi_i)$. x_i^μ and x_i^ϕ are allowed to be different vectors. For example, let Y_i to be the ith individual’s response of a product satisfaction survey, with outcomes in the set $\{0, 1, 2, 3\}$, x_i^μ to be the vector which has for components the values of age, sex, marital status and x_i^ϕ to be a null vector, we have

$$\logit(\mu_i) = \beta_0 + \beta_1 \text{age} + \beta_2 \text{sex} + \beta_3 \text{mstatus}; \quad (3.25)$$

$$\log(\phi_i) = \gamma_0. \quad (3.26)$$

Note that the greater $x_i^\mu \beta$ the greater is μ_i. Thus, in this situation, it is not convenient to change signs as in the cumulative logistic proportional odds models, but it is preferable the mapping we showed. Similarly, the greater $x_i^\phi \gamma$ the greater is ϕ_i. In a vector notation, we can write

$$\logit(\mu) = X^\mu \beta \quad \text{or equivalently} \quad \mu = \frac{1}{1 + e^{-X^\mu \beta}} \quad (3.27)$$

$$\log(\phi) = X^\phi \gamma \quad \text{or equivalently} \quad \phi = e^{X^\phi \gamma} \quad (3.28)$$
where \(\boldsymbol{\mu} \) and \(\boldsymbol{\phi} \) are the \(N \times 1 \) vectors that contain respectively the \(\mu \)-values and the \(\phi \)-values of all \(N \) individuals, \(\boldsymbol{\beta} = (\beta_0, \beta_1, \cdots, \beta_p) \) and \(\boldsymbol{\gamma} = (\gamma_0, \gamma_1, \cdots, \gamma_p) \), i.e. we add the intercept term to the previous vector, \(\mathbf{X}^\mu \) and \(\mathbf{X}^\phi \) are the design matrices, respectively, \((N \times p) \) and \((N \times q) \) matrices, in which the \(i \)th row is the vector of the \(i \)th individual covariates.

If we assume that the responses of individuals are independent of one another given the discrete-beta probabilities, i.e. \(Y_i \sim \text{Dbeta}(\mu_i, \phi_i, n) \), the likelihood is given by

\[
L(\beta, \gamma | \mathbf{y}) = P(\mathbf{y} = \mathbf{y} | \beta, \gamma) = \prod_{i=1}^{N} \frac{1}{\Gamma\left(x_i^\mu \phi_i \gamma\right)} \left(1 - \frac{1}{1 + e^{-x_i^\mu \beta}}\right)^{x_i^\mu \phi_i \gamma - 1} \left(\frac{1}{1 + e^{-x_i^\mu \beta}}\right)^{n_i + 1 - x_i^\mu \phi_i \gamma - 1} \int_{\frac{y_i + 1}{\frac{n_i + 1}{1 + e^{-x_i^\mu \beta}} e^{x_i^\mu \phi_i \gamma}}}^{\frac{y_i}{\frac{n_i + 1}{1 + e^{-x_i^\mu \beta}} e^{x_i^\mu \phi_i \gamma}}} \Gamma\left(\frac{1}{1 + e^{-x_i^\mu \beta}}\right) e^{x_i^\mu \phi_i \gamma - 1} dx
\]

\[
= \prod_{i=1}^{N} \left[I_{\frac{y_i + 1}{\frac{n_i + 1}{1 + e^{-x_i^\mu \beta}} e^{x_i^\mu \phi_i \gamma}}} \left(1 - \frac{1}{1 + e^{-x_i^\mu \beta}}\right) e^{x_i^\mu \phi_i \gamma} \right] + \left[I_{\frac{y_i}{\frac{n_i + 1}{1 + e^{-x_i^\mu \beta}} e^{x_i^\mu \phi_i \gamma}}} \left(1 - \frac{1}{1 + e^{-x_i^\mu \beta}}\right) e^{x_i^\mu \phi_i \gamma} \right], \quad (3.29)
\]

and the log-likelihood is written as

\[
l(\beta, \gamma | \mathbf{y}) = \log L(\beta, \gamma | \mathbf{y}) = \sum_{i=1}^{N} \log \left[I_{\frac{y_i + 1}{\frac{n_i + 1}{1 + e^{-x_i^\mu \beta}} e^{x_i^\mu \phi_i \gamma}}} \left(1 - \frac{1}{1 + e^{-x_i^\mu \beta}}\right) e^{x_i^\mu \phi_i \gamma} \right] + \left[I_{\frac{y_i}{\frac{n_i + 1}{1 + e^{-x_i^\mu \beta}} e^{x_i^\mu \phi_i \gamma}}} \left(1 - \frac{1}{1 + e^{-x_i^\mu \beta}}\right) e^{x_i^\mu \phi_i \gamma} \right]. \quad (3.30)
\]

Let \(\boldsymbol{\theta} = (\beta, \gamma) \). In order to maximize eq. (3.30), finding estimate of \(\hat{\boldsymbol{\theta}} \), with \(\hat{\boldsymbol{\theta}} = (\hat{\beta}, \hat{\gamma}) \), and to compute the p-values associated to the parameters estimates, we follow the
same way showed for the model without covariates. In particular, we have that

\[
\frac{\partial l}{\partial \beta_c} = \sum_{i=1}^{N} \frac{\partial}{\partial \beta_c} f(\mu, \phi, y_i); \quad c = 1, \cdots, p; \tag{3.31}
\]

\[
\frac{\partial^2 l}{\partial \beta_d \partial \beta_c} = \sum_{i=1}^{N} \frac{\partial^2}{\partial \beta_d \partial \beta_c} f(\mu, \phi, y_i); \quad c = 1, \cdots, p; \quad d = 1, \cdots, p; \tag{3.32}
\]

\[
\frac{\partial l}{\partial \gamma_c} = \sum_{i=1}^{N} \frac{\partial}{\partial \gamma_c} f(\mu, \phi, y_i); \quad c = 1, \cdots, q; \tag{3.33}
\]

\[
\frac{\partial^2 l}{\partial \gamma_d \partial \gamma_c} = \sum_{i=1}^{N} \frac{\partial^2}{\partial \gamma_d \partial \gamma_c} f(\mu, \phi, y_i); \quad c = 1, \cdots, q; \quad d = 1, \cdots, q; \tag{3.34}
\]

\[
\frac{\partial^2 l}{\partial \gamma_d \partial \beta_c} = \sum_{i=1}^{N} \frac{\partial^2}{\partial \gamma_d \partial \beta_c} f(\mu, \phi, y_i); \quad c = 1, \cdots, p; \quad d = 1, \cdots, q; \tag{3.35}
\]

where \(f(\mu, \phi, y_i) \) denotes the function \(f(\mu, \phi, y_i) = \log P(Y_i = y_i|\mu, \phi) \). We can compute the first derivatives using the chain rule derivation

\[
\frac{\partial f}{\partial \beta_c} = \frac{\partial f}{\partial \mu} \frac{\partial \mu}{\partial \beta_c} + \frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial \beta_c}; \quad c = 1, \cdots, p; \tag{3.36}
\]

\[
\frac{\partial f}{\partial \gamma_c} = \frac{\partial f}{\partial \mu} \frac{\partial \mu}{\partial \gamma_c} + \frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial \gamma_c}; \quad c = 1, \cdots, q. \tag{3.37}
\]

and the second derivatives as

\[
\frac{\partial^2 l}{\partial \beta_d \partial \beta_c} = \frac{\partial}{\partial \beta_d} \left(\frac{\partial f}{\partial \beta_c} \right) = \frac{\partial}{\partial \beta_d} \left(\frac{\partial f}{\partial \mu} \frac{\partial \mu}{\partial \beta_c} + \frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial \beta_c} \right) \tag{3.38}
\]

\[
= \frac{\partial^2 l}{\partial \beta_d \partial \mu} \frac{\partial \mu}{\partial \beta_c} + \frac{\partial f}{\partial \mu} \frac{\partial^2 \mu}{\partial \beta_d \partial \beta_c} \quad c = 1, \cdots, p; \quad d = 1, \cdots, p;
\]

\[
\frac{\partial^2 l}{\partial \gamma_d \partial \gamma_c} = \frac{\partial}{\partial \gamma_d} \left(\frac{\partial f}{\partial \gamma_c} \right) = \frac{\partial}{\partial \gamma_d} \left(\frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial \gamma_c} \right) \tag{3.39}
\]

\[
= \frac{\partial^2 l}{\partial \gamma_d \partial \phi} \frac{\partial \phi}{\partial \gamma_c} + \frac{\partial f}{\partial \phi} \frac{\partial^2 \phi}{\partial \gamma_d \partial \gamma_c} \quad c = 1, \cdots, q; \quad d = 1, \cdots, q;
\]

\[
\frac{\partial^2 l}{\partial \gamma_d \partial \beta_c} = \frac{\partial}{\partial \gamma_d} \left(\frac{\partial f}{\partial \beta_c} \right) = \frac{\partial}{\partial \gamma_d} \left(\frac{\partial f}{\partial \mu} \frac{\partial \mu}{\partial \beta_c} + \frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial \beta_c} \right) \tag{3.35}
\]

\[
= \frac{\partial^2 l}{\partial \gamma_d \partial \mu} \frac{\partial \mu}{\partial \beta_c} + \frac{\partial f}{\partial \mu} \frac{\partial^2 \mu}{\partial \gamma_d \partial \beta_c} \quad c = 1, \cdots, p;
\]
3.2 Covariates

\[\frac{\partial^2 l}{\partial \phi \partial \mu} \frac{\partial \mu}{\partial \phi} \frac{\partial \mu}{\partial \mu} \partial \gamma_d \partial \beta_c c = 1, \cdots, p; \quad d = 1, \cdots, q. \]

(3.40)

The derivatives with respect to \(\mu \) and \(\phi \) are the same written in the previous section. We also have that

\[\frac{\partial \mu}{\partial \beta_c} = \frac{x_c}{2 \left(1 + \cosh(x^\beta)\right)}, \quad c = 1, \cdots, p; \]

(3.41)

\[\frac{\partial^2 \mu}{\partial \beta_d \partial \beta_c} = \frac{-x_d x_c \sinh(x^\beta)}{4 \left(1 + \cosh(x^\beta)\right)^2}, \quad c = 1, \cdots, p; \quad d = 1, \cdots, p; \]

(3.42)

\[\frac{\partial \phi}{\partial \gamma_c} = x_c e^{x^\gamma}, \quad c = 1, \cdots, q; \]

(3.43)

\[\frac{\partial^2 \phi}{\partial \gamma_d \partial \gamma_c} = x_d x_c e^{x^\gamma}, \quad c = 1, \cdots, q; \quad d = 1, \cdots, q; \]

(3.44)

where \(x_l \) denote the value of the vector \(x \) at the position \(l \).

As in the previous section, it is possible to estimate them directly during the quasi-Newton algorithm. We suggest as starting values for the algorithm a vector with all components equal to 0.1, since, due the mappings 3.23, we not expect large values of parameters. We also ran the algorithm with different initial values and we found that our proposal is a good compromise.

3.2.1 Model selection

A general way to compare models is by means of the Akaike information criterion (AIC), that is a measure of the relative quality of a statistical model, for a given set of data. In general case, AIC is defined as

\[\text{AIC} = 2k - 2l, \]

(3.45)

where \(k \) is the number of parameters in the statistical model, and \(l \) is the maximized value of the log-likelihood function for the estimated model. Given a set of candidate models for the data, the preferred model is the one with the minimum AIC value. Hence AIC not only rewards goodness of fit, but also includes a penalty that is an increasing
function of the number of estimated parameters. The AICc, is AIC with a correction for finite sample sizes

$$\text{AICc} = \text{AIC} + \frac{2k(k + 1)}{N - k - 1},$$

(3.46)

where N denotes the sample size. Thus, AICc is AIC with a greater penalty for extra parameters. In [11] it is strongly recommended using AICc, rather than AIC.

For nested models, it is also possible to use likelihood ratio statistic. It is a very useful tool for judging the usefulness of inserting a single or a group of variable in the estimated models. Consider two models, m_0 and m_1, where m_0 is a submodel of model m_1, that is, m_0 is simpler than m_1 and m_0 is nested in m_1. The likelihood ratio statistic for the comparison of m_0 and m_1 is

$$\text{LR} = -2(l_0 - l_1),$$

(3.47)

where l_0 is the log-likelihood of the simpler model and l_1 is the log-likelihood of the more complex model. The likelihood ratio statistic measures the evidence in the data for the extra complexity in m_1 relative to m_0 [14]. The likelihood ratio statistic asymptotically follows a χ^2 distribution with degrees of freedom equal to the difference in the number of parameter of m_0 and m_1 [81].

3.3 Case study

We study the responses of seventy-one patients with gastroesophageal reflux disease (GERD). The GERD patients group comprises forty GERD patients with grade A esophagitis (ERD) according to the Los Angeles classification, and thirty-one patients with GERD who had nonerosive reflux disease (NERD), but 2 day wireless Bravo pH system monitoring (Medtronic A/S, Skovlunde, Denmark) positive for pathological acid exposure. The Bravo probes were placed using standard techniques as recommended by the manufacturer. The pH-monitoring was intended to record data for 48 hours. Food intake, typical GERD symptoms and supine period data where recorded in a diary. The receiver and the diary were returned after a 48-hours recording period. The pH study data were uploaded to a computer and were analysed using the software provided by Medtronic. Patients were considered to have had episodes of reflux when pH was less than 4 for at least six seconds; episodes were considered to have ended when pH reached 5. The total number of reflux episodes, number of reflux episodes longer than
five minutes, and the mean duration of reflux episodes were also determined.

All patients that entered the study were evaluated (by water load test) before and after four weeks of standard therapy with proton pump inhibitors (esomeprazole, 40 mg per day). Endoscopy was performed to evaluate carefully the distal portion of the esophagus to determine the presence of any mucosal injury.

As a control group, 30 healthy volunteers with no abdominal symptoms or history of upper gastrointestinal disorders were recruited. None of the patients and controls had previously undergone abdominal surgery, except appendectomy.

The study was carried out according to local ethical rules, after receiving patients and controls’ informed consent, and in accordance with the recommendations of the Helsinki Declaration (Edinburgh revision, 2000).

Water load test (WLT) Before starting the test, the participants completed a symptom visual analogue scale (VAS, 0-10 cm; 0= absent, 10= maximal) to score the following: heartburn, postprandial fullness, vomiting, early satiety, nausea, bloating, epigastric pain, belching, epigastric burning.

After an overnight fast, WLT was performed by having subjects drink-room-temperature water for 5 minutes or until they perceiving the “full” stomach sensation. Water was consumed from an unmasked flask that was taken from the subjects and refilled after each drink. The volume required to refill the flask to the initial level was recorded and the total volume consumed was determined by summing these volumes.

Recently, the water load test has been proposed as a non-invasive method to assess gastric sensation. The test is economic, easily performed, well tolerated and reproducible in healthy subjects and in patients with functional dyspepsia or gastroesophageal reflux disease. In [4] are showed that in GERD patients, with mild erosive esophagitis and non erosive reflux disease, the WLT is abnormal, similar but non identical to that reported in patients with functional dyspepsia.

3.3.1 Model comparison

In the following section, we analysed the data sets, presented in the previous section, adopting different models:

- the cumulative link model (1.5) estimated with the R-package `ordinal`; we used the function `clm` with the logistic link function and flexible cut-points;
3. Models with discrete-beta distribution

Figure 3.1: An example of VAS.

- the GAMLSS (Generalized Additive Models for Location, Scale and Shape) model [71]; we used the function gamlss from the R-package gamlss, with family=BB, i.e. we set the beta-binomial family;

- the CUB model, eq. (1.6); we use the R-script CUB_3.0.R kindly sent to us by Maria Iannario;

- the discrete-beta model, eq. (3.2); the script of the function bdmod is shown in the Appendix A.

We decided to analyse the score, VAS, of the patients before the therapy. In particular, the score of nausea, heartburn (pyrosis), vomiting, postprandial fullness, early satiety, bloating, epigastric pain and belching. We do not show the analysis of epigastric burning since covariates were proved to be insignificant. Due the predominance of 0 in the scores, we also do not include controls in the analysis (they have not abdominal symptoms or history of upper gastrointestinal disorder). Thus, our Y_i will be the score of the ith individual and the covariates should be BMI, age, sex, level of disease (ERD, NERD) and the volume of the water load test.

Nausea

Using the values of nausea as Y_i, we obtain with clm:

```
formula: nausea ~ BMI + Sesso
data: gerd_pre_fac

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 71 -115.31 252.61 8(1) 3.19e-11 2.4e+06

Coefficients:
  Estimate Std. Error z value Pr(>|z|)
```
3.3 Case study

BMI -0.5132 0.1686 -3.044 0.00233 **
Sessom -0.6594 0.4569 -1.443 0.14892

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Threshold coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>z value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-18.053</td>
<td>4.595</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-16.367</td>
<td>4.498</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-16.163</td>
<td>4.491</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-15.678</td>
<td>4.470</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-15.544</td>
<td>4.464</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>-15.420</td>
<td>4.458</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-14.736</td>
<td>4.431</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>-13.951</td>
<td>4.409</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-13.169</td>
<td>4.381</td>
</tr>
</tbody>
</table>

with gamlss

Family: c("BB", "Beta Binomial")

Call: gamlss(formula = cbind(nausea, 10 - nausea) ~ BMI, sigma.formula = formulaphi, family = BB)

Fitting method: RS()

Mu link function: logit
Mu Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---|----------|------------|---------|---------|
| (Intercept) | 11.7847 | 3.4801 | 3.386 | 0.001189 |
| BMI | -0.3978 | 0.1327 | -3.006 | 0.003824 |

Sigma link function: log
Sigma Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---|----------|------------|---------|---------|
| (Intercept) | -0.5992 | 0.3757 | -1.595 | 0.11546 |
| Sessom | -0.9388 | 0.5383 | -1.744 | 0.08576 |

No. of observations in the fit: 71
Degrees of Freedom for the fit: 4
Residual Deg. of Freedom: 67
at cycle: 5

Global Deviance: 240.4093
AIC: 248.4093
SBC: 257.4601
with CUB:

```
CUB (p,q) model
ML-estimates via E-M algorithm

Covariates for pai ==> p= 1 and Covariates for csi ==> q= 2

*** m= 11 *** Sample size: n= 71 *** Iterations= 15 (maxiter=500)

<table>
<thead>
<tr>
<th>parameters</th>
<th>ML-estimates</th>
<th>stand.errors</th>
<th>Wald-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta_0</td>
<td>41.95214</td>
<td>16.19664</td>
<td>2.59018</td>
<td>0.009592576</td>
</tr>
<tr>
<td>beta_1</td>
<td>-1.54891</td>
<td>0.60845</td>
<td>-2.54567</td>
<td>0.01090682</td>
</tr>
<tr>
<td>gamma_0</td>
<td>-7.90875</td>
<td>2.91469</td>
<td>-2.71341</td>
<td>0.006659466</td>
</tr>
<tr>
<td>gamma_1</td>
<td>1.08501</td>
<td>0.39022</td>
<td>2.78051</td>
<td>0.005427359</td>
</tr>
<tr>
<td>gamma_2</td>
<td>-0.75267</td>
<td>0.37507</td>
<td>-0.20675</td>
<td>0.04477629</td>
</tr>
<tr>
<td>gamma_3</td>
<td>0.20597</td>
<td>0.11453</td>
<td>1.79839</td>
<td>0.07211523</td>
</tr>
</tbody>
</table>

Log-lik(beta^,gamma^)= -116.4404
Mean Log-likelihood = -1.640006
```

with discrete-beta model

```
bmod(cbind(nausea,10-nausea),formulamu,formulaphi, gerd_pre)
$MU

| Estimate | Sd_error | Wald_Test | Pval | code
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>9.4404285</td>
<td>2.8216381</td>
<td>3.345726</td>
<td>0.0008206741 ***</td>
</tr>
<tr>
<td>BMI</td>
<td>-0.3146795</td>
<td>0.1082288</td>
<td>-2.907539</td>
<td>0.0036428470 **</td>
</tr>
</tbody>
</table>

$PHI

| Estimate | Sd_error | Wald_Test | Pval | code
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.9361496</td>
<td>0.3345929</td>
<td>2.797877</td>
<td>0.005143977 **</td>
</tr>
<tr>
<td>Sessom</td>
<td>1.0854145</td>
<td>0.4920932</td>
<td>2.205709</td>
<td>0.027404350 *</td>
</tr>
<tr>
<td>Esogagit</td>
<td>-0.8391630</td>
<td>0.4866712</td>
<td>-1.724291</td>
<td>0.084655278 .</td>
</tr>
</tbody>
</table>

$AICc
[1] 249.2929

$AIC
[1] 248.3698
```
For each type of family model, we selected the one with the lower AIC and with the largest possible number of significant covariates. All comparisons are made with respect to the AIC index. When dropping the not significant covariates we obtain the same results with an AIC index larger, we prefer to present the model with also the not significant covariates but AIC index lower: this is the reason for which are also presented not significant covariates. clm tells us that BMI is significant and that the larger its value the larger the probability of the outcome to be in a lower rather than in a higher category. Discrete-beta and gamlss agree on this prediction. In addiction, our model states that males are more precise than females in the score (sex covariate is significant at 95%). In CUB model BMI, (β_1 value) plays an important role in π variable, the larger its value the larger the uncertainty. CUB also tells us that males have lower outcomes (γ_1 value) but ERD patients (significant at 95%) select a higher score than NERD patients.

Pyrosis

Using the values of nausea as Y_i, we obtain with clm:

```
formula: pirosis ~ Sesso + Max.vol..ml.
data: gerd_pre_fac

link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 71 -112.20 244.40 7(2) 9.36e-13 8.5e+07

Coefficients:

|             | Estimate | Std. Error | z value  | Pr(>|z|) |
|-------------|----------|------------|----------|---------|
| Sesso       | -1.83857 | 0.49357    | -3.725   | 0.000195*** |
| Max.vol..ml. | 0.01121  | 0.00466    | 2.405    | 0.016152*  |

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

with gamlss:

```

Mu link function: logit
Mu Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|-------------|----------|------------|---------|---------|
| (Intercept) | -0.058899| 1.300610 | -0.04529| 0.9640161|
| Sesso | -1.492741| 0.340654 | -4.38198| 0.0000431|
| Max.vol..ml.| 0.006076 | 0.003321 | 1.82935 | 0.0718640|

Sigma link function: log
3. Models with discrete-beta distribution

Sigma Coefficients:

| Parameter | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------|----------|------------|---------|----------|
| (Intercept) | -6.51344 | 2.531444 | -2.573 | 0.01234 |
| Max.vol.ml. | 0.01278 | 0.006194 | 2.064 | 0.04298 |

Global Deviance: 235.3411

AIC: 245.3411

SBC: 256.6545

with CUB:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ML-estimates</th>
<th>stand.errors</th>
<th>Wald-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta_0</td>
<td>1.47632</td>
<td>0.55479</td>
<td>2.66104</td>
<td>0.00778997</td>
</tr>
<tr>
<td>beta_1</td>
<td>-1.47461</td>
<td>0.75106</td>
<td>-1.96337</td>
<td>0.0496032</td>
</tr>
<tr>
<td>gamma_0</td>
<td>39.23346</td>
<td>10.41457</td>
<td>3.76717</td>
<td>0.0001651086</td>
</tr>
<tr>
<td>gamma_1</td>
<td>1.55284</td>
<td>0.56187</td>
<td>2.7637</td>
<td>0.005715006</td>
</tr>
<tr>
<td>gamma_2</td>
<td>-7.14897</td>
<td>1.75627</td>
<td>-4.07054</td>
<td>4.690429e-05</td>
</tr>
</tbody>
</table>

Log-lik(beta^,gamma^) = -123.9466

Mean Log-likelihood = -1.745726

AIC-CUBpq = 257.8931

BIC-CUBpq = 269.2065

and with discrete-beta model:

MU

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Sd_error</th>
<th>Wald_Test</th>
<th>Pval</th>
<th>codeemu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.807761034</td>
<td>1.016133907</td>
<td>-0.7949356</td>
<td>4.266510e-01</td>
<td></td>
</tr>
<tr>
<td>Sessom</td>
<td>-1.32496171</td>
<td>0.272239596</td>
<td>-4.8651856</td>
<td>1.143494e-06</td>
<td>***</td>
</tr>
<tr>
<td>Max.vol.ml.</td>
<td>0.007424267</td>
<td>0.002611504</td>
<td>2.8429091</td>
<td>4.470382e-03</td>
<td>**</td>
</tr>
</tbody>
</table>

PHI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Sd_error</th>
<th>Wald_Test</th>
<th>Pval</th>
<th>codephi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>7.34821057</td>
<td>2.147437606</td>
<td>3.421851</td>
<td>0.0006219649</td>
<td>***</td>
</tr>
<tr>
<td>Max.vol.ml.</td>
<td>-0.01503162</td>
<td>0.005246766</td>
<td>-2.864930</td>
<td>0.0041710102</td>
<td>**</td>
</tr>
</tbody>
</table>

$AIICc$

[1] 246.2236

AIC

[1] 245.3006

clm shows us that males are more likely to assign higher score than females and that patients who drink more water in WLT have a higher probability to score an higher value
of pyrosis. Discrete-beta and \texttt{gamlss} agree on these interpretations and, in addiction, tell us that the larger the value of the WLT the larger the variability (note that in \texttt{gamlss} the covariates are added on \(\sigma\) which is related to the reciprocal of the precision parameter: for this reason we have the opposite sign in covariate estimation respect to discrete-beta model). CUB agrees on the prediction of \texttt{clm} but states also that males have higher uncertainty than female.

\section*{Vomiting}

Using the values of vomiting as \(Y_i\), we obtain with \texttt{clm}:

\begin{verbatim}
link nobs logLik AIC niter max.grad cond.H
logit flexible 71 -148.75 321.50 5(1) 6.25e-07 2.1e+06
\end{verbatim}

Coefficients:
\begin{verbatim}
Estimate Std. Error z value Pr(>|z|)
Sessom 0.7877 0.4332 1.818 0.0690 .
BMI -0.3547 0.1452 -2.443 0.0146 *
\end{verbatim}

with \texttt{gamlss}:

\begin{verbatim}
--
Mu link function: logit
Mu Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.3702 2.6544 2.777 0.007115
BMI -0.3199 0.1025 -3.122 0.002652
--
Sigma link function: log
Sigma Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.9113 3.27 2.725 0.008190
BMI -0.3868 0.13 -2.975 0.004075
--
Global Deviance: 297.6984
AIC: 305.6984
SBC: 314.7491
\end{verbatim}

with CUB:

\begin{verbatim}
parameters ML-estimates stand.errors Wald-test p-value
\end{verbatim}
3. Models with discrete-beta distribution

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Sd_error</th>
<th>Wald_Test</th>
<th>Pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>pai</td>
<td>0.43299</td>
<td>0.09164</td>
<td>4.7249</td>
<td>2.302286e-06</td>
</tr>
<tr>
<td>gamma_0</td>
<td>-37.24858</td>
<td>11.46304</td>
<td>-3.24945</td>
<td>0.001156284</td>
</tr>
<tr>
<td>gamma_1</td>
<td>1.62872</td>
<td>0.48567</td>
<td>3.35355</td>
<td>0.00079782</td>
</tr>
<tr>
<td>gamma_2</td>
<td>-3.4383</td>
<td>1.00161</td>
<td>-3.43277</td>
<td>0.0005974487</td>
</tr>
<tr>
<td>gamma_3</td>
<td>-2.25042</td>
<td>0.89331</td>
<td>-2.51919</td>
<td>0.01176252</td>
</tr>
</tbody>
</table>

Log-lik(pai, gamma) = -154.2587
Mean Log-likelihood = -2.172658

AIC-CUB0q = 318.5174
BIC-CUB0q = 329.8308

with discrete-beta model:

MU

| (Intercept) | 6.9281974 | 2.45264541 | 2.824786 | 0.004731227 ** |
| BMI | -0.2998144 | 0.09436039 | -3.177333 | 0.001486360 ** |

PHI

| (Intercept) | -7.5106124 | 2.7592793 | -2.721947 | 0.006489852 ** |
| BMI | 0.3302617 | 0.1081348 | 3.054166 | 0.002256875 ** |

CUB states that BMI (γ_1) is inversely proportional to the score and that males (γ_2) and ERD patients (γ_3) have higher probability to score higher outcomes than NERD patients. The other three models agree on BMI interpretation: the larger its value the larger the probability to be in a lower category of vomiting score. In addiction, gamlss and discrete-beta models state that a larger value of BMI also increases the precision, the accuracy of responses.

Postprandial fullness

Using the values of postprandial fullness as Y_i, we obtain with clm:

```
link threshold nosb logLik AIC niter max.grad cond.H
logit flexible 71 -134.94 295.87 6(1) 2.80e-10 6.9e+05
```
3.3 Case study

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|---------|----------|------------|---------|----------|
| Sessom | -0.67983 | 0.45616 | -1.490 | 0.136135 |
| Età | -0.07320 | 0.02105 | -3.477 | 0.000507 *** |
| Esofagite | -0.91591 | 0.45190 | -2.027 | 0.042684 * |

with gamlss:

Mu link function: logit

Mu Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------|-----------|------------|---------|----------|
| (Intercept) | 4.18246 | 0.80470 | 5.198 | 2.187e-06 |
| Sessom | -0.53376 | 0.32596 | -1.637 | 1.064e-01 |
| Età | -0.05219 | 0.01491 | -3.499 | 8.475e-04 |
| Esofagite | -0.72118 | 0.32775 | -2.200 | 3.134e-02 |

Sigma link function: log

Sigma Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------|-----------|------------|---------|----------|
| (Intercept) | -4.79422 | 2.229721 | -2.150 | 0.03527 |
| Max.vol..ml. | 0.00947 | 0.005376 | 1.762 | 0.08284 |

Global Deviance: 275.7001
AIC: 287.7001
SBC: 301.2762

with CUB:

Covariates for pai ==> p= 2 and Covariates for csi ==> q= 2

*** m= 11 *** Sample size: n= 71 *** Iterations= 20 (maxiter=500)

parameters ML-estimates stand.errors Wald-test p-value

<table>
<thead>
<tr>
<th></th>
<th>beta_0</th>
<th>1.10129</th>
<th>0.53259</th>
<th>2.0678</th>
<th>0.03865883</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>beta_1</td>
<td>-2.19267</td>
<td>0.73644</td>
<td>-2.97739</td>
<td>0.002907139</td>
</tr>
<tr>
<td></td>
<td>gamma_0</td>
<td>-1.24335</td>
<td>3.30461</td>
<td>-0.37625</td>
<td>0.706731</td>
</tr>
<tr>
<td></td>
<td>gamma_1</td>
<td>0.08638</td>
<td>0.02932</td>
<td>2.94611</td>
<td>0.003217979</td>
</tr>
<tr>
<td></td>
<td>gamma_2</td>
<td>-0.21406</td>
<td>0.11045</td>
<td>-1.93807</td>
<td>0.05261468</td>
</tr>
</tbody>
</table>

Log-lik(beta^,gamma^)= -140.596
Mean Log-likelihood = -1.980225

AIC-CUBpq = 291.192
BIC-CUBpq = 302.5054
3. Models with discrete-beta distribution

with discrete-beta model:

\[
\begin{array}{cccccc}
& \text{Estimate} & \text{Sd_error} & \text{Wald_Test} & \text{Pval} & \text{code} \\
\text{(Intercept)} & 3.74079080 & 0.69375592 & 5.392085 & 6.964487e-08 & *** \\
\text{Sessom} & -0.45848689 & 0.27686134 & -1.656016 & 9.771852e-02 & . \\
\text{Età} & -0.04602106 & 0.01282738 & -3.587722 & 3.335799e-04 & *** \\
\text{Esofagite1} & -0.67810256 & 0.28088377 & -2.414175 & 1.577089e-02 & *
\end{array}
\]

\[
\begin{array}{cccccc}
& \text{Estimate} & \text{Sd_error} & \text{Wald_Test} & \text{Pval} & \text{code} \\
\text{(Intercept)} & 5.53554948 & 2.11747777 & 2.614218 & 0.008943183 & ** \\
\text{Max.vol..ml} & -0.01122309 & 0.00498651 & -2.250689 & 0.024405229 & *
\end{array}
\]

\[
\begin{array}{cccccc}
\text{AICc} & \text{AIC} \\
[1] & 287.6956 & 286.3831
\end{array}
\]

According to all models, younger patients have higher probability to have higher values than older patients and, except the CUB model, that ERD patients have an higher probability to score lower category than NERD patients. CUB states that the higher the BMI value (\(\gamma_1\)) the higher the probability to have an higher outcome and that ERD patients have lower precision in choosing the score than NERD patients. Discrete-beta tells us that patients who drink more water in WLT have more uncertainty.

Early satiety

Using the values of early satiety as \(Y_i\), we obtain with \texttt{clm}:

\[
\text{link threshold nobs logLik AIC niter max.grad cond.H} \\
\text{logit flexible} 71 -142.61 309.22 7(2) 4.92e-12 8.5e+06
\]

Coefficients:

- \text{Età} -0.02958 0.01941 -1.524 0.12761
- \text{BMI} -0.39867 0.13327 -2.991 0.00278 **

with \texttt{gamlss}:

Mu link function: logit

Mu Coefficients:

\[
\begin{array}{cccccc}
\text{(Intercept)} & 9.7829 & 2.85941 & 3.421 & 0.001066
\end{array}
\]
3.3 Case study

\[
\begin{align*}
\text{EtÅ} & \quad -0.0276 & 0.01439 & -1.918 & 0.059329 \\
\text{BMI} & \quad -0.2992 & 0.10384 & -2.881 & 0.005320 \\
\end{align*}
\]

Sigma link function: log
Sigma Coefficients:
\[
\begin{array}{lllll}
\text{Estimate} & \text{Std. Error} & \text{t value} & \text{Pr(>|t|)} \\
-0.654221 & 0.228772 & -2.859701 & 0.005648 \\
\end{array}
\]

Global Deviance: 298.704
AIC: 306.704
SBC: 315.7547

with CUB:

\[
\begin{array}{llllll}
\text{parameters} & \text{ML-estimates} & \text{stand.errors} & \text{Wald-test} & \text{p-value} \\
\hline
\text{pai} & 0.38807 & 0.07692 & 5.04511 & 4.532605e-07 \\
\text{gamma}_0 & -83.34086 & 19.24562 & -4.33038 & 1.488522e-05 \\
\text{gamma}_1 & 2.71526 & 0.62492 & 4.34497 & 1.392947e-05 \\
\text{gamma}_2 & 0.16901 & 0.05503 & 3.07123 & 0.002131789 \\
\text{gamma}_3 & 2.04906 & 0.70224 & 2.91789 & 0.003524086 \\
\end{array}
\]

Log-lik(pai^,gamma^) = -149.832
Mean Log-likelihood = -2.11031

AIC-CUB0q = 309.664
BIC-CUB0q = 320.9774

with discrete-beta model:

\[
\begin{align*}
\text{SMU} & \\
& \begin{array}{llll}
(\text{Intercept}) & 8.7735021 & 2.62505651 & 3.342215 & 0.0008311278 \text{ ***} \\
\text{EtÅ} & -0.0259903 & 0.01319649 & -1.969486 & 0.0488972688 \text{ *} \\
\text{BMI} & -0.2649545 & 0.09518169 & -2.783670 & 0.0053747641 \text{ **} \\
\end{array} \\
\text{SPI} & \\
& \begin{array}{llll}
(\text{Intercept}) & 0.6680276 & 0.1875855 & 3.561189 & 0.0003691787 \text{ ***} \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{SAICc} & \quad [1] \ 306.1333 \\
\text{SAIC} & \quad [1] \ 305.5272 \\
\end{align*}
\]

The value of BMI is significant for all the models and the higher its value the higher the probability to have a lower category. CUB and discrete-beta models state that the
age is also significant and that the younger patients have an higher probability to score lower values. According to CUB and to expressed values, males declare to suffer less than females.

Bloating

Using the values of bloating as Y_i, we obtain with `clm`:

```
link threshold nobs logLik AIC niter max.grad cond.H
logit flexible 71 -150.39 324.78 6(1) 6.32e-12 1.7e+08
```

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------|----------|------------|---------|----------|
| Max.vol.ml | -0.022057| 0.005301 | -4.161 | 3.17e-05 |
| Sessom | 0.974014 | 0.451901 | 2.155 | 0.0311 |

with `gamlss`:

```
Mu link function: logit
Mu Coefficients:
|                  | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| (Intercept)      | 5.82409  | 1.360187   | 4.282   | 6.047e-05|
| Max.vol.ml       | -0.01531 | 0.003493   | -4.382  | 4.237e-05|
| Sessom           | 0.71046  | 0.307266   | 2.312   | 2.385e-02|
```

Sigma link function: log
Sigma Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| -2.486e-03 | 5.698e-04| -4.363e+00| 4.529e-05|

Global Deviance: 318.3123
AIC: 326.3123
SBC: 335.363

with CUB:

```
parameters ML-estimates stand.errors Wald-test p-value
-----------------------------------------------
pai      0.38938  0.09113  4.2728  1.930336e-05
gamma_0  -152.6155 28.22168  -5.40774 6.382499e-08
gamma_1  -2.49755  0.75319  -3.31596 0.000913289
gamma_2  -2.25987  0.87119  -2.59427 0.009479201
gamma_3   25.75097  4.76509   5.40409 6.513823e-08
```

3. Models with discrete-beta distribution
Log-lik(pai^,gamma^) = -158.4807
Mean Log-likelihood = -2.232122

AIC-CUB0q = 326.9614
BIC-CUB0q = 338.2748

with discrete-beta model:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Sd_error</th>
<th>Wald_Test</th>
<th>Pval</th>
<th>codemu</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>5.5703534</td>
<td>1.2210679</td>
<td>4.561870</td>
<td>5.069999e-06</td>
<td>***</td>
</tr>
<tr>
<td>Max.vol..ml.</td>
<td>-0.0145575</td>
<td>0.003143373</td>
<td>-4.631172</td>
<td>3.636018e-06</td>
<td>***</td>
</tr>
<tr>
<td>Sessom</td>
<td>0.6562378</td>
<td>0.277251504</td>
<td>2.366941</td>
<td>1.793581e-02</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Sd_error</th>
<th>Wald_Test</th>
<th>Pval</th>
<th>codephi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.vol..ml.</td>
<td>0.002377821</td>
<td>0.0004109034</td>
<td>5.786812</td>
<td>7.17346e-09</td>
<td>***</td>
</tr>
</tbody>
</table>

SAICc

[1] 326.6533

SAIC

[1] 326.0472

Males seem to have higher probability to have higher values than female and the higher the volume of water the higher the probability to have a lower score. According to CUB, ERD patients have higher values than NERD patients. Discrete-beta and gamlss state also that the higher the result of WLT the higher the precision of the score. Note that in CUB model we do not use WLT as covariate, but we prefer to add log(WLT) in order to avoid numerical problems (and because this transformation accelerates convergence).

Epigastric pain

Using the values of epigastic pain as Y_i, we obtain with **clm**:

```
link threshold nobstr logLik AIC niter max.grad cond.H
logit flexible 71 -141.91 305.83 6(1) 8.57e-13 1.1e+08
```

| | Estimate | Std. Error | z value | Pr(>|z|) |
|--------------|-----------|------------|---------|----------|
| Max.vol..ml. | -0.009392 | 0.004530 | -2.073 | 0.0382 * |
| Sessom | 0.705979 | 0.446095 | 1.583 | 0.1135 |

with gamlss:
3. Models with discrete-beta distribution

Mu link function: logit

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 0.880554 | 1.112603 | 0.7914 | 0.43148 |
| Max.vol..ml. | -0.004654 | 0.002787 | -1.6701 | 0.09956 |

Sigma link function: log

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | -4.6439 | 1.38886 | -3.344 | 0.001357 |
| EtÅ | 0.0624 | 0.02664 | 2.342 | 0.022150 |

Global Deviance: 288.1491
AIC: 296.1491
SBC: 305.1998

with CUB:

<table>
<thead>
<tr>
<th>parameters</th>
<th>ML-estimates</th>
<th>stand.errors</th>
<th>Wald-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta_0</td>
<td>-282.161</td>
<td>583.5373</td>
<td>-0.48354</td>
<td>0.6287124</td>
</tr>
<tr>
<td>beta_1</td>
<td>14.24849</td>
<td>30.70544</td>
<td>0.46404</td>
<td>0.6426191</td>
</tr>
<tr>
<td>beta_2</td>
<td>39.18762</td>
<td>89.27738</td>
<td>0.43894</td>
<td>0.660705</td>
</tr>
<tr>
<td>beta_3</td>
<td>-1.97223</td>
<td>4.68276</td>
<td>-0.42117</td>
<td>0.6736309</td>
</tr>
<tr>
<td>gamma_0</td>
<td>-18.97485</td>
<td>6.6563</td>
<td>-2.85066</td>
<td>0.004362859</td>
</tr>
<tr>
<td>gamma_1</td>
<td>1.81832</td>
<td>1.04025</td>
<td>1.74796</td>
<td>0.08047095</td>
</tr>
<tr>
<td>gamma_2</td>
<td>0.36205</td>
<td>0.11137</td>
<td>3.25088</td>
<td>0.001150484</td>
</tr>
<tr>
<td>gamma_3</td>
<td>-0.47379</td>
<td>0.25938</td>
<td>-1.82663</td>
<td>0.06775542</td>
</tr>
</tbody>
</table>

Log-lik(beta^,gamma^)= -137.2926
Mean Log-likelihood = -1.933698

with discrete-beta model:

\[\$MU \]

| Estimate | Sd_error | Wald_Test | Pval code
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.122572117</td>
<td>0.970055583</td>
<td>2.188093</td>
</tr>
<tr>
<td>Max.vol..ml.</td>
<td>-0.007460842</td>
<td>0.002464474</td>
<td>-3.027357</td>
</tr>
</tbody>
</table>

\[\$PHI \]

| Estimate | Sd_error | Wald_Test | Pval code
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>3.29240069</td>
<td>0.78620792</td>
<td>4.187812</td>
</tr>
</tbody>
</table>

3.3 Case study

Discrete-beta and \texttt{clm} agree on the fact that WLT value is significant. In addition, CUB states also that males (γ_3) have higher probability to have a lower value than females. According to \texttt{gamlss} and our model, younger are more precise than older in giving the score.

Belching

Using the values of belching as Y_i, we obtain with \texttt{clm}:

<table>
<thead>
<tr>
<th>link</th>
<th>threshold</th>
<th>nobs</th>
<th>logLik</th>
<th>AIC</th>
<th>niter</th>
<th>max.grad</th>
<th>cond.H</th>
</tr>
</thead>
<tbody>
<tr>
<td>logit</td>
<td>flexible</td>
<td>71</td>
<td>-146.96</td>
<td>315.91</td>
<td>7(2)</td>
<td>2.70e-12</td>
<td>1.2e+08</td>
</tr>
</tbody>
</table>

Coefficients:

| Coefficient | Estimate | Std. Error | z value | Pr(>|z|) |
|---------------|----------|------------|---------|----------|
| Max.vol..ml. | 0.011204 | 0.004815 | 2.327 | 0.0200 * |
| Esofagite1 | -0.882794| 0.475115 | -1.858 | 0.0632 . |

with \texttt{gamlss}:

Mu Coefficients:

| Coefficient | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------|----------|------------|---------|----------|
| (Intercept) | -2.056102| 1.222433 | -1.682 | 0.09730 |
| Max.vol..ml. | 0.006784 | 0.003267 | 2.076 | 0.04175 |
| Esofagite1 | -0.560593| 0.305048 | -1.838 | 0.07060 |

Sigma Coefficients:

| Coefficient | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------|----------|------------|---------|----------|
| (Intercept) | -4.543903| 2.061249 | -2.204 | 0.03098 |
| Max.vol..ml. | 0.008863 | 0.005084 | 1.743 | 0.08595 |

Global Deviance: 323.3348
AIC: 333.3348
SBC: 344.6482
3. Models with discrete-beta distribution

with CUB:

\[
\begin{array}{l}
\text{Covariates for pai }\Rightarrow p = 2 \\
\text{Covariates for csi }\Rightarrow q = 4
\end{array}
\]

===
*** m = 11 *** Sample size: n = 71 *** Iterations = 22 (maxiter=500)
===

<table>
<thead>
<tr>
<th>parameters</th>
<th>ML-estimates</th>
<th>stand.errors</th>
<th>Wald-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta_0</td>
<td>12.13277</td>
<td>24.53702</td>
<td>0.49447</td>
<td>0.6209743</td>
</tr>
<tr>
<td>beta_1</td>
<td>-1.56719</td>
<td>4.0673</td>
<td>-0.38531</td>
<td>0.700078</td>
</tr>
<tr>
<td>beta_2</td>
<td>-0.0716</td>
<td>0.04198</td>
<td>-1.70557</td>
<td>0.0880817</td>
</tr>
<tr>
<td>gamma_0</td>
<td>64.71603</td>
<td>11.65825</td>
<td>5.55109</td>
<td>2.838939e-08</td>
</tr>
<tr>
<td>gamma_1</td>
<td>-13.45796</td>
<td>2.31666</td>
<td>-5.80921</td>
<td>6.276832e-09</td>
</tr>
<tr>
<td>gamma_2</td>
<td>1.99731</td>
<td>0.52652</td>
<td>3.79342</td>
<td>0.0001485865</td>
</tr>
<tr>
<td>gamma_3</td>
<td>0.06062</td>
<td>0.0234</td>
<td>2.5906</td>
<td>0.009580878</td>
</tr>
<tr>
<td>gamma_4</td>
<td>0.42286</td>
<td>0.17195</td>
<td>2.4592</td>
<td>0.0139247</td>
</tr>
</tbody>
</table>

Log-lik(beta^,gamma^) = -156.5554
Mean Log-likelihood = -2.205006

AIC-CUBpq = 329.1109
BIC-CUBpq = 347.2123

with discrete-beta model:

\[
\begin{array}{l}
\text{\$MU} \\
(\text{Intercept}) -2.362550299 1.055355413 -2.238630 0.025180000 * \\
\text{Max.vol..ml.} 0.007512181 0.002862533 2.624313 0.008682399 **
\end{array}
\]

\[
\begin{array}{l}
\text{\$PHI} \\
(\text{Intercept}) 4.803144878 1.629845778 2.946993 0.00320880 **
\end{array}
\]

\[
\begin{array}{l}
\text{\$AICc} \\
[1] 334.6105
\end{array}
\]

\[
\begin{array}{l}
\text{\$AIC} \\
[1] 333.6875
\end{array}
\]

All the models agree on the significance of WLT values, but only CUB and our model state that ERD patients have higher probability to have lower values than NERD patients. In addition, CUB tells us that age (γ_3) and BMI (γ_4) are significant. On the other hand, for discrete-beta model patients who drink more water in WLT are less precise in giving the score.
3.3.2 Conclusion

Table 3.1: Summary of the result of the previous section. Models are presenting in non-decreasing order of the score.

<table>
<thead>
<tr>
<th>Nausea</th>
<th>Model</th>
<th>AIC</th>
<th>Pirosis</th>
<th>Model</th>
<th>AIC</th>
<th>Vomiting</th>
<th>Model</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUB</td>
<td>244.88</td>
<td></td>
<td>clm</td>
<td>244.40</td>
<td></td>
<td>D-beta</td>
<td>304.88</td>
<td></td>
</tr>
<tr>
<td>D-beta</td>
<td>248.36</td>
<td></td>
<td>D-beta</td>
<td>245.30</td>
<td></td>
<td>gamlss</td>
<td>305.69</td>
<td></td>
</tr>
<tr>
<td>gamlss</td>
<td>248.41</td>
<td></td>
<td>gamlss</td>
<td>245.34</td>
<td></td>
<td>CUB</td>
<td>318.51</td>
<td></td>
</tr>
<tr>
<td>clm</td>
<td>252.61</td>
<td></td>
<td>CUB</td>
<td>257.89</td>
<td></td>
<td>clm</td>
<td>321.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P.fullness</th>
<th>Model</th>
<th>AIC</th>
<th>E. satiety</th>
<th>Model</th>
<th>AIC</th>
<th>Bloating</th>
<th>Model</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-beta</td>
<td>286.38</td>
<td></td>
<td>D-beta</td>
<td>305.52</td>
<td>clm</td>
<td>D-beta</td>
<td>324.78</td>
<td></td>
</tr>
<tr>
<td>gamlss</td>
<td>287.70</td>
<td></td>
<td>gamlss</td>
<td>306.70</td>
<td>D-beta</td>
<td>gamlss</td>
<td>326.04</td>
<td></td>
</tr>
<tr>
<td>CUB</td>
<td>291.19</td>
<td></td>
<td>clm</td>
<td>308.22</td>
<td></td>
<td>gamlss</td>
<td>326.31</td>
<td></td>
</tr>
<tr>
<td>clm</td>
<td>295.87</td>
<td></td>
<td>CUB</td>
<td>309.66</td>
<td></td>
<td>CUB</td>
<td>326.96</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epig p.</th>
<th>Model</th>
<th>AIC</th>
<th>belching</th>
<th>Model</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUB</td>
<td>290.58</td>
<td></td>
<td>clm</td>
<td>315.91</td>
<td></td>
</tr>
<tr>
<td>gamlss</td>
<td>296.14</td>
<td></td>
<td>CUB</td>
<td>329.11</td>
<td></td>
</tr>
<tr>
<td>D-beta</td>
<td>299.90</td>
<td></td>
<td>gamlss</td>
<td>333.33</td>
<td></td>
</tr>
<tr>
<td>clm</td>
<td>305.83</td>
<td></td>
<td>D-beta</td>
<td>333.68</td>
<td></td>
</tr>
</tbody>
</table>

In the table are summarized the result of AIC for each analysis. As we can note, discrete-beta models seems to be a good competitor with respect to the other standard methods. In the previous section we also note that the predictions of our model are very similar to those of clm and, above all, to those of gamlss model.
Chapter 4

Longitudinal ordinal data

One of the most common medical research designs is a pre-post study in which a single baseline health status measurement is obtained, an intervention is administered, and a single follow-up measurement is collected. The primary advantage of these studies is that they can investigate the changes in the outcomes. For example, if some subjects are given placebo while others are given an active drug, the two groups can be compared to see if the change in the outcome is different for those subjects who are actively treated as compared to control subjects. This design can be viewed as the simplest form of a prospective longitudinal study.

A longitudinal study refers to an investigation where participant (or object) outcomes are collected at multiple follow-up times.

Longitudinal studies generally yield multiple or repeated measurements on each subject. For example, HIV patients may be followed over time and monthly measures such as CD4 counts\(^1\) or viral load are collected to characterize immune status and disease burden respectively. Such repeated measures data are correlated within subjects and thus require special statistical techniques for valid analysis and inference.

4.1 Discrete-beta model with random effects

In order to take into account this correlation between the repeated responses, we add random effects to the model (2.3) presented in the previous chapter. Mixed models have become very popular for the analysis of longitudinal data because they are flexible and

\(^1\)CD4 cells are a type of white blood cell that fights infection. The CD4 count measures the number of CD4 cells in a sample of blood.
widely applicable. They assume that measurements from a single subject share a set of latent, unobserved, random effects which are used to generate an association structure between the repeated measurements \[80\].

Let \(y_{it} \), \(y_{it} \in \{0, \ldots, n\} \), be the outcome of the longitudinal ordinal variable \(Y_{it} \), where \(i \in \{0, 1, \ldots, N\} \) refers to individuals and \(t \in \{0, 1, \ldots, T_i\} \) to the time; let \(y_i \) denote a \(T_i \times 1 \) vector of responses for the \(i \)th individual and assume that \(Y_{it} \), given \(\mu_{it} \) and \(\phi_{it} \), follows a discrete-beta distribution, i.e. \((Y_{it}|\mu_{it},\phi_{it}) \sim \text{Dbeta}(\mu_{it},\phi_{it},n)\). These kinds of models are also called two-stage models. In the first stage, we assume that

\[
\logit(\mu_i) = X_i^\mu \beta + Z_i^\mu b_{i\mu} \tag{4.1}
\]

\[
\log(\phi_i) = X_i^\phi \gamma + Z_i^\phi b_{i\phi} \tag{4.2}
\]

\(i = 1, \ldots, N; \)

where \(\mu_i \) and \(\phi_i \) are the \(T_i \times 1 \) vectors, respectively of \(\mu_{it} \) and \(\phi_{it} \). The population parameters \(\beta \) and \(\gamma \) are treated as fixed effects, while \(b_{i\mu} \) and \(b_{i\phi} \) are random effects. Since we are in longitudinal case, random effects will be link to the time. Finally, \(X_i^\mu \) and \(X_i^\phi \) are design matrices, respectively of \(T_i \times p \) and \(T_i \times q \) dimensions, linking the fixed effects to \(\mu_i \) and \(\phi_i \); \(Z_i^\mu \) and \(Z_i^\phi \) are the matrices of between-subject covariates, respectively of \(T_i \times k_\mu \) and \(T_i \times k_\phi \) dimensions, associated to the random effects. If we suppose that the \(T_i \) values of \(y_{ij} \), for the \(i \)th individual, are independent conditional on \(b_{i\mu}, b_{i\phi} \) and the fixed-effects, the likelihood for the \(i \)th individual is \(L_i(\beta, \gamma | y_i, b_{i\mu}, b_{i\phi}) \)

\[
I_{y_{ij}+1} \left(\mu_{ij} \phi_{ij}, (1 - \mu_{ij}) \phi_{ij} \right) - I_{y_{ij}} \left(\mu_{ij} \phi_{ij}, (1 - \mu_{ij}) \phi_{ij} \right) \right].
\]

\[
(4.3)
\]

At the second stage, we add assumptions on random effects. In particular, in our model \(b_{i\mu} \) is taken to be \(\mathcal{N}(0, \sigma_\mu^2 D_\mu) \), and \(b_{i\phi} \) is taken to be \(\mathcal{N}(0, \sigma_\phi^2 D_\phi) \), independently
to each other and that satisfy the following condition

\[
b_i = \left(\begin{array}{c} b_{i\mu} \\ b_{i\phi} \end{array} \right) \sim \mathcal{N}\left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right], D = \left[\begin{array}{cc} D_\mu & 0 \\ 0 & D_\phi \end{array} \right] \right),
\]

(4.4)

that is, its density function is

\[
f_{b_i}(b_i) = \frac{1}{\sqrt{(2\pi)^k|D|}} \exp\left(-\frac{1}{2} b_i^T D^{-1} b_i \right).
\]

(4.5)

Here \(D_\mu\) are \(k_\mu \times k_\mu\) and \(D_\phi\) are \(k_\phi \times k_\phi\) positive-definite covariance matrices, and \(|D|\) is the determinant of \(D\). In this case, we have a “conditional-independence model”, since it implies that the \(T_i\) responses on individual \(i\) are independent conditional on \(b_i\) and the fixed effects \(\beta\) and \(\gamma\). Note that there is no requirement for balance in the data and that such “two-stage” model allows explicit modelling and analysis of between- and within- individual variation. Stage 1 allows modeling the within-subject variation (or occasion-to-occasion variation) separately for each subject. At Stage 2 we model the between-subject variation by postulating a distribution for the individual parameters \(b_i\).

Let \(\theta\) to be the vector of variance e covariance parameters found in \(D_\mu\) and \(D_\phi\), i.e. its length is \(\left[k_\mu(k_\mu+1)/2 + k_\phi(k_\phi+1)/2 \right]\), the classical approach is based on the maximum likelihood estimation of \(\beta\), \(\gamma\) and \(\theta\) from the marginal distribution of \(y^T = (y^T_1, ..., y^T_N)\) [46, 79, 72]. Due to the chain rule\(^2\) and the independence of \(b_{i\mu}\) and \(b_{i\phi}\) we have

\[
f_{(Y_i,b_i)}(y_i,b_i) = P(Y_i = y_i|b_i) f_{b_i}(b_i) = P(Y_i = y_i|b_i) f_{b_{i\mu}}(b_{i\mu}) f_{b_{i\phi}}(b_{i\phi}).
\]

(4.6)

\(^2\)In probability theory, the chain rule permits the calculation of any member of the joint distribution of a set of random variables using only conditional probabilities.

\[
P\left(\bigcap_{k=1}^n A_k \right) = \prod_{k=1}^n P\left(A_k \bigg| \bigcap_{j=1}^{k-1} A_j \right), \quad k \geq 2.
\]
Thus, the marginal distribution of \(y_i \) is given by

\[
P(Y_i = y_i) = \int_{\mathbb{R}^\mu} \int_{\mathbb{R}^\phi} P(Y_i = y_i | b_i) f_{b_i}^\mu(b_i) f_{b_i}^\phi(b_i) \, db_i \, db_i^\phi.
\]

(4.7)

If we assume that observations on different individuals are independent, we obtain that the marginal likelihood of the data can be written in the following way

\[
L(\beta, \gamma, \theta | y) = \prod_{i=1}^N P(Y_i = y_i)
\]

\[
= \prod_{i=1}^N \int_{\mathbb{R}^\mu} \int_{\mathbb{R}^\phi} P(Y_i = y_i | b_i) f_{b_i}^\mu(b_i) f_{b_i}^\phi(b_i) \, db_i \, db_i^\phi
\]

\[
= \prod_{i=1}^N \int_{\mathbb{R}^\mu} \int_{\mathbb{R}^\phi} \mathcal{L}_i(\beta, \gamma | y_i, b_i^\mu, b_i^\phi) f_{b_i}^\mu(b_i) f_{b_i}^\phi(b_i) \, db_i \, db_i^\phi.
\]

(4.8)

and the log-likelihood is

\[
l(\beta, \gamma, \theta | y) = \log L(\beta, \gamma, \theta | y)
\]

\[
= \sum_{i=1}^N \log \int_{\mathbb{R}^\mu} \int_{\mathbb{R}^\phi} \mathcal{L}_i(\beta, \gamma | y_i, b_i^\mu, b_i^\phi) f_{b_i}^\mu(b_i) f_{b_i}^\phi(b_i) \, db_i \, db_i^\phi.
\]

(4.9)

Note that while the random effects \(b_i \) are not parameters, they are estimable quantities. The interest and focus on the unknown quantities \(\beta, \gamma, \theta \) and \(b_i \) depend on the objectives of the research. In a clinical trial the fixed treatment effects are usually of importance. In a biological application where the cluster of observations corresponds to a certain animal, or breed, the interest is in ranking the random effects and the best animal or breed. For genetic data the focus is on \(\theta \) which contains the components of genetic variability [79].

4.2 EM Algorithm

It is not trivial to maximize the likelihood (4.8): no closed-form expression is available and its computation involves multidimensional integrations. In this case, the estimators \(\hat{\eta} = (\hat{\beta}, \hat{\gamma}, \hat{\theta}) \) that maximize eq.(4.8) can be obtained using an EM algorithm. Its name stands for expectation-maximization, and it is so named because it alternates between calculating conditional expected values and maximized simplified likelihoods [68].
4.2 EM Algorithm

The EM algorithm [20] is a general-purpose optimization routine for computing maximum likelihood estimates. It was designed to be used for maximum likelihood estimation for situations in which augmenting the data set leads to a simpler problem. The actual data set is typically called the incomplete data in application of the EM algorithm. In the longitudinal data setting, the EM algorithm provides a convenient approach to computation, since the individual parameters $b_i\mu$ and $b_i\phi$ can be viewed as missing data.

If we were to observe $b_i\mu$, $b_i\phi$ in addition to y_i, we could find simple closed-form maximum likelihood estimates of the component of θ:

$$
\hat{D}_\mu = \frac{1}{N} \sum_{i=1}^{N} b_i\mu b_i^T \mu \quad \hat{D}_\phi = \frac{1}{N} \sum_{i=1}^{N} b_i\phi b_i^T \phi,
$$

(4.10)

or equivalently

$$
\hat{D} = \frac{1}{N} \sum_{i=1}^{N} b_i b_i^T,
$$

(4.11)

taking care to set $b_{ij}b_{ik}$ equal to zero for all $j=1, \cdots k_\mu$ and $k=k_\mu+1, \cdots, k_\mu+k_\phi$ (we have to remind condition (4.4)). For simplicity this condition is omitted from notation throughout this section, but when we write $b_i b_i^T$ we mean the matrix with this condition applied. Eq. (4.11) follows from the fact that, if $b_i\mu$ and $b_i\phi$ were observed, their likelihood would have the exponential-family form with sufficient statistic $\sum_{i=1}^{N} b_i b_i^T$, since they are known to have zero mean. If estimates of $\tilde{\beta}$, $\tilde{\gamma}$, and $\tilde{\theta}$, of, respectively, β, γ and θ are available, we can use them to compute “estimates” of the missing sufficient statistics, by setting them equal to their expectations, conditional on the observed data vector y. For example, if we denote $t_2 = \sum_{i=1}^{N} b_i^T b_i$, then we have

$$
\tilde{t}_2 = E \left[\sum_{i=1}^{N} b_i^T b_i \mid y_i, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta} \right].
$$

(4.12)

Substituting the numerator of (4.11) with the result of (4.12), we obtain a new $\tilde{\theta}$, and, consequently $\tilde{\beta}$ and $\tilde{\gamma}$.

In a more formal way, at each iteration the expected of the augmented data log-likelihood is computed, conditional on the observed data and the current parameter values (E-step), than this pseudo-likelihood function is maximized to provide the next
parameter values (M-step). This gives an iterative scheme, as described in detail in the next two sections, that is used until it converges. Convergence is guaranteed under relatively unrestricted condition [83].

4.2.1 E-step

In the E-step we compute the expectation of the log-likelihood of the augmented data \((y_i, b_i)\) conditional on the observed data and the current parameter values \(\tilde{\beta}, \tilde{\gamma}\) and \(\tilde{\theta}\). Let

\[
Q(\beta, \gamma, \theta) = \mathbb{E}[l(\beta, \gamma, \theta; y, b) | y, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta}].
\] (4.13)

Under the hypothesis of independence, we have that

\[
L(\beta, \gamma, \theta | y, b) = \prod_{i=1}^{N} f(Y_i, b_i)(y_i, b_i)
= \prod_{i=1}^{N} P(Y_i = y_i | b_i)f_{b_{i\mu}}(b_{i\mu})f_{b_{i\phi}}(b_{i\phi})
= \prod_{i=1}^{N} L_i(\beta, \gamma | y_i, b_{i\mu}, b_{i\phi})f_{b_{i\mu}}(b_{i\mu})f_{b_{i\phi}}(b_{i\phi})
\] (4.14)

and consequently

\[
l(\beta, \gamma, \theta | y, b) = \log L(\beta, \gamma, \theta | y, b)
= \log \left[\prod_{i=1}^{N} L_i(\beta, \gamma | y_i, b_{i\mu}, b_{i\phi})f_{b_{i\mu}}(b_{i\mu})f_{b_{i\phi}}(b_{i\phi}) \right]
= \sum_{i=1}^{N} \log P(Y_i = y_i | b_i)f_{b_{i\mu}}(b_{i\mu})f_{b_{i\phi}}(b_{i\phi})
= \sum_{i=1}^{N} \left[\log P(Y_i = y_i | b_i) + \log f_{b_i}(b_i) \right]
= \sum_{i=1}^{N} \left[\sum_{t=1}^{T_i} \log P(Y_{it} = y_{it} | b_i) + \log f_{b_i}(b_i) \right]
= \sum_{i=1}^{N} \sum_{t=1}^{T_i} \log P(Y_{it} = y_{it} | b_i) + \sum_{i=1}^{N} \log f_{b_i}(b_i).
\] (4.15)
Thus, \(Q(\beta, \gamma, \theta) \) can be written as:

\[
Q(\beta, \gamma, \theta) = \mathbb{E} \left[\sum_{i=1}^{N} \sum_{j=1}^{T_i} \log P(X_{it} = y_{it} | b_i) + \sum_{i=1}^{N} \log f_{b_i}(b_i) \bigg| y, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta} \right]
\]

\[
= \mathbb{E} \left[\sum_{i=1}^{N} \sum_{j=1}^{T_i} \log P(X_{it} = y_{it} | b_i) \bigg| y, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta} \right] + \mathbb{E} \left[\sum_{i=1}^{N} \log f_{b_i}(b_i) \bigg| y, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta} \right]
\]

\[
= \sum_{i=1}^{N} \sum_{j=1}^{T_i} \mathbb{E} \left[\log P(X_{it} = y_{it} | b_i) \bigg| y, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta} \right] + \sum_{i=1}^{N} \mathbb{E} \left[\log f_{b_i}(b_i) \bigg| y, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta} \right]
\]

\[
= Q_1(\beta, \gamma) + Q_2(\theta), \quad (4.16)
\]

where the two terms \(Q_1(\beta, \gamma) \) and \(Q_2(\theta) \) are

\[
Q_1(\beta, \gamma) = \sum_{i=1}^{N} \sum_{j=1}^{T_i} \mathbb{E} \left[\log P(X_{it} = y_{it} | b_i) \bigg| y, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta} \right], \quad (4.17)
\]

\[
Q_2(\theta) = \sum_{i=1}^{N} \mathbb{E} \left[\log f_{b_i}(b_i) \bigg| y, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta} \right]. \quad (4.18)
\]

In order to compute the conditional expectations, we need the density of \(b_i | y_i \). It can be obtained by the Bayes’ formula

\[
\hat{f}_{b_i | y_i}(b_i | y_i) = \frac{P(Y_i = y_i | b_i) f_{b_i}(b_i)}{P(Y_i = y_i)}. \quad (4.19)
\]

Substituting eq. (4.7) and (4.6) in eq. (4.19), we achieve the result.

The computation of the conditional expectations in eq. (4.17) and (4.18) is not trivial because they involve multidimensional integrals. These expectations are not available in closed form, but it possible to approximate these integrals by numerical methods or Monte Carlo simulations. For dimensions less or equal to 2, Gaussian quadrature may be used. We used cubature package in R software. This package allows to compute multiple integrals in an adaptive way where integrations are based on the algorithms described in [27, 6]. These algorithms are best suited for a moderate number of dimensions (say, < 7), and is superseded for high-dimensional integrals by other methods (e.g. Monte Carlo variants or sparse grids)[1]. An example of sparse grid method can be found in [35].
4.2.2 M-step

The M-step conveniently separates the estimation of the regression parameters β and γ from the variance components θ. It has different interpretations for Q_1 and Q_2 from the E-step.

To maximize Q_2, note that this is the log-likelihood corresponding to N independent observations from the “prior” random effects distribution $f_{b_i}(b_i)$ where the standard sufficient statistics are replaced with their conditional expectations. In the case of a diagonal D the estimates are

$$
\hat{\sigma}_g^2 = \frac{1}{N} \sum_{i=1}^N E\left[b_{ig}^2 | y_i, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta}\right] \quad g = 1, \cdots, k_{\mu} + k_{\phi}
$$

where $\hat{\sigma}_g^2$ denotes the g-element of the diagonal of D. In general case, when the variance-covariance matrices D_{μ} and D_{ϕ} are unconstrained, Q_2 is maximized by

$$
\hat{D} = \frac{1}{N} \sum_{i=1}^N E\left[b_i b_i^T | y_i, \tilde{\beta}, \tilde{\gamma}, \tilde{\theta}\right],
$$

that is the same formula that we achieve combining eq. (4.12) and (4.11).

About the first term, Q_1, we have not an analytic solution and we must use numerical algorithms. As in the previous chapter, it is possible to maximize it with the quasi-Newton algorithm.

The EM algorithm starts with a set of initial values for the parameters. A good starting points for β and γ is given by a regression with no random effect (described in the previous chapter). The initial value for D can be taken as the identity matrix. The algorithm then iterates between these two steps until convergence. Note that, due to the approximation of the E-step, the convergence of the log-likelihood is only approximately monotone. The algorithm is considered to converge when all parameter estimates become stable and no further improvements can be made to the likelihood value. However, to reduce computational time, since the rate of convergence is very slow [53], it is often common practice for the algorithm to be stopped before complete convergence using heuristic approaches. For example, in [79] the algorithm is stopped when the relative variation of all parameter values is less than 1 per cent (or after a fixed number of steps), then convergence is assessed by visual inspection and the final estimates are the average of the EM sequence over the convergent portion of the chain.
4.3 Variance-covariance matrix estimation

As in the previous section, we estimate the variance-covariance matrix of the vector \(\hat{\beta}, \hat{\gamma}, \hat{\theta} \) through the inverse of observed information matrix. The EM algorithm only generates estimates and does not give the variance estimates as a byproduct, as do the quasi-Newton method. To obtain variance estimate, extra computations must be performed.

In [51], Louis derived a procedure for extracting the information matrix when the EM is used. The technique requires computation of a complete-data gradient vector or second derivatives matrix, but not those associated with the incomplete data likelihood. Let \(\nu = (\beta, \gamma, \theta) \), then

\[
I(\nu) = E \left[\dot{\bar{l}}(\nu; y, b) | y, \nu \right] - E \left[s(\nu; y, b)s(\nu; y, b)^T | y, \nu \right],
\]

(4.22)

where \(\dot{\bar{l}} \) and \(s \) denote the matrix of second and vector of first derivatives of \(l \) with respect to \(\nu \). However, expectations must be computed. Thus, we preferred to estimate the second derivatives directly from the marginal log-likelihood (4.8) in a numerical way. Richardson’s extrapolation joint to finite differences is a method for calculating (usually) accurate numerical first and second order derivatives. Simple difference method is also an option: it is usually less accurate but is much quicker than Richardson’s extrapolation and provides a useful cross-check. R-package numDeriv implements these methods.

4.4 Prediction of random effects

In some applications the magnitude of random effects is of interest. Estimation, or prediction of random individual effects \(\hat{b}_i \) is obtained by using an empirical Bayes strategy [72]

\[
\hat{b}_i = E \left[b_i | y_i, \hat{\nu} \right],
\]

(4.23)

with variance

\[
\hat{\nu}_i = \text{Var} \left[b_i | y_i, \hat{\nu} \right].
\]

(4.24)

Conditional on \(\hat{\nu} \), the random effects \(\hat{b}_i \) depend only on \(y_i \), the data from cluster \(i \). Note that the asymptotic of \(\hat{\nu} \) is governed by the number of individuals \(N \), whereas the asymptotic of \(\hat{b}_i \) is governed by the cluster size \(T_i \).
4.5 Case Study

Returning to the case study presented in the previous subsection 3.3, after the therapy and the positive endoscopy, thirty-one patients (eighteen ERD patients and thirteen NERD patients) underwent surgery. Nissen fundoplication\(^3\) (NF) is the most common and effective surgical treatment for gastroesophageal reflux disease. Previous studies have shown that after NF gastric emptying of solids and liquids is accelerated, the resting pressure of the lower esophageal sphincter (LES) is increased and transient LES relaxations are reduced.

After the surgery, the participants completed a symptom visual analogue scale (VAS, 0-10 cm; 0 = absent, 10 = maximal) to score the following: heartburn, postprandial fullness, vomiting, early satiety, nausea, bloating, epigastric pain, belching, epigastric burning.

Our \(Y_i\) will be the score of the \(i\)th individual and the covariates should be BMI, age, sex, level of disease (ERD, NERD) and the time (pre-post surgery).

4.5.1 Model comparison

In the following section, we analysed the data set, presented in the previous section, adopting our model and a generalized linear model with binomial family. We present only results on nausea symptom. With binomial model we obtain:

```
Generalized linear mixed model fit by the Laplace approximation
Formula: cbind(nausea, 10 - nausea) ~ BMI + esofagite + tempo + (1 | Paziente)
   + (0 + tempo | Paziente)
Data: Nissen_t
AIC  BIC  logLik deviance
145.4 162.4 -64.68 129.4
Random effects:
Groups   Name       Variance Std.Dev. Corr
Paziente (Intercept) 0.030433 0.17445
Paziente tempo0       1.653684 1.28596
                     1.887979 1.37404 0.444
Number of obs: 62, groups: Paziente, 31
```

\(^3\)In a fundoplication, the gastric fundus (upper part) of the stomach is wrapped, or plicated, around the lower end of the esophagus and stitched in place, reinforcing the closing function of the lower esophageal sphincter. The esophageal hiatus is also narrowed down by sutures to prevent or treat concurrent hiatal hernia, in which the fundus slides up through the enlarged esophageal hiatus of the diaphragm. In a Nissen fundoplication, also called a complete fundoplication, the fundus is wrapped all the way 360 degrees around the esophagus.
4.5 Case Study

\[
\begin{array}{lcccc}
\text{Estimate} & \text{Std. Error} & z \text{ value} & \text{Pr}(>|z|) \\
\text{(Intercept)} & 4.7241 & 3.3869 & 1.395 & 0.1631 \\
\text{BMI} & -0.2339 & 0.1334 & -1.753 & 0.0796 \\
\text{esofagiteS} & 0.9790 & 0.5028 & 1.947 & 0.0515 \\
\text{tempo1} & -2.1056 & 0.3727 & -5.650 & 1.6e-08 **
\end{array}
\]

and with discrete-beta model

\[
\begin{array}{lcccc}
\text{Estimate} & \text{Sd_error} & \text{Pval} \\
\text{(Intercept)} & 1.65428385 & 0.9632638 & 0.08591093 & . \\
\text{Sessom} & 0.44350422 & 0.2489684 & 0.07485239 & . \\
\text{BMI} & -0.11338419 & 1.8939167 & 0.95226111 & \\
\text{eta} & 0.01173522 & 0.9964852 & 0.99060384 & \\
\text{tempo1} & -1.83604170 & 0.9205365 & 0.04609369 & *
\end{array}
\]

\[
\begin{array}{lcccc}
\text{Estimate} & \text{Sd_error} & \text{Pval} \\
\text{(Intercept)} & -2.05315175 & 0.7548059 & 0.0065261101 & ** \\
\text{eta} & 0.07459756 & 0.3748485 & 0.8422570700 & \\
\text{tempo1} & 2.88745270 & 0.8230477 & 0.0004510739 & ***
\end{array}
\]

\[
\begin{array}{lcccc}
\text{Estimate} & \text{Sd error} \\
\text{(Intercept)} & 0.64283059 & 0.04961232 \\
\text{tempo1} & 0.04961232 & 0.70120039
\end{array}
\]

\[
\begin{array}{lcccc}
\text{S\text{AIC}} \\
[1] 242.1153
\end{array}
\]

Both models say that patients, after the surgery, have an higher probability to score lower values than before the surgery. Our model also state that patients become more precise after NF. As we note from the AIC, the discrete-beta models could be probably improved eliminating some covariates.4

4Since the EM algorithm has a slow convergence, when we noted that the changes in $\hat{\theta}$ and $\hat{\gamma}$ have a little influence on Q_1, we stopped it. The we set $\hat{\theta}_F$ equal to the $\hat{\theta}$ obtained from the last step of the EM and we maximized directly the marginal log-likelihood in order to obtain the final estimate of β_F and γ_F with $\hat{\theta}_F$. We also use the correction, proposed in [67], of second derivatives if it is necessary. Other solutions to this numerical problem are under investigation.
Conclusions

In this work we proposed a new discrete probability distribution useful when we work with ordered categorical data. The discrete-beta distribution, \(D\beta(\mu, \phi, n) \), has a highly flexible shape and it can be either over-dispersed or under-dispersed with respect to the binomial distribution. It has only two parameters, \(\mu \) and \(\phi \), which have a very clear interpretation: \(\mu \) is the mean of the beta latent variable and the greater its value the higher the probability to obtain higher score; \(\phi \) is a precision parameter (of the latent variable) and the higher its value the lower the variance. For \(n > 2 \) the model is identifiable and, adding directly covariates on parameters \(\mu \) and \(\phi \) (according to CUB model framework), it is very suitable to regression.

The assumption of the equispaced cut-points, combined with the finite support of the beta distribution, allows us to decrease the number of parameters in the model and to obtain the flexible shapes described previously in this work. On the other hand, except the U shapes, the model can not take into account bimodal shapes and so on. Thus, in these cases our model is not recommended. Future improvements should regard the mixture with an other distribution, such as an uniform distribution or another beta distribution, in order to take into account more uncertainty and bimodal shapes. Another idea is to change the set of cut-points, without increase exponentially the number of parameters.

We also introduced random effects in order to take into account the correlations in longitudinal data. An EM algorithm is proposed to find estimation of parameters. Further investigations need to be done to increase the speed of convergence of the algorithm and to achieve a better approximation of parameter estimates.

Other possible investigations involve the introduction of the Bayesian information criterion (BIC), which is a criterion for model selection, based, in part, on the likelihood function and closely related to the Akaike information criterion (AIC), and the
comparisons with CUBE models. In this thesis, we restricted the comparisons between the most used model, the cumulative logistic regression, and the other models with one or two parameters (CUB, beta-binomial and binomial models).
Appendix A

In this appendix, R-script for maximum likelihood estimation, for single population and in presence of covariates are shown.

For single population:

```r
x <- rbetadiscr(100, size, mu, phi)
t1 <- proc.time()
stima=optim(par=c(mean(x),1/var(x)), fn=verosim, x=x, size=size, method = "L-BFGS-B", hessian=T, lower = c(2^(-1074), 0+.Machine$double.eps), upper = c(1-.Machine$double.eps, Inf))
t2 <- proc.time()
t2-t1

hess1 <- stima$hessian
hess3 <- solve(hess1)
sdval2 <- diag(hess3)
sdval <- sqrt(sdval2)

z<- qnorm(0.975)
interval_mu <- c( stima$par[1] - z*sdval[1], stima$par[1] + z*sdval[1])
sol_mu <- matrix(round(c(stima$par[1], interval_mu, stima$par[1]/sdval[1]),5), nrow=1)
dimnames(sol_mu)[[2]] <- c("estimate","lower bound", "upper bound", "Wald test")
sol_phi <- matrix(round(c(stima$par[2], interval_phi, stima$par[2]/sdval[2]),5), nrow=1)
dimnames(sol_phi)[[2]] <- c("estimate","lower bound", "upper bound", "Wald test")

list( mu= sol_mu, phi= sol_phi)
```

In presence of covariates:

```r
bdmod <- function(y,formulamu, formulaphi, data)
{
  # creo la matrice di design per mu
  mat_mu <- model.matrix(formulamu, data)
  mat_mup <- mat_mu
```
creo la matrice di design per phi
mat_phi <- model.matrix(formulaphi, data)
mat_phip <<- mat_phi

n <- dim(data)[1]
size <- sum(y[1,])

funzione di log verosim da massimizzare

logverosim <- function(par,x,size,mat_mu,mat_phi){
beta_mu <- par[1:dim(mat_mu)[2]]
beta_phi <- par[(dim(mat_mu)[2]+1) : (dim(mat_mu)[2]+dim(mat_phi)[2])]

mu <- 1/(1+exp(- (mat_mu %*% beta_mu))) # vettore dei mu
phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))
phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))

alfa1 <- mu*phi
alfa2 <- (1-mu)*phi

a <- pbeta(x/(size +1),alfa1,alfa2)
b <- pbeta((x+1)/(size +1),alfa1,alfa2)

l <- sum(log(b-a))

stima = optim(par=rep(0.1, dim(mat_mu)[2] + dim(mat_phi)[2]) , fn=logverosim,
x=y[1,], size=size, mat_mu=mat_mu, mat_phi=mat_phi,
method = "BFGS", hessian=TRUE)

per_mu = matrix(stima$par[1:dim(mat_mu)[2]], ncol=1)
per_mu = data.frame(per_mu)
dimnames(per_mu)[[1]] <- dimnames(mat_mu)[[2]]
dimnames(per_mu)[[2]] <- c("Estimate")

per_phi = matrix(stima$par[(dim(mat_mu)[2]+1) : (dim(mat_mu)[2]+dim(mat_phi)[2])], ncol=1)
per_phi = data.frame(per_phi)
```r
dimnames(per_phi)[[1]] <- dimnames(mat_phi)[[2]]
dimnames(per_phi)[[2]] <- c("Estimate")

simm <- stima$hessian
simm <- solve(simm)
svdval <- diag(simm)
svdval <- sqrt(svdval)

pvalmu <- 2*(1-pnorm(abs(per_mu[,1]/svdval[1:dim(per_mu)[1]])))
pvalphi <- 2*(1-pnorm(abs(per_phi[,1]/svdval[-(1:dim(per_mu)[1])])))

codemu <- rep(" ", dim(per_mu)[1])
codemu[which(pvalmu<=0.001)] <- rep("***",length(pvalmu[pvalmu<=0.001]))
codemu[which(pvalmu>0.001 & pvalmu<=0.01)] <- rep("**",length(pvalmu[pvalmu>0.001 & pvalmu<=0.01]))
codemu[which(pvalmu>0.01 & pvalmu<=0.05)] <- rep("*",length(pvalmu[pvalmu>0.01 & pvalmu<=0.05]))
codemu[which(pvalmu>0.05 & pvalmu<=0.1)] <- rep(".",length(pvalmu[pvalmu>0.05 & pvalmu<=0.1]))

codephi <- rep(" ", dim(per_phi)[1])
codephi[which(pvalphi<=0.001)] <- rep("***",length(pvalphi[pvalphi<=0.001]))
codephi[which(pvalphi>0.001 & pvalphi<=0.01)] <- rep("**",length(pvalphi[pvalphi>0.001 & pvalphi<=0.01]))
codephi[which(pvalphi>0.01 & pvalphi<=0.05)] <- rep("*",length(pvalphi[pvalphi>0.01 & pvalphi<=0.05]))
codephi[which(pvalphi>0.05 & pvalphi<=0.1)] <- rep(".",length(pvalphi[pvalphi>0.05 & pvalphi<=0.1]))

per_mu <- cbind(per_mu, Sd.error= svdval[1:dim(per_mu)[1]],
                Wald.Test=per_mu[,1]/svdval[1:dim(per_mu)[1]], Pval= pvalmu, codemu)
per_phi <- cbind(per_phi, Sd.error=svdval[-(1:dim(per_mu)[1])],
                Wald.Test=per_phi[,1]/svdval[-(1:dim(per_phi)[1])], Pval=pvalphi, codephi)

k= length(stima$par)
N <- dim(data)[1]
AIC = 2*( k + stima$value)
AICc = AIC + + 2*k*(k+1)/(N -k -1)

list( MU = per_mu, PHI = per_phi, AIC= AIC, AICc= AICc)
}

Probability mass function, cumulative probability function, quantile function and
random function of a discrete-beta distribution.
```

Appendix A
dbetadiscr(k,n,mu,sigma)
#
k = outcome (between 0 and n)
size = number of possibility
mu = mean of the latent beta distribution
phi = precision parameter (alpha + beta) of the latent beta distribution

dbetadiscr <<- function(x,size,mu,phi,log=FALSE){
 if (sum(x<0)!=0 | sum(x>size)!=0 | sum(round(x))!= sum(x))
 cat("ERROR: x must be integer between 0 and n \n")
 else
 if (size<=0 | round(size)!= size)
 cat("ERROR: size must be integer greater than 0 \n")
 else
 if (sum(mu<0)!=0 | sum(mu>1)!=0)
 cat("ERROR: mu must be between 0 and 1 \n")
 else
 if (sum(phi<0)!=0)
 cat("ERROR: phi must be positive \n")
 else
 pbeta((x+1)/(size+1),mu*phi, (1-mu)*phi) -
 pbeta((x)/(size+1),mu*phi, (1-mu)*phi)
}

pbetadiscr <<- function(x,size,mu,phi,lower.tail = TRUE, log.p = FALSE){
 if (size<=0 | round(size)!= size)
 cat("ERROR: size must be integer greater than 0 \n")
 else
 if (sum(mu<0)!=0 | sum(mu>1)!=0)
 cat("ERROR: mu must be between 0 and l \n")
else
 if (sum(phi<0)!=0)
 cat ("ERROR: phi must be positive \n")
 else (
 k = floor(x)
 pbeta((k+1)/(size+1),mu*phi, (1-mu)*phi,lower.tail = lower.tail,
 log.p = log.p)
)
)
}

###
qbetadiscr(u,n,mu,phi)
#
u = quantile (between 0 and 1)
size = number of possibility
mu = mean of the latent beta distribution
phi = precision parameter (alpha + beta) of the latent beta distribution
###
qbetadiscr <- function(p,size,mu,phi,lower.tail = TRUE, log.p = FALSE)(
 if (sum(p<0)!=0 | sum(p>1)!=0)
 cat ("ERROR: p must be between 0 and 1 \n")
 else
 if (size<=0 | round(size)!= size)
 cat ("ERROR: size must be integer greater than 0 \n")
 else
 if (sum(mu<0)!=0 | sum(mu>1)!=0)
 cat ("ERROR: mu must be between 0 and 1 \n")
 else
 if (sum(phi<0)!=0)
 cat ("ERROR: phi must be positive \n")
 else

 ris = ceiling(qbeta(p, mu*phi, (1-mu)*phi,lower.tail = lower.tail,
 log.p = log.p) * (size+1))-1
 ris[ris==-1] = rep(0,length(ris[ris==-1]))
 ris

)
)
rbetadiscr <- function(n, size, mu, phi) {

if (n<=0 | round(n)!= n)
cat ("ERROR: n must be integer greater than 0 \n")
else
if (size<=0 | round(size)!= size)
cat ("ERROR: size must be integer greater than 0 \n")
else
if (mu<0 | mu>1)
cat ("ERROR: mu must be between 0 and 1 \n")
else
if (phi<0)
cat ("ERROR: phi must be positive \n")
else
{
a <- rbeta(n, mu*phi, (1-mu)*phi)
sol <- floor(a*(size+1))
sol[sol==size+1] = rep(size,length(sol[sol==size+1]))
sol
}
}
Appendix B

R-script for estimation in case of longitudinal data. In this script, random effects are added only for μ.

```r
bdmod <- function(y, formulamu, formulaphi, randommu, data) {
    library(Matrix)
    library(mnormt)
    library(cubature)
    library(MCMCpack)

    attach(data)

    size <- sum(y[1,])

    # creo la matrice totale di design per mu
    mat_mutot <- model.matrix(formulamu, data)

    # creo la matrice totale di design per phi
    mat_phitot <- model.matrix(formulaphi, data)

    # matrice sparsa dei random effect per mu e matrici parziali
    a <- all.vars(randommu[[2]])
    eval(parse(text=paste("f <- ~ ", a[1], sep=" ")))
    datasplit <- split(data, eval(parse(text=a[2])))

    mat_mu <- NULL
    r_mu <- NULL
    T <- dim(datasplit[[1]])[1]
    for (i in (1:length(datasplit))) {
        r_mu[[i]] <- model.matrix(f, datasplit[[i]])
        mat_mu[[i]] <- model.matrix(formulamu, datasplit[[i]])
    }

    nbmu <- dim(r_mu[[1]])[2]
    r_mutot <- bdiag(r_mu)

    # matrice sparsa dei random effect per phi e matrici parziali
    mat_phi <- NULL
    for (i in (1:length(datasplit))) {
        mat_phi[[i]] <- model.matrix(formulaphi, datasplit[[i]])
    }

    # matrice sparsa dei random effect per mu e matrici parziali
    theta <- rep(0, lrmu)
    theta[cumsum(rep(1, dim(r_mu[[1]])[1]) + c(0, (dim(r_mu[[1]])[1]-1):1))] = rep(1, dim(r_mu[[1]])[1])
    print(theta)
}
```

81
varcovmu <- xpd(t(theta[1:1loor]))

verosimp <- function(par,a,size_mu,mat_mu,mat_phi, r_mu,varcovmu) {
 beta_mu <- par[1:dim(mat_mu)[2]]
 beta_phi <- par[-(1:dim(mat_mu)[2])]

 fyi <- function(bstim,a,size_mu,mat_mu,mat_phi, r_mu, varcovmu,beta_mu, beta_phi) {
 h_mu <- bstim
 mu <- 1/((1-exp(- (mat_mu %*% beta_mu) - (r_mu %*% (b_mu)))))
 phi <- exp(mat_phi %*% beta_phi)
 # controls
 mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))
 mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))
 phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))
 phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))
 alfa1 <- mu*phi
 alfa2 <- (1-mu)*phi
 alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))
 alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))
 alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))
 alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))
 a <- pbeta(x/(size +1), alfa1, alfa2)
 b <- pbeta((x+1)/(size +1), alfa1, alfa2)
 l <- prod(abs(b-a))* dmnorm(b_mu, rep(0,dim(r_mu)[1]), varcovmu)
 }

 adaptIntegrate(fyi, lower=-10*diag(varcovmu), upper=10*diag(varcovmu), x=x,size=size,
 mat_mu=mat_mu, mat_phi=mat_phi, r_mu=r_mu, varcovmu=varcovmu,beta_mu=beta_mu,
 beta_phi=beta_phi, maxEval=15000)$integral
}

log-verosimiglianza totale

denominatore_fcondizionata <- function(par, y, T, size, datasplit, mat_mu, mat_phi, r_mu, varcovmu) {
 lv <- NULL
 for (i in (1:length(datasplit))) {
 lv <- lv +(-log(prod(abs(h-y)))%*%knorm(h_mu, rep(0,dim(r_mu)[1]), varcovmu)
 }
 adaptIntegrate(fyi, lower=-10*diag(varcovmu), upper=10*diag(varcovmu), x=x,size=size,
 mat_mu=mat_mu, mat_phi=mat_phi, r_mu=r_mu, varcovmu=varcovmu,beta_mu=beta_mu,
 beta_phi=beta_phi, maxEval=15000)$integral
}

densityb2 <- function(bstim,b2,x,size,mat_mu,mat_phi, r_mu, varcovmu,beta_mu, beta_phi) {
 b_mu <- bstim
 mu <- 1/((1-exp(- (mat_mu %*% beta_mu) - (r_mu %*% (b_mu)))))
 phi <- exp(mat_phi %*% beta_phi)
 mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))
 mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))
 phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))
 phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))
}
\[
\text{alpha1} \leftarrow \mu \cdot \phi \\
\text{alpha2} \leftarrow (1 - \mu) \cdot \phi \\
\text{alpha1}[\text{alpha1}==0] \leftarrow \text{rep}(2^{-1074}, \text{length(alpha1[alpha1==0]))} \\
\text{alpha1}[\text{alpha1}==\infty] \leftarrow \text{rep}(2^{1023}, \text{length(alpha1[alpha1==\infty]))} \\
\text{alpha2}[\text{alpha2}==0] \leftarrow \text{rep}(2^{-1074}, \text{length(alpha2[alpha2==0]))} \\
\text{alpha2}[\text{alpha2}==\infty] \leftarrow \text{rep}(2^{1023}, \text{length(alpha2[alpha2==\infty]))} \\
\text{a} \leftarrow \text{pbeta}(\text{x}/(\text{size} + 1), \text{alpha1, alpha2)} \\
\text{b} \leftarrow \text{pbeta}(\text{x+1}/(\text{size} + 1), \text{alpha1, alpha2)} \\
1 \leftarrow \text{prod(bstim[2])*prod(abs(b-a))*dnorm(b_mu, rep(0, dim(r_mu)[1]), varcovmu)} \\
\}
\]

\text{logevsiom.cond} \leftarrow \text{function(par, x, size, mat_phi, r_mu, varcovmu, beta_mu, beta_phi)}{ \\
\text{beta_mu} \leftarrow \text{par[1:dim(mat_mu)[2]]} \\
\text{beta_phi} \leftarrow \text{par[(dim(mat_mu)[2]+1) : (dim(mat_mu)[2]+dim(mat_phi)[2])]} \\
\text{finteg} \leftarrow \text{function(bstim, x, size, mat_phi, r_mu, varcovmu, beta_mu, beta_phi, beta_muv, beta_phiv)}{ \\
\text{b_mu} \leftarrow \text{bstim[1:dim(r_mu)[1]]} \\
\text{mu} \leftarrow 1/(1 + \exp(- (\text{mat_mu} \cdot \betaa_mu) - (r_mu \cdot b_mu))) \\
\text{phi} \leftarrow \exp(\text{mat_phi} \cdot \betaa_phi) \\
\text{mu}[\text{mu==1}] \leftarrow \text{rep(1 - \text{Machine}::\text{double}::\text{eps}, \text{length(mu[mu==1]))} \\
\text{mu}[\text{mu==0}] \leftarrow \text{rep}(2^{-1074}, \text{length(mu[mu==0]))} \\
\text{phi}[\text{phi==0}] \leftarrow \text{rep}(2^{-1074}, \text{length(phi[phi==0]))} \\
\text{phi}[\text{phi==\infty}] \leftarrow \text{rep}(2^{1023}, \text{length(phi[phi==\infty]))} \\
\text{alpha1} \leftarrow \mu \cdot \phi \\
\text{alpha2} \leftarrow (1 - \mu) \cdot \phi \\
\text{alpha1}[\text{alpha1}==0] \leftarrow \text{rep}(2^{-1074}, \text{length(alpha1[alpha1==0]))} \\
\text{alpha1}[\text{alpha1}==\infty] \leftarrow \text{rep}(2^{1023}, \text{length(alpha1[alpha1==\infty]))} \\
\text{alpha2}[\text{alpha2}==0] \leftarrow \text{rep}(2^{-1074}, \text{length(alpha2[alpha2==0]))} \\
\text{alpha2}[\text{alpha2}==\infty] \leftarrow \text{rep}(2^{1023}, \text{length(alpha2[alpha2==\infty]))} \\
\text{a} \leftarrow \text{pbeta}(\text{x}/(\text{size} + 1), \text{alpha1, alpha2)} \\
\text{b} \leftarrow \text{pbeta}(\text{x+1}/(\text{size} + 1), \text{alpha1, alpha2)} \\
\text{c} \leftarrow \text{b-a} \\
\text{muv} \leftarrow 1/(1 + \exp(- (\text{mat_mu} \cdot \betaa_muv) - (r_mu \cdot b_mu))) \\
\text{phiv} \leftarrow \exp(\text{mat_phi} \cdot \betaa_phiv) \\
\text{muv}[\text{muv==1}] \leftarrow \text{rep(1 - \text{Machine}::\text{double}::\text{eps}, \text{length(muv[muv==1]))} \\
\text{muv}[\text{muv==0}] \leftarrow \text{rep}(2^{-1074}, \text{length(muv[muv==0]))} \\
\text{phiv}[\text{phiv==0}] \leftarrow \text{rep}(2^{-1074}, \text{length(phiv[phiv==0))))} \\
\text{phiv}[\text{phiv==\infty}] \leftarrow \text{rep}(2^{1023}, \text{length(phiv[phiv==\infty))))} \\
\text{alpha1v} \leftarrow \mu \cdot \phi \\
\text{alpha2v} \leftarrow (1 - \mu) \cdot \phi \\
\text{alpha1v}[\text{alpha1v==0}] \leftarrow \text{rep}(2^{-1074}, \text{length(alpha1v[alpha1v==0]))} \\
\text{alpha1v}[\text{alpha1v==\infty}] \leftarrow \text{rep}(2^{1023}, \text{length(alpha1v[alpha1v==\infty]))} \\
\text{alpha2v}[\text{alpha2v==0}] \leftarrow \text{rep}(2^{-1074}, \text{length(alpha2v[alpha2v==0]))} \\
\text{alpha2v}[\text{alpha2v==\infty}] \leftarrow \text{rep}(2^{1023}, \text{length(alpha2v[alpha2v==\infty]))} \\
\text{av} \leftarrow \text{pbeta}(\text{x}/(\text{size} + 1), \text{alpha1v, alpha2v)} \\
\text{bv} \leftarrow \text{pbeta}(\text{x+1}/(\text{size} + 1), \text{alpha1v, alpha2v)} \\
\text{c} \leftarrow \text{bv-av} \\
\text{lik} \leftarrow \text{prod(abs(c))}

if (lik==0) lik=2^(-1074)
l <- log(lik)*prod(abs(bv-av))*dmnorm(bv, rep(0, dim(r_mu)[1]), varcovmu)
-1
}

adaptIntegrate(function(integ, lower=-10*diag(varcovmu),
upper=+10*diag(varcovmu),
wx, size, mat_mu, mat_phi, mat_r, mu, r_mu, r_phi, varcovmu, varcovphi, beta_mu, beta_phi, beta_muv, beta_phiv, maxEval=15000)
{integral
}

fminim <- function(par, y, T, size, datasplit, mat_mu, mat_phi, r_mu, varcovmu, varcovphi, beta_muv, beta_phiv){
lg <<- NULL
for (i in (1:length(datasplit))) {
lg <<- c(lg, logverosim_cond(par=par,x=y[(i*T -T+1):(i*T),1],size=size,mat_mu=mat_mu[[i]],mat_phi=mat_phi[[i]],r_mu=r_mu[[i]],r_phi=r_phi[[i]],varcovmu=varcovmu, beta_muv=beta_muv, beta_phiv=beta_phiv))
}
}

log_ver0 <- -Inf
log_ver1 <- Inf
n_iter = 1
parbeta <- NULL
pargamma <- NULL

inizio <- function(par,x, size, mat_mu, mat_phi){
beta_mu <- par[1:(dim(mat_mu)[2])]
beta_phi <- par[(dim(mat_mu)[2]+1) : (dim(mat_mu)[2]+dim(mat_phi)[2])]
mu <- 1/(1+exp(- (mat_mu %*% beta_mu)))
phi <- exp(mat_phi %*% beta_phi)
mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))
mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))
phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))
phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))
alfa1 <- mu*phi
alfa2 <- (1-mu)*phi
alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))
alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))
alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))
alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))

a <- pbeta(x/((size +1),alfa1,alfa2)
b <- pbeta(x/(size +1),alfa1,alfa2)
}

stima = optim(par=rep(0.1, dim(mat_mu)[[1]]), fn=inizio, x=x,y, l, size=size, mat_mu=mat_mutot, mat_phi=mat_phitot, method = "BFGS")

beta_mu <- stima$par[1:(dim(mat_mu)[[1]])]
beta_phi <- stima$par[(1:(dim(mat_mu)[[1]])+dim(mat_phi)[[1]])]

log_ver <- NULL

thetatot <- theta
while (abs(log_ver - log_ver0) > 0.001 & n_iter<30){
cat("E
")
theta1 <- matrix(rep(0, length(datasplit)*length(theta)), nrow= length(datasplit))
for (i in (1:length(datasplit))) {
k=1 #inizializzo il contatore posizione di theta
for (j in (1:dim(varcovmu)[1])) { #ciclo su tutte le righe theta-mu
 for (s in (j:dim(varcovmu)[2])) {
 theta1[i,k] <- adaptIntegrate(densityb2, lower=-10*diag(varcovmu),
 upper=10*diag(varcovmu), b2= c(j,s),
 sxy=(i*T + T - T + 1):i, size=size,
 mat_mu=mat_mu[[i]], mat_phi=mat_phi[[i]],
 r_mu=r_mu[[i]], varcovmu=varcovmu,
 beta_mu=beta_mu, beta_phi=beta_phi, maxEval=15000)$integral
 k = k+1
 }
}
}

lv <<- denominatore_fcondizionata(par=c(beta_mu,beta_phi), y=y , T=T, size=size, datasplit=datasplit,
 mat_mu =mat_mu, mat_phi=mat_phi, r_mu=r_mu, varcovmu=varcovmu)

if(any(lv==0)) cat("problema con il denominatore")

theta1 <- theta1 / (matrix(rep(lv, dim(theta1)[2]), ncol= dim(theta1)[2]))
theta <- apply(theta1, 2, sum)/length(lv)

cat("M
")
t1=proc.time()
stima = optim(par=c(beta_mu,beta_phi), fn=fminim, y=y, size=size,
 datasplit=datasplit, T=T, r_mu=r_mu, varcovmu=varcovmu,
 mat_mu=mat_mu, mat_phi=mat_phi, beta_muv=beta_mu, beta_phiv=beta_phi,
 method = "BFGS")

beta_mu <- stima$par[1:dim(mat_mu[[1]])[2]]
beta_phi <- stima$par[(-1:dim(mat_mu[[1]])[2])]

varcovmu <- xpnd(theta[1: lrmu])

log_ver0 <- log_ver1
log_ver1 <- stima$value
n_iter <- n_iter+1
parbeta <- rbind(parbeta,beta_mu)
pargamma <- rbind(pargamma,beta_phi)
log_ver <- c(log_ver, log_ver1)
thetatot <- rbind(thetatot,theta)
}

verosim_der2 <- function(par,theta, y,mat_mu,mat_phi,size,r_mu,low,up){
 nbeta <- dim(mat_mu)[2]
n gamma <- dim(mat_phi)[2]
 beta_mu <- par[1:nbeta]
 beta_phi <- par[nbeta+1 : (nbeta+n gamma)]
 varcovmu <- xpnd(theta)

 finteg <- function(kstim,s, size, mat_mu, mat_phi, r_mu, varcovmu, low, up, beta_mu, beta_phi)(
 k <- kstim[1:dim(r_mu)[1]]
 mu <- 1/1+exp(- (mat_mu %*% beta_mu) + (r_mu %k bmu))
 phi <- exp(mat_phi %k beta_phi)
 mu[mu==1] <- rep(1-.Machine$double.eps, length(mu[mu==1]))
 mu[mu==0] <- rep(2^(-1074), length(mu[mu==0]))
 phi[phi==0] <- rep(2^(-1074), length(phi[phi==0]))
)

 stima <- optim(par=par, fn=fminim, y=y, size=size,
 datasplit=datasplit, T=T, r_mu=r_mu, varcovmu=varcovmu,
 mat_mu=mat_mu, mat_phi=mat_phi, beta_muv=beta_mu, beta_phiv=beta_phi, method = "BFGS",
 control = list(fnscale = TRUE))
phi[phi==Inf] <- rep(2^(1023), length(phi[phi==Inf]))
alfa1 <- mu*phi
alfa2 <- (1-mu)*phi
alfa1[alfa1==0] <- rep(2^(-1074), length(alfa1[alfa1==0]))
alfa1[alfa1==Inf] <- rep(2^(1023), length(alfa1[alfa1==Inf]))
alfa2[alfa2==0] <- rep(2^(-1074), length(alfa2[alfa2==0]))
alfa2[alfa2==Inf] <- rep(2^(1023), length(alfa2[alfa2==Inf]))

a <- pbeta(x/(size +1), alfa1, alfa2)
b <- pbeta((x+1)/(size +1), alfa1, alfa2)
c <- b-a
lik <- prod(abs(c))
if (lik==0) lik=2^(-1074)
l <- lik*dmnorm(b_mu, rep(0,dim(r_mu)[1]), varcovmu)

f <- function(par, theta, y , T, size, datasplit, mat_mu, mat_phi, r_mu, low, up){
 ver <<- NULL
 for (i in (1:length(datasplit))) {
#attach(datasplit[[i]]) #forse non mi serve
 ver <<- c(ver, verosim_der2(par=par,theta=theta,y=y[(i*T -T +1):(i*T),1], size=size,
 mat_mu=mat_mu[[i]], mat_phi=mat_phi[[i]], r_mu=r_mu[[i]], low=low,up=up))
 }
 -sum(log(ver))
}

results <- optim(par=c(beta_mu,beta_phi) , fn=f,theta=theta, y=y, T=T, size=size, datasplit=datasplit,
 mat_mu=mat_mu, mat_phi=mat_phi, r_mu=r_mu,low=low, up=up, method = "BFGS", hessian=T)

per_mu = matrix(results$par[1:dim(mat_mu[[1]])[2]], ncol=1)
per_mu = data.frame(per_mu)
dimnames(per_mu)[[1]] <- dimnames(mat_mu[[1]])
dimnames(per_mu)[[2]] <- c("Estimate")

per_phi = matrix(results$par[-(1:dim(mat_mu[[1]])[2])], ncol=1)
per_phi = data.frame(per_phi)
dimnames(per_phi)[[1]] <- dimnames(mat_phi[[1]])
dimnames(per_phi)[[2]] <- c("Estimate")

simm <- results$hessian
simm <- PDFORCE(simm)
simm <- solve(simm)
sdval <- diag(simm)
sdval <- sqrt(sdval)
pvalmu <- 2*(1-pnorm(abs(per_mu[,1]/sdval[1:dim(per_mu)[1]]))
pvalphi <- 2*(1-pnorm(abs(per_phi[,1]/sdval[-(1:dim(per_mu)[1])])))
codemu <- rep("*", dim(per_mu)[1])
codemu[which(pvalmu<=0.001)] <- rep("***",length(pvalmu[pvalmu<=0.001]))
codemu[which(pvalmu>0.001 & pvalmu<=0.01)] <- rep("**",length(which(pvalmu>0.001 & pvalmu>=0.01)))
codemu[which(pvalmu>0.01 & pvalmu<=0.05)] <- rep("*",length(which(pvalmu>0.01 & pvalmu>=0.05)))
Appendix B

```r

codemu[which(pvalmu>0.05 & pvalmu<=0.1)] <- rep(".", length(which(pvalmu>0.05 & pvalmu<=0.1)))

codephi <- rep(" ", dim(per_phi)[1])

codephi[which(pvalphi<=0.001)] <- rep("***", length(pvalphi[pvalphi<=0.001]))

codephi[which(pvalphi>0.001 & pvalphi<=0.01)] <- rep("**", length(which(pvalphi>0.001 & pvalphi<=0.01)))

codephi[which(pvalphi>0.01 & pvalphi<=0.05)] <- rep("*", length(which(pvalphi>0.01 & pvalphi<=0.05)))

codephi[which(pvalphi>0.05 & pvalphi<=0.1)] <- rep(".", length(which(pvalphi>0.05 & pvalphi<=0.1)))

per_mu <- cbind(per_mu, Sd_error=sdval[1:dim(per_mu)[1]], Pval= pvalmu, codemu)

per_phi <- cbind(per_phi, Sd_error=sdval[-(1:dim(per_mu)[1])], Pval=pvalphi, codephi)

k = length(c(results$par,theta))
N <- dim(data)[1]
AIC = 2*k + results$value

dimnames(varcovmu)[[1]] <- dimnames(r_mu[[1]])[[2]]
dimnames(varcovmu)[[2]] <- dimnames(r_mu[[1]])[[2]]

list(MU = per_mu, PHI = per_phi, VarcovMU = varcovmu, AIC= AIC)

```
Bibliography

Part II
A Proximity-Based Method to Identify Genomic Regions Correlated with a Continuously Varying Environmental Variable
A Proximity-Based Method to Identify Genomic Regions Correlated with a Continuously Varying Environmental Variable

Cornelia Di Gaetano¹,², Giuseppe Matullo¹,², Alberto Piazza¹,², Moreno Ursino³ and Mauro Gasparini³

¹Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy. ²HuGeF, Human Genetics Foundation, Turin, Italy. ³Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy.

Corresponding author email: cornelia.digaetano@unito.it

Abstract: Knowledge of markers in the human genome which show spatial patterns and display extreme correlation with different environmental determinants play an important role in understanding the factors which affect the biological evolution of our species. We used the genotype data of more than half a million single nucleotide polymorphisms (SNPs) from the data set Human Genome Diversity Panel (HGDP-CEPH -CEPH) and we calculated Spearman’s correlation between absolute latitude and one of the two allele frequencies of each SNP. We selected SNPs with a correlation coefficient within the upper 1% tail of the distribution. We then used a criterion of proximity between significant variants to focus on DNA regions showing a continuous signal over a portion of the genome. Based on external information and genome annotations, we demonstrated that most regions with the strongest signals also have biological relevance. We believe this proximity requirement adds an edge to our novel method compared to the existing literature, highlighting several genes (for example DTNB, DOT1L, TPCN2, RELN, MSRA, NRG3) related to body size or shape, human height, hair color, and schizophrenia. Our approach can be applied generally to any measure of association between polymorphic frequencies and continuously varying environmental variables.

Keywords: adaptations, spatial patterns, latitude, point processes, outlier approach
Introduction

From an evolutionary point of view, human biological variation can result from natural selection, genetic drift and demographic processes. In human population genetics, several ways have been found to highlight genes that may be subject to selective pressures, and in recent years whole genome scanning techniques have made it possible to find signatures of selection.\(^1\)\(^2\) The Human Genome Diversity Project (HGDP-CEPH) database\(^3\) has been repeatedly investigated in order to identify markers in the human genome which show geographical patterns and to explain how different selective forces can shape human genetic variations across continents. One strategy for the detection of spatial selection signatures is the outlier approach.\(^4\)\(^5\)\(^6\) Using genome-wide data sets genotyped in different human populations, genetic variables—such as single nucleotide polymorphisms (SNPs)—that exhibit extreme correlations with latitude or with other environmental determinants are identified as candidate targets for selective pressure. By “extreme correlation” we mean that the value of a certain statistic, measuring the strength of the relationship between allele frequencies and latitude or other environmental variables, falls in the tails of the distribution of the same statistic over the whole genome. Many choices are possible for the relevant statistic, ranging from a simple (either Pearson or Spearman) correlation coefficient between the latitude and the frequencies of either one or two alleles of a SNP to a Bayes factor comparing two models that do and do not, respectively, take into account the effect of a dichotomous environmental variable on the distribution of a genetic variant. From a technical point of view, the outlier approach is just a reformulation of the concept of statistical significance, i.e., variation with respect to a reference distribution.

The outlier approach has been used to study sodium homeostasis balance as an example of adaptation. In hot and dry climates, genes influencing salt and water retention are favored by selection, explaining in this way large inter-ethnic differences in the prevalence of salt-sensitive hypertension.\(^8\)\(^9\) Other important research has been conducted to assess the correlation between four variables that summarize climate and the frequencies of 873 tag SNPs in 82 genes related to energy metabolic pathways.\(^6\) The outlier approach has also been used to demonstrate that allele frequencies of a subset of genes coding for blood group antigens vary with levels of pathogen richness, supporting the idea that these loci affect susceptibility to infectious diseases.\(^10\) This finding, which is compatible with previous evidences on the correlation between HLA class I diversity and pathogen richness,\(^11\) is important for stressing the role of diseases and pathogens, like virus protozoa fungi, in shaping human variations.\(^12\) Finally, a very comprehensive article on the HGDP-CEPH database (enriched with the Hap Map and other human populations databases) has recently been published, in which the outlier approach is used to highlight polymorphisms and pathways correlated with ecoregion membership and diet.\(^13\)

Our idea is to reinforce the outlier approach by considering a criterion of proximity between significant variants. In the search for targets of selective pressure, we believe it is important to focus on those DNA regions which repeatedly contain values which are labeled as significant by the outlier approach. In other words, we look for evidence of a continuous signal over a portion of the genome which can strengthen the significance of a cluster of markers labeled as significant by the outlier approach alone and we built statistical tools.

In this paper we therefore adopt a search-and-confirm approach which integrates the outlier approach by identifying regions of the genome where not just one, but a significant number of SNPs are located in the tails of the distribution of the relevant statistic, when compared to the number of SNPs originally genotyped in the same region. This is done in the following three steps, which are further illustrated in the complete workflow process diagram in Figure 1:

1. The outlier method: We identify 1% significant SNPs as having an absolute value of the Spearman correlation coefficient with latitude above its 99th percentile;
2. The proximity-based algorithm: Using the methods described in detail in the Materials and Methods section, we select candidate regions in the genome which exhibit the strongest signals, i.e., the regions where the significant SNPs identified above are present at a significantly higher rate when compared to the number of originally genotyped SNPs;
3. Biological relevance: We investigate the biological relevance of the strongest signals by comparing our...
Materials and Methods
We describe here our methods with reference to the three-step process described in the Introduction.

Step 1: Our data and the outlier method
We used a data set of 660,832 SNPs genotyped in 51 human populations distributed worldwide from the HGDP-CEPH panel. As underlined by a previous article, within the HGDP-CEPH panel there are some closely-related individuals; in order to overcome this possible source of bias we excluded one member of each relative pair and we used 938 HGDP-CEPH individuals. Information about sample sizes and latitudes of the populations can be found on the CEPH homepage http://www.cephb.fr/en/hgdp/table. php. Only 22 autosomes are included in our analysis; we also removed SNPs with more than 10% of missing genotypes and the ones that failed the Hardy-Weinberg equilibrium test in at least one population. After filtering, we use 545,209 SNPs.

Statistical analysis is performed using R. We calculated Spearman’s correlation (the correlation coefficient between the ranks of two variables) between absolute latitude and one of the two alleles of each SNP and, using the outlier approach, we identified those SNPs which have an absolute Spearman’s correlation coefficient falling in the upper 1% tail of the distribution (Fig. 2).

Step 2: The proximity-based algorithm
For each chromosome, we now have two sequences of serial positions: one for all genotyped SNPs and one for the significant SNPs, the latter of which are included in the former. Each chromosome is indexed by the sequence of base pairs: as an approximation, we can view a chromosome as a linear segment and

Figure 1. Graphical workflow process for the study.
the position of a SNP as a point of that linear segment. Based on the two sequences of points, we can define two cumulative counts depending on a generic point \(l \), known in statistics as counting processes:

\[
S(l) = \text{number of SNPs with a position smaller than or equal to} \ l
\]

\[
S_{01}(l) = \text{number of significant SNPs with a position smaller than or equal to} \ l
\]

with \(l \) varying from 1 (the first bp in the chromosome) to the position of the last bp of the chromosome. As an example, the two counting processes are plotted for chromosome 1 in Figure 3. Cumulative counts are a convenient way to compare the incidences of the different kinds of SNPs over different genomic regions (a simple dot plot would not do it, due to the sheer number of SNPs involved). If, over a certain segment of the chromosome, there is a greater-than-usual incidence of significant SNPs, then the relative increment of \(S_{01}(l) \) over that segment will be greater than the relative increment of \(S(l) \) over the same segment. In other words, the graph of the \(S_{01}(l) \) counting process will be steeper than \(S(l) \), up to a proportionality factor. Our proposal is to identify those genome regions which exhibit extreme concentrations of outlying SNPs.

We could formalize this search as a change-point problem for counting processes: in certain intervals to be estimated, the intensity of the \(S(l) \) point process—a function modelling the instantaneous rate of incidence of the process—would be higher than in other regions. Due to the size of the problem and to the approximate nature of our search- and -confirm approach, we prefer a simpler proximity-based algorithm as follows.

For each pair of significant SNPs located at points \(l_1 \) and \(l_2 \), with \(l_1 < l_2 \) on the chromosome, we define

\[
U(l_1, l_2) = \frac{S_{01}(l_2) - S_{01}(l_1)}{S(l_2) - S(l_1)}
\]

die, the observed incidence rate of significant SNPs per original SNP. This statistic over the sliding window
Method of identifying genomic regions

Evolutionary Bioinformatics 2013:9

Notes: The thicker step function represents cumulative counts of all originally genotyped SNPS and refers to the main ordinate scale, on the left. The thinner step function represents cumulative counts of significant SNPs and refers to the ordinate scale on the right. Sixteen regions identified by our method are shown as small vertical segments on the abscissa axis. The zooming box on the upper left part of the graph shows two of them (gray bands) located around position 202500 kb, as guided by the arrows.

\((l_1, l_2) \) plays a central role in our proximity-based algorithm.

As a technical note, it would probably be a good idea to penalize large windows, for example by dividing the \(U(l_1, l_2) \) statistic above by a penalty term \((l_2 - l_1)^g \) with \(g \) equal to some number between 0 and 1. The final results would not change a lot (results not shown) and it would be difficult to commit to a specific \(g \); therefore we decide to use the \(U(l_1, l_2) \) statistic without a penalty term.

For each chromosome and for each significant SNP in position \(l_1 \), we compute \(U(l_1, l_2) \) for each of the other significant SNPs in position \(l_2 \) within a distance of 1000 Kb from the original one. This is done to reduce the problem to a manageable size, under the assumption that relevant proximities are smaller than 1000 Kb.

We selected the first 1000 SNPs contained in regions corresponding to the highest \(U(l_1, l_2) \) values. A fixed number, rather than a fix tail area, was chosen to facilitate the discussion of the robustness of our method to varying parameters (see end of section Results).

Step 3: Biological relevance of the strongest signals

To accomplish step 3 as outlined in the Introduction, we proceeded to the biological cross-validation of our findings, which insofar had been based mainly on statistical grounds. We focused on the genes tagged by the SNPs we found, since our goal was to detect continuous signals coming from proximal groups of
SNPs belonging to the same gene. To link our findings to the results of genome-wide data, we first compared our gene list with the June 2012 update of the Catalog of Published GWAs. Next, we scanned our gene list using a bioinformatic enrichment tool named GeneCodis 2.0 to obtain a summary of the most enriched biological processes or pathways. Finally, we compared our analysis with previously published genomic scans for selective sweep in order to find possible overlaps in signals.

Results

We calculated Spearman’s correlation between absolute latitude and one of the two alleles of the SNPs found in the HGDP-CEPH panel and, following the outlier approach, we identified those SNPs which have an absolute Spearman’s correlation coefficient falling in the upper 1% tail of the distribution. The histogram of Spearman’s correlations ρ’s is plotted in Figure 2A. Its null distribution for 51 pairs of numbers has been overlaid on the same graph (Fig. 2A). It is a normal distribution with variance 1/50 due to a well-known result. The discrepancy between the two distributions is due to SNPs which are correlated with latitude for reasons other than chance alone, for example due to environmental selection factors. Following the outlier approach, the upper 1% of the distribution of the absolute value of ρ, corresponding to |ρ| > 0.606, is identified in the histogram of the absolute value of ρ (Fig. 2B). It corresponds to 5452 outlying SNPs in the tails of the ρ distribution.

The candidate regions and the annotations emerging from the application of Step 2 described in the Introduction are contained in Additional 1 in the online supporting information. As an example, candidate regions which were identified in chromosome 1 are shown in Figure 3. The 1000 top SNPs emerging from the proximity-based algorithm enabled us to identify 467 intergenic and 533 genic SNPs, harboring 146 genes. We found 23 coding non-synonymous (NS) changes and 6 coding synonymous changes. 372 were intronic and 107 were on the mRNA 3’UTR.

Finally, we gathered the biological knowledge of the strongest signals by comparing them to the Catalog of Published Genome-Wide Association Studies updated to June 2012. The genes which appear on this Catalog and additionally appear in candidate regions according to our proximity-based algorithm, are shown in Additional file 2. A short list of the most interesting signals are shown in Table 1. Several genes shown in that table are associated with metabolism-related phenotypes (like celiac disease for IL21 inter-leukin 21, Gene id 59067) and adiposity (MSRA Gene id4482) or variants associated with hair color in Europeans, like TPCN2 gene (two pore segment channel 2, gene ID 219931) and several with schizophrenia. At the same time, we compared our gene list with genes reported in OMIM. Several of our genes which show a correlation with latitude also implied some traits. For example, DOT1L gene (DOT1-like, histone H3 methyltransferase *Saccharomyces cerevisiae*) gene ID 84444 is associated with height or DTNB gene dystrobrevin, beta ID 1838 which is affecting adult human height. A complete table with the genes reported also in OMIM Disease database is in Additional file 3.

We analyzed Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) using as reference set all genes in the Entrez-gene database and, as a statistical test, the hypergeometric one with a Benjamini-Hochberg correction for multiple testing at significance level equal to 0.05. Several KEGG pathways reached significance. The first was the extracellular matrix (ECM) receptor interaction (KEGG number: hsa04512) for the following genes: RELN reelin gene ID 5649; ITGB6 integrin beta 6 gene ID 3694; COL6A3 collagen, type VI, alpha 3 gene ID 1293. This pathway reaches a raw P-value of the hypergeometric test equal to 0.0011 and a P-value adjusted for multiplicity around 0.01. In order to look for overlaps with scans of the human genome for signals of positive natural selection, we compared our results with SNPs with significant composite of multiple signals (CMS) but only one intersection was found between the two gene lists concerning rs2256670 and rs2711853 both on RELN reelin, gene ID 5649. A variety of choices were made in the actual implementation of the proximity-based algorithm described in Step 2 in the previous section. The two most important parameters set to reasonable values are (a) the maximum distance over which we search, which is set to 1000 Kb in Step 2, and (b) the minimum number of consecutive SNPs required, which is set to 3 in Step 2. In order to study the robustness of our method with respect to different values of these parameters, we varied the maximum distance and
<table>
<thead>
<tr>
<th>Reported gene(s)</th>
<th>Trait</th>
<th>Region</th>
<th>NCBI ID</th>
<th>Gene description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9orf3</td>
<td>Erectile dysfunction and prostate cancer treatment</td>
<td>9q22.32</td>
<td>84909</td>
<td>Chromosome 9 open reading frame 3</td>
<td>41</td>
</tr>
<tr>
<td>ABL1</td>
<td>Response to amphetamine</td>
<td>9q34.12</td>
<td>25</td>
<td>v-abl Abelson murine leukemia viral oncogene homolog 1</td>
<td>42</td>
</tr>
<tr>
<td>DTNB</td>
<td>Adult human height</td>
<td>2p23.3</td>
<td>1838</td>
<td>Dystrobrevin, beta</td>
<td>23</td>
</tr>
<tr>
<td>DTNB</td>
<td>Coronary heart disease</td>
<td>2p23.3</td>
<td>1838</td>
<td>Dystrobrevin, beta</td>
<td>43</td>
</tr>
<tr>
<td>TPCN2</td>
<td>Hair pigmentation in Europeans</td>
<td>11q13.3</td>
<td>219931</td>
<td>Two pore segment channel 2</td>
<td>21</td>
</tr>
<tr>
<td>DOT1L</td>
<td>Associated with height</td>
<td>19p13.3</td>
<td>84444</td>
<td>DOT1-like, histone H3 methyltransferase (S. cerevisiae)</td>
<td>22,35</td>
</tr>
<tr>
<td>RELN</td>
<td>Susceptibility and clinical phenotype in multiple sclerosis</td>
<td>7q22.1</td>
<td>5649</td>
<td>Reelin</td>
<td>44</td>
</tr>
<tr>
<td>RELN</td>
<td>Increases the risk of schizophrenia only in women</td>
<td>7q22.1</td>
<td>5649</td>
<td>Reelin</td>
<td>34</td>
</tr>
<tr>
<td>IL21</td>
<td>Celiac disease</td>
<td>4q27</td>
<td>59067</td>
<td>Interleukin 21</td>
<td>38,45</td>
</tr>
<tr>
<td>DOCK2</td>
<td>Protein quantitative trait loci</td>
<td>5q35.1</td>
<td>1794</td>
<td>Dedicator of cytokinesis 2</td>
<td>46</td>
</tr>
<tr>
<td>FRMD4B</td>
<td>Celiac disease</td>
<td>3p14.1</td>
<td>23150</td>
<td>FERM domain containing 4B</td>
<td>38</td>
</tr>
<tr>
<td>MAGI2</td>
<td>Hippocampal atrophy</td>
<td>7q21.11</td>
<td>9863</td>
<td>Membrane associated guanylate kinase, WW and PDZ domain containing 2</td>
<td>47</td>
</tr>
<tr>
<td>NCALD</td>
<td>Cognitive performance</td>
<td>8q22.3</td>
<td>83988</td>
<td>Neurocalcin delta</td>
<td>48</td>
</tr>
<tr>
<td>NRG3</td>
<td>Response to iloperidone treatment (QT prolongation)</td>
<td>10q23.1</td>
<td>10718</td>
<td>Neuregulin 3</td>
<td>49</td>
</tr>
<tr>
<td>RUNX3</td>
<td>Celiac disease</td>
<td>1p36.11</td>
<td>864</td>
<td>Runt-related transcription factor 3</td>
<td>38</td>
</tr>
<tr>
<td>SDK1</td>
<td>Quantitative traits</td>
<td>7p22.2</td>
<td>221935</td>
<td>Sidekick homolog 1 (chicken)</td>
<td>50</td>
</tr>
<tr>
<td>MSRA</td>
<td>Adiposity</td>
<td>8p23.1</td>
<td>4482</td>
<td>Methionine sulfoxide reductase A</td>
<td>27</td>
</tr>
<tr>
<td>MSRA</td>
<td>Hypertension</td>
<td>8p23.1</td>
<td>4482</td>
<td>Methionine sulfoxide reductase A</td>
<td>28</td>
</tr>
<tr>
<td>MSRA</td>
<td>Schizophrenia</td>
<td>8p23.1</td>
<td>4482</td>
<td>Methionine sulfoxide reductase A</td>
<td>51</td>
</tr>
<tr>
<td>MSRA</td>
<td>Bipolar disorder and schizophrenia</td>
<td>8p23.1</td>
<td>4482</td>
<td>Methionine sulfoxide reductase A</td>
<td>26</td>
</tr>
</tbody>
</table>
noticed (not shown) that the results where unchanged for distances down to 100 Kb.

The algorithm is instead sensitive to the minimum number of consecutive SNPs required: if we increase it from 3 to 5, for example (it would not make sense to consider a minimum much higher than 5), different SNPs and regions turn out to be significant, as shown in Table 2. For example, the number of selected SNPs shared when applying a minimum of 5 and when applying a minimum of 3 is 64%. This made us consider what would happen for varying this threshold. The changes are not dramatic (Table 2) but some interesting genes, like AGT, ADCY9 and WWOX would come out from the analysis with a threshold equal to 5.

Discussion

In this paper we examined the HGDP-CEPH data again by integrating the outlier approach with a novel proximity-based algorithm.

Only latitude was used for ecological conditions, rather than using a multiplicity of variables as in Hancock et al. for example. We made this choice for the sake of simplicity, since latitude is correlated with different variables like short wave radiation flux, mean winter and summer temperatures, rainfall and pathogen richness. It should therefore provide a good proxy for the selective pressures that shaped variation in our genome. Even though we use a simple correlation measure such as Spearman’s ρ with latitude only, we emphasize that the resulting signal should be a continuous and persistent proportion of background information, represented by all originally genotyped SNPs. We believe this proximity requirement adds an edge to our novel method when compared to existing literature. Our approach is applicable to any measure of association between polymorphic frequencies and environmental variables. It could be applied, for example, to complex statistics such as the minimum rank statistic, based on Bayes Factors and on rank transformations, of Hancock et al.

With our method we identified different genes, some of them already reported in the literature, dealing with different traits or diseases. GWAs include the scanning of all or most of the genes of different individuals aimed at finding susceptibility loci for traits or diseases. GWAs, so far, have allowed the identification of more than 7688 associated SNPs in humans. We compared our list of genes with GWAs results. Some interesting signals can be pointed out, for instance the correlation between skin pigmentation and latitude. It is well known that two coding variants in TPCN2 are associated with hair color in Europeans. At the same time MSRA (methionine sulfoxide reductase A gene) is related to the melanin formation in the hair follicle melanocyte. Remarkably, MSRA gene is also related to schizophrenia but also with adiposity and hypertension.

Several other genes in our list (see Additional file 1) can be associated with vitamin D related genes, known to show a latitude driven cline. An example is SMARCA2, (SWI/SNF related, matrix associated, act in dependent regulator of chromatin, subfamily a, member 2), described as a component of a human multiprotein complex that that interacts directly with the vitamin D receptor. Schizophrenia genes are correlated with latitude and in our list several schizophrenia genes appear, like GRID1, MAGI2, NRG3, NRXN3, RARB and RELN.

Region CYP19A1 in our list is known from GWAs to exhibit association with adult height whose distribution is related to latitude. Two more genes in our list, DOT1-like, histone H3 methyltransferase (S. cerevisiae) and dystrobrevin, beta are reported in OMIM to be related with height.

Several others genes are related to Celiac Disease (CD) which strongly correlates with latitude. Infectious agents are implicated in the pathogenesis of many autoimmune diseases like CD. This observation may imply that there is a relationship between one or more infectious agents, latitude related environmental exposure to gluten and others genetic susceptibility loci, and the development of this disease. For a complete review see Plot and Amital, 2009. The RUNX3 gene and IL21, in our list, are implicated with CD. In the same paper, another gene FRMD4B previously known as GRSP1, appearing in our Table 1 is also associated with CD. RunX3 gene is also required for CD8 T cell development during thymopoiesis.

<table>
<thead>
<tr>
<th>% concordance</th>
<th>3 SNPs</th>
<th>4 SNPs</th>
<th>5 SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SNPs</td>
<td>100.00%</td>
<td>74.70%</td>
<td>64.00%</td>
</tr>
<tr>
<td>4 SNPs</td>
<td>100.00%</td>
<td>80.80%</td>
<td></td>
</tr>
<tr>
<td>5 SNPs</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
One of the most interesting genes highlighted by our work is ANK2 (ankyrin 2, neuronal) which is implicated in cardiac arrhythmias due to abnormal variations in QT interval.40

Finally, the enrichment of genes in the KEGG pathway called extracellular matrix (ECM) receptor interaction (KEGG number: hsa04512) is note worth because these molecules are exploited by a number of pathogenic micro-organisms as receptors for cell entry. This can be interpreted as a signal of different forces played by pathogens on living cells in different environments.

Conclusions
Our study complements the growing body of knowledge surrounding scans for natural selection in humans using a method that uses the proximity criterion in addition to the outlier approach. Our findings support the hypothesis that latitudinal genetic diversity gradients are present in humans and reflect genetic adaptations to different environmental pressures that have shaped the human genome.

Acknowledgements
The authors thank the Human Genetic Foundation (HuGeF) Laboratory of Genomic Variation in Human Populations and Complex Disease group for biological and bioinformatics discussion.

Authors’ Contributions
CDG designed the biological rationale for the study and MG provided the statistical tools to implement it, both authors wrote and revised the manuscript. MU and AP performed the data analysis. GM revised the manuscript. All authors read and approved the final manuscript.

Funding
Author(s) disclose no funding sources.

Competing Interests
Author(s) disclose no potential conflicts of interest.

Disclosures and Ethics
As a requirement of publication author(s) have provided to the publisher signed confirmation of compliance with legal and ethical obligations including but not limited to the following: authorship and contributorship, conflicts of interest, privacy and confidentiality and (where applicable) protection of human and animal research subjects. The authors have read and confirmed their agreement with the ICMJE authorship and conflict of interest criteria. The authors have also confirmed that this article is unique and not under consideration or published in any other publication, and that they have permission from rights holders to reproduce any copyrighted material. Any disclosures are made in this section. The external blind peer reviewers report no conflicts of interest.

References

Method of identifying genomic regions

Evolutionary Bioinformatics 2013:9

proximity.R – by MU and MG, November 2012
R programs to analyze the HGDP-CEPH data according to
the proximity-based method in Di Gaetano et al.
#
##
#
the following instructions assume that data have been read from the
text files from the web page http://hagsc.org/hgdp/files.html
via, for example, read.table(“HGDP_Map.txt”) or read.csv2(“id2.csv”,
sep = “,”)
into a dataframe called “data”
#
function to compute allele’s frequencies

freqfun <- function(data){
k<-0
freq <- namefreq <- NULL
for (i in dimnames(data)[[2]][-(1:3)]){

do the frequency table
tav <- table(data[,3],data[,i])

we exclude the tables with dim 1 or 2, in which
there is no variation

heterozygous, all homozygous and missing
if (dim(tav)[[2]]==4) {
 # search of allele with greatest frequency
 allmagg <- c(sum(tav[,2]),sum(tav[,4]))
 if (allmagg[1] > allmagg[2]) magg <- 2 else magg <-4
 freq <- cbind(freq, round((tav[,magg]+tav[,3]/2)/(tav[,2]+tav[,3]+tav[,4]),3))
 # use the variable name for the table
 namefreq <- c(namefreq,i)
}

heterozygous, all homozygous and no missing
if (dim(tav)[[2]]==3 & (dimnames(tav)[[2]][1]!=“--”)) {
 # search of allele with greatest frequency
 allmagg <- c(sum(tav[,1]),sum(tav[,3]))
 if (allmagg[1] > allmagg[2]) magg <- 1 else magg <-3
 freq <- cbind(freq, round((tav[,magg]+tav[,2]/2)/(tav[,1]+tav[,2]+tav[,3]),3))
 # use the variable name for the table
 namefreq <- c(namefreq,i)
}
dimnames(freq)[[2]] <- namefreq
cat(k <- k+1,"\n")
}
freq
}

n_min = 5
finestra = 1000000

Computation of U for chrom 1

ovr1_sig <- ovr1[ovr1[,"Lsig01"] == "sig01",]
matrice_rappovr1 <- NULL

loop over all significant SNPs
for (i in 1:(dim(ovr1_sig)[1]-1)) { #last SNP is automatically processed

p = number of subsequent snps to that processed
p <- n_min-1
while ((i+p)<= dim(ovr1_sig)[1] & (ovr1_sig[i+p,4]-ovr1_sig[i,4])<= finestra) {
 iniz <- ovr1_sig[i,4]
 fin <- ovr1_sig[i+p,4]
 u <- (ovr1_sig[i+p,9]-ovr1_sig[i,9]+1)/(ovr1_sig[i+p,7]-ovr1_sig[i,7]+1)
 x <- c(i,p+1,1,iniz,fin,u)
 matrice_rappovr1 <- rbind(matrice_rappovr1,x)
 p <- p+1
}
}
dimnames(matrice_rappovr1)[[2]] <- c("SNP","n SNP", "chrom", "reg in", "reg fin","U")

Selection of SNP

N = 1000

union of results of all chromosomes
matrice_totale = rbind(matrice_rappovr1,matrice_rappovr2,matrice_rappovr3,
 matrice_rappovr4,matrice_rappovr5,matrice_rappovr6,
 matrice_rappovr7,
 matrice_rappovr8,matrice_rappovr9,matrice_rappovr10,matrice_rappovr11,
 matrice_rappovr12,matrice_rappovr13,matrice_rappovr14,matrice_rappovr15,
matrice_rappovr16, matrice_rappovr17, matrice_rappovr18, matrice_rappovr19, matrice_rappovr20, matrice_rappovr21, matrice_rappovr22)

matrice_totale <- data.frame(matrice_totale)
decreasing order
matrice_totale <- matrice_totale[order(matrice_totale$U, decreasing = TRUE),]

loop to extract result
ovr_sig <- list(ovr1_sig, ovr2_sig, ovr3_sig, ovr4_sig, ovr5_sig, ovr6_sig, ovr7_sig,
 ovr8_sig, ovr9_sig, ovr10_sig, ovr11_sig, ovr12_sig, ovr13_sig, ovr14_sig,
 ovr15_sig, ovr16_sig, ovr17_sig, ovr18_sig, ovr19_sig, ovr20_sig,
 ovr21_sig, ovr22_sig)

z = 1
selezione <- NULL
n_SNP = 0

while (n_SNP < N)
{
 a = matrice_totale[z,1]
 b = matrice_totale[z,2]
 c = matrice_totale[z,3]

 sel <- cbind(ovr_sig[[c]][a:(a+b-1),1], rep(c,b))
 selezione <- rbind(selezione, sel)

 z <- z+1

 # test to obtain unique solutions
 selezione <- unique(selezione)

 n_SNP <- dim(selezione)[1]
}

dimnames(selezione)[[2]] <- c("name_SNP", "chrom")
selezione <- selezione[1:N,]
Additional Files

Additional file 1: SNPs and regions from the proximity-based algorithm.
Additional file 1 in the online supporting information contains all regions selected by the proximity-based method, duly annotated.

Additional file 2: The complete list of genes reported in previously published GWAs and showing continuous correlation signals with our proximity based method.

Additional file 3: The complete list of genes reported in OMIM and showing continuous correlation signals with our proximity based method.

Additional file 4: R scripts.
Additional file 4 in the online supporting information contains R scripts to perform the necessary calculations.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Entrez ID</th>
<th>Ensembl ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRA</td>
<td>4482</td>
<td>ENSG00000175806</td>
<td>methionine sulfoxide reductase A</td>
</tr>
<tr>
<td>C14orf143</td>
<td>90141</td>
<td>ENSG00000140025</td>
<td>chromosome 14 open reading frame 143</td>
</tr>
<tr>
<td>CPNE8</td>
<td>144402</td>
<td>ENSG00000139117</td>
<td>copine VIII</td>
</tr>
<tr>
<td>DAB1</td>
<td>1600</td>
<td>ENSG00000173406</td>
<td>disabled homolog 1 (Drosophila)</td>
</tr>
<tr>
<td>ATF7IP</td>
<td>55729</td>
<td>ENSG00000171681</td>
<td>activating transcription factor 7 interacting protein</td>
</tr>
<tr>
<td>NCALD</td>
<td>83988</td>
<td>ENSG00000104490</td>
<td>neurocalcin delta</td>
</tr>
<tr>
<td>RUNX3</td>
<td>864</td>
<td>ENSG00000020633</td>
<td>runt-related transcription factor 3</td>
</tr>
<tr>
<td>DOCK4</td>
<td>9732</td>
<td>ENSG00000128512</td>
<td>dedicator of cytokinesis 4</td>
</tr>
<tr>
<td>SCN3A</td>
<td>6328</td>
<td>ENSG00000153253</td>
<td>sodium channel, voltage-gated, type III, alpha subunit</td>
</tr>
<tr>
<td>RELN</td>
<td>5649</td>
<td>ENSG00000189056</td>
<td>reelin</td>
</tr>
<tr>
<td>NRXN3</td>
<td>9369</td>
<td>ENSG00000021645</td>
<td>neurexin 3</td>
</tr>
<tr>
<td>PPA2</td>
<td>27068</td>
<td>ENSG00000138777</td>
<td>pyrophosphatase (inorganic) 2</td>
</tr>
<tr>
<td>NRG3</td>
<td>10718</td>
<td>ENSG00000185737</td>
<td>neuregulin 3</td>
</tr>
<tr>
<td>ITPR2</td>
<td>3709</td>
<td>ENSG00000123104</td>
<td>inositol 1,4,5-triphosphate receptor, type 2</td>
</tr>
<tr>
<td>GRID1</td>
<td>2894</td>
<td>ENSG00000182771</td>
<td>glutamate receptor, ionotropic, delta 1</td>
</tr>
<tr>
<td>DOCK2</td>
<td>1794</td>
<td>ENSG00000134516</td>
<td>dedicator of cytokinesis 2</td>
</tr>
<tr>
<td>NOX4</td>
<td>50507</td>
<td>ENSG00000086991</td>
<td>NADPH oxidase 4</td>
</tr>
<tr>
<td>ANK2</td>
<td>287</td>
<td>ENSG00000145362</td>
<td>ankyrin 2, neuronal</td>
</tr>
<tr>
<td>RGNF</td>
<td>64283</td>
<td>ENSG00000214944</td>
<td>Rho-guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>NRXN1</td>
<td>9378</td>
<td>ENSG00000179915</td>
<td>neurexin 1</td>
</tr>
<tr>
<td>COL6A3</td>
<td>1293</td>
<td>ENSG00000163359</td>
<td>collagen, type VI, alpha 3</td>
</tr>
<tr>
<td>C21orf33</td>
<td>8209</td>
<td>ENSG00000160221</td>
<td>chromosome 21 open reading frame 33</td>
</tr>
<tr>
<td>IL21</td>
<td>59067</td>
<td>ENSG00000138684</td>
<td>interleukin 2</td>
</tr>
<tr>
<td>TPCN2</td>
<td>219931</td>
<td>ENSG00000162341</td>
<td>two pore segment channel 2</td>
</tr>
<tr>
<td>RPHN2</td>
<td>85415</td>
<td>ENSG00000131941</td>
<td>rhophilin, Rho GTPase binding protein 2</td>
</tr>
<tr>
<td>CYP19A1</td>
<td>1588</td>
<td>ENSG00000137869</td>
<td>cytochrome P450, family 19, subfamily A, polypeptide 1</td>
</tr>
<tr>
<td>ATP10B</td>
<td>23120</td>
<td>ENSG00000118322</td>
<td>ATPase, class V, type 10B</td>
</tr>
<tr>
<td>FRMD4B</td>
<td>23150</td>
<td>ENSG00000114541</td>
<td>FERM domain containing 4B</td>
</tr>
<tr>
<td>SMARCA2</td>
<td>6595</td>
<td>ENSG00000080503</td>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2</td>
</tr>
<tr>
<td>CDH10</td>
<td>1008</td>
<td>ENSG00000040731</td>
<td>cadherin 10, type 2 (T2-cadherin)</td>
</tr>
<tr>
<td>ABL1</td>
<td>25</td>
<td>ENSG00000097007</td>
<td>c-ABL oncogene 1, receptor tyrosine kinase</td>
</tr>
<tr>
<td>RARB</td>
<td>5915</td>
<td>ENSG00000077092</td>
<td>retinoic acid receptor, beta</td>
</tr>
<tr>
<td>FLJ43663</td>
<td>378805</td>
<td>NA</td>
<td>hypothetical LOC378805</td>
</tr>
<tr>
<td>POLN</td>
<td>353497</td>
<td>ENSG00000130997</td>
<td>polymerase (DNA directed) nu</td>
</tr>
<tr>
<td>PLA2R1</td>
<td>22925</td>
<td>ENSG00000153246</td>
<td>phospholipase A2 receptor 1, 180kDa</td>
</tr>
<tr>
<td>MAGI2</td>
<td>9863</td>
<td>ENSG00000187391</td>
<td>membrane associated guanylate kinase, WW and PDZ domain containing 2</td>
</tr>
<tr>
<td>DSCAML1</td>
<td>57453</td>
<td>ENSG00000177103</td>
<td>Down syndrome cell adhesion molecule like 1</td>
</tr>
<tr>
<td>TAF1B</td>
<td>9014</td>
<td>ENSG00000015750</td>
<td>TATA box binding protein (TBP)-associated factor, RNA polymerase I, B, 63kDa</td>
</tr>
<tr>
<td>Gene</td>
<td>Gene ID</td>
<td>ENSG ID</td>
<td>Gene Description</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>C9orf3</td>
<td>84909</td>
<td>ENSG00000148120</td>
<td>chromosome 9 open reading frame 3</td>
</tr>
<tr>
<td>DOT1L</td>
<td>84444</td>
<td>ENSG00000104885</td>
<td>DOT1-like, histone H3 methyltransferase (S. cerevisiae)</td>
</tr>
<tr>
<td>FLJ45139</td>
<td>400867</td>
<td>NA</td>
<td>FLJ45139 protein</td>
</tr>
<tr>
<td>LRIG3</td>
<td>121227</td>
<td>ENSG00000139263</td>
<td>leucine-rich repeats and immunoglobulin-like domains 3</td>
</tr>
<tr>
<td>CNTN6</td>
<td>27255</td>
<td>ENSG00000134115</td>
<td>contactin 6</td>
</tr>
<tr>
<td>DTNB</td>
<td>1838</td>
<td>ENSG00000138101</td>
<td>dystrobrevin, beta</td>
</tr>
<tr>
<td>KCNH7</td>
<td>90134</td>
<td>ENSG00000184611</td>
<td>potassium voltage-gated channel, subfamily H (eag-related), member 7</td>
</tr>
<tr>
<td>MCC</td>
<td>4163</td>
<td>ENSG00000171444</td>
<td>mutated in colorectal cancers</td>
</tr>
<tr>
<td>KIRREL3</td>
<td>84623</td>
<td>ENSG00000149571</td>
<td>kin of IRRE like 3 (Drosophila)</td>
</tr>
<tr>
<td>ATP2B4</td>
<td>493</td>
<td>ENSG000000058668</td>
<td>ATPase, Ca++ transporting, plasma membrane 4</td>
</tr>
<tr>
<td>SNTB1</td>
<td>6641</td>
<td>ENSG00000172164</td>
<td>syntrophin, beta 1 (dystrophin-associated protein A1, 59kDa, basic component 1)</td>
</tr>
<tr>
<td>SDK1</td>
<td>221935</td>
<td>ENSG00000146555</td>
<td>sidekick homolog 1, cell adhesion molecule (chicken)</td>
</tr>
<tr>
<td>CSMD2</td>
<td>114784</td>
<td>ENSG00000121904</td>
<td>CUB and Sushi multiple domains 2</td>
</tr>
<tr>
<td>PPIAP14</td>
<td>5486</td>
<td>NA</td>
<td>peptidylprolyl isomerase A (cyclophilin A) pseudogene 14</td>
</tr>
<tr>
<td>TSC22D2</td>
<td>9819</td>
<td>ENSG00000196428</td>
<td>TSC22 domain family, member 2</td>
</tr>
</tbody>
</table>