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Introdution

The objetive of the work presented here is the desription and the investigation of

a novel numerial tool for the e�etive simulation of �uid �ows in underground poro-

fratured media at large sales.

This subjet is of interest for several pratial appliations. In the ontext of an

inreasing onern towards environmental friendly industrial appliations, sequestration

and underground storage of CO2 is urrently under investigation as a potential way to

redue emissions of greenhouse gases. CO2 is pumped in underground basins, where

over geologial time-sales it reats with underground minerals forming stable arbon-

ate mineral forms. Numerial models are a valuable tool for geologists and engineers to

assess safety and viability of spei� geologial sites, in order to study the risk of dan-

gerous leakages of gases through rok faults, or the dispersion of CO2 in the atmosphere

due to �ltration through rok pores. CSS and a deeper researh on the subjet towards

ost-e�ieny and safety is urrently promoted by European Commission, see Diretive

2009/31/CE and the CSS website [7℄.

Countries that import natural gas for energeti purposes need to store huge quantities

in order to fae both typial �utuations of request and unforeseeable long periods of

sare supply. Natural gas storage is usually performed in depleted geologial reservoirs,

or in large underground basins. Numerial tools an be used to assess the viability of

geologial sites, to predit seepage of �uid and the mehanial response of the rok faults

to variations of pressure during the ylial gas pumping in and out. As an example,

Italy highly relies on imported gas for energy supply and urrently has fourteen storage

sites with a trend towards an inrease of storing apaity ([12℄).

The exploitation of an oil �eld requires a detailed assessment of soil properties and

geologial harateristis of the ground at reservoir sale. This is a lengthy and expensive

proess, requiring a large number of wells and soil analysis. Numerial odes are widely

ix



x Introdution

used in this proess, and more e�ient algorithms are required in order to improve

preditions and thus redue osts.

The reent exploitation of shale gas in the United States requires horizontal drilling

of the soil and the generation of fratures in the impermeable shale formations in order

to extrat the natural gas trapped therein. These tehniques have a high environmental

risk, linked to the intense use of water for the generation of fratures, the emission of

large quantities of greenhouse gases in the atmosphere, the ontamination of marine

and underground water, and therefore require a areful management ([24℄). Numerial

models apable to ombine the simulation of underground �ows with rok mehanis

and hemistry an be a valuable tool in this �eld.

Underground �ow numerial simulations �nd other possible appliation in the man-

agement and monitoring of surfae and sub-surfae water resoures or in the analysis of

the transport and di�usion of pollutant speies in the underground.

The present work fouses on the desription of a new numerial model for the de�ni-

tion of the hydrauli head distribution in Disrete Frature Networks (DFNs). Disrete

frature networks are a well established model to simulate hydrologial proesses in un-

derground rok agglomerates, [14, 19, 8, 11, 4, 9, 15, 3℄. A DFN onsists of a set of

interseting planar polygons resembling the fratures in a rok matrix. The expliit

representation of rok fratures is the major harateristi of these models, that are

therefore preferred to ontinuum-like models when the frature pattern represents the

preferential �ow path. This is the ase when faults in the rok matrix have a higher per-

meability than the surrounding roks. On the other hand, ontinuum models or hybrid

ontinuum-frature models are used when the sole frature network is not su�ient to

haraterize the �ow behaviour. In ontinuum models the �ow is desribed as ourring

in a ontinuous porous medium, in whih the presene of fratures is aounted for the

de�nition of a suitable permeability tensor ([16℄).

Loation, orientation, size and hydrologial properties, suh as the permeability

tensor, of the fratures of a DFN resembling a spei� geologial site are de�ned by

means of probability density funtions, whose parameters are obtained through labora-

tory analyses on samples from probing or boreholes [2, 5, 1℄. The quantity of interest

is the hydrauli head in the fratures, representing the sum of the pressure head and

of elevation. Hydrauli head is evaluated by means of the Dary law and low order

�nite elements are usually employed to numerially solve the problem (see for example

ROCKFLOW, [22℄).
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The lassial approah desribed above has two major drawbaks that limit the use

of DFN models for large sale appliations. Firstly, DFNs of huge dimensions might

ount up to millions of fratures, thus requiring a very high omputational e�ort, and

additionally, repeated simulations are usually required to overame the unertainty due

to the stohasti nature of input data. Seondly, the generation of a good quality mesh

suitable for �nite elements might result infeasible for intriate DFN on�gurations. This

is onneted to the fat that fratures in DFNs interset with arbitrary orientation and

the �nite element triangulation need to be onformal to frature intersetions, usually

alled traes. As a onsequene elongated elements with poor aspet ratio might be

generated to math fratures interseting with narrow angles, thus ompromising the

auray of the solution. In many ases, due to the onformity requirement, triangula-

tion odes might even fail in generating a mesh [21℄.

The method desribed herein takles both these di�ulties by splitting the problem

on the whole DFN in many small sub-problems on eah frature that an be solved

independently from eah other, and resorting to the minimization of a ost funtional

to enfore the ompatibility onditions at frature intersetions. In suh a way the

omplexity of the initial problem an be handled more e�iently in parallel omputers

in an easy and straightforward way, and the meshing proess an be performed inde-

pendently on eah frature, removing the onstraint of triangulations onformal with

frature intersetions.

Di�erent disretization strategies are possible. The solution an be obtained using

standard �nite elements on eah frature, or through the use of speial �nite elements

in order to improve the auray near the traes, where the solution is expeted to have

a disontinuous o-normal derivative and standard FEM on meshes non onforming

to the traes would not orretly reprodue this non-smooth behaviour. Alternatives

onsist in using the eXtended Finite Element Method (XFEM) that allows a full non-

onformity between mesh elements and traes and relies on additional basis funtions

to represent kinks in the solution, and the Virtual Element Method (VEM) that allows

a partial non-onformity and an easy meshing proedure thanks to the use of elements

with an arbitrary number of edges. Within the proposed approah a mixing of these

disretization strategies is possible, improving �exibility in dealing with omplex DFN

on�gurations.

A large part of the researh ativity in the �eld of DFN simulations fouses on the

problems identi�ed above. In order to redue problem omplexity, in [6, 18℄ the authors
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suggest to desribe the DFN as a system of mono-dimensional pipes that onnet the

traes with the neighbouring fratures, without a�eting the topology of the network.

Di�erent approahes rely on mortar methods to ease the meshing proess allowing a

partial non-onformity with the traes. In [23℄ mortar methods are used in onjuntion

with mixed �nite elements, while in [20, 21℄ traes are modi�ed to onform loally to

element edges, but allowing nononformity with the disretization on the interseting

frature that is handled with mortar methods. Geometrial minor modi�ation of the

DFN are also proposed in other works, suh as [13℄. A di�erent approah is proposed

in [17℄, where the solution of 3D frature networks is redued to a system of di�erential

problems on the traes, organized suh that it is possible to obtain suessive levels of

approximations, aording to the auray required. In [10℄ benhmark DFN on�gu-

rations are provided and the authors envisage models with non-onforming meshes and

a domain deomposition approah as a promising strategy for large sale simulations.

Overview

The present thesis has the struture of a olletion of journal artiles and is divided

into three parts: the �rst part is devoted to the presentation of the mathematial state-

ments of method, proposed both in the ontinuous and disrete formulations. Also the

algorithm used to obtain a numerial solution is desribed, along with a large number

of numerial results that show the viability and e�ieny of the proposed method. The

�rst part is onstituted by Chapters 1-4 that report fully three published artiles and a

fourth work urrently under review, o-authored by the author. In Chapter 1 is repro-

dued the following artile:

Berrone S., Pieraini S. and Sialò S., A PDE-onstrained optimization formulation for

disrete frature network �ows, SIAM Journal on Sienti� Computing, 35(2), B487-

B510.

In Chapter 2 is reprodued:

Berrone S., Pieraini S. and Sialò S., On simulations of disrete frature network �ows

with an optimization-based extended �nite element method, SIAM Journal on Sienti�

Computing, 35(2), A908-A935;

in Chapter 3:

Berrone S., Pieraini S. and Sialò S, An optimization approah for large sale simula-

tions of disrete frature network �ows, Journal of Computational Physis, 256, 838-853
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and in Chapter 4:

Berrone S., Pieraini S. and Sialò S, The eXtended Finite Element Method for Sub-

surfae Flow Simulations, Under review.

The seond part is onstituted by unpublished material and is organized as fol-

lows. In Chapter 5, numerial results on omplex DFN on�gurations are provided

both with standard �nite elements on nononforming grids and with the XFEM on the

same grids to improve solution representation. A preliminary investigation on the sal-

ability properties of the algorithm end this Chapter. An analysis on a possible strategy

of preonditioning the onjugate gradient method for DFN simulations is proposed in

Chapter 6.

The third part is onstituted by Chapter 7 that reports an artile in preparation

on a preliminary investigation of the method in onjuntion with the Virtual Element

Method as an alternative to the XFEM or FEM:

Benedetto, M., Berrone S., Pieraini S. and Sialò S, The Virtual Element Method for

Disrete Frature Network simulations, In preparation.
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Chapter 1

A PDE-onstrained optimization

formulation for disrete frature

network �ows

Abstrat We investigate a new numerial approah for the omputation of the 3D �ow

in a disrete frature network that does not require a onforming disretization of par-

tial di�erential equations on omplex 3D systems of planar fratures. The disretization

within eah frature is performed independently of the disretization of the other fra-

tures and of their intersetions. Independent meshing proess within eah frature is a

very important issue for pratial large sale simulations making easier mesh generation.

Some numerial simulations are given to show the viability of the method. The resulting

approah an be naturally parallelized for dealing with systems with a huge number of

fratures.

1.1 Introdution

E�ient numerial simulations of subsurfae �uid �ows in fratured roks are of

interest for many appliations ranging from water resoures management, ontaminant

transport and dissemination, oil prospeting and enhaned oil/gas reovery. Among the

major di�ulties are intrinsi heterogeneity, diretionality of the medium and multisale

nature of the phenomena, as well as unertainty in the medium properties. A Disrete

Frature Network (DFN) is a omplex 3D struture obtained interseting planar fra-

3
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tures. DFN models are frequently preferred to more onventional ontinuum models as

basis for simulations. A lassial approah to the problem is to model fratures as planar

ellipses or polygons and stohastially generate DFNs with probabilisti distributions of

density, aspet ratio, orientation, size, aperture of fratures and hydrologi properties

[9℄ and to simulate the �ow through the obtained networks. Intensive numerial simula-

tions with several on�gurations of DFNs and physial parameters are then performed

in order to takle the issue of unertainty. The �ow pattern strongly depends on density

and size of fratures and for large sale simulations di�erent approahes are possible. For

dense frature networks and ontinuous distribution of size and aspet ratios, �ow an

be modeled as the �ow in an equivalent ontinuous porous medium where the frature

network pattern leads to the de�nition of a suitable permeability tensor. For sparse

frature networks with some large fratures that disontinuously inrease diretional-

ity of the �ow, an expliit representation of the frature network is more reliable. In

both ases a stohasti approah to the unertainty of the parameters is needed and

this requires many simulations, so that e�ieny and large appliability of numerial

algorithms are fundamental issues.

Here the steady �ow in a given DFN is onsidered assuming the rok matrix im-

pervious and no longitudinal �ow in the intersetion between the fratures. These

intersetions are alled traes and are always segments.

In DFN simulations the �rst lassial numerial hallenge is to provide a good-quality

onforming mesh for this 3D struture to be used for the disretization of the �ow

equations. Conformity of the mesh requires that for eah trae a unique disretization

is introdued, whih is shared by all the disretizations of the fratures interseting along

the trae. Conformity on the traes and good quality of the meshes for a ompletely

arbitrary DFN an be obtained only with the introdution of a huge number of elements

independently of the required auray of the numerial solution. In [28℄, a mixed

non-onforming �nite element method on a onforming mesh is proposed. In [20℄, an

adaptive approah to the onforming mesh generation requiring adjustments of trae

spatial olloations is proposed. Loal modi�ations of the mesh or of the frature

network in order to preserve onformity of the meshes or alignment of meshes along

the traes are onsidered in several works as [17, 28℄. In [11℄, a method to generate

a good-quality onforming mesh on the network system is proposed. In [23, 24℄, a

mixed hybrid mortar method is proposed allowing nononformities of the meshes on

the fratures, but requiring that the traes are ontained in the set of the edges of
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eah frature triangulation. Resorting to mortar methods the disretization of eah

frature an lead to a di�erent disretization of the traes. A di�erent approah to the

simulation of the �ow in the frature network is based on its modelization with a system

of mono-dimensional pipes that are aligned along the fratures and mutually onnet

the enters of the frature intersetions with the surrounding fratures. The resulting

mesh of pipes still re�ets the topologial properties of the frature network [6, 22℄. An

aurate de�nition of pipe properties within the frature system has been obtained by

means of a boundary element method in [10℄. However, the geometrial simpli�ation

implies errors in the assessment of the �uid �ow regime, depending on the omplexity

and geometrial properties of the underlying DFN, thus the resort to a full disretization

is preferred.

Spei� ommerial odes based on FEM are available, also simulating the �uid �ow

in the rok bloks [19℄; ontributions an be found in literature for the extension to

oupled problems with deformable bloks and fratures, even in onjuntion with other

methods as BEM (e.g. [12℄). However, these odes su�er for a strong omputational

demand: the disretization in fat leads frequently to the generation of huge or poor-

quality meshes.

Problem model allows disontinuities of �uxes of hydrauli head through the traes

when �uxes of hydrauli head leave a frature to reah a di�erent frature at the ommon

trae. In the previous approahes these disontinuities an be modeled if they are

loalized at edges between elements or at the border of eah piee of frature.

In this paper a new method is proposed, whih relies on the reformulation of the

problem as a PDE-onstrained optimization problem. Following this approah, frature

meshes are not required to math along traes and any kind of mesh onformity along

traes is skipped, thus making the mesh generation proess an easy task, attainable

with a standard mesh generator. Furthermore, the problem on the overall DFN an be

deoupled in several loal problems on the fratures, thus allowing a great potential for

a possible parallel implementation. Disontinuities of �uxes of hydrauli head an our

on arbitrary traes with respet to the triangulation and the used �nite elements allow

to ath these disontinuities of the �uxes also inside elements. This an be obtained

introduing suitable Extended Finite Elements (XFE).

The paper is organized as follows. In Setion 1.2, we reall the physial model

and governing equations, and introdue the ontinuous optimization problem that leads

to the solution on the network system. In Setion 1.3 we reall basis on extended



6 Chapter 1

�nite elements of the type onsidered herein, and give some details for the appliation

to DFNs. In Setion 1.4 a disrete formulation of the optimization problem is given,

whih leads to an equality onstrained Quadrati Programming problem. Finally, in

Setion 1.5 numerial results are disussed in order to prove the viability, reliability and

e�etivity of the method.

Notations. In the paper, we will frequently use the following notations. We will

use apital letters for ontinuous unknowns (as for example the hydrauli head H) and

lower ase letters for the orresponding �nite dimensional approximation (e.g. h). We

will use the same lower ase letter for the vetor of degrees of freedom, the di�erene

being lear from the ontext. Roman apital letters will be used for funtional spaes.

Given funtions gi, for i belonging to some index set I, the symbol
∏

i∈I gi denotes the

tuple of funtions (g1, g2, ..., g#I), being #I the ardinality of I.

1.2 Desription of the problem

1.2.1 The ontinuous problem

Let us onsider an open planar polygonal frature ω ⊂ R
2
and let us introdue on ω

a tangential oordinate system x̂. Following [1℄, the problem of subsurfae �ow through

ω an be written as:

−∇ · (K∇H) = q in ω, (1.1)

H|ΓD
= HD on γD, (1.2)

∂H

∂ν̂
= GN on γN , (1.3)

where ∂ω = γD ∪ γN is the boundary of ω and γD ∩ γN = ∅, γD 6= ∅. The salar

funtion H = P +ζ is the hydrauli head, P = p/(̺g) is the pressure head, p is the �uid

pressure, g is the gravitational aeleration and ̺ is the �uid density. The variable ζ is

the elevation, and K = K(x̂) is the frature transmissivity tensor and is a symmetri

and uniformly positive de�nite tensor. The symbol

∂H
∂ν̂

denotes the outward o-normal

derivative of the hydrauli head:

∂H

∂ν̂
= n̂T K∇H

with n̂ unit vetor outward normal to the boundary γN .
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The de�nition of the hydrauli head in a Disrete Frature Network Ω should require

the solution of problem (1.1)-(1.3) in a system of interseted polygonal fratures in the

spae. In order to de�ne 3D fratures Fi, let us onsider a set of open planar polygons

{ωi}i∈I, being I the set of their indies, and let F̄i ⊂ R
3
be the image of the losure of a

polygon ωi ⊂ R
2
through an a�ne mapping Ti(x̂i) = bi +Qi(x̂i − x̂0,i) where x̂0,i is the

oordinate of a given vertex of the polygon ωi in the loal planar referene system x̂i,

and bi is the position of the same vertex in the 3D spae. We assume that QT
i Qi is the

identity matrix, suh that the di�erential operators de�ned on the tangential referene

system in Fi are equivalent to the operators de�ned on the planar frature ωi. Let Ω be

the 3D set

Ω =
⋃

i∈I

Fi,

and let ∂Ω denote its boundary. Given two fratures, the intersetion of their losure is

either an empty set or a set of non vanishing segments alled traes (vanishing segments

are not onsidered as no �ux exhange among fratures takes plae in these interse-

tions). Let S denote the set of all the traes, and assume traes in S are indexed by a

set of indies M, with ardinality ♯M.

In the sequel, we make the following assumptions on the DFN:

1. Ω̄ is a onneted set;

2. eah trae Sm, m ∈ M, is shared by exatly two polygonal fratures Fi and Fj ,

i 6= j: Sm ⊆ F̄i ∩ F̄j ;

3. on eah frature, the transmissivity tensor Ki(x̂i) is symmetri and uniformly

positive de�nite.

Given a trae Sm we denote by ISm = {i, j} the set of indies i and j of the fratures
Fi and Fj sharing the trae; for further onveniene, we also introdue the sorted ouple

cm = (i, j) with i < j. For eah frature Fi, we denote by Si the set of traes shared by

Fi and other fratures.

In order to de�ne the problem on the DFN, let us onsider a set of open subfratures

fl, l ∈ L, obtained splitting eah frature in suh a way that eah trae is part of the

boundary of some subfratures and Sm ∩ fl = ∅, ∀m ∈ M,∀l ∈ L, see Figure 1.1. Note

that the traes belong to the boundary of the subfratures, but they do not neessarily

oinide with a whole edge of suh boundaries, see e.g. trae S2 in Figure 1.1. So we
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S1

S2

Figure 1.1: An example of DFN splitted in subfratures

have

Ω =
⋃

l∈L

f̄l\∂Ω.

Let us split ∂Ω in two parts ΓD 6= ∅ and ΓN , with ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅,
orresponding to Dirihlet and Neumann boundary onditions, respetively.

The global hydrauli head H in the whole onneted system Ω satis�es the following

equations ∀l ∈ L:

∇ · (Kfl ∇H) = ql, in fl, (1.4)

H|ΓD∩∂fl
= HD, on ΓD ∩ ∂fl, (1.5)

∂H

∂ν̂
∂fl

= GN , on ΓN ∩ ∂fl, (1.6)

with a 2D loal referene system on fl. Given a trae Sm let LSm ⊂ L be the set of

indies l suh that Sm ⊂ ∂fl. Equations (1.4)-(1.6) have to be omplemented with the

following oupling onditions, orresponding to the physial requirement of ontinuity

of the hydrauli head and onservation of hydrauli �uxes aross the traes:

H|f̄l
= H|f̄k

, on Sm, ∀Sm ∈ S, ∀l, k ∈ LSm , (1.7)

∑

l∈LSm

∂H|fl

∂ν̂
∂fl

= 0, on Sm, ∀Sm ∈ S . (1.8)
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For this formulation of the problem existene and uniqueness of the solution are

known. In the following we want to fous on the whole frature, disregarding this

subfrature approah. Thus, let us denote by Hi the restrition of the hydrauli head

H to the frature Fi, ∀i ∈ I. Conditions (1.7) and (1.8) are equivalent to

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , ∀m ∈ M, (1.9)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm , (1.10)

where the symbol

[[
∂Hi

∂ν̂i
Sm

]]

Sm

denotes the jump of the o-normal derivative along the

unique normal n̂iSm
�xed for the trae Sm on the frature Fi. This jump is independent

of the orientation of n̂iSm
.

Let Γi be the boundary of Fi and let it be split in ΓiN , the boundary with Neumann

boundary ondition

∂Hi

∂ν̂
= GiN , and ΓiD 6= ∅, the boundary with Dirihlet boundary

ondition Hi|ΓD
= HiD, satisfying ΓiN ∩ ΓiD = ∅ and ΓiN ∪ ΓiD = Γi. Let us de�ne

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}

and V ′
i its dual spae. The hydrauli head Hi in eah frature belongs to the spae

V D
i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HiD

}

and the hydrauli head H on the whole domain Ω is obtained by suitably mathing via

(1.9), (1.10) for m ∈ M the solutions Hi ∈ V D
i for eah i ∈ I, and belongs to the spae

V D = H

1
D

(Ω) =

{
v ∈

∏

i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm , ∀m ∈ M

}
. (1.11)

With a similar de�nition we set V = H

1
0(Ω).

For the sake of simpliity of notation, in the following of this setion we assume that

the traes S ∈ S are disjoint.

Remark 1.1. The assumption of disjoint traes an be removed by replaing, in the se-

quel, eah single trae S with the union of onneted traes. Furthermore, in our disrete

formulation, this assumption is dropped out in a natural way, see later Remark 1.2.

Let us de�ne for eah trae S ∈ S a suitable spae US
and

USi =
∏

S∈Si

US , U =
∏

i∈I

USi .
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Moreover, for eah trae S ∈ S, with IS = {i, j}, we introdue suitable variables

US
i ∈ US

and US
j ∈ US

representing the unknown quantities

[[
∂Hi

∂ν̂i
S

]]

S
and

[[
∂Hj

∂ν̂
j
S

]]

S

,

respetively, and for eah frature Fi let us set

Ui = Π
S∈Si

US
i ∈ USi

i.e., Ui is the tuple of funtions U
S
i with S spanning Si. Moreover, we set

U = Π
i∈I

Ui ∈ U

as the tuple of all funtions US
i with S ∈ Si and i ∈ I, i.e. U is the 2#M-tuple of

funtions US
i on all traes in Ω.

Condition (1.10) rewrites, in terms of the new unknowns USm

i , USm

j as

USm

i + USm

j = 0, for i, j ∈ ISm . (1.12)

Let us introdue the following linear bounded operators and their duals:

Ai ∈ L(Vi, V ′
i ), A∗

i ∈ L(Vi, V ′
i ), AD

i ∈ L(V D
i , V ′

i ),

Bi ∈ L(USi , V ′
i ), Bi

∗ ∈ L(Vi,USi
′
), BΓiN

∈ L(H− 1

2
(ΓiN ), V

′
i ),

and the Riesz isomorphism ΛUSi : USi → USi
′
. The operators Ai, A

D
i , Bi, BΓiN

are

de�ned suh that

〈AiH
0
i , v〉V ′

i ,Vi
=
(
K∇H0

i ,∇v
)
, H0

i ∈ Vi, v ∈ Vi,

〈AD
i H

D
i , v〉V ′

i ,Vi
= (K∇HD

i ,∇v), HD
i ∈ V D

i , v ∈ Vi,

〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉
USi ,USi

′ , Ui ∈ USi , v ∈ Vi,

〈BΓiN
GiN , v〉V ′

i ,Vi
= 〈GiN , v|ΓiN

〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

, GiN ∈ H

− 1

2
(ΓiN ), v ∈ Vi.

Finally, let RiHiD ∈ V D
i be a lifting of Dirihlet boundary ondition HiD.

Let us introdue ∀i ∈ I the problem: �nd Hi = H0
i + RiHiD, with H

0
i ∈ Vi suh

that:

(
K∇H0

i ,∇v
)

= (qi, v) + 〈Ui, v|Si
〉
USi ,USi

′
(1.13)

+〈GiN , v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

− (K∇RiHiD,∇v) , ∀v ∈ Vi

or equivalently ∀i ∈ I

AiH
0
i = qi +BiUi +BiNGiN −AD

i RiHiD. (1.14)
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The following result states the equivalene between the subfrature setting and the

setting based on fratures. The proof is omitted as it straightforwardly follows from

lassial arguments.

Proposition 1.1. Let US =H

− 1

2
(S),∀S ∈ S. Then, solving (1.13) ∀i ∈ I with addi-

tional onditions (1.9), (1.12) is equivalent to solve (1.4)-(1.8).

1.2.2 The optimal ontrol formulation

The formulations of the problem desribed in the previous setion requires the ex-

at full�lment of some onditions whih ouple the solution on di�erent fratures; this

happens either in the subfrature setting given by equations (1.4)-(1.8), or with the

formulation (1.13) with oupling onditions (1.9), (1.12). Hene, �nding a numerial

solution to the problem solving the previous sets of equations typially asks for some

form of (at least partial) onformity in the meshes introdued on the fratures, see e.g.

[11, 17, 20, 23, 28℄.

In order to irumvent this problem, we propose here a di�erent approah. Instead

of solving the overmentioned oupled di�erential problems, we look for the solution

of a PDE onstrained optimal ontrol problem [18℄, the variable U being the �ontrol

variable�. Let us de�ne for eah trae S ∈ S a suitable spae HS
, the spaes

HSi =
∏

S∈Si

HS , H =
∏

i∈I

HSi ,

and the Riesz isomorphism ΛHSi : HSi → HSi
′
. The following linear bounded �observa-

tion� operators CS
i and Ci and the dual Ci

∗

CS
i ∈ L(Vi,HS), Ci ∈ L(Vi,HSi) = Π

S∈Si

CS
i , Ci

∗ ∈ L(HSi
′
, V ′

i ),

will be de�ned for eah hoie of the spaesHS
. For all i ∈ I, let us denote by Hi(Ui) the

solution to (1.13) orresponding to the value Ui for the ontrol variable. Furthermore,

�xed a frature Fi, we denote by

Π
S∈Si

US
j

the tuple of ontrol variables de�ned on fratures Fj interseting Fi in traes S ∈ Si

and by

Π
S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)
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the tuple of funtions

(
CS
i Hi(Ui)−CS

j Hj(Uj)
)
as S varies in Si.

Let us now introdue the following di�erentiable funtional J : U → R:

J(U) =
∑

S∈S

JS(U) =
∑

S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)

=
1

2

∑

i∈I

∑

S∈Si

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)

=
1

2

∑

i∈I

(
|| Π
S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)
||2
HSi

+ ||Ui + Π
S∈Si

US
j ||2USi

)
. (1.15)

Proposition 1.2. Let us de�ne the spaes US
and HS

and the observation operator CS
i

on the trae S as

US = H

− 1

2
(S), HS = H

1

2
(S), CS

i Hi = Hi|S , ∀S ∈ S . (1.16)

Then, the hydrauli head H ∈ H

1
D

(Ω) is the unique exat solution of (1.4)-(1.8) if and

only if it satis�es the di�erential problems (1.13) for all i ∈ I and, orrespondingly,

J(U) = 0.

Proof. The existene and uniqueness of H ∈ H

1
D

(Ω) satisfying (1.4)-(1.8) is a lassial

result (see for example [28℄ and referenes therein). Proposition 1.1 states that problems

(1.4)-(1.8) ∀l are equivalent to problems (1.13) ∀i, endowed with mathing onditions

(1.9)-(1.12), whih in turn are equivalent to J(U) = 0.

Based on the previous Proposition, the problem of �nding the hydrauli head in the

whole domain is restated here as follows: �nd U ∈ U solving the problem

min J(U) subjet to (1.13), ∀i ∈ I. (1.17)

Proposition 1.3. The optimal ontrol U ∈ U providing the solution to (1.17) orre-

sponds to

(ΛUSi )
−1Bi

∗Pi + Ui + Π
S∈Si

US
j = 0, ∀i ∈ I (1.18)

where the funtions Pi ∈ Vi, ∀i ∈ I are the solutions to the equations

A∗
iPi = Ci

∗ΛHSi Π
S∈Si

(
CS
i Hi − CS

j Hj

)
. (1.19)
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Proof. Let us di�erentiate the ost funtional J(U) with respet to the ontrol Ui, this

has e�et only for S ∈ Si and we have

J ′(U)(vi − Ui) =
∑

S∈Si

JS ′
(Ui)(vi − Ui)

=
∑

S∈Si

[
2
(
CS
i Hi(Ui)− CS

j Hj(Uj), C
S
i (Hi(vi)−Hi(Ui))

)
HS + 2

(
US
i + US

j , v
S
i − US

i

)
US

]

= 2

〈
Ci

∗ΛHSi Π
S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj)),Hi(vi)−Hi(Ui)

〉

V ′
i
,Vi

+2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉

USi
′
,USi

= 2
〈
A∗

iPi, A
−1
i Bi(vi − Ui)

〉
V ′
i ,Vi

+ 2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉

USi
′
,USi

= 2 〈B∗
i Pi, vi − Ui〉USi

′
,USi + 2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉

USi
′
,USi

and this yields the thesis.

Equations (1.13), (1.18) and (1.19) ∀i ∈ I then provide solution to the subsurfae

�ow in the network; nevertheless, they ouple all the unknowns on the overall DFN. As

an alternative approah, we propose to set up a minimization proess that only requires,

at eah step, loal solutions on the fratures. The key point of this approah is that the

method only requires deoupled solutions of the �ows on fratures, thus avoiding mesh

onformity requirements. This target is attained, for example, by using a gradient-based

approah, suh as for example the steepest desent method. This approah requires the

solution of many simple problems with a small exhange of data. The resulting algorithm

is suitable for massively parallel omputers and GPU-based omputers.

In order to desribe the minimization proess leading to the solution of the ontin-

uous problem (1.17), let us de�ne

δUi = Λ−1
USi

Bi
∗Pi + Ui + Π

S∈Si

US
j , ∀i ∈ I, δU =

∏

i∈I

δUi (1.20)

and let δHi ∈ Vi, ∀i ∈ I be de�ned as the solution of the problem

AiδHi = BiδUi. (1.21)

Proposition 1.4. Given a ontrol variable U , let us inrement it by a step λδU . The
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steepest desent method orresponds to the stepsize

λ = − ||δU ||2U∑

S∈S

(
||CS

i δHi − CS
j δHj ||2HS + ||δUS

i + δUS
j ||2US

) , (1.22)

being δUS
i = δUi|S .

Proof. Let us ompute J(U + λδU). We have

J(U + λδU) = J(U) + 2
∑

S∈S

(
CS
i Hi(Ui)− CS

j Hj(Uj), λ(C
S
i δHi − CS

j δHj)
)
HS

+2
∑

S∈S

(
US
i + US

j , λ(δU
S
i + δUS

j )
)
US

+λ2
∑

S∈S

||CS
i δHi −CS

j δHj ||2HS + λ2||δUS
i + δUS

j ||2US

= J(U) + 2
∑

i∈I

∑

S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj), λC
S
i δHi

)
HS

+2
∑

i∈I

∑

S∈Si

(
US
i + US

j , λδU
S
i

)
US + λ2

∑

S∈S

(
||CS

i δHi − CS
j δHj ||2HS

+||δUS
i + δUS

j ||2US

)

= J(U) + 2
∑

i∈I

(
Π

S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj)), λCiδHi

)

HSi

+2
∑

i∈I

(
Ui + Π

S∈Si

US
j , λδUi

)

USi

+ λ2
∑

S∈S

(
||CS

i δHi − CS
j δHj ||2HS

+||δUS
i + δUS

j ||2US

)
.

From the previous relation, realling (1.19) we obtain

J(U + λδU) − J(U)− λ2
∑

S∈S

(||CS
i δHi − CS

j δHj ||2HS + ||δUS
i + δUS

j ||2US) =

= 2λ
∑

i∈I

〈
A∗

iPi, A
−1
i BiδUi

〉
Vi

′,Vi
+ 2λ

∑

i∈I

〈
ΛUS (Ui + Π

S∈Si

US
j ), δUi

〉

USi
′
,USi

= 2λ
∑

i∈I

〈
Λ−1
USi

Bi
∗Pi + Ui + Π

S∈Si

US
j , δUi

〉

USi ,USi

= 2λ
∑

i∈I

||δUi||2USi .

Then the value of λ in (1.22) vanishes the derivative of J (λ) := J(U+λδU) with respet

to λ, thus providing the minimum of the funtion J (λ).

Summarizing, problem (1.17) an be solved, in the ontinuous framework, either

solving equations (1.13), (1.18) and (1.19) or following an iterative algorithm suh as
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the steepest desent, in whih at eah iteration one step is taken along the diretion δU

omputed by (1.20) with a stepsize λ given by (1.22).

The disrete ounterparts of these two approahes are presented in Setion 1.4.

1.3 The DFN problem with XFEM

In this setion, we brie�y aount for the appliation of the Extended Finite Element

Method (XFEM) to our ontext. In the �rst subsetion, we brie�y reall from literature

some key points of XFEM; in the seond subsetion these ideas are applied to the DFN

framework.

1.3.1 Desription of XFEM

The XFEM [3, 8, 4℄ is a mesh-based numerial tehnique for the solution of partial

di�erential equations in variational form, when non-smooth or disontinuous solutions

are onsidered. The XFEM an reprodue irregularities that are arbitrarily plaed in

the domain, regardless of the underlying triangulation. The onept at the basis of

the XFEM onsists in ombining the standard Finite Element (FE) approah with the

Partition of Unity Method (PUM) [2℄, in order to overome the limitations of FE in

dealing with singularities. Customized enrihment funtions are added to the standard

FE approximation spae in order to ath the non-smooth harater of the solution and

extend approximation apability.

In what follows only the desription of the method in the ase of ontinuous solutions

with disontinuous �rst order derivatives (weak disontinuities) is reported, being the

only situation of interest in our appliation. Customizations of the method for other

ases an be found in [4, 14℄.

Given a problem with exat solution H in a domain ω ∈ R
n
, with a sharp or weak

singularity along the interfae desribed by the manifold S ⊂ ω, S ∈ R
n−1

, let Tδ be

a onforming triangulation on ω, and let V

fem
δ be a �nite dimensional trial and test

spae de�ned on the elements of Tδ and spanned by Lagrangian FE basis funtions φξ,

ξ ∈ I =
{
1, ..., Ndof

}
:

V

fem
δ = span

(
{φξ(x̂)}ξ∈I

)
. (1.23)

Eah basis funtion φξ has ompat support ∆ξ.
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In our appliations, provided that the edges of the elements in Tδ surrounding S

math it exatly, the approximate solution of H with standard �nite elements has the

following form:

hfemδ (x̂) =
∑

ξ∈I

hfemξ φξ(x̂) (1.24)

where hfemξ is the degree of freedom orresponding to the basis funtion φξ(x̂). Funtions

in V

fem
δ are ontinuous and an have disontinuities in the �rst order derivatives aross

element edges.

Let assume Φ is a ontinuous bounded funtion on ω, Φ ∈ H

1
(ω)∩C0(ω̄) that well

approximates the behaviour of H in a neighbourhood of S alled ∆S. With the XFEM

this funtion is introdued into the standard FE spae, thus de�ning a new enrihed

funtional spae with extended approximation apabilities. This an be done by means

of the PUM, using the standard FE shape funtions for the de�nition of a partition of

unity. The new enrihed funtional spae is:

V

xfem
δ = span

(
{φξ(x̂)}ξ∈I , {φξ(x̂)Φ(x̂)}ξ∈J

)
⊂ H

1
0(ω), (1.25)

where we have identi�ed with J ⊂ I the subset of indies of funtions φξ whose support

belongs to ∆S. DOFs in J are alled enrihed DOFs and the orresponding nodes

enrihed nodes. Typially, as skethed in Figure 1.2 it is:

J = {ξ ∈ I : ∆ξ ∩ S 6= ∅} . (1.26)

Consequently the approximate solution hxfem of the problem with the XFEM is:

hxfemδ (x̂) =
∑

ξ∈I

hxfemξ φξ(x̂) +
∑

ξ∈J

axfemξ φξ(x̂)Φ(x̂) (1.27)

where hxfemξ and axfemξ are the unknowns related to the standard and enrihing basis

funtions, respetively. Sine funtions representing the non smooth behaviour of the

solution are now present in the disrete subspae, the non smooth behaviour of the

solution an be reprodued independently of the positioning of elements in Tδ with

respet to the interfae S.

Aording to (1.26) only a small subset of total elements is enrihed and this is a

peuliarity of the XFEM if ompared to PUM or other similar methods as for example

the GFEM ([25, 26℄). Elements in Tδ may thus have a variable number of enrihed

nodes. In partiular it is possible to group elements in three ategories, following the

lassi�ation used in [14℄ (see Figure 1.2):
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X

Y

 

 

Interface S
Enriched DoF
Reproducing el.
Blending el.

Figure 1.2: Seletion of nodes in J Figure 1.3: Funtion Ψ(x̂)

i) standard elements: no nodes enrihed;

ii) reproduing elements: all nodes enrihed;

iii) blending elements: some nodes enrihed.

In reproduing elements, where all the nodes are enrihed, the funtion Φ an be or-

retly reprodued, providing the desired behaviour for the disrete solution. In blending

elements, instead, where only some nodes are enrihed, spurious terms are introdued in

the loal disrete spae in order to preserve ontinuity. This may a�et the onvergene

rate of the method ompared to the standard FE. Numerous tehniques are suggested in

order to prevent this issue, for example in [7, 27, 13℄. In partiular the modi�ed XFEM

suggested in [13℄ and adopted here, introdues a re-de�nition of enrihment funtions

and enrihed DOFs in order to orretly aount for the ontribution of blending ele-

ments and reover the standard FE rate of onvergene. We denote by Φ̃ and J̃ the

modi�ed version of Φ and J respetively, de�ned as:

Φ̃ = Φ(x̂)R(x̂) J̃ = {ξ ∈ I : ∆ξ ∩∆S 6= ∅} , (1.28)

where R(x̂) =
∑

ξ∈J φξ. The new enrihment funtion Φ̃ oinides with Φ in reproduing

elements where R = 1 and vanishes on the boundaries and outside ∆S , where R = 0.

Thus anywhere the enrihment funtion Φ̃ is non-zero it is orretly reprodued, avoiding

problems related to parasiti terms.

The generalization to other kind of disontinuities follows the same outline desribed

above, with spei� re-de�nition of funtional spaes. A omprehensive review of the

XFEM/GFEM method with details of all implementation aspets is available in [14℄.
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1.3.2 The disrete DFN problem

With referene to de�nitions and notation introdued in Setion 1.2, we now disuss

the appliation of the XFEM to DFN problems. For the sake of brevity we fous here

on losed interfaes, i.e. traes entirely rossing a frature plane, as for example the one

depited in Figure 1.2. Generalizations to other geometrial on�gurations of interfaes

follow the same outline of this desription, requiring, in some ases, the introdution of

di�erent enrihment funtions. More general ases are onsidered in [5℄.

Let us onsider a frature F ⊂ R
2
that has #M intersetions with other fratures

in Ω in the traes Sm ∈ Si, m ∈ M. The starting point for XFEM implementation is a

standard �nite element setting, de�ned by a triangulation T F
δ not neessarily onformal

to the traes and the disrete test spae V

fem
F,δ as de�ned by Equation (1.23). On F the

exat solutions HF , PF and δHF to (1.13), (1.19) and (1.21) respetively, may have a

jump of �uxes (a weak disontinuity) aross the traes in Si. The numerial solution

of previous equations with XFEM allows the triangulation to be set on eah frature

independently of the disposition and number of the traes. This is muh more relevant

as the number of traes inreases or when traes interset with arbitrary orientations,

sine in these situations a good quality mesh �tting the interfaes ould hardly be pro-

dued and would require a huge number of elements, regardless of the required auray.

Enrihment funtions for weak disontinuities were introdued in early works with the

XFEM mainly in the ontext of frature mehanis. A omprehensive desription an be

found in [4, 27, 8, 14℄. The desription of eah trae is performed introduing a signed

distane funtion dm that is de�ned for x̂ ∈ F as the distane with sign from segments

Sm [27, 4℄:

dm(x̂) = ‖x̄− x̂‖ n̂S · (x̄− x̂)

‖n̂S · (x̄− x̂)‖

where x̄ is the projetion of x̂ on Sm and n̂S the �xed unit normal vetor to Sm. The

enrihment funtions are built starting from the signed distane funtions. For a losed

interfae we use the enrihment funtion Ψm de�ned as Ψm(x̂) = |dm(x̂)|. Clearly Ψm

is a ontinuous funtion, but its �rst order derivatives have a jump aross Sm, thus

introduing the required non-smooth behaviour in the approximation (Figure 1.3). The

sets of enrihed DOFs, Jm, are de�ned aording to (1.26) for eah trae.

In order to avoid problems related to blending elements, the XFEM modi�ed version

[13℄ is used. Funtions Ψ̃m and sets J̃m are built starting from Ψm and Jm aording
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to de�nition (1.28). The disrete approximation spae is thus:

V

xfem
F,δ = span

(
{φξ(x̂)}ξ∈I , {φξ(x̂)Φm(x̂)}

m∈M,ξ∈Jm

)
⊂ H

1
0(ω), (1.29)

and the disrete solution is:

hxfemF,δ (x̂) =
∑

ξ∈I

hξφξ(x̂) +
∑

m∈M

∑

ξ∈J̃m

amξ φξ(x̂)Ψ̃m(x̂). (1.30)

We remark the additivity of the previous formula with respet to the interfaes: the

previous expression does not depend on where traes are loated, how lose are eah

other, or wether or not they do interset eah other, nor on whih elements the enrihed

funtions are de�ned.

The numerial integration of non smooth funtions is performed on sub-domains

where the restrition of basis funtions is regular. Gauss quadrature rule is used, adopt-

ing the number of integration nodes required by the polynomial degree of the integrands.

1.4 Disrete formulation

In this setion we provide a disrete formulation of problem (1.17). For the sake

of simpliity, we assume in this setion homogeneous Dirihlet boundary onditions,

i.e. HD = 0. All the results an be extended to the general ase HD 6= 0, see later

Remark 1.3. For simpliity of notation again, in this setion, given two (or more) vetors

x ∈ R
p
and y ∈ R

q
, we will write (x, y) denoting the vetor (xT , yT )T ∈ R

p+q
.

Under assumptions (1.16), the minimum of the funtional J(U) is haraterized by

onditions involving a frational power of the Laplae operator on the traes. Hene,

we develop our numerial method for the approximation of the solution adopting the

following hoies:

US = L

2
(S), HS = L

2
(S), ∀S ∈ S . (1.31)

Remark 1.2. We remark that with these hoies the assumption of disonneted traes

an be removed. This is due to the following property of the L2
-norm: if S1 and S2 are

two possibly onneted traes, then ‖ · ‖2
L

2
(S1∪S2)

= ‖ · ‖2
L

2
(S1)

+ ‖ · ‖2
L

2
(S2)

(see also

Remark 1.1).

For all i ∈ I, let Ji ⊂ I be the subset of indies suh that, for j ∈ Ji, the frature Fj

shares a trae with Fi. Furthermore, for all i ∈ I and for all S ∈ Si, let us �x a �nite
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dimensional subspae of US
for the disrete approximation uSi of the ontrol variable

US
i (with a similar notation let us also denote by hi the disrete approximation of Hi).

Let us introdue a basis {ψS
i,k}k=1,...,Ni,S

for this subspae, so that we write

uSi =

Ni,S∑

k=1

uSi,kψ
S
i,k ∀i ∈ I, S ∈ Si .

Replaing these expressions in (1.15), using L2
-norm and CS

i hi = hi|S , we get

J(u) =
1

2

∑

i∈I

∑

S∈Si

( ∫

S

(

Ni∑

k=1

hi,kφi,k |S −
Nj∑

k=1

hj,kφj,k|S)
2 dγ +

∫

S

(

Ni,S∑

k=1

uSi,kψ
S
i,k +

Nj,S∑

k=1

uSj,kψ
S
j,k)

2 dγ

)
. (1.32)

For all i ∈ I and S ∈ Si, let us introdue the subset Ki,S ⊆ {1, ..., Ni} of indies k

of funtions φi,k whose support has a nonempty intersetion with S. The �rst integral

in (1.32) rewrites as

IS,hij =
∑

k∈Ki,S

h2i,k

∫

S

φi,k
2
|S
dγ + 2

∑

k,ℓ∈Ki,S

hi,khi,ℓ

∫

S

φi,k |Sφi,ℓ|S dγ +
∑

k∈Kj,S

h2j,k

∫

S

φj,k
2
|S
dγ

+2
∑

k,ℓ∈Kj,S

hj,khj,ℓ

∫

S

φj,k|Sφj,ℓ|S dγ − 2
∑

k∈Ki,S

∑

ℓ∈Kj,S

hi,khj,ℓ

∫

S

φi,k|Sφj,ℓ|S dγ.

Let us introdue vetors hi ∈ R
Ni
, hi = (hi,1, . . . , hi,Ni

)T , i ∈ I and setting NF =
∑

i∈INi, let h ∈ R
NF

be obtained onatenating, for i ∈ I, vetors hi. Hene from now

on, besides denoting the disrete solution, hi will also denote the vetor of orresponding

DOFs.

Next, for all i ∈ I, S ∈ Si let us de�ne matries MS
i ∈ R

Ni×Ni
and (for j ∈ Ji)

MS
ij ∈ R

Ni×Nj
as:

(MS
i )kℓ =

∫

S

φi,k |Sφi,ℓ|S dγ, (MS
ij)kℓ =

∫

S

φi,k|Sφj,ℓ|S dγ.

With these de�nitions, the �rst integral in (1.32) is written in ompat form as

IS,hij = hTi M
S
i hi + hTj M

S
j hj − 2hTi M

S
ijhj . (1.33)

Let us turn to the seond integral in (1.32). For a onvenient ompat form of

this seond integral, let us onsider a di�erent numbering of funtions uSi indued by
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the trae numbering. Let S = Sm be a given trae, with cm = (i, j) (hene i < j).

We denote by u−m the ontrol funtion related to the m-th trae and orresponding to

frature Fi, and by u+m the ontrol funtion related to the same trae and orresponding

to the other frature, Fj . This numbering indues a di�erent numbering also on the basis

funtions ψS
i,k, ψ

S
j,k whih an be labeled as ψ−

m,k, ψ
+
m,k, respetively, and aordingly we

set N+
m = Ni,S , N

−
m = Nj,S.

Then we have, for ⋆ = − or +,

u⋆m =

N⋆
m∑

k=1

u⋆m,kψ
⋆
m,k ∀m ∈ M.

Now, let us introdue the vetors u⋆m ∈ R
N⋆

m
, u⋆m = (u⋆m,1, . . . , u

⋆
m,N⋆

m
)T , m ∈ M,

⋆ = −,+, and setting NT =
∑

m∈M(N−
m +N+

m) we de�ne u ∈ R
NT

as

u = (u−1 , u
+
1 , . . . , u

−
#M

, u+#M
).

Let us also de�ne the following matries:

M⋆
m ∈ R

N⋆
m×N⋆

m , (M⋆
m)kℓ =

∫
S
ψ⋆
m,kψ

⋆
m,ℓ dγ, m ∈ M, ⋆ = −,+

M±
m ∈ R

N−
m×N+

m, (M±
m)kℓ =

∫
S
ψ−
m,kψ

+
m,ℓ dγ.

The seond integral in (1.32), after some straighforward algebrai manipulation,

rewrites as

IS,uij =

N−
m∑

k=1

u−m,k

2
∫

S

ψ−
m,k

2
dγ + 2

N−
m∑

k=1

N−
m∑

ℓ=1

u−m,ku
−
m,ℓ

∫

S

ψ−
m,kψ

−
m,ℓ dγ +

N+
m∑

k=1

u+m,k

2
∫

S

ψ+
m,k

2
dγ

+2

N+
m∑

k=1

N+
m∑

ℓ=1

u+m,ku
+
m,ℓ

∫

S

ψ+
m,kψ

+
m,ℓ dγ + 2

N−
m∑

k=1

N+
m∑

ℓ=1

u−m,ku
+
m,ℓ

∫

S

ψ−
m,kψ

+
m,ℓ dγ

and in ompat form

IS,uij = (u−m)T M−
m u

−
m + (u+m)T M+

m u
+
m + 2(u−m)T M±

m u
+
m. (1.34)

We an now write the whole funtional J(u) in matrix form properly assembling the

previous matries in a single one and resorting to vetors h and u. Let Gh ∈ R
NF×NF

and Gu ∈ R
NT×NT

be de�ned blokwise as follows: for i ∈ I, m ∈ M we set

Gh
ii =

∑
S∈Si

MS
i , Gh

ij = −MS
ij for j ∈ Ji,

Mm =

(
M−

m M±
m

(M±
m)T M+

m

)
Gu = diag(M1, . . . ,M#M).
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Sine obviously (MS
ij)

T = MS
ji, matrix Gh

is symmetri. The same property learly

holds true for Gu
. With these de�nitions, the funtional J(u) an be rewritten as

J(u) =
1

2
hTGhh+

1

2
uTGuu.

Now, let us turn our attention to the onstraints, writing the algebrai ounterparts

of operators Ai, Bi in equation (1.14): overloading notations, we let Ai ∈ R
Ni×Ni

and

Bi ∈ R
Ni×NSi

with NSi
=
∑

S∈Si
Ni,S also denote the matries de�ning the algebrai

operators as follows. We set

(Ai)kℓ=

∫

Fi

∇φi,ℓ∇φi,k dFi,
(
BSm

i

)
kℓ
=

∫

Sm

φi,k|Sm
ψ⋆
m,ℓ dγ, (1.35)

where, realling that ISm = {i, j}, we take ⋆ = − if i < j or ⋆ = + otherwise. Matries

BSm

i , Sm ∈ Si, are then grouped row-wise to form the matrix Bi, whih ats on a olumn

vetor ui ontaining all the ontrol DOFs orresponding to traes of Fi. Vetor ui is

obtained appending the bloks u⋆m in the same order used for assembling Bi, as the

ation of a suitable operator Ri : R
NT 7→ R

NSi
suh that ui = Riu. Hene, onstraints

(1.14) lead to the algebrai equations

Aihi −BiRiu = q̃i, i ∈ I, (1.36)

where q̃i aounts for the term qi in (1.14) and for the weak disrete imposition of

boundary onditions. Letting w = (h, u) ∈ R
NF+NT

and de�ning

A = diag(A1, . . . , A#I) ∈ R
NF×NF

, B =




B1R1

.

.

.

B#IR#I


 ∈ R

NF×NT
,

C = (A −B) ∈ R
NF×NF+NT

, G = diag(Gh, Gu), (1.37)

the overall problem reads

min
w

1

2
wTGw, (1.38)

s.t. Cw = q̃. (1.39)

Hene the problem is a Quadrati Programming (QP) problem with equality onstraints.

First order neessary onditions for a point w∗
to be a solution to (1.38)�(1.39) are given

by the Karush-Khun-Tuker onditions (see e.g. [21℄):

A =

(
G CT

C 0

)
, A

(
w∗

−p∗

)
=

(
0

q̃

)
(1.40)

being p∗ the vetor of Lagrange multipliers.
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Remark 1.3. The results here presented do not rely on the assumption of homogeneous

Dirihlet boundary onditions. If non homogeneous Dirihlet onditions are taken into

aount, the quadrati funtional in (1.38) also ontains a linear term, orrespondingly

the right-hand-side of (1.40) has a nonzero blok, and the struture of the problem is

therefore the same.

For further disussion, we reall the following lassial result onerning solution

of equality onstrained QPs of the form (1.38)-(1.39), see for example [21℄. Referring

to problem (1.38)-(1.39), let n and p denote the dimension of w and the number of

onstraints, respetively, so that G ∈ R
n×n

and C ∈ R
p×n

.

Theorem 1.4. Let C have full row rank and assume that the matrix ZTGZ is positive

de�nite, being Z a n× (n− p) matrix whose olumns are a basis of the null spae of C.

Then the matrix A de�ned in (1.40) is non singular and the vetor w∗
satisfying (1.40)

is the unique global solution of problem (1.38)�(1.39).

Proof of existene and uniqueness of the solution to the disrete ounterpart of

problem (1.17) is now a diret appliation of Theorem 1.4.

Theorem 1.5. Let us onsider the disrete formulation (1.38)-(1.39) to the problem of

subsurfae �ow in a DFN, with G and C de�ned as in (1.37). Then, the solution exists

and is unique and oinides with the solution to (1.40).

Proof. First, let us observe that G is symmetri positive semide�nite as for any w =

(h, u) we straightforwardly have wTGw ≥ 0. Furthermore, sine all Ai are nonsingular,

due to standard properties of FE disretizations, A is nonsingular as well and C has full

row rank. As rank(C) = NF
we have dim(ker(C)) = NT

. Let z1, . . . , zNT ∈ R
NF+NT

be vetors forming a basis of ker(C). Then, for all zk, let us partition zk = (zhk , z
u
k ) with

zhk ∈ R
NF

and zuk ∈ R
NT

. We have Azhk = Bzuk , thus zk has the form (A−1Bzuk , z
u
k ). In

partiular, take zuk = ek, where ek is the k-th vetor of the anonial basis of R
NT

, hene

zk = (A−1Bek, ek). Let us ompute y = Gzk = (GhA−1Bek, G
uek). Let eNF+s be a

vetor of the anonial basis of R
NF+NT

with s ≥ 1. We have yNF+s = eT
NF+s

Gzk =

eTs G
uek with es ∈ R

NT
. In partiular, taking s = k, we have

yNF+k = eTkG
uek =

∫

S

ψS
i,ℓ

2
dγ (1.41)

for some i ∈ I and some 1 ≤ ℓ ≤ Ni,S . Sine the integral in (1.41) is nonzero, we have

at least one omponent of Gzk di�erent from zero. Hene we have proved that for any
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vetor z ∈ ker(C), we have Gz 6= 0 (unless z = 0), hene z /∈ ker(G). This proves

that ker(G) ∩ ker(C) = {0}. Let now Z be the matrix whose olumns are given by the

basis vetors zk previously introdued. Sine G is positive semide�nite we have, for any

y ∈ R
NF+NT

, yTGy ≥ 0 and yTGy = 0 if and only if y ∈ ker(G) (see e.g. [16℄). Let

v ∈ R
NT

be an arbitrary vetor, v 6= 0. Sine Zv ∈ ker(C) and ker(G) ∩ ker(C) = {0},
we have Zv /∈ ker(G) and so vTZTGZv > 0. This proves positive de�niteness of ZTGZ.

Applying Theorem 1.4 the thesis is proved.

1.4.1 Computing numerial solutions

Saddle point system (1.40) represents a possible approah for obtaining a numerial

solution. For DFN of moderate size, sparse (even diret) solvers an be used e�iently

to ompute a solution to (1.40). Nevertheless, when the DFN system is omposed by a

huge number of fratures, even if poor disretizations are introdued on eah frature,

solving the linear system may be a quite demanding task and parallel omputing has to

be taken into aount. If this is the ase, instead of assembling the linear system and

splitting information and operations among proessors/ores, a gradient-based method

suh as the basi one depited in the sequel an be taken into aount. The following

numerial method arises from the disretization of the steepest desent method brie�y

desribed at the end of Subsetion 1.2.2. At step k, given uk, let us ompute hki as the

solution to (1.36) and pki as the solution to

AT
i p

k
i = Gh

iih
k
i +

∑

j∈Ji

Gh
ijh

k
j , ∀i ∈ I. (1.42)

Then, we de�ne a vetor δuki omponentwise as the L2(Si) projetion of the funtion

pki +ΠSm∈Si
((u−m)k+(u+m)k) against basis funtions (nodal interpolation an be taken, in

ase of Lagrangian basis funtions). Then, we move along diretion δuk with a stepsize

λk = −
∑

i∈I(δu
k
i )

T δuki

1
2

∑
i∈I

∑
Sm∈Si

(
‖δhik|Sm

−δhjk|Sm
‖2
L

2
(Sm)

+‖(u−m)k+(u+m)k‖2
L

2
(Sm)

)
(1.43)

where δhki is the solution to

Aiδh
k
i = Biδu

k
i , ∀i ∈ I. (1.44)

The orresponding algorithm is the following.
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Algorithm 1.6. 1. Set k = 0 and initial guess for ontrol variable u0;

2. ompute h0 = h(u0) solving (1.36) on eah frature;

3. Do

3.1. ompute pk solving on eah frature the dual problem (1.42);

3.2. ompute δuk and solve (1.44) to get δh;

3.3. evaluate λk aording to (1.43) and update uk+1 = uk + λkδuk;

3.4. ompute hk+1 = hk + λkδhk

3.5. k = k + 1.

while stopping riterion not satis�ed

Remark 1.7. Algorithm 1.6, whih is the disretization of the in�nite dimensional

steepest desent method, is equivalent to the appliation of the steepest desent method

to the �nite dimensional problem (1.38)-(1.39).

Eah iteration of Algorithm 1.6 essentially requires the solution of (1.42) and (1.44),

whereas it is not neessary to solve the primal equation (1.36) at eah iteration, be-

ause, thanks to linearity, the new value hk+1
for the numerial hydrauli head an be

omputed as shown in Step 3.4. Nevertheless, in pratial omputations, it is advisable

to periodially replae Step 3.4 with the omputation of hk+1
via the primal equation,

in order to improve numerial stability.

We end this setion highlighting that solutions to problems (1.42) and (1.44) an be

obtained deoupling the omputation among fratures. This point makes the method

appealing when parallelization omes into play, as this approah turns out to be highly

parallelizable in a very natural way, by distributing fratures among proessors and

involving a moderate exhange of data. This approah is suitable for massively parallel

omputers and GPU-based omputers.

1.5 Numerial results

In this setion we present some preliminary results whih aim at showing viability

and e�etiveness of the method here proposed in irumventing any kind of problem

onerning mesh generation on the whole DFN.
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Two test problems have been onsidered here. In Problem 1 the numerial simula-

tions are performed both with standard �nite elements on onforming grids aligned to

a trae, and with extended �nite elements with a trae rossing mesh elements. Numer-

ial results are ompared to the known exat solution. In Problem 2 a more omplex

domain is onsidered. In both tests, traes entirely rossing a frature are onsidered.

The appliation of the method to more omplex DFN on�gurations is shown in [5℄.

Triangular meshes and �rst order �nite elements are used in all the tests. Let Vi,δ be

the disrete enrihed �nite element spae on the frature Fi, ∀i ∈ I, de�ned aording

to (1.29). Let Uδ ⊂ U be the disrete spae for the ontrol funtions. The spae Uδ is

here de�ned as the spae of the pieewise linear funtions on the traes Sm, m ∈ M;

the nodes of the 1D mesh on eah trae are given by the intersetions of the 2D mesh

on the orresponding frature with the trae itself. If an edge of the 2D mesh lies on

the trae, the endpoints of the edge are taken as nodes of the 1D mesh.

In the presentation of numerial results the following onvention is used:

• FEM : our optimization approah on standard �nite element meshes without en-

rihments; meshes are aligned along the traes (Figure 1.4, left). For Problem 1

the same mesh is used in all the fratures. This method is used to ompare our

results with those obtained on a onforming mesh, in whih it is ensured that the

minimum of J equals 0.

• XFEM : extended FE are used and the meshes in all the fratures do not math

along the traes (Figure 1.4, right). In this ase the minimum of funtional J

omputed with the disrete solutions is in general 6= 0.

In all tests we omputed the numerial solution both using the gradient method and

solving the linear system (1.40). When the gradient method was applied, we started

from a null ontrol u0. Both the overall linear system (1.40) and the smaller dimension

systems involved in (1.42) and (1.44) have been solved with MATLAB built-in diret

solver.

Depending on the hoies of the mesh on eah frature Fi, the minimum of funtional

J(u) an be di�erent from zero. In Algorithm 1.6 the following stopping riteria have

been used:

J(uk)− J(uk+1) < tol1, or

J(uk)− J(uk+1)

J(uk+1)
< tol2. (1.45)

In the results here reported we used tol1 = 10−15
and tol2 = 10−3

.
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F1

F2

Figure 1.4: Problem 1: Left: standard FEM onforming mesh on eah frature; right:

domain desription with XFEM meshes and solution h in olorbar
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Figure 1.5: Problem 1: Solution with XFEM on frature F1 (left) and F2 (right) for

δmax = 0.06

1.5.1 Problem 1

Let us de�ne Ω = F1 ∪ F2 with, being x = (x, y, z), F1 and F2 given by

F1=
{
x∈R

3 : x∈(−1, 1), y∈(0, 1), z=0
}
F2=

{
x∈R

3 : x=0, y∈(0, 1), z∈(−1, 1)
}
.

Let S = F1 ∩ F2. The problem is set as follows:

−∆H = q, in Ω\S, (1.46)

with homogeneous Dirihlet boundary onditions on all the boundary ∂Ω. The foring

funtion q is de�ned as follows:

q(x) =

{
6(y − y2)|x| − 2(|x3| − |x|) on F1

−6(y − y2)|z|+ 2(|z3| − |z|) on F2
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and the exat solution is given by

H(x) =

{
−y(1− y)|x|(x2 − 1) on F1

y(1− y)|x|(x2 − 1) on F2.

Figure 1.4 shows on the left a mesh used for the fratures F1 and F2 using standard

�nite elements, whereas on the right it shows the domain and, on eah frature, the mesh

used with the extended �nite elements. Note that in the seond ase the two meshes on

F1 and F2 are not onforming. Both �gures refer to intermediate meshes, orresponding

to meshsize δmax = 0.06, being δmax = 0.25 and δmax = 0.016 the meshsizes of the

oarsest and �nest grids used, respetively.

Figure 1.5 displays the solutions on F1 and F2 obtained with XFEM on the interme-

diate grid (the same solution is represented also in Figure 1.4, right, with a olorbar).

Near the trae the numerial solution is plotted on the sub-elements generated by utting

XFEM elements along traes. It an be noted that the orret nonsmooth behaviour of

the solution is aught by XFEM enrihments even if element edges do not math the

trae. Figure 1.6 shows the behaviour of L2
and H1

error norms with respet to the

meshsize δmax during a uniform mesh re�nement proess. The slopes m of the urves,

reported in the legend of eah �gure, agree with the expeted values for P 1
elements

even in the ase of XFEM.

Remark 1.8. For this test prolem we have H(x) /∈H

2
(Fi), i = 1, 2, whereas H(x) ∈

H

2
(f ), being f any one of the four subfratures in whih F1 and F2 are divided by the

trae. As desribed in [15, 29℄, this regularity is enough to provide the onvergene

orders of Figure 1.6, that are the theoretial ones for H(x)∈H2
(Fi).

Figure 1.7 displays the minimum value of

√
J as a funtion of the meshsize on non

onforming meshes. In the XFEM ase the target minimum of the funtional is di�erent

from zero and, as expeted, its value depends on the meshsize, while this is not the ase

for the standard FEM, sine the minimum of the funtional an vanish independently

of the meshsize.

In Figure 1.8 the exat value of

[[
∂H1

∂ν̂1
S

]]

S
is ompared with the omputed values of

the ontrol variable u1 obtained on the intermediate grids, both with FEM and with

XFEM. The �gure learly shows a very good agreement between all the values. The norm

of the �ux mismath on the trae, i.e. ‖u1 + u2‖
L

2
(S)

, has been omputed with both

approahes, obtaining ‖u1+u2‖
L

2
(S)

≃ 10−16
with FEM and ‖u1+u2‖

L

2
(S)

= 3.1 10−8

with XFEM.



30 Chapter 1

Remark 1.9. The vanishing of the minimum value of the funtional with standard

FEM does not orrespond to a signi�antly better approximation of the global solution,

as we an argue omparing the errors in the solution in Figure 1.6, where we an see that

the errors orresponding to the same meshsize are omparable in the FEM and XFEM

ases, with both L2
and H1

-norms. As seen in Figure 1.8, also the auray of the �uxes

on the trae are omparable. The vanishing minimum value of J for FEM is only related

to a better satis�ability of the mathing onditions between the approximated solutions

on the fratures, and the auray of the overall solution is omparable for XFEM and

FEM.

In Figure 1.9 the behaviour of

√
J during the minimization proess attained by

the gradient method is shown. As expeted the funtional related to XFEM solution

reahes a plateau orresponding to a non vanishing value when one of the stopping

riteria in (1.45) is satis�ed. As shown in Figure 1.9, mesh re�nement an redue the

�nal funtional value.

It is to remark that no e�ort has been spent here for improving onvergene prop-

erties of the minimization proess as our main target here is proving viability of the

approah. Many improvements in the optimization proess are possible; future work

will be devoted to this issue. Nevertheless, despite the number of iterations required by

the gradient method, the omputational ost of eah iteration is small, as it essentially

requires the solution of the state equations on eah frature. This aspet itself makes

the method appealing when parallelization omes into play.

1.5.2 Problem 2

In the seond test problem the proposed method is applied to a DFN omposed by

seven retangular fratures. In Figure 1.10 the intersetions of the fratures with the

plane z = 0 is drawn. All the fratures have z ranging from 0 to 1. In Figure 1.10, Pn,

n = 1, .., 14 denotes the starting and ending points of the intersetions; Fi, i = 1, .., 7

the intersetion of the fratures with z = 0 and Tm, m = 1, .., 11 the intersetions of the

traes Sm with z = 0. The 3D DFN on�guration is shown in Figure 1.11.
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The problem is set as follows:

−∆H = 0, in Ω \ S, (1.47)

H|ΓD
= y +

√
z, on ΓD, (1.48)

∂H

∂ν̂
= 0, on ΓN . (1.49)

where S =
⋃

m=1,...,11 Sm, ΓD is the set of the edges along the z diretion interseting

z = 0 in the points P13, P9, P1, P3, P6, P5 and P7, whereas ΓN is the set of all the

other boundaries of the fratures. The omputing mesh used is depited in Figure 1.11.

We remark that the meshes on the fratures are independently generated with meshsize

δmax = 0.39, without requiring any onformity onstraint along the traes.

The solution is shown on some seleted fratures. In Figure 1.12 the solution on

frature F4 is shown. Here, in order to better display the enrihed numerial solution,

it is plotted, rather than on the atual omputing elements, on sub-elements generated

by splitting the omputing elements along traes.

Figure 1.13 shows, using a olormap, solutions on Fratures F3 and F7. Here, the

mesh depited is the atual omputing mesh. The vertial dashed lines orrespond

to traes. The rightmost dash-dot vertial line is a ommon trae between the two

fratures. Nononformity of meshes is learly shown in the Figure. Finally, in the Table

on the right of Figure 1.12 we report, for eah frature Fi, i = 1, ..., 7, the �ux mismath

and total �ux, omputed as

∑
S∈Si

∫
S
uSi +u

S
j dγ and

∑
S∈Si

∫
S
uSi dγ, respetively. The

overall �ux mismath on the whole DFN is 8.14e-6.

1.6 Conlusions

In this paper we propose a new approah to the Disrete Frature Network sim-

ulation, whih does not need any kind of onformity along the traes for the meshes

introdued on the fratures. The method proposed thus irumvents all the di�ul-

ties typially related to mesh generation proesses of partially or totally onforming

grids. This novel approah is based on a PDE-onstrained optimization problem and

is developed in order to be easily parallelized on massively parallel or GPU-based or

hybrid parallel omputers. The key points whih make the method suitable for a paral-

lel approah are the following: the global solution is obtained through the resolution of

many small loal problems, that require a moderate exhange of data among fratures.
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Some preliminary numerial simulations prove the viability of the approah. A detailed

analysis of the performane of the method on more omplex frature on�gurations is

proposed in [5℄.
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Chapter 2

On simulations of disrete frature

network �ows with an

optimization-based extended �nite

element method

Abstrat Following the approah introdued in [7℄, we onsider the formulation of the

problem of �uid �ow in a system of fratures as a PDE onstrained optimization problem,

with disretization performed using suitable extended �nite elements; the method allows

independent meshes on eah frature, thus ompletely irumventing meshing problems

usually related to the DFN approah. The appliation of the method to disrete frature

networks of medium omplexity is fully analyzed here, aounting for several issues

related to viable and reliable implementations of the method in omplex problems.

2.1 Introdution

In many appliations, suh as water resoures monitoring, ontaminant transport,

oil/gas reovery, e�ient numerial simulations of subsurfae �uid �ow in fratured

porous roks are of inreasing interest. The desription of the phenomena has to or-

retly aount for the intrinsi heterogeneity and diretionality of the rok medium

and the multisale nature of the �ow. In dense frature networks the �ow an be well

modelled as the �ow in a ontinuous porous medium where fratures in�uene the distri-

39
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bution of an equivalent permeability tensor. On the ontrary, in sparse frature networks

�ow properties are mainly determined by the larger fratures, thus Disrete Frature

Network (DFN) models are preferred to more onventional ontinuum models as basis

for the simulations.

A DFN is an assemblage of resembling-fratures planar ellipses or polygons, stohas-

tially generated given probabilisti data on distribution of density, aspet ratio, orien-

tation, size, aperture and hydrologial properties of the medium [13℄. The �uid regime

in a DFN an be onditioned even by the smallest elements, therefore negleting fra-

tures below a spei�ed threshold is not reommended. As a onsequene the number

of generated fratures is frequently high even for a limited size of the domain of in-

terest. Disretization thus often leads to poor meshes with a huge number of nodes.

At the same time, a stohasti approah to the unertainty of the parameters requires

large numbers of simulations so that e�ieny of numerial methods is of paramount

importane for the appliability of DFN-based numerial solutions.

A DFN is a omplex 3D struture. The �rst numerial hallenge is to provide good-

quality onforming meshes where the disretization of frature intersetions (traes) is

the same on all the fratures involved. This is usually ahieved by the introdution of

a huge number of elements, independently of the required auray of the numerial

solution.

In order to redue omputational ost, a possible approah onsists in reduing

the DFNs into systems of 1D pipes that are aligned along the fratures and mutually

onnet the entres of the traes with the surrounding fratures. This approah eases

mesh generation problems and the resulting mesh of pipes still re�ets the topologial

properties of the frature network [8, 23℄. An aurate de�nition of pipe properties is

obtained with a boundary element method in [14℄.

Without resorting to dimensionality redution, in [30℄ a mixed non-onforming �nite

element method on a onforming mesh is proposed. In [21℄, an adaptive approah to the

onforming mesh generation requiring adjustments of the trae spatial olloations is

proposed. Loal modi�ations of the mesh or of the frature network in order to preserve

onformity of the meshes or alignment of meshes along the traes are onsidered in

several works (see e.g. [18, 30℄). In [15℄, a method to generate a good-quality onforming

mesh on the network system is proposed based on the projetion of the disrete 3D

network on the 2D planar fratures in order to remove those onnetions among fratures

whih are di�ult to be meshed. In [25, 26℄, a mixed hybrid mortar method is proposed
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allowing nononformities of the meshes on the fratures, but requiring that the traes

are ontained in the set of the edges of eah frature triangulation. Resorting to mortar

methods the disretization of eah frature an lead to a di�erent disretization of the

traes. Interesting very omplex DFN on�gurations are tested in [12℄.

In the reent work [7℄ the authors have proposed a di�erent approah for the de-

sription of steady-state �ows in a given DFN, whih onsists in the reformulation of

the problem as a PDE onstrained optimization problem. Following this approah, it is

shown that the meshes introdued on eah frature are allowed to be independent of the

meshes on other fratures, and independent of trae number and disposition, thus atu-

ally eliminating any kind of meshing problems related to DFN. The disrete problem is

formulated as an equality onstrained quadrati programming problem. Disretization

on eah frature is performed with the extended �nite element method for approximat-

ing the non smooth behaviour of the solution, whih may present disontinuities in the

�uxes. Here, we further analyze viability of the method proposed in [7℄ by disussing

several issues arising when the method is applied to omplex DFNs. In partiular, we

fully aount for the extended �nite element disretization with the so-alled open in-

terfaes, i.e. traes not ending on frature edges. We also disuss preonditioning issues

related to the numerial solution of the problem. Several numerial results are proposed,

showing the apability of the method in dealing with omplex situations, suh as for

example ritial traes intersetions.

The paper is organized as follows. In Setion 2.2 we brie�y reall the physial model

and the ontinuous optimization problem, and in Setion 2.3 the disrete formulation of

the problem is given. In Setion 2.4 we desribe the basis of extended �nite elements

onsidered herein, with speial attention to the treatment of open interfaes. In Se-

tion 2.5 numerial results are disussed in order to prove viability and reliability of the

method.

2.2 Problem desription

The quantity of interest of the problem we are dealing with is the hydrauli head,

given by H = P +ζ, where P = p/(̺g) is the pressure head, p is the �uid pressure, g

is the gravitational aeleration onstant, ̺ is the �uid density, ζ is the elevation. The

omputation of the hydrauli head in a Disrete Frature Network requires the solution

of di�erential equations on a system of planar polygonal open sets alled fratures,
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denoted by Fi with i ∈ I. Let us introdue on eah Fi a loal tangential oordinate

system x̂i. Despite being planar, their orientations typially di�er so that their union

is a 3D set. Let us denote by Ω the union of the fratures and let ∂Ω be its boundary.

The intersetion of the losure of eah ouple of fratures is either an empty set or a

set of non vanishing segments alled traes, denoted by Sm, m ∈ M. Let S denote the

set of all these traes. Furthermore, let eah frature of the system be endowed with a

hydrauli transmissivity tensor Ki(x̂i).

In the paper the following assumptions are made on the DFN: 1) Ω̄ is a onneted

set; 2) eah trae Sm, m ∈ M, is shared by exatly two polygonal fratures Fi and Fj ,

i 6= j: Sm ⊆ F̄i ∩ F̄j ; 3) on eah frature, the transmissivity tensor Ki(x̂i) is symmetri

and uniformly positive de�nite.

Given a trae Sm, let Fi and Fj be the fratures sharing the trae: the set of indies

i and j is denoted by ISm = {i, j}. For eah frature Fi let us denote by Si the set of

traes shared by Fi with other fratures, and by Ji ⊂ I the set of indies of fratures

sharing one trae with Fi.

While referring the reader to [7℄ for all the details, we sketh here a brief desription

of the approah. Let us split the boundary ∂Ω into two sets ΓD 6= ∅ and ΓN , with

ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅, on whih Dirihlet boundary onditions HD and

Neumann boundary onditions GN are respetively imposed. Let HiD and GiN be the

restrition of HD and GN to ΓiD = ΓD ∩ ∂Fi and ΓiN = ΓN ∩ ∂Fi, respetively. Let us

de�ne ∀i ∈ I

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}
, V D

i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HiD

}
,

and let V ′
i be the dual spae of Vi.

The global hydrauli head H in the whole onneted system Ω is provided by the

solution of the following problems: ∀i ∈ I �nd Hi ∈ V D
i suh that ∀v ∈ Vi

∫

Fi

Ki∇H∇vdΩ =

∫

Fi

qivdΩ+

∫

ΓN∩∂Fi

Gi,Nv|SdΓ +
∑

S∈Si

∫

S

[[
∂Hi

∂ν̂iS

]]

S

v|SdΓ, (2.1)

where

∂Hi

∂ν̂i
S

= (n̂iS)
T
K∇H is the outward o-normal derivative of the hydrauli head,

being n̂iS the unique normal �xed for the trae S on the frature Fi, and the symbol[[
∂Hi

∂ν̂i
S

]]

S
denotes the jump of the o-normal derivative along n̂iS . This jump is indepen-

dent of the orientation of n̂iS .

In equation (2.1) the left hand side models the di�usion of hydrauli head on eah

frature, the �rst term of the right hand side is the external load in eah fature, the
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seond is the term due to the Neumann boundary onditions, whereas the last term

desribes the net �ow of hydrauli head entering the frature at eah trae.

In order to set up a well de�ned problem, the following mathing onditions have to

be added to (2.1):

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , (2.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm . (2.3)

These two additional onditions orrespond to the physial requirement of ontinuity of

the hydrauli head and onservation of hydrauli �uxes aross eah trae Sm, m ∈ M.

Condition (2.2) implies that the hydrauli head H on the whole domain Ω belongs to

the spae

V D = H

1
D

(Ω) =

{
v ∈

∏

i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm , ∀m ∈ M

}
. (2.4)

For simpliity of notation and exposition in the following of this setion we assume

that the traes S ∈ S are disjoint. This assumption an be removed at the ost of a

more omplex and heavy notation. Let us de�ne for eah trae S ∈ S a suitable spae

US
and its dual that we denote by

(
US
)′
. We de�ne similar spaes on all the traes of

frature Fi, ∀i ∈ I and on the full set of traes S:

USi =
∏

S∈Si

US , U =
∏

i∈I

USi .

For eah trae S ommon to Fi and Fj we introdue suitable variables US
i ∈ US

and US
j ∈ US

representing the unknown quantities

[[
∂Hi

∂ν̂i
S

]]

S
and

[[
∂Hj

∂ν̂
j
S

]]

S

, respetively.

Moreover, for eah frature Fi let us denote by

Ui = Π
S∈Si

US
i ∈ USi

the tuple of funtions US
i with S ∈ Si, and by U =Πi∈I Ui ∈ U the tuple of all funtions

US
i with S ∈ Si and i ∈ I, i.e. the 2(#M)-tuple of funtions on all traes in Ω̄. Let us

introdue the following linear bounded operators:

Ai ∈ L(Vi, V ′
i ), 〈AiH

0
i , v〉V ′

i ,Vi
=
(
K∇H0

i ,∇v
)
, H0

i ∈ Vi,

AD
i ∈ L(V D

i , V ′
i ), 〈AD

i H
D
i , v〉V ′

i ,Vi
= (K∇HD

i ,∇v), HD
i ∈ V D

i ,

Bi ∈ L(USi , V ′
i ), 〈BiUi, v〉V ′

i ,Vi
= 〈Ui, v|Si

〉
USi ,USi

′ ,

BΓiN
∈ L(H− 1

2
(ΓiN ), V

′
i ), 〈BΓiN

GiN , v〉V ′
i ,Vi

= 〈GiN , v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)
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the de�nitions holding ∀v ∈ Vi. Further, we introdue the dual operators A∗
i ∈ L(Vi, V ′

i ),

Bi
∗ ∈ L(Vi,USi

′
) and the Riesz isomorphism ΛUSi : USi → USi

′
. Finally, let RiHiD ∈

V D
i be a lifting of Dirihlet boundary ondition HiD. The problem is then learly stated

as follows: ∀i ∈ I �nd Hi = H0
i +RiHiD, with H

0
i ∈ Vi suh that:

AiH
0
i = qi +BiUi +BiNGiN −AD

i RiHiD. (2.5)

2.2.1 Formulation as an optimization problem

The novel approah introdued in [7℄ onsists in replaing the di�erential problems

on the fratures (2.5) ∀i ∈ I, oupled with the mathing onditions (2.2), (2.3), with

a PDE onstrained optimal ontrol problem, in whih the variable U ats as a ontrol

variable; equations (2.5) ∀i ∈ I are the onstraints, and the mathing onditions are

replaed by the task of minimizing a nonnegative funtional. Let us de�ne the spaes

HSi =
∏

S∈Si

HS , H =
∏

i∈I

HSi ,

and the Riesz isomorphism ΛHSi : HSi → HSi
′
. We introdue the following linear

bounded observation operators CS
i and Ci and the dual Ci

∗
:

CS
i ∈ L(Vi,HS), Ci ∈ L(Vi,HSi) = Π

S∈Si

CS
i , Ci

∗ ∈ L(HSi
′
, V ′

i ).

For all i ∈ I, let us denote by Hi(Ui) the solution to (2.5) orresponding to the value

Ui for the ontrol variable. Furthermore, �xed a frature Fi, we denote by ΠS∈Si
US
j

the tuple of ontrol funtions de�ned on the fratures Fj interseting Fi in the traes

S ∈ Si.

Let us now introdue the following di�erentiable funtional J : U → R:

J(U) =
∑

S∈S

JS(U) =
∑

S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)

=
1

2

∑

i∈I

(
|| Π
S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)
||2
HSi

+ ||Ui + Π
S∈Si

US
j ||2USi

)
. (2.6)

The problem of �nding the hydrauli head in the whole domain is restated as the

following optimization problem: �nd U ∈ U solving the problem

minJ(U) subjet to (2.5), ∀i ∈ I. (2.7)
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In [7℄ it is shown that, if US = H

− 1

2
(S) andHS = H

1

2
(S), there exists a unique ontrol

variable U vanishing the funtional J(U) and orrespondingly the unique solution H

satisfying (2.5) ∀i ∈ I is the solution to (2.1)-(2.3), as the vanishing of the two terms of

the funtional J orresponds to the imposition of the mathing onditions (2.2), (2.3)

∀m ∈ M. It is further shown that the optimal ontrol U ∈ U providing the minimum

of the funtional J(U) is haraterized by the following onditions:

(ΛUSi )
−1Bi

∗Pi + Ui + Π
S∈Si

US
j = 0, (2.8)

∀i ∈ I, where the funtions Pi ∈ Vi are the solution of

A∗
iPi = Ci

∗ΛUSi Π
S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)
, in Fi. (2.9)

The omputation of the solution to the problem of interest on the whole DFN may

either be approahed solving problems (2.5) oupled with equations (2.8) and (2.9)

∀i ∈ I, or setting up an iterative proess for solving the optimization problem (2.7).

In the next Setion we will give details onerning omputation of a numerial solution

with these approahes.

Remark 2.1. The assumption of eah trae being shared by exatly two fratures an

be irumvented by rede�ning the funtional as follows. With straightforward extension

to more general ases, we allow three fratures Fi, Fj , Fk to share the same trae S.

Then the orresponding JS(U) term in the de�nition of J(U) is

JS(U) = ||CS
i Hi(Ui)− CS

j Hj(Uj)||2HS + ||CS
i Hi(Ui)− CS

kHk(Uk)||2HS

+||US
i + US

j + US
k ||2US .

2.3 Disretization of the onstrained optimization problem

In this setion, we aount for the numerial solution of the problem, and we start

brie�y skething the derivation of the �nite dimensional ounterpart of problem (2.7).

For the sake of simpliity, in this setion we assume homogeneous Dirihlet boundary

onditions, i.e. HD = 0. All the results an be extended to the general ase HD 6=
0. We desribe our numerial method for the approximation of the solution assuming

US = L

2
(S), HS = L

2
(S), ∀S ∈ S. We remark that with these hoies the assumption

of disonneted traes an be removed [7℄.
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Let us introdue an independent onforming triangulation Tδ,i on eah frature Fi

∀i ∈ I. Let Vδ,i be the �nite dimensional trial and test spaes de�ned on the elements

of Tδ,i and spanned by Lagrangian basis funtions φi,k, k = 1, ..., Ni. The disrete

approximation of Hi on eah frature is de�ned as hi =
∑Ni

k=1 hi,kφi,k, ∀i ∈ I.

Let us onsider the following di�erent numbering for the ontrol funtions US
i , in-

dued by the trae numbering. Being S = Sm a given trae, with ISm = {i, j} and

assuming i < j, we denote by U−
m and by U+

m the ontrol funtions related to the

m-th trae and orresponding to fratures Fi and Fj , respetively. Let us �x a �nite

dimensional subspae of US
for the disrete approximation u⋆m of the ontrol variable

U⋆
m, ⋆ = −,+ and let us introdue basis funtions ψ−

m,k, k = 1, ..., N−
m and ψ+

m,k,

k = 1, ..., N+
m . Then we have, for m ∈ M, ⋆ = −,+, u⋆m =

∑N⋆
m

k=1 u
⋆
m,kψ

⋆
m,k.

With these notations, using L2
-norms in (2.6) and CS

i hi = hi|S , we obtain the

following �nite dimensional form of the funtional J(u):

J(u) =
1

2

∑

i∈I

∑

S∈Si

∫

S

(

Ni∑

k=1

hi,kφi,k|S −
Nj∑

k=1

hj,kφj,k|S)
2 dγ +

1

2

∑

m∈M

∫

S

(

N−
m∑

k=1

u−m,kψ
−
m,k +

N+
m∑

k=1

u+m,kψ
+
m,k)

2 dγ. (2.10)

In view of deriving a ompat form for (2.10), let us introdue vetors hi ∈ R
Ni
,

hi = (hi,1, . . . , hi,Ni
)T , i ∈ I and setting NF =

∑
i∈INi, let h ∈ R

NF
be obtained

onatenating, for i ∈ I, vetors hi. Hene from now on, besides denoting the disrete

solution, hi will also denote the vetor of degrees of freedom. Similarly, let us introdue

the vetors u⋆m ∈ R
N⋆

m
, u⋆m = (u⋆m,1, . . . , u

⋆
m,N⋆

m
)T , m ∈ M, ⋆ = −,+, and setting

NT =
∑

m∈M(N−
m +N+

m) we de�ne u ∈ R
NT

onatenating u−1 , u
+
1 , . . . , u

−
#M

, u+#M
.

For all i ∈ I, S ∈ Si, let us de�ne matries MS
i ∈ R

Ni×Ni
and (for j ∈ Ji) M

S
ij ∈

R
Ni×Nj

as:

(MS
i )kℓ =

∫

S

φi,k|Sφi,ℓ|S dγ, (MS
ij)kℓ =

∫

S

φi,k |Sφj,ℓ|S dγ

and for m ∈ M and ⋆ = −,+ de�ne M⋆
m ∈ R

N⋆
m×N⋆

m
, M±

m ∈ R
N−

m×N+
m
and Mm as:

(M⋆
m)kℓ=

∫

S

ψ⋆
m,kψ

⋆
m,ℓ dγ, (M±

m)kℓ=

∫

S

ψ−
m,kψ

+
m,ℓ dγ, Mm=

(
M−

m M±
m

(M±
m)T M+

m

)

Then, let Gh ∈ R
NF×NF

and Gu ∈ R
NT×NT

be de�ned blokwise as follows:

Gh
ii =

∑

S∈Si

MS
i , i ∈ I Gh

ij = −MS
ij , i ∈ I, j ∈ Ji Gu = diag(M1, . . . ,M#M).
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With these de�nitions at hand, the funtional J(u) in matrix form reads

J(u) =
1

2
hTGhh+

1

2
uTGuu.

Matries Gh
and Gu

are learly symmetri and semi-de�nite.

Now, let us turn our attention to the algebrai ounterparts of operators Ai, Bi in

(2.5): overloading notations, we let Ai and Bi also denote the matries de�ning the

algebrai operators. We set Ai ∈ R
Ni×Ni

and BSm

i ∈ R
Ni×N⋆

m
as

(Ai)kℓ=

∫

Fi

∇φi,ℓ∇φi,k dFi,
(
BSm

i

)
kℓ
=

∫

Sm

φi,k |Sm
ψ⋆
m,ℓ dγ, (2.11)

where, being Sm ⊆ F̄i ∩ F̄j , we take ⋆ = − if i < j or ⋆ = + otherwise. Matries

BSm

i , Sm ∈ Si, are then grouped row-wise to form the matrix Bi ∈ R
Ni×NSi

, with

NSi
=
∑

Sm∈Si
N⋆

m and ⋆ hosen as before, whih ats on a olumn vetor ui obtained

appending the bloks u⋆m in the same order used for BSm

i , as the ation of a suitable

operator Ri : RNT 7→ R
NSi

suh that ui = Riu. Aording to these de�nitions, the

onstraints (2.5) lead to the algebrai equations

Aihi −BiRiu = q̃i, i ∈ I (2.12)

where q̃i aounts for the term qi in (2.5) and the boundary onditions. Denoting

w = (hT , uT )T ∈ R
NF+NT

and de�ning

A = diag(A1, . . . , A#I) ∈ R
NF×NF

, B =




B1R1

.

.

.

B#IR#I


 ∈ R

NF×NT
,

C = (A −B) ∈ R
NF×NF+NT

, G = diag(Gh, Gu), (2.13)

the overall problem reads as the following equality onstrained Quadrati Programming

problem:

min
w

1

2
wTGw, s.t. Cw = q̃. (2.14)

Classial results (see e.g. [22, Theorem 16.2℄) show that, under proper assumptions on

C and G, w∗
is the unique global solution to (2.14) if and only if it is the unique solution

to the following saddle point system:

A =

(
G CT

C 0

)
, A

(
w∗

−p∗

)
=

(
0

q̃

)
(2.15)
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being p∗ the vetor of Lagrange multipliers. In [7℄ the following result, onerning

existene and uniqueness of the solution to the disrete ounterpart of problem (2.7), is

proven.

Theorem 2.2. Let us onsider the disrete formulation (2.14) to the problem of sub-

surfae �ow in a DFN, with G and C de�ned as in (2.13). Then, the solution exists and

is unique and oinides with the solution to (7.22).

The numerial approximation of the hydrauli head an be obtained in a twofold

manner. A possible method onsists in solving the saddle point linear system (7.22).

This approah is viable for DFNs of moderate size: in this ase sparse solvers an

e�iently ompute a solution to (7.22). When very large DFN systems ome into play,

solving the linear system may be a quite demanding task even if very oarse meshes are

used on eah frature, and parallel omputing may beome preferable. In these ases, as

depited in [7℄, a worthwhile approah onsists in using a gradient-based method for the

minimization of (2.14). Indeed, as shown in [7℄, this method allows for the deoupled

solution of loal problems on the fratures, with a moderate exhange of information

among them. This point makes the method appealing for parallelization on massively

parallel omputers and GPU-based omputers, in whih the loal problems on fratures

an be distributed among proessors.

2.4 XFEM Disretization

2.4.1 XFEM desription

The Extended Finite Element Method (XFEM) [3, 20, 11, 4℄ is a �nite element-based

numerial method to approah partial di�erential equations in variational form with non

smooth or disontinuous solutions. XFEM in the ontext of poro-fratured media are

also used in [10℄. The non smooth behaviour of the solution is added to the standard

Finite Element (FE) approximation spae through ustomized enrihment funtions in

order to extend approximation apabilities. By means of the Partition of Unity Method

(PUM) [1℄ the in�uene of the enrihments is loalized in a neighbourhood of irregularity

interfaes. In this way the XFEM allows to reprodue irregularities regardless of the

underlying triangulation.

Let us onsider a problem set on a domain ω ⊂ R
d
, with a weak disontinuity (i.e.

a disontinuity in derivatives) along the manifold S ⊂ ω, S ⊂ R
d−1

, and let Tδ be a
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onforming triangulation on ω, with N el
elements τe ⊂ R

d
, ω̄ =

⋃
1≤e≤Nel τe. Let V

fem
δ

be the standard �nite dimensional trial and test spae de�ned on the elements of Tδ and
spanned by Lagrangian basis funtions φk, k ∈ I . Eah basis funtion φk has ompat

support denoted by ∆k.

If the nonsmooth harater of the solution is a priori known, it is possible to intro-

due it in the FEM disrete spae. Let us assume Φ is a ontinuous bounded funtion

on ω, Φ ∈ H

1
(ω)∩C0(ω̄) that well approximates the behaviour of a funtion h in a

neighbourhood ∆S of S given by the union of some mesh elements τe. It is possible to

build a partition of unity on ∆S based on the standard FE shape funtions to de�ne

new enrihing basis funtions starting from Φ that an be introdued into the FEM

spae, thus giving the enrihed funtional spae:

V

xfem
δ = span

(
{φk}k∈I , {φkΦ}k∈J

)
, (2.16)

where J ⊂ I is the subset of indies of funtions φk used to de�ne the partition of ∆S.

DOFs in J are alled enrihed DOFs (and the orresponding nodes enrihed nodes).

The seletion of the domain ∆S an vary with the spei� appliation of the method,

but is usually given by the union of mesh elements interseted by the interfae S. The

approximate solution hxfem of the problem with the XFEM will be in general:

hxfemδ (x̂) =
∑

k∈I

hxfemk φk(x̂) +
∑

k∈J

axfemk φk(x̂)Φ(x̂), (2.17)

where hxfemk and axfemk are the unknowns related to the standard and enrihing basis

funtions, respetively. The nonsmoothness of the exat solution is now present in the

disrete solution and is reprodued independently of the position of mesh elements.

Sine only a subset of total degrees of freedom is enrihed, elements in Tδ may have a

variable number of enrihed nodes. In partiular, aording to the lassi�ation given

in [17℄ we have standard elements when no nodes are enrihed, reproduing elements if

all nodes are enrihed, and blending elements if only some nodes are enrihed.

The enrihment funtion Φ an be orretly reprodued only in reproduing elements

where the partition of unity is omplete. On the ontrary, in the blending elements

partition of unity is partially established and unwanted terms are introdued in the

approximation, a�eting the onvergene rate of the standard FE [9, 29, 16℄. Moreover

the basis of V

xfem
δ is no longer a Lagrangian basis. For these reasons we will atually

implement the modi�ed version of XFEM with shifted basis funtions, as suggested in
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Closed interface
Open Interface

Figure 2.1: Classi�ation of disontinuity

interfaes

Figure 2.2: Example of funtion behaviour

for near-tip enrihments

[16℄. The enrihment basis funtion φkΦ is replaed by

φk(x̂)Φ̃(x̂) = φk(x̂)R(x̂) (Φ(x̂)− Φ(x̂k)) ,

where R(x̂) =
∑

j∈J φj(x̂) and x̂k are the oordinates of the k-th node. The enrihed

domain is extended inluding blending elements through a rede�nition of the set J as

J̃ =
{
k ∈ I : ∆k ∩ ∆̊Φ 6= ∅

}
, where ∆Φ =

⋃
k∈J ∆k. In this way the approximation a-

pability of the enrihed spae is una�eted in reproduing elements, where R(x̂) = 1, and

depends on the hoie of the enrihment funtion Φ, while the standard FE polynomial

representation of solution an now be obtained in blending elements, restoring optimal

onvergene rates. The shift restores Lagrangian property of the basis funtions making

easier the imposition of Dirihlet boundary onditions and graphial representation of

the results.

The generalization to multiple enrihments is straightforward. In partiular we re-

mark that XFEM enjoys and additivity property with respet to the interfaes: inde-

pendently of traes disposition, the set of enrihing funtions with multiple interfaes is

the union of the enrihments introdued by eah interfae. A omprehensive review of

the XFEM method, inluding implementation details, an be found in [17℄.

2.4.2 Enrihment funtions seletion

We now fous on the de�nition of the enrihments used in the appliation of the

XFEM to DFNs. Realling de�nitions introdued in Setion 2.2, on eah frature Fi
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the exat solutions Hi to (2.5) may have a jump of �uxes aross the traes in Si. The

XFEM approah allows the triangulation to be set on eah frature independently of

the disposition and number of the traes, thus atually eliminating meshing problems

related to DFNs. Let us �x a frature F ⊂ R
2
and let MF ⊂ M be the subset of indies

orresponding to traes on F .

The seletion of the enrihment funtions is related to the irregularity to be repro-

dued and to the type of interfaes. Here we deal with solutions with disontinuous

gradient (weak disontinuities) and di�erent enrihment funtions need to be employed

aording to the loation of the traes (interfaes) in the domain, with a distintion

between losed and open interfaes (see Figure 2.1). In order to desribe the enrihment

funtions, let us introdue, form ∈ MF , the funtion dm(x) given by the signed distane

from Sm [29, 4℄: for x̂ ∈ F , dm(x̂) = ‖x̄− x̂‖sign(n̂Sm ·(x̄− x̂)), where x̄ is the projetion
of x̂ on Sm and n̂Sm is the �xed unit normal vetor to Sm.

For a losed interfae we use the enrihment funtion Ψm
de�ned as Ψm(x̂) =

|dm(x̂)|, [4℄, that is a ontinuous funtion with disontinuous �rst order derivatives

aross Sm. This introdues the required nonsmooth behaviour in the approximation.

The enrihment is loalized in a neighbourhood of Sm de�ned by the set of DOF

Jm
Ψ = {k ∈ I : ∆k ∩ Sm 6= ∅}.
On the ontrary, if Sm is an open interfae, di�erent enrihment funtions are needed

to reprodue the behaviour of the solution lose to the extrema of the interfae and away

from the extrema

{
s1, s2

}
= σm. Away from the extrema, the nonsmooth behaviour of

the solution is similar to the ase of losed interfaes and the same funtion Ψm
is used,

being the set Jm
Ψ de�ned as

{
k ∈ I : ∆k ∩ Sm 6= ∅, ∆k ∩ sℓ = ∅

}
, ∀sℓ ∈ σm. Other

enrihment funtions are introdued to desribe near-tip behaviour of the solution; we

adopt here the funtions suggested in [4℄ and de�ned as follows. Let r be the signed

distane between the urrent point and trae tip; furthermore, let us onsider for eah

tip a referene system entered into trae tip, with the x-axis aligned to the trae and

oriented in suh a way that the trae lies on the negative side, and let θ ∈ (−π, π) be
the polar angle of x̂ in this system. Then, the enrihing funtions are

Θm
sℓ
(x̂) ∈

{
r cos

θ

2
, r2 cos

θ

2
,
√
r cos

θ

2

}
, sℓ ∈ σm.

Funtions Θm
sℓj

(x̂) are ontinuous and usp-like on Sm, and their behaviour around trae

tips is a ombination of

{√
r, r, r2

}
, as shown for example in Figure 2.2, in whih we

plot the funtion r cos θ/2. The set of DOFs subjet to tip enrihments is given by
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Jm
Θsℓ

=
{
k ∈ I : ∆k ∩ sℓ 6= ∅

}
, ∀sℓ ∈ σm. In order to prevent blending elements related

problems, the enrihment funtions here desribed are used as basis for the modi�ed

XFEM version [16℄ mentioned in the previous subsetion.

With all the enrihments here desribed, the number of DOFs on eah frature Fi

is Ni = # I +
∑

m∈M

# J̃m
+3

∑

m∈M

∑

sℓ∈σm

# J̃m

Θsℓ, where J̃m
and J̃m

Θsℓ denote the sets of

DOFs for the modi�ed version.

The numerial integration of singular funtions was performed on sub-domains not

rossing the traes [20, 4℄. A Gauss quadrature rule was used with speial are for

the integration of gradients of near-tip enrihment funtions, where a onentration of

integration nodes around trae tip is reommended to orretly evaluate the singularities

[19℄.

2.5 Numerial results

The numerial simulations reported in this Setion aim at showing the viability of

the approah proposed in [7℄ in solving problems on omplex networks. In Subsetion

2.5.1 a problem with open interfaes is onsidered, and numerial onvergene of the

method is analyzed. In Subsetion 2.5.2 a ritial situation is introdued, in whih three

traes are very lose eah other, almost parallel and interseting eah other. The great

deal of �exibility in mesh generation allowed by our approah is shown. In Subsetion

2.5.3 some more omplex DFNs are onsidered. In Subsetion 2.5.4 preonditioning

issues for system (7.22) are analyzed. Finally, in 2.5.5 we show how the method an

deal with broadly ranging transmissivity values.

All the simulations are performed with triangular meshes and �rst order �nite ele-

ments. The problems have been solved through the optimization approah introdued in

[7℄, in onjuntion with extended �nite elements, and mesh elements arbitrarily plaed

with respet to the traes. We highlight that sine the triangulations on a ouple of in-

terseting fratures indue di�erent disretizations on the ommon trae, the minimum

of the disrete funtional (2.10) is di�erent from zero, that is the theoretial minimum

of the funtional in the ontinuous ase.

The problems have been solved in a twofold manner: either solving the whole system

(7.22) via an iterative method, or applying the steepest desent method to problem

(2.14) (Algorithm 4.5 in [7℄). Conerning the �rst ase, the matrix A in (7.22) is
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Figure 2.3: Problem 1: Domain desription with mesh and solution h (left) and ontrol

variable along trae (right)

symmetri but inde�nite, as shown in lassi literature on saddle point problems (see

e.g. [5℄). Furthermore, in real appliations A is of huge dimensions but highly sparse,

hene an iterative method with matrix free approah appears to be a suitable hoie.

Among iterative methods for solving linear systems, SYMMLQ [24℄ is reommended for

symmetri inde�nite systems, and requires a symmetri positive de�nite preonditioner.

This is the hoie we adopted here, using the MATLAB built-in SYMMLQ funtion. The

issue of preonditioning SYMMLQ on DFN appliations is addressed in Subsetion 2.5.4.

Nevertheless, when large DFNs are onsidered, even assembling and storing the

system (7.22) may be a quite demanding task. The steepest desent method suggested

in [7℄ may help in this respet as only the deoupled solution of loal problems on

fratures are required at eah step, and with this approah a large problem an be

dealt with also on a simple PC without requiring exessive memory resoures. When

this algorithm is used, the loal problems (2.12) are typially of small dimension, so

that a diret solver an be e�etively used to ompute these solutions. We used in our

experiments the MATLAB built in diret solver. Computations are always started from

u0 = 0.
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2.5.1 Behaviour of the method with open interfaes

The �rst problem proposed is designed in order to test the behaviour of the method

with near tip-enrihments. Let us de�ne the domain Ω = F1 ∪ F2, with

F1 =
{
(x, y, z) ∈ R

3 : −1 < x < 1, −1 < y < 1, z = 0
}
,

F2 =
{
(x, y, z) ∈ R

3 : −1 < x < 0, y = 0, −1 < z < 1
}
.

The trae S ends in the interior of F1 and is an open interfae. Let us de�ne Hex(x, y, z)

in Ω as:

Hex(x, y, z) =

{
(x2 − 1)(y2 − 1)(x2 + y2) cos

(
1
2 arctan2(x, y)

)
on F1,

−(z2 − 1)(x2 − 1)(z2 + x2) cos
(
1
2 arctan2(z, x)

)
on F2,

where arctan2(x, y) is the four-quadrant inverse tangent, giving the angle between the

positive x-axis and point (x, y), and di�ers from the usual one-argument inverse tangent

arctan(·) for plaing the angle in the orret quadrant. The funtion H is the solution

of the system:

−∆H = −∆Hex, in Ω \ S,
H = 0, on ∂F1 ∪ ∂F2 \ Γ,

H =

√
2

2
(z2 − z4), on Γ,

where Γ is the boundary of F2 parallel to the z-axis and interseting the x-axis in

x = −1. In Figure 2.3 we report on the left the geometry of the problem and the non

onforming mesh used with XFEM (δmax = 0.1). On the right, we report the ontrol

variable u1 omputed, ompared with the exat funtion. The �ux mismath omputed

along the trae is ‖u1 + u2‖
L

2
(S)

= 2.8 10−4
. The results obtained with XFEM are

shown in Figure 2.4. The problem has also been solved with standard �nite elements

on meshes onforming to the trae. The rates of onvergene in both ases, reported in

Figure 2.5 (left), are optimal. As expeted, the urves relative to the solution obtained

with the XFEM lie below the urves orresponding to standard �nite elements. In fat,

the basis funtion r2 cos θ/2 introdued for trae tip behaves essentially as Hex
lose to

the enter of F1, where tip is loated, thus loally reduing the error with respet to

standard FE. Minima of

√
J are reported on the right plot of Figure 2.5, showing that

grid re�nement pushes these minima towards zero.
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Table 2.1: Number of DOFs for frature F1 for di�erent solution strategies

Amax XFEM non-�tting FEM �tting FEM

0.05 48 12 655

0.0225 85 34 672

0.01 135 71 715

0.0025 398 311 910

0.0004 486 396 1017
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Figure 2.6: Problem 2: meshes on F1. Left: oarse grid; right: �ne grid.
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Figure 2.7: Problem 2: Solution on oarse grid. Left: XFEM; right: FEM
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2.5.2 Critial traes disposition and DOFs investigation

In this subsetion we onsider a problem with ritial traes disposition. We onsider

four fratures: F1, loated on the x− y plane of a 3D referene system; the other three

fratures are orthogonal to the x− y plane and generate with F1 three traes very lose

to eah other and �almost� parallel, i.e. the angles between traes are very small, ranging

from 0.8 (sexagesimal) degrees up to 1.8 degrees. The three traes are open interfaes.

The frature F1 and the three traes are represented in Figure 2.6, along with examples

of mesh used on F1. On the right plot, also a detail of the right extremities of the traes

is reported. The oordinates of traes extremities are (xb1, y
b
1) = (0.4, 0.5), (xe1, y

e
1) =

(0.6, 0.5), (xb2, y
b
2) = (0.398, 0.5), (xe2, y

e
2) = (0.602, 0.503), (xb3, y

b
3) = (0.402, 0.501),

(xe3, y
e
3) = (0.598, 0.498).

In Table 2.1 we report, for frature F1, the number of degrees of freedom obtained

meshing the frature for the following approahes: our optimization approah in on-

juntion with XFEM, hene without �tting the mesh to the traes; the same optimiza-

tion approah, on the same mesh, with standard FEM basis funtions (hene without

enrihing basis funtions); standard FEM on a mesh �tting the traes. We remark that

in this latter ase the mesh has been generated only on F1 and is only onstrained to

�t trae disposition; if also the mesh on the other three fratures were generated, and

onformity on all the DFN were required, the number of degrees of freedom might be

possibly even larger. In all three ases the meshes have been obtained with the software

Triangle [28℄, requiring a good quality mesh (−q option in Triangle) and imposing a

given maximum element area Amax, reported in Table 2.1. Comparing �rst and seond

olumn of the table, it is lear that, when the same mesh is onsidered, XFEM requires

a larger number of DOFs than FEM, with a more signi�ant perentage on the oarser

meshes, sine a larger fration of elements are subjet to enrihment. Under grid re�ne-

ment, the number of elements enrihed inreases, but the perentage dereases, and the

relative di�erene in DOFs between the two approahes beomes smaller. As shown by

the last olumn, the number of DOFs introdued with a regular, �tting mesh, is in this

ase muh higher then the previous ones, thus showing how e�etive is our approah

in reduing the number of DOFs with respet to a onforming approah. Besides, we

stress that non �tting meshes are produed without any kind of knowledge about traes

disposition, thus easily obtained.

A problem has been introdued on this DFN as follows: −∆H = 0 in Ω\S; on F1 we
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Figure 2.11: Problem 6F: detail of �ne

mesh
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Figure 2.12: Problem 6F: solution on F2

with �ne mesh

set homogeneous Dirihlet onditions on frature edges (almost) parallel to the traes,

and homogeneous Neumann ondition on the other sides; on fratures Fi, i = 2, 3, 4, we

set H = 1 on the top edge, and homogeneous Neumann onditions on the other sides.

The problem has been solved with the �rst two approahes mentioned before (XFEM

and FEM on the same mesh, with our optimization approah). A oarse (Amax = 0.05)

and a �ne (Amax = 0.0025) mesh have been used, and are depited in Figure 2.6. The

numerial results obtained on the oarse and �ne meshes are reported in Figures 2.7 and

2.8, respetively. The XFEM solutions are plotted on sub-elements generated by utting

XFEM elements along traes. Finally, in Figure 2.9 we report the values of

√
J versus the

number of iterations of the steepest desent method using both FEM and XFEM on the

oarse mesh. It an be seen that the larger number of DOFs introdued by enrihments,

and the larger number of iterations required by XFEM, are ounterbalaned by the

higher quality of the solution.

2.5.3 DFN systems simulations

In this subsetion we onsider systems of fratures of inreasing omplexity. Frature

transmissivities Ki are assumed onstant on eah frature but di�erent from frature to

frature.

First, we onsider the DFN on�guration depited in Figure 2.10: the system is

omposed by six fratures. Some of the traes generated do interset eah other. A

detail of the mesh, presented in Figure 2.11, highlights non onformity of the mesh.
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Figure 2.13: Problem 6F: solution on F6 with oarse (left) and �ne (right) mesh
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Figure 2.17: Problem 11F: geometry and

a viable oarse mesh (δmax = 1)
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ture F6 (traes numbering is global)
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Figure 2.19: Problem 7F: Solution hi on

the traes of frature F6 and solutions

{hj} on the fratures interseting F6 in its
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Figure 2.20: Problem 7F: Solution ui on

the traes of frature F6 and solutions

{−uj} on the fratures interseting F6 in

its traes

0
2

4
6

8
10

0

1

2

3

4

5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 S = 12
 S = 17

 S = 2

X

 S = 15
 S = 6

 S = 20
 S = 21

Y

Figure 2.21: Problem 11F: Solution on

frature F6 (traes numbering is global)
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Figure 2.22: Problem 11F: Solution hi

on the traes of frature F6 and solutions

{hj} on the fratures interseting F6 in its

traes
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Figure 2.23: Problem 11F: Solution ui

on the traes of frature F6 and solutions

{−uj} on the fratures interseting F6 in

its traes

Table 2.2: Problem 11F: Frature �ux unbalane and total �uxes (δmax = 0.16)

�ux unbalane total �ux �ux unbalane total �ux

F1 -9.69e-7 1.44 F7 -1.38e-6 0.50

F2 -1.98e-6 4.72 F8 -1.98e-6 -14.41

F3 2.02e-7 -17.10 F9 2.19e-6 9.06

F4 -1.07e-6 2.99 F10 3.61e-6 -4.17

F5 -9.81e-7 7.20 F11 3.87e-6 2.88

F6 -2.51e-6 6.87
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Figure 2.24: Problem 11F: relative onti-

nuity mismath and �ux unbalane
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Figure 2.26: Problem 50F: Solution hi on

the traes of frature F50 and solutions

{hj} on the fratures interseting F50 in

its traes
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Figure 2.27: Problem 50F: Solution ui on

the traes of frature F50 and solutions

{−uj} on the fratures interseting F50 in

its traes

The numerial solution omputed on frature F2 is reported in Figure 2.12, and is rep-

resented with respet to a loal tangential referene system (X,Y ). This onvention also

applies from now on to similar plots of the solutions. The �gure shows that interseting

traes are easily handled by our approah. In partiular, we see in Figure 2.12 that the

disontinuities in the �ux along the traes are learly shown. In Figure 2.13 we report

the solution omputed on frature F6 with a oarse and a �ne mesh (δmax = 0.77 and

δmax = 0.22, respetively), showing the behaviour of the solution lose to interseting

traes. The solutions are plotted on sub-elements obtained splitting XFEM elements

along traes.

Then, the following on�gurations are onsidered. In these problems the referene

system for R
3
is a right-handed orthogonal system oriented suh that the x − y plane

lies on the page plane, and fratures are parallel to z axis.

7F: The domain is omposed of 7 fratures and 11 traes, as shown in Figure 2.14.

Fratures range from z = 0 to z = 5. All the traes ompletely ross eah frature,

thus tip-enrihments are not used.

11F: The domain is omposed of 11 fratures and 26 traes, as shown in Figure 2.15.

The frature in dashed line ranges from z = 0 to z = 2.5, while all other fratures

range from z = 0 to z = 5, thus in this ase tip-enrihment funtions are employed,

sine some traes end inside the domain.
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50F: In this last ase the domain is omposed of 50 fratures and 153 traes as skethed

in Figure 2.16. All fratures in ontinuous lines range between z = 0 and z = 3,

while fratures drawn with dashed lines range from z = 0 to z = 1.5. Also in this

ase tip-enrihment funtions are employed.

Boundary onditions are set in a similar fashion in all ases. Homogeneous Dirihlet

boundary onditions are set on ΓD = ∂Ω ∩ {z = 0}, while ΓN = ∂Ω \ ΓD. A di�erent

onstant-value of Neumann boundary ondition is imposed on frature edges belonging

to ΓN and marked with a plain blak dot in the �gures showing domain on�gurations.

Homogeneous Neumann boundary onditions are plaed on the other frature edges in

ΓN . In all ases di�erent (onstant) values of K are randomly taken on eah frature,

approximately ranging from 10−1
to 102. The geometry of the DFN and a mesh example

are reported in Figure 2.17 for the ase 11F. In Figures 2.18-2.23 and 2.25-2.27 we

report for eah system onsidered and for a seleted frature Fi: i) the solution hi

on the frature; ii) the restrition on the traes of hi and of the solution hj obtained

on the frature Fj whih generates the trae through its intersetion with Fi; iii) the

ontrol variables ui and −uj . All the results here reported are obtained with a grid

parameter δmax = 0.16. As shown in partiular in the 2D plots, the omputed numerial

solution well approximates ontinuity and �ux onservation (2.2)-(2.3). Fousing on

the intermediate 11F ase, in Figure 2.24 we plot, for eah trae, the L2
-norm of the

di�erene of the hydrauli head on interseting fratures, ||hi|S − hj |S||, relative to the

average L2
-norm of h on the trae, hav = 1/2

(
||hi|S||+ ||hj |S ||

)
(triangular markers),

and in square markers �ux unbalane at traes, ||ui + uj||, relative to the average �ux

uav = 1/2 (||ui||+ ||uj ||). It an be seen that the relative mismathes in �ux onservation

and head ontinuity are small and roughly of the same order. Furthermore, in Table 2.2

we report, again for problem 11F, the �ux unbalane and the total �ux on eah frature,

whih are omputed on Fi, i = 1, ..., 11, as
∑

S∈Si

∫
S
uSi + uSj dγ and

∑
S∈Si

∫
S
uSi dγ,

respetively. The sum of the �ux unbalanes on all the DFN is -5.0114e-7, and, learly,

the sum of the total �uxes on the fratures exatly math this value. It an be seen

from the table that �ux unbalane on the fratures is quite small, being six orders of

magnitude below the respetive total �ux.
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Table 2.3: System matries data. Dim: matrix dimension, NCond: matrix ondition num-

ber, Iter: iterative solver number of iterations, Relres: solution relative residual

Problem Dim NCond SYMMLQ Iter Relres Grid Prameter

S1 8324 1.9 · 106 3000 1.75 · 10−1 0.1

S2 15067 9.0 · 109 3000 1.25 · 10−1 0.1

7F 18261 1.3 · 109 3000 1 0.16

11F 32888 1.7 · 1010 3000 1 0.16

50F 69476 9.3 · 109 3000 1 0.22

2.5.4 Preonditioning

The hoie of a good preonditioner for SYMMLQ is a ruial task as the linear

systems arising from the disrete DFN-like problems are ill-onditioned even for the

smaller problems onsidered, and onditioning worsens both if grid parameter is redued

and if the number of fratures inreases. In Table 2.3 we report the data related to

the onditioning of the system for various problems onsidered, along with the results

obtained while attempting to solve the non preonditioned linear system with SYMMLQ.

Problems 7F, 11F, 50F refer to the examples shown in Subsetion 2.5.3 while Problems

S1 and S2 are a modi�ed version of Problems 7F, 11F respetively. With referene

to Figure 2.14 and Figure 2.15 z-quotes are redued in Problems S1 and S2 to z = 1

for the fratures represented with solid lines and to z = 0.5 for the frature in dashed

line. Di�erent Dirihlet boundary onditions are set on frature edges in the z-diretion

marked with a blak dot, while homogeneous Dirihlet boundary onditions are plaed

on the remaining edges. Finally a onstant value K = 1 is presribed to all the fratures.

These modi�ed problems yield smaller linear systems. The data in Table 2.3 show that

the iterative solver never sueeded in reahing the required exit tolerane tol = 10−6

within the maximum number of iterations allowed (maxit = 3000).

In order to preondition the system, we follow here the approah desribed in [27℄,

in whih a blok triangular preonditioner is suggested for linear systems of saddle point

type arising from general QP problems. In detail, for a saddle point problem of the form

(7.22), the following preonditioner is suggested:

P =

(
G+ CTW−1C kCT

0 W

)
(2.18)
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where k is a salar and W is a NF × NF
symmetri positive de�nite weight matrix.

A suitable hoie for k and W suggested in [27℄ is k = 0 and W = γI where I is the

identity matrix and γ > 0 is a given onstant whih should provide an augmenting

term CTW−1C not too small in omparison with G. We remark that the hoie k = 0

yields a blok diagonal symmetri preonditioner, hene suitable for the use along with

SYMMLQ solver.

The preonditioner (2.18) is introdued in [27℄ in the ontext of interior point meth-

ods for optimization problems, whih expeially in the ase of inexat methods [2℄ heavily

rely on iterative methods and hene on good preonditioners. In the ase of interior point

methods, at eah outer iteration a linear system with a struture similar to (7.22) has to

be solved, with the blok G being typially more and more ill-onditioned as the solu-

tion is approahed. In [27℄, an adaptive hoie of γ along outer iterations appears to be

an e�etive hoie: when used in onjuntion with MINRES solver, an e�etive hoie

is γ = 1/max(G) for linear programming problems, and for quadrati programming

problems the hoie suggested is given by γ = ‖C‖2/‖G‖.
Sine here we deal with a di�erent ontext and the blok G is not neessarily the

major soure of ill-onditioning, a preliminary investigation has been performed on

Problems S1, S2, 7F, 11F, 50F in order to study e�etiveness of the preonditioner in

our appliations, and, possibly, identify a suitable value for the parameter γ. A broad

range of values for γ has been onsidered, ranging between 10−9
and 300, whih roughly

orresponds to the optimal value ‖C‖2/‖G‖ suggested in [27℄ applied to problems S1

and S2 (for problems 7F,11F,50F this value orresponds to ≈ 7 ·105). Exit tolerane for
iterative solver is now set to tol = 10−12

and the maximum number of iterations is set

to maxit = 3000. We point out that the implementation of SYMMLQ that we used for

solving the system Ax = q, performs the hek on the exit tolerane on the unpreondi-

tioned relative residual ‖q−Ax‖/‖q‖ even if the linear system is preonditioned. Results

of this preliminary investigation are reported in Figures 2.28 and 2.29. In partiular, in

Figure 2.28 we report the number of iterations required by SYMMLQ for several values

of γ. As shown in the Figure, in all problems onsidered for γ small enough the iterative

solver sueeded in satisfying the stopping riterion within a very moderate number of

iterations. The value γ = 10−7
appears to ensure the best performane in the preondi-

tioner, for all the onsidered problems, independently of the number of fratures, of the

number of unknowns, and of the boundary onditions. Indeed, Figure 2.29 shows that

for optimal γ-values the ondition number of the preonditioned linear system reahes
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Figure 2.28: SYMMLQ number of iterations versus γ

very low values, and matrix eigenvalues luster around the values {−1, 1}.

2.5.5 Large variation of K values

In previous omputations we allowed a di�erent transmissivity value Ki on eah

frature Fi, i ∈ I (assuming for simpliity Ki onstant on the frature). In real ap-

pliations, large variations in the (typially very small) values of Ki may our, from

frature to frature, possibly spanning several orders of magnitude. This may orre-

spondingly ause a large variation in the orders of magnitude of U , whih, representing

the o-normal derivative nTK∇H, may largely di�er from those of H, making the fun-

tional J less sensitive to variation in U . In order to deal with this situation, a possible

approah onsists in properly weighting the terms ‖US
i +US

j ‖ in the funtional, allowing

the following modi�ation to J :

J(U) =
∑

S∈S

JS(U) =
∑

S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS +

1

(KS
min)

α
||US

i + US
j ||2US

)

where KS
min = min {Ki, Kj} and e.g. α = 1, 2. The weights introdued help in balan-

ing the ontribution of the various terms of the ost funtional, giving more relevane

to �ux unbalane when large variations of transmissivity our at interseting fratures.

The following model problem has been used to show the e�etiveness of this exten-

sion of the method, here applied with α = 1. Problem domain is shown in the left of
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Figure 2.29: Preonditioned system: ondition number (left) and eigenvalues (right) versus

γ.

Figure 2.30, along with frature and trae numbering. Frature F1 arries a onstant

value Dirihelet boundary ondition h = 10 on the top border along the y-axis, while

frature F3 has a Dirihelet boundary ondition h = 3 on the bottom border parallel

to the y-axis. Fratures F2 and F4 have a onstant value h = 1 Dirihelet boundary

ondition on the left border parallel to the y-axis. An homogeneous Neumann boundary

ondition is presribed on the remaining borders of all fratures. Four di�erent simu-

lations are performed with di�erent sets of frature transmissivity values as reported

in the right of Figure 2.30. It was noted that, with these broad variations of K, the

orretion helped in obtaining the solution, as we experiened di�ulties in onvergene

of the steepest desent method with the non-modi�ed funtional. Results onerning

hydrauli head mismath at traes and �ux unbalane are olleted in Figures 2.31-2.32.

In Figure 2.31 the L2(S)-norm of the di�erene of the hydrauli head on interseting

fratures Eh = ||hi|S − hj |S|| is reported with solid markers for eah trae, along with

the average L2(S)-norm of h, hav = 1/2
(
||hi|S ||+ ||hj |S||

)
(in empty markers), in order

to ompare the mismath of h at the intersetions in relation with the order of mag-

nitude of the solution. Similarly in Figure 2.32 we show �ux unbalane at traes in

solid markers, Eu = ||ui+uj||, with the average �ux uav = 1/2 (||ui||+ ||uj ||), in empty

markers. It is notied that the hydrauli head mismath on traes and �ux unbalane

are usually orders of magnitude lower than the hydrauli head and �ux, respetively,

also for frature transmissivities di�ering for six orders of magnitude.
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Figure 2.30: Domain desription and frature transmissivity values
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2.6 Conlusions

In this paper we have further analyzed the viability in omplex systems of a novel

method introdued in [7℄ for the problem of subsurfae �ow in a system of fratures,

whih onsists in the reformulation of the problem as a PDE onstrained optimization

problem. Independent meshing proesses have been used on the fratures, generating

grids whih are independent of the mesh on other fratures and of trae number and

disposition. This is a ruial point sine one of major di�ulties in the DFN approah is

typially the generation of a trae-mathing mesh. The disussion and the experiments

here reported show e�etiveness of the method in providing good approximation of the

solution in omplex DFNs.

In future works, more realisti DFN on�gurations will be investigated. A parallel

implementation exploiting the independene of the problems on the sub-fratures is also

envisaged. Moreover, we will investigate also the appliability of the method to non

steady-state ase in onjuntion with loal time adaptive strategies as in [6℄.
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Chapter 3

An optimization approah for large

sale simulations of disrete frature

network �ows

Abstrat In reent papers [7, 6℄ the authors introdued a new method for simulating

subsurfae �ow in a system of fratures based on a PDE-onstrained optimization re-

formulation, removing all di�ulties related to mesh generation and providing an easily

parallel approah to the problem. In this paper we further improve the method remov-

ing the onstraint of having on eah frature a non empty portion of the boundary with

Dirihlet boundary onditions. This way, Dirihelet boundary onditions are presribed

only on a possibly small portion of DFN boundary. The proposed generalization of

the method in [7, 6℄ relies on a modi�ed de�nition of ontrol variables ensuring the

non-singularity of the operator on eah frature. A onjugate gradient method is also

introdued in order to speed up the minimization proess.

3.1 Introdution

E�ient numerial simulation of underground �ow is of great interest in a large

variety of pratial appliations, as for example enhaned oil/gas reovery, pollutant

perolation and di�usion in aquifers, or arbon dioxide storage. The underground �uid

�ow is a multi-sale heterogeneous phenomenon, ourring in omplex geologial on-

�gurations usually haraterized by networks of fratures surrounded by a porous rok

75
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matrix. The Disrete Frature Network (DFN) approah models underground systems

of fratures as 3D networks of interseting disrete planar fratures. Di�usive phenom-

ena in this system of fratures are governed by the Dary law. At frature intersetions,

alled traes, mass balane and pressure ontinuity are preserved. The geologial har-

ateristis of the fratures, suh as size, orientation, aspet ratio, density, permeability,

are usually determined relying on stohasti data [10℄, and only probability distribution

of data are usually available for a spei� geologial site. A huge number of numerial

simulations is then neessary in order to perform sensitivity analysis to the variability

of the involved parameters. On the other hand, DFN simulations are very demanding

from a omputational point of view. Problem size is usually huge, involving a very large

number of fratures. Moreover, for intriate frature geometries, the generation of a

good quality �nite element triangulation onforming to the traes usually requires the

introdution of many unknowns on eah frature, independently of the quality required

for the numerial solution.

Many approahes are suggested in literature to irumvent these di�ulties. A

method based on a onforming mesh with mixed non-onforming �nite elements is pro-

posed in [21℄, while in other ases modi�ations of the geometry or of the mesh are

introdued in order to preserve onformity and ahieve a good quality mesh, suh as in

[14, 21℄ or in [12℄. A di�erent approah is suggested in [17℄, where the solution in the

fratures is expressed as a funtion of the solution at the intersetions. In other works

it is suggested to rely on mortar methods to ease meshing proedure, as for example

in [19, 20℄: with this approah the mesh onformity onstraint is relaxed but frature

meshes have to be aligned along the traes. In [8, 18, 11℄ the DFN is redued into a

system of mono-dimensional pipes onneting the traes with the surrounding fratures

both preserving frature topology and mitigating meshing related problems.

The present work further develops the approah introdued in [7, 6℄, in whih the

problem of the omputation of the hydrauli head in a DFN is reformulated as a PDE-

onstrained optimization problem. The overall problem is split in a set of several inde-

pendent sub-problems on eah frature of the system, oupled by the minimization of a

proper funtional. The use of Extended Finite Elements allows to apture the orret

behaviour of the solution along traes even if grids are not onforming along frature

intersetions and traes arbitrarily ut mesh elements. This way the meshes may be

generated on eah frature in a ompletely independent way, disregarding frature in-

tersetions and thus eliminating meshing di�ulties.
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Despite being appliable to very general DFN on�gurations, the formulation of the

problem in the over-mentioned approah requires a non empty portion of Dirihelet

boundary on eah frature of the system. In the present work a modi�ation of the

ontrol variable and of the ost funtional involved in the optimization problem is intro-

dued, eliminating this onstraint and allowing to presribe Dirihelet boundary ondi-

tions only on (portion of) boundaries of a � possibly very small � subset of fratures. The

use of a onjugate gradient method for the minimization proess is also desribed. The

behaviour of the method on fairly omplex networks is shown through several numerial

experiments.

The paper is organized as follows. In Setion 3.2 we reall the physial model and the

mathematial statement of the ontinuous problem introdued in [7, 6℄. In Setion 3.3

the PDE-onstrained optimization problem is desribed along with the onjugate gra-

dient algorithm used in the minimization proess. Appliation of XFEM ideas to the

DFN ontext is brie�y aounted for in Setion 3.4. In Setion 3.5 we introdue the

disrete version of the algorithm. Numerial experiments showing e�etiveness of the

method are reported and ommented in Setion 3.6.

3.2 Desription of the problem

3.2.1 Problem formulation

Our target is the omputation of the hydrauli head H = P +ζ (being P = p/(̺g)

the pressure head, p the �uid pressure, g the gravitational aeleration onstant, ̺ the

�uid density, ζ the elevation) in a DFN given by the union of a set of fratures. Let us

model eah frature as an open planar polygonal set, Fi, with index i varying in a set

I. Let us also introdue on eah frature a 2D loal oordinate system x̂i. Let Ω be the

3D set

Ω =
⋃

i∈I

Fi,

and ∂Ω the boundary of Ω, split as usual in a set ΓD 6= ∅ with Dirihlet boundary

onditions and a set ΓN with Neumann boundary onditions, suh that ΓD ∪ ΓN = ∂Ω

and ΓD ∩ ΓN = ∅.
Note that the intersetion of the losure of eah ouple of fratures is either an

empty set or a set of non vanishing segments alled traes, denoted by Sm, with index
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m varying in an index set M with ardinality ♯M. For eah frature Fi, Si is the set of

traes shared by Fi and other fratures while S indiates the set of all the traes.

In the paper the following is assumed on the DFN: 1) Ω̄ is a onneted set; 2) eah

trae Sm is shared by exatly two polygonal fratures Fi and Fj , i 6= j, suh that

Sm ⊆ F̄i∩ F̄j . The set of the two indies i and j of the fratures Fi and Fj sharing trae

Sm is denoted by ISm = {i, j}, while for all i ∈ I, the subset Ji ⊂ I ontains indies of

fratures with a non-empty intersetion with Fi.

While referring the reader to [7℄ for more details, here we brie�y reall the variational

formulation of the problem. Let us de�ne ∀i ∈ I the following funtional spaes:

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}

and V ′
i their dual spaes. The hydrauli head Hi in eah frature belongs to the spae

V D
i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HD
i

}
,

where HD
i is the restrition of the Dirihlet boundary ondition H|ΓD

= HD
to ΓiD =

ΓD ∩ ∂Fi. In what follows ΓiD an be an empty set, but ΓD =
⋃

i

ΓiD 6= ∅.

Let Ki(x̂i) be, for all i ∈ I, a symmetri and uniformly positive de�nite tensor alled

hydrauli ondutivity tensor, whih we assume dependent on the position and possibly

di�erent on eah frature. As doumented in [7℄, the global hydrauli head H in the

whole system Ω is obtained solving the following problems ∀i ∈ I, whih model the

di�usion of the hydrauli head on eah frature: �nd Hi ∈ V D
i suh that ∀v ∈ Vi

∫

Fi

Ki∇Hi∇vdΩ =

∫

Fi

qivdΩ+

∫

ΓN∩∂Fi

GN
i v|SdΓ +

∑

S∈Si

∫

S

[[
∂Hi

∂ν̂iS

]]

S

v|SdΓ, (3.1)

where GN
i is the restrition to ΓiN = ΓN ∩∂Fi of the Neumann boundary ondition GN

imposed on ΓN . The quantity
∂Hi

∂ν̂i
S

= (n̂iS)
T
Ki∇Hi is the outward o-normal derivative

of the hydrauli head, being n̂iS the unit vetor normal to the trae S. The symbol[[
∂Hi

∂ν̂i
S

]]

S
denotes the jump of the o-normal derivative along n̂iS, being this jump inde-

pendent of the orientation of n̂iS. Aording to (7.1), the di�usion of Hi is ontributed

by the following terms: the external load in eah fature (�rst term of the right hand

side); the Neumann boundary onditions (seond term); the net �ow of hydrauli head

entering in the frature at eah trae (last term).

Equations (7.1) are oupled by the following mathing onditions, whih presribe

global ontinuity of the hydrauli head and onservation of hydrauli �uxes aross eah
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trae Sm, m ∈ M:

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , (3.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm . (3.3)

Note that due to ondition (7.2) the hydrauli head H on the whole domain Ω belongs

to the spae

V D = H

1
D

(Ω) =

{
v ∈

∏

i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm , ∀m ∈ M

}
. (3.4)

3.3 Optimization approah

Following the approah desribed in [7℄, instead of solving the oupled di�erential

problems on the fratures (7.1) ∀i ∈ I with the orresponding mathing onditions (7.2),

(7.3), we introdue a PDE-onstrained optimization problem. In order to ease notation

and for a onise and lear desription, in the following of this Setion we assume that

the traes S ∈ S are disjoint, realling that as stated in [7℄, this assumption an be

dropped replaing ourrenes of eah single trae S with the union of onneted traes.

Further, in our disrete formulation the assumption naturally drops thanks to the hoie

of the funtional spaes (see again [7℄). Let us introdue for eah trae S ∈ S a suitable

spae US
and its dual

(
US
)′
. Similar spaes are introdued on the set of traes belonging

to a frature Fi, ∀i ∈ I, and on the full set of traes S:

USi =
∏

S∈Si

US , U =
∏

i∈I

USi .

Now, let us �x a trae S and let S ⊆ F̄i ∩ F̄j . We introdue suitable variables

US
i , U

S
j ∈ US

whih will at as ontrol variables, de�ned as US
i = αHi|S +

[[
∂Hi

∂ν̂i
S

]]

S

and US
j = αHj |S

+

[[
∂Hj

∂ν̂
j
S

]]

S

respetively, where α is a positive �xed parameter. This

generalizes the approah proposed in [7℄ where US
i is set equal to �ux jump, thus allowing

ΓiD = ∅ on possibly all but one fratures. We set

Ui = Π
S∈Si

US
i ∈ USi , U = Π

i∈I
Ui ∈ U ,

i.e. Ui is the tuple of funtions U
S
i with S ∈ Si, and U is the 2(#M)-tuple of ontrol

funtions on all traes in Ω̄.
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We also introdue the Riesz isomorphisms ΛUS : US → US ′
, ΛUSi : USi → USi

′
and

ΛU : U → U ′
and the following linear bounded operators and their duals:

Ai ∈ L(Vi, V ′
i ), 〈AiH

0
i , v〉V ′

i ,Vi
= (K∇H0

i ,∇v) + α
(
H0

i |Si
, v|Si

)

Si

,

AD
i ∈ L(V D

i , V ′
i ), 〈AD

i RiH
D
i , v〉V ′

i ,Vi
= (K∇RiH

D
i ,∇v)

+α
(
(RiH

D
i )|Si

, v|Si

)

Si

,

BS
i ∈ L(US, V ′

i ), 〈BS
i Ui, v〉V ′

i ,Vi
= 〈US

i , v|S 〉US ,US ′ ,

Bi = Π
S∈Si

BS
i ∈ L(USi , V ′

i ), 〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉
USi ,USi

′ ,

with H0
i ∈ Vi, H

D
i ∈ V D

i , v ∈ Vi, and the operator Ri is the lifting of the Dirihlet

boundary onditions on ΓiD if not empty. Dual operators are A∗
i ∈ L(Vi, V ′

i ),

CS
i = (BS

i )
∗ ∈ L(Vi,US ′

), Ci = (Bi)
∗ ∈ L(Vi,USi

′
).

The operator BiN ∈ L(H− 1

2
(ΓiN ), V

′
i ) imposing Neumann boundary onditions is

de�ned suh that

〈BiNG
N
i , v〉V ′

i ,Vi
= 〈GN

i , v|ΓiN
〉
H

−1
2
(ΓiN),H

1
2
(ΓiN)

= 〈 ∂Hi

∂ν̂ΓiN

, v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

.

Problems (7.1) an now be written as follows: ∀i ∈ I, �nd Hi ∈ V D
i , with Hi =

H0
i +RiH

D
i and H0

i ∈ Vi, suh that

AiH
0
i = qi +BiUi +BiNG

N
i −AD

i RiH
D
i , in Fi. (3.5)

We remark that, if α > 0, the solution Hi to (7.6) exists and is unique for a non isolated

frature even if we set Neumann boundary onditions on the whole ∂Fi.

We an now de�ne the di�erentiable funtional J : U → R as

J(U) =
∑

S∈S

JS(U)

=
∑

S∈S

(
||CS

i Hi(Ui)−CS
j Hj(Uj)||2US ′

+||US
i − αΛ−1

USC
S
i Hi(Ui) + US

j − αΛ−1
USC

S
j Hj(Uj)||2US

)

=
1

2

∑

i∈I

∑

S∈Si

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2US ′

+||US
i − αΛ−1

USC
S
i Hi(Ui) + US

j − αΛ−1
USC

S
j Hj(Uj)||2US

)
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=
1

2

∑

i∈I

|| Π
S∈Si

(
CS
i Hi(Ui)−CS

j Hj(Uj)
)
||2
USi

′

+
1

2

∑

i∈I

||Ui+ Π
S∈Si

US
j − αΛ−1

USi
Π

S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)
||2
USi , (3.6)

where quantity ΠS∈Si

(
CS
i Hi(Ui)± CS

j Hj(Uj)
)
denotes the tuple of funtions

(
CS
i Hi(Ui)±CS

j Hj(Uj)
)
with S ∈ Si, and i, j ∈ IS. Moreover Hℓ(Uℓ) denotes the

solution of (7.6) orresponding to the ontrol variable Uℓ, ℓ = i, j.

Proposition 3.1. Setting US = H

− 1

2
(S) and letting CS

i ∈ L(Vi,H
1

2
(S)) be the trae

operator, there exists a unique ontrol variable U vanishing the funtional J(U) and a

orresponding unique solution H satisfying problems (7.6) ∀i ∈ I that is solution to

(7.1)-(7.3).

Proof. We sketh very brie�y the proof as it follows from lassial arguments. Resorting

to the lassial formulation of the problem on sub-fratures as realled in [7℄, it an be

proven that exists a unique solution H ∈ V D
for the hydrauli head on the DFN

satisfying (7.1), ∀i ∈ I, and (7.2), (7.3), ∀m ∈ M, that are trivially equivalent to (7.6),

∀i ∈ I, and to

Hi|Sm −Hj |Sm = 0, US
i − αHi|S + US

j − αHj |S
= 0, for i, j ∈ ISm , ∀m ∈ M. (3.7)

As in [7℄, sine the vanishing of the two terms of the funtional J is equivalent to the

imposition of the mathing onditions (3.7), the thesis follows.

Based on previous disussion, problems (7.6) oupled with (3.7) are replaed by the

following optimization problem:

min J(U) subjet to (7.6), ∀i ∈ I. (3.8)

In the following result we state optimality onditions for (3.8).

Proposition 3.2. The optimal ontrol U ∈ U satisfying (3.8) is given by the system of

onditions (7.6) and

Bi
∗Pi + ΛUSi

(
Ui + Π

S∈Si

US
j

)
− α Π

S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)
= 0, (3.9)

∀i ∈ I, where the funtions Pi ∈ Vi are the solution of equation

A∗
iPi = Ci

∗Λ−1
USi

[
Π

S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)

+α2 Π
S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)]

− αCi
∗

(
Ui + Π

S∈Si

US
j

)
, in Fi, (3.10)
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in whih homogeneus Dirihlet and Neumann boundary onditions on ΓiD and ΓiN ,

respetively, are presribed.

Proof. Let us di�erentiate the ost funtional with respet to the ontrol variable Ui:

J ′(U)(vi − Ui) =
∑

S∈Si

JS ′
(Ui)(vi − Ui)

= 2
∑

S∈Si

[(
CS
i Hi(Ui)− CS

j Hj(Uj), C
S
i (Hi(vi)−Hi(Ui))

)
US ′

+
(
US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj)), v
S
i − US

i

−αΛ−1
US (C

S
i Hi(vi)− CS

i Hi(Ui))
)

US

]

= 2

〈
Ci

∗Λ−1
USi

Π
S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj)),Hi(vi)−Hi(Ui)

〉

V ′
i ,Vi

+2

〈
ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)), vi − Ui

〉

USi
′
,USi

−2α

〈
C∗
i Π
S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)),Hi(vi)−Hi(Ui)

〉

V ′
i ,Vi

= 2
〈
A∗

iPi, A
−1
i Bi(vi − Ui)

〉
V ′
i ,Vi

+2

〈
ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)), vi − Ui

〉

USi
′
,USi

= 2

〈
Bi

∗Pi + ΛUSi Π
S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) +CS

j Hj(Uj)), vi − Ui

〉

USi
′
,USi

.

Thus, the vanishing of this last term yields (3.9).

Instead of solving equations (7.6), (3.9), (7.9), we set up a minimization proess for

problem (3.8). This is organized in suh a way that only the deoupled solution of the

loal problems (7.6) is needed. Here we use the Flether and Reeves onjugate gradient

method [16℄. Let us denote by ∇J(Ui) the Frehet derivative of the funtional J with

respet to the ontrol variables on the frature Fi, ∀i ∈ I, and by ∇J(U) the whole

derivative:

∇J(Ui) = Bi
∗Pi + ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj))), (3.11)

∇J(U) = Π
i∈I

∇J(Ui). (3.12)

The method used is depited in the following algorithm.
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Algorithm 3.1.

1. Set k = 0 and initial guess for ontrol variable U0
;

2. �nd H0 = H(U0) solving on eah frature the primal problem (7.6);

3. �nd P (U0) solving on eah frature the dual problem (7.9);

4. evaluate ∇J(U0) by equation (7.11);

5. set (δU)0 = −Λ−1
U ∇J(U0);

6. While J(Uk) 6= 0 do:

6.1. hoose a step-size λk along diretion (δU)k;

6.2. set Uk+1 = Uk + λk(δU)k;

6.3. ∀i ∈ I solve primal problem (7.6) to �nd Hi(U
k+1);

6.4. ∀i ∈ I solve dual problem (7.9) to �nd Pi(U
k+1);

6.5. evaluate ∇J(Uk+1) by (7.11);

6.6. set βk+1 = ‖∇J(Uk+1)‖2
U ′/‖∇J(Uk)‖2

U ′ ;

6.7. set (δU)k+1 = −Λ−1
U ∇J(Uk+1) + βk+1δUk

;

6.8. k = k + 1;

end do.

Let us evaluate the optimal step-size λ whih an be used in the previous algorithm

at steps 6.1-6.2. Given a variation δUi for the ontrol variable on eah frature Fi and

δU =
∑

i∈I δUi, let δHi ∈ Vi, ∀i ∈ I, be de�ned as the solution of the problem

AiδHi = BiδUi, in Fi, (3.13)

orresponding to homogeneous Dirihlet and Neumann boundary onditions on ΓiD (if

non-empty) and ΓiN , respetively.

Proposition 3.3. Let us inrement the ontrol variable U of a step λδU , the optimal

step-size λ is

λ = −〈∇J(U), δU〉U ′,U

{
∑

S∈S

(
||CS

i δHi − CS
j δHj ||2US′ + ||δUS

i + δUS
j ||2US

+α2||CS
i δHi + CS

j δHj ||2US ′

)
− 2α

∑

i∈I

(
Π

S∈Si

(δUS
i + δUS

j ),Λ
−1
USi

CiδHi

)

USi

}−1

.(3.14)
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Proof. We have

J(U + λδU) =
∑

S∈S

||CS
i Hi(Ui)− CS

j Hj(Uj) + λ(CS
i δHi −CS

j δHj)||2US ′

+
∑

S∈S

||US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))

+λ(δUS
i + δUS

j − αΛ−1
US (C

S
i δHi + CS

j δHj))||2US

= J(U) + 2λ
∑

i∈I

∑

S∈Si

((
CS
i Hi(Ui)− CS

j Hj(Uj), C
S
i δHi

)
US ′

+
(
US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)), δU
S
i

)

US

−α
(
US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)),Λ
−1
USC

S
i δHi

)

US

)

−2λ2α
∑

i∈I

∑

S∈Si

(
δUS

i + δUS
j ,Λ

−1
USC

S
i δHi

)

US

+λ2
∑

S∈S

(
||CS

i δHi − CS
j δHj ||2US ′ + ||δUS

i + δUS
j ||2US + α2||CS

i δHi +CS
j δHj ||2US ′

)

Moreover,

J(U + λδU) − J(U) + 2λ2α
∑

i∈I

(
Π

S∈Si

(δUS
i + δUS

j ),Λ
−1
USCiδHi

)

US

−λ2
∑

S∈S

(
||CS

i δHi − CS
j δHj ||2US ′ + ||δUS

i + δUS
j ||2US + α2||CS

i δHi + CS
j δHj ||2US ′

)

= 2λ
∑

i∈I

((
Π

S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj), CiδHi

)

US ′

+

(
Π

S∈Si

(US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj))), δUi

)

US

−α
(
Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))),Λ
−1
USCiδHi

)

US

)

= 2λ
∑

i∈I

(〈
Ci

∗Λ−1
USi

Π
S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj), δHi

〉

V ′
i ,Vi

−α
〈
Ci

∗ Π
S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))), δHi

〉

V ′
i ,Vi

+

〈
ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))), δUi

〉

USi
′
,USi

)
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= 2λ
∑

i∈I

〈
A∗

iPi, A
−1
i BiδUi

〉
V ′
i ,Vi

+2λ
∑

i∈I

〈
ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))), δUi

〉

USi
′
,USi

= 2λ
∑

i∈I

〈
B∗

i Pi + ΛUSi Π
S∈Si

(US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj))), δUi

〉

USi
′
,USi

Then, deriving J (λ) := J(U +λδU) with respet to λ and vanishing this derivative, we

get (3.14).

3.4 The Extended Finite Element Method in the DFN on-

text

In this setion we brie�y desribe a disretization approah via extended �nite ele-

ments for DFN problems that allows us to build the numerial triangulation indepen-

dently of the traes disposition on eah frature. The solution to Problem (7.1) with

mathing onditions (7.2)-(7.3) is in general a ontinuous funtion with disontinuous

gradient along traes. A numerial solution based on standard Finite Elements (FE)

would require the triangulation to be onforming to the traes, this in turn requiring

a oupling in the meshing proess for all the fratures in the system. The Extended

Finite Element Method (XFEM) [2, 15, 9, 3℄, instead, introdues in the FE approx-

imation spaes additional basis funtions, alled enrihment basis funtions, in order

to reprodue the irregular behaviour of the solution independently of the mesh. For a

detailed desription of the XFEM approah we refer the interested reader to the ited

referenes. Let us �rst onsider for simpliity a single trae S on a �xed frature F . Let

V

fem
δ be the standard FE trial and test spaes de�ned on the elements of a triangula-

tion on F non onforming to the trae and spanned by Lagrangian basis funtions φk,

for k ranging in an index set I . Let Φ be a funtion well approximating the irregular

behaviour of H in a neighbourhood of the trae S. Starting from Φ and basis funtions

φk, using the Partition of Unity Method [1℄, new basis funtions are introdued into

the spae V

fem
δ , enrihing its approximation apabilities. The additional basis funtions

are learly required only in the elements of the triangulation whih are interseted by

the trae. In this way the irregular behaviour of the numerial solution is determined

by the enrihment funtions introdued, and is independent of the position of elements
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with respet to the trae. The XFEM spae is then:

V

xfem
δ = span

(
{φk}k∈I , {φkΦ}k∈J

)

where J ⊂ I is the subset of the degrees of freedom involved in the enrihment. Con-

sequently the approximate solution with the XFEM will have the following struture:

hxfemδ =
∑

k∈I

hxfemk φk +
∑

k∈J

axfemk φkΦ,

where hxfemk and axfemk are the unknowns related to the standard and enrihing basis

funtions, respetively.

If more traes are present on the frature F , the approah is simply generalized as

follows: the XFEM spae is taken as

V

xfem
δ = span

(
{φk}k∈I ,∪m∈MF

{φkΦm}k∈Jm

)

where the subset of indies MF ⊂ M orresponds to the traes on F , and Φm and Jm

are the enrihing funtion and the set of enrihed nodes relative to m-th trae.

We end brie�y realling how enrihing funtions are seleted in the DFN ontext,

referring the reader to [13℄ for more details in general ases and [7, 6℄ for details in the

DFN simulations. For eah frature F , let Sm, m ∈ MF be a trae on F . We distinguish

two ases: a) Sm is entirely rossing the frature (the trae is hene a so alled losed

interfae); b) one or more endpoints of Sm lie inside F (open interfae). In the ase of

losed interfaes, the enrihing funtion Φm is suitably set as Ψm(x̂) = ‖x̄ − x̂‖, where
x̄ is the projetion of x̂ on Sm (see [3℄).

In the ase of open interfaes, Φm is still used for reproduing non-smooth behaviour

on elements interseting the trae but not ontaining trae tips. For eah trae tip

lying inside F , we also add new enrihing funtions (see [3℄) de�ned as follows. Let

σm =
{
s1, s2

}
be the set of trae tips of Sm. If sℓ lies inside F , we introdue the

enrihing funtions

Θm
sℓ(x) ∈

{
r cos

θ

2
, r2 cos

θ

2
,
√
r cos

θ

2

}
, sℓ ∈ σm

where r is the distane between the urrent point and trae tip, and θ is the polar angle

of x̂ with respet to a referene system entred into trae tip with the x-axis aligned to

the trae, and oriented suh that the trae lies on the negative side. Tip enrihments

are introdued only on elements ontaining traes endpoints. Funtions Θm
sℓ
(x) are
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Figure 3.1: Behaviour of trae tip enrihment funtions

plotted, from left to right, in Figure 3.1. We remark that the hoie of enrihments is

quite arbitrary. The seletion here adopted is well suited to desribe the nonsmooth

behaviour of the solution around trae tip. Other hoies are possible, as well as the use

of a larger number of enrihments around the tip. This latter possibility ould improve

the desription of the solution, but would inrease the overall omputational ost.

We refer the reader to [13, 7, 6℄ for more details about implementation of the XFEM,

whih inlude for example methods to preserve FEM optimal onvergene rates and

orretly perform aurate numerial integration of irregular funtions.

3.5 Disretization of the onstrained optimization problem

Following the paradigm �First optimize then disretize� we now desribe the disrete

version of the method introdued in the previous setion.

Let us introdue an independent triangulation Tδ,i on eah frature Fi, ∀i ∈ I. Let

Vδ,i be the �nite dimensional trial and test spaes de�ned on the elements of Tδ,i and
spanned by Lagrangian basis funtions φi,k, k ∈ Ii = {1, ..., Ni}. Let us denote by hi

the disrete approximation of Hi, i ∈ I:

hi(x) =

Ni∑

k=1

hi,kφi,k(x), ∀i ∈ I.

The algebrai formulation of the operator Ai in equation (7.6) is the usual one:

(Ai)kℓ =

∫

Fi

∇φi,k∇φi,ℓ dFi + α
∑

s∈Si

∫

S

φi,k|Sφi,ℓ|S dγ,

where, overloading notation, we denote by Ai ∈ R
Ni×Ni

, i ∈ I, also the matrix de�ning

the disrete algebrai operator. For all S ∈ S, let us �x a �nite dimensional subspae of

US
for the disrete approximations uSi and uSj of the ontrol variables US

i and US
j . In



88 Chapter 3

the disrete version of the problem we hoose US = L

2
(S) and thus we an remove the

onstraint of disjoint traes made in Setion 3.3 (see [7℄). Let {ψS
k }k=1,...,NS

be the basis

introdued on the disrete ontrol spae on trae S. For appliation of gradient based

methods, we hoose a ommon arbitrary basis for uSi and uSj , i, j ∈ IS , not neessarily

depending neither on the mesh on Fi, nor on the mesh on Fj . So we write

uSl =

NS∑

k=1

uSl,kψ
S
k ∀l ∈ IS , S ∈ Si .

For eah frature Fi, we set NSi
=
∑

S∈Si
NS as the number of DOFs on traes of Fi.

Given an index i ∈ I and a frature S ∈ Si, we de�ne matries BS
i ∈ R

Ni×NS
as

(
BS

i

)
kℓ

=

∫

S

φi,k |Sψ
S
l dγ.

Matries BS
i , S ∈ Si, are then grouped row-wise to form the matrix Bi, whih ats on

a olumn vetor ui ontaining all the NSi
ontrol DOFs orresponding to the traes of

Fi, obtained olleting vetors uSi , for S ∈ Si, with the same ordering introdued for the

traes on Fi and used in the de�nition of Bi. For eah frature Fi let us introdue vetors

hi ∈ R
Ni
, hi = (hi,1, . . . , hi,Ni

)T , and pi ∈ R
Ni
, pi = (pi,1, . . . , pi,Ni

)T . Furthermore,

we de�ne vetors u ∈ R
NT

, with NT =
∑

i∈INSi
, and h ∈ R

NF
, with NF =

∑
i∈INi,

as u = (uT1 , ...u
T
#I

)T and h = (hT1 , ...h
T
#I

)T . The algebrai formulation of the primal

equations (7.6) is then

Aihi = q̃i +Biui, i ∈ I, (3.15)

where q̃i aounts for the term qi in (7.6) and for the weak disrete imposition of bound-

ary onditions on the frature Fi. We proeed similarly for the equations (7.9), (7.10) and

(3.13), in whih the operators CS
i and B∗

i , i ∈ I, are nothing but restrition operators.

We thus obtain the algebrai equations for the de�nition of the disrete approximations

pi and δhi. Further, given two indies q, r ∈ I (possibly q = r), we de�ne matries CS
q,r

and Cq,r as

(CS
q,r)kℓ =

∫

S

φq,k |Sφr,ℓ|S dγ, Cq,r =
∑

S∈Sq

CS
q,r.

The disrete ounterpart of equations (7.9) and (3.13) ∀i ∈ I are

Aipi = Ci,ihi −
∑

j∈Ji

Ci,jhj − α[Biui +
∑

j∈Ji

Bjuj − α(Ci,ihi +
∑

j∈Ji

Ci,jhj)], (3.16)

Aiδhi = Biδui. (3.17)
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The disrete gradient of the funtional J(U) and the optimal step-size λ beome

∇J(ui) = Pi|Si
+ ui − αhi(ui)|Si

+
∑

j∈Ji

(uj |Si
− αhj(uj)|Si

), (3.18)

∇J(u) = Π
i∈I

∇J(ui), (3.19)

λ = −
∑

i∈I

(∇J(ui), δui)Si

{
−2α

∑

i∈I

(δui + δuj |Si
, δhi|Si

)Si

+
∑

i∈I

(
||δhi |Si − δhj |Si

||2Si
+ ||δui + δuj |Si

||2Si
+ α2||δhi |Si + δhj |Si

||2Si

)}−1

. (3.20)

We end this Setion with the disrete version of Algorithm 3.1.

Algorithm 3.2.

1. Set k = 0 and initial guess for ontrol variable u0;

2. �nd h0 = h(u0) solving on eah frature (7.19);

3. �nd p(u0) solving on eah frature (3.16);

4. evaluate ∇J(u0) by (3.19);

5. set (δu)0 = −∇J(u0);

6. While(stopping riterion not satis�ed)

6.1. ompute optimal step-size λk along diretion (δu)k by (3.20);

6.2. set uk+1 = uk + λk(δu)k;

6.3. ∀i ∈ I �nd hi(u
k+1) by (7.19);

6.4. ∀i ∈ I �nd pi(u
k+1) by (3.16);

6.5. evaluate ∇J(uk+1);

6.6. set βk+1 = ‖∇J(uk+1)‖2S/‖∇J(uk)‖2S
6.7. set (δu)k+1 = −∇J(uk+1) + βk+1δuk

6.8. k = k + 1;

We notie that, thanks to the minimization approah adopted, only the solution of

many simple problems on the fratures is required, with a small exhange of trae-related

data among them. This algorithm is therefore suitable for massively parallel omputers

and GPU-based omputers.
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3.5.1 Stopping riterion

The stopping riterion used in Algorithm 3.2 plays a relevant role for e�ieny rea-

sons. In fat, due to the arbitrary intersetions of the traes with elements independently

plaed on eah frature, the two terms of the funtional J do not vanish, in general.

This follows from the fat that on eah trae S the disrete funtions hi|S and hj |S with

i, j ∈ IS are pieewise polynomials on di�erent partitions of the trae. As a onsequene,

δhi|S − δhj |S is typially di�erent from zero. Appropriate hoie for stopping riteria is

ruial in order to prevent a premature stop of the algorithm far from the minimum of

the funtional, avoiding at the same time useless iterations when we are already lose to

the minimum, when only negligible further redution of the funtional ould be ahieved

at the expenses of a large number of additional iterations. We will disuss this in the

next Setion.

3.6 Numerial Results

In this setion we present some numerial experiments aiming at showing the be-

haviour of our algorithm in relation to various stopping riteria and the quality of the

solution obtained. After introduing the DFN problems used for the simulations, and

disussing stopping riteria used in our omputations, we analyze the solution obtained

on the most omplex DFN on�guration investigated.

3.6.1 DFN on�gurations

A set of four di�erent DFN on�gurations is onsidered with an inreasing number

of fratures and traes as desribed in Table 3.1.

Table 3.1: Problems desription

DOFs (oarse grid) DOFs (�ne grid)

Label #I #M h u h u

7frat 7 11 1140 163 4007 378

11frat 11 26 2244 337 7172 825

50frat 50 153 13211 2187 42161 5166

100frat 100 313 26512 4637 85900 10978
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In Figure 3.2 we show setion on the x − y plane of frature systems. All fratures

extend, orthogonally to x − y plane, from z = 0 to z = 1, exept for fratures in

dashed line that range between z = 0 and z = 0.5. Homogeneous or non-homogeneous

Dirihelet boundary onditions are presribed on the sides marked with a dark irle or

with a dark retangle respetively, while homogeneous Neumann onditions are set on

the other edges. Problem formulation is as in equation (7.1), where the transmissivity
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Figure 3.2: DFN on�gurations, setion on x − y plane. Left to right, top to bottom:

7frat, 11frat, 50frat, 100frat. Number is reported for fratures arrying Dirihelet

boundary onditions (squared edge non homogeneous, �lled irle homogeneous).

is assumed onstant and equal to 1, and the soure term is q = 0 on all the fratures.

For the disretization we use �rst order Lagrangian �nite elements and two di�erent

grids: a oarse grid with about 35 elements per unit area and a �ner grid with about

100 elements per unit area. The orresponding number of DOFs is reported in Table 3.1.

In all ases we set the parameter α = 0.5 in the de�nition of the ontrol variable and

the starting guess for the ontrol variable is u0 = 0. For eah on�guration and grid, we
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Figure 3.3: Zoom of grid for 11frat problem.

Table 3.2: Exit riteria used in simulations

Label Criterion

t1 R1 = Jk − Jk−1 < tol1

t2 R2 = ||uk − uk−1|| < tol2

t3 R3 = Jk(Jk − Jk−1) < tol3

de�ne a referene solution obtained performing a large number of gradient iterations in

order to safely approah the minimum of the funtional. As an example, to highlight

the omplete non onformity of the mesh to the traes, we show in Figure 3.3 a zoom

of the oarse grid for the DFN problem with eleven fratures.

3.6.2 Stopping riteria

For eah problem and grid a large set of simulations is performed, onsidering the

di�erent stopping riteria desribed in the following.

In Figure 3.4 and Figure 3.5 we plot, for the various problems onsidered and for

inreasing number of iterations, saled by the number of problem traes, the distane
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Figure 3.4: Relative distane in H1
-norm of solution at di�erent number of iterations,

oarse grid. Right: zoom at lower number of iterations.

in H1
-norm between the referene solution and the urrent solution, relative to the

H1
-norm of the referene solution: ‖hcurr − href ‖H1/‖href ‖H1 . The referene solution

is obtained on the same grid, performing a very large number of onjugate gradient

iterations. Figure 3.4, on the left, gives an overview on a wide range of iterations for the

oarse grid, while on the right provides a zoom at lower iterations. Figure 3.5 provides

a similar zoom for the �ner grid. It should be notied that the urves show initially a

strong dereasing trend and, after a number of iterations that is few times the number of

problem traes, variations of the solution with respet to the referene solution beome

smaller than 1%. Afterwards, the urves beome almost �at and a large number of

iterations would be required for negligible improvements in the solution. Therefore, we

an see that the algorithm an provide a solution lose to the best solution ahievable

within a reasonably small number of iterations, this number being proportional to the

total number of traes in the system, with a proportionality fator in the order of few

units.

As mentioned in Subsetion 3.5.1, funtional minimum is an unknown value di�erent

from zero. Hene, the hoie of a exit riterion able to stop iterations when we are lose

enough to the solution, while avoiding useless iterations, is a ruial point. In Table 3.2

we report three possible riteria. Condition t1 detets small variations in the funtional

values. Sine the funtional desent path an be step-like (see Figure 7.4 for an example),

in order to avoid premature stops, the algorithm is terminated whenR1 < tol1 for a �xed

number of subsequent iterations (six, in our omputations). Approahing funtional

minimum we have that R1 → 0. In Figure 3.7, left, we show the relative distane of



94 Chapter 3

0 2 4 6 8 10 12

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations/Ntrace

R
el

at
iv

e 
di

st
an

ce
 fr

om
 r

ef
er

en
ce

 s
ol

ut
io

n

 

 
7fract
11fract
50fract
100fract

Figure 3.5: Relative distane in H1
-norm

of solution at di�erent number of itera-

tions, �ner grid. Zooming al lower number

of iterations.
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Figure 3.6: Example of funtional step-like

desent path. Problem 100frat on the

oarse grid.

the omputed solution from the referene solution, orresponding to several values of

the tolerane tol1. It an be notied that a value around tol1 = 10−6
provides a good

solution for all the problems onsidered.

Similarly, ondition t2 seeks small variations in the ontrol variable. Again, to take

into aount possible temporary stagnation during the desent proess, iterations are

stopped when R2 < tol2 six times subsequently. Also in this ase as the funtional

approahes its minimum R2 tends to zero. We an see in Figure 3.7, middle, the

behaviour of the solution in relation to the hoie of tol2. The value tol2 = 10−7

appears to be a good hoie.

As a possible alternative, riterion t3 aims at deteting funtional minimum, again

avoiding premature stop at large values of the funtional due to loal stagnation. The

rationale behind this riterion is to avoid stopping the iterates when Jk − Jk−1
is small

but Jk
is not small as well. Algorithm is then stopped the �rst time thatR3 < tol3. Also

in this ase R3 an be arbitrarily redued with iterations. We plot solution behaviour

in relation to tol3 in Figure 3.7, right. We notie that in this ase low tolerane values,

around tol3 = 10−8
, should be hosen.

3.6.3 DFN system solution

We now show the quality of the numerial solution obtained on the more omplex

DFN on�guration onsidered herein. First we show in details the results obtained on
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Figure 3.7: Relative distane in H1
-norm from referene solution for di�erent toleranes

and stopping riteria. Left: ondition t1; middle: ondition t2; right: ondition t3. Coarse

grid in dashed line, �ner grid in solid line.

two of the fratures in the 100frat system: the soure frature 82 and the sink frature

18 (see Figure 3.2). On the oarse grid, in Figures 3.8 and 3.9, left, we ompare the

solution on frature traes,

{
hi|S

}

S∈Si

, i = {18, 82}, and the solution on the traes of

interseting fratures, {hj} with j ∈ Ji. We an see a very good agreement between

these values, ensuring the global ontinuity of the hydrauli head. In the right part

of the same �gures, we ompare the o-normal derivative of solution on the traes of

the urrent frature and on trae-twin frature (with opposite sign). In these �gures

φ(h) =
[[

∂h
∂ν̂S

]]
S
. Again, we an observe, as expeted, a very good agreement between

these values, ensuring �ux onservation.

In Figure 3.10 we show, for the same fratures, the solution on the traes obtained

with four di�erent meshes. Reported results show that, under grid re�nement, the

omputed solutions are learly approahing the same values. In Figure 3.11 we plot the

whole solution obtained with the oarse grid on the fratures 82 and 18. In Figures

3.12 and 3.13 we report 3D pitures representing the DFN. The omputing meshes are

drawn and the solution is reported on the fratures using a olorbar. The arrows point

the soure frature 93 and the sink frature 7.

In Figure 3.14, left, the L2
-norm of solution against iterations is plotted. The table

of Figure 3.14, right, gives an indiation of the onservativity of the method on the

whole network of fratures, as it reports the values of the total �uxes disharged by the

soure fratures to the system and the total �ux reeived by the sink fratures from the

system. As expeted the data math very well.
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Figure 3.8: Problem 100frat, soure frature 82, oarse grid. Solution on the traes

(left) and o-normal derivative (right) ompared with orresponding values omputed on

trae-twin fratures.
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and o-normal derivative (right) ompared with orresponding values omputed on trae-
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Figure 3.10: Solution on the traes of soure frature 82 (left) and sink frature 18 (right)

for two di�erent grids, 100frat problem.
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Figure 3.12: Solution on the DFN 100frat. Arrow points soure frature 93.

Figure 3.13: Solution on the DFN 100frat. Arrow points sink frature 7.
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3.7 Conlusions

Major drawbaks in DFN numerial simulations lie in the de�nition of a good quality

�nite element triangulation and in the huge omputational demand. The method intro-

dued in [7, 6℄ and further developed in the present work provides a possible approah

for irumventing these di�ulties. The proposed method allows a fully independent

triangulation on eah frature, thus eliminating any mesh related problem. Further, the

method an be easily implemented on parallel mahines, sine the DFN simulation is

split in many sub-problems on eah frature that an be solved independently by parallel

proesses, with little exhange of trae related data between trae-twin proesses.

The ontribution of the present work to the method is twofold. We introdue a

new de�nition of the ontrol variable for the optimal problem in order to eliminate

the requirement of having a non-empty portion of the boundary of eah frature with

Dirihelet boundary ondition. We also introdue a onjugate gradient method for the

optimization proess in order to speed up onvergene. By means of several numerial

results we show that our algorithm provides a good quality solution within a small

number of iterations that inreases linearly with the number of traes in the system.

The proportionality fator is in the order of few units for all the problems onsidered.

The main omputational e�ort in eah iteration is devoted to the resolution of the linear

systems on the fratures, that however are independent eah other. Assuming that these

linear systems have a omparable dimension, the total ost of eah iteration sales as the

number of fratures. E�etiveness of some stopping riteria for the gradient iterations
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is also disussed.

Further developments on the topi should inlude on one side an investigation of the

salability of the algorithm using an inreasing number of parallel proesses on di�erent

parallel arhitetures, and on another side the analysis of non-stationary problems. In

the non-steady ase, in order to redue the omputational e�ort, the appliation of

reliable and e�ient spae-time a posteriori error estimates and adaptive algorithms,

following the approahes of [4, 5℄, ould be fruitful.
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Chapter 4

The eXtended Finite Element

Method for subsurfae �ow

simulations

Abstrat In this paper the appliation of the extended �nite element method (XFEM)

to a novel approah to Disrete Frature Network (DFN) simulations is fully desribed.

The proposed DFN simulation approah does not require any onformity of the trian-

gulation at frature intersetions, thus overoming one of the major limitations in DFN

simulations. Furthermore the initial problem omplexity is split in a large number of

quasi-independent simple problems on the fratures that an be easily handled by paral-

lel omputers. The use of the XFEM allows a good-quality reprodution of the solution

also at frature intersetions, despite the non onformity of the mesh. The issue of en-

rihment funtion seletion is addressed, and suitable simple enrihment funtions are

identi�ed in order to keep omputational ost as low as possible without ompromising

representation apabilities of the enrihed spae. All the relevant aspets of XFEM

implementation are thoroughly disussed and numerial examples reproduing ritial

on�guration are provided and ommented. Simulations on omplex DFN on�gurations

are also reported in order to show the e�etiveness of the method.
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4.1 Introdution

E�ient simulation and investigation of subsurfae �ow is an up-to-date open re-

searh topi: the omplexity of the problem and the inreasing interest of many applia-

tions, suh as analysis of pollutant di�usion in aquifers, oil/gas extration, gas storage,

make this researh issue of great interest. In these appliations, the omputational do-

main for the simulations onsists of underground geologial reservoirs, that usually have

huge omplex heterogeneous struture and for whih only stohasti data are typially

available. Among others, Disrete Frature Network (DFN) models are widely used for

the simulation. A DFN model desribes a geologial reservoir as a system of interset-

ing planar polygons representing the network of fratures in the underground. Frature

intersetions are alled traes. In the present work we onsider impervious surrounding

rok matrix, so that no �ux exhange ours with the surrounding medium. The quan-

tity of interest is the �ow potential, alled hydrauli head, given by the sum of pressure

and elevation. The hydrauli head is ruled by Dary law in eah frature, with addi-

tional mathing onditions whih ensure hydrauli head ontinuity and �ux balane at

frature intersetions. Thanks to these mathing onditions, hydrauli head is ontinu-

ous aross traes but jumps of gradients may our as a onsequene of �ux exhange

between interseting fratures. Hene, traes are typially interfaes of disontinuities

for the gradient of the solution.

Standard �nite element methods or mixed �nite elements are widely used for obtain-

ing a numerial solution also in this ontext, but they require mesh elements to onform

with the traes in order to orretly desribe the irregular behaviour of the solution.

This poses a severe limitation, sine realisti frature networks are typially very intri-

ate, with fratures interseting eah other with arbitrary orientation, position, density

and dimension. A onforming meshing proess may result infeasible, or might generate

a poor quality mesh, sine a oupled meshing proess on all the fratures of the system

may lead to elongated elements. The following strategies are mainly suggested in the

literature in order to overome these di�ulties. In some ases mesh and/or geometry

modi�ations and simpli�ations are proposed to ease meshing proess, as for example in

[12, 8, 17℄. Another approah onsists in developing methods whih allow for a so alled

partial nononformity. For example in [14, 15℄ mortar methods are used in order to relax

mesh onformity onstraints on interseting fratures, but still requiring that element

edges lie on the traes. A di�erent strategy is used in [4, 5, 6℄, in whih the authors pro-



4.2 Problem desription 105

pose a PDE-onstrained optimization approah in whih neither frature/frature nor

frature/trae mesh onformity is required. The method is based on the minimization

of a quadrati funtional onstrained by the state equations desribing the �ow on the

fratures. Extended Finite Elements (XFEM) are used in order to enrih the solution

desription and orretly reprodue irregularities in the solution.

The XFEM [2, 13, 7, 16, 3℄ allows the desription of irregular solutions regardless

of the position of mesh elements with respet to the irregularity interfaes, so that the

numerial triangulation for DFN simulations an be generated independently on eah

frature, without any kind of mathing onstraint along the traes, thus irumventing

any problem related to mesh generation. As proved by the numerial results, the be-

haviour of the solution is well reprodued thanks to speial enrihment funtions that

in�uene the numerial approximation loally around the traes. Simple, easily inte-

grable enrihment funtions should be preferred, in order to limit the number of the

related additional unknowns and the omputational ost in general.

In the present work we disuss in full details the appliation of XFEM to the approah

desribed in [4, 5, 6℄. Suitable enrihment funtions for very omplex DFNs are proposed.

Furthermore, other issues ensuring an e�etive implementation of the method are fully

addressed.

The present work is organized as follows: in Setion 7.2 the PDE-onstrained opti-

mization model for DFN �ow simulations is brie�y realled. In Setion 4.3 a thorough

desription of the XFEM in the DFN ontext is provided, as well as implementation

hoies. In Setion 4.4 the numerial solver is depited. Setion 4.5 is devoted to numeri-

al experiments on test problems and DFNs of inreasing omplexity, whih highlight the

e�etiveness of the XFEM in this ontext. We end with some onlusions in Setion 4.6.

4.2 Problem desription

Let us onsider a DFN Ω given by the union of open planar polygonal sets Fi, with

i = 1, . . . , I, alled fratures, and let us denote by ∂Fi the boundary of Fi and by ∂Ω the

set of all the frature boundaries, ∂Ω = ∪I
i=1∂Fi. We deompose ∂Ω = ΓD ∪ ΓN with

ΓD∩ΓN = ∅, ΓD 6= ∅ being ΓD the Dirihelet boundary and ΓN the Neumann boundary.

Similarly, the boundary of eah frature is divided in a Dirihelet part ΓiD = ΓD ∩ ∂Fi

and a Neumann part ΓiN = ΓN ∩∂Fi, hene ∂Fi = ΓiD∪ΓiN , with ΓiD∩ΓiN = ∅. Note
that ΓiD = ∅ is allowed whenever ∂Fi∩ΓD = ∅. Fratures have arbitrary orientations in
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spae, so that Ω is a 3D domain. Traes are denoted by Sm, m = 1, . . . ,M ; S denotes

the set of all the traes of the system, and Si, for i = 1, . . . , I, denotes the subset of S
orresponding to traes belonging to Fi. Eah Sm uniquely identi�es a ouple of indies

ISm = {i, j}, suh that Sm ⊆ F̄i ∩ F̄j .

Aording to Dary law, the hydrauli head H in Ω is given by a system of equations

on eah frature, de�ned as follows. For the sake of simpliity of notation, in this

setion let us assume that traes are non-interseting. We remark that the numerial

method desribed in the following is not a�eted by this assumption. Let Hi denote the

restrition of the solution H to frature Fi and let Ki be a symmetri and uniformly

positive de�nite tensor (the frature transmissivity). Let us introdue for eah frature

the following funtional spaes:

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}
,

and

V D
i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HD
i

}
.

Then Hi satis�es, for i = 1, . . . , I, the following problem: �nd Hi ∈ V D
i suh that

∀v ∈ Vi

∫

Fi

Ki∇Hi∇vdΩ =

∫

Fi

qivdΩ+ 〈GN
i , v|S〉

H

− 1
2
(ΓiN),H

1
2
(ΓiN)

+
∑

S∈Si

〈
[[
∂Hi

∂ν̂iS

]]

S

, v|S〉
H

− 1
2
(S),H

1
2
(S)

, (4.1)

where qi denotes a soure term on Fi and the symbol

∂Hi

∂ν̂i
represents the outward o-

normal derivative of the hydrauli head:

∂Hi

∂ν̂i
= n̂Ti Ki ∇Hi

with n̂i outward normal to the boundary ΓiN , and

[[
∂Hi

∂ν̂i
S

]]

S
denotes the jump of the o-

normal derivative along the unique normal n̂iS �xed for the trae S on Fi, and represents

the �ux inoming into the frature Fi through the trae S. Funtions H
D
i ∈ H

1

2
(ΓiD) and

GN
i ∈ H

− 1

2
(ΓiN ) are given and presribe Dirihelet and Neumann boundary onditions

respetively on the boundary ∂Fi.

Equations (4.1) for i = 1, ..., I are oupled with the following additional mathing
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onditions imposing hydrauli head ontinuity and �ux balane aross the traes:

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , ∀m = 1, ...M, (4.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm . (4.3)

Following the method desribed in [4, 5, 6℄, instead of solving the oupled system of

equations (4.1)-(4.3), the solution is obtained solving a PDE onstrained optimization

problem.

For eah trae in eah frature let us introdue the ontrol variables US
i ∈ US =

H

− 1

2
(S), de�ned as US

i = αHi|S
+
[[
∂Hi

∂ν̂i
S

]]

S
, where α is a �xed positive parameter.

Equation (4.1), presribed on the fratures, an be equivalently restated as:

∫

Fi

Ki ∇Hi∇vdΩ+ α
∑

S∈Si

∫

S

Hi|Sv|SdΓ = (4.4)

∫

Fi

qivdΩ+ 〈GN
i , v|S〉

H

− 1
2
(ΓiN),H

1
2
(ΓiN)

+
∑

S∈Si

〈US
i , v|S〉US ,US ′ .

Let us de�ne USi = H

− 1

2
(Si ) and let Ri denote the operator providing lifting of the

Dirihlet boundary onditions on ΓiD, if not empty. Let us onsider the following linear

bounded operators:

Ai ∈ L(Vi, V ′
i ), 〈AiH

0
i , v〉V ′

i ,Vi
= (Ki∇H0

i ,∇v) + α
(
H0

i |Si
, v|Si

)

Si

,

AD
i ∈ L(V D

i , V ′
i ), 〈AD

i RiH
D
i , v〉V ′

i ,Vi
= (Ki ∇RiH

D
i ,∇v) + α

(
(RiH

D
i )|Si

, v|Si

)

Si

,

BS
i ∈ L(US , V ′

i ), 〈BS
i U

S
i , v〉V ′

i ,Vi
= 〈US

i , v|S 〉US ,US ′ ,

Bi = Π
S∈Si

BS
i ∈ L(USi , V ′

i ), 〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉
USi ,USi

′ ,

with H0
i ∈ Vi, H

D
i ∈ V D

i , v ∈ Vi, and Ui ∈ USi
is the tuple of ontrol variables

US
i for S ∈ Si. Analogously, U ∈ US

denotes the tuple of ontrol variables Ui for

i = 1, ..., I. The dual operator of Ai is denoted by A∗
i ∈ L(Vi, V ′

i ). The operator

BiN ∈ L(H− 1

2
(ΓiN ), V

′
i ) imposing Neumann boundary onditions is de�ned suh that

〈BiNG
N
i , v〉V ′

i ,Vi
= 〈GN

i , v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

= 〈 ∂Hi

∂ν̂ΓiN

, v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

.

With these de�nitions at hand, problems (4.1) are rewritten as: ∀i = 1, ..., I, �nd

Hi ∈ V D
i , with Hi = H0

i +RiH
D
i and H0

i ∈ Vi, suh that

AiH
0
i = qi +BiUi +BiNG

N
i −AD

i RiH
D
i , in Fi. (4.5)



108 Chapter 4

We remark that, if α > 0, for a given Ui, the solution Hi to (4.5) exists and is unique

for a non isolated frature even if we set Neumann boundary onditions on the whole

∂Fi.

Now let us introdue the funtional

J(H,U) =

M∑

m=1

∥∥∥Hi|Sm
−Hj|Sm

∥∥∥
2

H

1
2
(S)

+

M∑

m=1

∥∥∥USm

i + USm

j − α
(
Hi|Sm

+Hj|Sm

)∥∥∥
2

H

− 1
2
(S)

. (4.6)

The funtional J is quadrati and using the same arguments as in [4℄, it an be shown

that its unique minimum is obtained for values of H and of the ontrol funtions U that

orrespond to the ful�lment of onditions (4.2) and (4.3) on the traes. In other words,

the solution of the problem

minJ subjet to (4.5) (4.7)

orresponds to the solution of the oupled system of equations (4.1)-(4.3).

4.3 The XFEM for DFN simulations

Aording to the approah depited in the previous setion, mathing onditions

along traes are not exatly imposed but they are made as small as possible via an

optimization approah. Only loal problems on fratures (i.e. problems (4.5)) are in-

dependently solved. As a onsequene, meshes on the fratures are neither required to

onform to eah other, nor to onform to the traes. Clearly, the �ner the grid, the

smaller is the global mismath provided by J . In order to provide a better desription

of the solution also near traes, whih represent possible nonsmoothness interfaes, the

XFEM turns out to be a onvenient approah.

The XFEM an reprodue irregular solutions by means of ustom enrihment fun-

tions that are added to the trial and test funtional spaes of standard �nite elements,

in order to give the required behaviour to the numerial approximation, independently

of the position of mesh elements with respet to the interfaes. A key point of our

approah is that we a priori know that the solution displays derivative disontinuities

at the traes: the solution is in general a ontinuous funtion with disontinuous normal

derivatives aross the traes due to the term representing �ux jump. Standard �nite
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F1

F2

F3

S2

S3

S1

Figure 4.1: Example of a onforming mesh with three traes interseting with a small angle.

S1 = F̄1 ∩ F̄2, S2 = F̄2 ∩ F̄3, S3 = F̄3 ∩ F̄1.

element methods reprodue this behaviour only if mesh element edges lie on the traes,

thus requiring the simultaneous onforming triangulation of all the fratures in the sys-

tem. As disussed, this proess often results infeasible for DFNs of realisti size and

geometry, or might lead to meshes of poor quality due to the presene of elongated ele-

ments trapped between interseting traes. This situation is desribed in Figure 4.1 for

a simple DFN omposed by three fratures and three interseting traes with a onform-

ing mesh. Due to the reiproal position of traes, the oloured element ould display

a very small angle. This problem an be overome by the use of XFEM; an example of

non-onforming mesh suitable for our approah is displayed in Figure 4.2.

In the following of this setion, we fully aount for details onerning use of XFEM,

suh as seletion of enrihment funtions for DFN problems and implementation strate-

gies adopted for this spei� appliation of the XFEM. Before proeeding, we brie�y

reall some key points onerning XFEM in the ontext of DFN simulations.

Let us onsider a standard �nite element desription of the hydrauli head in a

given frature F ⊂ R
2
, with a loal referene system x̂, and MF traes Sm, m =

1, . . . ,MF . Here and in the sequel of the paper, we use lowerase letters h, u for �nite

element approximations of the orresponding quantities H and U . Let us introdue a

triangulation Tδ of F , with N el
elements τe ⊂ R

2
suh that F̄ =

⋃
1≤e≤Nel τe. Let V

fem
δ

be the standard �nite element trial and test spae de�ned on the elements of Tδ and

spanned by Lagrangian basis funtions φk ompatly supported with support ∆k, with

k ∈ I set of degrees of freedom (DOF). We remark that disontinuities of the gradient

of the solution h our at traes, whih are always segments. If elements of Tδ are
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onforming to the traes, the solution is given by

hfem(x̂) =
∑

k∈I

hkφk(x̂),

where hk is the degree of freedom orresponding to φk. In the more general ase in whih

we allow elements to be non-onforming to traes, we use our a-priori knowledge on the

irregularity of the solution, and use the XFEM on the non-onforming grid, introduing,

for eah trae Sm, a global enrihment funtion Φm that well mathes the behaviour of

the solution aross the trae (see for example Figure 4.3). Additional basis funtions,

alled loal enrihment funtions are generated from funtions Φm by means of the

Partition of Unity Method [1℄ on the partition of unity given by the standard Lagrange

basis funtions φk on the triangulation Tδ. The numerial approximation given by the

XFEM is built on the enrihed funtional spae V

xfem
δ

V xfem
δ = span

(
{φk}k∈I , {φkΦ1}k∈J1

, . . . , {φkΦMF
}k∈JMF

)
,

and has the following struture:

hxfem(x̂) =
∑

k∈I

hxfemk φk(x̂) +

MF∑

m=1

∑

k∈Jm

ĥxfemk,m φk(x̂)Φm(x̂), (4.8)

where hxfemk are the unknowns related to standard �nite element basis funtions and

ĥxfemk,m are the DOFs of the enrihment basis funtions related to the m-th trae. The

set Jm ⊂ I ollets the ative DOFs for the m-th enrihment (alled enrihed DOFs).

By properly hoosing Jm, we an ontrol loality of the enrihments. Indeed, eah loal

enrihment funtion φkΦm has ompat support equal to the support of φk, ∆k, and, as

a onsequene, the region ∆m of the domain subjet to the enrihment Φm is determined

by the set of ative standard FE DOFs: ∆m =
{⋃

k∈Jm
∆k

}
.

In the remaining of this Setion, we fous on three major issues onerning the use

of XFEM in the ontext of DFN simulation: (i) enrihment funtion hoie, (ii) preser-

vation of optimal onvergene rates, and (iii) ill onditioning prevention. To simplify

the notation, also in the sequel our disussion refers to a single frature plane F with

MF traes. We remark that all onsiderations are independent of the number of fra-

tures in the DFN, being the disretization of the governing equations on eah frature

independent from the others. Our disussion is also independent of possible traes in-

tersetions, as thanks to additivity property highlighted by (4.8), no speial enrihment

is onsidered for traes intersetion (see the next Subsetion 4.3.1).
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Figure 4.2: Example of DFN with a nononforming mesh (left). Zoom of mesh detail on

the right.

4.3.1 Seletion of enrihment funtions

Enrihment funtion seletion is a key issue for XFEM implementation, and it is ruled

by the kind of irregular behaviour to be reprodued and by the nature of the interfaes

(see [10℄ for a omprehensive review). In the ontext of DFN models onerning the �rst

point we have to fae ontinuous solutions with disontinuous derivatives; going to the

seond point, irregularity interfaes are usually lassi�ed as losed or open interfaes:

losed interfaes extend throughout the whole omputational domain, whereas open

interfaes end and/or begin inside the domain. In DFN models traes an be arbitrarily

plaed inside the fratures, thus originating open and losed interfaes whih might have

multiple intersetions among eah other.

In addition to this geometrial omplexity, sine the number of interfaes may be large,

a high number of enrihment unknowns ould be required. As a onsequene, in order to

mitigate omplexity of the enrihed spae, we hoose a rather simple enrihing funtion,

given by the distane funtion:

Φm(x̂) = d(x̂, Sm) ∀m = 1, . . . ,MF , (4.9)

where, following standard notation, d(x, S) denotes the distane of point x from the

set S. Setting Jm = {k ∈ I : ∆k ∩ Sm 6= ∅}, the in�uene of eah global enrihment is

limited to the elements with a non-empty intersetion with the trae. This hoie an

strongly redue the number of DOFs if ompared with [5, 6℄, where more enrihment

funtions are used for the tips of the traes. The typial behaviour of funtions (4.9) is

shown in Figure 4.3, and they are used for both open and losed interfaes, thus keeping

as low as possible the number of required enrihments (and onsequently the number



112 Chapter 4

0
0.2

0.4
0.6

0.8
1

0

0.5

1
1

1.2

1.4

1.6

1.8

x1x2

Figure 4.3: Example of global enrihment funtion Φm.

of unknowns), but still giving a good approximation of the behaviour of the solution

around traes, as shown in the numerial examples of Setion 4.5.

The gradient of the enrihment funtions has a disontinuous omponent normal to

the trae, and therefore speial are is needed for the numerial integration. To this aim,

mesh elements rossed by traes are divided in sub-elements, in suh a way that only

sub-elements edges or verties lie on the traes (see for example Figure 4.6, right). Low

order Gaussian formulae are then used on the sub-elements without loss of auray,

thanks to the simple struture of the enrihment funtions, and with a moderate number

of funtion evaluations. This point is of paramount importane in order to limit the

omputational ost when a large number of traes is onsidered.

We remark that no spei� enrihment funtions are required in the ase of inter-

seting traes, sine the enrihments enjoy an additivity property, as emphasized by the

struture of (4.8). The linear ombination of the enrihments (4.3) introdued for eah

interseting trae is su�ient to approximate the irregular behaviour of the solution.

Figure 4.4 shows a linear ombination of funtions (4.3) for two interseting traes with

triangular �rst order �nite elements. This simple example shows that it is possible to

reprodue a solution whih is ontinuous aross the traes (Figure 4.4) but with a di�er-

ent value of the normal omponent of the gradient in eah of the four regions separated

by the traes.
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Figure 4.4: Example of approximated solution on the referene triangle for two rossing

traes and �rst order basis funtions.

4.3.2 Convergene rates

As previously disussed, for eah global enrihment Φm a set of additional enrihment

basis funtions is generated and orrespondingly some DOFs are added. Mesh elements

might therefore have a variable number of DOFs, depending on the number of enrihed

DOFs and additional basis funtions hosted. Hene, mesh elements are lassi�ed as

follows: 1) standard elements, if no enrihment ats on the element; 2) reproduing

elements, if the full set of DOFs is enrihed with a given enrihment Φm; 3) blending

elements, if only some DOFs are enrihed with a given funtion Φm [9℄. Figure 4.5

depits this lassi�ation in the ase of a single trae with �rst order triangular elements.

Note that eah mesh element an be involved by several enrihments, and it an be of

di�erent type in relation to di�erent enrihment funtions. The behaviour of enrihment

funtion Φm an be orretly reprodued only in reproduing elements, where the whole

set of enrihment basis funtions is available, whereas in blending elements only a partial

reonstrution of Φm is possible, and spurious terms are generated whih might a�et

the optimal onvergene rates expeted for standard �nite elements of the same order.

At the same time, blending elements, sharing the DOFs of neighbouring reproduing

elements preserve the ontinuity of the numerial solution.

In order to restore optimal onvergene rates, a modi�ed version of the XFEM is
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Figure 4.5: Classi�ation of mesh elements.

adopted, as suggested in [9℄. The global enrihment funtions Φm are replaed by

funtions ΦmRm where Rm =
∑

k∈Jm
φk and is alled ramp funtion. The set of ative

DOFs, Jm, is replaed by the set J̃m =
{
k ∈ I : ∆k ∩ ∆̄m 6= ∅

}
. With these hoies,

elements formerly lassi�ed as blending elements, beome reproduing elements for the

modi�ed enrihment funtions ΦmRm, thus avoiding spurious terms, and thanks to the

struture of ramp funtions the ontinuity of the solution is preserved.

It is also bene�ial to introdue a shifting of the enrihment basis funtions to restore

the Lagrangian property to the disrete funtional spae. The XFEM test and trial spae

is then:

V xfem
δ = span

(
{φk}k∈I ,

{
φk

(
Φ1R1 − Φ1(x̂

k)R1(x̂
k)
)}

k∈J1

, . . . ,

{
φk

(
ΦMF

RMF
−ΦMF

(x̂k)RMF
(x̂k)

)}
k∈JMF

)
,

where x̂k is the node suh that φk(x̂
k) = 1.

4.3.3 Ill onditioning prevention

The XFEM sti�ness matrix (here and in the following denoted by A) might result

ill onditioned or even singular due to the presene of redundant basis funtions in the

enrihed funtional spae V xfem
δ . When two (or more) parallel traes are present in the
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same mesh element, the loal enrihment funtions are generated starting from global

funtions that di�er only for a translation. This translation, besides being neessary

in order to reprodue the behaviour of the solution, is also enough to provide linear

independene of enrihment funtions in the mesh element under onsideration. On

the other hand, linear dependenies in the loal enrihment funtions of neighbouring

elements an arise. Almost parallel traes may also result in a ill-onditioned sti�ness

matrix, or even numerially sigular. Preventive detetion of redundant basis funtions,

whih is a typial hoie in some ases [9℄, is infeasible in this ontext due to the omplex

geometrial on�guration of realisti DFNs. For this reason, we adopt here a di�erent

approah whih onsists in deteting (almost) linearly dependent rows and olumns in

A after having assembled the matrix on eah frature. This is done operating a rank

revealing QR-fatorization of A (see for example [11℄), exploiting the speial struture

of the sti�ness matrix. Indeed, while referring the reader to the Appendix for details,

we brie�y mention here that the matrix A is a blok diagonal matrix, being the Ai blok

given by the sti�ness matrix built on frature Fi. Therefore, the QR fatorization is

atually independently omputed for eah diagonal blok, and sine on eah frature

we have a moderate amount of DOFs, the ost for omputing the QR fatorizations

is aeptable. After having omputed the rank revealing QR fatorization for eah

diagonal blok, i.e. Ai = QiRi, with diagonal entries of the upper triangular matrix Ri

in desending order with respet to their absolute value, we neglet rows and olumns

orresponding to diagonal entries with modulus lower than a given tolerane. Fators

Qi and Ri are then used in the resolution of the linear systems. In order to redue

omputational ost, this proedure is performed only for fratures with parallel traes

far from eah other less than maximum element diameter, sine the detetion of parallel

traes and omputation of their distane is a heap task.

4.4 Solution of the optimization problem

As shown in Setion 7.2, the problem has been reformulated as a PDE-onstrained

optimization problem (see equation (7.7)) in whih the quadrati funtional J has to be

minimized subjet to linear onstraints. In this setion, following a �rst-disretize-then-

optimize approah, we give some details about the numerial approah for omputing a

solution to the problem.

While referring the reader to the Appendix for all the details, we just sketh here
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the struture of the �nite dimensional optimization problem to be solved.

Let us introdue a �nite dimensional basis on eah frature Fi and on eah trae

Sm, with a total number of NF
DOFs on fratures and NT

DOFs on traes. Referring

to equation (4.6), we write the disrete funtional in terms of L2
norms instead of H− 1

2

and H
1

2
norms on the set of traes. With suitable de�nitions, given in the Appendix,

the funtional J is written

J(h, u) :=
1

2
hTGhh− αhTBu+

1

2
uTGuu, (4.10)

where Gh ∈ R
NF×NF

, Gu ∈ R
NT×NT

are symmetri positive semide�nite sparse ma-

tries, B ∈ R
NF×NT

is a sparse matrix, and vetors h ∈ R
NF

and u ∈ R
NT

ollet

all DOFs for the hydrauli head on fratures and for the ontrol variable on traes,

respetively. The onstraints are written

Ah− B u = q, (4.11)

where A ∈ R
NF×NF

is the sti�ness matrix, B ∈ R
NF×NT

is a sparse matrix, and

q ∈ R
NF

is a vetor whih aounts for possible soure terms and boundary ondi-

tions. The problem under onsideration is therefore the equality onstrained quadrati

programming problem

min J(h, u) subjet to (7.21) (4.12)

The �rst order optimality onditions for problem (7.20) are the following:




Gh −αB AT

−αBT Gu −BT

A −B 0







h

u

−p


 =




0

0

q


 (4.13)

being p the vetor of Lagrange multipliers.

The previous saddle point problem is known to be a symmetri inde�nite system.

Note that it is a very large sale problem, with highly sparse bloks, as A, Gu
are blok

diagonal matries, Gh
, B and B are blok-sparse.

By (formally) using the linear onstraint for eliminating the unknown h as

h = A−1(B u+ q), (4.14)

we obtain the following equivalent unonstrained problem :

min Ĵ(u) :=
1

2
uT (BT A−TGhA−1 B+Gu − αBT A−TB − αBTA−1 B)u

+qTA−T (GhA−1 B−αB)u.
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For further onveniene we rewrite Ĵ(u) = 1
2u

T Ĝu+ q̂Tu. A gradient-based method for

the minimization of the funtional requires the omputation of the gradient of Ĵ :

∇Ĵ(u) = (BT A−TGhA−1 B+Gu − α(BT A−TB +BTA−1 B))u+

(BT A−TGh − αBT )A−1q.

The gradient an be written in terms of some auxiliary variables as follows. Rear-

ranging previous expression, we obtain

∇Ĵ(u) = BT A−TGhA−1(B u+ q) +Guu− αBT A−TBu− αBTA−1(B u+ q)

and realling (7.23), one has

∇Ĵ(u) = BT A−TGhh+Guu− αBT A−TBu− αBTh.

Now set p := A−T (Ghh− αBu), i.e. given h and u, p solves

AT p = Ghh− αBu. (4.15)

We have

∇Ĵ(u) = BT p+Guu− αBTh. (4.16)

Note that setting to zero previous expression for obtaining stationary points for Ĵ(u),

and olleting suh equation together with (7.23) and (7.24), we obtain system (4.13).

Conerning the numerial solution of the otimization problem, we mention here two

possible approahes. The �rst one onsists in solving the linear system (4.13). An

iterative solver is learly a reommended hoie, and symmlq would be a suitable hoie;

this approah has been used in [5℄. An other approah onsists in applying an iterative

solver to the minimization of Ĵ(u). We fous here on this seond approah, skething

the onjugate gradient method applied to the minimization of Ĵ(u). In the algorithm,

let us denote by gk the gradient ∇Ĵ(uk) at step k and by dk the diretion of movement.

Conjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (7.23) and (7.24) and g0 by (7.25)

3. Set d0 = −g0, k = 0
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4. While gk 6= 0

4.1. Compute λk with a line searh along dk

4.2. Compute uk+1 = uk + λkdk

4.3. Update gk+1 = gk + λkĜdk

4.4. Compute βk+1 =
gT
k+1

gk+1

gT
k
gk

4.5. Update dk+1 = −gk+1 + βk+1dk

4.6. k = k + 1

Due to linearity, Step 4.3 is equivalent to ompute gk+1 = Ĝuk+1 + q̂. Indeed,

gk+1 = Ĝuk+1 + q̂ = Ĝ(uk + λkdk) + q̂ = Ĝuk + q̂ + λkĜdk = gk + λkĜdk.

Nonetheless, we remark that this step is learly performed without forming matrix Ĝ,

but rather omputing vetor yk = Ĝdk through the following steps:

1. Solve At = B dk

2. Solve AT v = Ght− αBdk

3. Compute yk = BT v +Gudk − αBT t.

Furthermore, sine Ĵ is quadrati, the stepsize λk in Step 4.1 an be omputed via

an exat line searh. Given a desent diretion dk, we ompute λk suh that it minimizes

the funtion φ(λ) := Ĵ(uk + λdk). Straightforward omputations show that one has

λk = − dTk gk

dTk Ĝdk
. (4.17)

The stepsize λk is therefore omputed without muh e�ort, as quantity Ĝdk is the same

needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of

the linear systems with oe�ient matrix A (whih atually equals AT
). Nevertheless,

we reall that matrix A is atually symmetri positive de�nite, blok diagonal with eah

blok de�ned on a frature (see the Appendix). The systems are therefore deomposed in

as many small �loal� systems as the number of fratures. Right-hand-sides of the loal

systems gather information both from the urrent frature, and from the interseting

fratures, whih typially are in a moderate number. Hene, these independent linear

systems an be e�iently solved on parallel omputers.
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4.5 Numerial results

Some numerial results are now provided to show the e�etiveness of XFEM imple-

mentation in the ontext of DFN simulations. All numerial simulations are performed

with �rst order �nite elements on triangular meshes. The presentation is organized as

follows: two test problems are introdued, in order to highlight the performanes of

the enrihment funtions and the onvergene properties of the adopted XFEM; then, a

simple DFN on�guration with a ritial geometrial on�guration is used for disussing

ill-onditioning issues; �nally, the solution of a omplex DFN on�guration is shown.

4.5.1 Test problems

The �rst two test ases aim at showing the e�etiveness of XFEM implementation

in representing irregular solution on eah frature of a given DFN, therefore, a single

problem of the form (4.1) is solved on a sample frature, using the known exat value of

�uxes on the traes. Results obtained with the full algorithm desribed in Setion 4.4

are presented afterwards.

The domain of the �rst problem (TP1) is a single retangular frature F1 ⊂ R
2
, with

two traes S1 and S2, de�ned by:

F1 =
{
(x, y) ∈ R

2 : x ∈ (0, 3), y ∈ (0, 1)
}

S1 =
{
(x, y) ∈ R

2 : x− y − 1 = 0
}

S2 =
{
x ∈ R

2 : 2− x− y = 0
}
,

and S = S1∪S2. The domain is shown in Figure 4.6 where a oarse mesh with parameter

δmax = 0.25 is also plotted. Here and in the sequel the mesh parameter orresponds to

the square root average area of the mesh elements. The problem is set as follows:

−∆H1 = −∆Hex
1 Ω \ S,

H1 = 0 on ∂F1,

U1 = fS1
on S1,

U2 = fS2
on S2,

with

Hex
1 (x, y) =





xy(y − 1)(x− y − 1)(x+ y − 2)|A2|/(4c1) in A1,

(1− y)(x− y − 1)(x + y − 2) in A2,

y(x− y − 1)(x+ y − 2) in A3,

y(1− y)(x− 3)(x− y − 1)(x + y − 2)|A3|/(4c2) in A4,
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Figure 4.6: Problem TP1. Domain with oarse grid δmax = 0.25. Right: a detail of

sub-elements division.

where A1, A2, A3 and A4 denote the four regions in whih F1 is divided by the traes,

as indiated in Figure 4.6, and c1 and c2 are two onstants used to resale the solution.

We set fS1
=
[[
∂Hex

1

∂ν̂S1

]]
S
and fS2

=
[[
∂Hex

1

∂ν̂S2

]]
S
. We set c1 = 7 and c2 = 5 and being

|A2| = |A3| = 1/4 we have

fS1
(x, y) =





1/(7
√
2)(2− x− y) (7− x(6 + x) + 20y

+2x(1 + x)y − 5xy2 + y3
)

x+ y − 2 ≤ 0

1/(5
√
2)(2− x− y) (−8 + y(1 + y)(11 + y)

+x2(−1 + 2y)− x(1 + y(4 + 5y))
)

x+ y − 2 > 0,

and

fS2
(x, y) =





1/(5
√
2)(−1 + x− y) (−16− (−10 + x)x+ 38y

+2(−7 + x)xy + 5(−3 + x)y2 + y3
)

y − x+ 1 ≤ 0

1/(7
√
2)(−1 + x− y)

(
−28 + x2(−1 + 2y)

+y(23 + (−3 + y)y) + x(9 + y(−8 + 5y))) y − x+ 1 > 0.

In Figure 4.6, right, a detail of traes intersetion is given: in partiular, for the element

ontaining the intersetion, the sub-elements introdued for quadrature are shown. Fig-

ure 4.7 reports the analytial solution, while Figure 4.8 displays the numerial solution

on a �ne mesh with parameter δmax = 0.1. On elements ut by the traes, the solution is

represented using the same sub-elements introdued for quadrature. We an notie that

the irregular trend aross traes is well reprodued, without requiring any onformity

between mesh elements and traes.
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Figure 4.7: Problem TP1. Exat solution.

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

−0.01

0

0.01

0.02

0.03

x

y

Figure 4.8: Problem TP1. Numerial solu-

tion with XFEM on the mesh with δmax =

0.1.

We onsider now a modi�ed version of TP1, problem TP1-X7, in whih the angle

underlying the interseting traes is rather small (7◦ instead of 90◦). This is a potentially

ritial situation. The on�guration is shown in Figure 4.9. The two problems, original

TP1 and TP1-X7, are solved both with the XFEM on nononforming grids and standard

�nite elements on onforming grids. Figure 4.10 shows the L2
and H1

-error norms

against grid re�nement, with grid parameters ranging from δmax = 0.32 to δmax = 0.025.

In the original TP1 problem (urves labelled X90◦ in Figure 4.10), the behaviour of

XFEM and FEM is omparable, with onvergene orders that approah the optimal

values for both H1
and L2

error norms. When the angle between traes redues (urves

X7◦), the performane of standard �nite elements in H1
norm deteriorates, while it

remains una�eted for the XFEM. This is an expeted behaviour and is a onsequene

of the poor quality of the onforming mesh for standard �nite elements.

The seond test problem (TP2) onsiders a trae ending inside the frature, i.e.

an open interfae. This test problem has been onsidered also in [5℄ with di�erent

tip enrihing funtions, in order to analyze behavior of the solution lose to an open

interfae. Here again we want to show quality of the solution but with the di�erent

enrihment funtions here adopted, as now the same enrihment funtion (4.3) is used

to desribe the behaviour of the solution lose to trae tips and away from trae tips.

Furthermore, for eah trae tip, just one enrihment funtion is used here instead of
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Figure 4.9: Problem TP1-X7. Detail of a onforming mesh

with δmax = 0.25.
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three as in [5, 6℄. Let us de�ne the domain F2 as

F2 =
{
(x, y) ∈ R

3 : −1 < x < 1, −1 < y < 1, z = 0
}
,

with a single trae S =
{
(x, y) ∈ R

2 : y = 0 and − 1 ≤ x ≤ 0
}
thus ending in the inte-

rior of F2. We introdue the funtion Hex
2 (x, y) in F2 as:

Hex
2 (x, y) = (x2 − 1)(y2 − 1)(x2 + y2) cos

(
1

2
arctan2(x, y)

)

where arctan2(x, y) is the four-quadrant inverse tangent, giving the angle between the

positive x-axis and point (x, y), and di�ers from the usual one-argument inverse tangent

arctan(·) for plaing the angle in the orret quadrant. The funtion H2 is the solution

of the system:

−∆H2 = −∆Hex
2 in Ω \ S,

H2 = 0 on ∂F2,

U = x− x3 on S,

where U is the exat value of the jump of �uxes aross the trae S. In Figure 7.6 we

report the numerial solution obtained with the XFEM on a nononforming grid with

δmax = 0.1, while in Figure 4.12 error norms for the numerial solution are shown both

with the XFEM and with standard �nite elements on onforming grids. The urves are

perfetly overlapped and onvergene orders reported in the �gure are optimal, thus

proving good approximation apabilities for the hosen enrihments.

4.5.2 DFN problems

We now show some numerial results on DFN-like on�gurations obtained with the

PDE onstrained optimization method desribed in Setion 4.4. Here we fous on the

main aspets related to the use of extended �nite elements, referring to [5, 6℄ for a

detailed analysis of the behaviour of the optimization algorithm.

The �rst example of this setion, problem DFN3, is a simple network omposed

of three fratures as shown in Figure 4.13. Here Ω = F1 ∪ F2 ∪ F3; S1 = F1 ∩ F2;

S2 = F1 ∩F3. We solve −∆H = 0 in Ω \ (S1 ∪S2), with Dirihelet boundary onditions

H|ΓD,1
= 1 on ΓD,1, H|ΓD,2

= 1.5 on ΓD,2, H|ΓD,3
= −0.5 on ΓD,3 and homogeneous

Neumann boundary onditions on the other sides (see Figure 4.13). This on�guration

reprodues a ritial situation for the frature F1, in whih two parallel traes very
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lution with XFEM on a non-onforming

grid with δmax = 0.1
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Figure 4.15: Problem DFN40. Left: DFN on�guration and solution (olorbar). Right:

hydrauli head isolines on a seleted frature

lose eah other are present. A onforming mesh would be onstrained by the presene

of these traes, with a large number of elements to be plaed between the traes in

order to preserve quality. The XFEM do not require a onforming mesh, but in this

ase the set of loal enrihment funtions introdued for the two traes ould be not

linearly independent, as detailed in Subsetion 4.3.3. Applying the desribed strategy

for redundant basis funtions removal with a tolerane of 10−14
, a new matrix with

a ondition number of 104 is extrated from the formerly singular sti�ness matrix of

the proposed problem, removing four redundant DOFs. The quality of the solution is

not a�eted as shown by Figure 4.14, where the solution on F1 is plotted. It an be

notied that the numerial approximation reprodues the expeted behaviour for the

exat solution that is pieewise linear and displays jumps of derivatives in the diretion

normal to the traes. Sine the solution belongs to the disrete subspae spanned by

the FEM and XFEM basis funtions, the exat solution is orretly reprodued up to

mahine error.

We �nally present the numerial results on a realisti DFN on�guration omposed

of 40 fratures and 96 traes (problem DFN40). The fratures have an average size of

4× 103 m2
. The problem is solved with several non-onforming meshes with maximum

element sizes ranging from 2 to 25m2
. As in problem DFN3, a simple Laplae problem for

the hydrauli head is onsidered, with foring term equal to zero and onstant Dirihelet

boundary onditions applied to one edge of a �soure� frature (H = 100) and of a �sink�

frature (H = 0). All other edges are treated as insulated, imposing homogeneous

Neumann boundary onditions. Figure 4.15, left, shows the geometrial on�guration



126 Chapter 4

10
0.2

10
0.3

10
0.4

10
0.5

10
0.6

10
0.7

10
−6

10
−5

10
−4

10
−3

 

 

sqrt(J) (slope=1.09)
∆

cont
 (slope=1.02)

∆
flux

 (slope=1.16)

10
0.2

10
0.3

10
0.4

10
0.5

10
0.6

10
0.7

10
−6

10
−5

10
−4

10
−3

 

 

sqrt(J) (slope=0.67)
∆

cont
 (slope=0.65)

∆
flux

 (slope=0.69)

Figure 4.16: Problem DFN40. Convergene history for global ontinuity error and �ux

mismath. Left: XFEM; right: FEM
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Figure 4.17: Problem DFN40. Convergene history for global ontinuity error and �ux

mismath. Left: XFEM; right: FEM. Grids on traes twie as �ne as the previous ase

of the DFN along with a shading of the obtained solution on the 7m2
elements mesh,

while in Figure 4.15, right, we plot isolines for hydrauli head omputed on a seleted

frature with the same mesh. Dashed lines in this �gure represent traes on the frature.

It an be notied that the isolines have sudden variations aross the traes, showing that

disontinuities in gradients are orretly reprodued by the XFEM.

Finally, we analyze on problem DFN40 the numerial onservation properties of

the method, using both enrihed and non-enrihed basis. Indeed, we reall that our

approah does not exatly impose mathing onditions (4.2) and (4.3), but it minimizes

the sum of global ontinuity error and �ux mismath. The label FEM in the table and

�gures whih follow, refers to results obtained with the optimization approah on non-
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Table 4.1: Disontinuity errors and �ux mismathes

XFEM FEM

40frat

Grid ∆cont ∆flux ∆cont ∆flux

25 1.375e-04 1.623e-04 1.033e-04 1.154e-04

23 1.738e-04 1.979e-04 1.077e-04 1.151e-04

22 1.520e-04 1.698e-04 1.116e-04 1.101e-04

20 1.128e-04 1.577e-04 1.016e-04 1.024e-04

18 1.081e-04 1.616e-04 9.477e-05 1.041e-04

15 1.117e-04 1.425e-04 1.029e-04 1.053e-04

7 6.675e-05 1.041e-04 7.787e-05 8.834e-05

5 6.362e-05 7.359e-05 8.032e-05 6.766e-05

2 4.274e-05 4.055e-05 4.253e-05 4.580e-05

40frat2x

Grid ∆cont ∆flux ∆cont ∆flux

25 3.251e-05 1.433e-04 4.053e-05 3.582e-05

23 3.109e-05 1.373e-04 3.997e-05 3.09e-05

22 2.712e-05 1.152e-04 4.031e-05 2.82e-05

20 3.140e-05 1.005e-04 3.665e-05 2.776e-05

18 2.936e-05 1.039e-04 3.600e-05 2.521e-05

15 2.439e-05 8.868e-05 3.263e-05 2.956e-05

7 2.432e-05 5.973e-05 2.747e-05 1.945e-05

5 1.304e-05 3.202e-05 2.316e-05 1.579e-05

2 8.095e-06 1.624e-05 1.842e-05 1.110e-05

40frat3x

Grid ∆cont ∆flux ∆cont ∆flux

25 1.946e-05 1.329e-04 3.503e-05 1.776e-05

23 1.969e-05 1.262e-04 3.326e-05 1.635e-05

22 1.696e-05 1.121e-04 3.408e-05 1.736e-05

20 1.779e-05 1.012e-04 3.137e-05 1.571e-05

18 1.764e-05 1.016e-04 3.099e-05 1.453e-05

15 1.719e-05 7.957e-05 2.772e-05 1.624e-05

7 1.522e-05 5.072e-05 2.521e-05 1.301e-05

5 9.098e-06 2.631e-05 2.099e-05 8.104e-06

2 6.608e-06 1.594e-05 1.613e-05 6.373e-06



128 Chapter 4

10
0.2

10
0.3

10
0.4

10
0.5

10
0.6

10
0.7

10
−6

10
−5

10
−4

10
−3

 

 

sqrt(J) (slope=1.65)
∆

cont
 (slope=0.83)

∆
flux

 (slope=1.71)

10
0.2

10
0.3

10
0.4

10
0.5

10
0.6

10
0.7

10
−6

10
−5

10
−4

10
−3

 

 

sqrt(J) (slope=0.62)
∆

cont
 (slope=0.59)

∆
flux

 (slope=0.80)

Figure 4.18: Problem DFN40. Convergene history for global ontinuity error and �ux

mismath. Left: XFEM; right: FEM. Grids on traes three times as �ne as the previous

ase

onforming meshes without enrihment funtions. In Table 4.1 we report values of the

total ontinuity error and the total �ux mismath relative to total trae length, de�ned

respetively as:

∆cont =

√∑M
m=1 ‖hi|Sm

− hj |Sm
‖2

∑M
m=1 |Sm|

,

∆flux =

√∑M
m=1 ‖umi + umj − α(hi |Sm

+ hj |Sm
)‖2

∑M
m=1 |Sm|

.

The table referes to all the non-onforming meshes used on fratures both using enrih-

ment funtions (XFEM label) and without enrihments (FEM label), and to three di�er-

ent grids used on traes obtained doubling (label 40frat2x) and tripling (label 40frat3x)

the initial number of DOFs for the ontrol variables on the traes. Figures 4.16-4.18

show, under frature mesh re�nement, the onvergene behaviour of global ontinuity

error and �ux mismath. The �gures also show the behaviour of

√
J , again relative to

total trae length. Absissas orrespond to the square root of the maximum element

sizes. Despite on oarser grid the starting mismath errors are larger for XFEM, it

an be noted that for XFEM vanishing rates (the slopes reported in the legend of the

�gures) are lose to 1, whereas for FEM it is loser to 0.5. Conerning re�nement of

trae grids, it an be seen that, as expeted, �ux mismath bene�ts from re�nement to

a larger extent with respet to ontinuity error.



4.6 Conlusions 129

4.6 Conlusions

The use of the XFEM for DFN simulations is very promising for the possibility of

using non-onforming meshes on the fratures but a number of issues are to be onsidered

in order to ensure an e�etive implementation. In the present work we address some of

them.

The enrihment funtions suggested have a very simple struture and represent a

unifying approah to handle open, losed and interseting interfaes, thus simplifying

implementation, limiting the omputational ost for the enrihment part of the approx-

imation and still ensuring good auray for DFN simulation purposes.

A thorough desription of the implementation strategy suggested in [9℄ to restore

optimal onvergene rates is provided in the ase of interest, and numerous numerial

examples are reported showing the expeted onvergene performanes.

The major soure of ill-onditioning in DFN simulations is identi�ed in the possi-

bility of having linear dependene or almost linear dependene in the enrihment basis

funtion spae, and a strategy to overome this problem is identi�ed and suessfully

implemented.

Finally, the optimization approah results to be very e�etive in dealing with very

omplex DFNs.

4.7 Appendix

In this setion we give some details onerning the disrete form (7.20) of the opti-

mization problem (7.7).

In order to simplify the disussion, let us onsider the following di�erent numbering

for the ontrol funtions uSi , indued by the trae numbering. Being S = Sm a given

trae, with ISm = {i, j} and assuming i < j, we denote by u−m and by u+m the ontrol

funtions related to the m-th trae and orresponding to fratures Fi and Fj , respe-

tively. Let us introdue basis funtions ψ−
m,k, k = 1, ..., N−

m and ψ+
m,k, k = 1, ..., N+

m for

the spae of the ontrol funtion u−m and u+m, respetively. Note that here we allow to

use di�erent spaes on the two �sides� of eah trae. Then we have, for m = 1, ...,M ,

⋆ = −,+, u⋆m =
∑N⋆

m

k=1 u
⋆
m,kψ

⋆
m,k. Setting N

T =
∑M

m=1(N
−
m +N+

m), we de�ne u ∈ R
NT

onatenating u−1 , u
+
1 , . . . , u

−
M , u

+
M .

Let us onsider the funtional J , whose expression is given in Setion 7.2 by equation
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(4.6). Denoting by φi,k the k-th basis funtion of the XFEM approximation of hi on

frature Fi, the disrete form of the funtional is

J =
1

2

I∑

i=1

∑

S∈Si



∫

S

(

Ni∑

k=1

hi,kφi,k|S −
Nj∑

k=1

hj,kφj,k|S)
2 dγ+ (4.18)

∫

S

(

N−
m∑

k=1

u−m,kψ
−
m,k +

N+
m∑

k=1

u+m,kψ
+
m,k − α

Ni∑

k=1

hi,kφi,k|S − α

Nj∑

k=1

hj,kφj,k|S)
2 dγ


 .

The �rst integral in (7.18) after straightforward manipulation rewrites as

IS,1ij = hTi C
S
i,ihi + hTj C

S
j,jhj − 2hTi C

S
i,jhj

where CS
p,q, for either p = q or p, q ∈ IS for some trae S, is the matrix de�ned by

(CS
p,q)k,ℓ =

∫

S

ϕp,k|S
ϕq,ℓ|S

dγ.

Note that sine (CS
ij)

T = CS
ji, we an also write IS,1ij = hTi C

S
i,ihi+h

T
j C

S
j,jhj −hTi CS

i,jhj −
hTj C

S
j,ihi.

The seond integral after some straightforward algebrai manipulation rewrites

IS,2ij =

N−
m∑

k=1

u−m,k

2
∫

S

ψ−
m,k

2
dγ + 2

N−
m∑

k=1

N−
m∑

ℓ=1

u−m,ku
−
m,ℓ

∫

S

ψ−
m,kψ

−
m,ℓ dγ

+

N+
m∑

k=1

u+m,k

2
∫

S

ψ+
m,k

2
dγ + 2

N+
m∑

k=1

N+
m∑

ℓ=1

u+m,ku
+
m,ℓ

∫

S

ψ+
m,kψ

+
m,ℓ dγ

+2

N−
m∑

k=1

N+
m∑

ℓ=1

u−m,ku
+
m,ℓ

∫

S

ψ−
m,kψ

+
m,ℓ dγ + α2

Ni∑

k=1

h2i,k

∫

S

φi,k
2
|S
dγ

+2α2
Ni∑

k,ℓ=1

hi,khi,ℓ

∫

S

φi,k|Sφi,ℓ|S dγ + α2

Nj∑

k=1

h2j,k

∫

S

φj,k
2
|S
dγ

+2α2

Nj∑

k,ℓ=1

hj,khj,ℓ

∫

S

φj,k|Sφj,ℓ|S dγ + 2α2
Ni∑

k=1

Nj∑

ℓ=1

hi,khj,ℓ

∫

S

φi,k |Sφj,ℓ|S dγ

−2α

N−
m∑

k=1

Ni∑

ℓ=1

u−m,khi,ℓ

∫
ψ−
m,kφi,ℓ|S dγ − 2α

N−
m∑

k=1

Nj∑

ℓ=1

u−m,khj,ℓ

∫
ψ−
m,kφj,ℓ|S dγ

−2α

N+
m∑

k=1

Ni∑

ℓ=1

u+m,khi,ℓ

∫
ψ+
m,kφi,ℓ|S dγ − 2α

N+
m∑

k=1

Nj∑

ℓ=1

u+m,khj,ℓ

∫
ψ+
m,kφj,ℓ|S dγ.
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Let us introdue the following matries: for m = 1, ...,M and ⋆ = −,+ de�ne C⋆
m ∈

R
N⋆

m×N⋆
m
, C±

m ∈ R
N−

m×N+
m
and Cm as:

(C⋆
m)kℓ=

∫

Sm

ψ⋆
m,kψ

⋆
m,ℓ dγ, (C±

m)kℓ=

∫

Sm

ψ−
m,kψ

+
m,ℓ dγ, Cm=

(
C−
m C±

m

(C±
m)T C+

m

)
.

If fratures Fi and Fj share trae Sm, we de�ne matries B−
i,m ∈ R

Ni×N−
m
and B+

i,m ∈
R
Ni×N+

m
de�ned as

(B−
i,m)kℓ =

∫

Sm

ψ−
m,kφi,ℓ|Sm

dγ, (B+
i,m)kℓ =

∫

Sm

ψ+
m,kφi,ℓ|Sm

dγ.

An analogous de�nition holds for matries B−
j,m and B+

j,m. Integral I
S,2
ij is then written

in ompat form as

IS,2ij = (u−m,k)
T C−

m u
−
m,k + (u+m,k)

T C+
m u

+
m,k + 2(u−m,k)

T C±
m u

+
m,k +

α2hTi C
S
i,ihi + α2hTj C

S
j,jhj + 2α2hTi C

S
i,jhj − α(hTi B

−
i,mu

−
m,k)

−α(hTi B+
i,mu

+
m,k)− α(hTj B

−
j,mu

−
m,k)− α(hTj B

+
j,mu

+
m,k)

−α((u−m,k)
T (B−

i,m)Thi)− α((u+m,k)
T (B+

i,m)Thi)

−α((u−m,k)
T (B−

j,m)Thj)− α((u+m,k)
T (B+

j,m)Thj).

We have therefore

J(u) =
1

2

I∑

i=1

∑

S∈Si

(1 + α2)hTi C
S
i,ihi + (1 + α2)hTj C

S
j,jhj − 2(1 − α2)hTi C

S
i,jhj

+(u−m)T C−
m u

−
m + (u+m)T C+

m u
+
m + 2(u−m)T C±

m u
+
m − α(hTi B

+
i,mu

+
m)

−α(hTi B−
i,mu

−
m)− α(hTj B

−
j,mu

−
m)− α(hTj B

+
j,mu

+
m)− α((u−m)T (B−

i,m)Thi)

−α((u+m)T (B+
i,m)Thi)− α((u−m)T (B−

j,m)
Thj)− α((u+m)T (B+

j,m)Thj).

We now allow for a more ompat form of J(u) by assembling previous matries as

follows. We set

Bi,m = (B−
i,m B+

i,m) ∈ R
Ni×(N−

m+N+
m), um = (u−m, u

+
m).

For eah �xed i = 1, ..., I, matries Bi,m, with m suh that Sm ∈ Si, are then grouped

row-wise to form the matrix Bi ∈ R
Ni×NSi

, with NSi
=
∑

Sm∈Si
(N−

m +N+
m), whih ats

on a olumn vetor ui obtained appending the bloks um in the same order used for
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Bi,m, as the ation of a suitable operator Ri : R
NT 7→ R

NSi
suh that ui = Riu. Also,

let B ∈ R
NF×NT

be de�ned by

B =




B1R1

.

.

.

BIRI


 .

Let now Gh ∈ R
NF×NF

be de�ned blokwise as follows: for i = 1, ..., I we set

Gh
ii = (1 + α2)Ci,i, Gh

ij = (α2 − 1)CS
i,j if j ∈ Ji (0 elsewhere) ,

where, �xed Fi, Ji ollets the indies j suh that |F̄j ∩ F̄i| > 0. Sine, obviously, j ∈ Ji

if and only if i ∈ Jj , and due to the straightforward property (Gh
ij)

T = Gh
ji, we have

that Gh
is a symmetri matrix. Next, let us de�ne the matrix Gu ∈ R

NT×NT
blokwise

as Gu = diag(Cm,m = 1, ...,M) and �nally set

G =

(
Gh −αB

−αBT Gu

)
.

Due to previous observations, matrix G is straightforwardly symmetri. Furthermore, it

is positive semide�nite by onstrution. With these de�nitions at hand, the funtional

J is rewritten

J =
1

2
wTGw, w = (h, u)

being h obtained appending vetors hi, i = 1, ..., I.

Constraints (4.5) are written as a unique linear system as follows. For all i = 1, ..., I

de�ne the matrix Ai ∈ R
Ni×Ni

as

(Ai)kℓ =

∫

Fi

∇ϕi,k∇ϕi,ℓ dFi + α
∑

S∈Si

∫

S

φi,k |Sφi,ℓ|S dγ,

For eah frature Fi, we set N
i
Si

=
∑

Sm∈Si
N⋆

m as the number of DOFs on traes of Fi

on the Fi �side�, and we de�ne matries Bi ∈ R
Ni×NSi

grouping row-wise matries B⋆
i,m,

with m spanning traes in Si, and setting for eah m either ⋆ = + or ⋆ = − aording

to whih one of the two �sides� of trae Sm is on Fi.

Matries Bi at on a olumn vetor ui ontaining all the N i
Si

ontrol DOFs orre-

sponding to the traes of Fi, obtained olleting vetors uSi , for S ∈ Si, with the same

ordering introdued for the traes on Fi and used in the de�nition of Bi.
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The algebrai formulation of the primal equations (4.5) is then

Aihi = q̃i + Bi ui, i = 1, ..., I, (4.19)

where q̃i aounts for the term qi in (4.5) and for the boundary onditions on the frature

Fi.

We set A = diag(Ai, i = 1, ..., I) ∈ R
NF×NF

and de�ne B ∈ R
NF×NT

as

B =




B1R
′
1

.

.

.

BI R
′
I




where the operator R′
i now extrats from u only subvetors u⋆m orresponding to ontrol

funtion on the �orret side� of the trae. Setting C = (A − B) and q̃ = (q̃1, . . . , q̃I),

onstraints (4.19) are then written Cw = q̃. The overall problem is then reformulated

as follows:

min
w

1

2
wTGw, s.t. Cw = q̃. (4.20)
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The material olleted in the present Part of the Thesis onsists of a large number of

very reent simulations on omplex DFN on�gurations, and onsequently the analysis of

these numerial results is not su�iently detailed and analysed in depth yet. We believe,

however that the material presented an be of great help in showing the performanes of

the proposed method. Also, through the analysis of these results many implementation

details an be highlighted and disussed.





Chapter 5

On the resolution of omplex DFN

on�gurations

This hapter is devoted to the presentation of a large number of numerial results

obtained with omplex DFN on�gurations, olleting and desribing in a systemati

way the performanes of di�erent implementation hoies for the optimization algorithm

desribed in Setion 4.4. Further we show a preliminary investigation on the salability

properties of the proposed method.

On a mesh non onforming to the traes, the use of the enrihment funtions of the

XFEM an give an aurate desription of the solution around the traes, as thoroughly

disussed in the previous hapters. Standard �nite elements an also be used on the same

nononforming omputational mesh, with the advantage of a slightly redued number

of unknowns (the degrees of freedom related to the enrihment funtions) but at the

expenses of a less aurate representation of the result. This possibility was already

disussed in Chapter 2 and some results are also shown in Chapter 3. Here a deeper

analysis is presented and numerial results on realisti DFN on�gurations are provided

and disussed with both these approahes. The desription of a the method with a

di�erent disretization hoie involving the new Virtual Element Method is deferred to

Chapter 7.

The disretization of the ontrol variables on the traes an be performed ompletely

independently from the disretization on the fratures. The disrete funtional spae for

the ontrol variables hosen is the spae of disontinuous pieewise linear polynomials,

and two di�erent node dispositions are envisaged. Let us onsider a generi trae S =

141
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F̄i ∩ F̄j in a DFN, we an have:

• a disposition of nodes on S for uSi and uSj given by the intersetion points between

S and the element edges of the nononforming meshes on Fi and Fj respetively;

this node on�guration is alled indued, labelled IN;

• or simply equally spaed nodes on S for uSi and uSj , ompletely independent from

the disretization of the state-variables on the fratures; this strategy is termed

equally-spaed, label EN.

Results are desribed with both these on�guration of nodes.

The quality of the obtained solutions is evaluated in terms of three error indiators,

∆
ont

, ∆
�ux

and ∆
soure-sink

, as detailed in the following. The two �rst indiators

measure how well the numerial solution satis�es the ontinuity and �ux balane ondi-

tions aross the traes, while the third indiator evaluates the global mismath between

the �ux injeted in the network of fratures and the total �ux that leaves the network

through the non insulated frature edges.

After a desription of the various DFN on�gurations onsidered, some results on the

onditioning of the problem in relation to key parameters are presented in Setion 5.2.

Numerial simulations are then shown and disussed in Setion 5.3 and in Setion 5.4

where DFNs with non-uniform frature transmissivity are onsidered and some onlu-

sions on onvergene properties of the method are also proposed. Setion 5.5 ends this

Chapter reporting some results on a preliminary investigation on the salability of the

proposed approah.

5.1 Problems desription

The panel of problems onsidered is omposed of six DFN on�gurations of inreasing

omplexity, as summarized in Table 5.1. In the networks onsidered, fratures have

dimensions ranging between 2.8 × 103 m

2
and 1.2 × 104 m

2
and traes interseting in

fratures form angles of about 35◦, 45◦, 55◦, 70◦ or 90◦, while the minimum distane

between non interseting traes varies between 0.5 m and 1.1×102 m. Trae length spans

between 4.2×10−2
m to 2.3×102 m. All the DFNs share the same two boundary fratures

F1 and F2, while all the other fratures might be di�erent from a system to another.

Homogeneous Dirihelet boundary ondition is presribed on one edge of frature F1
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Table 5.1: DFN on�gurations

Label N◦
of fratures N◦

of traes

11F 11 13

27F 27 57

36F 36 65

55F 55 120

68F 68 142

120F 120 256

(sink frature), while a onstant value Dirihelet ondition of 100m is presribed on one

edge of F2 (soure frature) for all systems. All other frature edges are insulated.

Numerial simulations are performed with �rst order �nite elements and triangular

meshes for the state-variable h on the fratures and results are reported using both the

XFEM on nononforming grids and with the standard FEM on the same nononforming

meshes. The disrete subspae of the ontrol variable u is hosen as the spae of dis-

ontinuous piee-wise linear polynomials with indued or equally-spaed nodes. When

equally-spaed nodes are used the number of nodes an be arbitrarily hosen. We de�ne

a referene number of nodes for the equally-spaed on�guration as a number of nodes

lose to the number of nodes of the disretization indued and a parameter nU is in-

trodued to express the number of equally-spaed nodes in terms of the ratio with the

referene value.

The omputational mesh is identi�ed by means of the maximum element area, and

labelled in the �gures with this value without unit of measure (m

2
). Meshes with

maximum element area ranging between 120m2
and 7m2

are onsidered.

5.2 Study of system onditioning

In Setion 7.2 we have formally written the unonstrained formulation of the DFN

problem with the proposed approah, and an expliit formulation of the unonstrained

funtional gradient, (7.25):

∇Ĵ(u) = (BT A−TGhA−1 B+Gu − α(BT A−TB +BTA−1 B))u+ (5.1)

(BT A−TGh − αBT )A−1q

= Ĝu+ q̂.



144 Chapter 5

0 10 20 30 40 50 60 70 80 90 100
10

8

10
9

10
10

10
11

10
12

10
13

10
14

α parameter

C
on

di
tio

ni
ng

 

 
Area 7
Area 10
Area 20
Area 30
Area 40
Area 60

Figure 5.1: Condition number of the 27F

DFN system matrix for α ranging from

0.05 to 100. Indued nodes
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Figure 5.2: Stagnation funtional values of

the 27F DFN for α ranging from 0.05 to

100. Indued nodes

For small DFN on�gurations it is possible to resort to this formulation in order

to evaluate the e�et of some implementation hoies on the onditioning of the dis-

rete problem, analysing the onditioning of matrix Ĝ. The DFN 27F, 36F and 68F

are onsidered in this analysis, with indued or equally-spaed nodes for the ontrol

variables.

Figures 5.1-5.6 show the behaviour of the ondition number of Ĝ and of funtional

minimum in logarithmi sale for di�erent values of the parameter α appearing in the

de�nition of the ontrol variable U given in Chapter 3, and of mesh element maximum

area. In these �gures the XFEM is hosen for the desription of the solution and indued

nodes are used on the traes. Looking at Figures 5.1, 5.3 and 5.5 we an see that, for

eah on�guration and mesh there is an optimal value of α for good onditioning. This

optimal value is ontained in a range of values of few units for all the ases onsidered,

with a weak dependene from the size of the mesh or from the omplexity of the problem.

Conerning funtional values, Figures 5.2, 5.4 and 5.6, show that lower minimum values

are reahed reduing α. However over the entire range of α values onsidered, the

variations of funtional is quite small for all the problems and grids. A possible optimal

hoie appears to be α = 1, sine this value gives low ondition numbers and funtional

minimum and has the desirable property of reduing matrix Gh
blok diagonal, as follows

immediately from the de�nition given in Setion 4.7. This value is used to obtain all

the results presented in this Chapter.

Figures 5.7-5.12 show the ondition number and funtional minimum in funtion



5.2 Study of system onditioning 145

0 10 20 30 40 50 60 70 80 90 100
10

6

10
7

10
8

10
9

10
10

10
11

α parameter

C
on

di
tio

ni
ng

 

 

Area 7
Area 10
Area 20
Area 30
Area 40
Area 60

Figure 5.3: Condition number of the

36frat DFN system matrix for α ranging

from 0.05 to 100. Indued nodes
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Figure 5.4: Stagnation funtional values of

the 36frat DFN for α ranging from 0.05

to 100. Indued nodes
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Figure 5.5: Condition number of the 68F

DFN system matrix for α ranging from

0.05 to 100. Indued nodes
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Figure 5.10: Stagnation funtional values of the 36F DFN for α ranging from 0.05 to 100

and nU from 0.5 to 3.5. Equally-spaed nodes
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Figure 5.11: Condition number of the

68F DFN system matrix for α ranging

from 0.05 to 100 and nU from 0.5 to 3.5.
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of α and of the number of DOFs for the ontrol variables, expressed in terms of the

parameter nU . In this ase equally-spaed nodes are plaed on the traes and the XFEM

is used for the disretization of h. Looking at Figures 5.7, 5.9 and 5.11 we an see that

inreasing the number of nodes for the ontrol variable has a detrimental impat on the

onditioning of the system, but with a moderate trend, and this in independent of the

value of α and of problem omplexity or mesh size. At the same time higher values of

nU give lower funtional minimum for all the on�gurations examined, as Figures 5.8,

5.10 and 5.12 show. For these reasons inreasing nU is a viable option for improving the

quality of the solution, learly at the ost of an inrease in the number of unknowns.

The e�et of variations of α is similar to the previous ase. More in general signi�ant

di�erenes are not observed between equally-spaed and indued node strategies.

Conerning the e�et of mesh size on the onditioning of the system, it is possible to

onlude that reduing mesh size has the e�et of an inrease of the ondition number

of the problem, as expeted. At the same time funtional minimum an be redued by

mesh re�nement.

DFNs with a larger number of fratures are expeted to have a worse onditioning

that simpler on�gurations as an be seen omparing, for example, Figure 5.9 with

Figure 5.11, but this is not true in general, as an be notied omparing Figure 5.1

with Figure 5.3 or Figure 5.7 with Figure 5.9. The 27F DFN on�guration has a higher

trae-to-frature ratio than the 36F DFN, as an be seen looking at Table 5.1, suh that

an in�uene of this parameter on system onditioning ould be envisaged. The in�uene

of trae-to-frature ratio to problem onditioning has not been investigated and ould

be the objet of a deeper analysis.

Some results on system onditioning when standard �nite elements are used for the

disretization of the solution on the fratures are reported in Table 5.2 for the 36F DFN

with equally-spaed nodes, ompared to the results obtained with the XFEM on the

same grid with maximum element area of 30m2
. The two approahes have a similar

impat on the onditioning of the disrete problem.
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Table 5.2: Condition numbers for the DFN 36F with XFEM and FEM for di�erent values

of nU . Equally-spaed nodes, Area=30.

nU XFEM FEM

0.5 1.75973e+06 2.64085e+06

1.0 3.22126e+06 3.66881e+06

1.5 4.50964e+06 3.34477e+06

2.0 5.24292e+06 3.96676e+06

5.3 Numerial results with onstant frature transmissivity

This Setion shows some numerial results on the DFN on�gurations named 27F,

36F, 68F and 120F in Table 5.1 with an uniform distribution of the frature trans-

missivity K = 1 aross the fratures. Three di�erent mesh sizes are onsidered, with

maximum element area of 120m2
, 30m2

and 7m2
.

Table 5.3: Results for DFNs 27F, 36F, 68F and 120F with nodes IN and EN. XFEM and

standard FEM ompared.

XFEM FEM

Grid Node ∆
ont

∆
�ux

Iter ∆
ont

∆
�ux

Iter

27 fratures EN

120 725 0.0009953 0.0007214 1317 0.001516 0.001224 2111

30 1201 0.0008213 0.0007262 960 0.001152 0.0007263 1390

7 2207 0.0004234 0.0004367 779 0.0006694 0.0005569 1084

36 fratures IN

120 744 0.001363 0.001596 1174 0.002536 0.00174 1749

30 1292 0.001344 0.001109 1118 0.00156 0.001239 1522

7 2474 0.0007618 0.0005185 1353 0.000947 0.0005337 1708

36 fratures EN

120 833 0.00139 0.001395 915 0.002395 0.001721 1396

30 1390 0.001169 0.001066 810 0.001628 0.001295 1096

7 2567 0.0009253 0.0006411 771 0.001015 0.0005989 934

68 fratures EN

120 1887 0.0006116 0.0004216 2238 0.0008863 0.0005681 4271

30 3179 0.0004667 0.0003912 1906 0.0006633 0.0003817 2501

7 5906 0.0002358 0.0002511 1605 0.0003713 0.0003195 2117

120 fratures IN

120 2676 0.000561 0.000557 4737 0.0006866 0.0004544 18177

30 4616 0.0003636 0.0002812 3075 0.0004421 0.0002824 7137

7 8793 0.0001875 0.0001517 4639 0.0002496 0.0001703 6075

120 fratures EN

120 3016 0.0004186 0.0003841 4042 0.0005124 0.0004198 12928

30 4993 0.0003235 0.0002657 3235 0.0004044 0.0003239 5917

7 9169 0.0001919 0.0001912 2892 0.0002522 0.0002195 3558

Table 5.3 reports the results obtained for all the on�gurations onsidered, with both

the XFEM and standard FE for the desription of the solution h. Results for the 27F
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and 68F DFNs are shown using equally-spaed nodes on the traes, while the 36F and

120F DFNs are solved with both equally-spaed and indued nodes.

The quality of the results is evaluated in terms of the global ontinuity error and the

global �ux mismath error relative to trae length, de�ned respetively in Setion 4.5

as:

∆cont =

√∑M
m=1 ‖hi|Sm

− hj |Sm
‖2

∑M
m=1 |Sm|

,

∆flux =

√∑M
m=1 ‖umi + umj − α(hi |Sm

+ hj |Sm
)‖2

∑M
m=1 |Sm|

.

In Table 5.3 also the number of nodes for the ontrol variable (olumn Node) and the

number of iterations required to obtain stagnation of the funtional at its minimum

value (olumn Iter) are reported for eah problem. The number of iterations should

be interpreted as the maximum number of iterations for the problem and grid onsid-

ered, sine the use of a stopping riterion ould onsiderably derease the iterations

required avoiding a large number of iterations lose to funtional minimum that do not

substantially a�et the quality of the solution, as disussed in the next Setion.

Looking at the values In Table 5.3 onerning error indiators, we an see that the

global ontinuity and �ux mismath errors are omparable between XFEM and FEM

disretization, the former being in general slightly more aurate than the latter, while a

onsiderably lower number of iterations is required with the XFEM based disretization

to reah funtional minimum.

Figures 5.13-5.14 display the onvergene of the global ontinuity and �ux mismath

errors relative to trae length against mesh size, indiated by the parameter δ repre-

senting the square root of grid maximum element area. Results are plotted for the DFN

on�gurations 36F and 120F. Mesh re�nement an redue the global ontinuity and �ux

mismath errors, and an higher trend is observed with indued nodes on the traes than

with equally-spaed nodes. Sine the number of nodes for the traes is similar for all

grids for indued and equally-spaed nodes, the motivation of this di�erene is to be

found in the disposition of nodes, and the indued disposition onforms better to the

struture of the disrete solution h than the equally-spaed disposition. The redution

trend is in general omparable between XFEM and FEM. Superior performanes of the

XFEM on very oarse grids an also be notied. This is expeted, sine the XFEM dis-

retization relies on speial enrihment funtions to desribe solution behaviour aross
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Figure 5.13: Continuity and �ux mismath errors relative to trae length against grid

re�nement for the DFN 36F. Indued (left) and equally-spaed (right) nodes.
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Figure 5.14: Continuity and �ux mismath errors relative to trae length against grid

re�nement for the DFN 120F. Indued (left) and equally-spaed (right) nodes.

the traes, and this reprodution apabilities are less a�eted from grid re�nement than

the nononforming FEM disretization. In fat standard �nite elements on nononform-

ing grids would orretly reprodue the jump in derivatives of the solution aross the

traes only on an in�nitely re�ned grid.

The solution obtained for the 36F network with the XFEM disretization (Area=30m2
)

and indued nodes is shown in Figure 5.15, where iso-h lines are also plotted to show

the distortion of gradient aross the traes. Figure 5.16 instead shows a soure frature

view of the solution on the 120F DFN with FEM (Area=30m2
) and indued nodes on

the traes, and Figure 5.17 reports a detail of the omputational mesh, highlighting the

non-onformity of mesh elements to frature intersetions.
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Figure 5.15: Solution for DFN 36F with the XFEM and indued nodes on the traes.

Area=30.
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Figure 5.16: Solution for DFN 120F with the FEM and indued nodes on the traes.

Area=30.
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Figure 5.17: Detail of the omputational grid with Area=30 for the DFN 120F.

As envisaged in Setion 5.2 using equally-spaed nodes on the traes, inreasing the

number nodes for the ontrol variables has the potential of reduing funtional minimum

for the same grid for the state variable h, with a orresponding redution of the global

ontinuity and �ux mismath errors. The results of this analysis are reported in Table 5.4

for the 27F, 36F, 68F and 120F DFN on�gurations with both XFEM and FEM based

disretizations. It is possible to observe that inreasing nU both the global ontinuity

and �ux mismath error are redued with a small inrease in the number of iterations

required for funtional stagnation.

When dealing with omplex networks of fratures, another error indiator that an

be onsidered to evaluate solution quality is the mismath between the �ux injeted in

the system by the soure frature and the total �ux reeived from the network by the

sink frature. To this end a new error indiator is introdued, de�ned as:

∆
soure-sink

=
∑

k∈FΓ



∑

m∈Jk

∫

Sm

uSm

k − αhk |Sm


 /

∑

k∈FΓ

∑

m∈Jk

|Sm|

where FΓ represents the set of frature indexes arrying boundary onditions, and Jk

ollets the indexes to the traes on Fk. Numerial evidene shows that in order to

ontrol the soure-sink �ux mismath it is bene�ial to introdue penalty fators in
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Figure 5.19: 36F DFN: ∆
soure-sink

for

di�erent penalty fators with the XFEM.

Indued nodes

the de�nition of the funtional, and di�erentiating the weight of ontinuity and �ux

mismath. The ost funtional rewrites as:

J(h, u) =

M∑

m=1

(
Pf1

∥∥∥hi|Sm
− hj|Sm

∥∥∥
2
+ Pf2

∥∥∥uSm

i + uSm

j − α
(
hi|Sm

+ hj|Sm

)∥∥∥
2
)
.

The results for various values of the penalty fators are reported in Table 5.5 for

the 36F and 120F DFNs with both XFEM and FEM disretizations for h and indued

nodes for the ontrol variables, while Figures 5.18-5.23 report the plots of table data

for the 36F DFN with XFEM and FEM disretization and for the 120F with standard

FE. It an be notied that inreasing the weight of the �ux term of the funtional with

respet to the ontinuity term has a strong e�et in reduing both the �ux mismath

error and the soure-sink �ux mismath with a relatively small penalization of the

ontinuity error. Sine the ontinuity error remains in an aeptable range of values

it appears that the use of a penalty on the �ux term is advisable, mainly for omplex

DFN on�gurations, to improve solution quality. On the other hand, inreasing Pf2

and reduing Pf1 auses a signi�ant inrease in the maximum number of iterations

required for funtional stagnation (olumns Iter in Table 5.5), suh that a trade-o�

between auray and omputational e�ort is neessary.
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Figure 5.20: 36F DFN: ∆
ont

and ∆
�ux

for di�erent penalty fators with standard

FE. Indued nodes
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Figure 5.21: 36F DFN: ∆
soure-sink

for

di�erent penalty fators with standard

FE. Indued nodes
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Figure 5.22: 120F DFN: ∆
ont

and ∆
�ux

for di�erent penalty fators with standard

FE. Indued nodes
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Figure 5.23: 120F DFN: ∆
soure-sink

for di�erent penalty fators with standard

FE. Indued nodes
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Table 5.4: E�et of nU on ontinuity and �ux balane errors. XFEM and standard FEM

ompared, equally-spaed nodes

XFEM FEM

Grid nU ∆
ont

∆
�ux

Iter ∆
ont

∆
�ux

Iter

27 fratures

120

1 0.0009953 0.0007214 1317 0.001516 0.001224 2111

1.5 0.0008252 0.0004977 1513 0.001201 0.0008163 2614

2 0.0007432 0.000445 1432 0.001083 0.0006971 3218

30

1 0.0008213 0.0007262 960 0.001152 0.0007263 1390

1.5 0.0005528 0.0005619 1190 0.0009182 0.0006567 1787

2 0.0004097 0.0004008 1172 0.0007408 0.0005357 2024

7

1 0.0004234 0.0004367 779 0.0006694 0.0005569 1084

1.5 0.0002907 0.0002599 908 0.0004729 0.0003669 1307

2 0.000241 0.000198 1032 0.0004183 0.0002822 1463

36 fratures

120

1 0.00139 0.001395 915 0.002395 0.001721 1396

1.5 0.001059 0.00109 1067 0.002033 0.001397 1691

2 0.0008266 0.0009029 1103 0.001715 0.001297 1775

30

1 0.001169 0.001066 810 0.001628 0.001295 1096

1.5 0.0008244 0.0007246 921 0.001244 0.0009339 1349

2 0.0006507 0.0005739 976 0.00109 0.0007246 1499

7

1 0.0009253 0.0006411 771 0.001015 0.0005989 934

1.5 0.0006953 0.0005292 916 0.0008782 0.000456 1161

2 0.0005169 0.0004915 1049 0.0008088 0.0003994 1315

68 fratures

120

1 0.0006116 0.0004216 2238 0.0008863 0.0005681 4271

1.5 0.0004791 0.0003322 2536 0.0007222 0.0004366 5737

2 0.0004361 0.0002868 2650 0.0006526 0.0003947 4859

30

1 0.0004667 0.0003912 1906 0.0006633 0.0003817 2501

1.5 0.0003171 0.0002996 2100 0.0005367 0.0003535 3113

2 0.0002329 0.0002247 2130 0.0004263 0.0003194 3776

7

1 0.0002358 0.0002511 1605 0.0003713 0.0003195 2117

1.5 0.0001519 0.0001623 1713 0.0002551 0.0002304 2408

2 0.0001204 0.0001199 1893 0.0002071 0.0001832 2679

120 fratures

120

1 0.0004186 0.0003841 4042 0.0005124 0.0004198 12928

1.5 0.0003191 0.0002713 4125 0.0004246 0.0003007 9470

2 0.000274 0.0002298 4132 0.0003856 0.0002686 10520

30

1 0.0003235 0.0002657 3235 0.0004044 0.0003239 5917

1.5 0.0002589 0.0001893 3521 0.0003091 0.0002383 7017

2 0.000225 0.0001684 3761 0.0002771 0.0002026 6995

7

1 0.0001919 0.0001912 2892 0.0002522 0.0002195 3558

1.5 0.0001509 0.0001323 3150 0.0002068 0.0001578 4043

2 0.0001287 0.0001054 3329 0.000183 0.0001282 4629
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Table 5.5: E�et of penalty fators on ∆
ont

, ∆
�ux

and ∆
soure-sink

. DFNs 36F and

120F with indued nodes. XFEM and standard FEM ompared.

XFEM FEM

Grid Pf1 − Pf2 ∆
ont

∆
�ux

∆
soure-sink

Iter ∆
ont

∆
�ux

∆
soure-sink

Iter

36 fratures

120

1 - 10 0.002782 0.0009164 -0.1347 969 0.003668 0.0006137 -0.028 1787

1 - 100 0.005125 0.0005185 -0.0477 1539 0.004736 0.0001887 0.0014 3182

1 - 1000 0.008723 0.0003634 -0.026 2409 0.005499 6.032e-05 3.367e-4 5870

1/100 - 100 0.01785 0.000165 -0.0102 2943 0.006258 2.507e-05 -3.425e-5 7690

30

1 - 10 0.00205 0.0005705 -0.0531 1146 0.002536 0.0006313 -0.0735 2056

1 - 100 0.003612 0.0002532 -0.0258 1536 0.003966 0.0001995 -0.0167 2914

1 - 1000 0.005158 9.107e-05 -0.0048 3062 0.005023 6.316e-05 -0.0016 5094

1/100 - 100 0.00639 5.143e-05 -0.0011 4889 0.005853 1.8e-05 -1.335e-4 9742

7

1 - 10 0.001084 0.0002419 -0.0055 1394 0.001234 0.0002728 -0.004 1991

1 - 100 0.001593 0.0001234 -0.0017 1741 0.00185 0.0001114 -7.605e-4 3075

1 - 1000 0.0025 5.381e-05 -7.62e-4 2721 0.002501 3.397e-05 -2.074e-4 4360

1/100 - 100 0.003462 2.471e-05 -4.657e-5 5326 0.002942 1.626e-05 -3.602e-5 9406

120 fratures

120

1 - 10 0.001004 0.0002823 -0.1088 4310 0.0009781 0.0001503 -0.1295 17601

1 - 100 0.001487 0.0001964 -0.0789 7658 0.001208 5.068e-05 -0.0142 37118

1 - 1000 0.002703 0.0001445 -0.0464 11457 0.001448 1.917e-05 -0.0028 30585

1/100 - 100 0.006056 0.0001023 -0.0242 10941 0.001749 6.727e-06 -4.627e-4 31170

30

1 - 10 0.0005485 0.0001584 -0.0958 3625 0.0006226 0.0001192 -0.0635 11663

1 - 100 0.0008711 0.0001008 -0.0211 3562 0.0008539 4.175e-05 -0.0149 13285

1 - 1000 0.001414 8.061e-05 -0.0037 4327 0.001061 1.436e-05 -0.0024 21996

1/100 - 100 0.003473 6.136e-05 -0.0026 5575 0.001269 5.167e-06 -3.33e-4 22205

7

1 - 10 0.0002967 7.43e-05 -0.0228 4404 0.0003628 8.06e-05 -0.0191 7481

1 - 100 0.0004575 3.686e-05 -0.003 5791 0.0005353 3.589e-05 -0.0023 9666

1 - 1000 0.0007086 1.936e-05 -6.224e-4 8804 0.0007546 1.55e-05 -4.237e-4 18468

1/100 - 100 0.00111 1.147e-05 -2.449e-4 16228 0.001103 6.314e-06 -1.539e-4 25349



5.4 Variable frature transmissivity 159

5.4 Variable frature transmissivity

In this setion DFN on�gurations with values of frature transmissivity onstant on

eah frature but di�erent from a frature to another are onsidered. The DFN analysed

are reported in Table 5.6 along with the range of frature transmissivity allowed for the

various on�gurations. The XFEM and indued nodes are used throughout this Setion.

When dealing with large variations of frature trasmissivities, ourring possibly

between interseting fratures, a possible hoie for the penalty fators introdued in

the previous Setion is to set Pf1 = 1 and Pf2 = 1/Kmin = 1/mini(Ki). As shown

in the sequel, this improves the numerial behaviour of the method for omplex DFN

on�gurations, sine it magni�es the in�uene of the ontrol variable u on the solution.

As usual we set α = 1, and all simulations are started with an initial guess for the

ontrol variable u0 = 0. Simulations are performed on three di�erent grids haraterized

by maximum element area of 7m2
, 15m2

and 30m2
.

In Figure 5.24 the oarse grid for problem 11F is shown. It should be notied that

elements are arbitrarily plaed with respet to the traes, and the mesh on eah frature

is independent from the mesh on the other fratures. The solution is shown in Figure 5.25

along with iso-h lines, in order to highlight that, as expeted, the highest gradients in

the solution our in fratures with the lower values of frature transmissivity, whih

an be notied looking at Figure 5.26 where the values of K on the fratures of the

system are reported. Figures 5.27-5.31 refer to the 68F system on the intermediate grid.

In addition to previous onsiderations, looking at iso-h lines in Figure 5.27 we an see

that the �ux tends to stagnate in fratures that are a dead end or that are onneted

to the system by fratures with low transmissivity values. This is again an expeted

behaviour. Figure 5.28 shows the distribution of K for this system, while Figure 5.29

Table 5.6: DFN frature transmissivity

Label Kmin Kmax

11F 2.46× 10−3 9.66 × 10−2

27F 5.43× 10−4 9.66 × 10−2

37F 5.43× 10−4 9.66 × 10−2

55F 5.43× 10−4 9.67 × 10−2

68F 5.43× 10−4 9.67 × 10−2
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Figure 5.24: Problem 11F: oarse grid

Figure 5.25: Problem 11F: solution with

iso-h lines on the oarse grid

provides a detail of the intermediate grid. The Figure shows that omplex geometries

and intriate frature intersetions an be easily handled with no requirement for mesh

adjustments and without ompromising the desription of the numerial solution, as

it an be seen looking at Figure 5.30-5.31 where the solution on seleted fratures are

plotted not on the omputational grid but on sub-triangles not rossing the traes, for

graphial reasons. The irregular behaviour aross traes and around trae tips is well

de�ned, regardless of the reiproal position of traes and mesh elements.

In Table 5.7 the �uxes entering the system through the traes of the soure frature

(olumn in), the �uxes leaving the system from the sink frature (olumn out) and

the mismath between these two quantities (olumn di� ) are reported for eah system

and grid onsidered. We an observe that �ux onservation is very good and is stable

under grid re�nements for eah problem. Moreover �ux mismath remains stable also

for inreasing problem omplexity.

The proposed approah an easily deal with non-uniform transmissivities on eah

frature plane, requiring either a di�erent implementation of the integrals for the dis-

rete operators on the fratures either the approximation of the frature transmissivity

funtion on eah frature with a pieewise onstant funtion on eah element of the

mesh. We remark that the latter approah would not a�et the auray of the method.

A deeper investigation with this kind of on�gurations will be the objetive of future

analysis.
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Figure 5.26: Problem 11F: frature trans-

missivity K distribution

Figure 5.27: Problem 68F: solution with

iso-h lines on the intermediate grid

Figure 5.28: Problem 68F: frature trans-

missivity K distribution

F42

Figure 5.29: Problem 68F: detail of the

intermediate grid
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Figure 5.30: Problem 68F: Solution on

frature F42. Intermediate grid.
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Figure 5.31: Problem 68F: solution on a

seleted frature. Intermediate grid
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Table 5.7: Flux unbalane for approximate solution

grid 30 grid 15 grid 7

DFN in out di� in out di� in out di�

11F 0.16 -0.16 4.4e-4 0.16 -0.16 1e-5 0.16 -0.16 2e-5

27F 0.42 -0.42 2.9e-4 4.19 -4.19 1.4e-4 0.42 -0.42 2e-5

37F 1.10 -1.10 1.2e-4 1.09 -1.09 2.0e-4 1.08 -1.08 8e-5

55F 1.45 -1.45 6.3e-4 1.44 -1.44 3.3e-4 1.43 -1.43 9e-5

68F 1.12 -1.12 9.4e-4 1.11 -1.11 3.5e-4 1.10 -1.10 1e-5

5.4.1 Convergene study

Let us introdue for eah problem and grid a referene solution href , orresponding

to the stagnation of the funtional J around its minimum. For an approximate solu-

tion obtained at a given number of iterations, hcurr we de�ne a relative distane from

the referene solution as the H1
-norm of the di�erene between urrent approxima-

tion and referene solution divided by the H1
-norm of the referene solution: ‖hcurr −

href‖H1/‖href‖H1 . As a reasonable hoie we measure the omplexity of eah problem

with the number of traes in the system. In Figure 5.32 the relative distane of solution

at various number of iterations against the ratio of iteration and number of traes is

displayed for the 27F, 37F and 68F DFNs on the oarse and �ne grid. A similar plot is

in Figure 5.33 for all the problems onsidered on the intermediate grid. In both Figures

the global trend is plotted on the left side, showing that the urves are well lustered

and show an initial steep desent path, after whih the slope redues. On the right there

is a zoom at low values of iterations over the number of traes. After a small number

of iterations ompared to the number of traes, the urrent approximation is lose to

the referene solution, with variations lower than 1%. In the simulations performed

this ours typially in a range of iterations between two and four times the number of

traes, independently of the problem and grid onsidered. A similar behaviour is also

doumented in Chapter 3, showing that the algorithm an provide a good solution with

a ost that inreases linearly with problem omplexity.

We end the presentation of numerial results providing some stopping riteria for

the disrete algorithm. Two possible riteria are disussed here and, summarized in Ta-

ble 5.8: 1) algorithm stops when the di�erene between subsequent iterations is small,
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Figure 5.32: Relative distane in H1
norm of solution at various number of iterations for

seleted problems. Coarse grid in dashed lines, �ne grid in solid lines. Full piture on the

left, zoom on the right.
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Figure 5.33: Relative distane in H1
norm of solution at various number of iterations for

seleted problems on the intermediate grid. Full piture on the left, zoom on the right.
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Table 5.8: Exit riteria used in simulations

Label Criterion

t1 R1 = Jk − Jk−1 < Tol1

t2 R3 = Jk(Jk − Jk−1) < Tol2

1e−9 1e−8 1e−7 1e−6 1e−5 1e−4 1e−3 1e−2
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Figure 5.34: Distane of solution from ref-

erene solution versus di�erent values of

Tol1. Intermediate grid.
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Figure 5.35: Distane of solution from ref-

erene solution versus di�erent values of

Tol2. Intermediate grid.

i.e. R1 < Tol1 six subsequent times; 2) stop ours when th di�erene between subse-

quent iterations saled with funtional value is small, i.e. R2 < Tol2. Both onditions

seek funtional stagnation, di�ering in the fat that ondition t2 also takes into aount

funtional absolute value, see also Chapter 3. The riterion on u introdued in Chap-

ter 3 has been removed, sine we atually solve the resaled problem in whih the e�ets

of the ontrol variable u are ampli�ed. The behaviour of the suggested riteria is shown

in Figures 5.34-5.35. A value of 10−3
appears to be a suitable hoie for both riteria

for all the problems.

5.5 Salability

We end this Chapter with a preliminary analysis on the salability performanes

of the proposed approah for disrete frature network simulations on large sales. As

mentioned the method allows an independent meshing proess on eah frature of the
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network, and the resolution of the onstrained optimality problem with a gradient based

method an be performed in parallel with a very limited exhange of data related to the

traes.

The implementation of the parallel version of the method is performed using an MPI

pakage for Otave, [3℄, alled openMPI_ext, [4℄, that provides a subset of the standard

MPI library for the C programming language.

Sine dealing with an implementation oriented to omputer arhitetures with non-

shared memory, the parallel version of the algorithm is strutured in order to limit the

amount of ommuniations. To this end a hierarhial organization is envisaged, with

Master proesses managing groups of Slave proesses. The DFN is subdivided into

smaller subsets of fratures, eah managed by one Slave proess. The Slave proesses

refer to a Master proess for the ommuniation phase, suh that all the information

shared by the Slave proesses transit through the Master . For very large DFN on�gu-

rations this basi struture an be repeated, introduing a hierarhy in Master proesses

with higher level Masters managing groups of lower level Master proesses, down to the

Slave proesses managing groups of fratures. We remark that this on�guration would

not be optimal for shared memory omputer arhitetures, suh as GPU based mahines,

where a more e�ient implementation would onsist in assigning eah frature to a dif-

ferent proess. Investigation of the parallel approah on shared memory arhitetures is

postponed to a future work.

5.5.1 Partitioning the DFN

The �rst task that the parallel implementation of the proposed method has to a-

omplish onsists in determining the subsets of fratures that will be assoiated to eah

Slave proess. To this end, the DFN an be suitably represented by a non-direted

graph G(V,E), with fratures representing the verties V of the graph and traes the

edges, E. The objetive is to minimize the number of edge uts, i.e. the amount

of ommuniation between proesses, balaning the workload among proesses at the

same time. Let us assume that k represents the number of Slave proesses, and I is

the total number of verties (i.e. fratures) in the graph, than we want to determine a

subdivision of G(V,E) suh that the weight (i.e. the omputational ost) of eah part

is lower than ν I
k
, where ν is a parameter lose to one, and the apaity (i.e. the amount

of data shared) of edge uts is minimized. This problem is well known in graph theory
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Figure 5.36: Salability analysis for the

DFN 36F
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Figure 5.37: Proess independene test

as (k, ν)-balaned graph partitioning, see e.g. [1℄ . For this preliminary investigation a

simple unweighted graph partitioning proedure is implemented, ensuring that all the

verties of the graphs, (i.e. the fratures of the DFN) have a similar omputational

ost. This ondition is quite restritive, but is appropriate for the urrent preliminary

investigation, sine it redues the omplexity of the graph partitioning proedure and

an be easily ahieved by presribing a similar number of degrees of freedom on all the

fratures in the DFN.

5.5.2 The message passing proess implementation

As mentioned, all the information are shared by Slave proesses through Master

proesses and eah Slave proess sends to and reeives from the Master proess only

the portion of data related to those traes in ommon with other proesses. Sine the

DFN is partitioned in a way that minimizes the number of traes shared by di�erent

proesses, the ommuniation phase is minimized. In any ase only arrays of small

size ompared to the size of the problems on the fratures need to be shared. The

openMPI_ext pakage does not allow for non-bloking ommuniation routines and this

is a severe limitation for this appliation. Indeed non-bloking send routines would

allow to partially hide the overhead for ommuniations, allowing eah proess to send

the information required by other proesses and ontinue omputing on other fratures

whose data is not required by other proesses. This kind of limitations will be removed

in future implementations of the method based on the C language.



5.5 Salability 167

5.5.3 Salability results

We now show the salability results obtained on the DFN 36F, using the XFEM

for the disretization of the hydrauli head on the fratures and indued nodes for the

ontrol variables. The mesh parameter is di�erent on eah frature in order to obtain

a number of DOFs similar for all the frature around 3500 DOFs, thus allowing for an

unweighted graph partitioning for determining the workload for the Slave proesses.

Simulations are performed on a omputer with two six-ore proessors, for a total of

twelve physial ores and twenty-four virtual ores. The mahine has a shared memory

arhiteture but is treated as a non-shared memory mahine.

The salability results for the 36F DFN are shown in Figure 5.36 in terms of exeution

time relative to the exeution time in serial mode. It an be noted that salability

performanes are good and quite lose to the ideal ones when using up to 9 Slave

proesses. When using more than 10 Slave proesses the slope of the urve redues

with respet to the ideal one, and there is no further redution of exeution time using

more than 12 Slave proesses. This is partly due to the overhead in ommuniation and

partly to the bottlenek of memory aess due to the arhiteture of the omputer used.

The ideal urve onsiders that none part of the algorithm is stritly serial.

An analysis is performed to measure the level of independene among the virtual

ores and to highlight on�its in memory aess observed during the simulations. A

large size (6400 × 6400) sparse linear system with about 3 × 104 non zero elements is

solved 10 times in serial mode by an inreasing number of proesses running in parallel,

suh that eah proess performs exatly the same operations and no ommuniation

ours. The average exeution time aross the 10 repeated resolutions, tj10, is stored for

eah proess j. The mean value tkav = k−1
∑k

j=1 t
j
10 among the k di�erent proesses,

relative to exeution time with a single proess, is reported in Figure 5.37 for di�erent

values of k (number of proesses) ranging from 1 to 19. It is possible to note that,

even with a small number of proesses running in parallel, the exeution time inreases

between 5− 15%, due to on�its in aessing the memory. When using more than ten

proesses the degradation of performanes beomes severe.

Conluding, this preliminary investigation on the salability performanes of the

proposed algorithm for DFN simulations shows a very high potential, despite the limi-

tation of the MPI library used and of the parallel omputer available. Implementation

improvements an have the potential of further reduing the gap with the ideal salabil-
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ity performanes and of extending the salability range to a higher number of parallel

proesses.
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Chapter 6

Preonditioning

In this Chapter a preliminary investigation of a possible strategy for preondition-

ing the onjugate gradient method for DFN problems with the proposed approah is

investigated, aiming at a redution in the overall omputational ost.

Let us reall the optimization algorithm desribed in Setion 4.4:

Conjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (7.23) and (7.24) and g0 by (7.25)

3. Set d0 = −g0, k = 0

4. While gk 6= 0

4.1. Compute λk with a line searh along dk

4.2. Compute uk+1 = uk + λkdk

4.3. Update gk+1 = gk + λkĜdk

4.4. Compute βk+1 =
gT
k+1

gk+1

gT
k
gk

4.5. Update dk+1 = −gk+1 + βk+1dk

4.6. k = k + 1

where gk indiates the gradient ∇Ĵ(uk) at step k and dk the diretion of movement. Let

us denote by dexk the desent diretion at iteration k that vanishes the residual gk, i.e.

gk + Ĝdexk = 0. The idea for preonditioning onsists in evaluating an approximation

169
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dpk of dexk to be used in plae of the onjugate gradient diretion. In order to make

the omputation of diretion dpk a�ordable, it an be determined on a oarser grid with

respet to the omputational grid. In this respet this kind of preonditioning borrows

the struture of multi-grid (MG) preonditioners, but relying on a di�erent onept.

In fat MG preonditioning is based on a orrelation between error frequenies and

omputational grid typial of problems with an ellipti struture with solvers that have

ertain smoothing properties, [1℄. Even if on eah frature of a DFN ellipti problems are

solved, Ĝ does not share the spetral properties expeted for e�ient appliation of MG

preonditioning. As a onsequene, the speed up will not be given by the redution of

lower error frequenies on the oarser grids as in multi-grid preonditioners, but rather

it depends on the quality of diretion dpk in approximating dexk .

Let us introdue a two grid framework with a �ner omputational grid for the res-

olution of the DFN problem and a oarser grid for preonditioning purposes, and let

us denote by Uδ,f and Uδ,c the disrete spaes for the ontrol variable on the �ne and

oarse grid respetively. Let then Ĝf be the matrix Ĝ on the �ne grid and Ĝc the orre-

sponding matrix on the oarse grid. We de�ne a prolongation operator Ifc : Uδ,c → Uδ,f

and a restrition operator Icf : Uδ,f → Uδ,c, suh that

(
Icfu, v

)

Uδ,c

=
(
u, Ifc v

)

Uδ,f

, for all

u ∈ Uδ,f and for all v ∈ Uδ,c, (see [1℄). Given the gradient diretion gk,f at iteration k on

the �ne grid provided by the onjugate gradient algorithm, the preonditioned desent

diretion an be written as:

dpk = Ifc (dk,c), Ĝcdk,c = −
(
Icf (gk,f )

)
(6.1)

The resolution of the linear system in (6.1) for dk,c on the oarse grid does not neessarily

require to form matrix Ĝc. It is possible to rewrite it as a minimization problem on the

oarse grid as follows:

Ĝcdk,c +
(
Icf (gk,f )

)
= Ĝc

(
uc − Icf (uk,f )

)
+
(
Icf (gk,f )

)
= 0

⇔ min
uc

uTc Ĝcuc +
(
Icf (gk,f )− ĜcI

c
f (uk,f )

)T
uc

thus having the same struture of the problem on the �ner grid, and, as suh, solved

with an optimization (iterative) method. As in multi-grid preonditioning, more levels

with suessive oarsening of the grids ould be used and, depending on the size of the

oarsest grid, the omputational ost for assembling Ĝc ould be omparable or even

less than that of solving (6.1) as a minimization problem. We remark that matrix Ĝc

an be assembled working independently on eah frature of the DFN.
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As in a multi-grid sheme the orretion on the oarse grid an be evaluated after a

given number of iterations of onjugate gradient, aording to the value of a parameter

nCG. The preonditioned algorithm an be then written as:

Algorithm 6.1. Preonditioned onjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (7.23) and (7.24) and g0 by (7.25)

3. Set d0 = 0, β0 = 0, k = 0, kCG = 0

4. While gk 6= 0

5. if kCG < nCG (Conjugate Gradient sheme)

5.1. Compute dk = −gk + βkdk

5.2. Compute λk with a line searh along dk

5.3. Compute uk+1 = uk + λkdk

5.4. Update gk+1 = gk + λkĜdk

5.5. Compute βk+1 =
gT
k+1

gk+1

gT
k
gk

5.6. k = k + 1, kCG = kCG + 1

6. else (Preonditioned sheme)

6.1. Compute dpk aording to (6.1)

6.2. Compute uk+1 = uk + dpk

6.3. Update gk+1 = gk + Ĝdpk

6.4. k = k + 1, kCG = 0

7. end (if)

Some numerial results on this preonditioning tehnique are now disussed. All the

simulations are performed solving system (6.1) exatly on the oarse grid. The XFEM

is used for the disretization of the solution h on the fratures, while a node strategy ED

is hosen for the ontrol variables. The �ne grid has maximum elements area of 7m2
,

while the oarse grid of 30m2
. The ED disretization for the ontrol variables on the
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Figure 6.1: Funtional value vs iterations

for di�erent values of nCG

0 500 1000 1500 2000 2500 3000 3500
10

−4

10
−3

10
−2

10
−1

CPU time [s]

F
un

ct
io

na
l v

al
ue

 

 
20
10
5
1
noPREC

Figure 6.2: Funtional value vs pu time

for di�erent values of nCG
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Figure 6.3: System residual value vs iter-

ations for di�erent values of nCG
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Figure 6.4: System residual value vs pu

time for di�erent values of nCG

�ne and oarse grids are nested, in order to ease the generation of the restrition and

prolongation operators. Numerial result are shown for the DFN 120F. A maximum

number of 2000 iterations is presribed for all the simulations. The results relative to

simpler DFN on�gurations, in fat, are not signi�ant for the analysis performed here,

sine the omputational ost of a single iteration of the non preonditioned sheme (in

serial) might be signi�antly more expensive that the evaluation of the diretion dpk, while

this is not the ase for more omplex on�gurations, where the use of preonditioning

is of interest.

The quality of the solution is evaluated in terms of funtional �nal value and of the

L2
-norm of the residual gk at iteration exit. In both ases lower values are desirable.
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Figure 6.5: Funtional value vs iterations

for di�erent values of nU
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Figure 6.6: Funtional value vs pu time

for di�erent values of node fator nU

Looking at Table 6.1, Panel A, it is possible to notie that the use preonditioning

allows to reah a muh lower residual than the non-preonditioned ase in the same

number of iterations. The omputational ost in terms of pu time required to perform

the maximum number of iterations allowed is higher for the preonditioned ase, but

observing Figures 6.1-6.4 we an see that at the same time the preonditioned sheme

reahes a better solution in terms of residual norm. The minimum for the residual

is obtained for a value of nCG = 10. The results of Table 6.1, Panel B show the

performanes of the preonditioner when the number of nodes for the ontrol variables

are redued on the �ne and oarse grid of the same fator nU . Dereasing the number

of nodes leads to a redution of the omputational ost in terms of pu time, but also

the bene�ts of preonditioning vanish, and if nU < 0.25 there is no advantage in the use

of preonditioning, as an be notied observing Figures 6.5-6.8.

Figures 6.9-6.12 show the e�etiveness of preonditioning when the maximum area

of the oarse grid elements is inreased, imposing the same number and disposition of

nodes for the ontrol variables on the �ne and oarse grids (i.e. Ifc = Icf = I, identity

matrix). The results obtained highlight that inreasing oarse grid area is not a viable

option to redue the ost of this preonditioning tehnique.

Conluding, the presented preonditioning tehnique has a good potential in redu-

ing the omputational ost of the optimization algorithm, both in terms of number

of iterations and pu time, but further investigations on more omplex on�gurations

are required. Also the e�ieny of di�erent resolution strategies for the resolution of
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Figure 6.7: Residual value vs iterations for

di�erent values of nU
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Figure 6.8: Residual value vs pu time for

di�erent values of nU
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Figure 6.9: Funtional value vs iterations

for di�erent values of oarse grid area, dis-

retization of ontrol variables on oarse

grid equal to �ne grid (ED).

0 500 1000 1500 2000 2500 3000 3500 4000
10

−4

10
−3

10
−2

10
−1

CPU time [s]

F
un

ct
io

na
l v

al
ue

 

 
150
120
90
60
30
noPREC
bestPREC

Figure 6.10: Funtional value vs pu time

for di�erent values of oarse grid area, dis-

retization of ontrol variables on oarse

grid equal to �ne grid (ED).
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Figure 6.11: System residual value vs it-

erations for di�erent values of oarse grid

area, disretization of ontrol variables on

oarse grid equal to �ne grid (ED).
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Figure 6.12: System residual value vs pu

time for di�erent values of oarse grid

area, disretization of ontrol variables on

oarse grid equal to �ne grid (ED).

system 6.1 need to be evaluated. The obtained speed up is not omparable to the ex-

ponential onvergene veloity ahievable with proper multi-grid preonditioners, and a

spetral analysis of the method is advisable to design preonditioning tehniques apable

of providing exponential onvergene rates.

Table 6.1: Preonditioner behaviour for the DFN 120F, node strategy: ED

Panel A: nU = 1, varying n
CG

Grid �ne - Coarse CGsteps Iter Iter pu time [s℄ Residual J

7 - 30

Ref. 2000 2628.72 0.000524984 0.000223922

1 1743 2737.17 3.56557e-06 0.000151742

5 2000 3248.51 7.08703e-07 0.000151179

10 2000 3219.46 1.64967e-07 0.000151127

20 2000 2887.91 2.76264e-07 0.000151125

Panel B: n
CG

= 5 , varying nU

Grid �ne - Coarse nU Iter Iter pu time [s℄ Residual J

7 - 30

Ref. 2000 2628.72 0.000524984 0.000223922

0.075 2000 2791.64 0.000255202 0.000263584

0.125 2000 2681.03 0.000238779 0.000213198

0.250 2000 2808.57 3.7036e-05 0.000196008

0.500 2000 2912.5 2.61896e-06 0.00015778

1.000 2000 3248.51 7.08703e-07 0.000151179
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Chapter 7

The Virtual Element Method for

Disrete Frature Network

simulations

Abstrat The present work disusses the appliation of the Virtual Element Method

(VEM) to the simulation of disrete frature network �ows, with the optimization ap-

proah developed in [5, 6, 8℄. The VEM is a newly developed tehnique for solving partial

di�erential equation problems with meshes onstituted of polygonal elements with an

arbitrary number of edges. The generation of a onforming mesh is a demanding task

for DFN simulations given the intriate geometry of realisti network on�gurations.

The possibility of handling elements of arbitrary polygonal shape eases the proess of

mesh generation, still giving a mesh onforming to the trae on a given frature, but

non-onforming to the disretization of the interseting fratures. The non-onformities

are easily handled by the optimization approah used. The implementation of the VEM

in the ontext of DFN simulations is fully desribed, and a panel of test problems and

some numerial results on omplex networks are provided to show the e�etiveness of

the method.

7.1 Introdution

Subsurfae �uid �ow has appliations in a wide range of �elds, inluding e.g. oil/gas

reovery, gas storage, pollutant perolation, water resoures monitoring, et. Under-

179
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ground �uid �ow is a omplex heterogeneous multi-sale phenomenon that involves

ompliated geologial on�gurations. Disrete Frature Networks (DFNs) are om-

plex sets of planar polygonal fratures used to model subsurfae �uid �ow in fratured

(porous) roks. Typially, a DFN is obtained stohastially using probabilisti data to

determine a distribution of orientation, density, size, aspet ratio, aperture and hydro-

logial properties of the fratures [1, 13, 14℄, and it is a viable alternative to onventional

ontinuum models in sparse frature networks. DFN simulations are very demanding

from a omputational point of view and due to the unertainty of the statistial data,

a great number of numerial simulations is required. Furthermore, the resolution of

eah on�guration requires vast omputational e�ort, inreasing greatly with problem

size. In this work, we fous on the resolution of the steady-state �ow in large frature

networks. The quantity of interest is the hydrauli head in the whole network, whih

is the sum of pressure and elevation and is evaluated by means of the Dary law. We

onsider impervious rok matrix and �uid an only �ow through fratures and traes

(intersetions of fratures), but no longitudinal �ow along the traes is allowed. Math-

ing onditions need to be added in order to preserve ontinuity along traes and �ux

balane at frature intersetions. The lassial approah to DFN simulations onsists

in a �nite element disretization of the network and in the resolution of the resulting

algebrai linear system. With this approah, a great numerial obstale to overome is

the need to provide on eah frature a good quality mesh onforming not only to the

traes within the frature, but also onforming to the other meshes on fratures sharing

a trae. If this kind of onformity is required, the meshing proess for eah frature is

not independent of the others, leading in pratie to a demanding omputational e�ort

for the mesh generation. In large realisti systems, whih an ount thousands, or even

millions, of fratures, this mesh onformity onstraints might lead to the introdution of

a very large number of elements, independently of the auray required on the solution

and possibly leading to over solving, if we onsider the level of auray of the physial

model.

Strategies are proposed in literature to ease the proess of mesh generation and

resolution for DFNs of large size. Some authors, see e.g. [15, 19℄, propose a simpli�ation

of DFN geometry to better handle the meshing proedure. In other ases, dimensional

redution is explored as in [11℄ and [12℄, where a system of 1D pipes that onnet traes

with fratures has been used to simplify the problem. Mortar methods are used to relax

the onformity ondition with frature meshes, that are only required to be aligned
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along the traes (see [17℄ and [18℄).

In the reent paper [9℄ and follow up works [7℄ and [8℄, the problem of �ow in a DFN

is retooled as a PDE onstrained optimization problem. The approah proposed in these

works ompletely drops the need for any kind of mesh onformity, regardless of trae

number and disposition; this goal is attained via the minimization of a given quadrati

funtional, allowing to obtain the solution for any given mesh. In this framework, any

mesh independently generated on eah frature an be used. Sine the solution may dis-

play a non-smooth behaviour along traes (namely, disontinuous normal derivatives),

FEM on meshes not onforming to traes would result in poor solutions in a neighbour-

hood of the traes. In [9, 7, 8℄ the XFEM is used in order to improve the solution near

traes. In the present work the newly oneived Virtual Element Method is in harge

for the spae disretization on eah frature. Taking advantage from the great �exibility

of VEM in allowing the use of rather general polygonal mesh elements, several omplex-

ities related to XFEM enrihment funtions an be avoided. Indeed, a suitable mesh for

representing the solution an be easily obtained starting from an arbitrary triangular

mesh independently built on eah frature, and independent of the trae disposition.

Then, whenever a trae rosses a mesh element, this an be split in two sub-elements

obtaining a partial onformity.

All the steps needed for the use of the VEM in onjuntion with the optimization

approah for DFNs simulations are inherently frature oriented, and an be exeuted

in parallel. Numerial tests show that this approah leads to an e�ient and reliable

method.

We remark that the polygonal mesh obtained for VEM disretization naturally paves

the way also for the use of a Mortar approah. This possibility is urrently under inves-

tigation by the authors. Nevertheless, our main target here is to assess the viability of

the optimization approah in onjuntion with the VEM. Furthermore, within the opti-

mization method, mixing of di�erent disretization strategies (standard �nite elements

on meshes not neessarily onforming to traes, extended �nite elements and virtual

elements of di�erent orders) remains possible, thus improving the �exibility to deal with

any possible DFN on�gurations.

The present work is organized as follows: a desription of the general problem is

provided in Setion 7.2, followed by a brief introdution to the appliation of virtual

element method to the problem at hand in Setion 7.3. Formulation and resolution of

the disrete problem are skethed in Setion 7.4. Some tehnial issues onerning VEM
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implementation in this ontext as well as numerial results are given in Setion 7.5. We

end with some onlusions in Setion 7.6.

7.2 Problem desription

In this setion we brie�y sketh the main ideas of the PDE optimization method for

disrete frature network simulations introdued in [9, 7, 8℄.

Let us denote by Ω the DFN, omposed by the union of planar open polygons Fi, with

i = 1, . . . , I, resembling the fratures in the network. Let us denote by ∂Fi the boundary

of Fi and by ∂Ω the set of all the frature boundaries, ∂Ω = ∪I
i=1∂Fi. We deompose

∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, ΓD 6= ∅ being ΓD the Dirihlet boundary and ΓN

the Neumann boundary. The boundary of eah frature is divided into a Dirihlet part

ΓiD = ΓD ∩ ∂Fi and a Neumann part ΓiN = ΓN ∩ ∂Fi, hene ∂Fi = ΓiD ∪ ΓiN , with

ΓiD ∩ ΓiN = ∅. An empty Dirihlet boundary, ΓiD = ∅ is allowed on fratures suh

that ∂Fi ∩ ΓD = ∅. Funtions HD
i ∈ H

1

2
(ΓiD) and GN

i ∈ H

− 1

2
(ΓiN ) are given and

presribe Dirihlet and Neumann boundary onditions, respetively, on the boundary

∂Fi of eah frature. Intersetions between fratures are alled traes and are denoted

by Sm, m = 1, . . . ,M , while S denotes the set of all the traes of the system, and Si,

for i = 1, . . . , I, denotes the subset of S orresponding to the Mi traes belonging to

Fi. Eah Sm uniquely identi�es two indies ISm = {i, j}, suh that Sm ⊆ F̄i ∩ F̄j .

Finally Ji ollets all the indies {j} relative to the fratures Fj interseted by Fi, i.e.

j ∈ Ji ⇐⇒ F̄j ∩ F̄i 6= ∅.
The quantity of interest is the hydrauli head H that an be evaluated in Ω by

means of the Dary law. This originates a system of equations on the fratures de�ned

as follows. Let us introdue for eah frature the following funtional spaes:

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}
,

and

V D
i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HD
i

}
,

and let us denote by Hi the restrition of H on Fi. Furthermore, let Ki denote a

symmetri and uniformly positive de�nite tensor representing the frature transmissiv-

ity. Without loss of generality and for the sake of simpliity, we assume that all traes

are disjoint; this is not a restriting assumption as noted in [9℄. Then Hi satis�es, for
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i = 1, . . . , I, the following problem: �nd Hi ∈ V D
i suh that ∀v ∈ Vi

∫

Fi

Ki∇Hi∇vdΩ =

∫

Fi

qivdΩ+ 〈GN
i , v|S〉

H

− 1
2
(ΓiN),H

1
2
(ΓiN)

+
∑

S∈Si

〈
[[
∂Hi

∂ν̂iS

]]

S

, v|S〉
H

− 1
2
(S),H

1
2
(S)

, (7.1)

where qi ∈ L2(Fi) denotes a soure term on Fi and the symbol

∂Hi

∂ν̂i
represents the

outward o-normal derivative of the hydrauli head:

∂Hi

∂ν̂i
= n̂Ti Ki∇Hi,

with n̂i outward normal to the boundary ΓiN , and

[[
∂Hi

∂ν̂i
S

]]

S
denotes the jump of the o-

normal derivative along the unique normal n̂iS �xed for the trae S on Fi, and represents

the �ux inoming into the frature Fi through the trae S. The equations (7.1) for

i = 1, ..., I are oupled with the following mathing onditions, ensuring hydrauli head

ontinuity and �ux balane aross the traes:

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , ∀m = 1, . . . ,M, (7.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm . (7.3)

The simultaneous resolution of equations (7.1)-(7.3) might result infeasible for prati-

al appliations, as previously disussed. In ontrast, the approah developed in [9, 7, 8℄

only requires the resolution of loal problems on eah frature independently, resorting

to an optimization approah to enfore mathing at the intersetions. In order to de-

sribe this strategy, let us introdue for eah trae in eah frature the ontrol variables

US
i ∈ US = H

− 1

2
(S), de�ned as US

i = αHi|S
+
[[
∂Hi

∂ν̂i
S

]]

S
, where α is a �xed positive

parameter, and the quadrati funtional

J(H,U) =

M∑

m=1

(∥∥∥Hi|Sm
−Hj|Sm

∥∥∥
2

H

1
2
(S)

(7.4)

+
∥∥∥USm

i + USm

j − α
(
Hi|Sm

+Hj|Sm

)∥∥∥
2

H

− 1
2
(S)

)
.

Equations (7.1), presribed on the fratures, are equivalently restated as:

∫

Fi

Ki ∇Hi∇vdΩ+ α
∑

S∈Si

∫

S

Hi|Sv|SdΓ = (7.5)

∫

Fi

qivdΩ+ 〈GN
i , v|S〉

H

−1
2
(ΓiN),H

1
2
(ΓiN)

+
∑

S∈Si

〈US
i , v|S〉US ,US ′ .
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Let us de�ne USi = H

− 1

2
(Si ) and let Ri denote an operator providing lifting of the

Dirihlet boundary onditions on ΓiD, if not empty. We then introdue the following

linear bounded operators:

Ai ∈ L(Vi, V ′
i ), 〈Aiw, v〉V ′

i ,Vi
= (Ki∇w,∇v) + α

(
w|Si

, v|Si

)

Si

,

BS
i ∈ L(US , V ′

i ), 〈BS
i U

S
i , v〉V ′

i ,Vi
= 〈US

i , v|S〉US ,US ′ ,

Bi = Π
S∈Si

BS
i ∈ L(USi , V ′

i ), 〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉
USi ,USi

′ ,

with w, v ∈ Vi, and Ui ∈ USi
is the tuple of ontrol variables US

i for S ∈ Si. Analogously,

U ∈ US
denotes the tuple of ontrol variables Ui for i = 1, ..., I. The dual operator of Ai

is denoted by A∗
i and B

∗
i denotes the dual of Bi. The operator BiN ∈ L(H− 1

2
(ΓiN ), V

′
i )

imposing Neumann boundary onditions is de�ned suh that

〈BiNG
N
i , v〉V ′

i ,Vi
= 〈GN

i , v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

.

Aording to this funtional setting and de�nitions, problems (7.5) are restated as:

∀i = 1, ..., I, �nd Hi ∈ V D
i , with Hi = H0

i +RiH
D
i and H0

i ∈ Vi, suh that

AiH
0
i = qi +BiUi +BiNG

N
i −AD

i RiH
D
i , in Fi, (7.6)

where AD
i is an operator de�ned similarly to Ai, but operating on elements in H

1
(Fi).

We remark that, if α > 0, for a given Ui, the solution Hi to (7.6) exists and is unique

for a non isolated frature even if we set Neumann boundary onditions on the whole

∂Fi.

Following the arguments proposed in [8℄, it an be shown that the unique minimum

of funtional (7.4) is obtained for values of H and of the ontrol funtions U that

orrespond to the ful�lment of onditions (7.2) and (7.3) on the traes. In other words,

the solution of the problem

minJ subjet to (7.6) (7.7)

orresponds to the solution of the oupled system of equations (7.1)-(7.3).

As shown in previous works (see e.g. [8℄) this optimization problem an be takled

with a gradient based method. Even if di�erent approahes ould also be employed,

gradient-based methods are partiularly appealing sine they allow to independently

solve problems on fratures and an be straightforwardly plugged in a parallel resolution

proess.
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In the ontinuous setting, the gradient based method is formally devised on the

following onsiderations: the optimal U ∈ U , solution to (7.7), satis�es the following

system of equations, orresponding to the Fréhet derivatives of J with respet to the

ontrol variables: ∀i = 1, . . . , I

Bi
∗Pi + ΛUSi

(
Ui + Π

S∈Si

US
j

)
− α Π

S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)
= 0, (7.8)

where the operators CS
i = Bi

∗
are restrition operators on the traes, ΛUSi : USi → USi

′

is the Riesz isomorphism, and funtions Pi ∈ Vi are the solution to

A∗
iPi = Ci

∗Λ−1
USi

[
Π

S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)

+α2 Π
S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)]

− αCi
∗

(
Ui + Π

S∈Si

US
j

)
, in Fi, (7.9)

with homogeneous Neumann and Dirihlet boundary onditions. Then, we an set

∀i = 1, . . . , I

∇J(Ui) = Bi
∗Pi + ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj))), (7.10)

and

∇J(U) =
I

Π
i=1

∇J(Ui). (7.11)

The gradient based algorithm for solving (7.7) is fully desribed in [8℄. Here, we fous

on a �rst-disretize-then-optimize approah, and we move on by introduing, in the next

setion, the spae disretization.

7.3 The virtual element method

The Virtual Element Method [3, 4, 10, 2℄ is a very reent tehnique for solving

partial di�erential equations on meshes of fairly general polygonal elements with an

arbitrary number of sides. This harateristi is very attrative for the appliation

onsidered herein. Indeed, on eah frature we solve equation (7.6), whose solution

an have a disontinuous gradient aross the traes. In order to orretly reprodue

this irregular behaviour, we an take advantage of the �exibility of virtual elements

by transforming, on eah frature, a given triangulation (non onforming to traes) in

a more general mesh, onforming to traes, simply obtained by splitting the triangles

along traes into more general sub-polygons not rossed by traes. We remark that
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F1

F2

Figure 7.1: Example of the mesh for the VEM: elements shaded have been ut into polygons

to math the trae on the two fratures independently

we do not require onformity between the meshes of the two fratures interseting at a

trae. As a onsequene of the meshing proess, a partial onformity (i.e. onformity to

traes but no onformity between the meshes of interseting fratures) will result, but

the meshing proess is still independent on eah frature and thus easy and reliable( see

Figure 7.1).

Let us now desribe the appliation of the VEM to the problem onsidered. For the

sake of simpliity, we onsider in this setion homogeneous onditions on the Dirihlet

boundary; furthermore, we onsider in this work the ase of virtual elements of order

k = 1 and we assume that the frature transmissivity Ki is onstant on eah frature,

but might vary from one frature to another. We will fous on a generi frature Fi ⊂ Ω,

sine the proess is independent on eah frature. Let {Ti,δ}δ be a family of meshes on

Fi, being δ the mesh parameter (orresponding to the square root of the largest element

size). Eah mesh is built as previously skethed: we start with a given triangulation,

and whenever a trae rosses an element, the latter is split by the trae itself in two

sub-polygons. If the trae ends inside an element, it is prolonged up to the boundary of

the element. To note is that we obtain onvex polygons, thus satisfying the assumptions

in [3℄. Eah Ti,δ is therefore made of open polygons {E} with an arbitrary number nE

of edges e, and we all Ni the total number of verties. We de�ne for eah δ a spae

Vi,δ ⊂ H

1
(Fi) as follows. Following the notation in [3℄, for a generi element E of the

mesh, let us introdue the spae

B1(∂E) =
{
v ∈ C

0(∂E) : v|e ∈ P1(e), ∀e ⊂ ∂E
}
.
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Let V E,1
be the spae of harmoni funtions that are linear on the boundaries of the

element,

V E,1 =
{
v ∈ H

1
(E) : v|∂E ∈ B1(∂E),∆v|E = 0

}
.

We �nally set

Vi,δ =
{
v ∈ H

1
0(Fi) : v|E ∈ V E,1, ∀E ∈ Ti,δ

}
.

For eah element, funtions in V E,1
are uniquely identi�ed by presribing the polynomial

funtions on ∂E, or, equivalently, speifying the values at the nE verties of the polygon.

With this natural hoie for the degrees of freedom, the C0
ontinuity of funtions

in Vi,δ is easily enfored. The dimension of Vi,δ is Ni, and we introdue a Lagrange

basis {φ1, . . . , φNi
}, de�ned by φj(xk) = δjk, where xk is the k-th vertex in the mesh.

Funtions {φj} are in general not known expliitly inside the elements, but only on the

boundaries of the elements, and this is a key point of VEM. Further we observe that

the spae of polynomials P1(E) ⊂ Vi,δ |E for eah element E in Ti,δ.
On the spae Vi,δ we de�ne a symmetri bilinear form ai,δ : Vi,δ × Vi,δ 7→ R as the

disrete ounterpart of the bilinear form ai : Vi × Vi 7→ R de�ned as

ai(Hi, v) = 〈AiHi, v〉V ′
i ,Vi

.

On eah element E we introdue the bilinear form aEi,δ(·, ·) : Vi,δ |E × Vi,δ|E 7→ R:

aEi,δ(φ,ϕ) = (Ki ∇PE φ,∇PE ϕ)E + α
(
φ|Si ∩∂E

, ϕ|Si ∩∂E

)

Si ∩∂E
+ SE(φ,ϕ), (7.12)

and for any two funtions φ, ϕ ∈ Vi,δ we have

ai,δ(φ,ϕ) =
∑

E∈Ti,δ

aEi,δ(φ,ϕ). (7.13)

In (7.12), the projetion operator PE : Vi,δ |E 7→ P1(E) is de�ned for any funtion

φ ∈ Vi,δ |E by




(Ki∇PE φ,∇p)E = (Ki∇φ,∇p)E ∀p ∈ P1(E)
∑nE

k=1PE φ(xk) =
∑nE

k=1 φ(xk)
(7.14)

being {xk}k the oordinates of the verties of element E, and SE : Vi,δ|E × Vi,δ|E 7→ R

is a properly designed funtional that is non-zero on the kernel of PE
.
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Remark 7.1. Let us observe that the de�nition (7.12) for the bilinear form and (7.14)

for the projetion operator slightly di�er from the de�nitions introdued in [3℄. In our

de�nition of the disrete bilinear form the projetion operator does not a�et the portion

of the operator de�ned on the traes, and onsequently this term does not appear in

(7.14) or in the de�nition of the stability operator SE
. Aording to [3℄ we assume that

there exist two positive onstants c0 and c1 independent from the mesh element E and

of element diameter, suh that:

c0(Ki ∇ϕ,∇ϕ)E ≤ SE(ϕ,ϕ) ≤ c1(Ki∇ϕ,∇ϕ)E , ∀ϕ ∈ Vi,δ|E, with PE ϕ = 0.

(7.15)

On eah element E of the triangulation we have:

aEi (φ,ϕ) = aEi (φ− PE φ+ PE φ,ϕ −PE ϕ+ PE ϕ)

= aEi (PE φ,PE ϕ) + aEi (φ− PE φ,ϕ− PE ϕ)

+aEi (φ−PE φ,PE ϕ) + aEi (PE φ,ϕ −PE ϕ)

= aEi (PE φ,PE ϕ) + aEi (φ− PE φ,ϕ− PE ϕ)

+α
(
φ− PE φ,PE ϕ

)
Si ∩∂E

+ α
(
ϕ− PE ϕ,PE φ

)
Si ∩∂E

+
(
Ki∇(φ− PE φ),∇(PE ϕ)

)
E
+
(
Ki ∇(ϕ−PE ϕ),∇(PE φ)

)
E

= aEi (PE φ,PE ϕ) + aEi (φ− PE φ,ϕ− PE ϕ)

+α
(
φ− PE φ,PE ϕ

)
Si ∩∂E

+ α
(
ϕ− PE ϕ,PE φ

)
Si ∩∂E

(7.16)

where the orthogonality ondition (7.14) has been used for the last equality.

It is possible to show that the given de�nition of the bilinear form is onsistent and

stable. Consisteny easily follows from de�nition (7.12) and from (7.14): for all E ∈ Ti,δ,
∀p ∈ P1(E), ∀φ ∈ Vi,δ |E we have:

aEi,δ(φ, p) =
(
Ki ∇(φ− PE φ),∇p

)
E
+
(
Ki∇(PE φ),∇p

)
E
+ α (φ, p)Si ∩∂E

=
(
Ki ∇(PE φ),∇p

)
E
+ α (φ, p)Si ∩∂E

= aEi (φ, p),

being aEi (·, ·) the restrition to a mesh element of the ontinuous bilinear form. Sta-

bility an be proved similarly to [3℄, using (7.12) and (7.16), as there exist two pos-

itive onstants a and a independent from the element E and from δ suh that ∀φ ∈
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Vi,δ |E, a aEi (φ, φ) ≤ aEi,δ(φ, φ) ≤ a aEi (φ, φ). For all φ ∈ Vi,δ|E we have:

aEi,δ(φ, φ) =
(
Ki∇(PE φ),∇(PE φ)

)
E
+ α (φ, φ)Si ∩∂E

+ SE(φ− PE φ, φ− PE φ)

=
(
Ki∇(PE φ),∇(PE φ)

)
E
+ α

(
PE φ,PE φ

)
Si ∩∂E

−α
(
PE φ,PE φ

)
Si ∩∂E

+ α (φ, φ)Si ∩∂E
+ SE(φ− PE φ, φ− PE φ)

≤ aEi (PE φ,PE φ) + α (φ, φ)Si ∩∂E
− α

(
PE φ,PE φ

)
Si ∩∂E

+c1
(
Ki ∇(φ− PE φ),∇(φ− PE φ)

)
E

≤ max {1, c1}
(
aEi (PE φ,PE φ) +

(
Ki ∇(φ− PE φ),∇(φ− PE φ)

)
E

+α
(
φ− PE φ, φ− PE φ

)
Si ∩∂E

+ 2α
(
φ− PE φ,PE φ

)
Si ∩∂E

)

= a aEi (φ, φ),

and in a similar fashion:

aEi,δ(φ, φ) ≥ min {1, c0}
(
aEi (PE φ,PE φ) +

(
Ki ∇(φ− PE φ),∇(φ − PE φ)

)
E

+α
(
φ− PE φ, φ− PE φ

)
Si ∩∂E

+ 2α
(
φ− PE φ,PE φ

)
Si ∩∂E

)

= a aEi (φ, φ).

Assuming basi quality properties for the triangulation, funtional SE
an be hosen

as in [3℄ to satisfy onditions (7.15), thus having for all φ,ϕ ∈ Vi,δ|E :

SE(φ,ϕ) =

nE∑

k=1

Ki(φ(xk)− (PE φ)(xk))(ϕ(xk)− (PE ϕ)(xk)). (7.17)

Conerning the treatment of the soure term qi at right hand side of equation (7.6), it

is shown in [4℄ that onvergene rates are preserved approximating qi with a pieewise

onstant funtion on eah element of the triangulation.

Given the previous results and de�nitions it is possible to use the onvergene theo-

rem in [3℄ to prove that the disrete problems on the fratures are well posed and enjoy

the onvergene rates of standard �nite elements of the same order.

Even if funtions in Vi,δ are only known on the edges of triangulation elements, the

knowledge of the degrees of freedom allows us to ompute the disrete bilinear forms.

In fat, in order to ompute PE φ, for any φ ∈ Vi,δ |E and p ∈ P1(E) we evaluate:

(Ki ∇φ,∇p)E =

∫

E
Ki ∇φ∇p dE =

∫

E
Ki ∆p φ dE +

∫

∂E
Ki

∂p

∂n∂E
φ dγ

=

∫

∂E
Ki

∂p

∂n∂E
φ dγ

where n∂E is the outward unit normal vetor to ∂E.
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7.4 Formulation and resolution of the disrete problem

As shown in Setion 7.2, the problem has been reformulated as a PDE-onstrained

optimization problem (see equation (7.7)) in whih the quadrati funtional J is to be

minimized subjet to linear onstraints. In this setion, following a �rst-disretize-then-

optimize approah, we give some details about the disrete formulation of the problem

and the numerial approah for omputing a solution to the problem. In the following,

we will use lower ase letters for the �nite dimensional approximations of funtions H

and U .

7.4.1 Disrete formulation

As outlined in the previous setion, we introdue a �nite dimensional basis for eah

frature Fi, with a total number NF =
∑I

i=1Ni of DOFs on the fratures. Conerning

the funtional spae on the traes, in order to simplify the disussion, we onsider the

following di�erent numbering for the ontrol funtions uSi , indued by the trae num-

bering. Being S = Sm a given trae, with ISm = {i, j} and assuming i < j, we denote

by u−m and by u+m the ontrol funtions related to the m-th trae and orresponding

to fratures Fi and Fj , respetively. By overloading the notation, we use the same

symbol for the orresponding vetor of DOFs. Let us introdue basis funtions ψ−
m,k,

k = 1, ..., N−
m and ψ+

m,k, k = 1, ..., N+
m for the spae of the ontrol funtion u−m and

u+m, respetively. Note that here we allow to use di�erent spaes on the two �sides� of

eah trae. Then we have, for m = 1, ...,M , ⋆ = −,+, u⋆m =
∑N⋆

m

k=1 u
⋆
m,kψ

⋆
m,k. Setting

NT =
∑M

m=1(N
−
m +N+

m), we de�ne u ∈ R
NT

onatenating u−1 , u
+
1 , . . . , u

−
M , u

+
M .

Let us onsider the funtional J , whose expression is given in Setion 7.2 by equation

(7.4), and let us write the disrete funtional in terms of L2
norms instead of H− 1

2
and

H
1

2
norms on the traes: its disrete ounterpart is

J =
1

2

I∑

i=1

∑

S∈Si



∫

S

(

Ni∑

k=1

hi,kφi,k|S −
Nj∑

k=1

hj,kφj,k|S)
2 dγ+ (7.18)

∫

S

(

N−
m∑

k=1

u−m,kψ
−
m,k +

N+
m∑

k=1

u+m,kψ
+
m,k − α

Ni∑

k=1

hi,kφi,k|S − α

Nj∑

k=1

hj,kφj,k|S)
2 dγ


 .

Let us de�ne for all Sm ∈ S, for p, q ∈ ISm (possibly p = q), the matries

(CSm
p,q )k,ℓ =

∫

Sm

ϕp,k |Sm
ϕq,ℓ|Sm

dγ, Cp,q =
∑

Sm∈Sp

CSm
p,q .



7.4 Formulation and resolution of the disrete problem 191

Furthermore, for m = 1, ...,M and ⋆ = −,+ de�ne C⋆
m ∈ R

N⋆
m×N⋆

m
, C±

m ∈ R
N−

m×N+
m
and

Cm as:

(C⋆
m)kℓ=

∫

Sm

ψ⋆
m,kψ

⋆
m,ℓ dγ, (C±

m)kℓ=

∫

Sm

ψ−
m,kψ

+
m,ℓ dγ, Cm=

(
C−
m C±

m

(C±
m)T C+

m

)
,

and B⋆
i,m ∈ R

Ni×N⋆
m
and B⋆

j,m ∈ R
Nj×N⋆

m
as

(B⋆
i,m)kℓ =

∫

Sm

ψ⋆
m,kφi,ℓ|Sm

dγ, (B⋆
j,m)kℓ =

∫

Sm

ψ⋆
m,kφj,ℓ|Sm

dγ.

The funtional J in (7.18) is therefore written, in algebrai form, as

J(h, u) =
1

2

I∑

i=1

∑

S∈Si

(1 + α2)hTi C
S
i,ihi + (1 + α2)hTj C

S
j,jhj − 2(1− α2)hTi C

S
i,jhj

+(u−m)T C−
m u

−
m + (u+m)T C+

m u
+
m + 2(u−m)T C±

m u
+
m − α(hTi B

+
i,mu

+
m)

−α(hTi B−
i,mu

−
m)− α(hTj B

−
j,mu

−
m)− α(hTj B

+
j,mu

+
m)− α((u−m)T (B−

i,m)Thi)

−α((u+m)T (B+
i,m)Thi)− α((u−m)T (B−

j,m)Thj)− α((u+m)T (B+
j,m)Thj).

We now allow for a more ompat form of J(h, u) by assembling previous matries as

follows. We set

Bi,m = (B−
i,m B+

i,m) ∈ R
Ni×(N−

m+N+
m), um = (u−m, u

+
m).

For eah �xed i = 1, ..., I, matries Bi,m, for m suh that Sm ∈ Si, are then grouped

row-wise to form the matrix Bi ∈ R
Ni×NSi

, with NSi
=
∑

Sm∈Si
(N−

m + N+
m). Matrix

Bi ats on a olumn vetor ui obtained extrating bloks um, for Sm ∈ Si, from u and

appending them in the same order used for Bi,m, as the ation of a suitable operator

Ri : R
NT 7→ R

NSi
suh that ui = Riu. Finally, let B ∈ R

NF×NT
be de�ned by

B =




B1R1

.

.

.

BIRI


 .

Let now Gh ∈ R
NF×NF

be de�ned blokwise as follows: for i = 1, ..., I we set

Gh
ii = (1 + α2)Ci,i, Gh

ij = (α2 − 1)CS
i,j if j ∈ Ji (0 elsewhere) ,

where, �xed Fi, Ji ollets the indies j suh that |F̄j ∩ F̄i| > 0. Sine, obviously, j ∈ Ji

if and only if i ∈ Jj , and due to the straightforward property (Gh
ij)

T = Gh
ji, we have
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that Gh
is a symmetri matrix. Next, let us de�ne the matrix Gu ∈ R

NT×NT
blokwise

as Gu = diag(Cm,m = 1, ...,M). With these de�nitions at hand, the funtional J is

rewritten

J(h, u) :=
1

2

(
hTGhh− αhTBu− αuTBTh+ uTGuu

)

being h ∈ R
NF

obtained appending vetors hi, i = 1, ..., I.

We �nally note that, setting

G =

(
Gh −αB

−αBT Gu

)

and w = (h, u), J an be simply written as J = 1
2w

TGw, with G straightforwardly

symmetri, due to previous onsiderations, and positive semide�nite by onstrution.

Constraints (7.6) are written as a unique linear system as follows: For all i = 1, ..., I

de�ne the matrix Ai ∈ R
Ni×Ni

as

(Ai)kℓ =
∑

E∈Ti,δ

(∫

Fi

Ki∇PE φi,k∇PE φi,ℓ dFi + SE(φi,k, φi,ℓ)

)

+ α
∑

S∈Si

∫

S

φi,k |Sφi,ℓ|S dγ, k, ℓ = 1, . . . , Ni

where the operators PE
and SE

are de�ned by (7.14) and (7.17), respetively.

For eah frature Fi, we set N
i
Si

=
∑

Sm∈Si
N⋆

m as the number of DOFs on traes of

Fi on the Fi �side�, and we de�ne matries Bi ∈ R
Ni×N i

Si
grouping row-wise matries

B⋆
i,m, with m spanning traes in Si, and setting for eah m either ⋆ = + or ⋆ = −

aording to whih one of the two �sides� of trae Sm is on Fi. Matries Bi at on a

olumn vetor u′i ontaining all the N
i
Si

ontrol DOFs orresponding to the traes of Fi,

obtained extrating bloks u⋆m, for Sm ∈ Si, from u and appending them in the same

order used in the de�nition of Bi. Again, this an be obtained as the ation of a suitable

operator R′
i : R

NT 7→ R
N i

Si
suh that u′i = R′

iu. In pratie, R
′
i extrats only sub-vetors

u⋆m from u orresponding to ontrol funtions on the "orret side" of the trae.

The algebrai formulation of the primal equations (7.6) is then

Aihi = q̃i + Bi u
′
i, i = 1, ..., I, (7.19)

where q̃i aounts for the term qi in (7.6) and for the boundary onditions on the frature

Fi.
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We set A = diag(Ai, i = 1, ..., I) ∈ R
NF×NF

and de�ne B ∈ R
NF×NT

as

B =




B1R
′
1

.

.

.

BI R
′
I




Setting q = (q̃1, . . . , q̃I) ∈ R
NF

, onstraints (7.19) are then written Ah− B u = q.

The problem under onsideration is therefore reformulated as the following equality

onstrained quadrati programming problem:

min J(h, u) =
1

2

(
hTGhh− αhTBu− αuTBTh+ uTGuu

)
(7.20)

s.t. Ah− B u = q. (7.21)

7.4.2 Solving the optimization problem

The �rst order optimality onditions for problem (7.20)-(7.21) are the following:




Gh −αB AT

−αBT Gu −BT

A −B 0







h

u

−p


 =




0

0

q


 (7.22)

being p the vetor of Lagrange multipliers.

The previous saddle point problem is, for real appliations, a very large sale prob-

lem, with highly sparse bloks, as A, Gu
are blok diagonal matries, Gh

, B and B are

blok-sparse.

By (formally) using the linear onstraint for eliminating the unknown h as

h = A−1(B u+ q), (7.23)

we obtain the following equivalent unonstrained problem :

min Ĵ(u) :=
1

2
uT (BT A−TGhA−1 B+Gu − αBT A−TB − αBTA−1 B)u

+qTA−T (GhA−1 B−αB)u.

For further onveniene we rewrite Ĵ(u) = 1
2u

T Ĝu+ q̂Tu. A gradient-based method for

the minimization of the funtional requires the omputation of the gradient of Ĵ :

∇Ĵ(u) = (BT A−TGhA−1 B+Gu − α(BT A−TB +BTA−1 B))u+

(BT A−TGh − αBT )A−1q.
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or, equivalently, ∇Ĵ(u) = Ĝu+ q̂.

The gradient an be written in terms of some auxiliary variables as follows. Rear-

ranging previous expression, we obtain

∇Ĵ(u) = BT A−TGhA−1(B u+ q) +Guu− αBT A−TBu− αBTA−1(B u+ q)

and realling (7.23), one has

∇Ĵ(u) = BT A−TGhh+Guu− αBT A−TBu− αBTh.

Now set p := A−T (Ghh− αBu), i.e. given h and u, p solves

AT p = Ghh− αBu. (7.24)

With these de�nitions, we may write

∇Ĵ(u) = BT p+Guu− αBTh. (7.25)

Note that setting to zero the previous expression for obtaining stationary points for

Ĵ(u), and olleting suh equation together with (7.23) and (7.24), we obtain system

(7.22).

Conerning the numerial solution of the optimization problem, we mention here

two possible approahes. The �rst one onsists in solving the linear system (7.22). An

iterative solver is learly a reommended hoie, and symmlq [16℄ would be a suitable

hoie; this approah has been used in [7℄. Another approah onsists in applying an

iterative solver to the minimization of Ĵ(u). We fous here on this seond approah,

skething the onjugate gradient method applied to the minimization of Ĵ(u). In the

algorithm, let us denote by gk the gradient ∇Ĵ(uk) at step k and by dk the desent

diretion.

Conjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (7.23) and (7.24) and g0 by (7.25)

3. Set d0 = −g0, k = 0

4. While gk 6= 0
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4.1. Compute λk with a line searh along dk

4.2. Compute uk+1 = uk + λkdk

4.3. Update gk+1 = gk + λkĜdk

4.4. Compute βk+1 =
gT
k+1

gk+1

gT
k
gk

4.5. Update dk+1 = −gk+1 + βk+1dk

4.6. k = k + 1

Due to linearity, Step 4.3 is equivalent to ompute gk+1 = Ĝuk+1 + q̂. Indeed,

gk+1 = Ĝuk+1 + q̂ = Ĝ(uk + λkdk) + q̂ = Ĝuk + q̂ + λkĜdk = gk + λkĜdk.

Nonetheless, we remark that this step is learly performed without forming matrix Ĝ,

but rather omputing vetor yk = Ĝdk through the following steps:

1. Solve At = B dk

2. Solve AT v = Ght− αBdk

3. Compute yk = BT v +Gudk − αBT t

Furthermore, sine Ĵ is quadrati, the stepsize λk in Step 4.1 an be omputed via

an exat line searh. Given a desent diretion dk, we ompute λk suh that it minimizes

the funtion φ(λ) := Ĵ(uk + λdk). Straightforward omputations show that one has

λk = − dTk gk

dTk Ĝdk
. (7.26)

The stepsize λk is therefore omputed without muh e�ort, as quantity Ĝdk is the same

needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of

the linear systems with oe�ient matrix A (whih atually equals AT
). Nevertheless,

we reall that matrix A is atually symmetri positive de�nite, blok diagonal with eah

blok de�ned on a frature. The systems are therefore deomposed in as many small

�loal� systems as the number of fratures. Right-hand-sides of the loal systems gather

information both from the urrent frature, and from the interseting fratures, whih

are typially small in number. Hene, these independent linear systems an be e�iently

solved on parallel omputers.
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7.5 VEM implementation and numerial results

In this setion we address some implementation issues onerning the use of VEM

in onjuntion with the optimization approah desribed in Setion 7.4. In addition,

we present some numerial results in order to show the viability of the VEM for the

simulation of disrete frature networks and to highlight the e�etiveness of the overall

method in this ontext. Simpler test problems foused on partiular implementation

issues antiipate some numerial results on more omplex DFNs.

7.5.1 VEM for DFN

We start desribing the proedure for obtaining the omputing mesh on the frature

network. Let us reall that eah frature in a DFN is represented by a 2D polygonal

domain and is interseted by other fratures of the network in a set of traes. As a �rst

step, triangular meshes are generated on eah frature independently, without taking

into aount trae positions or onformity requirements of any kind. Next, we proeed

independently on eah frature and whenever a trae intersets one element edge, a new

node is reated. New nodes are also reated at trae tips. If the trae tip falls in the

interior of an element, the trae is prolonged up to the opposite mesh edge. Interseted

elements are then split into two new �sub-elements�, whih beome elements in their

own right, as shown in Figures 7.2 and 7.3 that represent the two phases of the proess

desribed above. In these pitures, oloured elements are the new virtual elements,

whereas blank elements are the original triangular elements. Elements with up to 6

edges are introdued in these examples. In the Figures, eah olor orresponds to a

di�erent number of edges in the element. The reader might refer to the PDF �le to

zoom in the pitures for a more detailed view.

The polygonal mesh obtained with the proedure desribed is possibly improved

through the displaement of some nodes. Namely, when a node falls very lose to a trae,

it an be moved onto the trae itself, and therefore reduing the number of element edges

and total degrees of freedom. The mesh improvement proess is performed as detailed

in the following. The distane of eah node of interseted elements from the nearest

trae is ompared to a given mesh dependent tolerane. If the distane of the node to

the losest trae is below the tolerane, then the node is moved to its projetion on the

trae. Verties of the fratures always remain �xed and nodes in the border are only

moved provided that they remain on the same border in order to avoid hanging the
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Figure 7.2: Mesh example. Left: original triangulation. Right: mesh for VEM.
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Figure 7.3: Left: detail of a mesh around a trae intersetion. Right: detail of a mesh

around a trae tip.
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0 10 20 �0 40 50 0 10 20 30 40 50

Figure 7.4: Left: example of VEM mesh without modi�ation. Right: Same mesh after

modi�ations.

shape of the frature. This proedure is performed independently for every frature,

and although not stritly neessary, it is advisable. The e�et of this additional mesh

modi�ation is shown in Figure 7.4.

Sine VEM basis funtions are not known in the interior of mesh elements in general,

we resort to the following mesh-dependent L2
and H1

norms ommonly used in the

ontext of mimeti �nite di�erenes, and de�ned ∀u ∈ Vi,δ and for all i = 1, . . . , I,

respetively as:

||u||20,δ =
∑

E∈Ti,δ

(
|E|
∂E

∑

e⊂∂E

|e|
(
uh(vi) + uh(ve)

2

)2
)
,

||u||21,δ =
∑

E∈Ti,δ

(
|E|

∑

e⊂∂E

(
uh(vi)− uh(ve)

|e|

)2
)
,

where vi and ve are the initial and �nal point of the edge, respetively.

7.5.2 Test problems

We �rst propose two test problems aimed at evaluating VEM approximation apa-

bilities in the DFN ontext by means of applying them to very simple on�gurations

representative of ommon situations in DFN simulations. In these test ases, a single
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problem of the form (7.1) is solved, i.e. a single frature F is onsidered, assigning u on

the traes. In the �rst ase, two interseting traes are present in F , ompletely ross-

ing the domain, while a single trae ending inside the domain is studied in the seond

problem. The proposed numerial results show very good approximation apabilities of

virtual elements in dealing with these geometrial on�gurations.

Problem 1

The �rst test problem, labeled P1, displays two traes interseting eah other inside

the domain. The domain is a single retangular frature F ⊂ R
2
with two traes S1 and

S2 de�ned by:

F =
{
(x, y) ∈ R

2 : x ∈ (0, 3), y ∈ (0, 1)
}
,

S1 =
{
(x, y) ∈ R

2 : x− y − 1 = 0
}
, S2 =

{
(x, y) ∈ R

2 : 2− x− y = 0
}
.

The domain is shown in Figure 7.5 with a oarse mesh with parameter δmax = 0.2 along

with a detail of trae intersetion. Here and in the sequel δmax denotes the square root

of the maximum element area for the initial triangulation on eah frature. For this

mesh, the original triangular element ontaining trae intersetion is split into four new

elements, two triangles and two quadrilaterals.

The problem is set as follows:

−∆H = −∆Hex Ω \ S,
H = 0 on ∂F,

U1 = fS1
=

[[
∂Hex

∂ν̂S1

]]

S

on S1,

U2 = fS2
=

[[
∂Hex

∂ν̂S2

]]

S

on S2,

with

Hex(x, y) =





xy(y − 1)(x− y − 1)(x+ y − 2)/7 in A1,

(1− y)(x− y − 1)(x+ y − 2) in A2,

y(x− y − 1)(x+ y − 2) in A3,

y(1− y)(x− 3)(x− y − 1)(x+ y − 2)/5 in A4,

where A1, A2, A3 and A4 denote the four regions in whih F is divided by the traes,
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Figure 7.5: Problem P1. Left: Domain with oarse grid δmax = 0.2. Right: a detail of

trae intersetion.

as indiated in Figure 7.5. Values of fS1
and fS2

are

fS1
(x, y) =





1/(7
√
2)(2− x− y) (7− x(6 + x) + 20y

+2x(1 + x)y − 5xy2 + y3
)

x+ y − 2 ≤ 0

1/(5
√
2)(2− x− y) (−8 + y(1 + y)(11 + y)

+x2(−1 + 2y)− x(1 + y(4 + 5y))
)

x+ y − 2 > 0,

and

fS2
(x, y) =





1/(5
√
2)(−1 + x− y) (−16− (−10 + x)x+ 38y

+2(−7 + x)xy + 5(−3 + x)y2 + y3
)

y − x+ 1 ≤ 0

1/(7
√
2)(−1 + x− y)

(
−28 + x2(−1 + 2y)

+y(23 + (−3 + y)y) + x(9 + y(−8 + 5y))) y − x+ 1 > 0.

In Figure 7.7, left, the numerial solution obtained on a �ne mesh with parameter

δmax = 0.05 is displayed. This problem has been solved using both the VEM and

the XFEM for the spae disretization, as desribed in [9, 7, 8℄. Figure 7.7, right,

reports, for both spae disretizations, errors omputed versus the number of DOFs.

We remark that, when applying the two approahes, we always start from the same

triangular mesh. The XFEM deals with irregularities in the solution along traes by

adding suitable enrihment funtions (see [7, 8℄ and referenes therein), resulting the

two methods in a di�erent number of DOFs, when the same mesh parameter is used.

Computed onvergene rates are lose to the expeted ones both in the L2
and the H1

mesh-dependent norms, and both for the VEM and for the XFEM: namely, L2
norm

onvergene rate is 1.03 for the VEM and 0.99 for the XFEM, whereas the H1
norm

onvergene rate is 0.49 both for the VEM and for the XFEM. The L2
norm of the error

on the restrition of the solution to the traes is also reported (label 'L2H on trae' in
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Figure 7.6: Problem P1: approximate solution on a mesh with δmax = 0.05
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Figure 7.7: Problem P1: error behaviour

the legend), and displays a onvergene rate of 1.0 for the VEM and 0.91 for the XFEM.

As a whole, the two spae disretizations yield a omparable level of auray, and the

intersetion between traes is easily handled by the VEM on a polygonal mesh with very

good approximation properties.

Problem 2

Let us de�ne the domain F for the seond test problem P2 as

F =
{
(x, y) ∈ R

3 : −1 < x < 1, −1 < y < 1, z = 0
}
,
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with a single trae S =
{
(x, y) ∈ R

2 : y = 0 and − 1 ≤ x ≤ 0
}
ending in the interior

of F . This test problem has also been onsidered in [7℄. Here we set out to show the

behaviour of virtual elements in handling the non-smooth behaviour of the solution

around trae tips. Let us introdue the funtion Hex(x, y) in F as:

Hex(x, y) = (x2 − 1)(y2 − 1)(x2 + y2) cos

(
1

2
arctan2(x, y)

)

where arctan2(x, y) is the four-quadrant inverse tangent, giving the angle between the

positive x-axis and point (x, y), and di�ers from the usual one-argument inverse tangent

arctan(·) for plaing the angle in the orret quadrant.

The problem is de�ned by the system:

−∆H = −∆Hex
on Ω \ S,

H = 0 on ∂F,

U = x− x3 on S,

where U is the presribed value of the jump of �uxes aross the trae S.

Figure 7.8 shows the VEM mesh and the resulting elements near the tip. In this

implementation of the method, the tip beomes a new node of the triangulation, and

three new four-sided elements are generated. Two of them are obtained from the original

triangle that ontained the trae tip, while the third one appears when the node given

by the intersetion between the prolonged trae and the opposite mesh element is added

to the orresponding neighbouring triangle that beomes a quadrilateral.

The approximate solution is shown in Figure 7.9. In Figure 7.10 we report errors

omputed both with the L2
and with the H1

mesh dependent norms, both for the VEM

and for the XFEM. Computed onvergene rates are, also for this test problem, quite

similar for the two spae disretizations: 1.05 in the L2
norm, and 0.51 in the H1

norm

for the VEM; 1.02 in the L2
norm, and 0.47 in the H1

norm for the XFEM. The Figure

also reports the errors on the restrition of H to the trae S, omputed in the L2
norm.

Computed onvergene rate are in this ase 0.85 for the VEM and 0.96 for the XFEM.

As for problem P1, the approximation properties of the two spae disretizations are

therefore quite similar. As a whole, also this geometrial on�guration inluding a trae

tip is e�etively handled by the VEM, thanks to the �exibility in using polygonal mesh,

without a�eting the approximation apabilities if ompared, e.g., with extend �nite

elements.
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Figure 7.8: Problem P2. Domain meshed with δmax = 0.1. Right: a detail of elements

near trae tip.
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Figure 7.9: Problem P2: approximate solution with VEM obtained with a mesh with

δmax = 0.1
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Figure 7.10: Problem P2: error behaviour

7.5.3 DFN problems

In this setion we deal with networks of fratures, addressing both simple DFN prob-

lems and more omplex and realisti problems. Computations are perfomed using the

PDE-onstrained optimization approah desribed, in onjuntion with virtual element

spae disretization. The general DFN problem is set as follows:

−∆H = q Ω \ S, (7.27)

H|ΓD
= HD

on ΓD,

∂H

∂ν̂
= GN

on ΓN ,

with referene to the nomenlature introdued in Setion 7.2.

DFN2

Here we analyze a very simple DNF onsisting of two idential fratures that interset

eah other orthogonally, as an be seen in Figure 7.11 where the domain Ω is depited.

Fratures 1 and 2 and the trae S are de�ned as:

F1 =
{
(x, y, z) ∈ R

3 : z ∈ (−1, 1), y ∈ (0, 1), x = 0
}
,

F2 =
{
(x, y, z) ∈ R

3 : x ∈ (−1, 1), y ∈ (0, 1), z = 0
}
,

S =
{
(x, y, z) ∈ R

3 : x = 0, y ∈ (0, 1), z = 0
}
.
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Figure 7.11: DFN2: spatial distribution of fratures and the obtained solution for the

hydrauli head.

Homogeneous Dirihlet boundary onditions are imposed on the edges orrespond-

ing to z = 0 and z = 1 of F1 and to y = 0 and y = 1 of F2 . On the remaining edges

we set homogeneous Neumann onditions for frature F1, and a non-onstant Neumann

boundary ondition for frature F2 given by GN = 16y(1− y)2on ΓN . With this de�ni-

tion of the problem, the exat solutions for the hydrauli head Hex
and the trae �ux

U are:

Hex
1 (x, y, z) =

{
4y(1 − y)(z − 1)2 for z ≥ 0

4y(1 − y)(z + 1)2 for z < 0

U ex
1 (x, y, z) = 16y(1− y)

Hex
2 (x, y, z) =

{
4y(1 − y)(x+ 1)2 for x ≥ 0

4y(1 − y)(x− 1)2 for x < 0

U ex
2 (x, y, z) = −16y(1− y).

In Figure 7.12 we present the results obtained for the hydrauli head on frature

F1 (left) and F2 (right) using a mesh size δmax =
√
0.002. Figure 7.13 shows the

omparison of the obtained �ux with the exat solution and the trend of the minimization

of funtional J against iteration number. Here, we have performed a number of iterations
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Figure 7.12: DFN2: approximate solution for frature 1 (left) and frature 2 (right).
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Figure 7.13: DFN2. Left: omparison between exat and approximate �ux. Right: values

of J versus number of iterations.

large enough to let J reah stagnation at its minimum. The omputed �ux relative to

the minimum of the funtional approximates the exat solution well.

Error norms are omputed for the solution on the fratures in terms of the mesh-

dependent L2
and H1

norms and are shown in Figure 7.14 against the number of degrees

of freedom. Errors for the �ux on the trae and for the restrition of the solution h on the

trae are also evaluated and displayed on the same �gure. Convergene rates are of 1.05

and of 0.51 for the solution error in the L2
and H1

mesh dependent norms respetively,

while a slope of 0.91 is shown for the L2
error norm relative to the �ux and a slope

of 0.94 for the L2
error norm of h at the trae. The results obtained show very good

approximation properties of the VEM in onjuntion with the proposed optimization

method. E�etiveness of the method in handling more omplex on�gurations is shown

with the examples that follow.
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Figure 7.14: DFN2: error behaviour

DFN7

This problem onsists of 7 fratures interseting in 11 traes. The spatial distribution

of the fratures an be seen in Figure 7.15. The soure term is q = 0 in equation (7.27).

The Dirihlet boundary ΓD is given by only two frature edges: namely, onstant

Dirihlet boundary ondition HD = 3 is set on one edge of frature F3 (see Figure 7.15)

and HD = 7 is set on one edge of frature F7. On all the remaining boundaries of the

network we set homogeneous Neumann onditions.

Due to the disposition of the fratures and the boundary onditions, the exat so-

lution to this DFN problem is pieewise a�ne and displays a slope hange at eah

trae (the jump in the slope orresponding to �ux exhange). In this problem we show

the apability of the VEM disretization, ombined with the optimization approah, to

orretly ath the solution in the spae of disrete funtions.

Results are shown for a very oarse mesh (from 8 to 18 elements for eah frature)

and for a �ner mesh with δmax = 0.2. See Figure 7.16 for a detail of the meshes for

frature 3.

Table 7.1 details the �ux exhange in fratures and traes for the solution on the

�ner mesh. Rows orrespond to traes and olumns to fratures. The last row ontains

the sum of all the inoming and outgoing �ow for eah frature, while the last olumn

shows the balane in �ux exhange between the two fratures that share a trae. An

almost perfet balaning of the �uxes an be seen, both within fratures and in trae
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F7

F3

Figure 7.15: DFN7: spatial distribution of fratures and the obtained solution for the

hydrauli head.

0 1 2 3 4 5 6 

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 �

−1

−0.5

0

0.5

1

1.5

2

Figure 7.16: DFN7: mesh on F6 with parameter δmax = 1.2 (left) and �ner mesh with

δmax = 0.2 (right).

0
1

2
3

4
5

6
7 0

0.2

0.4

0.6

0.8

1

3.5

4

4.5

5

0
1

2
3

4
5

6
7 0

0.2

0.4

0.6

0.8

1

3.5

4

4.5

5

Figure 7.17: DFN7: solutions obtained for frature 6 with oarse (left) and �ne (right)

mesh.
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Table 7.1: Flux data for the DFN7 on�guration with �ux mismathes aross traes (last

olumn) and �ux balane on fratures (last row).

DFN7

F1 F2 F3 F4 F5 F6 F7

T1 -0.036 0.036 -9.8e-12

T2 -0.17 0.17 4.6e-12

T3 0.21 -0.21 -1.6e-12

T4 -0.24 0.24 -1.6e-12

T5 0.24 -0.24 -1.1e-11

T6 0.064 -0.064 -2.7e-12

T7 0.039 -0.039 -8.9e-12

T8 0.34 -0.34 1.1e-11

T9 0.31 -0.31 4.8e-12

T10 0.029 -0.029 8.3e-12

T11 0.039 -0.039 8.1e-13

-2.1e-14 4.4e-14 0.7505 1e-14 4.2e-16 -1.4e-14 -0.7505 -5.9e-12

exhanges. Frature F7 ats as a soure that provides 0.7505 of �ux to the system

(negative values represent �ux leaving the frature), whih leaves the system at frature

F3 with an approximately 0 unbalane reported in the bottom-right ell of the table. All

other fratures show a quasi non-existent net �ow, whih agrees with the homogeneous

Neumann boundary ondition.

DFN36

We end the setion with a realisti (though rather small) DFN onsisting of 36

fratures interseting in 65 traes. The spatial distribution of the fratures an be seen

in Figure 7.18. Assuming meters as unit of length, frature size spans from 2.8× 103m2

to 1.2× 104m2
.

The Dirihlet boundary is omposed by two edges of two fratures, namely ΓD is

omposed by the borders of frature F1 and F2 indiated in Figure 7.18, presribing

onstant value Dirihlet onditions, HD
1 = 100 and HD

2 = 0. Homogeneous Neumann

boundary onditions are set on all the remaining boundaries. With these boundary

onditions frature F1 is a soure of hydrauli head, F2 is a sink frature and all other

fratures are insulated. Also in this ase we set q = 0 in (7.27).



210 Chapter 7

F1

F2

Figure 7.18: DFN36: Spatial distribution of fratures and the obtained solution for the

hydrauli head.

The problem is solved on several meshes, with 2m2 < δ2max < 50m2
. In Figure 7.19

the detail of a mesh with δ2max = 30m2
on a seleted frature and the orresponding

obtained solution are shown.

The quality of the obtained solution an be evaluated in terms of two indiators,

representing the mismath errors in the ontinuity ondition and in the �ux balane

ondition on the traes per unit of trae length, de�ned respetively as:

∆cont =

√∑M
m=1 ‖hi|Sm

− hj |Sm
‖2

∑M
m=1 |Sm|

,

∆flux =

√∑M
m=1 ‖umi + umj − α(hi |Sm

+ hj |Sm
)‖2

∑M
m=1 |Sm|

.

These mismath errors are reported in Table 7.2 for di�erent mesh sizes. Namely, we

report values obtained with both the VEM and the XFEM based spae disretizations.

The table also reports the number of degrees of freedom in the two ases, orresponding

to eah mesh parameter. We remark that the number of DOFs for u is the same in

the two ases, as we use on the traes a �nite element disretization whih is indued

by the intersetion points among the initial triangular mesh element edges (the same
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Figure 7.19: DFN36: Left: Mesh with maximum element size of 30m2
on a seleted frature.

Right: Solution on the same grid.

Table 7.2: DFN36: ∆
ont

and ∆
�ux

for various mesh sizes.

VEM XFEM

δ2max u dof h dof ∆flux ∆cont h dof ∆flux ∆cont

50 776 4091 9.515e-04 9.432e-04 5772 1.039e-03 9.521e-04

30 942 6048 9.621e-04 8.394e-04 8106 1.147e-03 1.181e-03

12 1342 13967 6.736e-04 6.514e-04 16932 7.358e-04 8.189e-04

5 1885 30782 5.972e-04 6.083e-04 34958 5.930e-04 7.019e-04

2 2862 74107 4.847e-04 3.949e-04 80403 4.342e-04 4.664e-04

for the two approahes) and the trae itself. On the other hand, the number of DOFs

for h is di�erent for the two approahes here adopted, and is in general smaller for the

VEM. This is due to the fat that the XFEM deals with totally non-onforming meshes

through the introdution of suitable enrihment funtions in triangles lose to the traes,

thus yielding a bit larger number of DOFs. Note that this larger number of DOFs for

the XFEM is required for handling a total non-onforming mesh, but it does not yield

more aurate mismath errors with respet to the VEM approah. As a whole, a good

auray is obtained with both approahes, and the mismath errors redue with mesh

re�nement.

7.6 Conlusions

The very reent Virtual Element Method is oupled with the optimization based

algorithm presented in [9, 7, 8℄ for the numerial simulation of DFNs on large sales.

The �exibility of virtual elements in handling meshes with elements of fairly general
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polygonal shape allows an easy mesh generation proess, reliable and independent on

eah frature, suitable for the optimization approah used. The resulting method is

robust as an approah any DFN with arbitrary frature density, and e�ient, sine it

provides an easy parallel approah to the simulation of large networks. The numerial

results reported show the viability and e�etiveness of the VEM for the simulation of

DFNs.
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