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Introduction

The objective of the work presented here is the description and the investigation of
a novel numerical tool for the effective simulation of fluid flows in underground poro-

fractured media at large scales.

This subject is of interest for several practical applications. In the context of an
increasing concern towards environmental friendly industrial applications, sequestration
and underground storage of COs is currently under investigation as a potential way to
reduce emissions of greenhouse gases. COs is pumped in underground basins, where
over geological time-scales it reacts with underground minerals forming stable carbon-
ate mineral forms. Numerical models are a valuable tool for geologists and engineers to
assess safety and viability of specific geological sites, in order to study the risk of dan-
gerous leakages of gases through rock faults, or the dispersion of CO5 in the atmosphere
due to filtration through rock pores. CSS and a deeper research on the subject towards
cost-efficiency and safety is currently promoted by European Commission, see Directive
2009/31/CE and the CSS website [7].

Countries that import natural gas for energetic purposes need to store huge quantities
in order to face both typical fluctuations of request and unforeseeable long periods of
scarce supply. Natural gas storage is usually performed in depleted geological reservoirs,
or in large underground basins. Numerical tools can be used to assess the viability of
geological sites, to predict seepage of fluid and the mechanical response of the rock faults
to variations of pressure during the cyclical gas pumping in and out. As an example,
Italy highly relies on imported gas for energy supply and currently has fourteen storage

sites with a trend towards an increase of storing capacity ([12]).

The exploitation of an oil field requires a detailed assessment of soil properties and
geological characteristics of the ground at reservoir scale. This is a lengthy and expensive

process, requiring a large number of wells and soil analysis. Numerical codes are widely
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Introduction

used in this process, and more efficient algorithms are required in order to improve
predictions and thus reduce costs.

The recent exploitation of shale gas in the United States requires horizontal drilling
of the soil and the generation of fractures in the impermeable shale formations in order
to extract the natural gas trapped therein. These techniques have a high environmental
risk, linked to the intense use of water for the generation of fractures, the emission of
large quantities of greenhouse gases in the atmosphere, the contamination of marine
and underground water, and therefore require a careful management ([24]). Numerical
models capable to combine the simulation of underground flows with rock mechanics
and chemistry can be a valuable tool in this field.

Underground flow numerical simulations find other possible application in the man-
agement and monitoring of surface and sub-surface water resources or in the analysis of
the transport and diffusion of pollutant species in the underground.

The present work focuses on the description of a new numerical model for the defini-
tion of the hydraulic head distribution in Discrete Fracture Networks (DFNs). Discrete
fracture networks are a well established model to simulate hydrological processes in un-
derground rock agglomerates, [14, 19, 8, 11, 4, 9, 15, 3]. A DFN consists of a set of
intersecting planar polygons resembling the fractures in a rock matrix. The explicit
representation of rock fractures is the major characteristic of these models, that are
therefore preferred to continuum-like models when the fracture pattern represents the
preferential flow path. This is the case when faults in the rock matrix have a higher per-
meability than the surrounding rocks. On the other hand, continuum models or hybrid
continuum-fracture models are used when the sole fracture network is not sufficient to
characterize the flow behaviour. In continuum models the flow is described as occurring
in a continuous porous medium, in which the presence of fractures is accounted for the
definition of a suitable permeability tensor ([16]).

Location, orientation, size and hydrological properties, such as the permeability
tensor, of the fractures of a DFN resembling a specific geological site are defined by
means of probability density functions, whose parameters are obtained through labora-
tory analyses on samples from probing or boreholes [2, 5, 1]. The quantity of interest
is the hydraulic head in the fractures, representing the sum of the pressure head and
of elevation. Hydraulic head is evaluated by means of the Darcy law and low order
finite elements are usually employed to numerically solve the problem (see for example
ROCKFLOW, [22]).
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The classical approach described above has two major drawbacks that limit the use
of DFN models for large scale applications. Firstly, DFNs of huge dimensions might
count up to millions of fractures, thus requiring a very high computational effort, and
additionally, repeated simulations are usually required to overcame the uncertainty due
to the stochastic nature of input data. Secondly, the generation of a good quality mesh
suitable for finite elements might result infeasible for intricate DFN configurations. This
is connected to the fact that fractures in DFNs intersect with arbitrary orientation and
the finite element triangulation need to be conformal to fracture intersections, usually
called traces. As a consequence elongated elements with poor aspect ratio might be
generated to match fractures intersecting with narrow angles, thus compromising the
accuracy of the solution. In many cases, due to the conformity requirement, triangula-
tion codes might even fail in generating a mesh [21].

The method described herein tackles both these difficulties by splitting the problem
on the whole DFN in many small sub-problems on each fracture that can be solved
independently from each other, and resorting to the minimization of a cost functional
to enforce the compatibility conditions at fracture intersections. In such a way the
complexity of the initial problem can be handled more efficiently in parallel computers
in an easy and straightforward way, and the meshing process can be performed inde-
pendently on each fracture, removing the constraint of triangulations conformal with
fracture intersections.

Different discretization strategies are possible. The solution can be obtained using
standard finite elements on each fracture, or through the use of special finite elements
in order to improve the accuracy near the traces, where the solution is expected to have
a discontinuous co-normal derivative and standard FEM on meshes non conforming
to the traces would not correctly reproduce this non-smooth behaviour. Alternatives
consist in using the eXtended Finite Element Method (XFEM) that allows a full non-
conformity between mesh elements and traces and relies on additional basis functions
to represent kinks in the solution, and the Virtual Element Method (VEM) that allows
a partial non-conformity and an easy meshing procedure thanks to the use of elements
with an arbitrary number of edges. Within the proposed approach a mixing of these
discretization strategies is possible, improving flexibility in dealing with complex DFN
configurations.

A large part of the research activity in the field of DFN simulations focuses on the

problems identified above. In order to reduce problem complexity, in [6, 18] the authors
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suggest to describe the DFN as a system of mono-dimensional pipes that connect the
traces with the neighbouring fractures, without affecting the topology of the network.
Different approaches rely on mortar methods to ease the meshing process allowing a
partial non-conformity with the traces. In [23] mortar methods are used in conjunction
with mixed finite elements, while in [20, 21] traces are modified to conform locally to
element edges, but allowing nonconformity with the discretization on the intersecting
fracture that is handled with mortar methods. Geometrical minor modification of the
DFEN are also proposed in other works, such as [13]. A different approach is proposed
in [17], where the solution of 3D fracture networks is reduced to a system of differential
problems on the traces, organized such that it is possible to obtain successive levels of
approximations, according to the accuracy required. In [10] benchmark DFN configu-
rations are provided and the authors envisage models with non-conforming meshes and

a domain decomposition approach as a promising strategy for large scale simulations.

Overview

The present thesis has the structure of a collection of journal articles and is divided
into three parts: the first part is devoted to the presentation of the mathematical state-
ments of method, proposed both in the continuous and discrete formulations. Also the
algorithm used to obtain a numerical solution is described, along with a large number
of numerical results that show the viability and efficiency of the proposed method. The
first part is constituted by Chapters 1-4 that report fully three published articles and a
fourth work currently under review, co-authored by the author. In Chapter 1 is repro-
duced the following article:

Berrone S., Pieraccini S. and Scialo S., A PDE-constrained optimization formulation for
discrete fracture network flows, SIAM Journal on Scientific Computing, 35(2), B487-
B510.

In Chapter 2 is reproduced:

Berrone S., Pieraccini S. and Scialo S., On simulations of discrete fracture network flows
with an optimization-based extended finite element method, STAM Journal on Scientific
Computing, 35(2), A908-A935;

in Chapter 3:

Berrone S., Pieraccini S. and Scialo S, An optimization approach for large scale simula-

tions of discrete fracture network flows, Journal of Computational Physics, 256, 838-853
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and in Chapter 4:
Berrone S., Pieraccini S. and Scialo S, The eXtended Finite Element Method for Sub-
surface Flow Simulations, Under review.

The second part is constituted by unpublished material and is organized as fol-
lows. In Chapter 5, numerical results on complex DFN configurations are provided
both with standard finite elements on nonconforming grids and with the XFEM on the
same grids to improve solution representation. A preliminary investigation on the scal-
ability properties of the algorithm end this Chapter. An analysis on a possible strategy
of preconditioning the conjugate gradient method for DFN simulations is proposed in
Chapter 6.

The third part is constituted by Chapter 7 that reports an article in preparation
on a preliminary investigation of the method in conjunction with the Virtual Element
Method as an alternative to the XFEM or FEM:

Benedetto, M., Berrone S., Pieraccini S. and Scialo S, The Virtual Element Method for

Discrete Fracture Network simulations, In preparation.
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Chapter 1

A PDE-constrained optimization
formulation for discrete fracture

network flows

Abstract We investigate a new numerical approach for the computation of the 3D flow
in a discrete fracture network that does not require a conforming discretization of par-
tial differential equations on complex 3D systems of planar fractures. The discretization
within each fracture is performed independently of the discretization of the other frac-
tures and of their intersections. Independent meshing process within each fracture is a
very important issue for practical large scale simulations making easier mesh generation.
Some numerical simulations are given to show the viability of the method. The resulting
approach can be naturally parallelized for dealing with systems with a huge number of

fractures.

1.1 Introduction

Efficient numerical simulations of subsurface fluid flows in fractured rocks are of
interest for many applications ranging from water resources management, contaminant
transport and dissemination, oil prospecting and enhanced oil/gas recovery. Among the
major difficulties are intrinsic heterogeneity, directionality of the medium and multiscale
nature of the phenomena, as well as uncertainty in the medium properties. A Discrete

Fracture Network (DFN) is a complex 3D structure obtained intersecting planar frac-

3



Chapter 1

tures. DFN models are frequently preferred to more conventional continuum models as
basis for simulations. A classical approach to the problem is to model fractures as planar
ellipses or polygons and stochastically generate DFNs with probabilistic distributions of
density, aspect ratio, orientation, size, aperture of fractures and hydrologic properties
[9] and to simulate the flow through the obtained networks. Intensive numerical simula-
tions with several configurations of DFNs and physical parameters are then performed
in order to tackle the issue of uncertainty. The flow pattern strongly depends on density
and size of fractures and for large scale simulations different approaches are possible. For
dense fracture networks and continuous distribution of size and aspect ratios, flow can
be modeled as the flow in an equivalent continuous porous medium where the fracture
network pattern leads to the definition of a suitable permeability tensor. For sparse
fracture networks with some large fractures that discontinuously increase directional-
ity of the flow, an explicit representation of the fracture network is more reliable. In
both cases a stochastic approach to the uncertainty of the parameters is needed and
this requires many simulations, so that efficiency and large applicability of numerical
algorithms are fundamental issues.

Here the steady flow in a given DFN is considered assuming the rock matrix im-
pervious and no longitudinal flow in the intersection between the fractures. These
intersections are called traces and are always segments.

In DFN simulations the first classical numerical challenge is to provide a good-quality
conforming mesh for this 3D structure to be used for the discretization of the flow
equations. Conformity of the mesh requires that for each trace a unique discretization
is introduced, which is shared by all the discretizations of the fractures intersecting along
the trace. Conformity on the traces and good quality of the meshes for a completely
arbitrary DFN can be obtained only with the introduction of a huge number of elements
independently of the required accuracy of the numerical solution. In [28], a mixed
non-conforming finite element method on a conforming mesh is proposed. In [20], an
adaptive approach to the conforming mesh generation requiring adjustments of trace
spatial collocations is proposed. Local modifications of the mesh or of the fracture
network in order to preserve conformity of the meshes or alignment of meshes along
the traces are considered in several works as [17, 28]. In [11], a method to generate
a good-quality conforming mesh on the network system is proposed. In [23, 24|, a
mixed hybrid mortar method is proposed allowing nonconformities of the meshes on

the fractures, but requiring that the traces are contained in the set of the edges of
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each fracture triangulation. Resorting to mortar methods the discretization of each
fracture can lead to a different discretization of the traces. A different approach to the
simulation of the flow in the fracture network is based on its modelization with a system
of mono-dimensional pipes that are aligned along the fractures and mutually connect
the centers of the fracture intersections with the surrounding fractures. The resulting
mesh of pipes still reflects the topological properties of the fracture network [6, 22]. An
accurate definition of pipe properties within the fracture system has been obtained by
means of a boundary element method in [10]. However, the geometrical simplification
implies errors in the assessment of the fluid flow regime, depending on the complexity
and geometrical properties of the underlying DFN, thus the resort to a full discretization
is preferred.

Specific commercial codes based on FEM are available, also simulating the fluid flow
in the rock blocks [19]; contributions can be found in literature for the extension to
coupled problems with deformable blocks and fractures, even in conjunction with other
methods as BEM (e.g. [12]). However, these codes suffer for a strong computational
demand: the discretization in fact leads frequently to the generation of huge or poor-
quality meshes.

Problem model allows discontinuities of fluxes of hydraulic head through the traces
when fluxes of hydraulic head leave a fracture to reach a different fracture at the common
trace. In the previous approaches these discontinuities can be modeled if they are
localized at edges between elements or at the border of each piece of fracture.

In this paper a new method is proposed, which relies on the reformulation of the
problem as a PDE-constrained optimization problem. Following this approach, fracture
meshes are not required to match along traces and any kind of mesh conformity along
traces is skipped, thus making the mesh generation process an easy task, attainable
with a standard mesh generator. Furthermore, the problem on the overall DFN can be
decoupled in several local problems on the fractures, thus allowing a great potential for
a possible parallel implementation. Discontinuities of fluxes of hydraulic head can occur
on arbitrary traces with respect to the triangulation and the used finite elements allow
to catch these discontinuities of the fluxes also inside elements. This can be obtained
introducing suitable Extended Finite Elements (XFE).

The paper is organized as follows. In Section 1.2, we recall the physical model
and governing equations, and introduce the continuous optimization problem that leads

to the solution on the network system. In Section 1.3 we recall basics on extended
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finite elements of the type considered herein, and give some details for the application
to DFNs. In Section 1.4 a discrete formulation of the optimization problem is given,
which leads to an equality constrained Quadratic Programming problem. Finally, in
Section 1.5 numerical results are discussed in order to prove the viability, reliability and
effectivity of the method.

Notations. In the paper, we will frequently use the following notations. We will
use capital letters for continuous unknowns (as for example the hydraulic head H) and
lower case letters for the corresponding finite dimensional approximation (e.g. h). We
will use the same lower case letter for the vector of degrees of freedom, the difference
being clear from the context. Roman capital letters will be used for functional spaces.
Given functions g;, for i belonging to some index set I, the symbol [],.; g; denotes the

tuple of functions (g1, g2, ..., g#1), being #1I the cardinality of I.

1.2 Description of the problem

1.2.1 The continuous problem

Let us consider an open planar polygonal fracture w C R? and let us introduce on w
a tangential coordinate system Z. Following [1], the problem of subsurface flow through

w can be written as:

—-V-(KVH) = ¢ in w, (1.1)
H|FD = HD on vp, (12)
8}{ = Gy on Yy, (1.3)

ov

where dw = vyp U vy is the boundary of w and vp Nyy = 0, vp # 0. The scalar
function H = P +( is the hydraulic head, P = p/(0g) is the pressure head, p is the fluid
pressure, g is the gravitational acceleration and g is the fluid density. The variable ( is

the elevation, and K = K(&) is the fracture transmissivity tensor and is a symmetric
OH

> denotes the outward co-normal

and uniformly positive definite tensor. The symbol

derivative of the hydraulic head:

OH
ov

— ' KVH

with 7 unit vector outward normal to the boundary ~y.



1.2 Description of the problem

The definition of the hydraulic head in a Discrete Fracture Network € should require
the solution of problem (1.1)-(1.3) in a system of intersected polygonal fractures in the
space. In order to define 3D fractures Fj, let us consider a set of open planar polygons
{wi}icy, being J the set of their indices, and let F; C R3 be the image of the closure of a
polygon w; C R? through an affine mapping T}(%;) = b; + Q;(&; — Z0,;) where Zg; is the
coordinate of a given vertex of the polygon w; in the local planar reference system z;,
and b; is the position of the same vertex in the 3D space. We assume that QiTQi is the
identity matrix, such that the differential operators defined on the tangential reference

system in F; are equivalent to the operators defined on the planar fracture w;. Let €2 be

the 3D set
Q=JF,
1€J

and let 9Q denote its boundary. Given two fractures, the intersection of their closure is
either an empty set or a set of non vanishing segments called traces (vanishing segments
are not considered as no flux exchange among fractures takes place in these intersec-
tions). Let S denote the set of all the traces, and assume traces in S are indexed by a
set of indices 9, with cardinality £901.

In the sequel, we make the following assumptions on the DFN:
1. Qis a connected set;

2. each trace S,,, m € 9, is shared by exactly two polygonal fractures F; and F},

3. on each fracture, the transmissivity tensor K;(Z;) is symmetric and uniformly

positive definite.

Given a trace S,, we denote by Ig, = {i,j} the set of indices ¢ and j of the fractures
F; and Fj sharing the trace; for further convenience, we also introduce the sorted couple
¢m = (i,7) with i < j. For each fracture Fj;, we denote by S; the set of traces shared by
F; and other fractures.

In order to define the problem on the DFN, let us consider a set of open subfractures
fi, 1 € £, obtained splitting each fracture in such a way that each trace is part of the
boundary of some subfractures and S, N f; =0, Vm € M, VI € £, see Figure 1.1. Note
that the traces belong to the boundary of the subfractures, but they do not necessarily

coincide with a whole edge of such boundaries, see e.g. trace S in Figure 1.1. So we
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Fy=f3U fyU f5

Figure 1.1: An example of DFN splitted in subfractures

have

o =] Mmoo

leg

Let us split 9 in two parts I'p # 0 and I'y, with 9Q = T'p Uy and I'p NIy = 0,

corresponding to Dirichlet and Neumann boundary conditions, respectively.

The global hydraulic head H in the whole connected system (2 satisfies the following

equations VI € £:

v'(:Kfl VH) =

Hir o,
OH
a0

af;

with a 2D local reference system on fj.

a, in fi, (1.4)
Hp, on I'pNafi, (15)
Gy, on 'y Nafi, (1.6)

Given a trace S, let £g, C £ be the set of

indices [ such that S,, C df;. Equations (1.4)-(1.6) have to be complemented with the

following coupling conditions, corresponding to the physical requirement of continuity

of the hydraulic head and conservation of hydraulic fluxes across the traces:

H'fl = H‘, , on Sy, VSm €8S, Vi,k € £Sm, (17)

fi
8H| f1

ov
lefs,, o911

= 0, onSn, VSmES. (1.8)



1.2 Description of the problem

For this formulation of the problem existence and uniqueness of the solution are
known. In the following we want to focus on the whole fracture, disregarding this
subfracture approach. Thus, let us denote by H; the restriction of the hydraulic head
H to the fracture F;, Vi € 3. Conditions (1.7) and (1.8) are equivalent to

Hi\Sm_Hj‘Sm = 0, for 1, € Is,,, Vm € 9, (]_9)
0H; OH,;
Ha%’ ﬂ + H A].] ﬂ = 0, for i,j € Ig,, (1.10)
Vsl s, ovg S
where the symbol [[;#ﬂ denotes the jump of the co-normal derivative along the
Vs
m |l S,

unique normal ﬁgm fixed for the trace S5, on the fracture F;. This jump is independent
of the orientation of ﬁgm.

Let I'; be the boundary of F; and let it be split in I';, the boundary with Neumann
boundary condition aa% = G;n, and I';p # 0, the boundary with Dirichlet boundary
= H,;p, satisfying T;y NT;p = 0 and I';y UT;p = I';. Let us define

condition Hi\rD

Vi = HY(F}) = {v e H'(F): v, = 0}
and V/ its dual space. The hydraulic head H; in each fracture belongs to the space
VP = H%)(Fi) = {U eH'(F): Yr,p = iD}

and the hydraulic head H on the whole domain €2 is obtained by suitably matching via
(1.9), (1.10) for m € M the solutions H; € V;P for each i € J, and belongs to the space

VD = H]l:)(Q) = {1} € HVzD : (U|F¢)|Sm = (U\Fj)\sm’ i,j S Igm, VYm € m} . (1.11)
i€d

With a similar definition we set V' = H}(Q).
For the sake of simplicity of notation, in the following of this section we assume that

the traces S € S are disjoint.

Remark 1.1. The assumption of disjoint traces can be removed by replacing, in the se-
quel, each single trace S with the union of connected traces. Furthermore, in our discrete

formulation, this assumption is dropped out in a natural way, see later Remark 1.2.

Let us define for each trace S € S a suitable space ¢/° and

us=1Ju®, u=JJus.

SeS; 1€J
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Moreover, for each trace S € S, with Ig = {i,j}, we introduce suitable variables

g oy

UiS e y° and U]S € U”° representing the unknown quantities [[aH’]] and [[a—lij]] ,
s S

respectively, and for each fracture F; let us set
U= 11 U8 eys
SeS;
i.e., U; is the tuple of functions UZ-S with S spanning S;. Moreover, we set

UZHUZ‘GZ/{
1€J

as the tuple of all functions UZ-S with S € §; and ¢ € 7, i.e. U is the 2#9M-tuple of
functions UZ-S on all traces in €.

Condition (1.10) rewrites, in terms of the new unknowns UZS’", U ]Sm as
Usm+ U =0, fori,jel 1.12
;U =0, ori,j€lsg,,. (1.12)
Let us introduce the following linear bounded operators and their duals:

Ay e c(Vi, V),  Arec(Vi,Vl), AP e P V),
By € LS, V!), B €r(ViuS'),  Br, € L(H 2(Tiy),VY),

and the Riesz isomorphism Ays, : ¢S — YS'. The operators A;, AP, B;, Br,, are
defined such that

(AiH} v)yry, = (KVH),Vv), H € Vi, veV,
(APHP o)y, = (KVHP,Vv), HP e VP, v eV,
< ,’U>‘/1/7Vl <UZ7U‘S >L{5i,u3i" U’L € Z/[Si7’l} c ‘/Z'7
_1
(Br,,Gin, >V/,Vz = (G ZN’UIFiN>H_l( )HQ( N)’ Gin € H 2(yn),v e V.

Finally, let R; H;p € VD be a lifting of Dirichlet boundary condition H;p.
Let us introduce Vi € J the problem: find H; = H + Ri Hip, with H € V; such
that:

(KVH), Vo) = (gi,0) + (Ui, 05 Dysi yysiv (1.13)

O Db (o b ()~ Y ReHiD V)0

or equivalently Vi € J

AiH) = q; + BiU; + BinGin — AP Ri Hip. (1.14)
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The following result states the equivalence between the subfracture setting and the
setting based on fractures. The proof is omitted as it straightforwardly follows from

classical arguments.

Proposition 1.1. Let (/° :H_%(S),VS € S. Then, solving (1.13) Vi € T with addi-
tional conditions (1.9), (1.12) is equivalent to solve (1.4)-(1.8).

1.2.2 The optimal control formulation

The formulations of the problem described in the previous section requires the ex-
act fullfilment of some conditions which couple the solution on different fractures; this
happens either in the subfracture setting given by equations (1.4)-(1.8), or with the
formulation (1.13) with coupling conditions (1.9), (1.12). Hence, finding a numerical
solution to the problem solving the previous sets of equations typically asks for some
form of (at least partial) conformity in the meshes introduced on the fractures, see e.g.
[11, 17, 20, 23, 28].

In order to circumvent this problem, we propose here a different approach. Instead
of solving the overmentioned coupled differential problems, we look for the solution
of a PDE constrained optimal control problem [18], the variable U being the “control

variable”. Let us define for each trace S € S a suitable space 2°, the spaces

ns= [ x°  H=]]n
SES; €T

and the Riesz isomorphism Ays; : HS — #5i'. The following linear bounded “observa-
tion” operators CZS and C; and the dual C;*

Il ¢, ¢ ecHS V),

Clerc(Viy1®),  Ciec(Vi,HS) = i
SeS;

will be defined for each choice of the spaces H°. For all i € J, let us denote by H;(U;) the
solution to (1.13) corresponding to the value U; for the control variable. Furthermore,

fixed a fracture F;, we denote by

I U?
SES;

the tuple of control variables defined on fractures F} intersecting F; in traces S € S;
and by

JL (CEH(U:) - C7H;(U))
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the tuple of functions <C’ZSHZ(UZ) - C’JSH]-(U]-)> as S varies in ;.

Let us now introduce the following differentiable functional J : ¢/ — R:

JU) = > J5U) = (ICPH{(U;) — CTH; (U135 + [US + UZ|s)

Ses Ses
1
= 32 2 (ICPHU) = CFH;W)Ilys +1IUF + U lgs)
i€J SES;
= 33 (LW O H0) Iy + 10+ LU ). (119

Proposition 1.2. Let us define the spaces Y° and H° and the observation operator C’ZS

on the trace S as

uS=H732(S), N =H:(S), CSHy=H;. VSeS. (1.16)

s

Then, the hydraulic head H € HlD(Q) is the unique exact solution of (1.4)-(1.8) if and
only if it satisfies the differential problems (1.13) for all i € T and, correspondingly,
J(U) = 0.

Proof. The existence and uniqueness of H € Hb(Q) satisfying (1.4)-(1.8) is a classical
result (see for example [28] and references therein). Proposition 1.1 states that problems
(1.4)-(1.8) VI are equivalent to problems (1.13) Vi, endowed with matching conditions
(1.9)-(1.12), which in turn are equivalent to J(U) = 0. O

Based on the previous Proposition, the problem of finding the hydraulic head in the

whole domain is restated here as follows: find U € U solving the problem
min J(U) subject to (1.13), Vi € 7. (1.17)

Proposition 1.3. The optimal control U € U providing the solution to (1.17) corre-

sponds to

(Ays:) ™ Bi*P,+ Ui + Slg&_ US=0, Vi€l (1.18)
where the functions P; € Vi, Yi € J are the solutions to the equations

* _ * S S
A;P; = Ci*Ays, SIETS (CPH; — CYH;) . (1.19)

i
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Proof. Let us differentiate the cost functional J(U) with respect to the control U;, this
has effect only for S € S; and we have

T ) ;= U;) =Y T (U) (v = Us)
SeS;

= 3" 2(CPmW) - CEH;(U), CF (Hilw) = Hi(U3)) s + 2 (UF + US, 08 = UF) |

SeS;

=2 <C’i*A’}-[5i II (CZSHZ(UZ) — CJSH](UJ)),HZ(UZ) — HZ(UZ)>
SeS; VIV

2( A5, (U; + 11 U?),v; — U;
" < MS( Z+S€$i J v Z>Z,{Si/,Z/ISz‘
= 2(A; P, A Bi(vi — Uy)) 0y, +2 <Ausi(Ui + I U7), v — Ui>
(AR SES; L{Si,,lxlsi
s
=2(B/P;,v; = Ui)ysi yysi +2 <Au5i(Ui + sle_{gi U7),vi — Ui>u5i’,usi

and this yields the thesis. O

Equations (1.13), (1.18) and (1.19) Vi € J then provide solution to the subsurface
flow in the network; nevertheless, they couple all the unknowns on the overall DFN. As
an alternative approach, we propose to set up a minimization process that only requires,
at each step, local solutions on the fractures. The key point of this approach is that the
method only requires decoupled solutions of the flows on fractures, thus avoiding mesh
conformity requirements. This target is attained, for example, by using a gradient-based
approach, such as for example the steepest descent method. This approach requires the
solution of many simple problems with a small exchange of data. The resulting algorithm
is suitable for massively parallel computers and GPU-based computers.

In order to describe the minimization process leading to the solution of the contin-

uous problem (1.17), let us define

_ A1 * S - ~ _
0U; = A, 4, Bi"P; + U + SIET& Uy, vied,  oU =] (1.20)
1€J

and let 0H; € V;, Vi € J be defined as the solution of the problem

Ai6H; = B;6U;. (1.21)

Proposition 1.4. Given a control variable U, let us increment it by a step \6U. The
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steepest descent method corresponds to the stepsize

N 16U | (1.22)
CS6H; — CS5H,||2 SUS +6U%125) '
Z(H i ? 7 ]||HS+|| i + ]||Z,[S)

Ses

being 6U7 = 6Uj .

Proof. Let us compute J(U + A6U). We have

J(U +AU) = J(U) +2) (CPHi(U;) — Cf Hy(U;), N(C 6 H; — cf(sHj))Hs
Ses
+2 (U7 +UPMOUF +6U7)) s
Ses
X2 C|ICFSH; — CF 0 H; |35 + N||6U + 6U7 ||
Ses
U)+2> Y (CPH:i(Uy) — CF Hj(Uy), )\CS6H)
i€J SES;
+2) > (UP+UF AU, s + XY (IICP6H; — CF6H,|[3,
1€J SES; SeS
+H[6UP + 6U? |17 5)
+2Z< 1L (C7H(Uy) — CFH;(Uy)), AC(SH)
HSi
S 2 S S 2
ic3 Ui Ses
H[6UP + 68U |2 s) -

From the previous relation, recalling (1.19) we obtain

J(U + AU) — J(U) = X ([CF6H; — CF5H;|3,s + 06U + 0U7 |[%s) =

Ses
=20) (AfP, A7 BisUs)y, +2AZ<AMS (U + L UP), 6U>
i€l i€l us ySi
_ 1 p*p 4 U, S §U, _ 112

Then the value of A in (1.22) vanishes the derivative of J(\) := J(U+A6U) with respect
to A, thus providing the minimum of the function J(\). O

Summarizing, problem (1.17) can be solved, in the continuous framework, either

solving equations (1.13), (1.18) and (1.19) or following an iterative algorithm such as
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the steepest descent, in which at each iteration one step is taken along the direction dU
computed by (1.20) with a stepsize A given by (1.22).

The discrete counterparts of these two approaches are presented in Section 1.4.

1.3 The DFN problem with XFEM

In this section, we briefly account for the application of the Extended Finite Element
Method (XFEM) to our context. In the first subsection, we briefly recall from literature
some key points of XFEM; in the second subsection these ideas are applied to the DFN

framework.

1.3.1 Description of XFEM

The XFEM |3, 8, 4] is a mesh-based numerical technique for the solution of partial
differential equations in variational form, when non-smooth or discontinuous solutions
are considered. The XFEM can reproduce irregularities that are arbitrarily placed in
the domain, regardless of the underlying triangulation. The concept at the basis of
the XFEM consists in combining the standard Finite Element (FE) approach with the
Partition of Unity Method (PUM) [2], in order to overcome the limitations of FE in
dealing with singularities. Customized enrichment functions are added to the standard
FE approximation space in order to catch the non-smooth character of the solution and
extend approximation capability.

In what follows only the description of the method in the case of continuous solutions
with discontinuous first order derivatives (weak discontinuities) is reported, being the
only situation of interest in our application. Customizations of the method for other
cases can be found in [4, 14].

Given a problem with exact solution H in a domain w € R™, with a sharp or weak
singularity along the interface described by the manifold S C w,S € R, let 75 be
a conforming triangulation on w, and let Vfgem be a finite dimensional trial and test

space defined on the elements of 75 and spanned by Lagrangian FE basis functions ¢,
EeT= {1, ...,NdOf}:

Vf;em = span <{¢§(§7)}£EI> ) (1.23)

Each basis function ¢¢ has compact support Ag.
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In our applications, provided that the edges of the elements in 75 surrounding S
match it exactly, the approximate solution of H with standard finite elements has the
following form:

W™ (E) =) hEM e (@) (1.24)
£eT
where hgem is the degree of freedom corresponding to the basis function ¢¢(2). Functions
in Vf;em are continuous and can have discontinuities in the first order derivatives across
element edges.

Let assume ® is a continuous bounded function on w, ® € H'(w)NC(@) that well
approximates the behaviour of H in a neighbourhood of S called Ag. With the XFEM
this function is introduced into the standard FE space, thus defining a new enriched
functional space with extended approximation capabilities. This can be done by means
of the PUM, using the standard FE shape functions for the definition of a partition of

unity. The new enriched functional space is:

Vit = span ({8e(#) ey {06(8)0(@) e ;) © HA(w), (1.25)

where we have identified with 7 C 7 the subset of indices of functions ¢¢ whose support
belongs to Ag. DOFs in J are called enriched DOFs and the corresponding nodes
enriched nodes. Typically, as sketched in Figure 1.2 it is:

J={¢€T:AcnS#0}. (1.26)

Consequently the approximate solution hX®™ of the problem with the XFEM is:

hxfem Z hxfemgb5 ij + Z (ZXfemQSg f f) (127)
¢ez geJg
where h’gfem and aXfem are the unknowns related to the standard and enriching basis

functions, respectively. Since functions representing the non smooth behaviour of the
solution are now present in the discrete subspace, the non smooth behaviour of the
solution can be reproduced independently of the positioning of elements in 75 with
respect to the interface S.

According to (1.26) only a small subset of total elements is enriched and this is a
peculiarity of the XFEM if compared to PUM or other similar methods as for example
the GFEM (|25, 26]). Elements in 75 may thus have a variable number of enriched
nodes. In particular it is possible to group elements in three categories, following the

classification used in [14] (see Figure 1.2):
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i) standard elements: no nodes enriched;
ii) reproducing elements: all nodes enriched;
iii) blending elements: some nodes enriched.

In reproducing elements, where all the nodes are enriched, the function ® can be cor-
rectly reproduced, providing the desired behaviour for the discrete solution. In blending
elements, instead, where only some nodes are enriched, spurious terms are introduced in
the local discrete space in order to preserve continuity. This may affect the convergence
rate of the method compared to the standard FE. Numerous techniques are suggested in
order to prevent this issue, for example in [7, 27, 13|. In particular the modified XFEM
suggested in [13] and adopted here, introduces a re-definition of enrichment functions
and enriched DOFs in order to correctly account for the contribution of blending ele-
ments and recover the standard FE rate of convergence. We denote by ® and j the

modified version of ® and J respectively, defined as:
d=d()R(E) T={¢e€T:A:NAs#0}, (1.28)

where R(&) = ¢ ; ¢¢. The new enrichment function ® coincides with ® in reproducing
elements where R = 1 and vanishes on the boundaries and outside Ag, where R = 0.
Thus anywhere the enrichment function ® is non-zero it is correctly reproduced, avoiding
problems related to parasitic terms.

The generalization to other kind of discontinuities follows the same outline described
above, with specific re-definition of functional spaces. A comprehensive review of the

XFEM/GFEM method with details of all implementation aspects is available in [14].
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1.3.2 The discrete DFN problem

With reference to definitions and notation introduced in Section 1.2, we now discuss
the application of the XFEM to DFN problems. For the sake of brevity we focus here
on closed interfaces, i.e. traces entirely crossing a fracture plane, as for example the one
depicted in Figure 1.2. Generalizations to other geometrical configurations of interfaces
follow the same outline of this description, requiring, in some cases, the introduction of

different enrichment functions. More general cases are considered in [5].

Let us consider a fracture F' C R? that has #9 intersections with other fractures
in  in the traces S, € S;, m € M. The starting point for XFEM implementation is a
standard finite element setting, defined by a triangulation 73F not necessarily conformal
to the traces and the discrete test space Vﬁ?fg‘ as defined by Equation (1.23). On F' the
exact solutions Hp, Pr and 0Hp to (1.13), (1.19) and (1.21) respectively, may have a
jump of fluxes (a weak discontinuity) across the traces in S;. The numerical solution
of previous equations with XFEM allows the triangulation to be set on each fracture
independently of the disposition and number of the traces. This is much more relevant
as the number of traces increases or when traces intersect with arbitrary orientations,
since in these situations a good quality mesh fitting the interfaces could hardly be pro-
duced and would require a huge number of elements, regardless of the required accuracy.
Enrichment functions for weak discontinuities were introduced in early works with the
XFEM mainly in the context of fracture mechanics. A comprehensive description can be
found in [4, 27, 8, 14]. The description of each trace is performed introducing a signed
distance function d,, that is defined for & € F' as the distance with sign from segments
Sm 27, 4]:
. ., s (T —7)
@) == s G
where z is the projection of  on 5, and ng the fixed unit normal vector to S,,. The
enrichment functions are built starting from the signed distance functions. For a closed
interface we use the enrichment function U, defined as ¥, (%) = |d,,(Z)|. Clearly ¥,
is a continuous function, but its first order derivatives have a jump across .S,,, thus
introducing the required non-smooth behaviour in the approximation (Figure 1.3). The

sets of enriched DOFs, 7,,, are defined according to (1.26) for each trace.

In order to avoid problems related to blending elements, the XFEM modified version

[13] is used. Functions U,, and sets J,, are built starting from W¥,, and 7, according
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to definition (1.28). The discrete approximation space is thus:

Vi = span ({8¢(#)}ecy (06D ()b emec s, ) CHHW),  (1:29)

and the discrete solution is:

RS (E) =) hege(d) + D> Y alde(d) W (). (1.30)
g€z meM ¢c7,

We remark the additivity of the previous formula with respect to the interfaces: the
previous expression does not depend on where traces are located, how close are each
other, or wether or not they do intersect each other, nor on which elements the enriched

functions are defined.
The numerical integration of non smooth functions is performed on sub-domains
where the restriction of basis functions is regular. Gauss quadrature rule is used, adopt-

ing the number of integration nodes required by the polynomial degree of the integrands.

1.4 Discrete formulation

In this section we provide a discrete formulation of problem (1.17). For the sake
of simplicity, we assume in this section homogeneous Dirichlet boundary conditions,
i.e. Hp = 0. All the results can be extended to the general case Hp # 0, see later
Remark 1.3. For simplicity of notation again, in this section, given two (or more) vectors
r € RP and y € RY, we will write (z,y) denoting the vector (27, y”)T € RP+a.

Under assumptions (1.16), the minimum of the functional J(U) is characterized by
conditions involving a fractional power of the Laplace operator on the traces. Hence,
we develop our numerical method for the approximation of the solution adopting the
following choices:

u®=129), H°=1%S), VSes. (1.31)

Remark 1.2. We remark that with these choices the assumption of disconnected traces
can be removed. This is due to the following property of the L?-norm: if S and S, are
two possibly connected traces, then || -
Remark 1.1).

2 2 2
||L2(S1USQ) B || ||L2(Sl) + H H 2(52) (See also

For all 7 € J, let J; C J be the subset of indices such that, for j € J;, the fracture F
shares a trace with F;. Furthermore, for all ¢ € J and for all S € &;, let us fix a finite
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dimensional subspace of ¢/° for the discrete approximation uZS of the control variable
U# (with a similar notation let us also denote by h; the discrete approximation of H;).

Let us introduce a basis {z/)fk}k:l,__,Ni . for this subspace, so that we write

Ni.s
k=1
Replacing these expressions in (1.15), using L2-norm and C’ZS hi = hi|g, we get
1 Ni Nj
2
J(w) =5 >N ( /S(Z higbigy = D hirdin )’ dy +
i€3 SES; k=1 k=1

Nis Nj.s
/S(Z uSbry + Z ul )’ d7> : (1.32)
k=1 k=1

For all i € 3 and S € S;, let us introduce the subset K; g C {1,...,N;} of indices k
of functions ¢; ; whose support has a nonempty intersection with S. The first integral
in (1.32) rewrites as

S.h 2 2 2 2
Ly = Z hi g : Pi kg dv +2 Z hi ihie S@',k‘séﬁz,qs dy + Z R, /S Pjkjg Ay
keK; s kleK; s keKj s

+2 Z hj,khj,é/s¢j,ks¢j,é|s dy—2 Z Z hi,khj,é/s¢i,k|s¢j,f|s dy.
kAEK 5 kEK; s leK; 5
Let us introduce vectors h; € RYi, h; = (hi, .-, h@Ni)T, 1 € J and setting NF =
Y icy Ni, let h € R be obtained concatenating, for ¢ € J, vectors h;. Hence from now
on, besides denoting the discrete solution, h; will also denote the vector of corresponding
DOFs.
Next, for all i € 3, S € S; let us define matrices M € RY*Ni and (for j € J;)

Mg € RVNixN as:
(M )re = /SQSz‘,kSQbi,qs dy, (M= /S¢i,k|s¢j,z|s dy.
With these definitions, the first integral in (1.32) is written in compact form as
12" = WEMZhi + KT MPhy — 20T Mh;. (1.33)

Let us turn to the second integral in (1.32). For a convenient compact form of

this second integral, let us consider a different numbering of functions uf induced by
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the trace numbering. Let S = S, be a given trace, with ¢,, = (i,7) (hence i < j).
We denote by u,, the control function related to the m-th trace and corresponding to
fracture Fj, and by w, the control function related to the same trace and corresponding
to the other fracture, F;. This numbering induces a different numbering also on the basis
functions ¢fk, ¢f  Which can be labeled as 1/);% s ¢;;7k, respectively, and accordingly we
set N = N; s, N,, = Nj 5.

Then we have, for x = — or +,
N
U =3k Ym e M.
k=1
: N _ T
Now, let us introduce the vectors u), € RV wy = (ujnyl,...,u;‘wm) , m € I,

*x = —,+, and setting N7 =3 (N, + N,) we define u € RN as

u=(uy,uf,... ,u#m,u;r&m).

Let us also define the following matrices:

M, € RN (M ke = [ Ui dys  meM x=—+
— + —
M, € RNmxNm - (M ke = [g ¥ x 1 A

The second integral in (1.32), after some straighforward algebraic manipulation,
rewrites as

Ny Np,

Nin N,
Su _ 2 _ 2 _ _ _ _ + 2 + 2
Ly = Z Upy & /¢m,k dy+2 Z Z Uy kUm0 /wm,kwm,ﬁ dy + Z um,k/wm,k dy
k=1 S k=1 (=1 S k=1 o

N N Nin N

+ + + + — + - +
+2 Z Z um,kum,ﬁ /Swm,kwm,ﬁ dly +2 Z Z um,kum,ﬁ /Swm,kwm,ﬁ d’}/

k=1 (=1 k=1 (=1
and in compact form
S, Ty = T T 4 4%
We can now write the whole functional J(u) in matrix form properly assembling the

. . . . . F F
previous matrices in a single one and resorting to vectors h and u. Let GF € RN *NV

and G € RN XN 1o defined blockwise as follows: for i € J,m € I we set

Gli = Tes, MY, Gly= =M for j € .,

My My, .
= ( (MET M ) G = diag(My, ..., Mym)-
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Since obviously (Mg 7'=M ]Si, matrix G” is symmetric. The same property clearly

holds true for G*. With these definitions, the functional J(u) can be rewritten as

1 1
J(u) = §hTth + §uTG”u.

Now, let us turn our attention to the constraints, writing the algebraic counterparts
of operators A;, B; in equation (1.14): overloading notations, we let A; € RV*Ni and
B, € RNi*Ns; with Ng, = ZSE& N;,5 also denote the matrices defining the algebraic

operators as follows. We set
W= [ VouVodb, (B5) = ou, vipdn  (13)
2 ke Js. m

where, recalling that Is = {i,j}, we take x = — if i < j or x = + otherwise. Matrices
BZS ™. Sm € S;, are then grouped row-wise to form the matrix B;, which acts on a column
vector u; containing all the control DOFs corresponding to traces of F;. Vector wu; is
obtained appending the blocks u}, in the same order used for assembling B;, as the
action of a suitable operator R; : RN " RYs: guch that u; = R;u. Hence, constraints

(1.14) lead to the algebraic equations
A;h; — B;R;u = (;, 1 €7, (1.36)

where ¢; accounts for the term ¢; in (1.14) and for the weak discrete imposition of

boundary conditions. Letting w = (h,u) € RN V" and defining

BiR,
A =diag(Ay, ..., Ayy) eRNNT g — : € RNTXNT
BysRys
C=(A —B)eRNNHNT G diag(Gh, Gv), (1.37)
the overall problem reads
1
min §wTGw, (1.38)
s.t. Cw = q. (1.39)

Hence the problem is a Quadratic Programming (QP) problem with equality constraints.
First order necessary conditions for a point w* to be a solution to (1.38)-(1.39) are given
by the Karush-Khun-Tucker conditions (see e.g. [21]):

(a5 ) )00
A= ., A = (1.40)
C 0 —p* q

being p* the vector of Lagrange multipliers.
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Remark 1.3. The results here presented do not rely on the assumption of homogeneous
Dirichlet boundary conditions. If non homogeneous Dirichlet conditions are taken into
account, the quadratic functional in (1.38) also contains a linear term, correspondingly
the right-hand-side of (1.40) has a nonzero block, and the structure of the problem is

therefore the same.

For further discussion, we recall the following classical result concerning solution
of equality constrained QPs of the form (1.38)-(1.39), see for example [21]. Referring
to problem (1.38)-(1.39), let n and p denote the dimension of w and the number of
constraints, respectively, so that G € R™*™ and C' € RP*™.

Theorem 1.4. Let C have full row rank and assume that the matriz ZTGZ is positive
definite, being Z a n x (n — p) matriz whose columns are a basis of the null space of C.
Then the matriz A defined in (1.40) is non singular and the vector w* satisfying (1.40)
is the unique global solution of problem (1.38)-(1.39).

Proof of existence and uniqueness of the solution to the discrete counterpart of

problem (1.17) is now a direct application of Theorem 1.4.

Theorem 1.5. Let us consider the discrete formulation (1.38)-(1.39) to the problem of
subsurface flow in a DFN, with G and C defined as in (1.37). Then, the solution exists

and is unique and coincides with the solution to (1.40).

Proof. First, let us observe that G is symmetric positive semidefinite as for any w =
(h,u) we straightforwardly have w? Gw > 0. Furthermore, since all A; are nonsingular,
due to standard properties of FE discretizations, A is nonsingular as well and C' has full
row rank. As rank(C) = N we have dim(ker(C)) = N7. Let zy,...,zyr € RN VT
be vectors forming a basis of ker(C). Then, for all 2, let us partition zj, = (27, z%) with
PANS RN and 2y € RN". We have Azl = B2}, thus z;, has the form (A71BzY¥, 2}%). In
particular, take z;' = ey, where ey, is the k-th vector of the canonical basis of RNT, hence
2zt = (A7 Bey, er). Let us compute y = Gz = (G" A~ Bey, G%e;). Let enFi be a
vector of the canonical basis of RN V" with s > 1. We have YNF g = e%FHsz =
el GUey, with e, € RN In particular, taking s = k, we have

2
Ynriy = eiGley = /Sz/)fg dy (1.41)

for some i € J and some 1 < /¢ < N; g. Since the integral in (1.41) is nonzero, we have

at least one component of Gz different from zero. Hence we have proved that for any
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vector z € ker(C), we have Gz # 0 (unless z = 0), hence z ¢ ker(G). This proves
that ker(G) Nker(C) = {0}. Let now Z be the matrix whose columns are given by the
basis vectors z; previously introduced. Since G is positive semidefinite we have, for any
y € RV'HNT TGy > 0 and yTGy = 0 if and only if y € ker(G) (see e.g. [16]). Let
v € RN be an arbitrary vector, v # 0. Since Zv € ker(C) and ker(G) Mker(C) = {0},
we have Zv ¢ ker(G) and so vT ZTGZv > 0. This proves positive definiteness of ZTGZ.
Applying Theorem 1.4 the thesis is proved. O

1.4.1 Computing numerical solutions

Saddle point system (1.40) represents a possible approach for obtaining a numerical
solution. For DEN of moderate size, sparse (even direct) solvers can be used efficiently
to compute a solution to (1.40). Nevertheless, when the DFN system is composed by a
huge number of fractures, even if poor discretizations are introduced on each fracture,
solving the linear system may be a quite demanding task and parallel computing has to
be taken into account. If this is the case, instead of assembling the linear system and
splitting information and operations among processors/cores, a gradient-based method
such as the basic one depicted in the sequel can be taken into account. The following
numerical method arises from the discretization of the steepest descent method briefly
described at the end of Subsection 1.2.2. At step k, given u¥, let us compute h¥ as the

solution to (1.36) and pf as the solution to
Alpl =GhnF+ > Gt vied. (1.42)
JE€J;

Then, we define a vector du¥ componentwise as the L2(S;) projection of the function
411, cs ((u)E+ (uh )F) against basis functions (nodal interpolation can be taken, in

case of Lagrangian basis functions). Then, we move along direction du”* with a stepsize

e (6ul) T sul
s T, (I~ B, HI 0 ) )

Ap = (1.43)

where 6h§C is the solution to
Ai0hY = Bioul,  Vvied. (1.44)

The corresponding algorithm is the following.
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Algorithm 1.6. 1. Set k = 0 and initial guess for control variable u’;
2. compute hY = h(u®) solving (1.36) on each fracture;

3. Do

3.1. compute p”* solving on each fracture the dual problem (1.42);
3.2. compute du” and solve (1.44) to get h;

3.3. evaluate A\* according to (1.43) and update u*T! = u¥ + \ksu*;
3.4. compute hFt1 = bk 4 \rgpF

35. k=k+1.

while stopping criterion not satisfied

Remark 1.7. Algorithm 1.6, which is the discretization of the infinite dimensional
steepest descent method, is equivalent to the application of the steepest descent method
to the finite dimensional problem (1.38)-(1.39).

Each iteration of Algorithm 1.6 essentially requires the solution of (1.42) and (1.44),
whereas it is not necessary to solve the primal equation (1.36) at each iteration, be-
cause, thanks to linearity, the new value R**! for the numerical hydraulic head can be
computed as shown in Step 3.4. Nevertheless, in practical computations, it is advisable
to periodically replace Step 3.4 with the computation of h**1 via the primal equation,
in order to improve numerical stability.

We end this section highlighting that solutions to problems (1.42) and (1.44) can be
obtained decoupling the computation among fractures. This point makes the method
appealing when parallelization comes into play, as this approach turns out to be highly
parallelizable in a very natural way, by distributing fractures among processors and
involving a moderate exchange of data. This approach is suitable for massively parallel

computers and GPU-based computers.

1.5 Numerical results

In this section we present some preliminary results which aim at showing viability
and effectiveness of the method here proposed in circumventing any kind of problem

concerning mesh generation on the whole DFN.
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Two test problems have been considered here. In Problem 1 the numerical simula-
tions are performed both with standard finite elements on conforming grids aligned to
a trace, and with extended finite elements with a trace crossing mesh elements. Numer-
ical results are compared to the known exact solution. In Problem 2 a more complex
domain is considered. In both tests, traces entirely crossing a fracture are considered.
The application of the method to more complex DFN configurations is shown in [5].
Triangular meshes and first order finite elements are used in all the tests. Let V; s be
the discrete enriched finite element space on the fracture Fj, Vi € J, defined according
to (1.29). Let U5 C U be the discrete space for the control functions. The space U5 is
here defined as the space of the piecewise linear functions on the traces S,,, m € IM;
the nodes of the 1D mesh on each trace are given by the intersections of the 2D mesh
on the corresponding fracture with the trace itself. If an edge of the 2D mesh lies on
the trace, the endpoints of the edge are taken as nodes of the 1D mesh.

In the presentation of numerical results the following convention is used:

e FEM: our optimization approach on standard finite element meshes without en-
richments; meshes are aligned along the traces (Figure 1.4, left). For Problem 1
the same mesh is used in all the fractures. This method is used to compare our
results with those obtained on a conforming mesh, in which it is ensured that the

minimum of J equals 0.

o XFEM: extended FE are used and the meshes in all the fractures do not match
along the traces (Figure 1.4, right). In this case the minimum of functional J

computed with the discrete solutions is in general # 0.

In all tests we computed the numerical solution both using the gradient method and
solving the linear system (1.40). When the gradient method was applied, we started
from a null control u°. Both the overall linear system (1.40) and the smaller dimension
systems involved in (1.42) and (1.44) have been solved with MATLAB built-in direct
solver.

Depending on the choices of the mesh on each fracture F;, the minimum of functional
J(u) can be different from zero. In Algorithm 1.6 the following stopping criteria have
been used:

J(uk) _ J(uk+1)

J(uF+)

J(uF) — J(uF) < toly, or < tols. (1.45)

In the results here reported we used tol; = 10~ and toly, = 1073,
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Figure 1.5: Problem 1: Solution with XFEM on fracture F; (left) and Fy (right) for
Omax = 0.06

1.5.1 Problem 1
Let us define Q = Fy U F, with, being x = (z,y, z), F1 and F5 given by
Fi={xeR’:ze(-1,1), y(0,1), 2=0} Fr={xeR*: 2=0,y€(0,1), z€(-1,1)}.
Let S = F1 N Fy. The problem is set as follows:
—AH = g, in Q\S, (1.46)

with homogeneous Dirichlet boundary conditions on all the boundary 9. The forcing

function ¢ is defined as follows:

q(x) = { 6(y — ) |z| — 2(]2%| — |z|) on F|
—6(y — )|zl +2(2° — |2)  on B
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and the exact solution is given by

o - { -yl =1) o By
y(1 —y)|z|(z? - 1) on Fs.

Figure 1.4 shows on the left a mesh used for the fractures F; and F5 using standard
finite elements, whereas on the right it shows the domain and, on each fracture, the mesh
used with the extended finite elements. Note that in the second case the two meshes on
Fy and F5 are not conforming. Both figures refer to intermediate meshes, corresponding
to meshsize dpax = 0.06, being dpax = 0.25 and dpax = 0.016 the meshsizes of the
coarsest and finest grids used, respectively.

Figure 1.5 displays the solutions on F} and F» obtained with XFEM on the interme-
diate grid (the same solution is represented also in Figure 1.4, right, with a colorbar).
Near the trace the numerical solution is plotted on the sub-elements generated by cutting
XFEM elements along traces. It can be noted that the correct nonsmooth behaviour of
the solution is caught by XFEM enrichments even if element edges do not match the
trace. Figure 1.6 shows the behaviour of L? and H! error norms with respect to the
meshsize 0,4, during a uniform mesh refinement process. The slopes m of the curves,
reported in the legend of each figure, agree with the expected values for P! elements
even in the case of XFEM.

Remark 1.8. For this test prolem we have H(x) ¢ H*(F}), i = 1,2, whereas H(x) €
H2(f), being f any one of the four subfractures in which F; and F, are divided by the
trace. As described in [15, 29|, this regularity is enough to provide the convergence

orders of Figure 1.6, that are the theoretical ones for H(x) € H?(F;).

Figure 1.7 displays the minimum value of v/J as a function of the meshsize on non
conforming meshes. In the XFEM case the target minimum of the functional is different
from zero and, as expected, its value depends on the meshsize, while this is not the case
for the standard FEM, since the minimum of the functional can vanish independently

of the meshsize.

0H;
0%
the control variable u; obtained on the intermediate grids, both with FEM and with

In Figure 1.8 the exact value of H ]]S is compared with the computed values of
XFEM. The figure clearly shows a very good agreement between all the values. The norm
of the flux mismatch on the trace, i.e. [Ju; + u2||L2(S), has been computed with both
approaches, obtaining ||u; —|—uQHL2(S) ~ 10716 with FEM and ||uy +u2”L2(S) =3.110"8
with XFEM.
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Remark 1.9. The vanishing of the minimum value of the functional with standard
FEM does not correspond to a significantly better approximation of the global solution,
as we can argue comparing the errors in the solution in Figure 1.6, where we can see that
the errors corresponding to the same meshsize are comparable in the FEM and XFEM
cases, with both L? and H'-norms. As seen in Figure 1.8, also the accuracy of the fluxes
on the trace are comparable. The vanishing minimum value of J for FEM is only related
to a better satisfiability of the matching conditions between the approximated solutions
on the fractures, and the accuracy of the overall solution is comparable for XFEM and
FEM.

In Figure 1.9 the behaviour of v/J during the minimization process attained by
the gradient method is shown. As expected the functional related to XFEM solution
reaches a plateau corresponding to a non vanishing value when one of the stopping
criteria in (1.45) is satisfied. As shown in Figure 1.9, mesh refinement can reduce the

final functional value.

It is to remark that no effort has been spent here for improving convergence prop-
erties of the minimization process as our main target here is proving viability of the
approach. Many improvements in the optimization process are possible; future work
will be devoted to this issue. Nevertheless, despite the number of iterations required by
the gradient method, the computational cost of each iteration is small, as it essentially
requires the solution of the state equations on each fracture. This aspect itself makes

the method appealing when parallelization comes into play.

1.5.2 Problem 2

In the second test problem the proposed method is applied to a DFN composed by
seven rectangular fractures. In Figure 1.10 the intersections of the fractures with the
plane z = 0 is drawn. All the fractures have z ranging from 0 to 1. In Figure 1.10, P,
n = 1,..,14 denotes the starting and ending points of the intersections; F;, i = 1,..,7
the intersection of the fractures with z = 0 and 7},, m = 1,.., 11 the intersections of the

traces Sy, with z = 0. The 3D DFN configuration is shown in Figure 1.11.
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flux mismatch total flux

F 2.43e-6 -0.39
Fy 2.01e-6 0.64
I3 3.27e-6 -1.14
Fy 4.27e-6 0.17
Ey -5.36e-7 0.04
Iy 0.32e-6 0.29
Fy 4.95e-7 0.38

Figure 1.12: Problem 2: Solution on Fracture Fy (left) and flux mismatch on the fractures
(right).

Solution on fracture F3
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Figure 1.13: Problem 2: Solution on F3 (top) and F7 (bottom)
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The problem is set as follows:

“AH = 0, inQ\s, (1.47)
H‘FD = y+\/2, onFD, (1.48)
OH

=0, on Ty. (1.49)

where S = Um:L___’11 Sm, I'p is the set of the edges along the z direction intersecting
z = 0 in the points Pi3, Py, Pi, P3, Ps, Ps and P;, whereas I'y is the set of all the
other boundaries of the fractures. The computing mesh used is depicted in Figure 1.11.
We remark that the meshes on the fractures are independently generated with meshsize
Omax = 0.39, without requiring any conformity constraint along the traces.

The solution is shown on some selected fractures. In Figure 1.12 the solution on
fracture F} is shown. Here, in order to better display the enriched numerical solution,
it is plotted, rather than on the actual computing elements, on sub-elements generated
by splitting the computing elements along traces.

Figure 1.13 shows, using a colormap, solutions on Fractures F3 and F7. Here, the
mesh depicted is the actual computing mesh. The vertical dashed lines correspond
to traces. The rightmost dash-dot vertical line is a common trace between the two
fractures. Nonconformity of meshes is clearly shown in the Figure. Finally, in the Table
on the right of Figure 1.12 we report, for each fracture F;, i = 1,..., 7, the flux mismatch
and total flux, computed as Y gcq. [g uf +u3-9 dyand Y gcq [g u? dr, respectively. The
overall flux mismatch on the whole DFN is 8.14e-6.

1.6 Conclusions

In this paper we propose a new approach to the Discrete Fracture Network sim-
ulation, which does not need any kind of conformity along the traces for the meshes
introduced on the fractures. The method proposed thus circumvents all the difficul-
ties typically related to mesh generation processes of partially or totally conforming
grids. This novel approach is based on a PDE-constrained optimization problem and
is developed in order to be easily parallelized on massively parallel or GPU-based or
hybrid parallel computers. The key points which make the method suitable for a paral-
lel approach are the following: the global solution is obtained through the resolution of

many small local problems, that require a moderate exchange of data among fractures.
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Some preliminary numerical simulations prove the viability of the approach. A detailed

analysis of the performance of the method on more complex fracture configurations is

proposed in [5].
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Chapter 2

On simulations of discrete fracture
network flows with an
optimization-based extended finite

element method

Abstract Following the approach introduced in [7], we consider the formulation of the
problem of fluid flow in a system of fractures as a PDE constrained optimization problem,
with discretization performed using suitable extended finite elements; the method allows
independent meshes on each fracture, thus completely circumventing meshing problems
usually related to the DFN approach. The application of the method to discrete fracture
networks of medium complexity is fully analyzed here, accounting for several issues

related to viable and reliable implementations of the method in complex problems.

2.1 Introduction

In many applications, such as water resources monitoring, contaminant transport,
oil/gas recovery, efficient numerical simulations of subsurface fluid flow in fractured
porous rocks are of increasing interest. The description of the phenomena has to cor-
rectly account for the intrinsic heterogeneity and directionality of the rock medium
and the multiscale nature of the flow. In dense fracture networks the flow can be well

modelled as the flow in a continuous porous medium where fractures influence the distri-
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bution of an equivalent permeability tensor. On the contrary, in sparse fracture networks
flow properties are mainly determined by the larger fractures, thus Discrete Fracture
Network (DFN) models are preferred to more conventional continuum models as basis
for the simulations.

A DFN is an assemblage of resembling-fractures planar ellipses or polygons, stochas-
tically generated given probabilistic data on distribution of density, aspect ratio, orien-
tation, size, aperture and hydrological properties of the medium [13]|. The fluid regime
in a DEN can be conditioned even by the smallest elements, therefore neglecting frac-
tures below a specified threshold is not recommended. As a consequence the number
of generated fractures is frequently high even for a limited size of the domain of in-
terest. Discretization thus often leads to poor meshes with a huge number of nodes.
At the same time, a stochastic approach to the uncertainty of the parameters requires
large numbers of simulations so that efficiency of numerical methods is of paramount
importance for the applicability of DFN-based numerical solutions.

A DFN is a complex 3D structure. The first numerical challenge is to provide good-
quality conforming meshes where the discretization of fracture intersections (traces) is
the same on all the fractures involved. This is usually achieved by the introduction of
a huge number of elements, independently of the required accuracy of the numerical
solution.

In order to reduce computational cost, a possible approach consists in reducing
the DFNs into systems of 1D pipes that are aligned along the fractures and mutually
connect the centres of the traces with the surrounding fractures. This approach eases
mesh generation problems and the resulting mesh of pipes still reflects the topological
properties of the fracture network [8, 23]. An accurate definition of pipe properties is
obtained with a boundary element method in [14].

Without resorting to dimensionality reduction, in [30] a mixed non-conforming finite
element method on a conforming mesh is proposed. In [21], an adaptive approach to the
conforming mesh generation requiring adjustments of the trace spatial collocations is
proposed. Local modifications of the mesh or of the fracture network in order to preserve
conformity of the meshes or alignment of meshes along the traces are considered in
several works (see e.g. [18, 30]). In [15], a method to generate a good-quality conforming
mesh on the network system is proposed based on the projection of the discrete 3D
network on the 2D planar fractures in order to remove those connections among fractures

which are difficult to be meshed. In [25, 26], a mixed hybrid mortar method is proposed
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allowing nonconformities of the meshes on the fractures, but requiring that the traces
are contained in the set of the edges of each fracture triangulation. Resorting to mortar
methods the discretization of each fracture can lead to a different discretization of the
traces. Interesting very complex DFN configurations are tested in [12].

In the recent work [7] the authors have proposed a different approach for the de-
scription of steady-state flows in a given DFN, which consists in the reformulation of
the problem as a PDE constrained optimization problem. Following this approach, it is
shown that the meshes introduced on each fracture are allowed to be independent of the
meshes on other fractures, and independent of trace number and disposition, thus actu-
ally eliminating any kind of meshing problems related to DFN. The discrete problem is
formulated as an equality constrained quadratic programming problem. Discretization
on each fracture is performed with the extended finite element method for approximat-
ing the non smooth behaviour of the solution, which may present discontinuities in the
fluxes. Here, we further analyze viability of the method proposed in [7| by discussing
several issues arising when the method is applied to complex DFNs. In particular, we
fully account for the extended finite element discretization with the so-called open in-
terfaces, i.e. traces not ending on fracture edges. We also discuss preconditioning issues
related to the numerical solution of the problem. Several numerical results are proposed,
showing the capability of the method in dealing with complex situations, such as for
example critical traces intersections.

The paper is organized as follows. In Section 2.2 we briefly recall the physical model
and the continuous optimization problem, and in Section 2.3 the discrete formulation of
the problem is given. In Section 2.4 we describe the basics of extended finite elements
considered herein, with special attention to the treatment of open interfaces. In Sec-
tion 2.5 numerical results are discussed in order to prove viability and reliability of the

method.

2.2 Problem description

The quantity of interest of the problem we are dealing with is the hydraulic head,
given by H = P +(, where P = p/(0g) is the pressure head, p is the fluid pressure, g
is the gravitational acceleration constant, g is the fluid density,  is the elevation. The
computation of the hydraulic head in a Discrete Fracture Network requires the solution

of differential equations on a system of planar polygonal open sets called fractures,
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denoted by F; with ¢ € J. Let us introduce on each F; a local tangential coordinate
system ;. Despite being planar, their orientations typically differ so that their union
is a 3D set. Let us denote by € the union of the fractures and let 92 be its boundary.
The intersection of the closure of each couple of fractures is either an empty set or a
set of non vanishing segments called traces, denoted by S,,, m € 9. Let S denote the
set of all these traces. Furthermore, let each fracture of the system be endowed with a
hydraulic transmissivity tensor K;(&;).

In the paper the following assumptions are made on the DFN: 1) Q is a connected
set; 2) each trace Sp,, m € M, is shared by exactly two polygonal fractures F; and Fj,
i # j: Spm C F; N Fj; 3) on each fracture, the transmissivity tensor K;(#;) is symmetric
and uniformly positive definite.

Given a trace Sy, let F; and F} be the fractures sharing the trace: the set of indices
i and j is denoted by Ig, = {i,j}. For each fracture F; let us denote by S; the set of
traces shared by F; with other fractures, and by J; C J the set of indices of fractures
sharing one trace with F;.

While referring the reader to [7] for all the details, we sketch here a brief description
of the approach. Let us split the boundary 99 into two sets I'p # () and I'y, with
F'pUTly = 0Q and T'p NT'xy = 0, on which Dirichlet boundary conditions Hp and
Neumann boundary conditions Gy are respectively imposed. Let H;p and G;x be the
restriction of Hp and Gy to I';p = I'p NOF; and I';y = I'y N OF;, respectively. Let us
define Vi € J

Vi = Hjy(F;) = {v € H'(F) : v, = o} , VP =H}L(F) = {v € H'(F) : v, = HiD} :

and let V/ be the dual space of V;.
The global hydraulic head H in the whole connected system 2 is provided by the
solution of the following problems: Vi € J find H; € VZ-D such that Yv € V;

OH;
/KiVHVde:/ qwdQJr/ Gi7NUSdF+Z/H: ]] vgdl,  (2.1)

where ggj = (d%)T K VH is the outward co-normal derivative of the hydraulic head,
S

being fLZS the unique normal fixed for the trace S on the fracture F;, and the symbol

[{%ﬂ < denotes the jump of the co-normal derivative along ﬁg This jump is indepen-
S .
dent of the orientation of .

In equation (2.1) the left hand side models the diffusion of hydraulic head on each

fracture, the first term of the right hand side is the external load in each facture, the
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second is the term due to the Neumann boundary conditions, whereas the last term
describes the net flow of hydraulic head entering the fracture at each trace.

In order to set up a well defined problem, the following matching conditions have to
be added to (2.1):

Hi|Sm_Hj‘Sm = O, for i,jEISm, (2.2)

OH; OH;
|[ ﬂ +|[ Ajjﬂ = 0, for i,j € Ig,,. (2.3)
6ysm s, (31/Sm Sin

These two additional conditions correspond to the physical requirement of continuity of

the hydraulic head and conservation of hydraulic fluxes across each trace S,,, m € 9.
Condition (2.2) implies that the hydraulic head H on the whole domain  belongs to

the space

VP =H}(Q) = {v e [TVi? : (wp)is, = (s s, 05 € Is,,, Ym € zm} (2.4)
1€J

For simplicity of notation and exposition in the following of this section we assume
that the traces S € § are disjoint. This assumption can be removed at the cost of a
more complex and heavy notation. Let us define for each trace S € S a suitable space
U° and its dual that we denote by (Z/[S )/. We define similar spaces on all the traces of
fracture F;, Vi € J and on the full set of traces S:

us =Jlu*, u=1Ju*.
SEeS; 1€J

For each trace S common to F; and F; we introduce suitable variables U eu’

and U? € ° representing the unknown quantities [[8—1{’]] and % , respectively.
J 81/5 S ayjs S
Moreover, for each fracture F; let us denote by

U= 11 U8 euys
SeS;

the tuple of functions UZ-S with S € S;, and by U = IL;c5 U; € U/ the tuple of all functions
UZS with S € §; and i € J, i.e. the 2(#91)-tuple of functions on all traces in . Let us
introduce the following linear bounded operators:
A; € £(Vi, V),
AP e c(vP v/
B; € L(US,V,
BFz‘N S ﬁ(H_ ( ) z,

AiH) )y vy, = (KVH;, V), H) €V,
ADH >V.',V¢ = (K VHiD,V’U), HZD € ‘/iD7
B; U27U>V/ Vi — <UZ7U‘5 >u3i7u5i/7

)

) {
) {
i) {
) {

)

BFN Ny >Vi/,Vi = <GiN’v|FiN>H_%(F~N) H%(FN)
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the definitions holding Vo € V;. Further, we introduce the dual operators A} € £(V;, V),
B;i* € £(V;,S') and the Riesz isomorphism Aysi - UST — YS! . Finally, let R; Hip €
VZ-D be a lifting of Dirichlet boundary condition H;p. The problem is then clearly stated
as follows: Vi € J find H; = H0 + Ri H;p, with H0 € V; such that:

AiH} = qi + BiUi + BinGin — AP Ri Hip. (2.5)

2.2.1 Formulation as an optimization problem

The novel approach introduced in [7]| consists in replacing the differential problems
on the fractures (2.5) Vi € J, coupled with the matching conditions (2.2), (2.3), with
a PDE constrained optimal control problem, in which the variable U acts as a control
variable; equations (2.5) Vi € J are the constraints, and the matching conditions are

replaced by the task of minimizing a nonnegative functional. Let us define the spaces

nS =T n°  H=]]n"
SES; i€J

and the Riesz isomorphism Ags, @ HS — #S'. We introduce the following linear

bounded observation operators C’iS and C; and the dual C;*:
CPecWVin®),  Giecin®) =ILCP e,V
€Si

For all i € J, let us denote by H;(U;) the solution to (2.5) corresponding to the value
U; for the control variable. Furthermore, fixed a fracture F}, we denote by Ilgc s; U ]S
the tuple of control functions defined on the fractures F} intersecting F; in the traces
Ses;.

Let us now introduce the following differentiable functional J : ¢/ — R:

JU) = > J5U) = (ICPH{(U:) — CTH; (U125 + [US + UP|%s)
Ses Ses

_ Z<|| LI (CPH;(Us) — CTH(Uy)) |15, + |Us +SQS,UJ‘S”Z%>- (2.6)

SES;

The problem of finding the hydraulic head in the whole domain is restated as the
following optimization problem: find U € U solving the problem

min J(U) subject to (2.5), Vi € J. (2.7)
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In [7] it is shown that, if ¢/ = H-: (S) and H° = H2 (S), there exists a unique control
variable U vanishing the functional J(U) and correspondingly the unique solution H
satisfying (2.5) Vi € J is the solution to (2.1)-(2.3), as the vanishing of the two terms of
the functional J corresponds to the imposition of the matching conditions (2.2), (2.3)
Ym € M. It is further shown that the optimal control U € Y/ providing the minimum
of the functional J(U) is characterized by the following conditions:

1 S
(Ays:)) ™' Bi*P, + U; + Slei& UP =0, (2.8)
Vi € J, where the functions P; € V; are the solution of

AP, = Ci*AMSiSES‘ (CPH:(U;) — CPH;(Uy)), in Fi. (2.9)

The computation of the solution to the problem of interest on the whole DFN may
either be approached solving problems (2.5) coupled with equations (2.8) and (2.9)
Vi € J, or setting up an iterative process for solving the optimization problem (2.7).
In the next Section we will give details concerning computation of a numerical solution

with these approaches.

Remark 2.1. The assumption of each trace being shared by exactly two fractures can
be circumvented by redefining the functional as follows. With straightforward extension
to more general cases, we allow three fractures Fj, I}, Fj, to share the same trace S.

Then the corresponding J¥(U) term in the definition of J(U) is

JSU) = |[CPH(U;) — Cij(Uj)llis +||CP Hy(Uy) — C;fHk(Uk)llis
HIUS + U + US|

2.3 Discretization of the constrained optimization problem

In this section, we account for the numerical solution of the problem, and we start
briefly sketching the derivation of the finite dimensional counterpart of problem (2.7).
For the sake of simplicity, in this section we assume homogeneous Dirichlet boundary
conditions, i.e. Hp = 0. All the results can be extended to the general case Hp #
0. We describe our numerical method for the approximation of the solution assuming
us =12%(9), H° = 1L2(S), VS € S. We remark that with these choices the assumption

of disconnected traces can be removed [7].
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Let us introduce an independent conforming triangulation 7s; on each fracture F;
Vi € J. Let Vs; be the finite dimensional trial and test spaces defined on the elements
of 7s5; and spanned by Lagrangian basis functions ¢;, k = 1,...,N;. The discrete
approximation of H; on each fracture is defined as h; = ij;l hi k. ®i g, Vi € 7.

Let us consider the following different numbering for the control functions UiS , in-
duced by the trace numbering. Being S = S, a given trace, with Ig, = {i,j} and
assuming i < j, we denote by U, and by U, the control functions related to the
m-th trace and corresponding to fractures F; and F}, respectively. Let us fix a finite

*

dimensional subspace of /% for the discrete approximation u*, of the control variable

m

U}, = —,+ and let us introduce basis functions @Z);L,Iw k=1,...,N,, and z/):r;k,
N

k=1,..,N;;. Then we have, for m € M, x = —, +, u), = >, ™ (R

With these notations, using L2-norms in (2.6) and CSh; = h we obtain the

ilg»

following finite dimensional form of the functional J(u):

N; N
J(u) = %Z > /S(Z higeigyg = D hiading ) dy +
k=1 k=1

i€J SeS;
1 N N
5 Z /S(Z ur_nkw;m + Zu;kw:gkf d~. (2.10)
meM k=1 k=1

In view of deriving a compact form for (2.10), let us introduce vectors h; € RYi,
hi = (hi1,---, hin,)T, i € J and setting NI = Y iea Ni, let h € RN be obtained
concatenating, for ¢ € J, vectors h;. Hence from now on, besides denoting the discrete

solution, h; will also denote the vector of degrees of freedom. Similarly, let us introduce

the vectors uf, € RVm, ¥ = (u:n71,...,u:n7N;n)T, m € M, x = —,+, and setting
NT =% com(Ny, + NF) we define u € RN concatenating ui, uf, ... U W

For all i € 3, S € &;, let us define matrices M € RN*Ni and (for j € .J;) Mg €

RNixN;j ag:

(M7 )ke = /S¢i,ks¢z‘,ﬁ|s dy, (M= /g¢i,ks¢j,z|s dy

and for m € 9 and x = —, + define M}, € RN XN Mi € RN»xNid and M as:
B My M5,
(Mides= [ Whitiedre (M= bt M=
I 7k 7£ S 7k 7z (MT«:?E/)T M;;

Then, let G € RN XN and G € RV"*N" he defined blockwise as follows:

Gh=> MP ied Gh=-Mj i3 jelt; G"=diagMi,..., Mum)
SES;
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With these definitions at hand, the functional J(u) in matrix form reads
Lo an L7
J(u) = §h G h+§u G"u.

Matrices G and G* are clearly symmetric and semi-definite.
Now, let us turn our attention to the algebraic counterparts of operators A;, B; in
(2.5): overloading notations, we let A; and B; also denote the matrices defining the

algebraic operators. We set A; € RY:*Ni and Bfm € RNixNm a5

(A= /F Voi Vo dF,  (B) = /S Giblg, Vmedy,  (211)

where, being S, C F; N Fj, we take x = — if ¢ < j or x = 4 otherwise. Matrices
Bfm, S, € Si, are then grouped row-wise to form the matrix B; € RM*Nsi  with
Ng; = s, es,. Nom and  chosen as before, which acts on a column vector u; obtained
appending the blocks u}, in the same order used for BiSm, as the action of a suitable
operator R; : RY" s RNsi such that u; = R;u. According to these definitions, the

constraints (2.5) lead to the algebraic equations

where ¢; accounts for the term ¢; in (2.5) and the boundary conditions. Denoting

w = (hT,uT)T e RN"+N" and defining

BiR,
A =diag(Ay, ..., Ayy) e RNNT g = : e RNV XNT.
BysRys
C=(A —B)eRNTNHNT G = diag(Gh, GY), (2.13)

the overall problem reads as the following equality constrained Quadratic Programming
problem:
1
min §wTGw, s.t. Cw=q. (2.14)
w

Classical results (see e.g. [22, Theorem 16.2]) show that, under proper assumptions on
C and G, w* is the unique global solution to (2.14) if and only if it is the unique solution
to the following saddle point system:

(e ) ()00
A= , A - (2.15)
C 0 —p* q
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being p* the vector of Lagrange multipliers. In [7] the following result, concerning
existence and uniqueness of the solution to the discrete counterpart of problem (2.7), is

proven.

Theorem 2.2. Let us consider the discrete formulation (2.14) to the problem of sub-
surface flow in a DFN, with G and C defined as in (2.13). Then, the solution exists and

is unique and coincides with the solution to (7.22).

The numerical approximation of the hydraulic head can be obtained in a twofold
manner. A possible method consists in solving the saddle point linear system (7.22).
This approach is viable for DFNs of moderate size: in this case sparse solvers can
efficiently compute a solution to (7.22). When very large DFN systems come into play,
solving the linear system may be a quite demanding task even if very coarse meshes are
used on each fracture, and parallel computing may become preferable. In these cases, as
depicted in [7], a worthwhile approach consists in using a gradient-based method for the
minimization of (2.14). Indeed, as shown in |7], this method allows for the decoupled
solution of local problems on the fractures, with a moderate exchange of information
among them. This point makes the method appealing for parallelization on massively
parallel computers and GPU-based computers, in which the local problems on fractures

can be distributed among processors.

2.4 XFEM Discretization

2.4.1 XFEM description

The Extended Finite Element Method (XFEM) [3, 20, 11, 4] is a finite element-based
numerical method to approach partial differential equations in variational form with non
smooth or discontinuous solutions. XFEM in the context of poro-fractured media are
also used in [10]. The non smooth behaviour of the solution is added to the standard
Finite Element (FE) approximation space through customized enrichment functions in
order to extend approximation capabilities. By means of the Partition of Unity Method
(PUM) [1] the influence of the enrichments is localized in a neighbourhood of irregularity
interfaces. In this way the XFEM allows to reproduce irregularities regardless of the
underlying triangulation.

Let us consider a problem set on a domain w C RY, with a weak discontinuity (i.e.

a discontinuity in derivatives) along the manifold S C w,S C R%"!, and let 75 be a
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conforming triangulation on w, with N¢ elements 7, C R?, @ = UlSeSNel Te. Let V{;em
be the standard finite dimensional trial and test space defined on the elements of 75 and
spanned by Lagrangian basis functions ¢y, k € Z. Each basis function ¢; has compact
support denoted by Ay.

If the nonsmooth character of the solution is a prior: known, it is possible to intro-
duce it in the FEM discrete space. Let us assume @ is a continuous bounded function
on w, ® € HY(w)NC®@) that well approximates the behaviour of a function h in a
neighbourhood Ag of S given by the union of some mesh elements 7. It is possible to
build a partition of unity on Ag based on the standard FE shape functions to define
new enriching basis functions starting from & that can be introduced into the FEM

space, thus giving the enriched functional space:

V(Sxfem = span ({¢k}k€I ) {qsk(p}kej) ; (216)

where 7 C T is the subset of indices of functions ¢; used to define the partition of Ag.
DOFs in J are called enriched DOFs (and the corresponding nodes enriched nodes).
The selection of the domain Ag can vary with the specific application of the method,
but is usually given by the union of mesh elements intersected by the interface S. The

approximate solution h%*™ of the problem with the XFEM will be in general:

B (@) = 3 b (@) 4+ D ol du(2)2(2), (217)
keT keg
where hifem and a,ﬁfem are the unknowns related to the standard and enriching basis

functions, respectively. The nonsmoothness of the exact solution is now present in the
discrete solution and is reproduced independently of the position of mesh elements.
Since only a subset of total degrees of freedom is enriched, elements in 75 may have a
variable number of enriched nodes. In particular, according to the classification given
in [17] we have standard elements when no nodes are enriched, reproducing elements if
all nodes are enriched, and blending elements if only some nodes are enriched.

The enrichment function ® can be correctly reproduced only in reproducing elements
where the partition of unity is complete. On the contrary, in the blending elements
partition of unity is partially established and unwanted terms are introduced in the
approximation, affecting the convergence rate of the standard FE [9, 29, 16]. Moreover
the basis of ngam is no longer a Lagrangian basis. For these reasons we will actually

implement the modified version of XFEM with shifted basis functions, as suggested in
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Closed interface
= = = Open Interface

Figure 2.1: Classification of discontinuity Figure 2.2: Example of function behaviour

. for near-tip enrichments
interfaces

[16]. The enrichment basis function ¢,® is replaced by

S(2)D(2) = ¢r(2)R(E) (D(2) — D(&1)) ,

where R(%) = >_;c ; ¢j(2) and 2y, are the coordinates of the k-th node. The enriched
domain is extended including blending elements through a redefinition of the set J as
J = {k: €ET:A,NAg # (7)} , where Ag = Jp.c 7 Ak In this way the approximation ca-
pability of the enriched space is unaffected in reproducing elements, where R(Z) = 1, and
depends on the choice of the enrichment function ®, while the standard FE polynomial
representation of solution can now be obtained in blending elements, restoring optimal
convergence rates. The shift restores Lagrangian property of the basis functions making
easier the imposition of Dirichlet boundary conditions and graphical representation of
the results.

The generalization to multiple enrichments is straightforward. In particular we re-
mark that XFEM enjoys and additivity property with respect to the interfaces: inde-
pendently of traces disposition, the set of enriching functions with multiple interfaces is
the union of the enrichments introduced by each interface. A comprehensive review of

the XFEM method, including implementation details, can be found in [17].

2.4.2 Enrichment functions selection

We now focus on the definition of the enrichments used in the application of the

XFEM to DFNs. Recalling definitions introduced in Section 2.2, on each fracture F;
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the exact solutions H; to (2.5) may have a jump of fluxes across the traces in S;. The
XFEM approach allows the triangulation to be set on each fracture independently of
the disposition and number of the traces, thus actually eliminating meshing problems
related to DFNs. Let us fix a fracture F € R? and let MMz C O be the subset of indices
corresponding to traces on F.

The selection of the enrichment functions is related to the irregularity to be repro-
duced and to the type of interfaces. Here we deal with solutions with discontinuous
gradient (weak discontinuities) and different enrichment functions need to be employed
according to the location of the traces (interfaces) in the domain, with a distinction
between closed and open interfaces (see Figure 2.1). In order to describe the enrichment
functions, let us introduce, for m € Mp, the function d,,(x) given by the signed distance
from S, [29, 4]: for & € F, d,,(2) = ||z — Z||sign(ng,, - (z —&)), where Z is the projection
of £ on S, and ng,, is the fixed unit normal vector to .Sp,.

For a closed interface we use the enrichment function ¥ defined as U™ (&) =
|dm (2)], [4], that is a continuous function with discontinuous first order derivatives
across Sy,. This introduces the required nonsmooth behaviour in the approximation.
The enrichment is localized in a neighbourhood of 5, defined by the set of DOF
T ={keT:ANS, #0}.

On the contrary, if S, is an open interface, different enrichment functions are needed
to reproduce the behaviour of the solution close to the extrema of the interface and away
from the extrema {31, 32} = 0,,- Away from the extrema, the nonsmooth behaviour of
the solution is similar to the case of closed interfaces and the same function W™ is used,
being the set 77" defined as {k € T: AN Sy #0, AN st = 0}, Vst € op,. Other
enrichment functions are introduced to describe near-tip behaviour of the solution; we
adopt here the functions suggested in [4] and defined as follows. Let r be the signed
distance between the current point and trace tip; furthermore, let us consider for each
tip a reference system centered into trace tip, with the z-axis aligned to the trace and
oriented in such a way that the trace lies on the negative side, and let § € (—m, ) be
the polar angle of Z in this system. Then, the enriching functions are

0 0 0
om(x) € {rcos 5,7"2 cos 5,\/7_“(3085} : st € o

Functions ©17 (z) are continuous and cusp-like on S, and their behaviour around trace
tips is a combination of {\/7_“, T, 7“2}, as shown for example in Figure 2.2, in which we

plot the function rcos@/2. The set of DOFs subject to tip enrichments is given by
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Tou = {k: €eT:ALNs' # @}, Vs' € o,,. In order to prevent blending elements related
problems, the enrichment functions here described are used as basis for the modified
XFEM version [16] mentioned in the previous subsection.

With all the enrichments here described, the number of DOFs on each fracture F;
SN, =#T+ Z #jm +3 Z Z #jgsz, where jm and jgsz denote the sets of

meM meM stco,,
DOFs for the modified version.

The numerical integration of singular functions was performed on sub-domains not
crossing the traces [20, 4]. A Gauss quadrature rule was used with special care for
the integration of gradients of near-tip enrichment functions, where a concentration of
integration nodes around trace tip is recommended to correctly evaluate the singularities
[19].

2.5 Numerical results

The numerical simulations reported in this Section aim at showing the viability of
the approach proposed in [7] in solving problems on complex networks. In Subsection
2.5.1 a problem with open interfaces is considered, and numerical convergence of the
method is analyzed. In Subsection 2.5.2 a critical situation is introduced, in which three
traces are very close each other, almost parallel and intersecting each other. The great
deal of flexibility in mesh generation allowed by our approach is shown. In Subsection
2.5.3 some more complex DFNs are considered. In Subsection 2.5.4 preconditioning
issues for system (7.22) are analyzed. Finally, in 2.5.5 we show how the method can
deal with broadly ranging transmissivity values.

All the simulations are performed with triangular meshes and first order finite ele-
ments. The problems have been solved through the optimization approach introduced in
[7], in conjunction with extended finite elements, and mesh elements arbitrarily placed
with respect to the traces. We highlight that since the triangulations on a couple of in-
tersecting fractures induce different discretizations on the common trace, the minimum
of the discrete functional (2.10) is different from zero, that is the theoretical minimum
of the functional in the continuous case.

The problems have been solved in a twofold manner: either solving the whole system
(7.22) via an iterative method, or applying the steepest descent method to problem
(2.14) (Algorithm 4.5 in [7]). Concerning the first case, the matrix 4 in (7.22) is
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Figure 2.3: Problem 1: Domain description with mesh and solution h (left) and control

variable along trace (right)

symmetric but indefinite, as shown in classic literature on saddle point problems (see
e.g. [5]). Furthermore, in real applications A is of huge dimensions but highly sparse,
hence an iterative method with matrix free approach appears to be a suitable choice.
Among iterative methods for solving linear systems, SYMMLQ [24] is recommended for
symmetric indefinite systems, and requires a symmetric positive definite preconditioner.
This is the choice we adopted here, using the MATLAB built-in SYMMLQ function. The
issue of preconditioning SYMMLQ on DFN applications is addressed in Subsection 2.5.4.

Nevertheless, when large DFNs are considered, even assembling and storing the
system (7.22) may be a quite demanding task. The steepest descent method suggested
in [7] may help in this respect as only the decoupled solution of local problems on
fractures are required at each step, and with this approach a large problem can be
dealt with also on a simple PC without requiring excessive memory resources. When
this algorithm is used, the local problems (2.12) are typically of small dimension, so
that a direct solver can be effectively used to compute these solutions. We used in our
experiments the MATLAB built in direct solver. Computations are always started from

u = 0.
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2.5.1 Behaviour of the method with open interfaces

The first problem proposed is designed in order to test the behaviour of the method

with near tip-enrichments. Let us define the domain Q = F; U Iy, with

Flz{(x7y72)€R3:—1<x<1, -l<y<l, 2:0}7
FQ:{(xayaz)eR33—1<fL'<O, y =0, —1<z<1}.

The trace S ends in the interior of F} and is an open interface. Let us define H*(x,y, z)

in Q as:

He 2,y 2) = { (3:2 — 1)(y2 — 1)(x2 + y2) cos (% arctanQ(x,y)) on F7,

—(22 = 1)(2? — 1)(2% + 2?) cos (5 arctan2(z, z)) on Fy,

where arctan2(zx,y) is the four-quadrant inverse tangent, giving the angle between the
positive z-axis and point (z,y), and differs from the usual one-argument inverse tangent
arctan(-) for placing the angle in the correct quadrant. The function H is the solution

of the system:

—AH = —-AH®, in 2\ S,
H = 0, on OFy UOFy \ T,
2
H = \/7—(22 — 24, on T,

where I' is the boundary of F, parallel to the z-axis and intersecting the xz-axis in
xr = —1. In Figure 2.3 we report on the left the geometry of the problem and the non
conforming mesh used with XFEM (dnax = 0.1). On the right, we report the control
variable u; computed, compared with the exact function. The flux mismatch computed
along the trace is ||u; + u2||L2(S) = 2.8107%. The results obtained with XFEM are
shown in Figure 2.4. The problem has also been solved with standard finite elements
on meshes conforming to the trace. The rates of convergence in both cases, reported in
Figure 2.5 (left), are optimal. As expected, the curves relative to the solution obtained
with the XFEM lie below the curves corresponding to standard finite elements. In fact,
the basis function 72 cos #/2 introduced for trace tip behaves essentially as H* close to
the center of F, where tip is located, thus locally reducing the error with respect to
standard FE. Minima of v/.J are reported on the right plot of Figure 2.5, showing that

grid refinement pushes these minima towards zero.
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Table 2.1: Number of DOFs for fracture F for different solution strategies

Amax  XFEM non-fitting FEM  fitting FEM

0.05 48 12 655

0.0225 85 34 672

0.01 135 71 715

0.0025 398 311 910

0.0004 486 396 1017
osf , ~ osf
04 04

Figure 2.6: Problem 2: meshes on Fj. Left: coarse grid; right: fine grid.

0.25 0.25
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0.15

Figure 2.7: Problem 2: Solution on coarse grid. Left: XFEM,; right: FEM
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Figure 2.8: Problem 2: Solution on fine grid. Left: XFEM; right: FEM
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2.5.2 Critical traces disposition and DOFs investigation

In this subsection we consider a problem with critical traces disposition. We consider
four fractures: Fi, located on the z — y plane of a 3D reference system; the other three
fractures are orthogonal to the x — y plane and generate with F} three traces very close
to each other and “almost® parallel, i.e. the angles between traces are very small, ranging
from 0.8 (sexagesimal) degrees up to 1.8 degrees. The three traces are open interfaces.
The fracture F} and the three traces are represented in Figure 2.6, along with examples
of mesh used on F). On the right plot, also a detail of the right extremities of the traces
is reported. The coordinates of traces extremities are (z%,9%) = (0.4,0.5), (x5,y5) =
(0.6,0.5), (z5,48) = (0.398,0.5), (x5,v5) = (0.602,0.503), (25%,45) = (0.402,0.501),
(x5, y5) = (0.598,0.498).

In Table 2.1 we report, for fracture F}, the number of degrees of freedom obtained
meshing the fracture for the following approaches: our optimization approach in con-
junction with XFEM, hence without fitting the mesh to the traces; the same optimiza-
tion approach, on the same mesh, with standard FEM basis functions (hence without
enriching basis functions); standard FEM on a mesh fitting the traces. We remark that
in this latter case the mesh has been generated only on F; and is only constrained to
fit trace disposition; if also the mesh on the other three fractures were generated, and
conformity on all the DFN were required, the number of degrees of freedom might be
possibly even larger. In all three cases the meshes have been obtained with the software
Triangle [28], requiring a good quality mesh (—q option in Triangle) and imposing a
given maximum element area Ay, reported in Table 2.1. Comparing first and second
column of the table, it is clear that, when the same mesh is considered, XFEM requires
a larger number of DOFs than FEM, with a more significant percentage on the coarser
meshes, since a larger fraction of elements are subject to enrichment. Under grid refine-
ment, the number of elements enriched increases, but the percentage decreases, and the
relative difference in DOFs between the two approaches becomes smaller. As shown by
the last column, the number of DOFs introduced with a regular, fitting mesh, is in this
case much higher then the previous ones, thus showing how effective is our approach
in reducing the number of DOFs with respect to a conforming approach. Besides, we
stress that non fitting meshes are produced without any kind of knowledge about traces

disposition, thus easily obtained.

A problem has been introduced on this DFN as follows: —AH = 0in Q\S; on F} we
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Figure 2.11: Problem 6F: detail of fine
mesh Figure 2.12: Problem 6F: solution on Fj
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set homogeneous Dirichlet conditions on fracture edges (almost) parallel to the traces,
and homogeneous Neumann condition on the other sides; on fractures Fj, i = 2,3,4, we
set H = 1 on the top edge, and homogeneous Neumann conditions on the other sides.
The problem has been solved with the first two approaches mentioned before (XFEM
and FEM on the same mesh, with our optimization approach). A coarse (Apax = 0.05)
and a fine (Apmax = 0.0025) mesh have been used, and are depicted in Figure 2.6. The
numerical results obtained on the coarse and fine meshes are reported in Figures 2.7 and
2.8, respectively. The XFEM solutions are plotted on sub-elements generated by cutting
XFEM elements along traces. Finally, in Figure 2.9 we report the values of v/.J versus the
number of iterations of the steepest descent method using both FEM and XFEM on the
coarse mesh. It can be seen that the larger number of DOFs introduced by enrichments,
and the larger number of iterations required by XFEM, are counterbalanced by the

higher quality of the solution.

2.5.3 DFN systems simulations

In this subsection we consider systems of fractures of increasing complexity. Fracture
transmissivities K; are assumed constant on each fracture but different from fracture to
fracture.

First, we consider the DFN configuration depicted in Figure 2.10: the system is
composed by six fractures. Some of the traces generated do intersect each other. A

detail of the mesh, presented in Figure 2.11, highlights non conformity of the mesh.
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Figure 2.20: Problem 7F: Solution u; on
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Figure 2.19: Problem 7F: Solution h; on
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Figure 2.21: Problem 11F: Solution on

fracture Fg (traces numbering is global)
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Figure 2.22: Problem 11F: Solution h; Figure 2.23: Problem 11F: Solution wu;
on the traces of fracture Fg and solutions on the traces of fracture Fg and solutions
{h;} on the fractures intersecting Fy in its {—u;} on the fractures intersecting Fg in
traces its traces

Table 2.2: Problem 11F: Fracture flux unbalance and total fluxes (dy,ax = 0.16)

flux unbalance total flux flux unbalance total flux
Fy -9.69e-7 1.44 | F» -1.38e-6 0.50
Fy -1.98e-6 4.72 | Fy -1.98e-6 -14.41
F3 2.02e-7 -17.10 | Fy 2.19e-6 9.06
Fy -1.07e-6 2.99 | Fig 3.61e-6 -4.17
Fx -9.81e-7 7.20 | F11 3.87e-6 2.88
Fg -2.51e-6 6.87
107 ‘A;
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Figure 2.24: Problem 11F: relative conti- Figure 2.25: Problem 50F: Solution on

nuity mismatch and flux unbalance fracture Fso (traces numbering is global)
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The numerical solution computed on fracture F5 is reported in Figure 2.12, and is rep-
resented with respect to a local tangential reference system (X, Y"). This convention also
applies from now on to similar plots of the solutions. The figure shows that intersecting
traces are easily handled by our approach. In particular, we see in Figure 2.12 that the
discontinuities in the flux along the traces are clearly shown. In Figure 2.13 we report
the solution computed on fracture Fg with a coarse and a fine mesh (dpax = 0.77 and
dmax = 0.22, respectively), showing the behaviour of the solution close to intersecting
traces. The solutions are plotted on sub-elements obtained splitting XFEM elements
along traces.

Then, the following configurations are considered. In these problems the reference
system for R? is a right-handed orthogonal system oriented such that the z — y plane

lies on the page plane, and fractures are parallel to z axis.

7F: The domain is composed of 7 fractures and 11 traces, as shown in Figure 2.14.
Fractures range from z = 0 to z = 5. All the traces completely cross each fracture,

thus tip-enrichments are not used.

11F: The domain is composed of 11 fractures and 26 traces, as shown in Figure 2.15.
The fracture in dashed line ranges from z = 0 to z = 2.5, while all other fractures
range from z = 0 to z = 5, thus in this case tip-enrichment functions are employed,

since some traces end inside the domain.
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50F: In this last case the domain is composed of 50 fractures and 153 traces as sketched
in Figure 2.16. All fractures in continuous lines range between z = 0 and z = 3,
while fractures drawn with dashed lines range from z = 0 to z = 1.5. Also in this

case tip-enrichment functions are employed.

Boundary conditions are set in a similar fashion in all cases. Homogeneous Dirichlet
boundary conditions are set on I'p = 92 N {z = 0}, while 'y = 9Q \ I'p. A different
constant-value of Neumann boundary condition is imposed on fracture edges belonging
to 'y and marked with a plain black dot in the figures showing domain configurations.
Homogeneous Neumann boundary conditions are placed on the other fracture edges in
I'y. In all cases different (constant) values of K are randomly taken on each fracture,
approximately ranging from 10~! to 10?. The geometry of the DFN and a mesh example
are reported in Figure 2.17 for the case 11F. In Figures 2.18-2.23 and 2.25-2.27 we
report for each system considered and for a selected fracture Fj: i) the solution h;
on the fracture; ii) the restriction on the traces of h; and of the solution h; obtained
on the fracture F; which generates the trace through its intersection with Fj; iii) the
control variables u; and —u;. All the results here reported are obtained with a grid
parameter dpax = 0.16. As shown in particular in the 2D plots, the computed numerical
solution well approximates continuity and flux conservation (2.2)-(2.3). Focusing on
the intermediate 11F case, in Figure 2.24 we plot, for each trace, the L?-norm of the
difference of the hydraulic head on intersecting fractures, ||h;g — hj) gl|, relative to the
average L2-norm of h on the trace, hyy = 1/2 (Hhi|SH + th‘SH> (triangular markers),
and in square markers flux unbalance at traces, ||u; + u;l||, relative to the average flux
Ugw = 1/2 (Jus]| + ||u;]])- It can be seen that the relative mismatches in flux conservation
and head continuity are small and roughly of the same order. Furthermore, in Table 2.2
we report, again for problem 11F, the flux unbalance and the total flux on each fracture,
which are computed on Fj, i = 1,...,11, as Y gcq, [g uf —i—u}s dy and Y gcq [ uf dv,
respectively. The sum of the flux unbalances on all the DFN is -5.0114e-7, and, clearly,
the sum of the total fluxes on the fractures exactly match this value. It can be seen
from the table that flux unbalance on the fractures is quite small, being six orders of

magnitude below the respective total flux.
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Table 2.3: System matrices data. Dim: matrix dimension, NCond: matrix condition num-

ber, Iter: iterative solver number of iterations, Relres: solution relative residual

Problem  Dim NCond SYMMLQ Iter Relres Grid Prameter

S1 8324 1.9-10° 3000 1.75-107! 0.1
S2 15067 9.0 - 107 3000 1.25-1071 0.1
7F 18261  1.3-10° 3000 1 0.16
11F 32888 1.7-10' 3000 1 0.16
50F 69476 9.3 -10° 3000 1 0.22

2.5.4 Preconditioning

The choice of a good preconditioner for SYMMLQ is a crucial task as the linear
systems arising from the discrete DFN-like problems are ill-conditioned even for the
smaller problems considered, and conditioning worsens both if grid parameter is reduced
and if the number of fractures increases. In Table 2.3 we report the data related to
the conditioning of the system for various problems considered, along with the results
obtained while attempting to solve the non preconditioned linear system with SYMMLQ.
Problems 7F, 11F, 50F refer to the examples shown in Subsection 2.5.3 while Problems
S1 and S2 are a modified version of Problems 7F, 11F respectively. With reference
to Figure 2.14 and Figure 2.15 z-quotes are reduced in Problems S1 and S2 to z = 1
for the fractures represented with solid lines and to z = 0.5 for the fracture in dashed
line. Different Dirichlet boundary conditions are set on fracture edges in the z-direction
marked with a black dot, while homogeneous Dirichlet boundary conditions are placed
on the remaining edges. Finally a constant value K = 1 is prescribed to all the fractures.
These modified problems yield smaller linear systems. The data in Table 2.3 show that
the iterative solver never succeeded in reaching the required exit tolerance tol = 10~
within the maximum number of iterations allowed (max;; = 3000).

In order to precondition the system, we follow here the approach described in [27],
in which a block triangular preconditioner is suggested for linear systems of saddle point
type arising from general QP problems. In detail, for a saddle point problem of the form

(7.22), the following preconditioner is suggested:

(2.18)

G+ctw—c kCo”
0 w
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where k is a scalar and W is a N¥' x NI symmetric positive definite weight matrix.
A suitable choice for k and W suggested in [27] is k = 0 and W = ~I where I is the
identity matrix and v > 0 is a given constant which should provide an augmenting
term CTW~=1C not too small in comparison with G. We remark that the choice k = 0
yields a block diagonal symmetric preconditioner, hence suitable for the use along with
SYMMLQ solver.

The preconditioner (2.18) is introduced in [27] in the context of interior point meth-
ods for optimization problems, which expecially in the case of inexact methods [2]| heavily
rely on iterative methods and hence on good preconditioners. In the case of interior point
methods, at each outer iteration a linear system with a structure similar to (7.22) has to
be solved, with the block G being typically more and more ill-conditioned as the solu-
tion is approached. In [27], an adaptive choice of v along outer iterations appears to be
an effective choice: when used in conjunction with MINRES solver, an effective choice
is v = 1/max(G) for linear programming problems, and for quadratic programming
problems the choice suggested is given by v = ||C||?/||G]l-

Since here we deal with a different context and the block G is not necessarily the
major source of ill-conditioning, a preliminary investigation has been performed on
Problems S1, S2, 7F, 11F, 50F in order to study effectiveness of the preconditioner in
our applications, and, possibly, identify a suitable value for the parameter +v. A broad
range of values for v has been considered, ranging between 10~ and 300, which roughly
corresponds to the optimal value ||C||?/||G|| suggested in [27] applied to problems S1
and S2 (for problems 7F,11F,50F this value corresponds to ~ 7-10%). Exit tolerance for
iterative solver is now set to tol = 1072 and the maximum number of iterations is set
to max;; = 3000. We point out that the implementation of SYMML(Q that we used for
solving the system A x = ¢, performs the check on the exit tolerance on the unprecondi-
tioned relative residual ||g— A z||/||q|| even if the linear system is preconditioned. Results
of this preliminary investigation are reported in Figures 2.28 and 2.29. In particular, in
Figure 2.28 we report the number of iterations required by SYMMLQ for several values
of 7. As shown in the Figure, in all problems considered for v small enough the iterative
solver succeeded in satisfying the stopping criterion within a very moderate number of
iterations. The value v = 10~7 appears to ensure the best performance in the precondi-
tioner, for all the considered problems, independently of the number of fractures, of the
number of unknowns, and of the boundary conditions. Indeed, Figure 2.29 shows that

for optimal «-values the condition number of the preconditioned linear system reaches
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Figure 2.28: SYMMLQ number of iterations versus =y

very low values, and matrix eigenvalues cluster around the values {—1, 1}.

2.5.5 Large variation of K values

In previous computations we allowed a different transmissivity value K; on each
fracture F;, i € J (assuming for simplicity K; constant on the fracture). In real ap-
plications, large variations in the (typically very small) values of K; may occur, from
fracture to fracture, possibly spanning several orders of magnitude. This may corre-
spondingly cause a large variation in the orders of magnitude of U, which, representing
the co-normal derivative n” K'VH, may largely differ from those of H, making the func-
tional J less sensitive to variation in U. In order to deal with this situation, a possible
approach consists in properly weighting the terms ||U +U JS || in the functional, allowing

the following modification to J:

= 55w = X (ICE @) ~ CF ) ys +

Us + US||MS)
Ses Ses

(K"

min

where K2. = min {K;, K;} and e.g. a@ =1,2. The weights introduced help in balanc-
ing the contribution of the various terms of the cost functional, giving more relevance
to flux unbalance when large variations of transmissivity occur at intersecting fractures.
The following model problem has been used to show the effectiveness of this exten-

sion of the method, here applied with @ = 1. Problem domain is shown in the left of
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Figure 2.30, along with fracture and trace numbering. Fracture F) carries a constant
value Dirichelet boundary condition A~ = 10 on the top border along the y-axis, while
fracture F3 has a Dirichelet boundary condition A = 3 on the bottom border parallel
to the y-axis. Fractures Fy and Fjy have a constant value A = 1 Dirichelet boundary
condition on the left border parallel to the y-axis. An homogeneous Neumann boundary
condition is prescribed on the remaining borders of all fractures. Four different simu-
lations are performed with different sets of fracture transmissivity values as reported
in the right of Figure 2.30. It was noted that, with these broad variations of K, the
correction helped in obtaining the solution, as we experienced difficulties in convergence
of the steepest descent method with the non-modified functional. Results concerning
hydraulic head mismatch at traces and flux unbalance are collected in Figures 2.31-2.32.
In Figure 2.31 the L2(S)-norm of the difference of the hydraulic head on intersecting
fractures Ej = ||hijs — hj|gl| is reported with solid markers for each trace, along with
the average L2(S)-norm of h, hey = 1/2 (WMSH + th|SH> (in empty markers), in order
to compare the mismatch of h at the intersections in relation with the order of mag-
nitude of the solution. Similarly in Figure 2.32 we show flux unbalance at traces in
solid markers, E, = ||u; +u,||, with the average flux uq, = 1/2 (||u;|| + [|u;]]), in empty
markers. It is noticed that the hydraulic head mismatch on traces and flux unbalance
are usually orders of magnitude lower than the hydraulic head and flux, respectively,

also for fracture transmissivities differing for six orders of magnitude.
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2.6 Conclusions

In this paper we have further analyzed the viability in complex systems of a novel
method introduced in [7] for the problem of subsurface flow in a system of fractures,
which consists in the reformulation of the problem as a PDE constrained optimization
problem. Independent meshing processes have been used on the fractures, generating
grids which are independent of the mesh on other fractures and of trace number and
disposition. This is a crucial point since one of major difficulties in the DFN approach is
typically the generation of a trace-matching mesh. The discussion and the experiments
here reported show effectiveness of the method in providing good approximation of the
solution in complex DFNs.

In future works, more realistic DFN configurations will be investigated. A parallel
implementation exploiting the independence of the problems on the sub-fractures is also
envisaged. Moreover, we will investigate also the applicability of the method to non

steady-state case in conjunction with local time adaptive strategies as in [6].
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Chapter 3

An optimization approach for large
scale simulations of discrete fracture

network flows

Abstract In recent papers [7, 6] the authors introduced a new method for simulating
subsurface flow in a system of fractures based on a PDE-constrained optimization re-
formulation, removing all difficulties related to mesh generation and providing an easily
parallel approach to the problem. In this paper we further improve the method remov-
ing the constraint of having on each fracture a non empty portion of the boundary with
Dirichlet boundary conditions. This way, Dirichelet boundary conditions are prescribed
only on a possibly small portion of DFN boundary. The proposed generalization of
the method in [7, 6] relies on a modified definition of control variables ensuring the
non-singularity of the operator on each fracture. A conjugate gradient method is also

introduced in order to speed up the minimization process.

3.1 Introduction

Efficient numerical simulation of underground flow is of great interest in a large
variety of practical applications, as for example enhanced oil/gas recovery, pollutant
percolation and diffusion in aquifers, or carbon dioxide storage. The underground fluid
flow is a multi-scale heterogeneous phenomenon, occurring in complex geological con-

figurations usually characterized by networks of fractures surrounded by a porous rock

6]
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matrix. The Discrete Fracture Network (DFN) approach models underground systems
of fractures as 3D networks of intersecting discrete planar fractures. Diffusive phenom-
ena in this system of fractures are governed by the Darcy law. At fracture intersections,
called traces, mass balance and pressure continuity are preserved. The geological char-
acteristics of the fractures, such as size, orientation, aspect ratio, density, permeability,
are usually determined relying on stochastic data [10], and only probability distribution
of data are usually available for a specific geological site. A huge number of numerical
simulations is then necessary in order to perform sensitivity analysis to the variability
of the involved parameters. On the other hand, DFN simulations are very demanding
from a computational point of view. Problem size is usually huge, involving a very large
number of fractures. Moreover, for intricate fracture geometries, the generation of a
good quality finite element triangulation conforming to the traces usually requires the
introduction of many unknowns on each fracture, independently of the quality required
for the numerical solution.

Many approaches are suggested in literature to circumvent these difficulties. A
method based on a conforming mesh with mixed non-conforming finite elements is pro-
posed in [21], while in other cases modifications of the geometry or of the mesh are
introduced in order to preserve conformity and achieve a good quality mesh, such as in
[14, 21] or in [12]. A different approach is suggested in [17], where the solution in the
fractures is expressed as a function of the solution at the intersections. In other works
it is suggested to rely on mortar methods to ease meshing procedure, as for example
in [19, 20]: with this approach the mesh conformity constraint is relaxed but fracture
meshes have to be aligned along the traces. In [8, 18, 11| the DFN is reduced into a
system of mono-dimensional pipes connecting the traces with the surrounding fractures
both preserving fracture topology and mitigating meshing related problems.

The present work further develops the approach introduced in [7, 6], in which the
problem of the computation of the hydraulic head in a DFN is reformulated as a PDE-
constrained optimization problem. The overall problem is split in a set of several inde-
pendent sub-problems on each fracture of the system, coupled by the minimization of a
proper functional. The use of Extended Finite Elements allows to capture the correct
behaviour of the solution along traces even if grids are not conforming along fracture
intersections and traces arbitrarily cut mesh elements. This way the meshes may be
generated on each fracture in a completely independent way, disregarding fracture in-

tersections and thus eliminating meshing difficulties.
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Despite being applicable to very general DFN configurations, the formulation of the
problem in the over-mentioned approach requires a non empty portion of Dirichelet
boundary on each fracture of the system. In the present work a modification of the
control variable and of the cost functional involved in the optimization problem is intro-
duced, eliminating this constraint and allowing to prescribe Dirichelet boundary condi-
tions only on (portion of) boundaries of a — possibly very small — subset of fractures. The
use of a conjugate gradient method for the minimization process is also described. The
behaviour of the method on fairly complex networks is shown through several numerical
experiments.

The paper is organized as follows. In Section 3.2 we recall the physical model and the
mathematical statement of the continuous problem introduced in [7, 6]. In Section 3.3
the PDE-constrained optimization problem is described along with the conjugate gra-
dient algorithm used in the minimization process. Application of XFEM ideas to the
DFN context is briefly accounted for in Section 3.4. In Section 3.5 we introduce the
discrete version of the algorithm. Numerical experiments showing effectiveness of the

method are reported and commented in Section 3.6.

3.2 Description of the problem

3.2.1 Problem formulation

Our target is the computation of the hydraulic head H = P +( (being P = p/(09)
the pressure head, p the fluid pressure, g the gravitational acceleration constant, ¢ the
fluid density, ¢ the elevation) in a DFN given by the union of a set of fractures. Let us
model each fracture as an open planar polygonal set, F;, with index ¢ varying in a set
J. Let us also introduce on each fracture a 2D local coordinate system Z;. Let 2 be the
3D set

o=JF,
1€J
and 0Q the boundary of €, split as usual in a set I'p # () with Dirichlet boundary
conditions and a set 'y with Neumann boundary conditions, such that I'p UI'y = 02
and TpNITy = 0.
Note that the intersection of the closure of each couple of fractures is either an

empty set or a set of non vanishing segments called traces, denoted by S,,, with index
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m varying in an index set 9t with cardinality 9. For each fracture F;, S; is the set of
traces shared by F; and other fractures while S indicates the set of all the traces.

In the paper the following is assumed on the DFN: 1) Q is a connected set; 2) each
trace S, is shared by exactly two polygonal fractures F; and Fj, ¢ # j, such that
Sm € F;N Fj. The set of the two indices i and j of the fractures F; and Fj sharing trace
Sy is denoted by Ig, = {i,j}, while for all i € J, the subset .J; C J contains indices of
fractures with a non-empty intersection with Fj.

While referring the reader to [7] for more details, here we briefly recall the variational

formulation of the problem. Let us define Vi € J the following functional spaces:
Vi=Hy(F) = {v e H'(R) v, =0}
and V/ their dual spaces. The hydraulic head H; in each fracture belongs to the space
VP =t (R) = {ve H'(R) v, = HP},

where HZ-D is the restriction of the Dirichlet boundary condition H It = HP to Typ =
I'p NOF;. In what follows I';p can be an empty set, but I'p = UF,D £ .

Let K;(&;) be, for all i € J, a symmetric and uniformly positi\ie definite tensor called
hydraulic conductivity tensor, which we assume dependent on the position and possibly
different on each fracture. As documented in [7], the global hydraulic head H in the
whole system ) is obtained solving the following problems Vi € J, which model the
diffusion of the hydraulic head on each fracture: find H; € VZ-D such that Vv € V;

KZ'VHZVde:/ qwdQ—i—/ Ny dD + /[[ ﬂ dP 3.1
/E F; eraF 's Z 5’/5 3

where Gﬁv is the restriction to I';y = I'y NOF; of the Neumann boundary condition G

imposed on I'y. The quantity ggg = (n%)T K; VH; is the outward co-normal derivative
of the hydraulic head, being 7y the unit vector normal to the trace S. The symbol
[[3712}]5 denotes the jump of the co-normal derivative along ﬁig, being this jump inde-
pendent of the orientation of 2%y. According to (7.1), the diffusion of H; is contributed
by the following terms: the external load in each facture (first term of the right hand
side); the Neumann boundary conditions (second term); the net flow of hydraulic head
entering in the fracture at each trace (last term).

Equations (7.1) are coupled by the following matching conditions, which prescribe

global continuity of the hydraulic head and conservation of hydraulic fluxes across each
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trace Sy, m € NM:

H’i|5m - Hj‘Sm - 07 fOT Zaj S ISm7 (32)

0H; OH; .
|[ — ﬂ + |[ Aj] ﬂ = 0, for i,j € Ig,,. (3.3)
ovg s, ovg | S

Note that due to condition (7.2) the hydraulic head H on the whole domain € belongs

to the space

VD — Hb(Q) = {v € HVzD : (U|F1‘)|Sm = (U\Fj)|sm’ i,j€ls,, Vme 9)?} (3.4)
1€J

3.3 Optimization approach

Following the approach described in [7], instead of solving the coupled differential
problems on the fractures (7.1) Vi € J with the corresponding matching conditions (7.2),
(7.3), we introduce a PDE-constrained optimization problem. In order to ease notation
and for a concise and clear description, in the following of this Section we assume that
the traces S € S are disjoint, recalling that as stated in [7], this assumption can be
dropped replacing occurrences of each single trace S with the union of connected traces.
Further, in our discrete formulation the assumption naturally drops thanks to the choice
of the functional spaces (see again |7]). Let us introduce for each trace S € S a suitable
space /° and its dual (Z/[S )I. Similar spaces are introduced on the set of traces belonging

to a fracture F;, Vi € J, and on the full set of traces S:
us=1Ju®, u=JJus.
SeS; 1€J

Now, let us fix a trace S and let S C F; N F] We introduce suitable variables

UZ-S,UJ-S € Y which will act as control variables, defined as U = aHl;, + [[gff]]s
S

and U JS = aHj‘S + H%H respectively, where « is a positive fixed parameter. This
sls

generalizes the approach proposed in [7] where Uis is set equal to flux jump, thus allowing

I';p = 0 on possibly all but one fractures. We set

=M uvfeys, v=Iuecu,
SeS; €7

i.e. U; is the tuple of functions Uis with S € S;, and U is the 2(#9M)-tuple of control

functions on all traces in .
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We also introduce the Riesz isomorphisms A s : us —u”, Aysi  UST— US" and
Ay i U — U and the following linear bounded operators and their duals:
! 0 _ 0 0
A€ LUV, (A )y, = (KVH] Vo) +a (HY g vy )
AP e (VP V), (AP RiHP v)yiv, = (KV R HP, Vv)
o <(RZ Hil))|5i’v\8i>3. g
BzS = ﬁ(usv Vi/)v <B§S’Ui7v>Vi’,Vi = <Uisvvls>z,[5,u5/7
BZ = S]gsl Bf (= £(u81’ ‘/’i/)’ <BZUZ7/U>‘/,L/,V; = <Ui,v|si >Z/{S’L',Z,{Si/7

with H? € V;, HiD € ViD, v € V;, and the operator R; is the lifting of the Dirichlet
boundary conditions on I';p if not empty. Dual operators are A} € £(V;, V),

CP = (BY) e c(Vi,u®), Ci=(By)* € £(Vi,uS").

The operator B;y € ﬁ(H_%(I’iN), V/) imposing Neumann boundary conditions is
defined such that
0H;

BinGY v)yry, = (GY = (—— .
(Bin G, ’U>Vi7Vl (Gi 7U‘FiN>H_%(F¢N)7H%(F¢N) <aﬁF¢N7U‘FiN>H_%(FiN)7H%(FiN)
Problems (7.1) can now be written as follows: Vi € J, find H; € V;P, with H; =

Hi0 + Ri HiD and Hio € V;, such that

AH? = g; + BiU; + BinGY — AP R, HP, in F. (3.5)

We remark that, if & > 0, the solution H; to (7.6) exists and is unique for a non isolated
fracture even if we set Neumann boundary conditions on the whole JF;.

We can now define the differentiable functional J : ¢/ — R as

JU)=>_J°U)

Ses
=3 (Iefmuy) - CHy )| 26
Ses
HIUF — ah LCSH(U) + U — aA&éCij(Uj)HZS>
1
PP I ((E R ACART T UM
i€l SES;

HIUF — ah, LCSH(U) + U — aA&éCij(Uj)HZS>
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1
= 52 I Sgsi (CPH (U= C7 Hy(U)) |5,/

icl
1 S -1 S S 2
+§; i+ JL U7~ an i T (CEH(U) + CTH(U) I (36)

where quantity [Igeg, (CZSHZ(U,) + C]-SHj(Uj)> denotes the tuple of functions
<C’ZSHZ(UZ) iC’ij(Uj)> with S € S;, and 4,5 € Is. Moreover Hy(Uy) denotes the
solution of (7.6) corresponding to the control variable Uy, £ =i, .

Proposition 3.1. Setting (% = Hfé(S) and letting C? € ﬁ(Vi,H% (S)) be the trace
operator, there exists a unique control variable U vanishing the functional J(U) and a
corresponding unique solution H satisfying problems (7.6) Vi € T that is solution to
(7.1)-(7.3).

Proof. We sketch very briefly the proof as it follows from classical arguments. Resorting
to the classical formulation of the problem on sub-fractures as recalled in 7], it can be
proven that exists a unique solution H € VP for the hydraulic head on the DFN
satisfying (7.1), Vi € J, and (7.2), (7.3), Vm € 9, that are trivially equivalent to (7.6),
Vi € J, and to

Hjs,, — Hjs,, =0, Uf —aH;, + U} —aHj =0, fori,j€Is,, Yme M. (3.7)

|s

As in [7], since the vanishing of the two terms of the functional J is equivalent to the

imposition of the matching conditions (3.7), the thesis follows. U

Based on previous discussion, problems (7.6) coupled with (3.7) are replaced by the

following optimization problem:
min J(U) subject to (7.6), Vi € J. (3.8)
In the following result we state optimality conditions for (3.8).

Proposition 3.2. The optimal control U € Y satisfying (3.8) is given by the system of
conditions (7.6) and

* S S S —
Bi*P; + Ays: (Ui + SIET& U; ) — aslg& (CPH(U;) + C7H;(U;)) =0, (3.9)
Vi € 3, where the functions P; € V; are the solution of equation

2 ST (T ST (T _ Sk A S i
+a Sle_{si (CPHi(U;) + Cj HJ(U]))} aC; <UZ + Sle_!si U; ) , in F; (3.10)
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i which homogeneus Dirichlet and Neumann boundary conditions on I';p and I';y,

respectively, are prescribed.

Proof. Let us differentiate the cost functional with respect to the control variable Uj;:

T(U) i = U) = > I (U) (v — Uy)
SES;
=2 {(Cin(Ui) — CF H;(Uy), CF (Hi(vi) — Hy(Uy)))
SES;:
+ (Uf +US — ol MCEH (UY) + CFH(U)), of — US

us’

—aA&é(CZSHi(Uz‘) - CzSHi(Ui)))us}

=2 <C@-*AM§ S (G Hy(U3) = CF H;(U), Hi(vi) — Hi(UZ-)>
631 ‘/il"/i

49 <Au5i Slggz(UZS + U]S — OzA&é(C{SH@(Uz) + CJSH]'(UJ‘)),U@' - Ui>u$" LS

~20(C7 I (UF + U5 — ad (CORU) + CTH(U). Hy(w) — HLU))
2 (AP, A7 By — Uy))

‘/1‘,7‘/1'

+2 <Ausi SH (UF + U7 = ah §(CYH(Uy) + CF Hy(U)), vi — Ui>
€Si usi’ ySi

Thus, the vanishing of this last term yields (3.9). O

Instead of solving equations (7.6), (3.9), (7.9), we set up a minimization process for
problem (3.8). This is organized in such a way that only the decoupled solution of the
local problems (7.6) is needed. Here we use the Fletcher and Reeves conjugate gradient
method [16]. Let us denote by V.J(U;) the Frechet derivative of the functional J with
respect to the control variables on the fracture F;, Vi € J, and by V.J(U) the whole
derivative:

VJU;) = B*Pi+Ays Sgg.(UiS +UP —ah §(CPH(U;) + CF Hy(Uy),  (3.11)

VJU) = I;IIVJ(UZ-). (3.12)

The method used is depicted in the following algorithm.
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Algorithm 3.1.

1. Set k = 0 and initial guess for control variable U?;

2. find HY = H(U") solving on each fracture the primal problem (7.6);
3. find P(U°) solving on each fracture the dual problem (7.9);

4. evaluate VJ(U) by equation (7.11);

5. set (0U)" = —A,'VJ(U);

6. While J(U*) # 0 do:

6.1. choose a step-size A¥ along direction (6U)";

6.2. set UFHT = Uk 4+ AR (5U)F;

6.3. Vi € J solve primal problem (7.6) to find H;(U**+1);
6.4. Vi € J solve dual problem (7.9) to find P;(U**1);
6.5. evaluate VJ(U*1) by (7.11);

66, set B = VIS 2, /[VIUN)E:

6.7. set (SU)M = —A 'V I (URY) + prtLsUY,

6.8. k=Fk+1;

end do.

Let us evaluate the optimal step-size A which can be used in the previous algorithm
at steps 6.1-6.2. Given a variation dU; for the control variable on each fracture F; and
0U =3 ey 0U;, let 6H; € Vi, Vi € J, be defined as the solution of the problem
corresponding to homogeneous Dirichlet and Neumann boundary conditions on I';p (if
non-empty) and I';, respectively.

Proposition 3.3. Let us increment the control variable U of a step A\SU, the optimal

step-size \ is

A=—(VJ(U),0U),,, {Z (ICP6H; — CF6H;j|sr + 16U + U7 | |2
Ses

-1
+0?||CPSH; + CF0H; | 50) — 200> <SIEIS (6U7 +0US), AL, CiaHi)u& } (3.14)
— :

i
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Proof. We have

J(U +XoU) = > _||CPH(Us) — CF Hy(Uy) + MCP6H; — CJ6H;)|[2 o0
Ses
+ Y UT + U — ad S(CPH(Uy) + CF Hy(U;))
SeS

FABUS +8UF — A L(CF6H; + CE6H,))||3s

) +223 ((CZSHi(UZ-) —~ CSH,(U;), CSH;) o0

i€l SES;
+ (UF + U5 = ab HCEH(U) + CF H,(U),8UF)

—a (Ug +UP —ah §(CPH(U;) + CF Hy(Uy)), AuéC%Hz-)uS)

—22 Y Y (5Uf + U ,Aa;cfmi)

Z/{S
iel SeS;
A7) (||055Hi — CJSH;|[ 0 + 116U + U7 |Iys + o®[|CF 6 H; + cf(sHjHZS,)
Ses

Moreover,

J(U + AU) = J(U) +2X%a ) <SIEIS (0U +6U?), AuéCiéHi>
A 7 uS

= (||cf5HZ- — CPSH,||? o + 16U + 6UP (|75 + o?||CF 6 H; + cf(sHjH;S,)

Ses
= SH.(U) — CSH.(U,). C:6H,
=2)\) <<s€& (CY Hy(U;) — Cj H](UJ),CZ(SHZ>MS/
el
+ <S£[ (U7 + U} = al 5 (C7 Hi(Uy) + cij(Uj))),an>
Z Z/{S
S S —1/~S S 1
—a (sgsi(Ul' +U; —al, (C7Hi(U;) + C Hj(Uj))),AuSCi(SHi>uS>
=T ( (eagh JL @m0 - OFHy(0y). 00 )
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=2\ (A} P, AT BidU;),,

il v

S S -1 S S

+2)\Z <Ausi Slg&(Ui +Uj — al L(CPHy(Ui) + CF Hy(U))), 6Ui> o

i€l U= Ui

* S S — S S

=2)\) <Bi P+ Ays, slgsi(Ui +U? — al, (CPH(U;) + CF H;(U;))), 5Ui>us./ .

el i, i

Then, deriving J(\) := J(U + A0U) with respect to A and vanishing this derivative, we
get (3.14). O

3.4 The Extended Finite Element Method in the DFN con-
text

In this section we briefly describe a discretization approach via extended finite ele-
ments for DEN problems that allows us to build the numerical triangulation indepen-
dently of the traces disposition on each fracture. The solution to Problem (7.1) with
matching conditions (7.2)-(7.3) is in general a continuous function with discontinuous
gradient along traces. A numerical solution based on standard Finite Elements (FE)
would require the triangulation to be conforming to the traces, this in turn requiring
a coupling in the meshing process for all the fractures in the system. The Extended
Finite Element Method (XFEM) [2, 15, 9, 3], instead, introduces in the FE approx-
imation spaces additional basis functions, called enrichment basis functions, in order
to reproduce the irregular behaviour of the solution independently of the mesh. For a
detailed description of the XFEM approach we refer the interested reader to the cited
references. Let us first consider for simplicity a single trace S on a fixed fracture F'. Let
V{;em be the standard FE trial and test spaces defined on the elements of a triangula-
tion on F' non conforming to the trace and spanned by Lagrangian basis functions ¢y,
for k ranging in an index set Z. Let ® be a function well approximating the irregular
behaviour of H in a neighbourhood of the trace S. Starting from ® and basis functions
¢r, using the Partition of Unity Method [1], new basis functions are introduced into
the space V{;em, enriching its approximation capabilities. The additional basis functions
are clearly required only in the elements of the triangulation which are intersected by
the trace. In this way the irregular behaviour of the numerical solution is determined

by the enrichment functions introduced, and is independent of the position of elements
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with respect to the trace. The XFEM space is then:

VI = span ({¢n}peg  {06P e s)

where [J C T is the subset of the degrees of freedom involved in the enrichment. Con-

sequently the approximate solution with the XFEM will have the following structure:

hgﬁfem _ thfemgbk + Z alifeméﬁk(ba
keT keJ

zfem

hifam and a,’" are the unknowns related to the standard and enriching basis

where
functions, respectively.
If more traces are present on the fracture F', the approach is simply generalized as

follows: the XFEM space is taken as

V?fam = span ({¢k}kez » Umemty {¢kq>m}ke‘7m>

where the subset of indices M p C M corresponds to the traces on F, and &, and 7,
are the enriching function and the set of enriched nodes relative to m-th trace.

We end briefly recalling how enriching functions are selected in the DFN context,
referring the reader to [13] for more details in general cases and |7, 6] for details in the
DFN simulations. For each fracture F', let S,,, m € Mg be a trace on F. We distinguish
two cases: a) Sy, is entirely crossing the fracture (the trace is hence a so called closed
interface); b) one or more endpoints of S, lie inside F' (open interface). In the case of
closed interfaces, the enriching function ®,, is suitably set as ¥ (%) = ||z — ||, where
T is the projection of & on Sy, (see [3]).

In the case of open interfaces, ®,, is still used for reproducing non-smooth behaviour
on elements intersecting the trace but not containing trace tips. For each trace tip
lying inside F', we also add new enriching functions (see [3|) defined as follows. Let
Om = {31,82} be the set of trace tips of S,,. If s’ lies inside F, we introduce the
enriching functions

0 0 0
TH(x) € {rcosi,r2cos§,\/7_"cos§}, s‘ € om

where 7 is the distance between the current point and trace tip, and 6 is the polar angle
of & with respect to a reference system centred into trace tip with the x-axis aligned to
the trace, and oriented such that the trace lies on the negative side. Tip enrichments

are introduced only on elements containing traces endpoints. Functions ©7;(x) are
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Figure 3.1: Behaviour of trace tip enrichment functions

plotted, from left to right, in Figure 3.1. We remark that the choice of enrichments is
quite arbitrary. The selection here adopted is well suited to describe the nonsmooth
behaviour of the solution around trace tip. Other choices are possible, as well as the use
of a larger number of enrichments around the tip. This latter possibility could improve
the description of the solution, but would increase the overall computational cost.

We refer the reader to [13, 7, 6] for more details about implementation of the XFEM,
which include for example methods to preserve FEM optimal convergence rates and

correctly perform accurate numerical integration of irregular functions.

3.5 Discretization of the constrained optimization problem

Following the paradigm “First optimize then discretize” we now describe the discrete
version of the method introduced in the previous section.

Let us introduce an independent triangulation 7s; on each fracture F;, Vi € J. Let
Vs be the finite dimensional trial and test spaces defined on the elements of 75; and
spanned by Lagrangian basis functions ¢; 5, k € Z; = {1,..., N;}. Let us denote by h;

the discrete approximation of H;, ¢ € J:
N;
hi(x) = Z hikdir(x), Vied.
k=1

The algebraic formulation of the operator A; in equation (7.6) is the usual one:

(Ai)re = / Vo Vi dF; + Z / Pk Pie)y 7,
£ SES; S
where, overloading notation, we denote by A; € RVi*Ni j € 3, also the matrix defining
the discrete algebraic operator. For all S € S, let us fix a finite dimensional subspace of

U® for the discrete approximations uf and u}g of the control variables Uis and U JS . In
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the discrete version of the problem we choose /¥ = L2(S) and thus we can remove the
constraint of disjoint traces made in Section 3.3 (see [7]). Let {¢/% }x—1.... ng be the basis
introduced on the discrete control space on trace S. For application of gradient based
methods, we choose a common arbitrary basis for uf and uf, 1,7 € Ig, not necessarily
depending neither on the mesh on Fj, nor on the mesh on Fj;. So we write

Ng

up =Y upy VeI, SES;.

k=1

For each fracture Fj, we set Ng, = ZSE& Ng as the number of DOFs on traces of Fj.

Given an index i € J and a fracture S € S;, we define matrices BZS € RNixNs ag

(BZS)M - /g¢i,k|s¢fd7-

Matrices BZS, S € S;, are then grouped row-wise to form the matrix B;, which acts on
a column vector u; containing all the Ng, control DOFs corresponding to the traces of
F;, obtained collecting vectors uZS , for S € §;, with the same ordering introduced for the
traces on F; and used in the definition of B;. For each fracture Fj let us introduce vectors
hi € RN h; = (hi1,...,hin,)T, and p; € RN p; = (pi1,...,pin,)T. Furthermore,
we define vectors u € RNT, with N7 = > ic3 Ns;, and h € RNF, with NF' = Y i Vi,
as u = (u{,...uij)T and h = (hrip,...hij)T. The algebraic formulation of the primal
equations (7.6) is then

where ¢; accounts for the term ¢; in (7.6) and for the weak discrete imposition of bound-
ary conditions on the fracture F;. We proceed similarly for the equations (7.9), (7.10) and
(3.13), in which the operators C? and Bj, i € J, are nothing but restriction operators.
We thus obtain the algebraic equations for the definition of the discrete approximations
p; and dh;. Further, given two indices ¢, € J (possibly ¢ = r), we define matrices C’gﬁr
and Cy , as
(C(}S,r)kf = / ¢q,k‘|s¢r,£‘s d, Cor = Z Cc}s:r'
s SES,

The discrete counterpart of equations (7.9) and (3.13) Vi € J are

Aipi = Cz,zhz —Z C@]'h]' — OZ[BZUZ —{—Z BjUj — Oé(CZ,ZhZ —{—Z Ci,jhj)]a (316)
JjeJi Jj€J; Jj€J;
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The discrete gradient of the functional J(U) and the optimal step-size A\ become

V(i) = Py, +ui — ahi(ug)  + Z(ujlsi — ahj(u)) ), (3.18)
JjeJi
VJ(u) = gVJ(ui), (3.19)

A= — Z (VJ(UZ), 5u2)& {—20[ Z((SU@ + 5uj‘si’6hi|5i)3i

1€J 1€J

-1
+> <H5h,~|si = Shy, I, + 118ui + 0ujy |15, + o®[[5h, +5h]~8iu§i)} . (3:20)
i€J

We end this Section with the discrete version of Algorithm 3.1.

Algorithm 3.2.

1

2

. Set k = 0 and initial guess for control variable u’;
. find h° = h(u®) solving on each fracture (7.19);

. find p(u®) solving on each fracture (3.16);

. evaluate V.J(u") by (3.19);

set (0u)’ = —V.J(u);

While(stopping criterion not satisfied)

6.1. compute optimal step-size \¥ along direction (5u)k by (3.20);
6.2. set uFt = uk + X (5u)*;

6.3. Vi € J find h;(uF*t1) by (7.19);

6.4. Vi € J find p;(uFt1) by (3.16);

6.5. evaluate V.J (uF*1);

6.6, set BH — [V (@HH)R/I 9 (b)

6.7. set (6u)F ! = —VJ(uF ) + pRHLsuP

68.  k=k+1:

We notice that, thanks to the minimization approach adopted, only the solution of

many simple problems on the fractures is required, with a small exchange of trace-related

data among them. This algorithm is therefore suitable for massively parallel computers

and

GPU-based computers.
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3.5.1 Stopping criterion

The stopping criterion used in Algorithm 3.2 plays a relevant role for efficiency rea-
sons. In fact, due to the arbitrary intersections of the traces with elements independently
placed on each fracture, the two terms of the functional J do not vanish, in general.

This follows from the fact that on each trace S the discrete functions h;(. and hj\s with

ils
1,j € Ig are piecewise polynomials on different partitions of the trace. As a consequence,
oh

crucial in order to prevent a premature stop of the algorithm far from the minimum of

ilg — 5h]~|s is typically different from zero. Appropriate choice for stopping criteria is
the functional, avoiding at the same time useless iterations when we are already close to
the minimum, when only negligible further reduction of the functional could be achieved
at the expenses of a large number of additional iterations. We will discuss this in the

next Section.

3.6 Numerical Results

In this section we present some numerical experiments aiming at showing the be-
haviour of our algorithm in relation to various stopping criteria and the quality of the
solution obtained. After introducing the DFN problems used for the simulations, and
discussing stopping criteria used in our computations, we analyze the solution obtained

on the most complex DFN configuration investigated.

3.6.1 DFN configurations

A set of four different DFN configurations is considered with an increasing number

of fractures and traces as described in Table 3.1.

Table 3.1: Problems description

DOFs (coarse grid) DOFs (fine grid)

Label | #3 #M| & u h u
Tfract | 7 11 | 1140 163 4007 378
11fract | 11 26 | 2244 337 7172 825

50fract | 50 153 | 13211 2187 42161 5166
100fract | 100 313 | 26512 4637 85900 10978
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In Figure 3.2 we show section on the z — y plane of fracture systems. All fractures
extend, orthogonally to © — y plane, from z = 0 to z = 1, except for fractures in
dashed line that range between z = 0 and z = 0.5. Homogeneous or non-homogeneous
Dirichelet boundary conditions are prescribed on the sides marked with a dark circle or
with a dark rectangle respectively, while homogeneous Neumann conditions are set on

the other edges. Problem formulation is as in equation (7.1), where the transmissivity
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Figure 3.2: DFN configurations, section on x — y plane. Left to right, top to bottom:
7fract, 11fract, 50fract, 100fract. Number is reported for fractures carrying Dirichelet

boundary conditions (squared edge non homogeneous, filled circle homogeneous).

is assumed constant and equal to 1, and the source term is ¢ = 0 on all the fractures.
For the discretization we use first order Lagrangian finite elements and two different
grids: a coarse grid with about 35 elements per unit area and a finer grid with about
100 elements per unit area. The corresponding number of DOFs is reported in Table 3.1.
In all cases we set the parameter o« = 0.5 in the definition of the control variable and

the starting guess for the control variable is u® = 0. For each configuration and grid, we
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Figure 3.3: Zoom of grid for 11fract problem.

Table 3.2: Exit criteria used in simulations

Label Criterion
t1 Rlzjk—Jk_1<t0l1
lo Ro = ||u¥ — uF~Y| < toly

t3 R3 = JE(JF — JF1) < tols

define a reference solution obtained performing a large number of gradient iterations in
order to safely approach the minimum of the functional. As an example, to highlight
the complete non conformity of the mesh to the traces, we show in Figure 3.3 a zoom

of the coarse grid for the DFN problem with eleven fractures.

3.6.2 Stopping criteria

For each problem and grid a large set of simulations is performed, considering the
different stopping criteria described in the following.
In Figure 3.4 and Figure 3.5 we plot, for the various problems considered and for

increasing number of iterations, scaled by the number of problem traces, the distance
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Figure 3.4: Relative distance in H!-norm of solution at different number of iterations,

coarse grid. Right: zoom at lower number of iterations.

in H'-norm between the reference solution and the current solution, relative to the
H'-norm of the reference solution: ||Acyur — Rref|| g1 /|| Pref|l - The reference solution
is obtained on the same grid, performing a very large number of conjugate gradient
iterations. Figure 3.4, on the left, gives an overview on a wide range of iterations for the
coarse grid, while on the right provides a zoom at lower iterations. Figure 3.5 provides
a similar zoom for the finer grid. It should be noticed that the curves show initially a
strong decreasing trend and, after a number of iterations that is few times the number of
problem traces, variations of the solution with respect to the reference solution become
smaller than 1%. Afterwards, the curves become almost flat and a large number of
iterations would be required for negligible improvements in the solution. Therefore, we
can see that the algorithm can provide a solution close to the best solution achievable
within a reasonably small number of iterations, this number being proportional to the
total number of traces in the system, with a proportionality factor in the order of few
units.

As mentioned in Subsection 3.5.1, functional minimum is an unknown value different
from zero. Hence, the choice of a exit criterion able to stop iterations when we are close
enough to the solution, while avoiding useless iterations, is a crucial point. In Table 3.2
we report three possible criteria. Condition ¢ detects small variations in the functional
values. Since the functional descent path can be step-like (see Figure 7.4 for an example),
in order to avoid premature stops, the algorithm is terminated when R < tol; for a fixed
number of subsequent iterations (six, in our computations). Approaching functional

minimum we have that Ry — 0. In Figure 3.7, left, we show the relative distance of
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the computed solution from the reference solution, corresponding to several values of
the tolerance toly. It can be noticed that a value around tol; = 106 provides a good
solution for all the problems considered.

Similarly, condition ¢5 seeks small variations in the control variable. Again, to take
into account possible temporary stagnation during the descent process, iterations are
stopped when R < tols six times subsequently. Also in this case as the functional
approaches its minimum Rs tends to zero. We can see in Figure 3.7, middle, the
behaviour of the solution in relation to the choice of toly. The value tols = 1077
appears to be a good choice.

As a possible alternative, criterion t3 aims at detecting functional minimum, again
avoiding premature stop at large values of the functional due to local stagnation. The
rationale behind this criterion is to avoid stopping the iterates when J* — J*~1 is small
but J* is not small as well. Algorithm is then stopped the first time that R3 < tolz. Also
in this case R3 can be arbitrarily reduced with iterations. We plot solution behaviour
in relation to tols in Figure 3.7, right. We notice that in this case low tolerance values,

around tols = 1078, should be chosen.

3.6.3 DFN system solution

We now show the quality of the numerical solution obtained on the more complex

DFN configuration considered herein. First we show in details the results obtained on



3.6 Numerical Results

95

O 7hact
A 1ifract
O sofract
V_ 100fract

O 7hact
A 1ifract
O sofract
V_ 100fract

1e-8 le7  1es le-5  le-d  1e3 le-2 107 107 10" 10° 10° 107 10°
vl ol
3

Figure 3.7: Relative distance in H'-norm from reference solution for different tolerances
and stopping criteria. Left: condition ¢1; middle: condition to; right: condition t3. Coarse

grid in dashed line, finer grid in solid line.

two of the fractures in the 100fract system: the source fracture 82 and the sink fracture
18 (see Figure 3.2). On the coarse grid, in Figures 3.8 and 3.9, left, we compare the
solution on fracture traces, {hi‘S}Se&-’ i = {18,82}, and the solution on the traces of
intersecting fractures, {h;} with j € J;. We can see a very good agreement between
these values, ensuring the global continuity of the hydraulic head. In the right part
of the same figures, we compare the co-normal derivative of solution on the traces of
the current fracture and on trace-twin fracture (with opposite sign). In these figures
o(h) = [[%]]S. Again, we can observe, as expected, a very good agreement between
these values, ensuring flux conservation.

In Figure 3.10 we show, for the same fractures, the solution on the traces obtained
with four different meshes. Reported results show that, under grid refinement, the
computed solutions are clearly approaching the same values. In Figure 3.11 we plot the
whole solution obtained with the coarse grid on the fractures 82 and 18. In Figures
3.12 and 3.13 we report 3D pictures representing the DFN. The computing meshes are
drawn and the solution is reported on the fractures using a colorbar. The arrows point
the source fracture 93 and the sink fracture 7.

In Figure 3.14, left, the L?-norm of solution against iterations is plotted. The table
of Figure 3.14, right, gives an indication of the conservativity of the method on the
whole network of fractures, as it reports the values of the total fluxes discharged by the

source fractures to the system and the total flux received by the sink fractures from the

system. As expected the data match very well.
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Figure 3.8: Problem 100fract, source fracture 82, coarse grid. Solution on the traces
(left) and co-normal derivative (right) compared with corresponding values computed on

trace-twin fractures.
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Figure 3.9: Problem 100fract, sink fracture 18, coarse grid. Solution on the traces (left)
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Figure 3.10: Solution on the traces of source fracture 82 (left) and sink fracture 18 (right)

for two different grids, 100fract problem.
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problem. Reference system is local. Coarse grid.
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Figure 3.12: Solution on the DFN 100fract. Arrow points source fracture 93.

Figure 3.13: Solution on the DFN 100fract. Arrow points sink fracture 7.
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Figure 3.14: Problem 100fract: L2-norm of solution against iterations (left) and total

fluxes on the source and sink fractures (right).

3.7 Conclusions

Major drawbacks in DFN numerical simulations lie in the definition of a good quality
finite element triangulation and in the huge computational demand. The method intro-
duced in [7, 6] and further developed in the present work provides a possible approach
for circumventing these difficulties. The proposed method allows a fully independent
triangulation on each fracture, thus eliminating any mesh related problem. Further, the
method can be easily implemented on parallel machines, since the DFN simulation is
split in many sub-problems on each fracture that can be solved independently by parallel
processes, with little exchange of trace related data between trace-twin processes.

The contribution of the present work to the method is twofold. We introduce a
new definition of the control variable for the optimal problem in order to eliminate
the requirement of having a non-empty portion of the boundary of each fracture with
Dirichelet boundary condition. We also introduce a conjugate gradient method for the
optimization process in order to speed up convergence. By means of several numerical
results we show that our algorithm provides a good quality solution within a small
number of iterations that increases linearly with the number of traces in the system.
The proportionality factor is in the order of few units for all the problems considered.
The main computational effort in each iteration is devoted to the resolution of the linear
systems on the fractures, that however are independent each other. Assuming that these
linear systems have a comparable dimension, the total cost of each iteration scales as the

number of fractures. Effectiveness of some stopping criteria for the gradient iterations
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is also discussed.

Further developments on the topic should include on one side an investigation of the

scalability of the algorithm using an increasing number of parallel processes on different

parallel architectures, and on another side the analysis of non-stationary problems. In

the non-steady case, in order to reduce the computational effort, the application of

reliable and efficient space-time a posteriori error estimates and adaptive algorithms,

following the approaches of [4, 5], could be fruitful.
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Chapter 4

The eXtended Finite Element
Method for subsurface flow

simulations

Abstract In this paper the application of the extended finite element method (XFEM)
to a novel approach to Discrete Fracture Network (DFN) simulations is fully described.
The proposed DFN simulation approach does not require any conformity of the trian-
gulation at fracture intersections, thus overcoming one of the major limitations in DFN
simulations. Furthermore the initial problem complexity is split in a large number of
quasi-independent simple problems on the fractures that can be easily handled by paral-
lel computers. The use of the XFEM allows a good-quality reproduction of the solution
also at fracture intersections, despite the non conformity of the mesh. The issue of en-
richment function selection is addressed, and suitable simple enrichment functions are
identified in order to keep computational cost as low as possible without compromising
representation capabilities of the enriched space. All the relevant aspects of XFEM
implementation are thoroughly discussed and numerical examples reproducing critical
configuration are provided and commented. Simulations on complex DFN configurations

are also reported in order to show the effectiveness of the method.
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4.1 Introduction

Efficient simulation and investigation of subsurface flow is an up-to-date open re-
search topic: the complexity of the problem and the increasing interest of many applica-
tions, such as analysis of pollutant diffusion in aquifers, oil/gas extraction, gas storage,
make this research issue of great interest. In these applications, the computational do-
main for the simulations consists of underground geological reservoirs, that usually have
huge complex heterogeneous structure and for which only stochastic data are typically
available. Among others, Discrete Fracture Network (DFN) models are widely used for
the simulation. A DFN model describes a geological reservoir as a system of intersect-
ing planar polygons representing the network of fractures in the underground. Fracture
intersections are called fraces. In the present work we consider impervious surrounding
rock matrix, so that no flux exchange occurs with the surrounding medium. The quan-
tity of interest is the flow potential, called hydraulic head, given by the sum of pressure
and elevation. The hydraulic head is ruled by Darcy law in each fracture, with addi-
tional matching conditions which ensure hydraulic head continuity and flux balance at
fracture intersections. Thanks to these matching conditions, hydraulic head is continu-
ous across traces but jumps of gradients may occur as a consequence of flux exchange
between intersecting fractures. Hence, traces are typically interfaces of discontinuities

for the gradient of the solution.

Standard finite element methods or mixed finite elements are widely used for obtain-
ing a numerical solution also in this context, but they require mesh elements to conform
with the traces in order to correctly describe the irregular behaviour of the solution.
This poses a severe limitation, since realistic fracture networks are typically very intri-
cate, with fractures intersecting each other with arbitrary orientation, position, density
and dimension. A conforming meshing process may result infeasible, or might generate
a poor quality mesh, since a coupled meshing process on all the fractures of the system
may lead to elongated elements. The following strategies are mainly suggested in the
literature in order to overcome these difficulties. In some cases mesh and/or geometry
modifications and simplifications are proposed to ease meshing process, as for example in
[12, 8, 17]. Another approach consists in developing methods which allow for a so called
partial nonconformity. For example in [14, 15] mortar methods are used in order to relax
mesh conformity constraints on intersecting fractures, but still requiring that element

edges lie on the traces. A different strategy is used in [4, 5, 6], in which the authors pro-
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pose a PDE-constrained optimization approach in which neither fracture/fracture nor
fracture/trace mesh conformity is required. The method is based on the minimization
of a quadratic functional constrained by the state equations describing the flow on the
fractures. Extended Finite Elements (XFEM) are used in order to enrich the solution
description and correctly reproduce irregularities in the solution.

The XFEM |2, 13, 7, 16, 3| allows the description of irregular solutions regardless
of the position of mesh elements with respect to the irregularity interfaces, so that the
numerical triangulation for DFN simulations can be generated independently on each
fracture, without any kind of matching constraint along the traces, thus circumventing
any problem related to mesh generation. As proved by the numerical results, the be-
haviour of the solution is well reproduced thanks to special enrichment functions that
influence the numerical approximation locally around the traces. Simple, easily inte-
grable enrichment functions should be preferred, in order to limit the number of the
related additional unknowns and the computational cost in general.

In the present work we discuss in full details the application of XFEM to the approach
described in [4, 5, 6]. Suitable enrichment functions for very complex DFNs are proposed.
Furthermore, other issues ensuring an effective implementation of the method are fully
addressed.

The present work is organized as follows: in Section 7.2 the PDE-constrained opti-
mization model for DFN flow simulations is briefly recalled. In Section 4.3 a thorough
description of the XFEM in the DFN context is provided, as well as implementation
choices. In Section 4.4 the numerical solver is depicted. Section 4.5 is devoted to numeri-
cal experiments on test problems and DFNs of increasing complexity, which highlight the

effectiveness of the XFEM in this context. We end with some conclusions in Section 4.6.

4.2 Problem description

Let us consider a DEN (2 given by the union of open planar polygonal sets Fj, with
i=1,...,1, called fractures, and let us denote by 0F; the boundary of F; and by 0 the
set of all the fracture boundaries, 902 = UZ-I:18F,~. We decompose 9€) = I'p UT'y with
I'pNI'y =0, Tp # 0 being I'p the Dirichelet boundary and I' 5 the Neumann boundary.
Similarly, the boundary of each fracture is divided in a Dirichelet part I';p = I'p N IF;
and a Neumann part I';y = 'y NOF}, hence OF; = I';p UT;n, with T;pNI';y = 0. Note

that I';p = () is allowed whenever OF; N\I'p = (). Fractures have arbitrary orientations in
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space, so that € is a 3D domain. Traces are denoted by S,,, m = 1,..., M; S denotes
the set of all the traces of the system, and S;, for ¢ = 1,..., I, denotes the subset of S
corresponding to traces belonging to F;. Each S, uniquely identifies a couple of indices
Is,, = {i,j}, such that S,, C F; N F}.

According to Darcy law, the hydraulic head H in € is given by a system of equations
on each fracture, defined as follows. For the sake of simplicity of notation, in this
section let us assume that traces are non-intersecting. We remark that the numerical
method described in the following is not affected by this assumption. Let H; denote the
restriction of the solution H to fracture F; and let K; be a symmetric and uniformly
positive definite tensor (the fracture transmissivity). Let us introduce for each fracture

the following functional spaces:
V= H%)(Fl) = {’U S Hl(E) : ’UIF_D = 0} s

and

VP =ih(R) = {ve H'(F) —iP}.

: U‘F«;D

Then H; satisfies, for ¢ = 1,...,1, the following problem: find H; € ViD such that
Yv eV

[N

2 (ron ), H2 (i)

/ K; VH,VvdQ = / qudQ+ (G v ) 1
F; £ S™H
OH;

* Z<H@ﬁgﬂs’v|S>H‘%(s),H%(s)’ (4-1)

Ses;

0H;
ot

where g; denotes a source term on F; and the symbol represents the outward co-

normal derivative of the hydraulic head:

OH,

0H;
a0,
normal derivative along the unique normal 7 fixed for the trace S on F;, and represents

the flux incoming into the fracture F; through the trace S. Functions HY € H3 (T';p) and

with n; outward normal to the boundary I';y, and [[ ]‘S denotes the jump of the co-

GN e Hz (I';n) are given and prescribe Dirichelet and Neumann boundary conditions
respectively on the boundary JF;.
Equations (4.1) for ¢ = 1,...,I are coupled with the following additional matching
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conditions imposing hydraulic head continuity and flux balance across the traces:

Hi|Sm_Hj|Sm = 0, for i,j GISm, Ym=1,..M, (42)

H; 0H, .
aAi + Aj] = 0, fori,5 €Ig,,. (4.3)
ovg s, ovg S

Following the method described in [4, 5, 6], instead of solving the coupled system of

equations (4.1)-(4.3), the solution is obtained solving a PDE constrained optimization
problem.

For each trace in each fracture let us introduce the control variables UiS ey =
H*%(S), defined as UiS = aH; + Hg%]]s’ where « is a fixed positive parameter.
Equation (4.1), prescribed on the fractures, can be equivalently restated as:

/ K; VH;VvdQ +a » / Hy v 4dl = (4.4)

SES;

/FI q;vdS) + <Gz ,U‘S>H 1 (F N % S;S ’U|S usus'

Let us define /St = H-: (S;) and let R; denote the operator providing lifting of the
Dirichlet boundary conditions on I';p, if not empty. Let us consider the following linear

bounded operators:
A € LVAVY), (AHY )iy, = (Ki VH?, Vo) + a <H?|Si,v‘si) .

Af) S E(V’iD7‘/i,)7 <A2D Ri H’iD7U>VZ~',V¢ = (KZ VR H1D7vv) +a <(RZ )|S 7U‘Si>$‘ )

By € E(US’V;‘,)’ <BzSUz‘S’v>V/,Vi = <Uzs’v\s>u37u5’a

B; = Sgg. Bf € E(uSi’ V:i/)? <BZUZ’ U>Vi',Vi = <UZ’ U‘Si >u$i7u8i”

with HlQ e Vi, HZ-D € VZ-D, v € Vi, and U; € Y5 is the tuple of control variables
UiS for S € S;. Analogously, U € /S denotes the tuple of control variables U; for

1= ., I. The dual operator of A; is denoted by Af € £(V;,V/). The operator
By € £( (Fl ~), V) imposing Neumann boundary conditions is defined such that
0H;

(BinGY, o)y v, = (G

1

FiN>H—§

1

(Fz‘N)vH%(Fz‘N) B <a’91“uv 7U‘FW>H_§(F2N H%(Fuv).

).
With these definitions at hand, problems (4.1) are rewritten as: Vi = 1,...,I, find
H; € VP with H; = H? + R; HP and H? € V;, such that

AH? = g + BiU; + BinGY — AP R, HP | in F,. (4.5)
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We remark that, if o > 0, for a given U;, the solution H; to (4.5) exists and is unique
for a non isolated fracture even if we set Neumann boundary conditions on the whole
OF;.

Now let us introduce the functional

M
2
J(H,U) = Z HHi\sm - Hj\sm ‘H%(S)
m=1
M 2
Sm Sm
+3 HU +US —a (Hy,, + Hy,)) HH_%(S) . (4.6)
m=1

The functional J is quadratic and using the same arguments as in [4], it can be shown
that its unique minimum is obtained for values of H and of the control functions U that
correspond to the fulfilment of conditions (4.2) and (4.3) on the traces. In other words,

the solution of the problem
min.J subject to (4.5) (4.7)

corresponds to the solution of the coupled system of equations (4.1)-(4.3).

4.3 The XFEM for DFN simulations

According to the approach depicted in the previous section, matching conditions
along traces are not exactly imposed but they are made as small as possible via an
optimization approach. Only local problems on fractures (i.e. problems (4.5)) are in-
dependently solved. As a consequence, meshes on the fractures are neither required to
conform to each other, nor to conform to the traces. Clearly, the finer the grid, the
smaller is the global mismatch provided by J. In order to provide a better description
of the solution also near traces, which represent possible nonsmoothness interfaces, the
XFEM turns out to be a convenient approach.

The XFEM can reproduce irregular solutions by means of custom enrichment func-
tions that are added to the trial and test functional spaces of standard finite elements,
in order to give the required behaviour to the numerical approximation, independently
of the position of mesh elements with respect to the interfaces. A key point of our
approach is that we a priori know that the solution displays derivative discontinuities
at the traces: the solution is in general a continuous function with discontinuous normal

derivatives across the traces due to the term representing flux jump. Standard finite
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Figure 4.1: Example of a conforming mesh with three traces intersecting with a small angle.
S ZFl QFQ, So :F_QQFE;, S :F3QF_1.

element methods reproduce this behaviour only if mesh element edges lie on the traces,
thus requiring the simultaneous conforming triangulation of all the fractures in the sys-
tem. As discussed, this process often results infeasible for DFNs of realistic size and
geometry, or might lead to meshes of poor quality due to the presence of elongated ele-
ments trapped between intersecting traces. This situation is described in Figure 4.1 for
a simple DFEN composed by three fractures and three intersecting traces with a conform-
ing mesh. Due to the reciprocal position of traces, the coloured element could display
a very small angle. This problem can be overcome by the use of XFEM; an example of
non-conforming mesh suitable for our approach is displayed in Figure 4.2.

In the following of this section, we fully account for details concerning use of XFEM,
such as selection of enrichment functions for DFN problems and implementation strate-
gies adopted for this specific application of the XFEM. Before proceeding, we briefly
recall some key points concerning XFEM in the context of DFN simulations.

Let us consider a standard finite element description of the hydraulic head in a
given fracture F' C R?, with a local reference system &, and Mp traces S,,, m =
1,..., Mp. Here and in the sequel of the paper, we use lowercase letters h, u for finite
element approximations of the corresponding quantities H and U. Let us introduce a
triangulation 75 of F', with N¢ elements 7, C R? such that F' = Ui<e<ne Te- Let V{;em
be the standard finite element trial and test space defined on the elements of 75 and
spanned by Lagrangian basis functions ¢ compactly supported with support A, with
k € T set of degrees of freedom (DOF). We remark that discontinuities of the gradient

of the solution h occur at traces, which are always segments. If elements of 75 are
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conforming to the traces, the solution is given by

W (&) = b (@

keT
where hy, is the degree of freedom corresponding to ¢x. In the more general case in which
we allow elements to be non-conforming to traces, we use our a-priori knowledge on the
irregularity of the solution, and use the XFEM on the non-conforming grid, introducing,
for each trace S,,, a global enrichment function ®,, that well matches the behaviour of
the solution across the trace (see for example Figure 4.3). Additional basis functions,
called local enrichment functions are generated from functions ®,, by means of the
Partition of Unity Method [1] on the partition of unity given by the standard Lagrange
basis functions ¢ on the triangulation 75. The numerical approximation given by the

XFEM is built on the enriched functional space sz e

VzSIfem = Span ({¢k}k61 > {¢k¢1}kej1 e {¢kq>MF}k€~7MF> ’

and has the following structure:

Wt (@) = 3" R (@) + Z D7 TG () P (), (4.8)

kEI m=1 k‘ejm

where h,ﬁfem are the unknowns related to standard finite element basis functions and
ﬁiff;n are the DOFs of the enrichment basis functions related to the m-th trace. The
set Jm C T collects the active DOFs for the m-th enrichment (called enriched DOFs).
By properly choosing 7,,,, we can control locality of the enrichments. Indeed, each local
enrichment function ¢ ®,, has compact support equal to the support of ¢, Ay, and, as
a consequence, the region A,, of the domain subject to the enrichment ®,,, is determined
by the set of active standard FE DOFs: A,, = {Ukejm Ak}.

In the remaining of this Section, we focus on three major issues concerning the use
of XFEM in the context of DFN simulation: (i) enrichment function choice, (ii) preser-
vation of optimal convergence rates, and (iii) ill conditioning prevention. To simplify
the notation, also in the sequel our discussion refers to a single fracture plane F' with
Mp traces. We remark that all considerations are independent of the number of frac-
tures in the DFN, being the discretization of the governing equations on each fracture
independent from the others. Our discussion is also independent of possible traces in-
tersections, as thanks to additivity property highlighted by (4.8), no special enrichment

is considered for traces intersection (see the next Subsection 4.3.1).
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Figure 4.2: Example of DFN with a nonconforming mesh (left). Zoom of mesh detail on
the right.

4.3.1 Selection of enrichment functions

Enrichment function selection is a key issue for XFEM implementation, and it is ruled
by the kind of irregular behaviour to be reproduced and by the nature of the interfaces
(see [10] for a comprehensive review). In the context of DFN models concerning the first
point we have to face continuous solutions with discontinuous derivatives; going to the
second point, irregularity interfaces are usually classified as closed or open interfaces:
closed interfaces extend throughout the whole computational domain, whereas open
interfaces end and/or begin inside the domain. In DFN models traces can be arbitrarily
placed inside the fractures, thus originating open and closed interfaces which might have
multiple intersections among each other.

In addition to this geometrical complexity, since the number of interfaces may be large,
a high number of enrichment unknowns could be required. As a consequence, in order to
mitigate complexity of the enriched space, we choose a rather simple enriching function,

given by the distance function:

O (£) = d(&,Sm)  Vm=1,..., Mp, (4.9)

where, following standard notation, d(z,S) denotes the distance of point x from the
set S. Setting J,, = {k € Z: AN S,, # 0}, the influence of each global enrichment is
limited to the elements with a non-empty intersection with the trace. This choice can
strongly reduce the number of DOFs if compared with [5, 6], where more enrichment
functions are used for the tips of the traces. The typical behaviour of functions (4.9) is
shown in Figure 4.3, and they are used for both open and closed interfaces, thus keeping

as low as possible the number of required enrichments (and consequently the number
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18

Figure 4.3: Example of global enrichment function ®,,.

of unknowns), but still giving a good approximation of the behaviour of the solution
around traces, as shown in the numerical examples of Section 4.5.

The gradient of the enrichment functions has a discontinuous component normal to
the trace, and therefore special care is needed for the numerical integration. To this aim,
mesh elements crossed by traces are divided in sub-elements, in such a way that only
sub-elements edges or vertices lie on the traces (see for example Figure 4.6, right). Low
order Gaussian formulae are then used on the sub-elements without loss of accuracy,
thanks to the simple structure of the enrichment functions, and with a moderate number
of function evaluations. This point is of paramount importance in order to limit the
computational cost when a large number of traces is considered.

We remark that no specific enrichment functions are required in the case of inter-
secting traces, since the enrichments enjoy an additivity property, as emphasized by the
structure of (4.8). The linear combination of the enrichments (4.3) introduced for each
intersecting trace is sufficient to approximate the irregular behaviour of the solution.
Figure 4.4 shows a linear combination of functions (4.3) for two intersecting traces with
triangular first order finite elements. This simple example shows that it is possible to
reproduce a solution which is continuous across the traces (Figure 4.4) but with a differ-
ent value of the normal component of the gradient in each of the four regions separated

by the traces.
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Figure 4.4: Example of approximated solution on the reference triangle for two crossing

traces and first order basis functions.

4.3.2 Convergence rates

As previously discussed, for each global enrichment ®,,, a set of additional enrichment
basis functions is generated and correspondingly some DOFs are added. Mesh elements
might therefore have a variable number of DOFs, depending on the number of enriched
DOFs and additional basis functions hosted. Hence, mesh elements are classified as
follows: 1) standard elements, if no enrichment acts on the element; 2) reproducing
elements, if the full set of DOFs is enriched with a given enrichment ®,,; 3) blending
elements, if only some DOFs are enriched with a given function ®,, [9]. Figure 4.5
depicts this classification in the case of a single trace with first order triangular elements.
Note that each mesh element can be involved by several enrichments, and it can be of
different type in relation to different enrichment functions. The behaviour of enrichment
function ®,, can be correctly reproduced only in reproducing elements, where the whole
set of enrichment basis functions is available, whereas in blending elements only a partial
reconstruction of ®,, is possible, and spurious terms are generated which might affect
the optimal convergence rates expected for standard finite elements of the same order.
At the same time, blending elements, sharing the DOFs of neighbouring reproducing
elements preserve the continuity of the numerical solution.

In order to restore optimal convergence rates, a modified version of the XFEM is
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Figure 4.5: Classification of mesh elements.

adopted, as suggested in [9]. The global enrichment functions ®,, are replaced by
functions ®,, R,, where R,, = Zke T ¢r. and is called ramp function. The set of active
DOFs, J,,, is replaced by the set J,, = {k: ET:ALNA, # (D}. With these choices,
elements formerly classified as blending elements, become reproducing elements for the
modified enrichment functions ®,,, R,,, thus avoiding spurious terms, and thanks to the
structure of ramp functions the continuity of the solution is preserved.

It is also beneficial to introduce a shifting of the enrichment basis functions to restore
the Lagrangian property to the discrete functional space. The XFEM test and trial space

is then:

kejl’”"

V5T = span ({gbk}kg, {on (1R — @13 RLEY)) |
{¢k <‘I>MFRMF — Py (&%) Ry (56'“)> }kejM ) :

where 2% is the node such that ¢ (2%) = 1.

4.3.3 11l conditioning prevention

The XFEM stiffness matrix (here and in the following denoted by A) might result
ill conditioned or even singular due to the presence of redundant basis functions in the

enriched functional space V(;”f “"_ When two (or more) parallel traces are present in the
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same mesh element, the local enrichment functions are generated starting from global
functions that differ only for a translation. This translation, besides being necessary
in order to reproduce the behaviour of the solution, is also enough to provide linear
independence of enrichment functions in the mesh element under consideration. On
the other hand, linear dependencies in the local enrichment functions of neighbouring
elements can arise. Almost parallel traces may also result in a ill-conditioned stiffness
matrix, or even numerically sigular. Preventive detection of redundant basis functions,
which is a typical choice in some cases [9], is infeasible in this context due to the complex
geometrical configuration of realistic DFNs. For this reason, we adopt here a different
approach which consists in detecting (almost) linearly dependent rows and columns in
A after having assembled the matrix on each fracture. This is done operating a rank
revealing QR-factorization of A (see for example [11]), exploiting the special structure
of the stiffness matrix. Indeed, while referring the reader to the Appendix for details,
we briefly mention here that the matrix A is a block diagonal matrix, being the A; block
given by the stiffness matrix built on fracture F;. Therefore, the QR factorization is
actually independently computed for each diagonal block, and since on each fracture
we have a moderate amount of DOFs, the cost for computing the QR factorizations
is acceptable. After having computed the rank revealing QR factorization for each
diagonal block, i.e. A; = Q;R;, with diagonal entries of the upper triangular matrix R;
in descending order with respect to their absolute value, we neglect rows and columns
corresponding to diagonal entries with modulus lower than a given tolerance. Factors
Q; and R; are then used in the resolution of the linear systems. In order to reduce
computational cost, this procedure is performed only for fractures with parallel traces
far from each other less than maximum element diameter, since the detection of parallel

traces and computation of their distance is a cheap task.

4.4 Solution of the optimization problem

As shown in Section 7.2, the problem has been reformulated as a PDE-constrained
optimization problem (see equation (7.7)) in which the quadratic functional J has to be
minimized subject to linear constraints. In this section, following a first-discretize-then-
optimize approach, we give some details about the numerical approach for computing a
solution to the problem.

While referring the reader to the Appendix for all the details, we just sketch here
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the structure of the finite dimensional optimization problem to be solved.

Let us introduce a finite dimensional basis on each fracture F; and on each trace
S, with a total number of N*" DOFs on fractures and N7 DOFs on traces. Referring
to equation (4.6), we write the discrete functional in terms of L2 norms instead of H 2
and H2 norms on the set of traces. With suitable definitions, given in the Appendix,

the functional J is written
1 1
J(h,u) = §hTth — ah? Bu + §uTGuu, (4.10)

where GI € RN"*N F, Gt € RV'XNT are symmetric positive semidefinite sparse ma-
trices, B € RNTXNT g a sparse matrix, and vectors h € RN and u € RY" collect
all DOFs for the hydraulic head on fractures and for the control variable on traces,

respectively. The constraints are written
Ah — Bu = q, (4.11)

where A € RV™XN" ig the stiffness matrix, B € RNTXNT g o sparse matrix, and
qg € RV “ is a vector which accounts for possible source terms and boundary condi-
tions. The problem under consideration is therefore the equality constrained quadratic
programming problem

min J(h,u) subject to (7.21) (4.12)

The first order optimality conditions for problem (7.20) are the following:

G —aB AT h 0
—aBT G+ -—pBT w | =10 (4.13)
A -B 0 —p q

being p the vector of Lagrange multipliers.

The previous saddle point problem is known to be a symmetric indefinite system.
Note that it is a very large scale problem, with highly sparse blocks, as A, G* are block
diagonal matrices, G", B and B are block-sparse.

By (formally) using the linear constraint for eliminating the unknown h as
h=A"YBu+q), (4.14)
we obtain the following equivalent unconstrained problem :
min j(u) = %UT(BT ATGMA B+GY —aBT A TB —aBTA™! Bu
+¢" AT (G" A7 B—aB)u.
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For further convenience we rewrite J(u) = %uTéu +¢"u. A gradient-based method for

the minimization of the functional requires the computation of the gradient of J:

Viw) = (B"ATG"A B+G" —a(B" ATB+ B A B))u +
(BT A7TGh — aBT)A Y.

The gradient can be written in terms of some auxiliary variables as follows. Rear-

ranging previous expression, we obtain
VJu) =BT ATG"A Y (Bu+q)+ G*u—aB" A~TBu— aBTA Y (Bu + q)
and recalling (7.23), one has
VJu) =BT ATG"h + G*u — a BT A~TBu — aB”h.
Now set p := A~T(G"h — aBu), i.e. given h and u, p solves
ATp = G"h — aBu. (4.15)

We have

VJ(u) =BT p+ G — aBTh. (4.16)

Note that setting to zero previous expression for obtaining stationary points for J (u),
and collecting such equation together with (7.23) and (7.24), we obtain system (4.13).

Concerning the numerical solution of the otimization problem, we mention here two
possible approaches. The first one consists in solving the linear system (4.13). An
iterative solver is clearly a recommended choice, and symmlq would be a suitable choice;
this approach has been used in [5]. An other approach consists in applying an iterative
solver to the minimization of .J (u). We focus here on this second approach, sketching
the conjugate gradient method applied to the minimization of .J (u). In the algorithm,

let us denote by gi the gradient V.J (ug) at step k and by dj, the direction of movement.

Conjugate gradient method

1. Choose an initial guess u°

2. Compute hg and pg solving (7.23) and (7.24) and go by (7.25)

3. Set do = —4o, k=0
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4. While g # 0

4.1. Compute A\ with a line search along dj
4.2. Compute ug1 = ug + A\pdg
4.3. Update g1 = g1 + Ne G,

QT 9k+1
4.4. Compute B = k;k%igk
4.5. Update dx+1 = —gr+1 + Br+1dk

46. k=k+1
Due to linearity, Step 4.3 is equivalent to compute g1 = GukH + ¢. Indeed,
Jk+1 = éuk—l—l +q = @(uk + M\edi) + ¢ = @uk +q+ )\kédk =0+ )\kédk.

Nonetheless, we remark that this step is clearly performed without forming matrix G,

but rather computing vector y = Gd, through the following steps:
1. Solve At = Bd;
2. Solve ATv = GM" — aBdy,
3. Compute y;, = BT v+ G*dj, — aB”t.

Furthermore, since J is quadratic, the stepsize A\ in Step 4.1 can be computed via
an exact line search. Given a descent direction dj, we compute A; such that it minimizes
the function ¢(\) := J(ug + Ady). Straightforward computations show that one has

_ dig
dr Gy,

E= (4.17)
The stepsize A\ is therefore computed without much effort, as quantity Gdy, is the same
needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of
the linear systems with coefficient matrix A (which actually equals A”). Nevertheless,
we recall that matrix A is actually symmetric positive definite, block diagonal with each
block defined on a fracture (see the Appendix). The systems are therefore decomposed in
as many small “local” systems as the number of fractures. Right-hand-sides of the local
systems gather information both from the current fracture, and from the intersecting
fractures, which typically are in a moderate number. Hence, these independent linear

systems can be efficiently solved on parallel computers.
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4.5 Numerical results

Some numerical results are now provided to show the effectiveness of XFEM imple-
mentation in the context of DFN simulations. All numerical simulations are performed
with first order finite elements on triangular meshes. The presentation is organized as
follows: two test problems are introduced, in order to highlight the performances of
the enrichment functions and the convergence properties of the adopted XFEM; then, a
simple DFN configuration with a critical geometrical configuration is used for discussing

ill-conditioning issues; finally, the solution of a complex DFN configuration is shown.

4.5.1 Test problems

The first two test cases aim at showing the effectiveness of XFEM implementation
in representing irregular solution on each fracture of a given DFN, therefore, a single
problem of the form (4.1) is solved on a sample fracture, using the known exact value of
fluxes on the traces. Results obtained with the full algorithm described in Section 4.4
are presented afterwards.

The domain of the first problem (TP1) is a single rectangular fracture Fy C R?, with
two traces S7 and Ss, defined by:

Fy={(z,y) eR?:2 € (0,3),y € (0,1)}
S1:{(x,y)€R2:x—y—1:0} SQ:{X€R2:2—x—y:O}7
and § = S1USs. The domain is shown in Figure 4.6 where a coarse mesh with parameter

Omaz = 0.25 is also plotted. Here and in the sequel the mesh parameter corresponds to

the square root average area of the mesh elements. The problem is set as follows:

~AH; = —AH® Q\ s,

Hy =0 on OF},

Ui = fs, on S1,

U = [s, on Sy,

with

zy(y — 1)(xz —y — 1)(x+y —2)|A2]/(4c1) in Ay,
HE (2, y) = I-ylz-y-DE+y-2) ?n Ay,
y@—y—-1)@+y-2) in As,

y(I =)z =3)(x —y = )(z +y —2)[43]/(4c2) In Ay,
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Figure 4.6: Problem TP1. Domain with coarse grid .. = 0.25. Right: a detail of

sub-elements division.

where Ay, Ay, A3 and A4 denote the four regions in which Fj is divided by the traces,

as indicated in Figure 4.6, and c¢; and ¢y are two constants used to rescale the solution.

We set fg, = [ngz}]s and fs, = [{BH?]]S. We set ¢y = 7 and ¢ = 5 and being
1

s,
|As| = |Ag| = 1/4 we have

1/(7v2)(2 — 2 — y) (7T — 2(6 + ) + 20y
fo (z.y) = —i—2x(1+x)y—5xy2+y3) r+y—2<0
a 1/(5v2)(2 — 2 —y) (=8 + y(1 + y) (11 + y)
+2? (=14 2y) — z(1 + y(4 4 5y))) r+y—2>0,
and
1/(5v2) (=1 + 2 —y) (=16 — (=10 + z)x + 38y
fou (1) = +2(=7+ z)zy + 5(=3 + z)y* + y?) y—x+1<0
s 1/(TV2)(-1+ 2 —y) (—28 + 2%(—1 + 2y)

+y(23+ (=3+y)y) + (9 + y(—8 + 5y))) y—ax+1>0.

In Figure 4.6, right, a detail of traces intersection is given: in particular, for the element
containing the intersection, the sub-elements introduced for quadrature are shown. Fig-
ure 4.7 reports the analytical solution, while Figure 4.8 displays the numerical solution
on a fine mesh with parameter §,,,, = 0.1. On elements cut by the traces, the solution is
represented using the same sub-elements introduced for quadrature. We can notice that
the irregular trend across traces is well reproduced, without requiring any conformity

between mesh elements and traces.
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Figure 4.8: Problem TP1. Numerical solu-
Figure 4.7: Problem TP1. Exact solution. tion with XFEM on the mesh with 0,4, =
0.1.

We consider now a modified version of TP1, problem TP1-X7, in which the angle
underlying the intersecting traces is rather small (7° instead of 90°). This is a potentially
critical situation. The configuration is shown in Figure 4.9. The two problems, original
TP1 and TP1-X7, are solved both with the XFEM on nonconforming grids and standard
finite elements on conforming grids. Figure 4.10 shows the L? and H'-error norms
against grid refinement, with grid parameters ranging from 9,4 = 0.32 t0 d;q = 0.025.
In the original TP1 problem (curves labelled X90° in Figure 4.10), the behaviour of
XFEM and FEM is comparable, with convergence orders that approach the optimal
values for both H' and L? error norms. When the angle between traces reduces (curves
X7°), the performance of standard finite elements in H'! norm deteriorates, while it
remains unaffected for the XFEM. This is an expected behaviour and is a consequence

of the poor quality of the conforming mesh for standard finite elements.

The second test problem (TP2) considers a trace ending inside the fracture, i.e.
an open interface. This test problem has been considered also in [5] with different
tip enriching functions, in order to analyze behavior of the solution close to an open
interface. Here again we want to show quality of the solution but with the different
enrichment functions here adopted, as now the same enrichment function (4.3) is used
to describe the behaviour of the solution close to trace tips and away from trace tips.

Furthermore, for each trace tip, just one enrichment function is used here instead of
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three as in [5, 6]. Let us define the domain F, as
B={(zyeR:-1<r<l -1<y<l, =0},

with a single trace S = {(m, y)eR?:y=0and —1<z< 0} thus ending in the inte-

rior of Fy. We introduce the function H§*(z,y) in Fy as:

HS (z,y) = (2% — 1)(y* — 1)(z% + %) cos (% arctan2(x,y)>

where arctan2(z,y) is the four-quadrant inverse tangent, giving the angle between the
positive z-axis and point (x,y), and differs from the usual one-argument inverse tangent
arctan(-) for placing the angle in the correct quadrant. The function Hj is the solution

of the system:

“AHy = -AHE  inQ\S,

H2 =0 on 6F2,

3

U=z—z on S,

where U is the exact value of the jump of fluxes across the trace S. In Figure 7.6 we
report the numerical solution obtained with the XFEM on a nonconforming grid with
Omax = 0.1, while in Figure 4.12 error norms for the numerical solution are shown both
with the XFEM and with standard finite elements on conforming grids. The curves are
perfectly overlapped and convergence orders reported in the figure are optimal, thus

proving good approximation capabilities for the chosen enrichments.

4.5.2 DFN problems

We now show some numerical results on DFN-like configurations obtained with the
PDE constrained optimization method described in Section 4.4. Here we focus on the
main aspects related to the use of extended finite elements, referring to [5, 6] for a
detailed analysis of the behaviour of the optimization algorithm.

The first example of this section, problem DFN3, is a simple network composed
of three fractures as shown in Figure 4.13. Here Q2 = F} U Fh U F3; S1 = F1 N Fy;
Sy = F1NF;. We solve —AH = 01in Q) (S US2), with Dirichelet boundary conditions
Hyr,, =1onIpy, Hr,, =15o0onTps, Hr,, = -05o0n I'p3s and homogeneous
Neumann boundary conditions on the other sides (see Figure 4.13). This configuration

reproduces a critical situation for the fracture F}, in which two parallel traces very
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4.5 Numerical results

125

60

5
Source fract. 50
\ 45
40 4
Sink fract.
35
head 30
00 3
, 2 25
575 2
‘§50 10 15
=25 0 * " !
E 05
0 -10

-10 0 10 20 30 40 50 60

Figure 4.15: Problem DFN40. Left: DFN configuration and solution (colorbar). Right:

hydraulic head isolines on a selected fracture

close each other are present. A conforming mesh would be constrained by the presence
of these traces, with a large number of elements to be placed between the traces in
order to preserve quality. The XFEM do not require a conforming mesh, but in this
case the set of local enrichment functions introduced for the two traces could be not
linearly independent, as detailed in Subsection 4.3.3. Applying the described strategy
for redundant basis functions removal with a tolerance of 107!4, a new matrix with
a condition number of 10* is extracted from the formerly singular stiffness matrix of
the proposed problem, removing four redundant DOFs. The quality of the solution is
not affected as shown by Figure 4.14, where the solution on F} is plotted. It can be
noticed that the numerical approximation reproduces the expected behaviour for the
exact solution that is piecewise linear and displays jumps of derivatives in the direction
normal to the traces. Since the solution belongs to the discrete subspace spanned by
the FEM and XFEM basis functions, the exact solution is correctly reproduced up to
machine error.

We finally present the numerical results on a realistic DFN configuration composed
of 40 fractures and 96 traces (problem DFN40). The fractures have an average size of
4 x 103 m2. The problem is solved with several non-conforming meshes with maximum
element sizes ranging from 2 to 25m?. As in problem DFN3, a simple Laplace problem for
the hydraulic head is considered, with forcing term equal to zero and constant Dirichelet
boundary conditions applied to one edge of a “source” fracture (H = 100) and of a “sink”
fracture (H = 0). All other edges are treated as insulated, imposing homogeneous

Neumann boundary conditions. Figure 4.15, left, shows the geometrical configuration
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Figure 4.17: Problem DFN40. Convergence history for global continuity error and flux
mismatch. Left: XFEM; right: FEM. Grids on traces twice as fine as the previous case

of the DFN along with a shading of the obtained solution on the 7m? elements mesh,
while in Figure 4.15, right, we plot isolines for hydraulic head computed on a selected
fracture with the same mesh. Dashed lines in this figure represent traces on the fracture.
It can be noticed that the isolines have sudden variations across the traces, showing that
discontinuities in gradients are correctly reproduced by the XFEM.

Finally, we analyze on problem DFN40 the numerical conservation properties of
the method, using both enriched and non-enriched basis. Indeed, we recall that our
approach does not exactly impose matching conditions (4.2) and (4.3), but it minimizes
the sum of global continuity error and flux mismatch. The label FEM in the table and

figures which follow, refers to results obtained with the optimization approach on non-
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Table 4.1: Discontinuity errors and flux mismatches

XFEM FEM
40fract

Grid Acont Afux Acont Afux
25 | 1.375e-04 1.623e-04 | 1.033e-04 1.154e-04
23 | 1.738e-04 1.979e-04 | 1.077e-04 1.151e-04
22 1.520e-04 1.698e-04 | 1.116e-04 1.101e-04
20 1.128e-04 1.577e-04 | 1.016e-04 1.024e-04
18 | 1.081e-04 1.616e-04 | 9.477e-05 1.041e-04
15 | 1.117e-04 1.425e-04 | 1.029e-04 1.053e-04
7 6.675e-05 1.041e-04 | 7.787e-05 8.834e-05
5 6.362e-05  7.359e-05 | 8.032e-05 6.766e-05
2 4.274e-05  4.055e-05 | 4.253e-05 4.580e-05

40fract2x

Grid | Acont Afux Acont Afiux
25 | 3.251e-05 1.433e-04 | 4.053e-05 3.582e-05
23 | 3.109e-05 1.373e-04 | 3.997e-05  3.09e-05
22 | 2.712e-05 1.152e-04 | 4.031e-05  2.82e-05
20 | 3.140e-05 1.005e-04 | 3.665e-05 2.776e-05
18 | 2.936e-05 1.039e-04 | 3.600e-05 2.521e-05
15 | 2.439e-05 8.868e-05 | 3.263e-05 2.956e-05
7 2.432e-05 5.973e-05 | 2.747e-05 1.945e-05
5 1.304e-05 3.202e-05 | 2.316e-05 1.579e-05
2 8.095e-06 1.624e-05 | 1.842e-05 1.110e-05

40fract3x

Grid | Acont Afux Acont Afiux
25 | 1.946e-05 1.329e-04 | 3.503e-05 1.776e-05
23 | 1.969e-05 1.262e-04 | 3.326e-05 1.635e-05
22 | 1.696e-05 1.121e-04 | 3.408e-05 1.736e-05
20 | 1.779e-05 1.012e-04 | 3.137e-05 1.571e-05
18 | 1.764e-05 1.016e-04 | 3.099e-05 1.453e-05
15 | 1.719e-05 7.957e-05 | 2.772e-05 1.624e-05
7 1.522e-05 5.072e-05 | 2.521e-05 1.301e-05
5 9.098e-06 2.631e-05 | 2.099e-05 8.104e-06
2 6.608e-06  1.594e-05 | 1.613e-05 6.373e-06




128

Chapter 4

10 T T T T T T 10 T T T T
- : —— sqrt(J) (slope=0.62,
—— sqrt(J) (slope=1.65) _o_‘Aq (()sl(op£=0.59) )
o~ A (slope=0.83) : cont
cont -a=A (slope=0.80)
—w-A_ (slope=1.71) =

flux

10k

Figure 4.18: Problem DFN40. Convergence history for global continuity error and flux
mismatch. Left: XFEM; right: FEM. Grids on traces three times as fine as the previous

case

conforming meshes without enrichment functions. In Table 4.1 we report values of the
total continuity error and the total flux mismatch relative to total trace length, defined

respectively as:

VI R, = by, 112
>t il

cont — )

M
VI e+ = athiyg, + b )12
X - M .
S 1Sl

The table referes to all the non-conforming meshes used on fractures both using enrich-

ment functions (XFEM label) and without enrichments (FEM label), and to three differ-

flu

ent grids used on traces obtained doubling (label 40fract2x) and tripling (label 40fract3x)
the initial number of DOFs for the control variables on the traces. Figures 4.16-4.18
show, under fracture mesh refinement, the convergence behaviour of global continuity
error and flux mismatch. The figures also show the behaviour of VI , again relative to
total trace length. Abscissas correspond to the square root of the maximum element
sizes. Despite on coarser grid the starting mismatch errors are larger for XFEM, it
can be noted that for XFEM vanishing rates (the slopes reported in the legend of the
figures) are close to 1, whereas for FEM it is closer to 0.5. Concerning refinement of
trace grids, it can be seen that, as expected, flux mismatch benefits from refinement to

a larger extent with respect to continuity error.
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4.6 Conclusions

The use of the XFEM for DFN simulations is very promising for the possibility of
using non-conforming meshes on the fractures but a number of issues are to be considered
in order to ensure an effective implementation. In the present work we address some of
them.

The enrichment functions suggested have a very simple structure and represent a
unifying approach to handle open, closed and intersecting interfaces, thus simplifying
implementation, limiting the computational cost for the enrichment part of the approx-
imation and still ensuring good accuracy for DFN simulation purposes.

A thorough description of the implementation strategy suggested in [9] to restore
optimal convergence rates is provided in the case of interest, and numerous numerical
examples are reported showing the expected convergence performances.

The major source of ill-conditioning in DFN simulations is identified in the possi-
bility of having linear dependence or almost linear dependence in the enrichment basis
function space, and a strategy to overcome this problem is identified and successfully
implemented.

Finally, the optimization approach results to be very effective in dealing with very

complex DFNs.

4.7 Appendix

In this section we give some details concerning the discrete form (7.20) of the opti-
mization problem (7.7).

In order to simplify the discussion, let us consider the following different numbering
for the control functions uf , induced by the trace numbering. Being S = 5, a given
trace, with Is, = {i,j} and assuming i < j, we denote by w,, and by wu;, the control
functions related to the m-th trace and corresponding to fractures F; and Fj, respec-
tively. Let us introduce basis functions w;,k, k=1,..,N,, and 1/1;2,]6, k=1,..,N} for

the space of the control function u,, and w},

-, respectively. Note that here we allow to

use different spaces on the two “sides” of each trace. Then we have, for m = 1,..., M,

* . T
* = — 4, Uy, = 2521 ut, Wk . Setting NT = 2%21(]\% + N;F), we define u € RY
concatenating u; , uf, Ce Uy, uJJ\FJ

Let us consider the functional J, whose expression is given in Section 7.2 by equation
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(4.6). Denoting by ¢;; the k-th basis function of the XFEM approximation of h; on

fracture F;, the discrete form of the functional is

! N; Nj
1
=32 /(Z hikBiks = D hikdims)® drt (4.18)
i=1 Ses; 75 k=1 1
N N;_L N; Nj
/S(Z U;L,kw;z,k + Z u;,kw;,k - Oéz hi,k¢i,k|s — Z hj’k¢j7k|5’)2 d")/
k=1 k=1 k=1 k=1

The first integral in (7.18) after straightforward manipulation rewrites as
It = W[ CEhi + b CY g — 20 CFh;

where C°

g for either p = q or p,q € Ig for some trace S, is the matrix defined by

S
(Cp,q)k,Z:/9<Pp,k|S(Pq,Z|s d~.

Note that since (C’g)T = Cjb;, we can also write 15.71 — hiTCfih@' + th’fjhj — hiTijhj -
TS
hj C’Mhi.

The second integral after some straightforward algebraic manipulation rewrites

Ni N Ni
S2 _ 2 _ 2 o o
L = Zumk / Vg Ay + QZZ“m,k“m,z/ U Ve 1Y
k=1 S k=1 =1 S
N Nt N
+ 2 + 2 + .t + ot
+ Z um,k / TJZ)m,lc dly + 2 Z Z um,kum,E / ¢m,k¢m,€ dly
k=1 s k=1 (=1 S
Ny N N;
_ _ 2 2 2
#2323 gt [ Vit ot St [ ouit a0
k=1 (=1 k=1

Ni Nj
+20% Y " highig| Gigy bie, dy+a® Y hiy / Bt Ay
k,f=1 s k=1 s

N; N; Nj
+20422hj,khj,é /s Djk) it AV + 20422 Zhi,khj,é /s Dik| s Pie) s 4V

k=1 k=1 ¢=1

Nm N; Ny N

=0 9) ST EAUTIRTEE 1S 5 SUATITY RoACIS
k=1 ¢=1 k=1¢=1
Ny N N N

S0 9) SUAUTY ROACTIRIEE? B9 DALY RoAIRSS

k=1 (=1 k=1 (=1
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Let us introduce the following matrices: for m = 1,..., M and x = —, + define C}, €

* * — +
RNm XN C,ﬁ € RVm*Nm and ¢, as:

Cm Ci
* _ * * + _ — + o m m
If fractures F; and F} share trace S,,, we define matrices BZ-T m € RNiXNm and B;fm €

RN XN defined as
(Bj )kt = /S Vg Pitys, 1 (Bimhe = /S Vnsitls, 4

An analogous definition holds for matrices B;,, and B;rm Integral I5’2 is then written

in compact form as
5,2 - S _
IS (“m,k)T Cin Upy 1, (u;,k)T Co U o + Q(Um,k)T Con A
a®hi CHihi + o®hj CF by + 20°h CFhy — a(h] By, ur, 1)
—a(hI'Bf ut ) — a(h]TBj_’mu:n’k) — 04(h]TBJ-r ul )

i,m - m,k 7smm,k

) (Bi) " hi) = al(ug, )" (B, ha)

_a((ui i,m

m,k

—a((ty, 1) (B ) " hy) = (g, )T (BT hy).

m,k 7,m

We have therefore

I
1
J@) = 530S+ @t CEhit (1+ 0T Cihy — 21 = )] Oy
i=1 SES;
()" Con iy + ()T Gl sty + 2(u,)T Con ity — (B B k)
-« hTB_, ui) - a(hz—‘Bj_,mu;n) - Oé(hz—‘B;:mU$) - a((u;n)T(Bz_,m)Thl)

(i) (B ") = al(u) " (B7,) " hy) = a(ui) (BF,) " hy).

m J.m

We now allow for a more compact form of J(u) by assembling previous matrices as

follows. We set
_ . — At _
Bi,m - (B@,m Bz—t—m) S RNZX(NerNm)? Um = (um7u¢1)

For each fixed i = 1, ..., I, matrices B; ,,, with m such that S,, € §;, are then grouped
row-wise to form the matrix B; € RNV*Nsi | with Ng, =Yg s (N, + N;), which acts

on a column vector u; obtained appending the blocks w,, in the same order used for
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B; 1, as the action of a suitable operator R; : RN" s RNs: such that u; = Ryu. Also,
let B € RV"*N" he defined by

B Ry

BrR;
Let now G € RN N he defined blockwise as follows: for i = 1,..., 1 we set
Gl = (1+0%)Ci;, G?j = (a® — 1)ij if j € J; (0 elsewhere) ,

where, fixed Fj, J; collects the indices j such that |F; N F;| > 0. Since, obviously, j € J;

h
g0
that G" is a symmetric matrix. Next, let us define the matrix G* € RV TXNT blockwise

as G* = diag(Cpm,m = 1, ..., M) and finally set

G G —aB ‘
—aBT @gv

Due to previous observations, matrix G is straightforwardly symmetric. Furthermore, it

if and only if ¢ € J;, and due to the straightforward property (G%)T = G"., we have

is positive semidefinite by construction. With these definitions at hand, the functional
J is rewritten
1
J = §wTGw, w = (h,u)
being h obtained appending vectors h;, i =1,...,I.
Constraints (4.5) are written as a unique linear system as follows. For all i = 1,..., T

define the matrix A; € RVixNi a5

(Aj)ge = /F Vi rVoir dF; + a Z /S¢i,ks¢i,€|s dv,

SEeS;

For each fracture Fj, we set Nj = >.s,.es. N as the number of DOFs on traces of F;

*

on the Fj “side”, and we define matrices B; € RY:*Nsi grouping row-wise matrices Br..,

with m spanning traces in S;, and setting for each m either x = 4+ or x = — according
to which one of the two “sides” of trace Sy, is on Fj.

Matrices B; act on a column vector u; containing all the N}gi control DOFs corre-
sponding to the traces of F;, obtained collecting vectors uf, for S € S;, with the same

ordering introduced for the traces on F; and used in the definition of J3;.
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The algebraic formulation of the primal equations (4.5) is then

where §; accounts for the term ¢; in (4.5) and for the boundary conditions on the fracture
E;.
We set A = dla‘g(A27 1= 17 7I) S RNFXNF and define B e RNFXNT as

B1 R}

Br R}

where the operator R, now extracts from u only subvectors u}, corresponding to control
function on the “correct side” of the trace. Setting C = (A — B) and ¢ = (q1,-..,qr1),
constraints (4.19) are then written Cw = ¢q. The overall problem is then reformulated

as follows:

1
min §wTGw, s.t. Cw = q. (4.20)
w
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The material collected in the present Part of the Thesis consists of a large number of
very recent simulations on complex DFN configurations, and consequently the analysis of
these numerical results is not sufficiently detailed and analysed in depth yet. We believe,
however that the material presented can be of great help in showing the performances of
the proposed method. Also, through the analysis of these results many implementation

details can be highlighted and discussed.






Chapter 5

On the resolution of complex DFN

configurations

This chapter is devoted to the presentation of a large number of numerical results
obtained with complex DFN configurations, collecting and describing in a systematic
way the performances of different implementation choices for the optimization algorithm
described in Section 4.4. Further we show a preliminary investigation on the scalability

properties of the proposed method.

On a mesh non conforming to the traces, the use of the enrichment functions of the
XFEM can give an accurate description of the solution around the traces, as thoroughly
discussed in the previous chapters. Standard finite elements can also be used on the same
nonconforming computational mesh, with the advantage of a slightly reduced number
of unknowns (the degrees of freedom related to the enrichment functions) but at the
expenses of a less accurate representation of the result. This possibility was already
discussed in Chapter 2 and some results are also shown in Chapter 3. Here a deeper
analysis is presented and numerical results on realistic DFN configurations are provided
and discussed with both these approaches. The description of a the method with a
different discretization choice involving the new Virtual Element Method is deferred to
Chapter 7.

The discretization of the control variables on the traces can be performed completely
independently from the discretization on the fractures. The discrete functional space for
the control variables chosen is the space of discontinuous piecewise linear polynomials,

and two different node dispositions are envisaged. Let us consider a generic trace S =

141
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Fin Fj in a DFN, we can have:

e 3 disposition of nodes on .S for uZS and uJS given by the intersection points between
S and the element edges of the nonconforming meshes on F; and Fj respectively;

this node configuration is called induced, labelled IN;

e or simply equally spaced nodes on S for uf and u}g , completely independent from
the discretization of the state-variables on the fractures; this strategy is termed

equally-spaced, label EN.

Results are described with both these configuration of nodes.
The quality of the obtained solutions is evaluated in terms of three error indicators,

Acontr Afyx and A as detailed in the following. The two first indicators

source-sink>
measure how well the numerical solution satisfies the continuity and flux balance condi-
tions across the traces, while the third indicator evaluates the global mismatch between
the flux injected in the network of fractures and the total flux that leaves the network
through the non insulated fracture edges.

After a description of the various DFN configurations considered, some results on the
conditioning of the problem in relation to key parameters are presented in Section 5.2.
Numerical simulations are then shown and discussed in Section 5.3 and in Section 5.4
where DFNs with non-uniform fracture transmissivity are considered and some conclu-
sions on convergence properties of the method are also proposed. Section 5.5 ends this

Chapter reporting some results on a preliminary investigation on the scalability of the

proposed approach.

5.1 Problems description

The panel of problems considered is composed of six DFN configurations of increasing
complexity, as summarized in Table 5.1. In the networks considered, fractures have
dimensions ranging between 2.8 x 103 m? and 1.2 x 10* m? and traces intersecting in
fractures form angles of about 35°, 45°, 55°, 70° or 90°, while the minimum distance
between non intersecting traces varies between 0.5 m and 1.1x 10? m. Trace length spans
between 4.2x1072 m to 2.3x10% m. All the DFNs share the same two boundary fractures
Fy and Fy, while all the other fractures might be different from a system to another.

Homogeneous Dirichelet boundary condition is prescribed on one edge of fracture Fj
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Table 5.1: DFN configurations

Label N° of fractures N° of traces

11F 11 13
27F 27 o7
36F 36 65
55F 95 120
68F 68 142
120F 120 256

(sink fracture), while a constant value Dirichelet condition of 100m is prescribed on one
edge of Fy (source fracture) for all systems. All other fracture edges are insulated.

Numerical simulations are performed with first order finite elements and triangular
meshes for the state-variable h on the fractures and results are reported using both the
XFEM on nonconforming grids and with the standard FEM on the same nonconforming
meshes. The discrete subspace of the control variable u is chosen as the space of dis-
continuous piece-wise linear polynomials with induced or equally-spaced nodes. When
equally-spaced nodes are used the number of nodes can be arbitrarily chosen. We define
a reference number of nodes for the equally-spaced configuration as a number of nodes
close to the number of nodes of the discretization induced and a parameter ngy is in-
troduced to express the number of equally-spaced nodes in terms of the ratio with the
reference value.

The computational mesh is identified by means of the maximum element area, and
labelled in the figures with this value without unit of measure (m?). Meshes with

maximum element area ranging between 120m? and 7m? are considered.

5.2 Study of system conditioning

In Section 7.2 we have formally written the unconstrained formulation of the DFN
problem with the proposed approach, and an explicit formulation of the unconstrained
functional gradient, (7.25):

Vi) = (BTATG"A ' B+G" — (BT A TB+BTA™ 1 B))u + (5.1)
(BT ATGM — aBT)A g
= Gu+ q.
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For small DFN configurations it is possible to resort to this formulation in order
to evaluate the effect of some implementation choices on the conditioning of the dis-
crete problem, analysing the conditioning of matrix G. The DFN 27F, 36F and 68F
are considered in this analysis, with induced or equally-spaced nodes for the control
variables.

Figures 5.1-5.6 show the behaviour of the condition number of G and of functional
minimum in logarithmic scale for different values of the parameter « appearing in the
definition of the control variable U given in Chapter 3, and of mesh element maximum
area. In these figures the XFEM is chosen for the description of the solution and induced
nodes are used on the traces. Looking at Figures 5.1, 5.3 and 5.5 we can see that, for
each configuration and mesh there is an optimal value of « for good conditioning. This
optimal value is contained in a range of values of few units for all the cases considered,
with a weak dependence from the size of the mesh or from the complexity of the problem.
Concerning functional values, Figures 5.2, 5.4 and 5.6, show that lower minimum values
are reached reducing «. However over the entire range of « values considered, the
variations of functional is quite small for all the problems and grids. A possible optimal
choice appears to be a = 1, since this value gives low condition numbers and functional
minimum and has the desirable property of reducing matrix G" block diagonal, as follows
immediately from the definition given in Section 4.7. This value is used to obtain all
the results presented in this Chapter.

Figures 5.7-5.12 show the condition number and functional minimum in function
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of o and of the number of DOFs for the control variables, expressed in terms of the
parameter ng. In this case equally-spaced nodes are placed on the traces and the XFEM
is used for the discretization of h. Looking at Figures 5.7, 5.9 and 5.11 we can see that
increasing the number of nodes for the control variable has a detrimental impact on the
conditioning of the system, but with a moderate trend, and this in independent of the
value of « and of problem complexity or mesh size. At the same time higher values of
ny give lower functional minimum for all the configurations examined, as Figures 5.8,
5.10 and 5.12 show. For these reasons increasing ny is a viable option for improving the
quality of the solution, clearly at the cost of an increase in the number of unknowns.
The effect of variations of « is similar to the previous case. More in general significant
differences are not observed between equally-spaced and induced node strategies.

Concerning the effect of mesh size on the conditioning of the system, it is possible to
conclude that reducing mesh size has the effect of an increase of the condition number
of the problem, as expected. At the same time functional minimum can be reduced by
mesh refinement.

DFNs with a larger number of fractures are expected to have a worse conditioning
that simpler configurations as can be seen comparing, for example, Figure 5.9 with
Figure 5.11, but this is not true in general, as can be noticed comparing Figure 5.1
with Figure 5.3 or Figure 5.7 with Figure 5.9. The 27F DFN configuration has a higher
trace-to-fracture ratio than the 36F DFN| as can be seen looking at Table 5.1, such that
an influence of this parameter on system conditioning could be envisaged. The influence
of trace-to-fracture ratio to problem conditioning has not been investigated and could
be the object of a deeper analysis.

Some results on system conditioning when standard finite elements are used for the
discretization of the solution on the fractures are reported in Table 5.2 for the 36F DFN
with equally-spaced nodes, compared to the results obtained with the XFEM on the
same grid with maximum element area of 30m?. The two approaches have a similar

impact on the conditioning of the discrete problem.
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Table 5.2: Condition numbers for the DFN 36F with XFEM and FEM for different values
of ny. Equally-spaced nodes, Area=30.

ny XFEM FEM

0.5 1.75973e+06 2.64085e+06
1.0 3.22126e+06 3.66881e+06
1.5 4.50964e+06 3.34477e+06
2.0 5.24292e+06 3.96676e+-06

5.3 Numerical results with constant fracture transmissivity

This Section shows some numerical results on the DFN configurations named 27F,
36F, 68F and 120F in Table 5.1 with an uniform distribution of the fracture trans-
missivity K = 1 across the fractures. Three different mesh sizes are considered, with

maximum element area of 120m?, 30m? and 7m?.

Table 5.3: Results for DFNs 27F, 36F, 68F and 120F with nodes IN and EN. XFEM and
standard FEM compared.

XFEM FEM
Grid Node Acont Afux Iter Acont Afyx Iter
27 fractures EN
120 725 0.0009953 0.0007214 1317 0.001516 0.001224 2111
30 1201 0.0008213 0.0007262 960 0.001152 0.0007263 1390
7 2207 0.0004234 0.0004367 779 0.0006694 0.0005569 1084
36 fractures IN
120 744 0.001363 0.001596 1174 0.002536 0.00174 1749
30 1292 0.001344 0.001109 1118 0.00156 0.001239 1522
7 2474 0.0007618 0.0005185 1353 0.000947 0.0005337 1708
36 fractures EN
120 833 0.00139 0.001395 915 0.002395 0.001721 1396
30 1390 0.001169 0.001066 810 0.001628 0.001295 1096
7 2567 0.0009253 0.0006411 771 0.001015 0.0005989 934
68 fractures EN
120 1887 0.0006116 0.0004216 2238 0.0008863 0.0005681 4271
30 3179 0.0004667 0.0003912 1906 0.0006633 0.0003817 2501
7 5906 0.0002358 0.0002511 1605 0.0003713 0.0003195 2117
120 fractures IN
120 2676 0.000561 0.000557 4737 0.0006866 0.0004544 18177
30 4616 0.0003636 0.0002812 3075 0.0004421 0.0002824 7137
7 8793 0.0001875 0.0001517 4639 0.0002496 0.0001703 6075
120 fractures EN
120 3016 0.0004186 0.0003841 4042 0.0005124 0.0004198 12928
30 4993 0.0003235 0.0002657 3235 0.0004044 0.0003239 5917
7 9169 0.0001919 0.0001912 2892 0.0002522 0.0002195 3558

Table 5.3 reports the results obtained for all the configurations considered, with both
the XFEM and standard FE for the description of the solution h. Results for the 27F
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and 68F DFNs are shown using equally-spaced nodes on the traces, while the 36F and
120F DFNs are solved with both equally-spaced and induced nodes.

The quality of the results is evaluated in terms of the global continuity error and the
global flux mismatch error relative to trace length, defined respectively in Section 4.5

as:

Ve i, = iy 1P
cont — )

Zm 1 |Sm|

Sl —alh, + b I
Sy 1Sl

In Table 5.3 also the number of nodes for the control variable (column Node) and the

flux

number of iterations required to obtain stagnation of the functional at its minimum
value (column Iter) are reported for each problem. The number of iterations should
be interpreted as the mazimum number of iterations for the problem and grid consid-
ered, since the use of a stopping criterion could considerably decrease the iterations
required avoiding a large number of iterations close to functional minimum that do not
substantially affect the quality of the solution, as discussed in the next Section.

Looking at the values In Table 5.3 concerning error indicators, we can see that the
global continuity and flux mismatch errors are comparable between XFEM and FEM
discretization, the former being in general slightly more accurate than the latter, while a
considerably lower number of iterations is required with the XFEM based discretization
to reach functional minimum.

Figures 5.13-5.14 display the convergence of the global continuity and flux mismatch
errors relative to trace length against mesh size, indicated by the parameter & repre-
senting the square root of grid maximum element area. Results are plotted for the DFN
configurations 36F and 120F. Mesh refinement can reduce the global continuity and flux
mismatch errors, and an higher trend is observed with induced nodes on the traces than
with equally-spaced nodes. Since the number of nodes for the traces is similar for all
grids for induced and equally-spaced nodes, the motivation of this difference is to be
found in the disposition of nodes, and the induced disposition conforms better to the
structure of the discrete solution A than the equally-spaced disposition. The reduction
trend is in general comparable between XFEM and FEM. Superior performances of the
XFEM on very coarse grids can also be noticed. This is expected, since the XFEM dis-

cretization relies on special enrichment functions to describe solution behaviour across
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Figure 5.13: Continuity and flux mismatch errors relative to trace length against grid

refinement for the DFN 36F. Induced (left) and equally-spaced (right) nodes.

10° 10
—A— A XFEM (slope = 0.77) —&— A, XFEM (slope = 0.55)
Ay XFEM (slope = 0.91) A —e— Ay, XFEM (slope = 0.49)
- A -, FEM (slope=0.71) SRR - & -4, FEM (slope = 0.50)
gy FEM (slope = 0.69) - @ -1, FEM(slope=046) |: Lo aE

107 o 107 o
10 10 10 10

Figure 5.14: Continuity and flux mismatch errors relative to trace length against grid

refinement for the DFN 120F. Induced (left) and equally-spaced (right) nodes.

the traces, and this reproduction capabilities are less affected from grid refinement than
the nonconforming FEM discretization. In fact standard finite elements on nonconform-
ing grids would correctly reproduce the jump in derivatives of the solution across the
traces only on an infinitely refined grid.

The solution obtained for the 36F network with the XFEM discretization (Area=30m?)
and induced nodes is shown in Figure 5.15, where iso-h lines are also plotted to show
the distortion of gradient across the traces. Figure 5.16 instead shows a source fracture
view of the solution on the 120F DFN with FEM (Area=30m?) and induced nodes on
the traces, and Figure 5.17 reports a detail of the computational mesh, highlighting the

non-conformity of mesh elements to fracture intersections.
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Figure 5.17: Detail of the computational grid with Area=30 for the DFN 120F.

As envisaged in Section 5.2 using equally-spaced nodes on the traces, increasing the
number nodes for the control variables has the potential of reducing functional minimum
for the same grid for the state variable h, with a corresponding reduction of the global
continuity and flux mismatch errors. The results of this analysis are reported in Table 5.4
for the 27F, 36F, 68F and 120F DFN configurations with both XFEM and FEM based
discretizations. It is possible to observe that increasing ny both the global continuity
and flux mismatch error are reduced with a small increase in the number of iterations
required for functional stagnation.

When dealing with complex networks of fractures, another error indicator that can
be considered to evaluate solution quality is the mismatch between the flux injected in
the system by the source fracture and the total flux received from the network by the

sink fracture. To this end a new error indicator is introduced, defined as:

Agource-sink = Z Z /S ugm —ahyg /Z Z |Sm|

keFr \meJy k€Fr meJy

where Fr represents the set of fracture indexes carrying boundary conditions, and Jj
collects the indexes to the traces on Fj. Numerical evidence shows that in order to

control the source-sink flux mismatch it is beneficial to introduce penalty factors in
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the definition of the functional, and differentiating the weight of continuity and flux

mismatch. The cost functional rewrites as:

M
J(hou) =" (Pfl(
1

m=

2
hi|sm - hj\sm H + Py ‘

2
uiSm +u}$m -« <hi|sm + hj\sm) H > :

The results for various values of the penalty factors are reported in Table 5.5 for
the 36F and 120F DFNs with both XFEM and FEM discretizations for A and induced
nodes for the control variables, while Figures 5.18-5.23 report the plots of table data
for the 36F DFN with XFEM and FEM discretization and for the 120F with standard
FE. It can be noticed that increasing the weight of the flux term of the functional with
respect to the continuity term has a strong effect in reducing both the flux mismatch
error and the source-sink flux mismatch with a relatively small penalization of the
continuity error. Since the continuity error remains in an acceptable range of values
it appears that the use of a penalty on the flux term is advisable, mainly for complex
DFN configurations, to improve solution quality. On the other hand, increasing P fo
and reducing P f; causes a significant increase in the maximum number of iterations
required for functional stagnation (columns Iter in Table 5.5), such that a trade-off

between accuracy and computational effort is necessary.
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Table 5.4: Effect of ny on continuity and flux balance errors. XFEM and standard FEM

compared, equally-spaced nodes

XFEM FEM
Grid ny Acont Afux Iter Acont Afqux Iter
27 fractures
1 0.0009953 0.0007214 1317 0.001516 0.001224 2111
120 1.5 0.0008252 0.0004977 1513 0.001201 0.0008163 2614
2 0.0007432 0.000445 1432 0.001083 0.0006971 3218
1 0.0008213 0.0007262 960 0.001152 0.0007263 1390
30 1.5 0.0005528 0.0005619 1190 0.0009182 0.0006567 1787
2 0.0004097 0.0004008 1172 0.0007408 0.0005357 2024
1 0.0004234 0.0004367 779 0.0006694 0.0005569 1084
7 1.5 0.0002907 0.0002599 908 0.0004729 0.0003669 1307
2 0.000241 0.000198 1032 0.0004183 0.0002822 1463
36 fractures
1 0.00139 0.001395 915 0.002395 0.001721 1396
120 1.5 0.001059 0.00109 1067 0.002033 0.001397 1691
2 0.0008266 0.0009029 1103 0.001715 0.001297 1775
1 0.001169 0.001066 810 0.001628 0.001295 1096
30 1.5 0.0008244 0.0007246 921 0.001244 0.0009339 1349
2 0.0006507 0.0005739 976 0.00109 0.0007246 1499
1 0.0009253 0.0006411 771 0.001015 0.0005989 934
7 1.5 0.0006953 0.0005292 916 0.0008782 0.000456 1161
2 0.0005169 0.0004915 1049 0.0008088 0.0003994 1315
68 fractures
1 0.0006116 0.0004216 2238 0.0008863 0.0005681 4271
120 1.5 0.0004791 0.0003322 2536 0.0007222 0.0004366 5737
2 0.0004361 0.0002868 2650 0.0006526 0.0003947 4859
1 0.0004667 0.0003912 1906 0.0006633 0.0003817 2501
30 1.5 0.0003171 0.0002996 2100 0.0005367 0.0003535 3113
2 0.0002329 0.0002247 2130 0.0004263 0.0003194 3776
1 0.0002358 0.0002511 1605 0.0003713 0.0003195 2117
7 1.5 0.0001519 0.0001623 1713 0.0002551 0.0002304 2408
2 0.0001204 0.0001199 1893 0.0002071 0.0001832 2679
120 fractures
1 0.0004186 0.0003841 4042 0.0005124 0.0004198 12928
120 1.5 0.0003191 0.0002713 4125 0.0004246 0.0003007 9470
2 0.000274 0.0002298 4132 0.0003856 0.0002686 10520
1 0.0003235 0.0002657 3235 0.0004044 0.0003239 5917
30 1.5 0.0002589 0.0001893 3521 0.0003091 0.0002383 7017
2 0.000225 0.0001684 3761 0.0002771 0.0002026 6995
1 0.0001919 0.0001912 2892 0.0002522 0.0002195 3558
7 1.5 0.0001509 0.0001323 3150 0.0002068 0.0001578 4043
2 0.0001287 0.0001054 3329 0.000183 0.0001282 4629
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Table 5.5: Effect of penalty factors on Acong, Agyx and A

source-sin
120F with induced nodes. XFEM and standard FEM compared.

k- DFNs 36F and

XFEM FEM
Grid Pf, — Pfy Acont Afux Agource-sink Iter | Acont Afux Asource-sink Iter
36 fractures
1-10 0.002782 0.0009164 -0.1347 969 0.003668 0.0006137 -0.028 1787
120 1 - 100 0.005125 0.0005185 -0.0477 1539 0.004736 0.0001887 0.0014 3182
1 - 1000 0.008723 0.0003634 -0.026 2409 0.005499 6.032e-05 3.367e-4 5870
1/100 - 100 0.01785 0.000165 -0.0102 2943 0.006258 2.507e-05 -3.425e-5 7690
1-10 0.00205 0.0005705 -0.0531 1146 0.002536 0.0006313 -0.0735 2056
30 1 - 100 0.003612 0.0002532 -0.0258 1536 0.003966 0.0001995 -0.0167 2914
1 - 1000 0.005158 9.107e-05 -0.0048 3062 0.005023 6.316e-05 -0.0016 5094
1/100 - 100 0.00639 5.143e-05 -0.0011 4889 0.005853 1.8e-05 -1.335e-4 9742
1-10 0.001084 0.0002419 -0.0055 1394 0.001234 0.0002728 -0.004 1991
7 1 - 100 0.001593 0.0001234 -0.0017 1741 0.00185 0.0001114 -7.605e-4 3075
1 - 1000 0.0025 5.381e-05 -7.62e-4 2721 0.002501 3.397e-05 -2.074e-4 4360
1/100 - 100 0.003462 2.471e-05 -4.657e-5 5326 0.002942 1.626e-05 -3.602e-5 9406
120 fractures
1-10 0.001004 0.0002823 -0.1088 4310 0.0009781 0.0001503 -0.1295 17601
120 1 - 100 0.001487 0.0001964 -0.0789 7658 0.001208 5.068e-05 -0.0142 37118
1 - 1000 0.002703 0.0001445 -0.0464 11457 0.001448 1.917e-05 -0.0028 30585
1/100 - 100 0.006056 0.0001023 -0.0242 10941 0.001749 6.727e-06 -4.627e-4 31170
1-10 0.0005485 0.0001584 -0.0958 3625 0.0006226 0.0001192 -0.0635 11663
30 1 - 100 0.0008711 0.0001008 -0.0211 3562 0.0008539 4.175e-05 -0.0149 13285
1 - 1000 0.001414 8.061e-05 -0.0037 4327 0.001061 1.436e-05 -0.0024 21996
1/100 - 100 0.003473 6.136e-05 -0.0026 5575 0.001269 5.167e-06 -3.33e-4 22205
1-10 0.0002967 7.43e-05 -0.0228 4404 0.0003628 8.06e-05 -0.0191 7481
7 1 - 100 0.0004575 3.686e-05 -0.003 5791 0.0005353 3.589e-05 -0.0023 9666
1 - 1000 0.0007086 1.936e-05 -6.224e-4 8804 0.0007546 1.55e-05 -4.237e-4 18468
1/100 - 100 0.00111 1.147e-05 -2.449e-4 16228 0.001103 6.314e-06 -1.539e-4 25349
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5.4 Variable fracture transmissivity

In this section DEN configurations with values of fracture transmissivity constant on
each fracture but different from a fracture to another are considered. The DFN analysed
are reported in Table 5.6 along with the range of fracture transmissivity allowed for the

various configurations. The XFEM and induced nodes are used throughout this Section.

When dealing with large variations of fracture trasmissivities, occurring possibly
between intersecting fractures, a possible choice for the penalty factors introduced in
the previous Section is to set Pf; = 1 and Pfy = 1/ Kpmin = 1/ min;(K;). As shown
in the sequel, this improves the numerical behaviour of the method for complex DFN
configurations, since it magnifies the influence of the control variable u on the solution.
As usual we set @« = 1, and all simulations are started with an initial guess for the
control variable u® = 0. Simulations are performed on three different grids characterized
by maximum element area of 7m?, 15m? and 30m?.

In Figure 5.24 the coarse grid for problem 11F is shown. It should be noticed that
elements are arbitrarily placed with respect to the traces, and the mesh on each fracture
is independent from the mesh on the other fractures. The solution is shown in Figure 5.25
along with iso-h lines, in order to highlight that, as expected, the highest gradients in
the solution occur in fractures with the lower values of fracture transmissivity, which
can be noticed looking at Figure 5.26 where the values of K on the fractures of the
system are reported. Figures 5.27-5.31 refer to the 68F system on the intermediate grid.
In addition to previous considerations, looking at iso-A lines in Figure 5.27 we can see
that the flux tends to stagnate in fractures that are a dead end or that are connected
to the system by fractures with low transmissivity values. This is again an expected

behaviour. Figure 5.28 shows the distribution of K for this system, while Figure 5.29

Table 5.6: DFN fracture transmissivity

Label | Knin Koz

11F | 246 x 1072 9.66 x 1072
27F | 543 x 107* 9.66 x 1072
37F | 543 x107* 9.66 x 1072
55F | 5.43 x 107%  9.67 x 1072
68F | 543 x107* 9.67 x 1072
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Figure 5.25: Problem 11F: solution with

Figure 5.24: Problem 11F: coarse grid
iso-h lines on the coarse grid

provides a detail of the intermediate grid. The Figure shows that complex geometries
and intricate fracture intersections can be easily handled with no requirement for mesh
adjustments and without compromising the description of the numerical solution, as
it can be seen looking at Figure 5.30-5.31 where the solution on selected fractures are
plotted not on the computational grid but on sub-triangles not crossing the traces, for
graphical reasons. The irregular behaviour across traces and around trace tips is well
defined, regardless of the reciprocal position of traces and mesh elements.

In Table 5.7 the fluxes entering the system through the traces of the source fracture
(column in), the fluxes leaving the system from the sink fracture (column out) and
the mismatch between these two quantities (column diff ) are reported for each system
and grid considered. We can observe that flux conservation is very good and is stable
under grid refinements for each problem. Moreover flux mismatch remains stable also

for increasing problem complexity.

The proposed approach can easily deal with non-uniform transmissivities on each
fracture plane, requiring either a different implementation of the integrals for the dis-
crete operators on the fractures either the approximation of the fracture transmissivity
function on each fracture with a piecewise constant function on each element of the
mesh. We remark that the latter approach would not affect the accuracy of the method.
A deeper investigation with this kind of configurations will be the objective of future

analysis.
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Table 5.7: Flux unbalance for approximate solution

grid 30 grid 15 grid 7

DFEN | in out diff | in out diff | in out  diff
11F | 0.16 -0.16 4.4e-4|0.16 -0.16 le-5 | 0.16 -0.16 2e-5
27F | 0.42 -0.42 29e4 | 419 -419 1.4e4 | 042 -042 2e5
37F | 1.10 -1.10 1.2e-4 | 1.09 -1.09 2.0e-4 | 1.08 -1.08 8e-b
55F | 1.45 -145 6.3e4 | 144 -1.44 3.3e4 | 143 -143 9e-5
68F | 1.12 -1.12 9.4e-4 | 1.11 -1.11 3.5e-4 | 1.10 -1.10 1e-5

5.4.1 Convergence study

Let us introduce for each problem and grid a reference solution h,.. s, corresponding
to the stagnation of the functional J around its minimum. For an approximate solu-
tion obtained at a given number of iterations, hey.» we define a relative distance from
the reference solution as the H'-norm of the difference between current approxima-
tion and reference solution divided by the H'-norm of the reference solution: |hewrr —
hyef|lg1 /|| ref|| 1. As a reasonable choice we measure the complexity of each problem
with the number of traces in the system. In Figure 5.32 the relative distance of solution
at various number of iterations against the ratio of iteration and number of traces is
displayed for the 27F, 37F and 68F DFNs on the coarse and fine grid. A similar plot is
in Figure 5.33 for all the problems considered on the intermediate grid. In both Figures
the global trend is plotted on the left side, showing that the curves are well clustered
and show an initial steep descent path, after which the slope reduces. On the right there
is a zoom at low values of iterations over the number of traces. After a small number
of iterations compared to the number of traces, the current approximation is close to
the reference solution, with variations lower than 1%. In the simulations performed
this occurs typically in a range of iterations between two and four times the number of
traces, independently of the problem and grid considered. A similar behaviour is also
documented in Chapter 3, showing that the algorithm can provide a good solution with

a cost that increases linearly with problem complexity.

We end the presentation of numerical results providing some stopping criteria for
the discrete algorithm. Two possible criteria are discussed here and, summarized in Ta-

ble 5.8: 1) algorithm stops when the difference between subsequent iterations is small,
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Figure 5.32: Relative distance in H' norm of solution at various number of iterations for
selected problems. Coarse grid in dashed lines, fine grid in solid lines. Full picture on the

left, zoom on the right.
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Figure 5.33: Relative distance in H! norm of solution at various number of iterations for

selected problems on the intermediate grid. Full picture on the left, zoom on the right.
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Table 5.8: Exit criteria used in simulations

Label Criterion

t Rlka—Jk71<T011

t Rs = JE(JF — JF1) < Tol,

—8—11F] ]

Relative distance from reference solution
Relative distance from reference solution

—A— 27F
——37F
—F— 55F
—O— 68F
10° . : : : : : 10° : : : : :
le-9 le-8 le-7 le-6 le-5 le-4 le-3 le-2 102 107 10 10 107 1072 10°
Tol, Tol,
Figure 5.34: Distance of solution from ref- Figure 5.35: Distance of solution from ref-
erence solution versus different values of erence solution versus different values of
Toly. Intermediate grid. Tols. Intermediate grid.

i.e. R1 < Tol; six subsequent times; 2) stop occurs when th difference between subse-
quent iterations scaled with functional value is small, i.e. Ro < Toly. Both conditions
seek functional stagnation, differing in the fact that condition ¢ also takes into account
functional absolute value, see also Chapter 3. The criterion on u introduced in Chap-
ter 3 has been removed, since we actually solve the rescaled problem in which the effects
of the control variable u are amplified. The behaviour of the suggested criteria is shown
in Figures 5.34-5.35. A value of 1072 appears to be a suitable choice for both criteria
for all the problems.

5.5 Scalability

We end this Chapter with a preliminary analysis on the scalability performances
of the proposed approach for discrete fracture network simulations on large scales. As

mentioned the method allows an independent meshing process on each fracture of the
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network, and the resolution of the constrained optimality problem with a gradient based
method can be performed in parallel with a very limited exchange of data related to the
traces.

The implementation of the parallel version of the method is performed using an MPI
package for Octave, [3], called openMPI ext, [4], that provides a subset of the standard
MPT library for the C programming language.

Since dealing with an implementation oriented to computer architectures with non-
shared memory, the parallel version of the algorithm is structured in order to limit the
amount of communications. To this end a hierarchical organization is envisaged, with
Master processes managing groups of Slave processes. The DFN is subdivided into
smaller subsets of fractures, each managed by one Slave process. The Slave processes
refer to a Master process for the communication phase, such that all the information
shared by the Slave processes transit through the Master . For very large DEN configu-
rations this basic structure can be repeated, introducing a hierarchy in Master processes
with higher level Masters managing groups of lower level Master processes, down to the
Slave processes managing groups of fractures. We remark that this configuration would
not be optimal for shared memory computer architectures, such as GPU based machines,
where a more efficient implementation would consist in assigning each fracture to a dif-
ferent process. Investigation of the parallel approach on shared memory architectures is

postponed to a future work.

5.5.1 Partitioning the DFN

The first task that the parallel implementation of the proposed method has to ac-
complish consists in determining the subsets of fractures that will be associated to each
Slave process. To this end, the DFN can be suitably represented by a non-directed
graph G(V, E), with fractures representing the vertices V' of the graph and traces the
edges, F£. The objective is to minimize the number of edge cuts, i.e. the amount
of communication between processes, balancing the workload among processes at the
same time. Let us assume that k£ represents the number of Slave processes, and [ is
the total number of vertices (i.e. fractures) in the graph, than we want to determine a
subdivision of G(V, E) such that the weight (i.e. the computational cost) of each part
is lower than I/é, where v is a parameter close to one, and the capacity (i.e. the amount

of data shared) of edge cuts is minimized. This problem is well known in graph theory
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as (k,v)-balanced graph partitioning, see e.g. [1] . For this preliminary investigation a
simple unweighted graph partitioning procedure is implemented, ensuring that all the
vertices of the graphs, (i.e. the fractures of the DFN) have a similar computational
cost. This condition is quite restrictive, but is appropriate for the current preliminary
investigation, since it reduces the complexity of the graph partitioning procedure and
can be easily achieved by prescribing a similar number of degrees of freedom on all the

fractures in the DFN.

5.5.2 The message passing process implementation

As mentioned, all the information are shared by Slave processes through Master
processes and each Slave process sends to and receives from the Master process only
the portion of data related to those traces in common with other processes. Since the
DEFEN is partitioned in a way that minimizes the number of traces shared by different
processes, the communication phase is minimized. In any case only arrays of small
size compared to the size of the problems on the fractures need to be shared. The
openMPI _ext package does not allow for non-blocking communication routines and this
is a severe limitation for this application. Indeed non-blocking send routines would
allow to partially hide the overhead for communications, allowing each process to send
the information required by other processes and continue computing on other fractures
whose data is not required by other processes. This kind of limitations will be removed

in future implementations of the method based on the C language.
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5.5.3 Scalability results

We now show the scalability results obtained on the DFN 36F, using the XFEM
for the discretization of the hydraulic head on the fractures and induced nodes for the
control variables. The mesh parameter is different on each fracture in order to obtain
a number of DOFs similar for all the fracture around 3500 DOFs, thus allowing for an

unweighted graph partitioning for determining the workload for the Slave processes.

Simulations are performed on a computer with two six-core processors, for a total of
twelve physical cores and twenty-four virtual cores. The machine has a shared memory

architecture but is treated as a non-shared memory machine.

The scalability results for the 36F DFN are shown in Figure 5.36 in terms of execution
time relative to the execution time in serial mode. It can be noted that scalability
performances are good and quite close to the ideal ones when using up to 9 Slave
processes. When using more than 10 Slave processes the slope of the curve reduces
with respect to the ideal one, and there is no further reduction of execution time using
more than 12 Slave processes. This is partly due to the overhead in communication and
partly to the bottleneck of memory access due to the architecture of the computer used.

The ideal curve considers that none part of the algorithm is strictly serial.

An analysis is performed to measure the level of independence among the virtual
cores and to highlight conflicts in memory access observed during the simulations. A
large size (6400 x 6400) sparse linear system with about 3 x 10* non zero elements is
solved 10 times in serial mode by an increasing number of processes running in parallel,
such that each process performs exactly the same operations and no communication
occurs. The average execution time across the 10 repeated resolutions, t{o, is stored for
each process j. The mean value t’;v = k! 25:1 t{o among the k different processes,
relative to execution time with a single process, is reported in Figure 5.37 for different
values of k (number of processes) ranging from 1 to 19. It is possible to note that,
even with a small number of processes running in parallel, the execution time increases
between 5 — 15%, due to conflicts in accessing the memory. When using more than ten
processes the degradation of performances becomes severe.

Concluding, this preliminary investigation on the scalability performances of the
proposed algorithm for DFN simulations shows a very high potential, despite the limi-
tation of the MPI library used and of the parallel computer available. Implementation

improvements can have the potential of further reducing the gap with the ideal scalabil-
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ity performances and of extending the scalability range to a higher number of parallel

processes.
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Chapter 6
Preconditioning

In this Chapter a preliminary investigation of a possible strategy for precondition-
ing the conjugate gradient method for DFN problems with the proposed approach is
investigated, aiming at a reduction in the overall computational cost.

Let us recall the optimization algorithm described in Section 4.4:

Conjugate gradient method

1. Choose an initial guess u°

2. Compute hg and pg solving (7.23) and (7.24) and gy by (7.25)
3. Set do = —4o, k=0
4. While g #0

4.1. Compute A\ with a line search along dj,
4.2. Compute ug1 = ug + A\pdg
4.3. Update gx+1 = gr + Ne G,

T
919k
4.4. Compute By = R

9k 9k

4.5. Update dx+1 = —gg+1 + Br+1dk
46. k=k+1

where gi indicates the gradient vJ (ug) at step k and dj, the direction of movement. Let
us denote by di* the descent direction at iteration k that vanishes the residual g, i.e.

gk + @dix = 0. The idea for preconditioning consists in evaluating an approximation
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d of di* to be used in place of the conjugate gradient direction. In order to make
the computation of direction dﬁ affordable, it can be determined on a coarser grid with
respect to the computational grid. In this respect this kind of preconditioning borrows
the structure of multi-grid (MG) preconditioners, but relying on a different concept.
In fact MG preconditioning is based on a correlation between error frequencies and
computational grid typical of problems with an elliptic structure with solvers that have
certain smoothing properties, [1]. Even if on each fracture of a DEN elliptic problems are
solved, G does not share the spectral properties expected for efficient application of MG
preconditioning. As a consequence, the speed up will not be given by the reduction of
lower error frequencies on the coarser grids as in multi-grid preconditioners, but rather
it depends on the quality of direction dz in approximating dg".

Let us introduce a two grid framework with a finer computational grid for the res-
olution of the DFN problem and a coarser grid for preconditioning purposes, and let
us denote by U and Us,. the discrete spaces for the control variable on the fine and
coarse grid respectively. Let then G ¢ be the matrix G on the fine grid and G, the corre-
sponding matrix on the coarse grid. We define a prolongation operator Lf “Us.e — Us,f
and a restriction operator Ij‘i :Us,; — Us,e, such that (I]Ccu, v)u&c = (u, Igv>u&f, for all
u € Us,r and for all v € s, (see [1]). Given the gradient direction gy,  at iteration &k on
the fine grid provided by the conjugate gradient algorithm, the preconditioned descent

direction can be written as:

& =T (dre),  Gedpe=— (I5(gry)) (6.1)

The resolution of the linear system in (6.1) for dj, . on the coarse grid does not necessarily
require to form matrix G,. It is possible to rewrite it as a minimization problem on the

coarse grid as follows:

Gedpe+ (If(gr.p) = Ge (ue = If(urg)) + (If(gn.p)) = 0
R R T
RN néin uZchc + (I]cf(gk,f) - Gc]]c”(ulaf)) Ue

thus having the same structure of the problem on the finer grid, and, as such, solved
with an optimization (iterative) method. As in multi-grid preconditioning, more levels
with successive coarsening of the grids could be used and, depending on the size of the
coarsest grid, the computational cost for assembling G, could be comparable or even
less than that of solving (6.1) as a minimization problem. We remark that matrix G,

can be assembled working independently on each fracture of the DFN.
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As in a multi-grid scheme the correction on the coarse grid can be evaluated after a
given number of iterations of conjugate gradient, according to the value of a parameter

nog. The preconditioned algorithm can be then written as:
Algorithm 6.1. Preconditioned conjugate gradient method

1. Choose an initial guess u°

2. Compute hg and pg solving (7.23) and (7.24) and go by (7.25)
3. Set dg =0, Bo=0, k=0, kag =0

4. While g # 0

5. if kcg < ncg (Conjugate Gradient scheme)

5.1. Compute d = —gi + Brdy,

5.2. Compute A\, with a line search along dy,
5.3. Compute ugr1 = ug + A\pdg

5.4. Update gx11 = gr + Ne G,

_ g{+1gk+1

5.5. Compute By = Tor

5.6. k=k+1, kcg=kcg+1
6. else (Preconditioned scheme)

6.1. Compute d, according to (6.1)
6.2. Compute uji1 = ug + dj,

6.3. Update gpr1 = gx + Gdg

6.4. k=k+1, kcg =0

7. end (if)

Some numerical results on this preconditioning technique are now discussed. All the
simulations are performed solving system (6.1) exactly on the coarse grid. The XFEM
is used for the discretization of the solution h on the fractures, while a node strategy ED
is chosen for the control variables. The fine grid has maximum elements area of 7m?,

while the coarse grid of 30m?. The ED discretization for the control variables on the
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fine and coarse grids are nested, in order to ease the generation of the restriction and

prolongation operators. Numerical result are shown for the DFN 120F. A maximum

number of 2000 iterations is prescribed for all the simulations. The results relative to

simpler DFN configurations, in fact, are not significant for the analysis performed here,

since the computational cost of a single iteration of the non preconditioned scheme (in

serial) might be significantly more expensive that the evaluation of the direction d? , while

this is not the case for more complex configurations, where the use of preconditioning

is of interest.

The quality of the solution is evaluated in terms of functional final value and of the

L2-norm of the residual g at iteration exit. In both cases lower values are desirable.
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Looking at Table 6.1, Panel A, it is possible to notice that the use preconditioning
allows to reach a much lower residual than the non-preconditioned case in the same
number of iterations. The computational cost in terms of cpu time required to perform
the maximum number of iterations allowed is higher for the preconditioned case, but
observing Figures 6.1-6.4 we can see that at the same time the preconditioned scheme
reaches a better solution in terms of residual norm. The minimum for the residual
is obtained for a value of ngg = 10. The results of Table 6.1, Panel B show the
performances of the preconditioner when the number of nodes for the control variables
are reduced on the fine and coarse grid of the same factor ny. Decreasing the number
of nodes leads to a reduction of the computational cost in terms of cpu time, but also
the benefits of preconditioning vanish, and if nyy < 0.25 there is no advantage in the use

of preconditioning, as can be noticed observing Figures 6.5-6.8.

Figures 6.9-6.12 show the effectiveness of preconditioning when the maximum area
of the coarse grid elements is increased, imposing the same number and disposition of
nodes for the control variables on the fine and coarse grids (i.e. Ig = I]Cc = I, identity
matrix). The results obtained highlight that increasing coarse grid area is not a viable

option to reduce the cost of this preconditioning technique.

Concluding, the presented preconditioning technique has a good potential in reduc-
ing the computational cost of the optimization algorithm, both in terms of number
of iterations and cpu time, but further investigations on more complex configurations

are required. Also the efficiency of different resolution strategies for the resolution of
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system 6.1 need to be evaluated. The obtained speed up is not comparable to the ex-

ponential convergence velocity achievable with proper multi-grid preconditioners, and a

spectral analysis of the method is advisable to design preconditioning techniques capable

of providing exponential convergence rates.

Table 6.1: Preconditioner behaviour for the DFN 120F, node strategy: ED

Panel A: nyy = 1, varying noa

Grid fine - Coarse CGsteps Iter Iter cpu time [s] Residual J
Ref. 2000 2628.72 0.000524984 0.000223922
1 1743 2737.17 3.56557e-06 0.000151742
7-30 5 2000 3248.51 7.08703e-07 0.000151179
10 2000 3219.46 1.64967e-07 0.000151127
20 2000 2887.91 2.76264e-07 0.000151125

Panel B: nog = 5, varying ny

Grid fine - Coarse ny Iter Iter cpu time [s] Residual J
Ref. 2000 2628.72 0.000524984 0.000223922
7-30 0.075 2000 2791.64 0.000255202 0.000263584
0.125 2000 2681.03 0.000238779 0.000213198
0.250 2000 2808.57 3.7036e-05 0.000196008

0.500 2000 2912.5 2.61896e-06 0.00015778
1.000 2000 3248.51 7.08703e-07 0.000151179
. .
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Chapter 7

The Virtual Element Method for
Discrete Fracture Network

simulations

Abstract The present work discusses the application of the Virtual Element Method
(VEM) to the simulation of discrete fracture network flows, with the optimization ap-
proach developed in [5, 6, 8]. The VEM is a newly developed technique for solving partial
differential equation problems with meshes constituted of polygonal elements with an
arbitrary number of edges. The generation of a conforming mesh is a demanding task
for DFN simulations given the intricate geometry of realistic network configurations.
The possibility of handling elements of arbitrary polygonal shape eases the process of
mesh generation, still giving a mesh conforming to the trace on a given fracture, but
non-conforming to the discretization of the intersecting fractures. The non-conformities
are easily handled by the optimization approach used. The implementation of the VEM
in the context of DFN simulations is fully described, and a panel of test problems and
some numerical results on complex networks are provided to show the effectiveness of

the method.

7.1 Introduction

Subsurface fluid flow has applications in a wide range of fields, including e.g. oil/gas

recovery, gas storage, pollutant percolation, water resources monitoring, etc. Under-
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ground fluid flow is a complex heterogeneous multi-scale phenomenon that involves
complicated geological configurations. Discrete Fracture Networks (DFNs) are com-
plex sets of planar polygonal fractures used to model subsurface fluid flow in fractured
(porous) rocks. Typically, a DFN is obtained stochastically using probabilistic data to
determine a distribution of orientation, density, size, aspect ratio, aperture and hydro-
logical properties of the fractures [1, 13, 14], and it is a viable alternative to conventional
continuum models in sparse fracture networks. DFN simulations are very demanding
from a computational point of view and due to the uncertainty of the statistical data,
a great number of numerical simulations is required. Furthermore, the resolution of
each configuration requires vast computational effort, increasing greatly with problem
size. In this work, we focus on the resolution of the steady-state flow in large fracture
networks. The quantity of interest is the hydraulic head in the whole network, which
is the sum of pressure and elevation and is evaluated by means of the Darcy law. We
consider impervious rock matrix and fluid can only flow through fractures and traces
(intersections of fractures), but no longitudinal flow along the traces is allowed. Match-
ing conditions need to be added in order to preserve continuity along traces and flux
balance at fracture intersections. The classical approach to DFN simulations consists
in a finite element discretization of the network and in the resolution of the resulting
algebraic linear system. With this approach, a great numerical obstacle to overcome is
the need to provide on each fracture a good quality mesh conforming not only to the
traces within the fracture, but also conforming to the other meshes on fractures sharing
a trace. If this kind of conformity is required, the meshing process for each fracture is
not independent of the others, leading in practice to a demanding computational effort
for the mesh generation. In large realistic systems, which can count thousands, or even
millions, of fractures, this mesh conformity constraints might lead to the introduction of
a very large number of elements, independently of the accuracy required on the solution
and possibly leading to over solving, if we consider the level of accuracy of the physical
model.

Strategies are proposed in literature to ease the process of mesh generation and
resolution for DFNs of large size. Some authors, see e.g. [15, 19], propose a simplification
of DFN geometry to better handle the meshing procedure. In other cases, dimensional
reduction is explored as in [11] and [12], where a system of 1D pipes that connect traces
with fractures has been used to simplify the problem. Mortar methods are used to relax

the conformity condition with fracture meshes, that are only required to be aligned
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along the traces (see [17] and [18]).

In the recent paper [9] and follow up works [7] and [8], the problem of flow in a DFN
is retooled as a PDE constrained optimization problem. The approach proposed in these
works completely drops the need for any kind of mesh conformity, regardless of trace
number and disposition; this goal is attained via the minimization of a given quadratic
functional, allowing to obtain the solution for any given mesh. In this framework, any
mesh independently generated on each fracture can be used. Since the solution may dis-
play a non-smooth behaviour along traces (namely, discontinuous normal derivatives),
FEM on meshes not conforming to traces would result in poor solutions in a neighbour-
hood of the traces. In [9, 7, 8] the XFEM is used in order to improve the solution near
traces. In the present work the newly conceived Virtual Element Method is in charge
for the space discretization on each fracture. Taking advantage from the great flexibility
of VEM in allowing the use of rather general polygonal mesh elements, several complex-
ities related to XFEM enrichment functions can be avoided. Indeed, a suitable mesh for
representing the solution can be easily obtained starting from an arbitrary triangular
mesh independently built on each fracture, and independent of the trace disposition.
Then, whenever a trace crosses a mesh element, this can be split in two sub-elements
obtaining a partial conformity.

All the steps needed for the use of the VEM in conjunction with the optimization
approach for DFNs simulations are inherently fracture oriented, and can be executed
in parallel. Numerical tests show that this approach leads to an efficient and reliable
method.

We remark that the polygonal mesh obtained for VEM discretization naturally paves
the way also for the use of a Mortar approach. This possibility is currently under inves-
tigation by the authors. Nevertheless, our main target here is to assess the viability of
the optimization approach in conjunction with the VEM. Furthermore, within the opti-
mization method, mixing of different discretization strategies (standard finite elements
on meshes not necessarily conforming to traces, extended finite elements and virtual
elements of different orders) remains possible, thus improving the flexibility to deal with
any possible DFN configurations.

The present work is organized as follows: a description of the general problem is
provided in Section 7.2, followed by a brief introduction to the application of virtual
element method to the problem at hand in Section 7.3. Formulation and resolution of

the discrete problem are sketched in Section 7.4. Some technical issues concerning VEM
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implementation in this context as well as numerical results are given in Section 7.5. We

end with some conclusions in Section 7.6.

7.2 Problem description

In this section we briefly sketch the main ideas of the PDE optimization method for
discrete fracture network simulations introduced in [9, 7, 8].

Let us denote by 2 the DFN, composed by the union of planar open polygons F;, with
i=1,...,1, resembling the fractures in the network. Let us denote by 0F; the boundary
of F; and by 0f) the set of all the fracture boundaries, 02 = U{ZlﬁFi. We decompose
0N =TpUTlyN with TpNTy =0, T'p # 0 being T'p the Dirichlet boundary and I'y
the Neumann boundary. The boundary of each fracture is divided into a Dirichlet part
I';sp = I'p NOF; and a Neumann part I';y = I'y N OF;, hence 0F; = I';p U TN, with
Iip NT;n = (0. An empty Dirichlet boundary, I';p = 0 is allowed on fractures such
that OF; NT'p = (. Functions HP € H%(Fw) and GV € H_%(F,N) are given and
prescribe Dirichlet and Neumann boundary conditions, respectively, on the boundary
OF; of each fracture. Intersections between fractures are called traces and are denoted
by Sy, m = 1,..., M, while § denotes the set of all the traces of the system, and S;,
for ¢ = 1,...,1, denotes the subset of S corresponding to the M; traces belonging to
F;. Each S, uniquely identifies two indices Is,, = {i,j}, such that S,, C F; N F}.
Finally J; collects all the indices {;j} relative to the fractures Fj intersected by Fj, i.e.
jE€J; <= E;nFE #0.

The quantity of interest is the hydraulic head H that can be evaluated in € by
means of the Darcy law. This originates a system of equations on the fractures defined

as follows. Let us introduce for each fracture the following functional spaces:
Vi=Hy(F) = {v e B'(F) v, =0},

and

VP =ih(R) = {ve H'(R) v, = HP},

: U‘F«;D
and let us denote by H; the restriction of H on F;. Furthermore, let K; denote a
symmetric and uniformly positive definite tensor representing the fracture transmissiv-
ity. Without loss of generality and for the sake of simplicity, we assume that all traces

are disjoint; this is not a restricting assumption as noted in [9]. Then H; satisfies, for
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i=1,...,1I, the following problem: find H; € V;” such that Yv € V;

/Fi ! e P T

(S

(Tan)

t2 [[aysﬂ s 4 () 1b (s) (71

SES;

where ¢; € L?(F};) denotes a source term on Fj and the symbol 2 V-’ represents the

outward co-normal derivative of the hydraulic head:
0H;

with n; outward normal to the boundary I';n, and [[gl{{j] 5 denotes the jump of the co-
normal derivative along the unique normal 7y fixed for the trace S on Fj, and represents
the flux incoming into the fracture F; through the trace S. The equations (7.1) for
i =1,...,1I are coupled with the following matching conditions, ensuring hydraulic head

continuity and flux balance across the traces:

Hi\Sm_Hj‘Sm = 0, for i,y elg,,, Ym=1,..., M, (7.2)

; H;
8};& + a] = 0, for i,j € Ig,,. (7.3)
6y5m s, 6ysm S

The simultaneous resolution of equations (7.1)-(7.3) might result infeasible for practi-

cal applications, as previously discussed. In contrast, the approach developed in [9, 7, 8]
only requires the resolution of local problems on each fracture independently, resorting
to an optimization approach to enforce matching at the intersections. In order to de-
scribe this strategy, let us introduce for each trace in each fracture the control variables

_1 O0H;
U € y® = H 2(9), defined as U = oy + [[8%

parameter, and the quadratic functional

H , where « is a fixed positive
S

JHU) = (H ilsn, _HﬂSmHi{%(s) (74

2
Sm Sm
Je a1 ) )

Equations (7.1), prescribed on the fractures, are equivalently restated as:

/ Ki VH,VvdQ+a > / Hy v4dl = (7.5)
SES;
/F qzvdﬂ + <Gz ,’U|S> -1 (I‘ N % ,N Z ’U|S usus'

SES;
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Let us define (/5S¢ = H_%(SZ') and let R; denote an operator providing lifting of the
Dirichlet boundary conditions on I';p, if not empty. We then introduce the following
linear bounded operators:

A €LV V), (Aw,v)yr v = (K Ve, Vo) +a (wbi,%)s,

Bf € ﬁ(uS7Vz‘,)7 <BzSUz‘S7v>Vi',Vi = <Uz‘57v|s>z,{5,u5/v

B’i = Slgs- B;S € ﬁ(u8i7 ‘/z‘,)7 <BZUZ7 U>Vi/7Vi = <UZ7 U‘Si >Z/{Si USi’s

with w,v € Vj;, and U; € (45 is the tuple of control variables UiS for S € S;. Analogously,
U € U° denotes the tuple of control variables U; for i = 1, ..., I. The dual operator of A;
is denoted by A’ and B; denotes the dual of B;. The operator B;y € ﬁ(Hfé (Tin), Vi)
imposing Neumann boundary conditions is defined such that

AN _ (N

B G uhvew = (G0 e b () B (1)

According to this functional setting and definitions, problems (7.5) are restated as:
Vi=1,..,1I, find H; € VP, with H; = HY + R; H” and HY € V;, such that

AiH) = q;+ BiU; + BiNG) — AP R HP, in F, (7.6)

where AZD is an operator defined similarly to A;, but operating on elements in H!(Fj).
We remark that, if o > 0, for a given Uj, the solution H; to (7.6) exists and is unique
for a non isolated fracture even if we set Neumann boundary conditions on the whole
oF;.

Following the arguments proposed in [8], it can be shown that the unique minimum
of functional (7.4) is obtained for values of H and of the control functions U that
correspond to the fulfilment of conditions (7.2) and (7.3) on the traces. In other words,

the solution of the problem
min.J subject to (7.6) (7.7)

corresponds to the solution of the coupled system of equations (7.1)-(7.3).

As shown in previous works (see e.g. [8]) this optimization problem can be tackled
with a gradient based method. Even if different approaches could also be employed,
gradient-based methods are particularly appealing since they allow to independently
solve problems on fractures and can be straightforwardly plugged in a parallel resolution

process.
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In the continuous setting, the gradient based method is formally devised on the
following considerations: the optimal U € 14, solution to (7.7), satisfies the following

system of equations, corresponding to the Fréchet derivatives of J with respect to the

control variables: Vi =1,...,1
x s s S _
B*P;+ Ays:i <UZ- + Slg& U; > — aslg& (CPH(U;) + C7H;(U;)) =0, (7.8)

where the operators CZ-S = B;" are restriction operators on the traces, Ays; : us — ys’
is the Riesz isomorphism, and functions P; € V; are the solution to

AfP = G As [Slgs (CPH(U) — CF H;(U))

2 STr.(717. STr (7. _ ok . S ; )
+a S];!:Si (C’i H;(U;) + Cj H](UJ))] aC; <UZ + Slgs,- U; ) , in F;,(7.9)

with homogeneous Neumann and Dirichlet boundary conditions. Then, we can set
Vi=1,...,1

VJ(U;) = Bi*P; + Ays, slgs,-(UiS + U} — ol L(CPH(Ui) + CH;(U;))),  (7.10)

and
VJ(U) = Zﬁl VJ(U;). (7.11)

The gradient based algorithm for solving (7.7) is fully described in [8]. Here, we focus
on a first-discretize-then-optimize approach, and we move on by introducing, in the next

section, the space discretization.

7.3 The virtual element method

The Virtual Element Method [3, 4, 10, 2| is a very recent technique for solving
partial differential equations on meshes of fairly general polygonal elements with an
arbitrary number of sides. This characteristic is very attractive for the application
considered herein. Indeed, on each fracture we solve equation (7.6), whose solution
can have a discontinuous gradient across the traces. In order to correctly reproduce
this irregular behaviour, we can take advantage of the flexibility of virtual elements
by transforming, on each fracture, a given triangulation (non conforming to traces) in
a more general mesh, conforming to traces, simply obtained by splitting the triangles

along traces into more general sub-polygons not crossed by traces. We remark that
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Figure 7.1: Example of the mesh for the VEM: elements shaded have been cut into polygons

to match the trace on the two fractures independently

we do not require conformity between the meshes of the two fractures intersecting at a
trace. As a consequence of the meshing process, a partial conformity (i.e. conformity to
traces but no conformity between the meshes of intersecting fractures) will result, but
the meshing process is still independent on each fracture and thus easy and reliable( see
Figure 7.1).

Let us now describe the application of the VEM to the problem considered. For the
sake of simplicity, we consider in this section homogeneous conditions on the Dirichlet
boundary; furthermore, we consider in this work the case of virtual elements of order
k =1 and we assume that the fracture transmissivity K; is constant on each fracture,
but might vary from one fracture to another. We will focus on a generic fracture F; C §2,
since the process is independent on each fracture. Let {7;s}, be a family of meshes on
F;, being § the mesh parameter (corresponding to the square root of the largest element
size). Each mesh is built as previously sketched: we start with a given triangulation,
and whenever a trace crosses an element, the latter is split by the trace itself in two
sub-polygons. If the trace ends inside an element, it is prolonged up to the boundary of
the element. To note is that we obtain convex polygons, thus satisfying the assumptions
in [3]. Each 7T;s is therefore made of open polygons {E} with an arbitrary number ng
of edges e, and we call N; the total number of vertices. We define for each § a space
Vis C HY(F,) as follows. Following the notation in [3], for a generic element E of the

mesh, let us introduce the space

By (OF) = {v € C°(9E) : v, € P1(e), Ve C OE} .
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Let VP! be the space of harmonic functions that are linear on the boundaries of the

element,

VP = {v e HY(E) : vjpp € B1(OF), Avjp =0} .

We finally set
Vis={veHy(F):vpeVP, VE€T;}.

For each element, functions in V#! are uniquely identified by prescribing the polynomial
functions on OF, or, equivalently, specifying the values at the ng vertices of the polygon.
With this natural choice for the degrees of freedom, the C° continuity of functions
in V; 5 is easily enforced. The dimension of V;s is N;, and we introduce a Lagrange
basis {¢1,...,¢n,}, defined by ¢;(xy) = 0ji, where xy, is the k-th vertex in the mesh.
Functions {¢;} are in general not known explicitly inside the elements, but only on the
boundaries of the elements, and this is a key point of VEM. Further we observe that
the space of polynomials Py (E) C W,g‘E for each element E in ;5.

On the space V; 5 we define a symmetric bilinear form a;s : V; 5 X V; 5 — R as the

discrete counterpart of the bilinear form a; : V; X V; — R defined as

G

ai(Hi, U) = <A1Hz, U>Vilvv
On each element /' we introduce the bilinear form afé(-, E W,g‘E X VM\E — R:

al5(d,90) = (Ki VPP ¢, VPY o)+« <¢|Si non Pls, maE)S-ﬁaE +SE(p, ), (7.12)

and for any two functions ¢, ¢ € V; 5 we have

ais(d,0) = > als(4,9). (7.13)

E€Tis
In (7.12), the projection operator P : Vi,(g‘E — Py (F) is defined for any function

NS V;‘,(S|E by

(KiVPP ¢, Vp)p = (KiVe,Vp)p VpePi(E)
2251 P o(xx) = 2251 (xk)

(7.14)

being {x}x the coordinates of the vertices of element E, and SE . ‘/i#;\E X \/},5|E — R

is a properly designed functional that is non-zero on the kernel of P¥.



188

Chapter 7

Remark 7.1. Let us observe that the definition (7.12) for the bilinear form and (7.14)
for the projection operator slightly differ from the definitions introduced in [3]. In our
definition of the discrete bilinear form the projection operator does not affect the portion
of the operator defined on the traces, and consequently this term does not appear in
(7.14) or in the definition of the stability operator S¥. According to [3] we assume that
there exist two positive constants ¢y and ¢ independent from the mesh element £ and

of element diameter, such that:

co(Ki Vi, Vo) < 8%(p,0) < e1(Ki Vi, Vo), Vg € Vigp, with PP =0.
(7.15)

On each element E of the triangulation we have:

af(p,0) = af(6—P o+P b, 0-Po+P )

= af (PP o, PP o) +al (6= PP o0 —PF )
+af (¢ — PP ¢, PP @) + o (PF ¢, 0 — PF )

= af (PP ¢, PP ) +al (6 —P" ¢, 0 - P" )
+a(6=P 6, PP 0) g rop+a (e =P 0. PP )¢ o
+(Ki V(e —=P" ), V(P" 0)) p+ (Ki V(e = PP ), V(P 9))

= af (PP ¢, PP ) +al (6= P" ¢, 0 - PP )
+a (¢ =P 6. P ) g non T (e =P 0P ) g o (7.16)

where the orthogonality condition (7.14) has been used for the last equality.

It is possible to show that the given definition of the bilinear form is consistent and
stable. Consistency easily follows from definition (7.12) and from (7.14): for all E' € T; 5,
Vp e Py(E), VYo € Vi,g‘E we have:

al5(6,p) = (KiV(¢—P"9),Vp),+ (KiV(P" ), VD), + a(d,0)s rop
- (KZ V(PE ¢)7VP)E +a(¢7p)$iﬁaE - aiE((bap)7

being af(-,-) the restriction to a mesh element of the continuous bilinear form. Sta-
bility can be proved similarly to [3], using (7.12) and (7.16), as there exist two pos-

itive constants ¢ and @ independent from the element £ and from ¢ such that V¢ €
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Vi,(g‘E, aaf(p,¢) < afé(gb, ¢) <aaF (¢, ). For all ¢ € V@(;‘E we have:
al5(6,0) = (KiV(P"0), V(P 9)),+a(dd)gnor+ S (0—P"¢,0—P"¢)
= (KiV(P"¢),V(P" ) +a (PP 6, PP 9) g op
—a (PP 6, PP 9) g nop +(6:0)s,nom + 5" (0 =P  d,0 = P" 9)

S a’ZE(PE gb’ PE ¢) + « (¢, gb)sl NOE — (0% (PE gb’ PE ¢)SZ NOE
+e1 (Ki V(9= PP 9), V(6 — PP 9))
< max{Lei} (af(PF 6, P" )+ (Ki V(6 - P 6),V(6 - PF9)),,

+a (6= P 6,0 = PP ) g o +20 (0= PEO.PTO)g o)
= aa;($,9),
and in a similar fashion:
af5(6,6) > win{Lco} (aB(PF 6, PP 9)+ (Ki V(6 ~PF6), V(6 - PF6)),,
ta (6= P 6,6~ PP o) o +20 (0 PEO.PE ) g o)
= aa](¢,0).

Assuming basic quality properties for the triangulation, functional S can be chosen

as in [3] to satisfy conditions (7.15), thus having for all ¢, ¢ € Vis g

SE(6,0) = D Kild(xx) — (P 0) (i) () — (P 0)(xx))- (7.17)
k=1

Concerning the treatment of the source term ¢; at right hand side of equation (7.6), it
is shown in [4] that convergence rates are preserved approximating ¢; with a piecewise
constant function on each element of the triangulation.

Given the previous results and definitions it is possible to use the convergence theo-
rem in [3] to prove that the discrete problems on the fractures are well posed and enjoy
the convergence rates of standard finite elements of the same order.

Even if functions in V; s are only known on the edges of triangulation elements, the
knowledge of the degrees of freedom allows us to compute the discrete bilinear forms.

In fact, in order to compute P ¢, for any ¢ € Vi,é\E and p € Py (F) we evaluate:

0
(KiVo,Vp)p = / K;VoVp dE = / KiAp¢ dE + K; P ¢ dy
E E OF onop
0
= K _p¢ dry
oE  Ongp

where ngg is the outward unit normal vector to OF.
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7.4 Formulation and resolution of the discrete problem

As shown in Section 7.2, the problem has been reformulated as a PDE-constrained
optimization problem (see equation (7.7)) in which the quadratic functional J is to be
minimized subject to linear constraints. In this section, following a first-discretize-then-
optimize approach, we give some details about the discrete formulation of the problem
and the numerical approach for computing a solution to the problem. In the following,
we will use lower case letters for the finite dimensional approximations of functions H
and U.

7.4.1 Discrete formulation

As outlined in the previous section, we introduce a finite dimensional basis for each
fracture Fj, with a total number N¥ Z N; of DOFs on the fractures. Concerning
the functional space on the traces, in order to simplify the discussion, we consider the
following different numbering for the control functions u , induced by the trace num-
bering. Being S = S, a given trace, with Is, = {i,7} and assuming i < j, we denote
by wu,, and by wu, the control functions related to the m-th trace and corresponding
to fractures F; and F}, respectively. By overloading the notation, we use the same
symbol for the corresponding vector of DOFs. Let us introduce basis functions Q/J;mk,
k=1,..,N,, and 1/’;:,1@’ k = 1,..., N, for the space of the control function u,, and
u,b, respectively. Note that here we allow to use different spaces on the two “sides” of
each trace. Then we have, form =1,... M, * = — +, u;, = Zgi u:nkw;‘nk Setting
NT =M (N 4+ N}), we define u € RN" concatenating u], uy, ..., uy,ul;.

Let us consider the functional J, whose expression is given in Section 7.2 by equation
(7.4), and let us write the discrete functional in terms of L? norms instead of H~2 and

1 o .
H2 norms on the traces: its discrete counterpart is

- ‘ZZ /kzlhzk%ms th%kw dy+ (7.18)

i=1 SES;
N N N; N;
(3 st Dt 0D st~ 0D hiadins)d
m,k 7 m,k m,k 7 m,k i,k /ka|S J:k ]7k|S
S k=1 k=1 k=1 k=1

Let us define for all S,, € S, for p,q € Ig,, (possibly p = ¢), the matrices

Sm _ _ Sm
(CM ket —/ ks, Pals, d~, Cpq = E C,
Sm Sm €S,
mSOp
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Furthermore, for m = 1,..., M and « = —, + define ¢, € RNa*Na cF ¢ RNm* N and
Cm as:

* _ * * q + _ - + d — Cm C’jrzb

m)kz _/Sm ¢m7k‘wm,€ s (Cm)kf _/Sm wm,kwml 2% Cm_( (erri)T CTJ’Y_L ) ’

and By, € RN*Nm and By, € RNi>*Nm as

(Bﬁm)MZ/ U kPigg 47, (B;,m)kkz/ U kBie, 4V
Sim m Som m

The functional J in (7.18) is therefore written, in algebraic form, as
I
J(h,u) = Z > (L + o)A Clihi + (1+ ®)h] CF by — 2(1 — o®)h] CFh;
i=1 SES;
+(up)" Cmum+( )" e+ 2(u) T s, — b B )
—a(hi a(h] B;, = a(h] Bf ,ut) — al(uy) T (B7,,) " ha)

7,m m) 7,m U, i,m

—a((uh) " (Bif) " h) = al(uz) T (B} ) hy) = ol(ug) T (B,) T hy).

zm m)_

We now allow for a more compact form of J(h,u) by assembling previous matrices as

follows. We set

_ ] - + _
Bi7m — (Bz,m B;f:m) c RNZX(NmJl_Nm)’ Uy = (’LL u+)

m? 'm

For each fixed ¢ = 1,..., I, matrices B ,,, for m such that S,, € S;, are then grouped
row-wise to form the matrix B; € RY"Nsi with Ng, = Y5 oo (N, + N,). Matrix
B; acts on a column vector u; obtained extracting blocks u,,, for S,, € S;, from u and
appending them in the same order used for B;,,, as the action of a suitable operator
R; : RN s RNsi such that u; = Ryu. Finally, let B € RN *N" be defined by

B Ry

BrR;
Let now G* € RN"*N" 16 defined blockwise as follows: for i = 1,.... 1 we set
G?@' =1+ 042)Ci,i, G?j = (a2 — 1)C’fj if j € J; (0 elsewhere) |

where, fixed F}, J; collects the indices j such that |F; N F;| > 0. Since, obviously, j € J;

if and only if ¢ € J;, and due to the straightforward property (Gi‘]) G;‘Z, we have
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that G” is a symmetric matrix. Next, let us define the matrix G* € RV TN plockwise
as G* = diag(Cpm,m = 1,...,M). With these definitions at hand, the functional J is

rewritten

1
J(h,u) = 5 <hTth —ah?Bu— au BTh + uTGuu)

being h € RN obtained appending vectors h;, 1 = 1,.... 1.
We finally note that, setting

G Gh —aB
—aBT Gv
and w = (h,u), J can be simply written as J = %wTGw, with G straightforwardly
symmetric, due to previous considerations, and positive semidefinite by construction.

Constraints (7.6) are written as a unique linear system as follows: For all i = 1,..., T

define the matrix A4; € RVixNi a5

(Ai)ke = Z </F KiVPF ¢ 1.V PE ¢ip dF; + SE(@,k,éﬁz,z))

E€Tis

+ oy /¢i7ks¢i,g|s dy, ktl=1,...,N;
sesi S

where the operators P¥ and S¥ are defined by (7.14) and (7.17), respectively.

For each fracture F;, we set Nfgi =) s, es; Vm as the number of DOFs on traces of
F; on the F; “side”, and we define matrices B; € RN"XNgi grouping row-wise matrices
Bzm, with m spanning traces in S;, and setting for each m either x = + or x = —
according to which one of the two “sides” of trace S,, is on F;. Matrices B; act on a
column vector ), containing all the Nf';“i control DOFs corresponding to the traces of Fj,
obtained extracting blocks w,, for S, € S;, from v and appending them in the same
order used in the definition of B;. Again, this can be obtained as the action of a suitable
operator R, : R " s RS such that u, = Riu. In practice, R} extracts only sub-vectors

uy, from wu corresponding to control functions on the "correct side" of the trace.

The algebraic formulation of the primal equations (7.6) is then

where ¢; accounts for the term ¢; in (7.6) and for the boundary conditions on the fracture
F;.
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We set A = dla‘g(A27 1= 17 7I) S RNFXNF and define B e RNFXNT as

B1 R}

Br R}
Setting ¢ = (¢1,...,q1) € IR{NF, constraints (7.19) are then written Ah — Bu = q.

The problem under consideration is therefore reformulated as the following equality

constrained quadratic programming problem:
1
min J(h,u) = B <hTth —ah?Bu — au BTh + uTG“u) (7.20)
s.t. Ah — Bu =q. (7.21)
7.4.2 Solving the optimization problem

The first order optimality conditions for problem (7.20)-(7.21) are the following:

Gh —aB AT h
—aB?  Gv  —pT u | =10 (7.22)
A - B 0 —p q

being p the vector of Lagrange multipliers.

The previous saddle point problem is, for real applications, a very large scale prob-
lem, with highly sparse blocks, as A, G* are block diagonal matrices, G*, B and B are
block-sparse.

By (formally) using the linear constraint for eliminating the unknown h as
h=A"YBu+q), (7.23)
we obtain the following equivalent unconstrained problem :
min J(u) = %uT(BT ATTGhA I B+GY —aBT A”TB — aBT A7 B)u
+¢"AT(G" A7 B—aB)u.

For further convenience we rewrite J(u) = %uTéu +¢"u. A gradient-based method for
the minimization of the functional requires the computation of the gradient of J:
Viw) = (BTATG"A ' B+G" — (BT A"TB+ BTA™ 1 B))u +
(BT ATG" —aBT)A™ .
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or, equivalently, Vj(u) =Gu+q.
The gradient can be written in terms of some auxiliary variables as follows. Rear-

ranging previous expression, we obtain
Vi) =BT ATTG"A™ (Bu+q)+ Gu—a BT A~"Bu— aBTA (Bu+q)
and recalling (7.23), one has
VJu) =BT ATG"h + G'u — a BT A~TBu — aB”h.
Now set p := A~T(G"h — aBu), i.e. given h and u, p solves
ATp = G"h — aBu. (7.24)

With these definitions, we may write

VJ(u) =B p+ G'u— aBTh. (7.25)

Note that setting to zero the previous expression for obtaining stationary points for
J(u), and collecting such equation together with (7.23) and (7.24), we obtain system
(7.22).

Concerning the numerical solution of the optimization problem, we mention here
two possible approaches. The first one consists in solving the linear system (7.22). An
iterative solver is clearly a recommended choice, and symmlq [16] would be a suitable
choice; this approach has been used in [7]. Another approach consists in applying an
iterative solver to the minimization of .J (u). We focus here on this second approach,
sketching the conjugate gradient method applied to the minimization of J (u). In the
algorithm, let us denote by gi the gradient V.J (ug) at step k and by dj the descent

direction.

Conjugate gradient method

1. Choose an initial guess u°

2. Compute hg and pg solving (7.23) and (7.24) and go by (7.25)
3. Set do = —4o, k=20

4. While g, £ 0
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4.1. Compute A\ with a line search along dj
4.2. Compute ug1 = ug + A\pdg
4.3. Update gx+1 = gr + Ne G,

ng+19k+1
T
9k 9k

4.4. Compute Sr11 =
4.5. Update dx+1 = —gg+1 + Br+1dk
46. k=k+1

Due to linearity, Step 4.3 is equivalent to compute g1 = Guk+1 + ¢. Indeed,
Grer1 = Gups1 + G = Gug + Medi) + G = Guy + G+ MeGdy, = gi, + MeGdy..

Nonetheless, we remark that this step is clearly performed without forming matrix G,

but rather computing vector y; = Gdy, through the following steps:
1. Solve At = Bd
2. Solve ATy = GM — aBdj,
3. Compute vy, = BT v+ G*dj, — aB”'t

Furthermore, since J is quadratic, the stepsize A\, in Step 4.1 can be computed via
an exact line search. Given a descent direction dj, we compute A; such that it minimizes
the function ¢(\) := J(ug + Ady,). Straightforward computations show that one has
_ digy

d{Gdk

B = (7.26)
The stepsize Ay is therefore computed without much effort, as quantity Gdy, is the same

needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of
the linear systems with coefficient matrix A (which actually equals AT). Nevertheless,
we recall that matrix A is actually symmetric positive definite, block diagonal with each
block defined on a fracture. The systems are therefore decomposed in as many small
“local” systems as the number of fractures. Right-hand-sides of the local systems gather
information both from the current fracture, and from the intersecting fractures, which
are typically small in number. Hence, these independent linear systems can be efficiently

solved on parallel computers.
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7.5 VEM implementation and numerical results

In this section we address some implementation issues concerning the use of VEM
in conjunction with the optimization approach described in Section 7.4. In addition,
we present some numerical results in order to show the viability of the VEM for the
simulation of discrete fracture networks and to highlight the effectiveness of the overall
method in this context. Simpler test problems focused on particular implementation

issues anticipate some numerical results on more complex DFNs.

7.5.1 VEM for DFN

We start describing the procedure for obtaining the computing mesh on the fracture
network. Let us recall that each fracture in a DFN is represented by a 2D polygonal
domain and is intersected by other fractures of the network in a set of traces. As a first
step, triangular meshes are generated on each fracture independently, without taking
into account trace positions or conformity requirements of any kind. Next, we proceed
independently on each fracture and whenever a trace intersects one element edge, a new
node is created. New nodes are also created at trace tips. If the trace tip falls in the
interior of an element, the trace is prolonged up to the opposite mesh edge. Intersected
elements are then split into two new “sub-elements”, which become elements in their
own right, as shown in Figures 7.2 and 7.3 that represent the two phases of the process
described above. In these pictures, coloured elements are the new virtual elements,
whereas blank elements are the original triangular elements. Elements with up to 6
edges are introduced in these examples. In the Figures, each color corresponds to a
different number of edges in the element. The reader might refer to the PDF file to
zoom in the pictures for a more detailed view.

The polygonal mesh obtained with the procedure described is possibly improved
through the displacement of some nodes. Namely, when a node falls very close to a trace,
it can be moved onto the trace itself, and therefore reducing the number of element edges
and total degrees of freedom. The mesh improvement process is performed as detailed
in the following. The distance of each node of intersected elements from the nearest
trace is compared to a given mesh dependent tolerance. If the distance of the node to
the closest trace is below the tolerance, then the node is moved to its projection on the
trace. Vertices of the fractures always remain fixed and nodes in the border are only

moved provided that they remain on the same border in order to avoid changing the
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Figure 7.3: Left: detail of a mesh around a trace intersection. Right: detail of a mesh

around a trace tip.
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10 20 30 40 50 10 20 30 40 50

Figure 7.4: Left: example of VEM mesh without modification. Right: Same mesh after

modifications.

shape of the fracture. This procedure is performed independently for every fracture,
and although not strictly necessary, it is advisable. The effect of this additional mesh
modification is shown in Figure 7.4.

Since VEM basis functions are not known in the interior of mesh elements in general,
we resort to the following mesh-dependent L? and H' norms commonly used in the
context of mimetic finite differences, and defined Vu € V;s and for all ¢« = 1,...,1,

respectively as:

s = > ('a% > Jef () )

E€T; s eCOE
2
un(vi) — up(ve)
s = 3 (rE\ > (o)),
E€T; s eCOFE

where v; and v, are the initial and final point of the edge, respectively.

7.5.2 Test problems

We first propose two test problems aimed at evaluating VEM approximation capa-
bilities in the DFN context by means of applying them to very simple configurations

representative of common situations in DFN simulations. In these test cases, a single
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problem of the form (7.1) is solved, i.e. a single fracture F' is considered, assigning u on
the traces. In the first case, two intersecting traces are present in F', completely cross-
ing the domain, while a single trace ending inside the domain is studied in the second
problem. The proposed numerical results show very good approximation capabilities of

virtual elements in dealing with these geometrical configurations.

Problem 1

The first test problem, labeled P1, displays two traces intersecting each other inside
the domain. The domain is a single rectangular fracture F' C R? with two traces S; and
So defined by:

F={(z,y) eR*: 1€ (0,3),y € (0,1)},
S1={(z,y) eR*:z—y—1=0}, Sy ={(z,y) eR*:2—z—y=0}.

The domain is shown in Figure 7.5 with a coarse mesh with parameter d,,,, = 0.2 along
with a detail of trace intersection. Here and in the sequel §,,4; denotes the square root
of the maximum element area for the initial triangulation on each fracture. For this
mesh, the original triangular element containing trace intersection is split into four new
elements, two triangles and two quadrilaterals.

The problem is set as follows:

—AH =—-AH® O\ S,
H=0 on OF,
aHGZE
Ul_fsl_ |:|:67951:|:|S on Sl’
aH@Z‘
UQ—fSQ_ |:|:aﬁ5‘2:|:|s on SQ,
with
zyly—)(z—y—1)(x+y—2)/7 in Ay,
ox l—y)z—y—1)(z+y—2 in Ao,
ety = ] T D=y =D +y-2) _
yle—y -z +y-2) in Ag,

y(A =y =3)(r—y-D(+y—2)/5 in Ay,

where Ay, As, A3 and A4 denote the four regions in which F' is divided by the traces,
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Figure 7.5: Problem P1. Left: Domain with coarse grid 0,4 = 0.2. Right: a detail of

trace intersection.

as indicated in Figure 7.5. Values of fg, and fg, are

1/(7v2)(2 — 2 — y) (T — 2(6 + ) + 20y

for (2.y) = +22(1 4 2)y — bay® + y°) r+y—2<0
e /(v — 2 — ) (~8+y(1+y)(11 + )
+22(=1+2y) —z(1+y(4 + 5y))) r4+y—2>0,
and
1/(5v/2) (=1 + 2 —y) (=16 — (=10 + z)z + 38y

fou () = +2(=7+ 2)zy + 5(—3 + z)y* + y3) y—x+1<0
sy 1/ (TV2)(~1 4+ —y) (—28 + 22(~1 + 2y)

+y(234+ (=34 y)y) + (94 y(—8 + 5y))) y—x+1>0.

In Figure 7.7, left, the numerical solution obtained on a fine mesh with parameter
Omaz = 0.05 is displayed. This problem has been solved using both the VEM and
the XFEM for the space discretization, as described in [9, 7, 8]. Figure 7.7, right,
reports, for both space discretizations, errors computed versus the number of DOFs.
We remark that, when applying the two approaches, we always start from the same
triangular mesh. The XFEM deals with irregularities in the solution along traces by
adding suitable enrichment functions (see [7, 8] and references therein), resulting the
two methods in a different number of DOFs, when the same mesh parameter is used.
Computed convergence rates are close to the expected ones both in the L? and the H!
mesh-dependent norms, and both for the VEM and for the XFEM: namely, L? norm
convergence rate is 1.03 for the VEM and 0.99 for the XFEM, whereas the H' norm
convergence rate is 0.49 both for the VEM and for the XFEM. The L? norm of the error

on the restriction of the solution to the traces is also reported (label 'L2H on trace’ in
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Figure 7.7: Problem P1: error behaviour

the legend), and displays a convergence rate of 1.0 for the VEM and 0.91 for the XFEM.
As a whole, the two space discretizations yield a comparable level of accuracy, and the
intersection between traces is easily handled by the VEM on a polygonal mesh with very
good approximation properties.

Problem 2

Let us define the domain F' for the second test problem P2 as

F={(z,y) eR®: 1<z <1, -1<y<l1, 2=0},
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with a single trace S = {(w,y) ER?:y=0and —1<z< O} ending in the interior
of F'. This test problem has also been considered in [7]. Here we set out to show the
behaviour of virtual elements in handling the non-smooth behaviour of the solution

around trace tips. Let us introduce the function H*(z,y) in F as:

H(z,y) = (2% — 1)(y* — 1)(z% + %) cos (% arctan2(x,y)>

where arctan2(zx,y) is the four-quadrant inverse tangent, giving the angle between the
positive z-axis and point (x,y), and differs from the usual one-argument inverse tangent
arctan(-) for placing the angle in the correct quadrant.

The problem is defined by the system:

—AH =—-AH* on Q\ S,

H=0 on OF),

3

U=z—zx on S,

where U is the prescribed value of the jump of fluxes across the trace S.

Figure 7.8 shows the VEM mesh and the resulting elements near the tip. In this
implementation of the method, the tip becomes a new node of the triangulation, and
three new four-sided elements are generated. Two of them are obtained from the original
triangle that contained the trace tip, while the third one appears when the node given
by the intersection between the prolonged trace and the opposite mesh element is added
to the corresponding neighbouring triangle that becomes a quadrilateral.

The approximate solution is shown in Figure 7.9. In Figure 7.10 we report errors
computed both with the L? and with the H' mesh dependent norms, both for the VEM
and for the XFEM. Computed convergence rates are, also for this test problem, quite
similar for the two space discretizations: 1.05 in the L? norm, and 0.51 in the H! norm
for the VEM; 1.02 in the L2 norm, and 0.47 in the H' norm for the XFEM. The Figure
also reports the errors on the restriction of H to the trace S, computed in the L? norm.
Computed convergence rate are in this case 0.85 for the VEM and 0.96 for the XFEM.
As for problem P1, the approximation properties of the two space discretizations are
therefore quite similar. As a whole, also this geometrical configuration including a trace
tip is effectively handled by the VEM, thanks to the flexibility in using polygonal mesh,
without affecting the approximation capabilities if compared, e.g., with extend finite

elements.
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Figure 7.8: Problem P2. Domain meshed with §,,,, = 0.1. Right: a detail of elements

near trace tip.

Figure 7.9: Problem P2: approximate solution with VEM obtained with a mesh with
Omaz = 0.1
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Figure 7.10: Problem P2: error behaviour

7.5.3 DFN problems

In this section we deal with networks of fractures, addressing both simple DFN prob-
lems and more complex and realistic problems. Computations are perfomed using the
PDE-constrained optimization approach described, in conjunction with virtual element

space discretization. The general DFN problem is set as follows:

—AH =gq Q\S, (7.27)
Hp, =H" on T'p,
H
9 - = GN on FN,
ov

with reference to the nomenclature introduced in Section 7.2.

DFN2

Here we analyze a very simple DNF consisting of two identical fractures that intersect
each other orthogonally, as can be seen in Figure 7.11 where the domain €2 is depicted.

Fractures 1 and 2 and the trace S are defined as:
F = {(w,y,z)€R3:z€(—1,1),y€(0,1),x:0},
J— {(x,y,z)E]R?’:xe(—1,1),y€(0,1),z:0},
S = {(x,y,z)6R3:x:O,y€(O,1),z:0}.
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Figure 7.11: DFN2: spatial distribution of fractures and the obtained solution for the
hydraulic head.

Homogeneous Dirichlet boundary conditions are imposed on the edges correspond-
ingtoz=0and z=1o0of Fj and to y =0 and y = 1 of F5 . On the remaining edges
we set homogeneous Neumann conditions for fracture Fj, and a non-constant Neumann
boundary condition for fracture F» given by GV = 16y(1 — y)%on I'y. With this defini-
tion of the problem, the exact solutions for the hydraulic head H®* and the trace flux

U are:

o 4y(1 —y)(z —1)2 for 2 >0
Hl (m,y,z) = {

4y(1 —y)(z +1)? for 2 <0
Ule$(xaya Z) = 16y(1 - y)

o 4y(1 —y)(x + 1) for x >0
H2 (CE,y,Z) = 9
dy(1 —y)(z — 1) forz <0
Ufw(wayaz) - _16y(1 - y)

In Figure 7.12 we present the results obtained for the hydraulic head on fracture
Fy (left) and Fy (right) using a mesh size 4, = v/0.002. Figure 7.13 shows the
comparison of the obtained flux with the exact solution and the trend of the minimization

of functional J against iteration number. Here, we have performed a number of iterations
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Figure 7.12: DFN2: approximate solution for fracture 1 (left) and fracture 2 (right).
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Figure 7.13: DFN2. Left: comparison between exact and approximate flux. Right: values

of J versus number of iterations.

large enough to let J reach stagnation at its minimum. The computed flux relative to

the minimum of the functional approximates the exact solution well.

Error norms are computed for the solution on the fractures in terms of the mesh-
dependent L2 and H! norms and are shown in Figure 7.14 against the number of degrees
of freedom. Errors for the flux on the trace and for the restriction of the solution A on the
trace are also evaluated and displayed on the same figure. Convergence rates are of 1.05
and of 0.51 for the solution error in the L? and H' mesh dependent norms respectively,
while a slope of 0.91 is shown for the L? error norm relative to the flux and a slope
of 0.94 for the L2 error norm of h at the trace. The results obtained show very good
approximation properties of the VEM in conjunction with the proposed optimization
method. Effectiveness of the method in handling more complex configurations is shown

with the examples that follow.
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Figure 7.14: DFN2: error behaviour

DFN7

This problem consists of 7 fractures intersecting in 11 traces. The spatial distribution
of the fractures can be seen in Figure 7.15. The source term is ¢ = 0 in equation (7.27).

The Dirichlet boundary I'p is given by only two fracture edges: namely, constant
Dirichlet boundary condition H” = 3 is set on one edge of fracture F3 (see Figure 7.15)
and HP = 7 is set on one edge of fracture ;. On all the remaining boundaries of the
network we set homogeneous Neumann conditions.

Due to the disposition of the fractures and the boundary conditions, the exact so-
lution to this DFN problem is piecewise affine and displays a slope change at each
trace (the jump in the slope corresponding to flux exchange). In this problem we show
the capability of the VEM discretization, combined with the optimization approach, to
correctly catch the solution in the space of discrete functions.

Results are shown for a very coarse mesh (from 8 to 18 elements for each fracture)
and for a finer mesh with dpax = 0.2. See Figure 7.16 for a detail of the meshes for
fracture 3.

Table 7.1 details the flux exchange in fractures and traces for the solution on the
finer mesh. Rows correspond to traces and columns to fractures. The last row contains
the sum of all the incoming and outgoing flow for each fracture, while the last column
shows the balance in flux exchange between the two fractures that share a trace. An

almost perfect balancing of the fluxes can be seen, both within fractures and in trace
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Figure 7.15: DFNT7: spatial distribution of fractures and the obtained solution for the
hydraulic head.
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Figure 7.16: DFNT7: mesh on Fg with parameter §,,q, = 1.2 (left) and finer mesh with
Omaz = 0.2 (right).

Figure 7.17: DFN7: solutions obtained for fracture 6 with coarse (left) and fine (right)

mesh.
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Table 7.1: Flux data for the DENT configuration with flux mismatches across traces (last

column) and flux balance on fractures (last row).

DFN7
F1 F2 F3 F4 F5 Feé F7

T1 -0.036 0.036 -9.8e-12
T2 -0.17 0.17 4.6e-12
T3 0.21 -0.21 | -1.6e-12
T4 -0.24 0.24 -1.6e-12
T5 0.24 -0.24 | -1.1e-11
T6 0.064 | -0.064 -2.7e-12
T7 0.039 -0.039 -8.9e-12
T8 0.34 -0.34 1.1e-11
T9 0.31 -0.31 4.8e-12
T10 0.029 -0.029 8.3e-12
T11 0.039 -0.039 8.1e-13

-2.1e-14 | 4.4e-14 | 0.7505 | le-14 | 4.2e-16 | -1.4e-14 | -0.7505 | -5.9e-12

exchanges. Fracture F7 acts as a source that provides 0.7505 of flux to the system
(negative values represent flux leaving the fracture), which leaves the system at fracture
F3 with an approximately 0 unbalance reported in the bottom-right cell of the table. All
other fractures show a quasi non-existent net flow, which agrees with the homogeneous

Neumann boundary condition.

DFN36

We end the section with a realistic (though rather small) DFN consisting of 36
fractures intersecting in 65 traces. The spatial distribution of the fractures can be seen
in Figure 7.18. Assuming meters as unit of length, fracture size spans from 2.8 x 10>m?
to 1.2 x 10*m?.

The Dirichlet boundary is composed by two edges of two fractures, namely I'p is
composed by the borders of fracture F; and F5 indicated in Figure 7.18, prescribing
constant value Dirichlet conditions, HY = 100 and HY = 0. Homogeneous Neumann
boundary conditions are set on all the remaining boundaries. With these boundary
conditions fracture F} is a source of hydraulic head, F5 is a sink fracture and all other

fractures are insulated. Also in this case we set ¢ = 0 in (7.27).
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Figure 7.18: DFN36: Spatial distribution of fractures and the obtained solution for the
hydraulic head.

< 50m?. In Figure 7.19

= 30m? on a selected fracture and the corresponding

The problem is solved on several meshes, with 2m? < 62,
the detail of a mesh with 62,
obtained solution are shown.
The quality of the obtained solution can be evaluated in terms of two indicators,
representing the mismatch errors in the continuity condition and in the flux balance

condition on the traces per unit of trace length, defined respectively as:

VIR, = by, 112

cont —

M Y
Zmzl |Sm|
M
Vi e = athigg, + b )12
flux = Wi .
Zmzl |Sm|

These mismatch errors are reported in Table 7.2 for different mesh sizes. Namely, we
report values obtained with both the VEM and the XFEM based space discretizations.
The table also reports the number of degrees of freedom in the two cases, corresponding
to each mesh parameter. We remark that the number of DOFs for w is the same in
the two cases, as we use on the traces a finite element discretization which is induced

by the intersection points among the initial triangular mesh element edges (the same
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Figure 7.19: DFN36: Left: Mesh with maximum element size of 30m? on a selected fracture.

Right: Solution on the same grid.

Table 7.2: DFN36: Aqqpt and Ag,y for various mesh sizes.

VEM XFEM
62 .« | wdof | h dof Afux Acont h dof Afux Acont
50 776 | 4091  9.515e-04 9.432e-04 | 5772 1.039e-03  9.521e-04
30 942 | 6048 9.621e-04 8.394e-04 | 8106 1.147e-03 1.181e-03
12 | 1342 | 13967 6.736e-04 6.514e-04 | 16932 7.358e-04 8.189e-04
5 1885 | 30782 5.972e-04 6.083e-04 | 34958 5.930e-04 7.019e-04
2 2862 | 74107 4.847e-04 3.949e-04 | 80403 4.342e-04 4.664e-04

for the two approaches) and the trace itself. On the other hand, the number of DOFs
for h is different for the two approaches here adopted, and is in general smaller for the
VEM. This is due to the fact that the XFEM deals with totally non-conforming meshes
through the introduction of suitable enrichment functions in triangles close to the traces,
thus yielding a bit larger number of DOFs. Note that this larger number of DOFs for
the XFEM is required for handling a total non-conforming mesh, but it does not yield
more accurate mismatch errors with respect to the VEM approach. As a whole, a good
accuracy is obtained with both approaches, and the mismatch errors reduce with mesh

refinement.

7.6 Conclusions

The very recent Virtual Element Method is coupled with the optimization based
algorithm presented in [9, 7, 8] for the numerical simulation of DFNs on large scales.

The flexibility of virtual elements in handling meshes with elements of fairly general
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polygonal shape allows an easy mesh generation process, reliable and independent on

each fracture, suitable for the optimization approach used. The resulting method is

robust as can approach any DFN with arbitrary fracture density, and efficient, since it

provides an easy parallel approach to the simulation of large networks. The numerical

results reported show the viability and effectiveness of the VEM for the simulation of
DFNs.
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