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Introdu
tion

The obje
tive of the work presented here is the des
ription and the investigation of

a novel numeri
al tool for the e�e
tive simulation of �uid �ows in underground poro-

fra
tured media at large s
ales.

This subje
t is of interest for several pra
ti
al appli
ations. In the 
ontext of an

in
reasing 
on
ern towards environmental friendly industrial appli
ations, sequestration

and underground storage of CO2 is 
urrently under investigation as a potential way to

redu
e emissions of greenhouse gases. CO2 is pumped in underground basins, where

over geologi
al time-s
ales it rea
ts with underground minerals forming stable 
arbon-

ate mineral forms. Numeri
al models are a valuable tool for geologists and engineers to

assess safety and viability of spe
i�
 geologi
al sites, in order to study the risk of dan-

gerous leakages of gases through ro
k faults, or the dispersion of CO2 in the atmosphere

due to �ltration through ro
k pores. CSS and a deeper resear
h on the subje
t towards


ost-e�
ien
y and safety is 
urrently promoted by European Commission, see Dire
tive

2009/31/CE and the CSS website [7℄.

Countries that import natural gas for energeti
 purposes need to store huge quantities

in order to fa
e both typi
al �u
tuations of request and unforeseeable long periods of

s
ar
e supply. Natural gas storage is usually performed in depleted geologi
al reservoirs,

or in large underground basins. Numeri
al tools 
an be used to assess the viability of

geologi
al sites, to predi
t seepage of �uid and the me
hani
al response of the ro
k faults

to variations of pressure during the 
y
li
al gas pumping in and out. As an example,

Italy highly relies on imported gas for energy supply and 
urrently has fourteen storage

sites with a trend towards an in
rease of storing 
apa
ity ([12℄).

The exploitation of an oil �eld requires a detailed assessment of soil properties and

geologi
al 
hara
teristi
s of the ground at reservoir s
ale. This is a lengthy and expensive

pro
ess, requiring a large number of wells and soil analysis. Numeri
al 
odes are widely

ix



x Introdu
tion

used in this pro
ess, and more e�
ient algorithms are required in order to improve

predi
tions and thus redu
e 
osts.

The re
ent exploitation of shale gas in the United States requires horizontal drilling

of the soil and the generation of fra
tures in the impermeable shale formations in order

to extra
t the natural gas trapped therein. These te
hniques have a high environmental

risk, linked to the intense use of water for the generation of fra
tures, the emission of

large quantities of greenhouse gases in the atmosphere, the 
ontamination of marine

and underground water, and therefore require a 
areful management ([24℄). Numeri
al

models 
apable to 
ombine the simulation of underground �ows with ro
k me
hani
s

and 
hemistry 
an be a valuable tool in this �eld.

Underground �ow numeri
al simulations �nd other possible appli
ation in the man-

agement and monitoring of surfa
e and sub-surfa
e water resour
es or in the analysis of

the transport and di�usion of pollutant spe
ies in the underground.

The present work fo
uses on the des
ription of a new numeri
al model for the de�ni-

tion of the hydrauli
 head distribution in Dis
rete Fra
ture Networks (DFNs). Dis
rete

fra
ture networks are a well established model to simulate hydrologi
al pro
esses in un-

derground ro
k agglomerates, [14, 19, 8, 11, 4, 9, 15, 3℄. A DFN 
onsists of a set of

interse
ting planar polygons resembling the fra
tures in a ro
k matrix. The expli
it

representation of ro
k fra
tures is the major 
hara
teristi
 of these models, that are

therefore preferred to 
ontinuum-like models when the fra
ture pattern represents the

preferential �ow path. This is the 
ase when faults in the ro
k matrix have a higher per-

meability than the surrounding ro
ks. On the other hand, 
ontinuum models or hybrid


ontinuum-fra
ture models are used when the sole fra
ture network is not su�
ient to


hara
terize the �ow behaviour. In 
ontinuum models the �ow is des
ribed as o

urring

in a 
ontinuous porous medium, in whi
h the presen
e of fra
tures is a

ounted for the

de�nition of a suitable permeability tensor ([16℄).

Lo
ation, orientation, size and hydrologi
al properties, su
h as the permeability

tensor, of the fra
tures of a DFN resembling a spe
i�
 geologi
al site are de�ned by

means of probability density fun
tions, whose parameters are obtained through labora-

tory analyses on samples from probing or boreholes [2, 5, 1℄. The quantity of interest

is the hydrauli
 head in the fra
tures, representing the sum of the pressure head and

of elevation. Hydrauli
 head is evaluated by means of the Dar
y law and low order

�nite elements are usually employed to numeri
ally solve the problem (see for example

ROCKFLOW, [22℄).



Introdu
tion xi

The 
lassi
al approa
h des
ribed above has two major drawba
ks that limit the use

of DFN models for large s
ale appli
ations. Firstly, DFNs of huge dimensions might


ount up to millions of fra
tures, thus requiring a very high 
omputational e�ort, and

additionally, repeated simulations are usually required to over
ame the un
ertainty due

to the sto
hasti
 nature of input data. Se
ondly, the generation of a good quality mesh

suitable for �nite elements might result infeasible for intri
ate DFN 
on�gurations. This

is 
onne
ted to the fa
t that fra
tures in DFNs interse
t with arbitrary orientation and

the �nite element triangulation need to be 
onformal to fra
ture interse
tions, usually


alled tra
es. As a 
onsequen
e elongated elements with poor aspe
t ratio might be

generated to mat
h fra
tures interse
ting with narrow angles, thus 
ompromising the

a

ura
y of the solution. In many 
ases, due to the 
onformity requirement, triangula-

tion 
odes might even fail in generating a mesh [21℄.

The method des
ribed herein ta
kles both these di�
ulties by splitting the problem

on the whole DFN in many small sub-problems on ea
h fra
ture that 
an be solved

independently from ea
h other, and resorting to the minimization of a 
ost fun
tional

to enfor
e the 
ompatibility 
onditions at fra
ture interse
tions. In su
h a way the


omplexity of the initial problem 
an be handled more e�
iently in parallel 
omputers

in an easy and straightforward way, and the meshing pro
ess 
an be performed inde-

pendently on ea
h fra
ture, removing the 
onstraint of triangulations 
onformal with

fra
ture interse
tions.

Di�erent dis
retization strategies are possible. The solution 
an be obtained using

standard �nite elements on ea
h fra
ture, or through the use of spe
ial �nite elements

in order to improve the a

ura
y near the tra
es, where the solution is expe
ted to have

a dis
ontinuous 
o-normal derivative and standard FEM on meshes non 
onforming

to the tra
es would not 
orre
tly reprodu
e this non-smooth behaviour. Alternatives


onsist in using the eXtended Finite Element Method (XFEM) that allows a full non-


onformity between mesh elements and tra
es and relies on additional basis fun
tions

to represent kinks in the solution, and the Virtual Element Method (VEM) that allows

a partial non-
onformity and an easy meshing pro
edure thanks to the use of elements

with an arbitrary number of edges. Within the proposed approa
h a mixing of these

dis
retization strategies is possible, improving �exibility in dealing with 
omplex DFN


on�gurations.

A large part of the resear
h a
tivity in the �eld of DFN simulations fo
uses on the

problems identi�ed above. In order to redu
e problem 
omplexity, in [6, 18℄ the authors
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suggest to des
ribe the DFN as a system of mono-dimensional pipes that 
onne
t the

tra
es with the neighbouring fra
tures, without a�e
ting the topology of the network.

Di�erent approa
hes rely on mortar methods to ease the meshing pro
ess allowing a

partial non-
onformity with the tra
es. In [23℄ mortar methods are used in 
onjun
tion

with mixed �nite elements, while in [20, 21℄ tra
es are modi�ed to 
onform lo
ally to

element edges, but allowing non
onformity with the dis
retization on the interse
ting

fra
ture that is handled with mortar methods. Geometri
al minor modi�
ation of the

DFN are also proposed in other works, su
h as [13℄. A di�erent approa
h is proposed

in [17℄, where the solution of 3D fra
ture networks is redu
ed to a system of di�erential

problems on the tra
es, organized su
h that it is possible to obtain su

essive levels of

approximations, a

ording to the a

ura
y required. In [10℄ ben
hmark DFN 
on�gu-

rations are provided and the authors envisage models with non-
onforming meshes and

a domain de
omposition approa
h as a promising strategy for large s
ale simulations.

Overview

The present thesis has the stru
ture of a 
olle
tion of journal arti
les and is divided

into three parts: the �rst part is devoted to the presentation of the mathemati
al state-

ments of method, proposed both in the 
ontinuous and dis
rete formulations. Also the

algorithm used to obtain a numeri
al solution is des
ribed, along with a large number

of numeri
al results that show the viability and e�
ien
y of the proposed method. The

�rst part is 
onstituted by Chapters 1-4 that report fully three published arti
les and a

fourth work 
urrently under review, 
o-authored by the author. In Chapter 1 is repro-

du
ed the following arti
le:

Berrone S., Piera

ini S. and S
ialò S., A PDE-
onstrained optimization formulation for

dis
rete fra
ture network �ows, SIAM Journal on S
ienti�
 Computing, 35(2), B487-

B510.

In Chapter 2 is reprodu
ed:

Berrone S., Piera

ini S. and S
ialò S., On simulations of dis
rete fra
ture network �ows

with an optimization-based extended �nite element method, SIAM Journal on S
ienti�


Computing, 35(2), A908-A935;

in Chapter 3:

Berrone S., Piera

ini S. and S
ialò S, An optimization approa
h for large s
ale simula-

tions of dis
rete fra
ture network �ows, Journal of Computational Physi
s, 256, 838-853
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and in Chapter 4:

Berrone S., Piera

ini S. and S
ialò S, The eXtended Finite Element Method for Sub-

surfa
e Flow Simulations, Under review.

The se
ond part is 
onstituted by unpublished material and is organized as fol-

lows. In Chapter 5, numeri
al results on 
omplex DFN 
on�gurations are provided

both with standard �nite elements on non
onforming grids and with the XFEM on the

same grids to improve solution representation. A preliminary investigation on the s
al-

ability properties of the algorithm end this Chapter. An analysis on a possible strategy

of pre
onditioning the 
onjugate gradient method for DFN simulations is proposed in

Chapter 6.

The third part is 
onstituted by Chapter 7 that reports an arti
le in preparation

on a preliminary investigation of the method in 
onjun
tion with the Virtual Element

Method as an alternative to the XFEM or FEM:

Benedetto, M., Berrone S., Piera

ini S. and S
ialò S, The Virtual Element Method for

Dis
rete Fra
ture Network simulations, In preparation.
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Part I

Presentation of the method

1





Chapter 1

A PDE-
onstrained optimization

formulation for dis
rete fra
ture

network �ows

Abstra
t We investigate a new numeri
al approa
h for the 
omputation of the 3D �ow

in a dis
rete fra
ture network that does not require a 
onforming dis
retization of par-

tial di�erential equations on 
omplex 3D systems of planar fra
tures. The dis
retization

within ea
h fra
ture is performed independently of the dis
retization of the other fra
-

tures and of their interse
tions. Independent meshing pro
ess within ea
h fra
ture is a

very important issue for pra
ti
al large s
ale simulations making easier mesh generation.

Some numeri
al simulations are given to show the viability of the method. The resulting

approa
h 
an be naturally parallelized for dealing with systems with a huge number of

fra
tures.

1.1 Introdu
tion

E�
ient numeri
al simulations of subsurfa
e �uid �ows in fra
tured ro
ks are of

interest for many appli
ations ranging from water resour
es management, 
ontaminant

transport and dissemination, oil prospe
ting and enhan
ed oil/gas re
overy. Among the

major di�
ulties are intrinsi
 heterogeneity, dire
tionality of the medium and multis
ale

nature of the phenomena, as well as un
ertainty in the medium properties. A Dis
rete

Fra
ture Network (DFN) is a 
omplex 3D stru
ture obtained interse
ting planar fra
-

3



4 Chapter 1

tures. DFN models are frequently preferred to more 
onventional 
ontinuum models as

basis for simulations. A 
lassi
al approa
h to the problem is to model fra
tures as planar

ellipses or polygons and sto
hasti
ally generate DFNs with probabilisti
 distributions of

density, aspe
t ratio, orientation, size, aperture of fra
tures and hydrologi
 properties

[9℄ and to simulate the �ow through the obtained networks. Intensive numeri
al simula-

tions with several 
on�gurations of DFNs and physi
al parameters are then performed

in order to ta
kle the issue of un
ertainty. The �ow pattern strongly depends on density

and size of fra
tures and for large s
ale simulations di�erent approa
hes are possible. For

dense fra
ture networks and 
ontinuous distribution of size and aspe
t ratios, �ow 
an

be modeled as the �ow in an equivalent 
ontinuous porous medium where the fra
ture

network pattern leads to the de�nition of a suitable permeability tensor. For sparse

fra
ture networks with some large fra
tures that dis
ontinuously in
rease dire
tional-

ity of the �ow, an expli
it representation of the fra
ture network is more reliable. In

both 
ases a sto
hasti
 approa
h to the un
ertainty of the parameters is needed and

this requires many simulations, so that e�
ien
y and large appli
ability of numeri
al

algorithms are fundamental issues.

Here the steady �ow in a given DFN is 
onsidered assuming the ro
k matrix im-

pervious and no longitudinal �ow in the interse
tion between the fra
tures. These

interse
tions are 
alled tra
es and are always segments.

In DFN simulations the �rst 
lassi
al numeri
al 
hallenge is to provide a good-quality


onforming mesh for this 3D stru
ture to be used for the dis
retization of the �ow

equations. Conformity of the mesh requires that for ea
h tra
e a unique dis
retization

is introdu
ed, whi
h is shared by all the dis
retizations of the fra
tures interse
ting along

the tra
e. Conformity on the tra
es and good quality of the meshes for a 
ompletely

arbitrary DFN 
an be obtained only with the introdu
tion of a huge number of elements

independently of the required a

ura
y of the numeri
al solution. In [28℄, a mixed

non-
onforming �nite element method on a 
onforming mesh is proposed. In [20℄, an

adaptive approa
h to the 
onforming mesh generation requiring adjustments of tra
e

spatial 
ollo
ations is proposed. Lo
al modi�
ations of the mesh or of the fra
ture

network in order to preserve 
onformity of the meshes or alignment of meshes along

the tra
es are 
onsidered in several works as [17, 28℄. In [11℄, a method to generate

a good-quality 
onforming mesh on the network system is proposed. In [23, 24℄, a

mixed hybrid mortar method is proposed allowing non
onformities of the meshes on

the fra
tures, but requiring that the tra
es are 
ontained in the set of the edges of
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ea
h fra
ture triangulation. Resorting to mortar methods the dis
retization of ea
h

fra
ture 
an lead to a di�erent dis
retization of the tra
es. A di�erent approa
h to the

simulation of the �ow in the fra
ture network is based on its modelization with a system

of mono-dimensional pipes that are aligned along the fra
tures and mutually 
onne
t

the 
enters of the fra
ture interse
tions with the surrounding fra
tures. The resulting

mesh of pipes still re�e
ts the topologi
al properties of the fra
ture network [6, 22℄. An

a

urate de�nition of pipe properties within the fra
ture system has been obtained by

means of a boundary element method in [10℄. However, the geometri
al simpli�
ation

implies errors in the assessment of the �uid �ow regime, depending on the 
omplexity

and geometri
al properties of the underlying DFN, thus the resort to a full dis
retization

is preferred.

Spe
i�
 
ommer
ial 
odes based on FEM are available, also simulating the �uid �ow

in the ro
k blo
ks [19℄; 
ontributions 
an be found in literature for the extension to


oupled problems with deformable blo
ks and fra
tures, even in 
onjun
tion with other

methods as BEM (e.g. [12℄). However, these 
odes su�er for a strong 
omputational

demand: the dis
retization in fa
t leads frequently to the generation of huge or poor-

quality meshes.

Problem model allows dis
ontinuities of �uxes of hydrauli
 head through the tra
es

when �uxes of hydrauli
 head leave a fra
ture to rea
h a di�erent fra
ture at the 
ommon

tra
e. In the previous approa
hes these dis
ontinuities 
an be modeled if they are

lo
alized at edges between elements or at the border of ea
h pie
e of fra
ture.

In this paper a new method is proposed, whi
h relies on the reformulation of the

problem as a PDE-
onstrained optimization problem. Following this approa
h, fra
ture

meshes are not required to mat
h along tra
es and any kind of mesh 
onformity along

tra
es is skipped, thus making the mesh generation pro
ess an easy task, attainable

with a standard mesh generator. Furthermore, the problem on the overall DFN 
an be

de
oupled in several lo
al problems on the fra
tures, thus allowing a great potential for

a possible parallel implementation. Dis
ontinuities of �uxes of hydrauli
 head 
an o

ur

on arbitrary tra
es with respe
t to the triangulation and the used �nite elements allow

to 
at
h these dis
ontinuities of the �uxes also inside elements. This 
an be obtained

introdu
ing suitable Extended Finite Elements (XFE).

The paper is organized as follows. In Se
tion 1.2, we re
all the physi
al model

and governing equations, and introdu
e the 
ontinuous optimization problem that leads

to the solution on the network system. In Se
tion 1.3 we re
all basi
s on extended
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�nite elements of the type 
onsidered herein, and give some details for the appli
ation

to DFNs. In Se
tion 1.4 a dis
rete formulation of the optimization problem is given,

whi
h leads to an equality 
onstrained Quadrati
 Programming problem. Finally, in

Se
tion 1.5 numeri
al results are dis
ussed in order to prove the viability, reliability and

e�e
tivity of the method.

Notations. In the paper, we will frequently use the following notations. We will

use 
apital letters for 
ontinuous unknowns (as for example the hydrauli
 head H) and

lower 
ase letters for the 
orresponding �nite dimensional approximation (e.g. h). We

will use the same lower 
ase letter for the ve
tor of degrees of freedom, the di�eren
e

being 
lear from the 
ontext. Roman 
apital letters will be used for fun
tional spa
es.

Given fun
tions gi, for i belonging to some index set I, the symbol
∏

i∈I gi denotes the

tuple of fun
tions (g1, g2, ..., g#I), being #I the 
ardinality of I.

1.2 Des
ription of the problem

1.2.1 The 
ontinuous problem

Let us 
onsider an open planar polygonal fra
ture ω ⊂ R
2
and let us introdu
e on ω

a tangential 
oordinate system x̂. Following [1℄, the problem of subsurfa
e �ow through

ω 
an be written as:

−∇ · (K∇H) = q in ω, (1.1)

H|ΓD
= HD on γD, (1.2)

∂H

∂ν̂
= GN on γN , (1.3)

where ∂ω = γD ∪ γN is the boundary of ω and γD ∩ γN = ∅, γD 6= ∅. The s
alar

fun
tion H = P +ζ is the hydrauli
 head, P = p/(̺g) is the pressure head, p is the �uid

pressure, g is the gravitational a

eleration and ̺ is the �uid density. The variable ζ is

the elevation, and K = K(x̂) is the fra
ture transmissivity tensor and is a symmetri


and uniformly positive de�nite tensor. The symbol

∂H
∂ν̂

denotes the outward 
o-normal

derivative of the hydrauli
 head:

∂H

∂ν̂
= n̂T K∇H

with n̂ unit ve
tor outward normal to the boundary γN .
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The de�nition of the hydrauli
 head in a Dis
rete Fra
ture Network Ω should require

the solution of problem (1.1)-(1.3) in a system of interse
ted polygonal fra
tures in the

spa
e. In order to de�ne 3D fra
tures Fi, let us 
onsider a set of open planar polygons

{ωi}i∈I, being I the set of their indi
es, and let F̄i ⊂ R
3
be the image of the 
losure of a

polygon ωi ⊂ R
2
through an a�ne mapping Ti(x̂i) = bi +Qi(x̂i − x̂0,i) where x̂0,i is the


oordinate of a given vertex of the polygon ωi in the lo
al planar referen
e system x̂i,

and bi is the position of the same vertex in the 3D spa
e. We assume that QT
i Qi is the

identity matrix, su
h that the di�erential operators de�ned on the tangential referen
e

system in Fi are equivalent to the operators de�ned on the planar fra
ture ωi. Let Ω be

the 3D set

Ω =
⋃

i∈I

Fi,

and let ∂Ω denote its boundary. Given two fra
tures, the interse
tion of their 
losure is

either an empty set or a set of non vanishing segments 
alled tra
es (vanishing segments

are not 
onsidered as no �ux ex
hange among fra
tures takes pla
e in these interse
-

tions). Let S denote the set of all the tra
es, and assume tra
es in S are indexed by a

set of indi
es M, with 
ardinality ♯M.

In the sequel, we make the following assumptions on the DFN:

1. Ω̄ is a 
onne
ted set;

2. ea
h tra
e Sm, m ∈ M, is shared by exa
tly two polygonal fra
tures Fi and Fj ,

i 6= j: Sm ⊆ F̄i ∩ F̄j ;

3. on ea
h fra
ture, the transmissivity tensor Ki(x̂i) is symmetri
 and uniformly

positive de�nite.

Given a tra
e Sm we denote by ISm = {i, j} the set of indi
es i and j of the fra
tures
Fi and Fj sharing the tra
e; for further 
onvenien
e, we also introdu
e the sorted 
ouple

cm = (i, j) with i < j. For ea
h fra
ture Fi, we denote by Si the set of tra
es shared by

Fi and other fra
tures.

In order to de�ne the problem on the DFN, let us 
onsider a set of open subfra
tures

fl, l ∈ L, obtained splitting ea
h fra
ture in su
h a way that ea
h tra
e is part of the

boundary of some subfra
tures and Sm ∩ fl = ∅, ∀m ∈ M,∀l ∈ L, see Figure 1.1. Note

that the tra
es belong to the boundary of the subfra
tures, but they do not ne
essarily


oin
ide with a whole edge of su
h boundaries, see e.g. tra
e S2 in Figure 1.1. So we
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Figure 1.1: An example of DFN splitted in subfra
tures

have

Ω =
⋃

l∈L

f̄l\∂Ω.

Let us split ∂Ω in two parts ΓD 6= ∅ and ΓN , with ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅,

orresponding to Diri
hlet and Neumann boundary 
onditions, respe
tively.

The global hydrauli
 head H in the whole 
onne
ted system Ω satis�es the following

equations ∀l ∈ L:

∇ · (Kfl ∇H) = ql, in fl, (1.4)

H|ΓD∩∂fl
= HD, on ΓD ∩ ∂fl, (1.5)

∂H

∂ν̂
∂fl

= GN , on ΓN ∩ ∂fl, (1.6)

with a 2D lo
al referen
e system on fl. Given a tra
e Sm let LSm ⊂ L be the set of

indi
es l su
h that Sm ⊂ ∂fl. Equations (1.4)-(1.6) have to be 
omplemented with the

following 
oupling 
onditions, 
orresponding to the physi
al requirement of 
ontinuity

of the hydrauli
 head and 
onservation of hydrauli
 �uxes a
ross the tra
es:

H|f̄l
= H|f̄k

, on Sm, ∀Sm ∈ S, ∀l, k ∈ LSm , (1.7)

∑

l∈LSm

∂H|fl

∂ν̂
∂fl

= 0, on Sm, ∀Sm ∈ S . (1.8)
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For this formulation of the problem existen
e and uniqueness of the solution are

known. In the following we want to fo
us on the whole fra
ture, disregarding this

subfra
ture approa
h. Thus, let us denote by Hi the restri
tion of the hydrauli
 head

H to the fra
ture Fi, ∀i ∈ I. Conditions (1.7) and (1.8) are equivalent to

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , ∀m ∈ M, (1.9)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm , (1.10)

where the symbol

[[
∂Hi

∂ν̂i
Sm

]]

Sm

denotes the jump of the 
o-normal derivative along the

unique normal n̂iSm
�xed for the tra
e Sm on the fra
ture Fi. This jump is independent

of the orientation of n̂iSm
.

Let Γi be the boundary of Fi and let it be split in ΓiN , the boundary with Neumann

boundary 
ondition

∂Hi

∂ν̂
= GiN , and ΓiD 6= ∅, the boundary with Diri
hlet boundary


ondition Hi|ΓD
= HiD, satisfying ΓiN ∩ ΓiD = ∅ and ΓiN ∪ ΓiD = Γi. Let us de�ne

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}

and V ′
i its dual spa
e. The hydrauli
 head Hi in ea
h fra
ture belongs to the spa
e

V D
i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HiD

}

and the hydrauli
 head H on the whole domain Ω is obtained by suitably mat
hing via

(1.9), (1.10) for m ∈ M the solutions Hi ∈ V D
i for ea
h i ∈ I, and belongs to the spa
e

V D = H

1
D

(Ω) =

{
v ∈

∏

i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm , ∀m ∈ M

}
. (1.11)

With a similar de�nition we set V = H

1
0(Ω).

For the sake of simpli
ity of notation, in the following of this se
tion we assume that

the tra
es S ∈ S are disjoint.

Remark 1.1. The assumption of disjoint tra
es 
an be removed by repla
ing, in the se-

quel, ea
h single tra
e S with the union of 
onne
ted tra
es. Furthermore, in our dis
rete

formulation, this assumption is dropped out in a natural way, see later Remark 1.2.

Let us de�ne for ea
h tra
e S ∈ S a suitable spa
e US
and

USi =
∏

S∈Si

US , U =
∏

i∈I

USi .
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Moreover, for ea
h tra
e S ∈ S, with IS = {i, j}, we introdu
e suitable variables

US
i ∈ US

and US
j ∈ US

representing the unknown quantities

[[
∂Hi

∂ν̂i
S

]]

S
and

[[
∂Hj

∂ν̂
j
S

]]

S

,

respe
tively, and for ea
h fra
ture Fi let us set

Ui = Π
S∈Si

US
i ∈ USi

i.e., Ui is the tuple of fun
tions U
S
i with S spanning Si. Moreover, we set

U = Π
i∈I

Ui ∈ U

as the tuple of all fun
tions US
i with S ∈ Si and i ∈ I, i.e. U is the 2#M-tuple of

fun
tions US
i on all tra
es in Ω.

Condition (1.10) rewrites, in terms of the new unknowns USm

i , USm

j as

USm

i + USm

j = 0, for i, j ∈ ISm . (1.12)

Let us introdu
e the following linear bounded operators and their duals:

Ai ∈ L(Vi, V ′
i ), A∗

i ∈ L(Vi, V ′
i ), AD

i ∈ L(V D
i , V ′

i ),

Bi ∈ L(USi , V ′
i ), Bi

∗ ∈ L(Vi,USi
′
), BΓiN

∈ L(H− 1

2
(ΓiN ), V

′
i ),

and the Riesz isomorphism ΛUSi : USi → USi
′
. The operators Ai, A

D
i , Bi, BΓiN

are

de�ned su
h that

〈AiH
0
i , v〉V ′

i ,Vi
=
(
K∇H0

i ,∇v
)
, H0

i ∈ Vi, v ∈ Vi,

〈AD
i H

D
i , v〉V ′

i ,Vi
= (K∇HD

i ,∇v), HD
i ∈ V D

i , v ∈ Vi,

〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉
USi ,USi

′ , Ui ∈ USi , v ∈ Vi,

〈BΓiN
GiN , v〉V ′

i ,Vi
= 〈GiN , v|ΓiN

〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

, GiN ∈ H

− 1

2
(ΓiN ), v ∈ Vi.

Finally, let RiHiD ∈ V D
i be a lifting of Diri
hlet boundary 
ondition HiD.

Let us introdu
e ∀i ∈ I the problem: �nd Hi = H0
i + RiHiD, with H

0
i ∈ Vi su
h

that:

(
K∇H0

i ,∇v
)

= (qi, v) + 〈Ui, v|Si
〉
USi ,USi

′
(1.13)

+〈GiN , v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

− (K∇RiHiD,∇v) , ∀v ∈ Vi

or equivalently ∀i ∈ I

AiH
0
i = qi +BiUi +BiNGiN −AD

i RiHiD. (1.14)
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The following result states the equivalen
e between the subfra
ture setting and the

setting based on fra
tures. The proof is omitted as it straightforwardly follows from


lassi
al arguments.

Proposition 1.1. Let US =H

− 1

2
(S),∀S ∈ S. Then, solving (1.13) ∀i ∈ I with addi-

tional 
onditions (1.9), (1.12) is equivalent to solve (1.4)-(1.8).

1.2.2 The optimal 
ontrol formulation

The formulations of the problem des
ribed in the previous se
tion requires the ex-

a
t full�lment of some 
onditions whi
h 
ouple the solution on di�erent fra
tures; this

happens either in the subfra
ture setting given by equations (1.4)-(1.8), or with the

formulation (1.13) with 
oupling 
onditions (1.9), (1.12). Hen
e, �nding a numeri
al

solution to the problem solving the previous sets of equations typi
ally asks for some

form of (at least partial) 
onformity in the meshes introdu
ed on the fra
tures, see e.g.

[11, 17, 20, 23, 28℄.

In order to 
ir
umvent this problem, we propose here a di�erent approa
h. Instead

of solving the overmentioned 
oupled di�erential problems, we look for the solution

of a PDE 
onstrained optimal 
ontrol problem [18℄, the variable U being the �
ontrol

variable�. Let us de�ne for ea
h tra
e S ∈ S a suitable spa
e HS
, the spa
es

HSi =
∏

S∈Si

HS , H =
∏

i∈I

HSi ,

and the Riesz isomorphism ΛHSi : HSi → HSi
′
. The following linear bounded �observa-

tion� operators CS
i and Ci and the dual Ci

∗

CS
i ∈ L(Vi,HS), Ci ∈ L(Vi,HSi) = Π

S∈Si

CS
i , Ci

∗ ∈ L(HSi
′
, V ′

i ),

will be de�ned for ea
h 
hoi
e of the spa
esHS
. For all i ∈ I, let us denote by Hi(Ui) the

solution to (1.13) 
orresponding to the value Ui for the 
ontrol variable. Furthermore,

�xed a fra
ture Fi, we denote by

Π
S∈Si

US
j

the tuple of 
ontrol variables de�ned on fra
tures Fj interse
ting Fi in tra
es S ∈ Si

and by

Π
S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)
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the tuple of fun
tions

(
CS
i Hi(Ui)−CS

j Hj(Uj)
)
as S varies in Si.

Let us now introdu
e the following di�erentiable fun
tional J : U → R:

J(U) =
∑

S∈S

JS(U) =
∑

S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)

=
1

2

∑

i∈I

∑

S∈Si

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)

=
1

2

∑

i∈I

(
|| Π
S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)
||2
HSi

+ ||Ui + Π
S∈Si

US
j ||2USi

)
. (1.15)

Proposition 1.2. Let us de�ne the spa
es US
and HS

and the observation operator CS
i

on the tra
e S as

US = H

− 1

2
(S), HS = H

1

2
(S), CS

i Hi = Hi|S , ∀S ∈ S . (1.16)

Then, the hydrauli
 head H ∈ H

1
D

(Ω) is the unique exa
t solution of (1.4)-(1.8) if and

only if it satis�es the di�erential problems (1.13) for all i ∈ I and, 
orrespondingly,

J(U) = 0.

Proof. The existen
e and uniqueness of H ∈ H

1
D

(Ω) satisfying (1.4)-(1.8) is a 
lassi
al

result (see for example [28℄ and referen
es therein). Proposition 1.1 states that problems

(1.4)-(1.8) ∀l are equivalent to problems (1.13) ∀i, endowed with mat
hing 
onditions

(1.9)-(1.12), whi
h in turn are equivalent to J(U) = 0.

Based on the previous Proposition, the problem of �nding the hydrauli
 head in the

whole domain is restated here as follows: �nd U ∈ U solving the problem

min J(U) subje
t to (1.13), ∀i ∈ I. (1.17)

Proposition 1.3. The optimal 
ontrol U ∈ U providing the solution to (1.17) 
orre-

sponds to

(ΛUSi )
−1Bi

∗Pi + Ui + Π
S∈Si

US
j = 0, ∀i ∈ I (1.18)

where the fun
tions Pi ∈ Vi, ∀i ∈ I are the solutions to the equations

A∗
iPi = Ci

∗ΛHSi Π
S∈Si

(
CS
i Hi − CS

j Hj

)
. (1.19)
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Proof. Let us di�erentiate the 
ost fun
tional J(U) with respe
t to the 
ontrol Ui, this

has e�e
t only for S ∈ Si and we have

J ′(U)(vi − Ui) =
∑

S∈Si

JS ′
(Ui)(vi − Ui)

=
∑

S∈Si

[
2
(
CS
i Hi(Ui)− CS

j Hj(Uj), C
S
i (Hi(vi)−Hi(Ui))

)
HS + 2

(
US
i + US

j , v
S
i − US

i

)
US

]

= 2

〈
Ci

∗ΛHSi Π
S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj)),Hi(vi)−Hi(Ui)

〉

V ′
i
,Vi

+2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉

USi
′
,USi

= 2
〈
A∗

iPi, A
−1
i Bi(vi − Ui)

〉
V ′
i ,Vi

+ 2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉

USi
′
,USi

= 2 〈B∗
i Pi, vi − Ui〉USi

′
,USi + 2

〈
ΛUSi (Ui + Π

S∈Si

US
j ), vi − Ui

〉

USi
′
,USi

and this yields the thesis.

Equations (1.13), (1.18) and (1.19) ∀i ∈ I then provide solution to the subsurfa
e

�ow in the network; nevertheless, they 
ouple all the unknowns on the overall DFN. As

an alternative approa
h, we propose to set up a minimization pro
ess that only requires,

at ea
h step, lo
al solutions on the fra
tures. The key point of this approa
h is that the

method only requires de
oupled solutions of the �ows on fra
tures, thus avoiding mesh


onformity requirements. This target is attained, for example, by using a gradient-based

approa
h, su
h as for example the steepest des
ent method. This approa
h requires the

solution of many simple problems with a small ex
hange of data. The resulting algorithm

is suitable for massively parallel 
omputers and GPU-based 
omputers.

In order to des
ribe the minimization pro
ess leading to the solution of the 
ontin-

uous problem (1.17), let us de�ne

δUi = Λ−1
USi

Bi
∗Pi + Ui + Π

S∈Si

US
j , ∀i ∈ I, δU =

∏

i∈I

δUi (1.20)

and let δHi ∈ Vi, ∀i ∈ I be de�ned as the solution of the problem

AiδHi = BiδUi. (1.21)

Proposition 1.4. Given a 
ontrol variable U , let us in
rement it by a step λδU . The
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steepest des
ent method 
orresponds to the stepsize

λ = − ||δU ||2U∑

S∈S

(
||CS

i δHi − CS
j δHj ||2HS + ||δUS

i + δUS
j ||2US

) , (1.22)

being δUS
i = δUi|S .

Proof. Let us 
ompute J(U + λδU). We have

J(U + λδU) = J(U) + 2
∑

S∈S

(
CS
i Hi(Ui)− CS

j Hj(Uj), λ(C
S
i δHi − CS

j δHj)
)
HS

+2
∑

S∈S

(
US
i + US

j , λ(δU
S
i + δUS

j )
)
US

+λ2
∑

S∈S

||CS
i δHi −CS

j δHj ||2HS + λ2||δUS
i + δUS

j ||2US

= J(U) + 2
∑

i∈I

∑

S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj), λC
S
i δHi

)
HS

+2
∑

i∈I

∑

S∈Si

(
US
i + US

j , λδU
S
i

)
US + λ2

∑

S∈S

(
||CS

i δHi − CS
j δHj ||2HS

+||δUS
i + δUS

j ||2US

)

= J(U) + 2
∑

i∈I

(
Π

S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj)), λCiδHi

)

HSi

+2
∑

i∈I

(
Ui + Π

S∈Si

US
j , λδUi

)

USi

+ λ2
∑

S∈S

(
||CS

i δHi − CS
j δHj ||2HS

+||δUS
i + δUS

j ||2US

)
.

From the previous relation, re
alling (1.19) we obtain

J(U + λδU) − J(U)− λ2
∑

S∈S

(||CS
i δHi − CS

j δHj ||2HS + ||δUS
i + δUS

j ||2US) =

= 2λ
∑

i∈I

〈
A∗

iPi, A
−1
i BiδUi

〉
Vi

′,Vi
+ 2λ

∑

i∈I

〈
ΛUS (Ui + Π

S∈Si

US
j ), δUi

〉

USi
′
,USi

= 2λ
∑

i∈I

〈
Λ−1
USi

Bi
∗Pi + Ui + Π

S∈Si

US
j , δUi

〉

USi ,USi

= 2λ
∑

i∈I

||δUi||2USi .

Then the value of λ in (1.22) vanishes the derivative of J (λ) := J(U+λδU) with respe
t

to λ, thus providing the minimum of the fun
tion J (λ).

Summarizing, problem (1.17) 
an be solved, in the 
ontinuous framework, either

solving equations (1.13), (1.18) and (1.19) or following an iterative algorithm su
h as
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the steepest des
ent, in whi
h at ea
h iteration one step is taken along the dire
tion δU


omputed by (1.20) with a stepsize λ given by (1.22).

The dis
rete 
ounterparts of these two approa
hes are presented in Se
tion 1.4.

1.3 The DFN problem with XFEM

In this se
tion, we brie�y a

ount for the appli
ation of the Extended Finite Element

Method (XFEM) to our 
ontext. In the �rst subse
tion, we brie�y re
all from literature

some key points of XFEM; in the se
ond subse
tion these ideas are applied to the DFN

framework.

1.3.1 Des
ription of XFEM

The XFEM [3, 8, 4℄ is a mesh-based numeri
al te
hnique for the solution of partial

di�erential equations in variational form, when non-smooth or dis
ontinuous solutions

are 
onsidered. The XFEM 
an reprodu
e irregularities that are arbitrarily pla
ed in

the domain, regardless of the underlying triangulation. The 
on
ept at the basis of

the XFEM 
onsists in 
ombining the standard Finite Element (FE) approa
h with the

Partition of Unity Method (PUM) [2℄, in order to over
ome the limitations of FE in

dealing with singularities. Customized enri
hment fun
tions are added to the standard

FE approximation spa
e in order to 
at
h the non-smooth 
hara
ter of the solution and

extend approximation 
apability.

In what follows only the des
ription of the method in the 
ase of 
ontinuous solutions

with dis
ontinuous �rst order derivatives (weak dis
ontinuities) is reported, being the

only situation of interest in our appli
ation. Customizations of the method for other


ases 
an be found in [4, 14℄.

Given a problem with exa
t solution H in a domain ω ∈ R
n
, with a sharp or weak

singularity along the interfa
e des
ribed by the manifold S ⊂ ω, S ∈ R
n−1

, let Tδ be

a 
onforming triangulation on ω, and let V

fem
δ be a �nite dimensional trial and test

spa
e de�ned on the elements of Tδ and spanned by Lagrangian FE basis fun
tions φξ,

ξ ∈ I =
{
1, ..., Ndof

}
:

V

fem
δ = span

(
{φξ(x̂)}ξ∈I

)
. (1.23)

Ea
h basis fun
tion φξ has 
ompa
t support ∆ξ.
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In our appli
ations, provided that the edges of the elements in Tδ surrounding S

mat
h it exa
tly, the approximate solution of H with standard �nite elements has the

following form:

hfemδ (x̂) =
∑

ξ∈I

hfemξ φξ(x̂) (1.24)

where hfemξ is the degree of freedom 
orresponding to the basis fun
tion φξ(x̂). Fun
tions

in V

fem
δ are 
ontinuous and 
an have dis
ontinuities in the �rst order derivatives a
ross

element edges.

Let assume Φ is a 
ontinuous bounded fun
tion on ω, Φ ∈ H

1
(ω)∩C0(ω̄) that well

approximates the behaviour of H in a neighbourhood of S 
alled ∆S. With the XFEM

this fun
tion is introdu
ed into the standard FE spa
e, thus de�ning a new enri
hed

fun
tional spa
e with extended approximation 
apabilities. This 
an be done by means

of the PUM, using the standard FE shape fun
tions for the de�nition of a partition of

unity. The new enri
hed fun
tional spa
e is:

V

xfem
δ = span

(
{φξ(x̂)}ξ∈I , {φξ(x̂)Φ(x̂)}ξ∈J

)
⊂ H

1
0(ω), (1.25)

where we have identi�ed with J ⊂ I the subset of indi
es of fun
tions φξ whose support

belongs to ∆S. DOFs in J are 
alled enri
hed DOFs and the 
orresponding nodes

enri
hed nodes. Typi
ally, as sket
hed in Figure 1.2 it is:

J = {ξ ∈ I : ∆ξ ∩ S 6= ∅} . (1.26)

Consequently the approximate solution hxfem of the problem with the XFEM is:

hxfemδ (x̂) =
∑

ξ∈I

hxfemξ φξ(x̂) +
∑

ξ∈J

axfemξ φξ(x̂)Φ(x̂) (1.27)

where hxfemξ and axfemξ are the unknowns related to the standard and enri
hing basis

fun
tions, respe
tively. Sin
e fun
tions representing the non smooth behaviour of the

solution are now present in the dis
rete subspa
e, the non smooth behaviour of the

solution 
an be reprodu
ed independently of the positioning of elements in Tδ with

respe
t to the interfa
e S.

A

ording to (1.26) only a small subset of total elements is enri
hed and this is a

pe
uliarity of the XFEM if 
ompared to PUM or other similar methods as for example

the GFEM ([25, 26℄). Elements in Tδ may thus have a variable number of enri
hed

nodes. In parti
ular it is possible to group elements in three 
ategories, following the


lassi�
ation used in [14℄ (see Figure 1.2):
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X

Y

 

 

Interface S
Enriched DoF
Reproducing el.
Blending el.

Figure 1.2: Sele
tion of nodes in J Figure 1.3: Fun
tion Ψ(x̂)

i) standard elements: no nodes enri
hed;

ii) reprodu
ing elements: all nodes enri
hed;

iii) blending elements: some nodes enri
hed.

In reprodu
ing elements, where all the nodes are enri
hed, the fun
tion Φ 
an be 
or-

re
tly reprodu
ed, providing the desired behaviour for the dis
rete solution. In blending

elements, instead, where only some nodes are enri
hed, spurious terms are introdu
ed in

the lo
al dis
rete spa
e in order to preserve 
ontinuity. This may a�e
t the 
onvergen
e

rate of the method 
ompared to the standard FE. Numerous te
hniques are suggested in

order to prevent this issue, for example in [7, 27, 13℄. In parti
ular the modi�ed XFEM

suggested in [13℄ and adopted here, introdu
es a re-de�nition of enri
hment fun
tions

and enri
hed DOFs in order to 
orre
tly a

ount for the 
ontribution of blending ele-

ments and re
over the standard FE rate of 
onvergen
e. We denote by Φ̃ and J̃ the

modi�ed version of Φ and J respe
tively, de�ned as:

Φ̃ = Φ(x̂)R(x̂) J̃ = {ξ ∈ I : ∆ξ ∩∆S 6= ∅} , (1.28)

where R(x̂) =
∑

ξ∈J φξ. The new enri
hment fun
tion Φ̃ 
oin
ides with Φ in reprodu
ing

elements where R = 1 and vanishes on the boundaries and outside ∆S , where R = 0.

Thus anywhere the enri
hment fun
tion Φ̃ is non-zero it is 
orre
tly reprodu
ed, avoiding

problems related to parasiti
 terms.

The generalization to other kind of dis
ontinuities follows the same outline des
ribed

above, with spe
i�
 re-de�nition of fun
tional spa
es. A 
omprehensive review of the

XFEM/GFEM method with details of all implementation aspe
ts is available in [14℄.
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1.3.2 The dis
rete DFN problem

With referen
e to de�nitions and notation introdu
ed in Se
tion 1.2, we now dis
uss

the appli
ation of the XFEM to DFN problems. For the sake of brevity we fo
us here

on 
losed interfa
es, i.e. tra
es entirely 
rossing a fra
ture plane, as for example the one

depi
ted in Figure 1.2. Generalizations to other geometri
al 
on�gurations of interfa
es

follow the same outline of this des
ription, requiring, in some 
ases, the introdu
tion of

di�erent enri
hment fun
tions. More general 
ases are 
onsidered in [5℄.

Let us 
onsider a fra
ture F ⊂ R
2
that has #M interse
tions with other fra
tures

in Ω in the tra
es Sm ∈ Si, m ∈ M. The starting point for XFEM implementation is a

standard �nite element setting, de�ned by a triangulation T F
δ not ne
essarily 
onformal

to the tra
es and the dis
rete test spa
e V

fem
F,δ as de�ned by Equation (1.23). On F the

exa
t solutions HF , PF and δHF to (1.13), (1.19) and (1.21) respe
tively, may have a

jump of �uxes (a weak dis
ontinuity) a
ross the tra
es in Si. The numeri
al solution

of previous equations with XFEM allows the triangulation to be set on ea
h fra
ture

independently of the disposition and number of the tra
es. This is mu
h more relevant

as the number of tra
es in
reases or when tra
es interse
t with arbitrary orientations,

sin
e in these situations a good quality mesh �tting the interfa
es 
ould hardly be pro-

du
ed and would require a huge number of elements, regardless of the required a

ura
y.

Enri
hment fun
tions for weak dis
ontinuities were introdu
ed in early works with the

XFEM mainly in the 
ontext of fra
ture me
hani
s. A 
omprehensive des
ription 
an be

found in [4, 27, 8, 14℄. The des
ription of ea
h tra
e is performed introdu
ing a signed

distan
e fun
tion dm that is de�ned for x̂ ∈ F as the distan
e with sign from segments

Sm [27, 4℄:

dm(x̂) = ‖x̄− x̂‖ n̂S · (x̄− x̂)

‖n̂S · (x̄− x̂)‖

where x̄ is the proje
tion of x̂ on Sm and n̂S the �xed unit normal ve
tor to Sm. The

enri
hment fun
tions are built starting from the signed distan
e fun
tions. For a 
losed

interfa
e we use the enri
hment fun
tion Ψm de�ned as Ψm(x̂) = |dm(x̂)|. Clearly Ψm

is a 
ontinuous fun
tion, but its �rst order derivatives have a jump a
ross Sm, thus

introdu
ing the required non-smooth behaviour in the approximation (Figure 1.3). The

sets of enri
hed DOFs, Jm, are de�ned a

ording to (1.26) for ea
h tra
e.

In order to avoid problems related to blending elements, the XFEM modi�ed version

[13℄ is used. Fun
tions Ψ̃m and sets J̃m are built starting from Ψm and Jm a

ording
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to de�nition (1.28). The dis
rete approximation spa
e is thus:

V

xfem
F,δ = span

(
{φξ(x̂)}ξ∈I , {φξ(x̂)Φm(x̂)}

m∈M,ξ∈Jm

)
⊂ H

1
0(ω), (1.29)

and the dis
rete solution is:

hxfemF,δ (x̂) =
∑

ξ∈I

hξφξ(x̂) +
∑

m∈M

∑

ξ∈J̃m

amξ φξ(x̂)Ψ̃m(x̂). (1.30)

We remark the additivity of the previous formula with respe
t to the interfa
es: the

previous expression does not depend on where tra
es are lo
ated, how 
lose are ea
h

other, or wether or not they do interse
t ea
h other, nor on whi
h elements the enri
hed

fun
tions are de�ned.

The numeri
al integration of non smooth fun
tions is performed on sub-domains

where the restri
tion of basis fun
tions is regular. Gauss quadrature rule is used, adopt-

ing the number of integration nodes required by the polynomial degree of the integrands.

1.4 Dis
rete formulation

In this se
tion we provide a dis
rete formulation of problem (1.17). For the sake

of simpli
ity, we assume in this se
tion homogeneous Diri
hlet boundary 
onditions,

i.e. HD = 0. All the results 
an be extended to the general 
ase HD 6= 0, see later

Remark 1.3. For simpli
ity of notation again, in this se
tion, given two (or more) ve
tors

x ∈ R
p
and y ∈ R

q
, we will write (x, y) denoting the ve
tor (xT , yT )T ∈ R

p+q
.

Under assumptions (1.16), the minimum of the fun
tional J(U) is 
hara
terized by


onditions involving a fra
tional power of the Lapla
e operator on the tra
es. Hen
e,

we develop our numeri
al method for the approximation of the solution adopting the

following 
hoi
es:

US = L

2
(S), HS = L

2
(S), ∀S ∈ S . (1.31)

Remark 1.2. We remark that with these 
hoi
es the assumption of dis
onne
ted tra
es


an be removed. This is due to the following property of the L2
-norm: if S1 and S2 are

two possibly 
onne
ted tra
es, then ‖ · ‖2
L

2
(S1∪S2)

= ‖ · ‖2
L

2
(S1)

+ ‖ · ‖2
L

2
(S2)

(see also

Remark 1.1).

For all i ∈ I, let Ji ⊂ I be the subset of indi
es su
h that, for j ∈ Ji, the fra
ture Fj

shares a tra
e with Fi. Furthermore, for all i ∈ I and for all S ∈ Si, let us �x a �nite
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dimensional subspa
e of US
for the dis
rete approximation uSi of the 
ontrol variable

US
i (with a similar notation let us also denote by hi the dis
rete approximation of Hi).

Let us introdu
e a basis {ψS
i,k}k=1,...,Ni,S

for this subspa
e, so that we write

uSi =

Ni,S∑

k=1

uSi,kψ
S
i,k ∀i ∈ I, S ∈ Si .

Repla
ing these expressions in (1.15), using L2
-norm and CS

i hi = hi|S , we get

J(u) =
1

2

∑

i∈I

∑

S∈Si

( ∫

S

(

Ni∑

k=1

hi,kφi,k |S −
Nj∑

k=1

hj,kφj,k|S)
2 dγ +

∫

S

(

Ni,S∑

k=1

uSi,kψ
S
i,k +

Nj,S∑

k=1

uSj,kψ
S
j,k)

2 dγ

)
. (1.32)

For all i ∈ I and S ∈ Si, let us introdu
e the subset Ki,S ⊆ {1, ..., Ni} of indi
es k

of fun
tions φi,k whose support has a nonempty interse
tion with S. The �rst integral

in (1.32) rewrites as

IS,hij =
∑

k∈Ki,S

h2i,k

∫

S

φi,k
2
|S
dγ + 2

∑

k,ℓ∈Ki,S

hi,khi,ℓ

∫

S

φi,k |Sφi,ℓ|S dγ +
∑

k∈Kj,S

h2j,k

∫

S

φj,k
2
|S
dγ

+2
∑

k,ℓ∈Kj,S

hj,khj,ℓ

∫

S

φj,k|Sφj,ℓ|S dγ − 2
∑

k∈Ki,S

∑

ℓ∈Kj,S

hi,khj,ℓ

∫

S

φi,k|Sφj,ℓ|S dγ.

Let us introdu
e ve
tors hi ∈ R
Ni
, hi = (hi,1, . . . , hi,Ni

)T , i ∈ I and setting NF =
∑

i∈INi, let h ∈ R
NF

be obtained 
on
atenating, for i ∈ I, ve
tors hi. Hen
e from now

on, besides denoting the dis
rete solution, hi will also denote the ve
tor of 
orresponding

DOFs.

Next, for all i ∈ I, S ∈ Si let us de�ne matri
es MS
i ∈ R

Ni×Ni
and (for j ∈ Ji)

MS
ij ∈ R

Ni×Nj
as:

(MS
i )kℓ =

∫

S

φi,k |Sφi,ℓ|S dγ, (MS
ij)kℓ =

∫

S

φi,k|Sφj,ℓ|S dγ.

With these de�nitions, the �rst integral in (1.32) is written in 
ompa
t form as

IS,hij = hTi M
S
i hi + hTj M

S
j hj − 2hTi M

S
ijhj . (1.33)

Let us turn to the se
ond integral in (1.32). For a 
onvenient 
ompa
t form of

this se
ond integral, let us 
onsider a di�erent numbering of fun
tions uSi indu
ed by
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the tra
e numbering. Let S = Sm be a given tra
e, with cm = (i, j) (hen
e i < j).

We denote by u−m the 
ontrol fun
tion related to the m-th tra
e and 
orresponding to

fra
ture Fi, and by u+m the 
ontrol fun
tion related to the same tra
e and 
orresponding

to the other fra
ture, Fj . This numbering indu
es a di�erent numbering also on the basis

fun
tions ψS
i,k, ψ

S
j,k whi
h 
an be labeled as ψ−

m,k, ψ
+
m,k, respe
tively, and a

ordingly we

set N+
m = Ni,S , N

−
m = Nj,S.

Then we have, for ⋆ = − or +,

u⋆m =

N⋆
m∑

k=1

u⋆m,kψ
⋆
m,k ∀m ∈ M.

Now, let us introdu
e the ve
tors u⋆m ∈ R
N⋆

m
, u⋆m = (u⋆m,1, . . . , u

⋆
m,N⋆

m
)T , m ∈ M,

⋆ = −,+, and setting NT =
∑

m∈M(N−
m +N+

m) we de�ne u ∈ R
NT

as

u = (u−1 , u
+
1 , . . . , u

−
#M

, u+#M
).

Let us also de�ne the following matri
es:

M⋆
m ∈ R

N⋆
m×N⋆

m , (M⋆
m)kℓ =

∫
S
ψ⋆
m,kψ

⋆
m,ℓ dγ, m ∈ M, ⋆ = −,+

M±
m ∈ R

N−
m×N+

m, (M±
m)kℓ =

∫
S
ψ−
m,kψ

+
m,ℓ dγ.

The se
ond integral in (1.32), after some straighforward algebrai
 manipulation,

rewrites as

IS,uij =

N−
m∑

k=1

u−m,k

2
∫

S

ψ−
m,k

2
dγ + 2

N−
m∑

k=1

N−
m∑

ℓ=1

u−m,ku
−
m,ℓ

∫

S

ψ−
m,kψ

−
m,ℓ dγ +

N+
m∑

k=1

u+m,k

2
∫

S

ψ+
m,k

2
dγ

+2

N+
m∑

k=1

N+
m∑

ℓ=1

u+m,ku
+
m,ℓ

∫

S

ψ+
m,kψ

+
m,ℓ dγ + 2

N−
m∑

k=1

N+
m∑

ℓ=1

u−m,ku
+
m,ℓ

∫

S

ψ−
m,kψ

+
m,ℓ dγ

and in 
ompa
t form

IS,uij = (u−m)T M−
m u

−
m + (u+m)T M+

m u
+
m + 2(u−m)T M±

m u
+
m. (1.34)

We 
an now write the whole fun
tional J(u) in matrix form properly assembling the

previous matri
es in a single one and resorting to ve
tors h and u. Let Gh ∈ R
NF×NF

and Gu ∈ R
NT×NT

be de�ned blo
kwise as follows: for i ∈ I, m ∈ M we set

Gh
ii =

∑
S∈Si

MS
i , Gh

ij = −MS
ij for j ∈ Ji,

Mm =

(
M−

m M±
m

(M±
m)T M+

m

)
Gu = diag(M1, . . . ,M#M).
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Sin
e obviously (MS
ij)

T = MS
ji, matrix Gh

is symmetri
. The same property 
learly

holds true for Gu
. With these de�nitions, the fun
tional J(u) 
an be rewritten as

J(u) =
1

2
hTGhh+

1

2
uTGuu.

Now, let us turn our attention to the 
onstraints, writing the algebrai
 
ounterparts

of operators Ai, Bi in equation (1.14): overloading notations, we let Ai ∈ R
Ni×Ni

and

Bi ∈ R
Ni×NSi

with NSi
=
∑

S∈Si
Ni,S also denote the matri
es de�ning the algebrai


operators as follows. We set

(Ai)kℓ=

∫

Fi

∇φi,ℓ∇φi,k dFi,
(
BSm

i

)
kℓ
=

∫

Sm

φi,k|Sm
ψ⋆
m,ℓ dγ, (1.35)

where, re
alling that ISm = {i, j}, we take ⋆ = − if i < j or ⋆ = + otherwise. Matri
es

BSm

i , Sm ∈ Si, are then grouped row-wise to form the matrix Bi, whi
h a
ts on a 
olumn

ve
tor ui 
ontaining all the 
ontrol DOFs 
orresponding to tra
es of Fi. Ve
tor ui is

obtained appending the blo
ks u⋆m in the same order used for assembling Bi, as the

a
tion of a suitable operator Ri : R
NT 7→ R

NSi
su
h that ui = Riu. Hen
e, 
onstraints

(1.14) lead to the algebrai
 equations

Aihi −BiRiu = q̃i, i ∈ I, (1.36)

where q̃i a

ounts for the term qi in (1.14) and for the weak dis
rete imposition of

boundary 
onditions. Letting w = (h, u) ∈ R
NF+NT

and de�ning

A = diag(A1, . . . , A#I) ∈ R
NF×NF

, B =




B1R1

.

.

.

B#IR#I


 ∈ R

NF×NT
,

C = (A −B) ∈ R
NF×NF+NT

, G = diag(Gh, Gu), (1.37)

the overall problem reads

min
w

1

2
wTGw, (1.38)

s.t. Cw = q̃. (1.39)

Hen
e the problem is a Quadrati
 Programming (QP) problem with equality 
onstraints.

First order ne
essary 
onditions for a point w∗
to be a solution to (1.38)�(1.39) are given

by the Karush-Khun-Tu
ker 
onditions (see e.g. [21℄):

A =

(
G CT

C 0

)
, A

(
w∗

−p∗

)
=

(
0

q̃

)
(1.40)

being p∗ the ve
tor of Lagrange multipliers.
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Remark 1.3. The results here presented do not rely on the assumption of homogeneous

Diri
hlet boundary 
onditions. If non homogeneous Diri
hlet 
onditions are taken into

a

ount, the quadrati
 fun
tional in (1.38) also 
ontains a linear term, 
orrespondingly

the right-hand-side of (1.40) has a nonzero blo
k, and the stru
ture of the problem is

therefore the same.

For further dis
ussion, we re
all the following 
lassi
al result 
on
erning solution

of equality 
onstrained QPs of the form (1.38)-(1.39), see for example [21℄. Referring

to problem (1.38)-(1.39), let n and p denote the dimension of w and the number of


onstraints, respe
tively, so that G ∈ R
n×n

and C ∈ R
p×n

.

Theorem 1.4. Let C have full row rank and assume that the matrix ZTGZ is positive

de�nite, being Z a n× (n− p) matrix whose 
olumns are a basis of the null spa
e of C.

Then the matrix A de�ned in (1.40) is non singular and the ve
tor w∗
satisfying (1.40)

is the unique global solution of problem (1.38)�(1.39).

Proof of existen
e and uniqueness of the solution to the dis
rete 
ounterpart of

problem (1.17) is now a dire
t appli
ation of Theorem 1.4.

Theorem 1.5. Let us 
onsider the dis
rete formulation (1.38)-(1.39) to the problem of

subsurfa
e �ow in a DFN, with G and C de�ned as in (1.37). Then, the solution exists

and is unique and 
oin
ides with the solution to (1.40).

Proof. First, let us observe that G is symmetri
 positive semide�nite as for any w =

(h, u) we straightforwardly have wTGw ≥ 0. Furthermore, sin
e all Ai are nonsingular,

due to standard properties of FE dis
retizations, A is nonsingular as well and C has full

row rank. As rank(C) = NF
we have dim(ker(C)) = NT

. Let z1, . . . , zNT ∈ R
NF+NT

be ve
tors forming a basis of ker(C). Then, for all zk, let us partition zk = (zhk , z
u
k ) with

zhk ∈ R
NF

and zuk ∈ R
NT

. We have Azhk = Bzuk , thus zk has the form (A−1Bzuk , z
u
k ). In

parti
ular, take zuk = ek, where ek is the k-th ve
tor of the 
anoni
al basis of R
NT

, hen
e

zk = (A−1Bek, ek). Let us 
ompute y = Gzk = (GhA−1Bek, G
uek). Let eNF+s be a

ve
tor of the 
anoni
al basis of R
NF+NT

with s ≥ 1. We have yNF+s = eT
NF+s

Gzk =

eTs G
uek with es ∈ R

NT
. In parti
ular, taking s = k, we have

yNF+k = eTkG
uek =

∫

S

ψS
i,ℓ

2
dγ (1.41)

for some i ∈ I and some 1 ≤ ℓ ≤ Ni,S . Sin
e the integral in (1.41) is nonzero, we have

at least one 
omponent of Gzk di�erent from zero. Hen
e we have proved that for any
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ve
tor z ∈ ker(C), we have Gz 6= 0 (unless z = 0), hen
e z /∈ ker(G). This proves

that ker(G) ∩ ker(C) = {0}. Let now Z be the matrix whose 
olumns are given by the

basis ve
tors zk previously introdu
ed. Sin
e G is positive semide�nite we have, for any

y ∈ R
NF+NT

, yTGy ≥ 0 and yTGy = 0 if and only if y ∈ ker(G) (see e.g. [16℄). Let

v ∈ R
NT

be an arbitrary ve
tor, v 6= 0. Sin
e Zv ∈ ker(C) and ker(G) ∩ ker(C) = {0},
we have Zv /∈ ker(G) and so vTZTGZv > 0. This proves positive de�niteness of ZTGZ.

Applying Theorem 1.4 the thesis is proved.

1.4.1 Computing numeri
al solutions

Saddle point system (1.40) represents a possible approa
h for obtaining a numeri
al

solution. For DFN of moderate size, sparse (even dire
t) solvers 
an be used e�
iently

to 
ompute a solution to (1.40). Nevertheless, when the DFN system is 
omposed by a

huge number of fra
tures, even if poor dis
retizations are introdu
ed on ea
h fra
ture,

solving the linear system may be a quite demanding task and parallel 
omputing has to

be taken into a

ount. If this is the 
ase, instead of assembling the linear system and

splitting information and operations among pro
essors/
ores, a gradient-based method

su
h as the basi
 one depi
ted in the sequel 
an be taken into a

ount. The following

numeri
al method arises from the dis
retization of the steepest des
ent method brie�y

des
ribed at the end of Subse
tion 1.2.2. At step k, given uk, let us 
ompute hki as the

solution to (1.36) and pki as the solution to

AT
i p

k
i = Gh

iih
k
i +

∑

j∈Ji

Gh
ijh

k
j , ∀i ∈ I. (1.42)

Then, we de�ne a ve
tor δuki 
omponentwise as the L2(Si) proje
tion of the fun
tion

pki +ΠSm∈Si
((u−m)k+(u+m)k) against basis fun
tions (nodal interpolation 
an be taken, in


ase of Lagrangian basis fun
tions). Then, we move along dire
tion δuk with a stepsize

λk = −
∑

i∈I(δu
k
i )

T δuki

1
2

∑
i∈I

∑
Sm∈Si

(
‖δhik|Sm

−δhjk|Sm
‖2
L

2
(Sm)

+‖(u−m)k+(u+m)k‖2
L

2
(Sm)

)
(1.43)

where δhki is the solution to

Aiδh
k
i = Biδu

k
i , ∀i ∈ I. (1.44)

The 
orresponding algorithm is the following.
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Algorithm 1.6. 1. Set k = 0 and initial guess for 
ontrol variable u0;

2. 
ompute h0 = h(u0) solving (1.36) on ea
h fra
ture;

3. Do

3.1. 
ompute pk solving on ea
h fra
ture the dual problem (1.42);

3.2. 
ompute δuk and solve (1.44) to get δh;

3.3. evaluate λk a

ording to (1.43) and update uk+1 = uk + λkδuk;

3.4. 
ompute hk+1 = hk + λkδhk

3.5. k = k + 1.

while stopping 
riterion not satis�ed

Remark 1.7. Algorithm 1.6, whi
h is the dis
retization of the in�nite dimensional

steepest des
ent method, is equivalent to the appli
ation of the steepest des
ent method

to the �nite dimensional problem (1.38)-(1.39).

Ea
h iteration of Algorithm 1.6 essentially requires the solution of (1.42) and (1.44),

whereas it is not ne
essary to solve the primal equation (1.36) at ea
h iteration, be-


ause, thanks to linearity, the new value hk+1
for the numeri
al hydrauli
 head 
an be


omputed as shown in Step 3.4. Nevertheless, in pra
ti
al 
omputations, it is advisable

to periodi
ally repla
e Step 3.4 with the 
omputation of hk+1
via the primal equation,

in order to improve numeri
al stability.

We end this se
tion highlighting that solutions to problems (1.42) and (1.44) 
an be

obtained de
oupling the 
omputation among fra
tures. This point makes the method

appealing when parallelization 
omes into play, as this approa
h turns out to be highly

parallelizable in a very natural way, by distributing fra
tures among pro
essors and

involving a moderate ex
hange of data. This approa
h is suitable for massively parallel


omputers and GPU-based 
omputers.

1.5 Numeri
al results

In this se
tion we present some preliminary results whi
h aim at showing viability

and e�e
tiveness of the method here proposed in 
ir
umventing any kind of problem


on
erning mesh generation on the whole DFN.
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Two test problems have been 
onsidered here. In Problem 1 the numeri
al simula-

tions are performed both with standard �nite elements on 
onforming grids aligned to

a tra
e, and with extended �nite elements with a tra
e 
rossing mesh elements. Numer-

i
al results are 
ompared to the known exa
t solution. In Problem 2 a more 
omplex

domain is 
onsidered. In both tests, tra
es entirely 
rossing a fra
ture are 
onsidered.

The appli
ation of the method to more 
omplex DFN 
on�gurations is shown in [5℄.

Triangular meshes and �rst order �nite elements are used in all the tests. Let Vi,δ be

the dis
rete enri
hed �nite element spa
e on the fra
ture Fi, ∀i ∈ I, de�ned a

ording

to (1.29). Let Uδ ⊂ U be the dis
rete spa
e for the 
ontrol fun
tions. The spa
e Uδ is

here de�ned as the spa
e of the pie
ewise linear fun
tions on the tra
es Sm, m ∈ M;

the nodes of the 1D mesh on ea
h tra
e are given by the interse
tions of the 2D mesh

on the 
orresponding fra
ture with the tra
e itself. If an edge of the 2D mesh lies on

the tra
e, the endpoints of the edge are taken as nodes of the 1D mesh.

In the presentation of numeri
al results the following 
onvention is used:

• FEM : our optimization approa
h on standard �nite element meshes without en-

ri
hments; meshes are aligned along the tra
es (Figure 1.4, left). For Problem 1

the same mesh is used in all the fra
tures. This method is used to 
ompare our

results with those obtained on a 
onforming mesh, in whi
h it is ensured that the

minimum of J equals 0.

• XFEM : extended FE are used and the meshes in all the fra
tures do not mat
h

along the tra
es (Figure 1.4, right). In this 
ase the minimum of fun
tional J


omputed with the dis
rete solutions is in general 6= 0.

In all tests we 
omputed the numeri
al solution both using the gradient method and

solving the linear system (1.40). When the gradient method was applied, we started

from a null 
ontrol u0. Both the overall linear system (1.40) and the smaller dimension

systems involved in (1.42) and (1.44) have been solved with MATLAB built-in dire
t

solver.

Depending on the 
hoi
es of the mesh on ea
h fra
ture Fi, the minimum of fun
tional

J(u) 
an be di�erent from zero. In Algorithm 1.6 the following stopping 
riteria have

been used:

J(uk)− J(uk+1) < tol1, or

J(uk)− J(uk+1)

J(uk+1)
< tol2. (1.45)

In the results here reported we used tol1 = 10−15
and tol2 = 10−3

.
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F1

F2

Figure 1.4: Problem 1: Left: standard FEM 
onforming mesh on ea
h fra
ture; right:

domain des
ription with XFEM meshes and solution h in 
olorbar
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Figure 1.5: Problem 1: Solution with XFEM on fra
ture F1 (left) and F2 (right) for

δmax = 0.06

1.5.1 Problem 1

Let us de�ne Ω = F1 ∪ F2 with, being x = (x, y, z), F1 and F2 given by

F1=
{
x∈R

3 : x∈(−1, 1), y∈(0, 1), z=0
}
F2=

{
x∈R

3 : x=0, y∈(0, 1), z∈(−1, 1)
}
.

Let S = F1 ∩ F2. The problem is set as follows:

−∆H = q, in Ω\S, (1.46)

with homogeneous Diri
hlet boundary 
onditions on all the boundary ∂Ω. The for
ing

fun
tion q is de�ned as follows:

q(x) =

{
6(y − y2)|x| − 2(|x3| − |x|) on F1

−6(y − y2)|z|+ 2(|z3| − |z|) on F2
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and the exa
t solution is given by

H(x) =

{
−y(1− y)|x|(x2 − 1) on F1

y(1− y)|x|(x2 − 1) on F2.

Figure 1.4 shows on the left a mesh used for the fra
tures F1 and F2 using standard

�nite elements, whereas on the right it shows the domain and, on ea
h fra
ture, the mesh

used with the extended �nite elements. Note that in the se
ond 
ase the two meshes on

F1 and F2 are not 
onforming. Both �gures refer to intermediate meshes, 
orresponding

to meshsize δmax = 0.06, being δmax = 0.25 and δmax = 0.016 the meshsizes of the


oarsest and �nest grids used, respe
tively.

Figure 1.5 displays the solutions on F1 and F2 obtained with XFEM on the interme-

diate grid (the same solution is represented also in Figure 1.4, right, with a 
olorbar).

Near the tra
e the numeri
al solution is plotted on the sub-elements generated by 
utting

XFEM elements along tra
es. It 
an be noted that the 
orre
t nonsmooth behaviour of

the solution is 
aught by XFEM enri
hments even if element edges do not mat
h the

tra
e. Figure 1.6 shows the behaviour of L2
and H1

error norms with respe
t to the

meshsize δmax during a uniform mesh re�nement pro
ess. The slopes m of the 
urves,

reported in the legend of ea
h �gure, agree with the expe
ted values for P 1
elements

even in the 
ase of XFEM.

Remark 1.8. For this test prolem we have H(x) /∈H

2
(Fi), i = 1, 2, whereas H(x) ∈

H

2
(f ), being f any one of the four subfra
tures in whi
h F1 and F2 are divided by the

tra
e. As des
ribed in [15, 29℄, this regularity is enough to provide the 
onvergen
e

orders of Figure 1.6, that are the theoreti
al ones for H(x)∈H2
(Fi).

Figure 1.7 displays the minimum value of

√
J as a fun
tion of the meshsize on non


onforming meshes. In the XFEM 
ase the target minimum of the fun
tional is di�erent

from zero and, as expe
ted, its value depends on the meshsize, while this is not the 
ase

for the standard FEM, sin
e the minimum of the fun
tional 
an vanish independently

of the meshsize.

In Figure 1.8 the exa
t value of

[[
∂H1

∂ν̂1
S

]]

S
is 
ompared with the 
omputed values of

the 
ontrol variable u1 obtained on the intermediate grids, both with FEM and with

XFEM. The �gure 
learly shows a very good agreement between all the values. The norm

of the �ux mismat
h on the tra
e, i.e. ‖u1 + u2‖
L

2
(S)

, has been 
omputed with both

approa
hes, obtaining ‖u1+u2‖
L

2
(S)

≃ 10−16
with FEM and ‖u1+u2‖

L

2
(S)

= 3.1 10−8

with XFEM.
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Remark 1.9. The vanishing of the minimum value of the fun
tional with standard

FEM does not 
orrespond to a signi�
antly better approximation of the global solution,

as we 
an argue 
omparing the errors in the solution in Figure 1.6, where we 
an see that

the errors 
orresponding to the same meshsize are 
omparable in the FEM and XFEM


ases, with both L2
and H1

-norms. As seen in Figure 1.8, also the a

ura
y of the �uxes

on the tra
e are 
omparable. The vanishing minimum value of J for FEM is only related

to a better satis�ability of the mat
hing 
onditions between the approximated solutions

on the fra
tures, and the a

ura
y of the overall solution is 
omparable for XFEM and

FEM.

In Figure 1.9 the behaviour of

√
J during the minimization pro
ess attained by

the gradient method is shown. As expe
ted the fun
tional related to XFEM solution

rea
hes a plateau 
orresponding to a non vanishing value when one of the stopping


riteria in (1.45) is satis�ed. As shown in Figure 1.9, mesh re�nement 
an redu
e the

�nal fun
tional value.

It is to remark that no e�ort has been spent here for improving 
onvergen
e prop-

erties of the minimization pro
ess as our main target here is proving viability of the

approa
h. Many improvements in the optimization pro
ess are possible; future work

will be devoted to this issue. Nevertheless, despite the number of iterations required by

the gradient method, the 
omputational 
ost of ea
h iteration is small, as it essentially

requires the solution of the state equations on ea
h fra
ture. This aspe
t itself makes

the method appealing when parallelization 
omes into play.

1.5.2 Problem 2

In the se
ond test problem the proposed method is applied to a DFN 
omposed by

seven re
tangular fra
tures. In Figure 1.10 the interse
tions of the fra
tures with the

plane z = 0 is drawn. All the fra
tures have z ranging from 0 to 1. In Figure 1.10, Pn,

n = 1, .., 14 denotes the starting and ending points of the interse
tions; Fi, i = 1, .., 7

the interse
tion of the fra
tures with z = 0 and Tm, m = 1, .., 11 the interse
tions of the

tra
es Sm with z = 0. The 3D DFN 
on�guration is shown in Figure 1.11.
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The problem is set as follows:

−∆H = 0, in Ω \ S, (1.47)

H|ΓD
= y +

√
z, on ΓD, (1.48)

∂H

∂ν̂
= 0, on ΓN . (1.49)

where S =
⋃

m=1,...,11 Sm, ΓD is the set of the edges along the z dire
tion interse
ting

z = 0 in the points P13, P9, P1, P3, P6, P5 and P7, whereas ΓN is the set of all the

other boundaries of the fra
tures. The 
omputing mesh used is depi
ted in Figure 1.11.

We remark that the meshes on the fra
tures are independently generated with meshsize

δmax = 0.39, without requiring any 
onformity 
onstraint along the tra
es.

The solution is shown on some sele
ted fra
tures. In Figure 1.12 the solution on

fra
ture F4 is shown. Here, in order to better display the enri
hed numeri
al solution,

it is plotted, rather than on the a
tual 
omputing elements, on sub-elements generated

by splitting the 
omputing elements along tra
es.

Figure 1.13 shows, using a 
olormap, solutions on Fra
tures F3 and F7. Here, the

mesh depi
ted is the a
tual 
omputing mesh. The verti
al dashed lines 
orrespond

to tra
es. The rightmost dash-dot verti
al line is a 
ommon tra
e between the two

fra
tures. Non
onformity of meshes is 
learly shown in the Figure. Finally, in the Table

on the right of Figure 1.12 we report, for ea
h fra
ture Fi, i = 1, ..., 7, the �ux mismat
h

and total �ux, 
omputed as

∑
S∈Si

∫
S
uSi +u

S
j dγ and

∑
S∈Si

∫
S
uSi dγ, respe
tively. The

overall �ux mismat
h on the whole DFN is 8.14e-6.

1.6 Con
lusions

In this paper we propose a new approa
h to the Dis
rete Fra
ture Network sim-

ulation, whi
h does not need any kind of 
onformity along the tra
es for the meshes

introdu
ed on the fra
tures. The method proposed thus 
ir
umvents all the di�
ul-

ties typi
ally related to mesh generation pro
esses of partially or totally 
onforming

grids. This novel approa
h is based on a PDE-
onstrained optimization problem and

is developed in order to be easily parallelized on massively parallel or GPU-based or

hybrid parallel 
omputers. The key points whi
h make the method suitable for a paral-

lel approa
h are the following: the global solution is obtained through the resolution of

many small lo
al problems, that require a moderate ex
hange of data among fra
tures.
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Some preliminary numeri
al simulations prove the viability of the approa
h. A detailed

analysis of the performan
e of the method on more 
omplex fra
ture 
on�gurations is

proposed in [5℄.
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Chapter 2

On simulations of dis
rete fra
ture

network �ows with an

optimization-based extended �nite

element method

Abstra
t Following the approa
h introdu
ed in [7℄, we 
onsider the formulation of the

problem of �uid �ow in a system of fra
tures as a PDE 
onstrained optimization problem,

with dis
retization performed using suitable extended �nite elements; the method allows

independent meshes on ea
h fra
ture, thus 
ompletely 
ir
umventing meshing problems

usually related to the DFN approa
h. The appli
ation of the method to dis
rete fra
ture

networks of medium 
omplexity is fully analyzed here, a

ounting for several issues

related to viable and reliable implementations of the method in 
omplex problems.

2.1 Introdu
tion

In many appli
ations, su
h as water resour
es monitoring, 
ontaminant transport,

oil/gas re
overy, e�
ient numeri
al simulations of subsurfa
e �uid �ow in fra
tured

porous ro
ks are of in
reasing interest. The des
ription of the phenomena has to 
or-

re
tly a

ount for the intrinsi
 heterogeneity and dire
tionality of the ro
k medium

and the multis
ale nature of the �ow. In dense fra
ture networks the �ow 
an be well

modelled as the �ow in a 
ontinuous porous medium where fra
tures in�uen
e the distri-

39
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bution of an equivalent permeability tensor. On the 
ontrary, in sparse fra
ture networks

�ow properties are mainly determined by the larger fra
tures, thus Dis
rete Fra
ture

Network (DFN) models are preferred to more 
onventional 
ontinuum models as basis

for the simulations.

A DFN is an assemblage of resembling-fra
tures planar ellipses or polygons, sto
has-

ti
ally generated given probabilisti
 data on distribution of density, aspe
t ratio, orien-

tation, size, aperture and hydrologi
al properties of the medium [13℄. The �uid regime

in a DFN 
an be 
onditioned even by the smallest elements, therefore negle
ting fra
-

tures below a spe
i�ed threshold is not re
ommended. As a 
onsequen
e the number

of generated fra
tures is frequently high even for a limited size of the domain of in-

terest. Dis
retization thus often leads to poor meshes with a huge number of nodes.

At the same time, a sto
hasti
 approa
h to the un
ertainty of the parameters requires

large numbers of simulations so that e�
ien
y of numeri
al methods is of paramount

importan
e for the appli
ability of DFN-based numeri
al solutions.

A DFN is a 
omplex 3D stru
ture. The �rst numeri
al 
hallenge is to provide good-

quality 
onforming meshes where the dis
retization of fra
ture interse
tions (tra
es) is

the same on all the fra
tures involved. This is usually a
hieved by the introdu
tion of

a huge number of elements, independently of the required a

ura
y of the numeri
al

solution.

In order to redu
e 
omputational 
ost, a possible approa
h 
onsists in redu
ing

the DFNs into systems of 1D pipes that are aligned along the fra
tures and mutually


onne
t the 
entres of the tra
es with the surrounding fra
tures. This approa
h eases

mesh generation problems and the resulting mesh of pipes still re�e
ts the topologi
al

properties of the fra
ture network [8, 23℄. An a

urate de�nition of pipe properties is

obtained with a boundary element method in [14℄.

Without resorting to dimensionality redu
tion, in [30℄ a mixed non-
onforming �nite

element method on a 
onforming mesh is proposed. In [21℄, an adaptive approa
h to the


onforming mesh generation requiring adjustments of the tra
e spatial 
ollo
ations is

proposed. Lo
al modi�
ations of the mesh or of the fra
ture network in order to preserve


onformity of the meshes or alignment of meshes along the tra
es are 
onsidered in

several works (see e.g. [18, 30℄). In [15℄, a method to generate a good-quality 
onforming

mesh on the network system is proposed based on the proje
tion of the dis
rete 3D

network on the 2D planar fra
tures in order to remove those 
onne
tions among fra
tures

whi
h are di�
ult to be meshed. In [25, 26℄, a mixed hybrid mortar method is proposed
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allowing non
onformities of the meshes on the fra
tures, but requiring that the tra
es

are 
ontained in the set of the edges of ea
h fra
ture triangulation. Resorting to mortar

methods the dis
retization of ea
h fra
ture 
an lead to a di�erent dis
retization of the

tra
es. Interesting very 
omplex DFN 
on�gurations are tested in [12℄.

In the re
ent work [7℄ the authors have proposed a di�erent approa
h for the de-

s
ription of steady-state �ows in a given DFN, whi
h 
onsists in the reformulation of

the problem as a PDE 
onstrained optimization problem. Following this approa
h, it is

shown that the meshes introdu
ed on ea
h fra
ture are allowed to be independent of the

meshes on other fra
tures, and independent of tra
e number and disposition, thus a
tu-

ally eliminating any kind of meshing problems related to DFN. The dis
rete problem is

formulated as an equality 
onstrained quadrati
 programming problem. Dis
retization

on ea
h fra
ture is performed with the extended �nite element method for approximat-

ing the non smooth behaviour of the solution, whi
h may present dis
ontinuities in the

�uxes. Here, we further analyze viability of the method proposed in [7℄ by dis
ussing

several issues arising when the method is applied to 
omplex DFNs. In parti
ular, we

fully a

ount for the extended �nite element dis
retization with the so-
alled open in-

terfa
es, i.e. tra
es not ending on fra
ture edges. We also dis
uss pre
onditioning issues

related to the numeri
al solution of the problem. Several numeri
al results are proposed,

showing the 
apability of the method in dealing with 
omplex situations, su
h as for

example 
riti
al tra
es interse
tions.

The paper is organized as follows. In Se
tion 2.2 we brie�y re
all the physi
al model

and the 
ontinuous optimization problem, and in Se
tion 2.3 the dis
rete formulation of

the problem is given. In Se
tion 2.4 we des
ribe the basi
s of extended �nite elements


onsidered herein, with spe
ial attention to the treatment of open interfa
es. In Se
-

tion 2.5 numeri
al results are dis
ussed in order to prove viability and reliability of the

method.

2.2 Problem des
ription

The quantity of interest of the problem we are dealing with is the hydrauli
 head,

given by H = P +ζ, where P = p/(̺g) is the pressure head, p is the �uid pressure, g

is the gravitational a

eleration 
onstant, ̺ is the �uid density, ζ is the elevation. The


omputation of the hydrauli
 head in a Dis
rete Fra
ture Network requires the solution

of di�erential equations on a system of planar polygonal open sets 
alled fra
tures,
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denoted by Fi with i ∈ I. Let us introdu
e on ea
h Fi a lo
al tangential 
oordinate

system x̂i. Despite being planar, their orientations typi
ally di�er so that their union

is a 3D set. Let us denote by Ω the union of the fra
tures and let ∂Ω be its boundary.

The interse
tion of the 
losure of ea
h 
ouple of fra
tures is either an empty set or a

set of non vanishing segments 
alled tra
es, denoted by Sm, m ∈ M. Let S denote the

set of all these tra
es. Furthermore, let ea
h fra
ture of the system be endowed with a

hydrauli
 transmissivity tensor Ki(x̂i).

In the paper the following assumptions are made on the DFN: 1) Ω̄ is a 
onne
ted

set; 2) ea
h tra
e Sm, m ∈ M, is shared by exa
tly two polygonal fra
tures Fi and Fj ,

i 6= j: Sm ⊆ F̄i ∩ F̄j ; 3) on ea
h fra
ture, the transmissivity tensor Ki(x̂i) is symmetri


and uniformly positive de�nite.

Given a tra
e Sm, let Fi and Fj be the fra
tures sharing the tra
e: the set of indi
es

i and j is denoted by ISm = {i, j}. For ea
h fra
ture Fi let us denote by Si the set of

tra
es shared by Fi with other fra
tures, and by Ji ⊂ I the set of indi
es of fra
tures

sharing one tra
e with Fi.

While referring the reader to [7℄ for all the details, we sket
h here a brief des
ription

of the approa
h. Let us split the boundary ∂Ω into two sets ΓD 6= ∅ and ΓN , with

ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅, on whi
h Diri
hlet boundary 
onditions HD and

Neumann boundary 
onditions GN are respe
tively imposed. Let HiD and GiN be the

restri
tion of HD and GN to ΓiD = ΓD ∩ ∂Fi and ΓiN = ΓN ∩ ∂Fi, respe
tively. Let us

de�ne ∀i ∈ I

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}
, V D

i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HiD

}
,

and let V ′
i be the dual spa
e of Vi.

The global hydrauli
 head H in the whole 
onne
ted system Ω is provided by the

solution of the following problems: ∀i ∈ I �nd Hi ∈ V D
i su
h that ∀v ∈ Vi

∫

Fi

Ki∇H∇vdΩ =

∫

Fi

qivdΩ+

∫

ΓN∩∂Fi

Gi,Nv|SdΓ +
∑

S∈Si

∫

S

[[
∂Hi

∂ν̂iS

]]

S

v|SdΓ, (2.1)

where

∂Hi

∂ν̂i
S

= (n̂iS)
T
K∇H is the outward 
o-normal derivative of the hydrauli
 head,

being n̂iS the unique normal �xed for the tra
e S on the fra
ture Fi, and the symbol[[
∂Hi

∂ν̂i
S

]]

S
denotes the jump of the 
o-normal derivative along n̂iS . This jump is indepen-

dent of the orientation of n̂iS .

In equation (2.1) the left hand side models the di�usion of hydrauli
 head on ea
h

fra
ture, the �rst term of the right hand side is the external load in ea
h fa
ture, the
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se
ond is the term due to the Neumann boundary 
onditions, whereas the last term

des
ribes the net �ow of hydrauli
 head entering the fra
ture at ea
h tra
e.

In order to set up a well de�ned problem, the following mat
hing 
onditions have to

be added to (2.1):

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , (2.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm . (2.3)

These two additional 
onditions 
orrespond to the physi
al requirement of 
ontinuity of

the hydrauli
 head and 
onservation of hydrauli
 �uxes a
ross ea
h tra
e Sm, m ∈ M.

Condition (2.2) implies that the hydrauli
 head H on the whole domain Ω belongs to

the spa
e

V D = H

1
D

(Ω) =

{
v ∈

∏

i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm , ∀m ∈ M

}
. (2.4)

For simpli
ity of notation and exposition in the following of this se
tion we assume

that the tra
es S ∈ S are disjoint. This assumption 
an be removed at the 
ost of a

more 
omplex and heavy notation. Let us de�ne for ea
h tra
e S ∈ S a suitable spa
e

US
and its dual that we denote by

(
US
)′
. We de�ne similar spa
es on all the tra
es of

fra
ture Fi, ∀i ∈ I and on the full set of tra
es S:

USi =
∏

S∈Si

US , U =
∏

i∈I

USi .

For ea
h tra
e S 
ommon to Fi and Fj we introdu
e suitable variables US
i ∈ US

and US
j ∈ US

representing the unknown quantities

[[
∂Hi

∂ν̂i
S

]]

S
and

[[
∂Hj

∂ν̂
j
S

]]

S

, respe
tively.

Moreover, for ea
h fra
ture Fi let us denote by

Ui = Π
S∈Si

US
i ∈ USi

the tuple of fun
tions US
i with S ∈ Si, and by U =Πi∈I Ui ∈ U the tuple of all fun
tions

US
i with S ∈ Si and i ∈ I, i.e. the 2(#M)-tuple of fun
tions on all tra
es in Ω̄. Let us

introdu
e the following linear bounded operators:

Ai ∈ L(Vi, V ′
i ), 〈AiH

0
i , v〉V ′

i ,Vi
=
(
K∇H0

i ,∇v
)
, H0

i ∈ Vi,

AD
i ∈ L(V D

i , V ′
i ), 〈AD

i H
D
i , v〉V ′

i ,Vi
= (K∇HD

i ,∇v), HD
i ∈ V D

i ,

Bi ∈ L(USi , V ′
i ), 〈BiUi, v〉V ′

i ,Vi
= 〈Ui, v|Si

〉
USi ,USi

′ ,

BΓiN
∈ L(H− 1

2
(ΓiN ), V

′
i ), 〈BΓiN

GiN , v〉V ′
i ,Vi

= 〈GiN , v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)
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the de�nitions holding ∀v ∈ Vi. Further, we introdu
e the dual operators A∗
i ∈ L(Vi, V ′

i ),

Bi
∗ ∈ L(Vi,USi

′
) and the Riesz isomorphism ΛUSi : USi → USi

′
. Finally, let RiHiD ∈

V D
i be a lifting of Diri
hlet boundary 
ondition HiD. The problem is then 
learly stated

as follows: ∀i ∈ I �nd Hi = H0
i +RiHiD, with H

0
i ∈ Vi su
h that:

AiH
0
i = qi +BiUi +BiNGiN −AD

i RiHiD. (2.5)

2.2.1 Formulation as an optimization problem

The novel approa
h introdu
ed in [7℄ 
onsists in repla
ing the di�erential problems

on the fra
tures (2.5) ∀i ∈ I, 
oupled with the mat
hing 
onditions (2.2), (2.3), with

a PDE 
onstrained optimal 
ontrol problem, in whi
h the variable U a
ts as a 
ontrol

variable; equations (2.5) ∀i ∈ I are the 
onstraints, and the mat
hing 
onditions are

repla
ed by the task of minimizing a nonnegative fun
tional. Let us de�ne the spa
es

HSi =
∏

S∈Si

HS , H =
∏

i∈I

HSi ,

and the Riesz isomorphism ΛHSi : HSi → HSi
′
. We introdu
e the following linear

bounded observation operators CS
i and Ci and the dual Ci

∗
:

CS
i ∈ L(Vi,HS), Ci ∈ L(Vi,HSi) = Π

S∈Si

CS
i , Ci

∗ ∈ L(HSi
′
, V ′

i ).

For all i ∈ I, let us denote by Hi(Ui) the solution to (2.5) 
orresponding to the value

Ui for the 
ontrol variable. Furthermore, �xed a fra
ture Fi, we denote by ΠS∈Si
US
j

the tuple of 
ontrol fun
tions de�ned on the fra
tures Fj interse
ting Fi in the tra
es

S ∈ Si.

Let us now introdu
e the following di�erentiable fun
tional J : U → R:

J(U) =
∑

S∈S

JS(U) =
∑

S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS + ||US

i + US
j ||2US

)

=
1

2

∑

i∈I

(
|| Π
S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)
||2
HSi

+ ||Ui + Π
S∈Si

US
j ||2USi

)
. (2.6)

The problem of �nding the hydrauli
 head in the whole domain is restated as the

following optimization problem: �nd U ∈ U solving the problem

minJ(U) subje
t to (2.5), ∀i ∈ I. (2.7)
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In [7℄ it is shown that, if US = H

− 1

2
(S) andHS = H

1

2
(S), there exists a unique 
ontrol

variable U vanishing the fun
tional J(U) and 
orrespondingly the unique solution H

satisfying (2.5) ∀i ∈ I is the solution to (2.1)-(2.3), as the vanishing of the two terms of

the fun
tional J 
orresponds to the imposition of the mat
hing 
onditions (2.2), (2.3)

∀m ∈ M. It is further shown that the optimal 
ontrol U ∈ U providing the minimum

of the fun
tional J(U) is 
hara
terized by the following 
onditions:

(ΛUSi )
−1Bi

∗Pi + Ui + Π
S∈Si

US
j = 0, (2.8)

∀i ∈ I, where the fun
tions Pi ∈ Vi are the solution of

A∗
iPi = Ci

∗ΛUSi Π
S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)
, in Fi. (2.9)

The 
omputation of the solution to the problem of interest on the whole DFN may

either be approa
hed solving problems (2.5) 
oupled with equations (2.8) and (2.9)

∀i ∈ I, or setting up an iterative pro
ess for solving the optimization problem (2.7).

In the next Se
tion we will give details 
on
erning 
omputation of a numeri
al solution

with these approa
hes.

Remark 2.1. The assumption of ea
h tra
e being shared by exa
tly two fra
tures 
an

be 
ir
umvented by rede�ning the fun
tional as follows. With straightforward extension

to more general 
ases, we allow three fra
tures Fi, Fj , Fk to share the same tra
e S.

Then the 
orresponding JS(U) term in the de�nition of J(U) is

JS(U) = ||CS
i Hi(Ui)− CS

j Hj(Uj)||2HS + ||CS
i Hi(Ui)− CS

kHk(Uk)||2HS

+||US
i + US

j + US
k ||2US .

2.3 Dis
retization of the 
onstrained optimization problem

In this se
tion, we a

ount for the numeri
al solution of the problem, and we start

brie�y sket
hing the derivation of the �nite dimensional 
ounterpart of problem (2.7).

For the sake of simpli
ity, in this se
tion we assume homogeneous Diri
hlet boundary


onditions, i.e. HD = 0. All the results 
an be extended to the general 
ase HD 6=
0. We des
ribe our numeri
al method for the approximation of the solution assuming

US = L

2
(S), HS = L

2
(S), ∀S ∈ S. We remark that with these 
hoi
es the assumption

of dis
onne
ted tra
es 
an be removed [7℄.
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Let us introdu
e an independent 
onforming triangulation Tδ,i on ea
h fra
ture Fi

∀i ∈ I. Let Vδ,i be the �nite dimensional trial and test spa
es de�ned on the elements

of Tδ,i and spanned by Lagrangian basis fun
tions φi,k, k = 1, ..., Ni. The dis
rete

approximation of Hi on ea
h fra
ture is de�ned as hi =
∑Ni

k=1 hi,kφi,k, ∀i ∈ I.

Let us 
onsider the following di�erent numbering for the 
ontrol fun
tions US
i , in-

du
ed by the tra
e numbering. Being S = Sm a given tra
e, with ISm = {i, j} and

assuming i < j, we denote by U−
m and by U+

m the 
ontrol fun
tions related to the

m-th tra
e and 
orresponding to fra
tures Fi and Fj , respe
tively. Let us �x a �nite

dimensional subspa
e of US
for the dis
rete approximation u⋆m of the 
ontrol variable

U⋆
m, ⋆ = −,+ and let us introdu
e basis fun
tions ψ−

m,k, k = 1, ..., N−
m and ψ+

m,k,

k = 1, ..., N+
m . Then we have, for m ∈ M, ⋆ = −,+, u⋆m =

∑N⋆
m

k=1 u
⋆
m,kψ

⋆
m,k.

With these notations, using L2
-norms in (2.6) and CS

i hi = hi|S , we obtain the

following �nite dimensional form of the fun
tional J(u):

J(u) =
1

2

∑

i∈I

∑

S∈Si

∫

S

(

Ni∑

k=1

hi,kφi,k|S −
Nj∑

k=1

hj,kφj,k|S)
2 dγ +

1

2

∑

m∈M

∫

S

(

N−
m∑

k=1

u−m,kψ
−
m,k +

N+
m∑

k=1

u+m,kψ
+
m,k)

2 dγ. (2.10)

In view of deriving a 
ompa
t form for (2.10), let us introdu
e ve
tors hi ∈ R
Ni
,

hi = (hi,1, . . . , hi,Ni
)T , i ∈ I and setting NF =

∑
i∈INi, let h ∈ R

NF
be obtained


on
atenating, for i ∈ I, ve
tors hi. Hen
e from now on, besides denoting the dis
rete

solution, hi will also denote the ve
tor of degrees of freedom. Similarly, let us introdu
e

the ve
tors u⋆m ∈ R
N⋆

m
, u⋆m = (u⋆m,1, . . . , u

⋆
m,N⋆

m
)T , m ∈ M, ⋆ = −,+, and setting

NT =
∑

m∈M(N−
m +N+

m) we de�ne u ∈ R
NT


on
atenating u−1 , u
+
1 , . . . , u

−
#M

, u+#M
.

For all i ∈ I, S ∈ Si, let us de�ne matri
es MS
i ∈ R

Ni×Ni
and (for j ∈ Ji) M

S
ij ∈

R
Ni×Nj

as:

(MS
i )kℓ =

∫

S

φi,k|Sφi,ℓ|S dγ, (MS
ij)kℓ =

∫

S

φi,k |Sφj,ℓ|S dγ

and for m ∈ M and ⋆ = −,+ de�ne M⋆
m ∈ R

N⋆
m×N⋆

m
, M±

m ∈ R
N−

m×N+
m
and Mm as:

(M⋆
m)kℓ=

∫

S

ψ⋆
m,kψ

⋆
m,ℓ dγ, (M±

m)kℓ=

∫

S

ψ−
m,kψ

+
m,ℓ dγ, Mm=

(
M−

m M±
m

(M±
m)T M+

m

)

Then, let Gh ∈ R
NF×NF

and Gu ∈ R
NT×NT

be de�ned blo
kwise as follows:

Gh
ii =

∑

S∈Si

MS
i , i ∈ I Gh

ij = −MS
ij , i ∈ I, j ∈ Ji Gu = diag(M1, . . . ,M#M).
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With these de�nitions at hand, the fun
tional J(u) in matrix form reads

J(u) =
1

2
hTGhh+

1

2
uTGuu.

Matri
es Gh
and Gu

are 
learly symmetri
 and semi-de�nite.

Now, let us turn our attention to the algebrai
 
ounterparts of operators Ai, Bi in

(2.5): overloading notations, we let Ai and Bi also denote the matri
es de�ning the

algebrai
 operators. We set Ai ∈ R
Ni×Ni

and BSm

i ∈ R
Ni×N⋆

m
as

(Ai)kℓ=

∫

Fi

∇φi,ℓ∇φi,k dFi,
(
BSm

i

)
kℓ
=

∫

Sm

φi,k |Sm
ψ⋆
m,ℓ dγ, (2.11)

where, being Sm ⊆ F̄i ∩ F̄j , we take ⋆ = − if i < j or ⋆ = + otherwise. Matri
es

BSm

i , Sm ∈ Si, are then grouped row-wise to form the matrix Bi ∈ R
Ni×NSi

, with

NSi
=
∑

Sm∈Si
N⋆

m and ⋆ 
hosen as before, whi
h a
ts on a 
olumn ve
tor ui obtained

appending the blo
ks u⋆m in the same order used for BSm

i , as the a
tion of a suitable

operator Ri : RNT 7→ R
NSi

su
h that ui = Riu. A

ording to these de�nitions, the


onstraints (2.5) lead to the algebrai
 equations

Aihi −BiRiu = q̃i, i ∈ I (2.12)

where q̃i a

ounts for the term qi in (2.5) and the boundary 
onditions. Denoting

w = (hT , uT )T ∈ R
NF+NT

and de�ning

A = diag(A1, . . . , A#I) ∈ R
NF×NF

, B =




B1R1

.

.

.

B#IR#I


 ∈ R

NF×NT
,

C = (A −B) ∈ R
NF×NF+NT

, G = diag(Gh, Gu), (2.13)

the overall problem reads as the following equality 
onstrained Quadrati
 Programming

problem:

min
w

1

2
wTGw, s.t. Cw = q̃. (2.14)

Classi
al results (see e.g. [22, Theorem 16.2℄) show that, under proper assumptions on

C and G, w∗
is the unique global solution to (2.14) if and only if it is the unique solution

to the following saddle point system:

A =

(
G CT

C 0

)
, A

(
w∗

−p∗

)
=

(
0

q̃

)
(2.15)
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being p∗ the ve
tor of Lagrange multipliers. In [7℄ the following result, 
on
erning

existen
e and uniqueness of the solution to the dis
rete 
ounterpart of problem (2.7), is

proven.

Theorem 2.2. Let us 
onsider the dis
rete formulation (2.14) to the problem of sub-

surfa
e �ow in a DFN, with G and C de�ned as in (2.13). Then, the solution exists and

is unique and 
oin
ides with the solution to (7.22).

The numeri
al approximation of the hydrauli
 head 
an be obtained in a twofold

manner. A possible method 
onsists in solving the saddle point linear system (7.22).

This approa
h is viable for DFNs of moderate size: in this 
ase sparse solvers 
an

e�
iently 
ompute a solution to (7.22). When very large DFN systems 
ome into play,

solving the linear system may be a quite demanding task even if very 
oarse meshes are

used on ea
h fra
ture, and parallel 
omputing may be
ome preferable. In these 
ases, as

depi
ted in [7℄, a worthwhile approa
h 
onsists in using a gradient-based method for the

minimization of (2.14). Indeed, as shown in [7℄, this method allows for the de
oupled

solution of lo
al problems on the fra
tures, with a moderate ex
hange of information

among them. This point makes the method appealing for parallelization on massively

parallel 
omputers and GPU-based 
omputers, in whi
h the lo
al problems on fra
tures


an be distributed among pro
essors.

2.4 XFEM Dis
retization

2.4.1 XFEM des
ription

The Extended Finite Element Method (XFEM) [3, 20, 11, 4℄ is a �nite element-based

numeri
al method to approa
h partial di�erential equations in variational form with non

smooth or dis
ontinuous solutions. XFEM in the 
ontext of poro-fra
tured media are

also used in [10℄. The non smooth behaviour of the solution is added to the standard

Finite Element (FE) approximation spa
e through 
ustomized enri
hment fun
tions in

order to extend approximation 
apabilities. By means of the Partition of Unity Method

(PUM) [1℄ the in�uen
e of the enri
hments is lo
alized in a neighbourhood of irregularity

interfa
es. In this way the XFEM allows to reprodu
e irregularities regardless of the

underlying triangulation.

Let us 
onsider a problem set on a domain ω ⊂ R
d
, with a weak dis
ontinuity (i.e.

a dis
ontinuity in derivatives) along the manifold S ⊂ ω, S ⊂ R
d−1

, and let Tδ be a
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onforming triangulation on ω, with N el
elements τe ⊂ R

d
, ω̄ =

⋃
1≤e≤Nel τe. Let V

fem
δ

be the standard �nite dimensional trial and test spa
e de�ned on the elements of Tδ and
spanned by Lagrangian basis fun
tions φk, k ∈ I . Ea
h basis fun
tion φk has 
ompa
t

support denoted by ∆k.

If the nonsmooth 
hara
ter of the solution is a priori known, it is possible to intro-

du
e it in the FEM dis
rete spa
e. Let us assume Φ is a 
ontinuous bounded fun
tion

on ω, Φ ∈ H

1
(ω)∩C0(ω̄) that well approximates the behaviour of a fun
tion h in a

neighbourhood ∆S of S given by the union of some mesh elements τe. It is possible to

build a partition of unity on ∆S based on the standard FE shape fun
tions to de�ne

new enri
hing basis fun
tions starting from Φ that 
an be introdu
ed into the FEM

spa
e, thus giving the enri
hed fun
tional spa
e:

V

xfem
δ = span

(
{φk}k∈I , {φkΦ}k∈J

)
, (2.16)

where J ⊂ I is the subset of indi
es of fun
tions φk used to de�ne the partition of ∆S.

DOFs in J are 
alled enri
hed DOFs (and the 
orresponding nodes enri
hed nodes).

The sele
tion of the domain ∆S 
an vary with the spe
i�
 appli
ation of the method,

but is usually given by the union of mesh elements interse
ted by the interfa
e S. The

approximate solution hxfem of the problem with the XFEM will be in general:

hxfemδ (x̂) =
∑

k∈I

hxfemk φk(x̂) +
∑

k∈J

axfemk φk(x̂)Φ(x̂), (2.17)

where hxfemk and axfemk are the unknowns related to the standard and enri
hing basis

fun
tions, respe
tively. The nonsmoothness of the exa
t solution is now present in the

dis
rete solution and is reprodu
ed independently of the position of mesh elements.

Sin
e only a subset of total degrees of freedom is enri
hed, elements in Tδ may have a

variable number of enri
hed nodes. In parti
ular, a

ording to the 
lassi�
ation given

in [17℄ we have standard elements when no nodes are enri
hed, reprodu
ing elements if

all nodes are enri
hed, and blending elements if only some nodes are enri
hed.

The enri
hment fun
tion Φ 
an be 
orre
tly reprodu
ed only in reprodu
ing elements

where the partition of unity is 
omplete. On the 
ontrary, in the blending elements

partition of unity is partially established and unwanted terms are introdu
ed in the

approximation, a�e
ting the 
onvergen
e rate of the standard FE [9, 29, 16℄. Moreover

the basis of V

xfem
δ is no longer a Lagrangian basis. For these reasons we will a
tually

implement the modi�ed version of XFEM with shifted basis fun
tions, as suggested in
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Closed interface
Open Interface

Figure 2.1: Classi�
ation of dis
ontinuity

interfa
es

Figure 2.2: Example of fun
tion behaviour

for near-tip enri
hments

[16℄. The enri
hment basis fun
tion φkΦ is repla
ed by

φk(x̂)Φ̃(x̂) = φk(x̂)R(x̂) (Φ(x̂)− Φ(x̂k)) ,

where R(x̂) =
∑

j∈J φj(x̂) and x̂k are the 
oordinates of the k-th node. The enri
hed

domain is extended in
luding blending elements through a rede�nition of the set J as

J̃ =
{
k ∈ I : ∆k ∩ ∆̊Φ 6= ∅

}
, where ∆Φ =

⋃
k∈J ∆k. In this way the approximation 
a-

pability of the enri
hed spa
e is una�e
ted in reprodu
ing elements, where R(x̂) = 1, and

depends on the 
hoi
e of the enri
hment fun
tion Φ, while the standard FE polynomial

representation of solution 
an now be obtained in blending elements, restoring optimal


onvergen
e rates. The shift restores Lagrangian property of the basis fun
tions making

easier the imposition of Diri
hlet boundary 
onditions and graphi
al representation of

the results.

The generalization to multiple enri
hments is straightforward. In parti
ular we re-

mark that XFEM enjoys and additivity property with respe
t to the interfa
es: inde-

pendently of tra
es disposition, the set of enri
hing fun
tions with multiple interfa
es is

the union of the enri
hments introdu
ed by ea
h interfa
e. A 
omprehensive review of

the XFEM method, in
luding implementation details, 
an be found in [17℄.

2.4.2 Enri
hment fun
tions sele
tion

We now fo
us on the de�nition of the enri
hments used in the appli
ation of the

XFEM to DFNs. Re
alling de�nitions introdu
ed in Se
tion 2.2, on ea
h fra
ture Fi
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the exa
t solutions Hi to (2.5) may have a jump of �uxes a
ross the tra
es in Si. The

XFEM approa
h allows the triangulation to be set on ea
h fra
ture independently of

the disposition and number of the tra
es, thus a
tually eliminating meshing problems

related to DFNs. Let us �x a fra
ture F ⊂ R
2
and let MF ⊂ M be the subset of indi
es


orresponding to tra
es on F .

The sele
tion of the enri
hment fun
tions is related to the irregularity to be repro-

du
ed and to the type of interfa
es. Here we deal with solutions with dis
ontinuous

gradient (weak dis
ontinuities) and di�erent enri
hment fun
tions need to be employed

a

ording to the lo
ation of the tra
es (interfa
es) in the domain, with a distin
tion

between 
losed and open interfa
es (see Figure 2.1). In order to des
ribe the enri
hment

fun
tions, let us introdu
e, form ∈ MF , the fun
tion dm(x) given by the signed distan
e

from Sm [29, 4℄: for x̂ ∈ F , dm(x̂) = ‖x̄− x̂‖sign(n̂Sm ·(x̄− x̂)), where x̄ is the proje
tion
of x̂ on Sm and n̂Sm is the �xed unit normal ve
tor to Sm.

For a 
losed interfa
e we use the enri
hment fun
tion Ψm
de�ned as Ψm(x̂) =

|dm(x̂)|, [4℄, that is a 
ontinuous fun
tion with dis
ontinuous �rst order derivatives

a
ross Sm. This introdu
es the required nonsmooth behaviour in the approximation.

The enri
hment is lo
alized in a neighbourhood of Sm de�ned by the set of DOF

Jm
Ψ = {k ∈ I : ∆k ∩ Sm 6= ∅}.
On the 
ontrary, if Sm is an open interfa
e, di�erent enri
hment fun
tions are needed

to reprodu
e the behaviour of the solution 
lose to the extrema of the interfa
e and away

from the extrema

{
s1, s2

}
= σm. Away from the extrema, the nonsmooth behaviour of

the solution is similar to the 
ase of 
losed interfa
es and the same fun
tion Ψm
is used,

being the set Jm
Ψ de�ned as

{
k ∈ I : ∆k ∩ Sm 6= ∅, ∆k ∩ sℓ = ∅

}
, ∀sℓ ∈ σm. Other

enri
hment fun
tions are introdu
ed to des
ribe near-tip behaviour of the solution; we

adopt here the fun
tions suggested in [4℄ and de�ned as follows. Let r be the signed

distan
e between the 
urrent point and tra
e tip; furthermore, let us 
onsider for ea
h

tip a referen
e system 
entered into tra
e tip, with the x-axis aligned to the tra
e and

oriented in su
h a way that the tra
e lies on the negative side, and let θ ∈ (−π, π) be
the polar angle of x̂ in this system. Then, the enri
hing fun
tions are

Θm
sℓ
(x̂) ∈

{
r cos

θ

2
, r2 cos

θ

2
,
√
r cos

θ

2

}
, sℓ ∈ σm.

Fun
tions Θm
sℓj

(x̂) are 
ontinuous and 
usp-like on Sm, and their behaviour around tra
e

tips is a 
ombination of

{√
r, r, r2

}
, as shown for example in Figure 2.2, in whi
h we

plot the fun
tion r cos θ/2. The set of DOFs subje
t to tip enri
hments is given by
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Jm
Θsℓ

=
{
k ∈ I : ∆k ∩ sℓ 6= ∅

}
, ∀sℓ ∈ σm. In order to prevent blending elements related

problems, the enri
hment fun
tions here des
ribed are used as basis for the modi�ed

XFEM version [16℄ mentioned in the previous subse
tion.

With all the enri
hments here des
ribed, the number of DOFs on ea
h fra
ture Fi

is Ni = # I +
∑

m∈M

# J̃m
+3

∑

m∈M

∑

sℓ∈σm

# J̃m

Θsℓ, where J̃m
and J̃m

Θsℓ denote the sets of

DOFs for the modi�ed version.

The numeri
al integration of singular fun
tions was performed on sub-domains not


rossing the tra
es [20, 4℄. A Gauss quadrature rule was used with spe
ial 
are for

the integration of gradients of near-tip enri
hment fun
tions, where a 
on
entration of

integration nodes around tra
e tip is re
ommended to 
orre
tly evaluate the singularities

[19℄.

2.5 Numeri
al results

The numeri
al simulations reported in this Se
tion aim at showing the viability of

the approa
h proposed in [7℄ in solving problems on 
omplex networks. In Subse
tion

2.5.1 a problem with open interfa
es is 
onsidered, and numeri
al 
onvergen
e of the

method is analyzed. In Subse
tion 2.5.2 a 
riti
al situation is introdu
ed, in whi
h three

tra
es are very 
lose ea
h other, almost parallel and interse
ting ea
h other. The great

deal of �exibility in mesh generation allowed by our approa
h is shown. In Subse
tion

2.5.3 some more 
omplex DFNs are 
onsidered. In Subse
tion 2.5.4 pre
onditioning

issues for system (7.22) are analyzed. Finally, in 2.5.5 we show how the method 
an

deal with broadly ranging transmissivity values.

All the simulations are performed with triangular meshes and �rst order �nite ele-

ments. The problems have been solved through the optimization approa
h introdu
ed in

[7℄, in 
onjun
tion with extended �nite elements, and mesh elements arbitrarily pla
ed

with respe
t to the tra
es. We highlight that sin
e the triangulations on a 
ouple of in-

terse
ting fra
tures indu
e di�erent dis
retizations on the 
ommon tra
e, the minimum

of the dis
rete fun
tional (2.10) is di�erent from zero, that is the theoreti
al minimum

of the fun
tional in the 
ontinuous 
ase.

The problems have been solved in a twofold manner: either solving the whole system

(7.22) via an iterative method, or applying the steepest des
ent method to problem

(2.14) (Algorithm 4.5 in [7℄). Con
erning the �rst 
ase, the matrix A in (7.22) is
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Figure 2.3: Problem 1: Domain des
ription with mesh and solution h (left) and 
ontrol

variable along tra
e (right)

symmetri
 but inde�nite, as shown in 
lassi
 literature on saddle point problems (see

e.g. [5℄). Furthermore, in real appli
ations A is of huge dimensions but highly sparse,

hen
e an iterative method with matrix free approa
h appears to be a suitable 
hoi
e.

Among iterative methods for solving linear systems, SYMMLQ [24℄ is re
ommended for

symmetri
 inde�nite systems, and requires a symmetri
 positive de�nite pre
onditioner.

This is the 
hoi
e we adopted here, using the MATLAB built-in SYMMLQ fun
tion. The

issue of pre
onditioning SYMMLQ on DFN appli
ations is addressed in Subse
tion 2.5.4.

Nevertheless, when large DFNs are 
onsidered, even assembling and storing the

system (7.22) may be a quite demanding task. The steepest des
ent method suggested

in [7℄ may help in this respe
t as only the de
oupled solution of lo
al problems on

fra
tures are required at ea
h step, and with this approa
h a large problem 
an be

dealt with also on a simple PC without requiring ex
essive memory resour
es. When

this algorithm is used, the lo
al problems (2.12) are typi
ally of small dimension, so

that a dire
t solver 
an be e�e
tively used to 
ompute these solutions. We used in our

experiments the MATLAB built in dire
t solver. Computations are always started from

u0 = 0.
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2.5.1 Behaviour of the method with open interfa
es

The �rst problem proposed is designed in order to test the behaviour of the method

with near tip-enri
hments. Let us de�ne the domain Ω = F1 ∪ F2, with

F1 =
{
(x, y, z) ∈ R

3 : −1 < x < 1, −1 < y < 1, z = 0
}
,

F2 =
{
(x, y, z) ∈ R

3 : −1 < x < 0, y = 0, −1 < z < 1
}
.

The tra
e S ends in the interior of F1 and is an open interfa
e. Let us de�ne Hex(x, y, z)

in Ω as:

Hex(x, y, z) =

{
(x2 − 1)(y2 − 1)(x2 + y2) cos

(
1
2 arctan2(x, y)

)
on F1,

−(z2 − 1)(x2 − 1)(z2 + x2) cos
(
1
2 arctan2(z, x)

)
on F2,

where arctan2(x, y) is the four-quadrant inverse tangent, giving the angle between the

positive x-axis and point (x, y), and di�ers from the usual one-argument inverse tangent

arctan(·) for pla
ing the angle in the 
orre
t quadrant. The fun
tion H is the solution

of the system:

−∆H = −∆Hex, in Ω \ S,
H = 0, on ∂F1 ∪ ∂F2 \ Γ,

H =

√
2

2
(z2 − z4), on Γ,

where Γ is the boundary of F2 parallel to the z-axis and interse
ting the x-axis in

x = −1. In Figure 2.3 we report on the left the geometry of the problem and the non


onforming mesh used with XFEM (δmax = 0.1). On the right, we report the 
ontrol

variable u1 
omputed, 
ompared with the exa
t fun
tion. The �ux mismat
h 
omputed

along the tra
e is ‖u1 + u2‖
L

2
(S)

= 2.8 10−4
. The results obtained with XFEM are

shown in Figure 2.4. The problem has also been solved with standard �nite elements

on meshes 
onforming to the tra
e. The rates of 
onvergen
e in both 
ases, reported in

Figure 2.5 (left), are optimal. As expe
ted, the 
urves relative to the solution obtained

with the XFEM lie below the 
urves 
orresponding to standard �nite elements. In fa
t,

the basis fun
tion r2 cos θ/2 introdu
ed for tra
e tip behaves essentially as Hex

lose to

the 
enter of F1, where tip is lo
ated, thus lo
ally redu
ing the error with respe
t to

standard FE. Minima of

√
J are reported on the right plot of Figure 2.5, showing that

grid re�nement pushes these minima towards zero.
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Table 2.1: Number of DOFs for fra
ture F1 for di�erent solution strategies

Amax XFEM non-�tting FEM �tting FEM

0.05 48 12 655

0.0225 85 34 672

0.01 135 71 715

0.0025 398 311 910

0.0004 486 396 1017
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Figure 2.6: Problem 2: meshes on F1. Left: 
oarse grid; right: �ne grid.
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2.5.2 Criti
al tra
es disposition and DOFs investigation

In this subse
tion we 
onsider a problem with 
riti
al tra
es disposition. We 
onsider

four fra
tures: F1, lo
ated on the x− y plane of a 3D referen
e system; the other three

fra
tures are orthogonal to the x− y plane and generate with F1 three tra
es very 
lose

to ea
h other and �almost� parallel, i.e. the angles between tra
es are very small, ranging

from 0.8 (sexagesimal) degrees up to 1.8 degrees. The three tra
es are open interfa
es.

The fra
ture F1 and the three tra
es are represented in Figure 2.6, along with examples

of mesh used on F1. On the right plot, also a detail of the right extremities of the tra
es

is reported. The 
oordinates of tra
es extremities are (xb1, y
b
1) = (0.4, 0.5), (xe1, y

e
1) =

(0.6, 0.5), (xb2, y
b
2) = (0.398, 0.5), (xe2, y

e
2) = (0.602, 0.503), (xb3, y

b
3) = (0.402, 0.501),

(xe3, y
e
3) = (0.598, 0.498).

In Table 2.1 we report, for fra
ture F1, the number of degrees of freedom obtained

meshing the fra
ture for the following approa
hes: our optimization approa
h in 
on-

jun
tion with XFEM, hen
e without �tting the mesh to the tra
es; the same optimiza-

tion approa
h, on the same mesh, with standard FEM basis fun
tions (hen
e without

enri
hing basis fun
tions); standard FEM on a mesh �tting the tra
es. We remark that

in this latter 
ase the mesh has been generated only on F1 and is only 
onstrained to

�t tra
e disposition; if also the mesh on the other three fra
tures were generated, and


onformity on all the DFN were required, the number of degrees of freedom might be

possibly even larger. In all three 
ases the meshes have been obtained with the software

Triangle [28℄, requiring a good quality mesh (−q option in Triangle) and imposing a

given maximum element area Amax, reported in Table 2.1. Comparing �rst and se
ond


olumn of the table, it is 
lear that, when the same mesh is 
onsidered, XFEM requires

a larger number of DOFs than FEM, with a more signi�
ant per
entage on the 
oarser

meshes, sin
e a larger fra
tion of elements are subje
t to enri
hment. Under grid re�ne-

ment, the number of elements enri
hed in
reases, but the per
entage de
reases, and the

relative di�eren
e in DOFs between the two approa
hes be
omes smaller. As shown by

the last 
olumn, the number of DOFs introdu
ed with a regular, �tting mesh, is in this


ase mu
h higher then the previous ones, thus showing how e�e
tive is our approa
h

in redu
ing the number of DOFs with respe
t to a 
onforming approa
h. Besides, we

stress that non �tting meshes are produ
ed without any kind of knowledge about tra
es

disposition, thus easily obtained.

A problem has been introdu
ed on this DFN as follows: −∆H = 0 in Ω\S; on F1 we
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Figure 2.11: Problem 6F: detail of �ne

mesh
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Figure 2.12: Problem 6F: solution on F2

with �ne mesh

set homogeneous Diri
hlet 
onditions on fra
ture edges (almost) parallel to the tra
es,

and homogeneous Neumann 
ondition on the other sides; on fra
tures Fi, i = 2, 3, 4, we

set H = 1 on the top edge, and homogeneous Neumann 
onditions on the other sides.

The problem has been solved with the �rst two approa
hes mentioned before (XFEM

and FEM on the same mesh, with our optimization approa
h). A 
oarse (Amax = 0.05)

and a �ne (Amax = 0.0025) mesh have been used, and are depi
ted in Figure 2.6. The

numeri
al results obtained on the 
oarse and �ne meshes are reported in Figures 2.7 and

2.8, respe
tively. The XFEM solutions are plotted on sub-elements generated by 
utting

XFEM elements along tra
es. Finally, in Figure 2.9 we report the values of

√
J versus the

number of iterations of the steepest des
ent method using both FEM and XFEM on the


oarse mesh. It 
an be seen that the larger number of DOFs introdu
ed by enri
hments,

and the larger number of iterations required by XFEM, are 
ounterbalan
ed by the

higher quality of the solution.

2.5.3 DFN systems simulations

In this subse
tion we 
onsider systems of fra
tures of in
reasing 
omplexity. Fra
ture

transmissivities Ki are assumed 
onstant on ea
h fra
ture but di�erent from fra
ture to

fra
ture.

First, we 
onsider the DFN 
on�guration depi
ted in Figure 2.10: the system is


omposed by six fra
tures. Some of the tra
es generated do interse
t ea
h other. A

detail of the mesh, presented in Figure 2.11, highlights non 
onformity of the mesh.
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Figure 2.13: Problem 6F: solution on F6 with 
oarse (left) and �ne (right) mesh
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Figure 2.14: Problem 7F: Domain des
rip-

tion
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Figure 2.15: Problem 11F: Domain de-
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Figure 2.17: Problem 11F: geometry and

a viable 
oarse mesh (δmax = 1)
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Figure 2.18: Problem 7F: Solution on fra
-

ture F6 (tra
es numbering is global)
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Figure 2.19: Problem 7F: Solution hi on

the tra
es of fra
ture F6 and solutions

{hj} on the fra
tures interse
ting F6 in its

tra
es
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Figure 2.20: Problem 7F: Solution ui on

the tra
es of fra
ture F6 and solutions

{−uj} on the fra
tures interse
ting F6 in

its tra
es
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fra
ture F6 (tra
es numbering is global)
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Figure 2.22: Problem 11F: Solution hi

on the tra
es of fra
ture F6 and solutions

{hj} on the fra
tures interse
ting F6 in its

tra
es
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Figure 2.23: Problem 11F: Solution ui

on the tra
es of fra
ture F6 and solutions

{−uj} on the fra
tures interse
ting F6 in

its tra
es

Table 2.2: Problem 11F: Fra
ture �ux unbalan
e and total �uxes (δmax = 0.16)

�ux unbalan
e total �ux �ux unbalan
e total �ux

F1 -9.69e-7 1.44 F7 -1.38e-6 0.50

F2 -1.98e-6 4.72 F8 -1.98e-6 -14.41

F3 2.02e-7 -17.10 F9 2.19e-6 9.06

F4 -1.07e-6 2.99 F10 3.61e-6 -4.17

F5 -9.81e-7 7.20 F11 3.87e-6 2.88

F6 -2.51e-6 6.87
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Figure 2.24: Problem 11F: relative 
onti-

nuity mismat
h and �ux unbalan
e
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Figure 2.26: Problem 50F: Solution hi on

the tra
es of fra
ture F50 and solutions

{hj} on the fra
tures interse
ting F50 in

its tra
es
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Figure 2.27: Problem 50F: Solution ui on

the tra
es of fra
ture F50 and solutions

{−uj} on the fra
tures interse
ting F50 in

its tra
es

The numeri
al solution 
omputed on fra
ture F2 is reported in Figure 2.12, and is rep-

resented with respe
t to a lo
al tangential referen
e system (X,Y ). This 
onvention also

applies from now on to similar plots of the solutions. The �gure shows that interse
ting

tra
es are easily handled by our approa
h. In parti
ular, we see in Figure 2.12 that the

dis
ontinuities in the �ux along the tra
es are 
learly shown. In Figure 2.13 we report

the solution 
omputed on fra
ture F6 with a 
oarse and a �ne mesh (δmax = 0.77 and

δmax = 0.22, respe
tively), showing the behaviour of the solution 
lose to interse
ting

tra
es. The solutions are plotted on sub-elements obtained splitting XFEM elements

along tra
es.

Then, the following 
on�gurations are 
onsidered. In these problems the referen
e

system for R
3
is a right-handed orthogonal system oriented su
h that the x − y plane

lies on the page plane, and fra
tures are parallel to z axis.

7F: The domain is 
omposed of 7 fra
tures and 11 tra
es, as shown in Figure 2.14.

Fra
tures range from z = 0 to z = 5. All the tra
es 
ompletely 
ross ea
h fra
ture,

thus tip-enri
hments are not used.

11F: The domain is 
omposed of 11 fra
tures and 26 tra
es, as shown in Figure 2.15.

The fra
ture in dashed line ranges from z = 0 to z = 2.5, while all other fra
tures

range from z = 0 to z = 5, thus in this 
ase tip-enri
hment fun
tions are employed,

sin
e some tra
es end inside the domain.
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50F: In this last 
ase the domain is 
omposed of 50 fra
tures and 153 tra
es as sket
hed

in Figure 2.16. All fra
tures in 
ontinuous lines range between z = 0 and z = 3,

while fra
tures drawn with dashed lines range from z = 0 to z = 1.5. Also in this


ase tip-enri
hment fun
tions are employed.

Boundary 
onditions are set in a similar fashion in all 
ases. Homogeneous Diri
hlet

boundary 
onditions are set on ΓD = ∂Ω ∩ {z = 0}, while ΓN = ∂Ω \ ΓD. A di�erent


onstant-value of Neumann boundary 
ondition is imposed on fra
ture edges belonging

to ΓN and marked with a plain bla
k dot in the �gures showing domain 
on�gurations.

Homogeneous Neumann boundary 
onditions are pla
ed on the other fra
ture edges in

ΓN . In all 
ases di�erent (
onstant) values of K are randomly taken on ea
h fra
ture,

approximately ranging from 10−1
to 102. The geometry of the DFN and a mesh example

are reported in Figure 2.17 for the 
ase 11F. In Figures 2.18-2.23 and 2.25-2.27 we

report for ea
h system 
onsidered and for a sele
ted fra
ture Fi: i) the solution hi

on the fra
ture; ii) the restri
tion on the tra
es of hi and of the solution hj obtained

on the fra
ture Fj whi
h generates the tra
e through its interse
tion with Fi; iii) the


ontrol variables ui and −uj . All the results here reported are obtained with a grid

parameter δmax = 0.16. As shown in parti
ular in the 2D plots, the 
omputed numeri
al

solution well approximates 
ontinuity and �ux 
onservation (2.2)-(2.3). Fo
using on

the intermediate 11F 
ase, in Figure 2.24 we plot, for ea
h tra
e, the L2
-norm of the

di�eren
e of the hydrauli
 head on interse
ting fra
tures, ||hi|S − hj |S||, relative to the

average L2
-norm of h on the tra
e, hav = 1/2

(
||hi|S||+ ||hj |S ||

)
(triangular markers),

and in square markers �ux unbalan
e at tra
es, ||ui + uj||, relative to the average �ux

uav = 1/2 (||ui||+ ||uj ||). It 
an be seen that the relative mismat
hes in �ux 
onservation

and head 
ontinuity are small and roughly of the same order. Furthermore, in Table 2.2

we report, again for problem 11F, the �ux unbalan
e and the total �ux on ea
h fra
ture,

whi
h are 
omputed on Fi, i = 1, ..., 11, as
∑

S∈Si

∫
S
uSi + uSj dγ and

∑
S∈Si

∫
S
uSi dγ,

respe
tively. The sum of the �ux unbalan
es on all the DFN is -5.0114e-7, and, 
learly,

the sum of the total �uxes on the fra
tures exa
tly mat
h this value. It 
an be seen

from the table that �ux unbalan
e on the fra
tures is quite small, being six orders of

magnitude below the respe
tive total �ux.
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Table 2.3: System matri
es data. Dim: matrix dimension, NCond: matrix 
ondition num-

ber, Iter: iterative solver number of iterations, Relres: solution relative residual

Problem Dim NCond SYMMLQ Iter Relres Grid Prameter

S1 8324 1.9 · 106 3000 1.75 · 10−1 0.1

S2 15067 9.0 · 109 3000 1.25 · 10−1 0.1

7F 18261 1.3 · 109 3000 1 0.16

11F 32888 1.7 · 1010 3000 1 0.16

50F 69476 9.3 · 109 3000 1 0.22

2.5.4 Pre
onditioning

The 
hoi
e of a good pre
onditioner for SYMMLQ is a 
ru
ial task as the linear

systems arising from the dis
rete DFN-like problems are ill-
onditioned even for the

smaller problems 
onsidered, and 
onditioning worsens both if grid parameter is redu
ed

and if the number of fra
tures in
reases. In Table 2.3 we report the data related to

the 
onditioning of the system for various problems 
onsidered, along with the results

obtained while attempting to solve the non pre
onditioned linear system with SYMMLQ.

Problems 7F, 11F, 50F refer to the examples shown in Subse
tion 2.5.3 while Problems

S1 and S2 are a modi�ed version of Problems 7F, 11F respe
tively. With referen
e

to Figure 2.14 and Figure 2.15 z-quotes are redu
ed in Problems S1 and S2 to z = 1

for the fra
tures represented with solid lines and to z = 0.5 for the fra
ture in dashed

line. Di�erent Diri
hlet boundary 
onditions are set on fra
ture edges in the z-dire
tion

marked with a bla
k dot, while homogeneous Diri
hlet boundary 
onditions are pla
ed

on the remaining edges. Finally a 
onstant value K = 1 is pres
ribed to all the fra
tures.

These modi�ed problems yield smaller linear systems. The data in Table 2.3 show that

the iterative solver never su

eeded in rea
hing the required exit toleran
e tol = 10−6

within the maximum number of iterations allowed (maxit = 3000).

In order to pre
ondition the system, we follow here the approa
h des
ribed in [27℄,

in whi
h a blo
k triangular pre
onditioner is suggested for linear systems of saddle point

type arising from general QP problems. In detail, for a saddle point problem of the form

(7.22), the following pre
onditioner is suggested:

P =

(
G+ CTW−1C kCT

0 W

)
(2.18)
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where k is a s
alar and W is a NF × NF
symmetri
 positive de�nite weight matrix.

A suitable 
hoi
e for k and W suggested in [27℄ is k = 0 and W = γI where I is the

identity matrix and γ > 0 is a given 
onstant whi
h should provide an augmenting

term CTW−1C not too small in 
omparison with G. We remark that the 
hoi
e k = 0

yields a blo
k diagonal symmetri
 pre
onditioner, hen
e suitable for the use along with

SYMMLQ solver.

The pre
onditioner (2.18) is introdu
ed in [27℄ in the 
ontext of interior point meth-

ods for optimization problems, whi
h expe
ially in the 
ase of inexa
t methods [2℄ heavily

rely on iterative methods and hen
e on good pre
onditioners. In the 
ase of interior point

methods, at ea
h outer iteration a linear system with a stru
ture similar to (7.22) has to

be solved, with the blo
k G being typi
ally more and more ill-
onditioned as the solu-

tion is approa
hed. In [27℄, an adaptive 
hoi
e of γ along outer iterations appears to be

an e�e
tive 
hoi
e: when used in 
onjun
tion with MINRES solver, an e�e
tive 
hoi
e

is γ = 1/max(G) for linear programming problems, and for quadrati
 programming

problems the 
hoi
e suggested is given by γ = ‖C‖2/‖G‖.
Sin
e here we deal with a di�erent 
ontext and the blo
k G is not ne
essarily the

major sour
e of ill-
onditioning, a preliminary investigation has been performed on

Problems S1, S2, 7F, 11F, 50F in order to study e�e
tiveness of the pre
onditioner in

our appli
ations, and, possibly, identify a suitable value for the parameter γ. A broad

range of values for γ has been 
onsidered, ranging between 10−9
and 300, whi
h roughly


orresponds to the optimal value ‖C‖2/‖G‖ suggested in [27℄ applied to problems S1

and S2 (for problems 7F,11F,50F this value 
orresponds to ≈ 7 ·105). Exit toleran
e for
iterative solver is now set to tol = 10−12

and the maximum number of iterations is set

to maxit = 3000. We point out that the implementation of SYMMLQ that we used for

solving the system Ax = q, performs the 
he
k on the exit toleran
e on the unpre
ondi-

tioned relative residual ‖q−Ax‖/‖q‖ even if the linear system is pre
onditioned. Results

of this preliminary investigation are reported in Figures 2.28 and 2.29. In parti
ular, in

Figure 2.28 we report the number of iterations required by SYMMLQ for several values

of γ. As shown in the Figure, in all problems 
onsidered for γ small enough the iterative

solver su

eeded in satisfying the stopping 
riterion within a very moderate number of

iterations. The value γ = 10−7
appears to ensure the best performan
e in the pre
ondi-

tioner, for all the 
onsidered problems, independently of the number of fra
tures, of the

number of unknowns, and of the boundary 
onditions. Indeed, Figure 2.29 shows that

for optimal γ-values the 
ondition number of the pre
onditioned linear system rea
hes
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Figure 2.28: SYMMLQ number of iterations versus γ

very low values, and matrix eigenvalues 
luster around the values {−1, 1}.

2.5.5 Large variation of K values

In previous 
omputations we allowed a di�erent transmissivity value Ki on ea
h

fra
ture Fi, i ∈ I (assuming for simpli
ity Ki 
onstant on the fra
ture). In real ap-

pli
ations, large variations in the (typi
ally very small) values of Ki may o

ur, from

fra
ture to fra
ture, possibly spanning several orders of magnitude. This may 
orre-

spondingly 
ause a large variation in the orders of magnitude of U , whi
h, representing

the 
o-normal derivative nTK∇H, may largely di�er from those of H, making the fun
-

tional J less sensitive to variation in U . In order to deal with this situation, a possible

approa
h 
onsists in properly weighting the terms ‖US
i +US

j ‖ in the fun
tional, allowing

the following modi�
ation to J :

J(U) =
∑

S∈S

JS(U) =
∑

S∈S

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2HS +

1

(KS
min)

α
||US

i + US
j ||2US

)

where KS
min = min {Ki, Kj} and e.g. α = 1, 2. The weights introdu
ed help in balan
-

ing the 
ontribution of the various terms of the 
ost fun
tional, giving more relevan
e

to �ux unbalan
e when large variations of transmissivity o

ur at interse
ting fra
tures.

The following model problem has been used to show the e�e
tiveness of this exten-

sion of the method, here applied with α = 1. Problem domain is shown in the left of
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Figure 2.29: Pre
onditioned system: 
ondition number (left) and eigenvalues (right) versus

γ.

Figure 2.30, along with fra
ture and tra
e numbering. Fra
ture F1 
arries a 
onstant

value Diri
helet boundary 
ondition h = 10 on the top border along the y-axis, while

fra
ture F3 has a Diri
helet boundary 
ondition h = 3 on the bottom border parallel

to the y-axis. Fra
tures F2 and F4 have a 
onstant value h = 1 Diri
helet boundary


ondition on the left border parallel to the y-axis. An homogeneous Neumann boundary


ondition is pres
ribed on the remaining borders of all fra
tures. Four di�erent simu-

lations are performed with di�erent sets of fra
ture transmissivity values as reported

in the right of Figure 2.30. It was noted that, with these broad variations of K, the


orre
tion helped in obtaining the solution, as we experien
ed di�
ulties in 
onvergen
e

of the steepest des
ent method with the non-modi�ed fun
tional. Results 
on
erning

hydrauli
 head mismat
h at tra
es and �ux unbalan
e are 
olle
ted in Figures 2.31-2.32.

In Figure 2.31 the L2(S)-norm of the di�eren
e of the hydrauli
 head on interse
ting

fra
tures Eh = ||hi|S − hj |S|| is reported with solid markers for ea
h tra
e, along with

the average L2(S)-norm of h, hav = 1/2
(
||hi|S ||+ ||hj |S||

)
(in empty markers), in order

to 
ompare the mismat
h of h at the interse
tions in relation with the order of mag-

nitude of the solution. Similarly in Figure 2.32 we show �ux unbalan
e at tra
es in

solid markers, Eu = ||ui+uj||, with the average �ux uav = 1/2 (||ui||+ ||uj ||), in empty

markers. It is noti
ed that the hydrauli
 head mismat
h on tra
es and �ux unbalan
e

are usually orders of magnitude lower than the hydrauli
 head and �ux, respe
tively,

also for fra
ture transmissivities di�ering for six orders of magnitude.
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Figure 2.30: Domain des
ription and fra
ture transmissivity values
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Figure 2.31: L2
-norm of hydrauli
 head

mismat
h Eh (�lled markers) and average

L2
-norm of solution hav (empty markers)

on the tra
es of the system
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Figure 2.32: L2
-norm of �ux unbalan
e Eu

(�lled markers) and average L2
-norm of

�uxes uav (empty markers) on the tra
es

of the system
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2.6 Con
lusions

In this paper we have further analyzed the viability in 
omplex systems of a novel

method introdu
ed in [7℄ for the problem of subsurfa
e �ow in a system of fra
tures,

whi
h 
onsists in the reformulation of the problem as a PDE 
onstrained optimization

problem. Independent meshing pro
esses have been used on the fra
tures, generating

grids whi
h are independent of the mesh on other fra
tures and of tra
e number and

disposition. This is a 
ru
ial point sin
e one of major di�
ulties in the DFN approa
h is

typi
ally the generation of a tra
e-mat
hing mesh. The dis
ussion and the experiments

here reported show e�e
tiveness of the method in providing good approximation of the

solution in 
omplex DFNs.

In future works, more realisti
 DFN 
on�gurations will be investigated. A parallel

implementation exploiting the independen
e of the problems on the sub-fra
tures is also

envisaged. Moreover, we will investigate also the appli
ability of the method to non

steady-state 
ase in 
onjun
tion with lo
al time adaptive strategies as in [6℄.
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Chapter 3

An optimization approa
h for large

s
ale simulations of dis
rete fra
ture

network �ows

Abstra
t In re
ent papers [7, 6℄ the authors introdu
ed a new method for simulating

subsurfa
e �ow in a system of fra
tures based on a PDE-
onstrained optimization re-

formulation, removing all di�
ulties related to mesh generation and providing an easily

parallel approa
h to the problem. In this paper we further improve the method remov-

ing the 
onstraint of having on ea
h fra
ture a non empty portion of the boundary with

Diri
hlet boundary 
onditions. This way, Diri
helet boundary 
onditions are pres
ribed

only on a possibly small portion of DFN boundary. The proposed generalization of

the method in [7, 6℄ relies on a modi�ed de�nition of 
ontrol variables ensuring the

non-singularity of the operator on ea
h fra
ture. A 
onjugate gradient method is also

introdu
ed in order to speed up the minimization pro
ess.

3.1 Introdu
tion

E�
ient numeri
al simulation of underground �ow is of great interest in a large

variety of pra
ti
al appli
ations, as for example enhan
ed oil/gas re
overy, pollutant

per
olation and di�usion in aquifers, or 
arbon dioxide storage. The underground �uid

�ow is a multi-s
ale heterogeneous phenomenon, o

urring in 
omplex geologi
al 
on-

�gurations usually 
hara
terized by networks of fra
tures surrounded by a porous ro
k

75
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matrix. The Dis
rete Fra
ture Network (DFN) approa
h models underground systems

of fra
tures as 3D networks of interse
ting dis
rete planar fra
tures. Di�usive phenom-

ena in this system of fra
tures are governed by the Dar
y law. At fra
ture interse
tions,


alled tra
es, mass balan
e and pressure 
ontinuity are preserved. The geologi
al 
har-

a
teristi
s of the fra
tures, su
h as size, orientation, aspe
t ratio, density, permeability,

are usually determined relying on sto
hasti
 data [10℄, and only probability distribution

of data are usually available for a spe
i�
 geologi
al site. A huge number of numeri
al

simulations is then ne
essary in order to perform sensitivity analysis to the variability

of the involved parameters. On the other hand, DFN simulations are very demanding

from a 
omputational point of view. Problem size is usually huge, involving a very large

number of fra
tures. Moreover, for intri
ate fra
ture geometries, the generation of a

good quality �nite element triangulation 
onforming to the tra
es usually requires the

introdu
tion of many unknowns on ea
h fra
ture, independently of the quality required

for the numeri
al solution.

Many approa
hes are suggested in literature to 
ir
umvent these di�
ulties. A

method based on a 
onforming mesh with mixed non-
onforming �nite elements is pro-

posed in [21℄, while in other 
ases modi�
ations of the geometry or of the mesh are

introdu
ed in order to preserve 
onformity and a
hieve a good quality mesh, su
h as in

[14, 21℄ or in [12℄. A di�erent approa
h is suggested in [17℄, where the solution in the

fra
tures is expressed as a fun
tion of the solution at the interse
tions. In other works

it is suggested to rely on mortar methods to ease meshing pro
edure, as for example

in [19, 20℄: with this approa
h the mesh 
onformity 
onstraint is relaxed but fra
ture

meshes have to be aligned along the tra
es. In [8, 18, 11℄ the DFN is redu
ed into a

system of mono-dimensional pipes 
onne
ting the tra
es with the surrounding fra
tures

both preserving fra
ture topology and mitigating meshing related problems.

The present work further develops the approa
h introdu
ed in [7, 6℄, in whi
h the

problem of the 
omputation of the hydrauli
 head in a DFN is reformulated as a PDE-


onstrained optimization problem. The overall problem is split in a set of several inde-

pendent sub-problems on ea
h fra
ture of the system, 
oupled by the minimization of a

proper fun
tional. The use of Extended Finite Elements allows to 
apture the 
orre
t

behaviour of the solution along tra
es even if grids are not 
onforming along fra
ture

interse
tions and tra
es arbitrarily 
ut mesh elements. This way the meshes may be

generated on ea
h fra
ture in a 
ompletely independent way, disregarding fra
ture in-

terse
tions and thus eliminating meshing di�
ulties.
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Despite being appli
able to very general DFN 
on�gurations, the formulation of the

problem in the over-mentioned approa
h requires a non empty portion of Diri
helet

boundary on ea
h fra
ture of the system. In the present work a modi�
ation of the


ontrol variable and of the 
ost fun
tional involved in the optimization problem is intro-

du
ed, eliminating this 
onstraint and allowing to pres
ribe Diri
helet boundary 
ondi-

tions only on (portion of) boundaries of a � possibly very small � subset of fra
tures. The

use of a 
onjugate gradient method for the minimization pro
ess is also des
ribed. The

behaviour of the method on fairly 
omplex networks is shown through several numeri
al

experiments.

The paper is organized as follows. In Se
tion 3.2 we re
all the physi
al model and the

mathemati
al statement of the 
ontinuous problem introdu
ed in [7, 6℄. In Se
tion 3.3

the PDE-
onstrained optimization problem is des
ribed along with the 
onjugate gra-

dient algorithm used in the minimization pro
ess. Appli
ation of XFEM ideas to the

DFN 
ontext is brie�y a

ounted for in Se
tion 3.4. In Se
tion 3.5 we introdu
e the

dis
rete version of the algorithm. Numeri
al experiments showing e�e
tiveness of the

method are reported and 
ommented in Se
tion 3.6.

3.2 Des
ription of the problem

3.2.1 Problem formulation

Our target is the 
omputation of the hydrauli
 head H = P +ζ (being P = p/(̺g)

the pressure head, p the �uid pressure, g the gravitational a

eleration 
onstant, ̺ the

�uid density, ζ the elevation) in a DFN given by the union of a set of fra
tures. Let us

model ea
h fra
ture as an open planar polygonal set, Fi, with index i varying in a set

I. Let us also introdu
e on ea
h fra
ture a 2D lo
al 
oordinate system x̂i. Let Ω be the

3D set

Ω =
⋃

i∈I

Fi,

and ∂Ω the boundary of Ω, split as usual in a set ΓD 6= ∅ with Diri
hlet boundary


onditions and a set ΓN with Neumann boundary 
onditions, su
h that ΓD ∪ ΓN = ∂Ω

and ΓD ∩ ΓN = ∅.
Note that the interse
tion of the 
losure of ea
h 
ouple of fra
tures is either an

empty set or a set of non vanishing segments 
alled tra
es, denoted by Sm, with index
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m varying in an index set M with 
ardinality ♯M. For ea
h fra
ture Fi, Si is the set of

tra
es shared by Fi and other fra
tures while S indi
ates the set of all the tra
es.

In the paper the following is assumed on the DFN: 1) Ω̄ is a 
onne
ted set; 2) ea
h

tra
e Sm is shared by exa
tly two polygonal fra
tures Fi and Fj , i 6= j, su
h that

Sm ⊆ F̄i∩ F̄j . The set of the two indi
es i and j of the fra
tures Fi and Fj sharing tra
e

Sm is denoted by ISm = {i, j}, while for all i ∈ I, the subset Ji ⊂ I 
ontains indi
es of

fra
tures with a non-empty interse
tion with Fi.

While referring the reader to [7℄ for more details, here we brie�y re
all the variational

formulation of the problem. Let us de�ne ∀i ∈ I the following fun
tional spa
es:

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}

and V ′
i their dual spa
es. The hydrauli
 head Hi in ea
h fra
ture belongs to the spa
e

V D
i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HD
i

}
,

where HD
i is the restri
tion of the Diri
hlet boundary 
ondition H|ΓD

= HD
to ΓiD =

ΓD ∩ ∂Fi. In what follows ΓiD 
an be an empty set, but ΓD =
⋃

i

ΓiD 6= ∅.

Let Ki(x̂i) be, for all i ∈ I, a symmetri
 and uniformly positive de�nite tensor 
alled

hydrauli
 
ondu
tivity tensor, whi
h we assume dependent on the position and possibly

di�erent on ea
h fra
ture. As do
umented in [7℄, the global hydrauli
 head H in the

whole system Ω is obtained solving the following problems ∀i ∈ I, whi
h model the

di�usion of the hydrauli
 head on ea
h fra
ture: �nd Hi ∈ V D
i su
h that ∀v ∈ Vi

∫

Fi

Ki∇Hi∇vdΩ =

∫

Fi

qivdΩ+

∫

ΓN∩∂Fi

GN
i v|SdΓ +

∑

S∈Si

∫

S

[[
∂Hi

∂ν̂iS

]]

S

v|SdΓ, (3.1)

where GN
i is the restri
tion to ΓiN = ΓN ∩∂Fi of the Neumann boundary 
ondition GN

imposed on ΓN . The quantity
∂Hi

∂ν̂i
S

= (n̂iS)
T
Ki∇Hi is the outward 
o-normal derivative

of the hydrauli
 head, being n̂iS the unit ve
tor normal to the tra
e S. The symbol[[
∂Hi

∂ν̂i
S

]]

S
denotes the jump of the 
o-normal derivative along n̂iS, being this jump inde-

pendent of the orientation of n̂iS. A

ording to (7.1), the di�usion of Hi is 
ontributed

by the following terms: the external load in ea
h fa
ture (�rst term of the right hand

side); the Neumann boundary 
onditions (se
ond term); the net �ow of hydrauli
 head

entering in the fra
ture at ea
h tra
e (last term).

Equations (7.1) are 
oupled by the following mat
hing 
onditions, whi
h pres
ribe

global 
ontinuity of the hydrauli
 head and 
onservation of hydrauli
 �uxes a
ross ea
h
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tra
e Sm, m ∈ M:

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , (3.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm . (3.3)

Note that due to 
ondition (7.2) the hydrauli
 head H on the whole domain Ω belongs

to the spa
e

V D = H

1
D

(Ω) =

{
v ∈

∏

i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm , ∀m ∈ M

}
. (3.4)

3.3 Optimization approa
h

Following the approa
h des
ribed in [7℄, instead of solving the 
oupled di�erential

problems on the fra
tures (7.1) ∀i ∈ I with the 
orresponding mat
hing 
onditions (7.2),

(7.3), we introdu
e a PDE-
onstrained optimization problem. In order to ease notation

and for a 
on
ise and 
lear des
ription, in the following of this Se
tion we assume that

the tra
es S ∈ S are disjoint, re
alling that as stated in [7℄, this assumption 
an be

dropped repla
ing o

urren
es of ea
h single tra
e S with the union of 
onne
ted tra
es.

Further, in our dis
rete formulation the assumption naturally drops thanks to the 
hoi
e

of the fun
tional spa
es (see again [7℄). Let us introdu
e for ea
h tra
e S ∈ S a suitable

spa
e US
and its dual

(
US
)′
. Similar spa
es are introdu
ed on the set of tra
es belonging

to a fra
ture Fi, ∀i ∈ I, and on the full set of tra
es S:

USi =
∏

S∈Si

US , U =
∏

i∈I

USi .

Now, let us �x a tra
e S and let S ⊆ F̄i ∩ F̄j . We introdu
e suitable variables

US
i , U

S
j ∈ US

whi
h will a
t as 
ontrol variables, de�ned as US
i = αHi|S +

[[
∂Hi

∂ν̂i
S

]]

S

and US
j = αHj |S

+

[[
∂Hj

∂ν̂
j
S

]]

S

respe
tively, where α is a positive �xed parameter. This

generalizes the approa
h proposed in [7℄ where US
i is set equal to �ux jump, thus allowing

ΓiD = ∅ on possibly all but one fra
tures. We set

Ui = Π
S∈Si

US
i ∈ USi , U = Π

i∈I
Ui ∈ U ,

i.e. Ui is the tuple of fun
tions U
S
i with S ∈ Si, and U is the 2(#M)-tuple of 
ontrol

fun
tions on all tra
es in Ω̄.
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We also introdu
e the Riesz isomorphisms ΛUS : US → US ′
, ΛUSi : USi → USi

′
and

ΛU : U → U ′
and the following linear bounded operators and their duals:

Ai ∈ L(Vi, V ′
i ), 〈AiH

0
i , v〉V ′

i ,Vi
= (K∇H0

i ,∇v) + α
(
H0

i |Si
, v|Si

)

Si

,

AD
i ∈ L(V D

i , V ′
i ), 〈AD

i RiH
D
i , v〉V ′

i ,Vi
= (K∇RiH

D
i ,∇v)

+α
(
(RiH

D
i )|Si

, v|Si

)

Si

,

BS
i ∈ L(US, V ′

i ), 〈BS
i Ui, v〉V ′

i ,Vi
= 〈US

i , v|S 〉US ,US ′ ,

Bi = Π
S∈Si

BS
i ∈ L(USi , V ′

i ), 〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉
USi ,USi

′ ,

with H0
i ∈ Vi, H

D
i ∈ V D

i , v ∈ Vi, and the operator Ri is the lifting of the Diri
hlet

boundary 
onditions on ΓiD if not empty. Dual operators are A∗
i ∈ L(Vi, V ′

i ),

CS
i = (BS

i )
∗ ∈ L(Vi,US ′

), Ci = (Bi)
∗ ∈ L(Vi,USi

′
).

The operator BiN ∈ L(H− 1

2
(ΓiN ), V

′
i ) imposing Neumann boundary 
onditions is

de�ned su
h that

〈BiNG
N
i , v〉V ′

i ,Vi
= 〈GN

i , v|ΓiN
〉
H

−1
2
(ΓiN),H

1
2
(ΓiN)

= 〈 ∂Hi

∂ν̂ΓiN

, v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

.

Problems (7.1) 
an now be written as follows: ∀i ∈ I, �nd Hi ∈ V D
i , with Hi =

H0
i +RiH

D
i and H0

i ∈ Vi, su
h that

AiH
0
i = qi +BiUi +BiNG

N
i −AD

i RiH
D
i , in Fi. (3.5)

We remark that, if α > 0, the solution Hi to (7.6) exists and is unique for a non isolated

fra
ture even if we set Neumann boundary 
onditions on the whole ∂Fi.

We 
an now de�ne the di�erentiable fun
tional J : U → R as

J(U) =
∑

S∈S

JS(U)

=
∑

S∈S

(
||CS

i Hi(Ui)−CS
j Hj(Uj)||2US ′

+||US
i − αΛ−1

USC
S
i Hi(Ui) + US

j − αΛ−1
USC

S
j Hj(Uj)||2US

)

=
1

2

∑

i∈I

∑

S∈Si

(
||CS

i Hi(Ui)− CS
j Hj(Uj)||2US ′

+||US
i − αΛ−1

USC
S
i Hi(Ui) + US

j − αΛ−1
USC

S
j Hj(Uj)||2US

)
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=
1

2

∑

i∈I

|| Π
S∈Si

(
CS
i Hi(Ui)−CS

j Hj(Uj)
)
||2
USi

′

+
1

2

∑

i∈I

||Ui+ Π
S∈Si

US
j − αΛ−1

USi
Π

S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)
||2
USi , (3.6)

where quantity ΠS∈Si

(
CS
i Hi(Ui)± CS

j Hj(Uj)
)
denotes the tuple of fun
tions

(
CS
i Hi(Ui)±CS

j Hj(Uj)
)
with S ∈ Si, and i, j ∈ IS. Moreover Hℓ(Uℓ) denotes the

solution of (7.6) 
orresponding to the 
ontrol variable Uℓ, ℓ = i, j.

Proposition 3.1. Setting US = H

− 1

2
(S) and letting CS

i ∈ L(Vi,H
1

2
(S)) be the tra
e

operator, there exists a unique 
ontrol variable U vanishing the fun
tional J(U) and a


orresponding unique solution H satisfying problems (7.6) ∀i ∈ I that is solution to

(7.1)-(7.3).

Proof. We sket
h very brie�y the proof as it follows from 
lassi
al arguments. Resorting

to the 
lassi
al formulation of the problem on sub-fra
tures as re
alled in [7℄, it 
an be

proven that exists a unique solution H ∈ V D
for the hydrauli
 head on the DFN

satisfying (7.1), ∀i ∈ I, and (7.2), (7.3), ∀m ∈ M, that are trivially equivalent to (7.6),

∀i ∈ I, and to

Hi|Sm −Hj |Sm = 0, US
i − αHi|S + US

j − αHj |S
= 0, for i, j ∈ ISm , ∀m ∈ M. (3.7)

As in [7℄, sin
e the vanishing of the two terms of the fun
tional J is equivalent to the

imposition of the mat
hing 
onditions (3.7), the thesis follows.

Based on previous dis
ussion, problems (7.6) 
oupled with (3.7) are repla
ed by the

following optimization problem:

min J(U) subje
t to (7.6), ∀i ∈ I. (3.8)

In the following result we state optimality 
onditions for (3.8).

Proposition 3.2. The optimal 
ontrol U ∈ U satisfying (3.8) is given by the system of


onditions (7.6) and

Bi
∗Pi + ΛUSi

(
Ui + Π

S∈Si

US
j

)
− α Π

S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)
= 0, (3.9)

∀i ∈ I, where the fun
tions Pi ∈ Vi are the solution of equation

A∗
iPi = Ci

∗Λ−1
USi

[
Π

S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)

+α2 Π
S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)]

− αCi
∗

(
Ui + Π

S∈Si

US
j

)
, in Fi, (3.10)
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in whi
h homogeneus Diri
hlet and Neumann boundary 
onditions on ΓiD and ΓiN ,

respe
tively, are pres
ribed.

Proof. Let us di�erentiate the 
ost fun
tional with respe
t to the 
ontrol variable Ui:

J ′(U)(vi − Ui) =
∑

S∈Si

JS ′
(Ui)(vi − Ui)

= 2
∑

S∈Si

[(
CS
i Hi(Ui)− CS

j Hj(Uj), C
S
i (Hi(vi)−Hi(Ui))

)
US ′

+
(
US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj)), v
S
i − US

i

−αΛ−1
US (C

S
i Hi(vi)− CS

i Hi(Ui))
)

US

]

= 2

〈
Ci

∗Λ−1
USi

Π
S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj)),Hi(vi)−Hi(Ui)

〉

V ′
i ,Vi

+2

〈
ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)), vi − Ui

〉

USi
′
,USi

−2α

〈
C∗
i Π
S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)),Hi(vi)−Hi(Ui)

〉

V ′
i ,Vi

= 2
〈
A∗

iPi, A
−1
i Bi(vi − Ui)

〉
V ′
i ,Vi

+2

〈
ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)), vi − Ui

〉

USi
′
,USi

= 2

〈
Bi

∗Pi + ΛUSi Π
S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) +CS

j Hj(Uj)), vi − Ui

〉

USi
′
,USi

.

Thus, the vanishing of this last term yields (3.9).

Instead of solving equations (7.6), (3.9), (7.9), we set up a minimization pro
ess for

problem (3.8). This is organized in su
h a way that only the de
oupled solution of the

lo
al problems (7.6) is needed. Here we use the Flet
her and Reeves 
onjugate gradient

method [16℄. Let us denote by ∇J(Ui) the Fre
het derivative of the fun
tional J with

respe
t to the 
ontrol variables on the fra
ture Fi, ∀i ∈ I, and by ∇J(U) the whole

derivative:

∇J(Ui) = Bi
∗Pi + ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj))), (3.11)

∇J(U) = Π
i∈I

∇J(Ui). (3.12)

The method used is depi
ted in the following algorithm.
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Algorithm 3.1.

1. Set k = 0 and initial guess for 
ontrol variable U0
;

2. �nd H0 = H(U0) solving on ea
h fra
ture the primal problem (7.6);

3. �nd P (U0) solving on ea
h fra
ture the dual problem (7.9);

4. evaluate ∇J(U0) by equation (7.11);

5. set (δU)0 = −Λ−1
U ∇J(U0);

6. While J(Uk) 6= 0 do:

6.1. 
hoose a step-size λk along dire
tion (δU)k;

6.2. set Uk+1 = Uk + λk(δU)k;

6.3. ∀i ∈ I solve primal problem (7.6) to �nd Hi(U
k+1);

6.4. ∀i ∈ I solve dual problem (7.9) to �nd Pi(U
k+1);

6.5. evaluate ∇J(Uk+1) by (7.11);

6.6. set βk+1 = ‖∇J(Uk+1)‖2
U ′/‖∇J(Uk)‖2

U ′ ;

6.7. set (δU)k+1 = −Λ−1
U ∇J(Uk+1) + βk+1δUk

;

6.8. k = k + 1;

end do.

Let us evaluate the optimal step-size λ whi
h 
an be used in the previous algorithm

at steps 6.1-6.2. Given a variation δUi for the 
ontrol variable on ea
h fra
ture Fi and

δU =
∑

i∈I δUi, let δHi ∈ Vi, ∀i ∈ I, be de�ned as the solution of the problem

AiδHi = BiδUi, in Fi, (3.13)


orresponding to homogeneous Diri
hlet and Neumann boundary 
onditions on ΓiD (if

non-empty) and ΓiN , respe
tively.

Proposition 3.3. Let us in
rement the 
ontrol variable U of a step λδU , the optimal

step-size λ is

λ = −〈∇J(U), δU〉U ′,U

{
∑

S∈S

(
||CS

i δHi − CS
j δHj ||2US′ + ||δUS

i + δUS
j ||2US

+α2||CS
i δHi + CS

j δHj ||2US ′

)
− 2α

∑

i∈I

(
Π

S∈Si

(δUS
i + δUS

j ),Λ
−1
USi

CiδHi

)

USi

}−1

.(3.14)
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Proof. We have

J(U + λδU) =
∑

S∈S

||CS
i Hi(Ui)− CS

j Hj(Uj) + λ(CS
i δHi −CS

j δHj)||2US ′

+
∑

S∈S

||US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))

+λ(δUS
i + δUS

j − αΛ−1
US (C

S
i δHi + CS

j δHj))||2US

= J(U) + 2λ
∑

i∈I

∑

S∈Si

((
CS
i Hi(Ui)− CS

j Hj(Uj), C
S
i δHi

)
US ′

+
(
US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)), δU
S
i

)

US

−α
(
US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj)),Λ
−1
USC

S
i δHi

)

US

)

−2λ2α
∑

i∈I

∑

S∈Si

(
δUS

i + δUS
j ,Λ

−1
USC

S
i δHi

)

US

+λ2
∑

S∈S

(
||CS

i δHi − CS
j δHj ||2US ′ + ||δUS

i + δUS
j ||2US + α2||CS

i δHi +CS
j δHj ||2US ′

)

Moreover,

J(U + λδU) − J(U) + 2λ2α
∑

i∈I

(
Π

S∈Si

(δUS
i + δUS

j ),Λ
−1
USCiδHi

)

US

−λ2
∑

S∈S

(
||CS

i δHi − CS
j δHj ||2US ′ + ||δUS

i + δUS
j ||2US + α2||CS

i δHi + CS
j δHj ||2US ′

)

= 2λ
∑

i∈I

((
Π

S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj), CiδHi

)

US ′

+

(
Π

S∈Si

(US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj))), δUi

)

US

−α
(
Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))),Λ
−1
USCiδHi

)

US

)

= 2λ
∑

i∈I

(〈
Ci

∗Λ−1
USi

Π
S∈Si

(CS
i Hi(Ui)− CS

j Hj(Uj), δHi

〉

V ′
i ,Vi

−α
〈
Ci

∗ Π
S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))), δHi

〉

V ′
i ,Vi

+

〈
ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))), δUi

〉

USi
′
,USi

)
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= 2λ
∑

i∈I

〈
A∗

iPi, A
−1
i BiδUi

〉
V ′
i ,Vi

+2λ
∑

i∈I

〈
ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (C

S
i Hi(Ui) + CS

j Hj(Uj))), δUi

〉

USi
′
,USi

= 2λ
∑

i∈I

〈
B∗

i Pi + ΛUSi Π
S∈Si

(US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj))), δUi

〉

USi
′
,USi

Then, deriving J (λ) := J(U +λδU) with respe
t to λ and vanishing this derivative, we

get (3.14).

3.4 The Extended Finite Element Method in the DFN 
on-

text

In this se
tion we brie�y des
ribe a dis
retization approa
h via extended �nite ele-

ments for DFN problems that allows us to build the numeri
al triangulation indepen-

dently of the tra
es disposition on ea
h fra
ture. The solution to Problem (7.1) with

mat
hing 
onditions (7.2)-(7.3) is in general a 
ontinuous fun
tion with dis
ontinuous

gradient along tra
es. A numeri
al solution based on standard Finite Elements (FE)

would require the triangulation to be 
onforming to the tra
es, this in turn requiring

a 
oupling in the meshing pro
ess for all the fra
tures in the system. The Extended

Finite Element Method (XFEM) [2, 15, 9, 3℄, instead, introdu
es in the FE approx-

imation spa
es additional basis fun
tions, 
alled enri
hment basis fun
tions, in order

to reprodu
e the irregular behaviour of the solution independently of the mesh. For a

detailed des
ription of the XFEM approa
h we refer the interested reader to the 
ited

referen
es. Let us �rst 
onsider for simpli
ity a single tra
e S on a �xed fra
ture F . Let

V

fem
δ be the standard FE trial and test spa
es de�ned on the elements of a triangula-

tion on F non 
onforming to the tra
e and spanned by Lagrangian basis fun
tions φk,

for k ranging in an index set I . Let Φ be a fun
tion well approximating the irregular

behaviour of H in a neighbourhood of the tra
e S. Starting from Φ and basis fun
tions

φk, using the Partition of Unity Method [1℄, new basis fun
tions are introdu
ed into

the spa
e V

fem
δ , enri
hing its approximation 
apabilities. The additional basis fun
tions

are 
learly required only in the elements of the triangulation whi
h are interse
ted by

the tra
e. In this way the irregular behaviour of the numeri
al solution is determined

by the enri
hment fun
tions introdu
ed, and is independent of the position of elements
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with respe
t to the tra
e. The XFEM spa
e is then:

V

xfem
δ = span

(
{φk}k∈I , {φkΦ}k∈J

)

where J ⊂ I is the subset of the degrees of freedom involved in the enri
hment. Con-

sequently the approximate solution with the XFEM will have the following stru
ture:

hxfemδ =
∑

k∈I

hxfemk φk +
∑

k∈J

axfemk φkΦ,

where hxfemk and axfemk are the unknowns related to the standard and enri
hing basis

fun
tions, respe
tively.

If more tra
es are present on the fra
ture F , the approa
h is simply generalized as

follows: the XFEM spa
e is taken as

V

xfem
δ = span

(
{φk}k∈I ,∪m∈MF

{φkΦm}k∈Jm

)

where the subset of indi
es MF ⊂ M 
orresponds to the tra
es on F , and Φm and Jm

are the enri
hing fun
tion and the set of enri
hed nodes relative to m-th tra
e.

We end brie�y re
alling how enri
hing fun
tions are sele
ted in the DFN 
ontext,

referring the reader to [13℄ for more details in general 
ases and [7, 6℄ for details in the

DFN simulations. For ea
h fra
ture F , let Sm, m ∈ MF be a tra
e on F . We distinguish

two 
ases: a) Sm is entirely 
rossing the fra
ture (the tra
e is hen
e a so 
alled 
losed

interfa
e); b) one or more endpoints of Sm lie inside F (open interfa
e). In the 
ase of


losed interfa
es, the enri
hing fun
tion Φm is suitably set as Ψm(x̂) = ‖x̄ − x̂‖, where
x̄ is the proje
tion of x̂ on Sm (see [3℄).

In the 
ase of open interfa
es, Φm is still used for reprodu
ing non-smooth behaviour

on elements interse
ting the tra
e but not 
ontaining tra
e tips. For ea
h tra
e tip

lying inside F , we also add new enri
hing fun
tions (see [3℄) de�ned as follows. Let

σm =
{
s1, s2

}
be the set of tra
e tips of Sm. If sℓ lies inside F , we introdu
e the

enri
hing fun
tions

Θm
sℓ(x) ∈

{
r cos

θ

2
, r2 cos

θ

2
,
√
r cos

θ

2

}
, sℓ ∈ σm

where r is the distan
e between the 
urrent point and tra
e tip, and θ is the polar angle

of x̂ with respe
t to a referen
e system 
entred into tra
e tip with the x-axis aligned to

the tra
e, and oriented su
h that the tra
e lies on the negative side. Tip enri
hments

are introdu
ed only on elements 
ontaining tra
es endpoints. Fun
tions Θm
sℓ
(x) are
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Figure 3.1: Behaviour of tra
e tip enri
hment fun
tions

plotted, from left to right, in Figure 3.1. We remark that the 
hoi
e of enri
hments is

quite arbitrary. The sele
tion here adopted is well suited to des
ribe the nonsmooth

behaviour of the solution around tra
e tip. Other 
hoi
es are possible, as well as the use

of a larger number of enri
hments around the tip. This latter possibility 
ould improve

the des
ription of the solution, but would in
rease the overall 
omputational 
ost.

We refer the reader to [13, 7, 6℄ for more details about implementation of the XFEM,

whi
h in
lude for example methods to preserve FEM optimal 
onvergen
e rates and


orre
tly perform a

urate numeri
al integration of irregular fun
tions.

3.5 Dis
retization of the 
onstrained optimization problem

Following the paradigm �First optimize then dis
retize� we now des
ribe the dis
rete

version of the method introdu
ed in the previous se
tion.

Let us introdu
e an independent triangulation Tδ,i on ea
h fra
ture Fi, ∀i ∈ I. Let

Vδ,i be the �nite dimensional trial and test spa
es de�ned on the elements of Tδ,i and
spanned by Lagrangian basis fun
tions φi,k, k ∈ Ii = {1, ..., Ni}. Let us denote by hi

the dis
rete approximation of Hi, i ∈ I:

hi(x) =

Ni∑

k=1

hi,kφi,k(x), ∀i ∈ I.

The algebrai
 formulation of the operator Ai in equation (7.6) is the usual one:

(Ai)kℓ =

∫

Fi

∇φi,k∇φi,ℓ dFi + α
∑

s∈Si

∫

S

φi,k|Sφi,ℓ|S dγ,

where, overloading notation, we denote by Ai ∈ R
Ni×Ni

, i ∈ I, also the matrix de�ning

the dis
rete algebrai
 operator. For all S ∈ S, let us �x a �nite dimensional subspa
e of

US
for the dis
rete approximations uSi and uSj of the 
ontrol variables US

i and US
j . In
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the dis
rete version of the problem we 
hoose US = L

2
(S) and thus we 
an remove the


onstraint of disjoint tra
es made in Se
tion 3.3 (see [7℄). Let {ψS
k }k=1,...,NS

be the basis

introdu
ed on the dis
rete 
ontrol spa
e on tra
e S. For appli
ation of gradient based

methods, we 
hoose a 
ommon arbitrary basis for uSi and uSj , i, j ∈ IS , not ne
essarily

depending neither on the mesh on Fi, nor on the mesh on Fj . So we write

uSl =

NS∑

k=1

uSl,kψ
S
k ∀l ∈ IS , S ∈ Si .

For ea
h fra
ture Fi, we set NSi
=
∑

S∈Si
NS as the number of DOFs on tra
es of Fi.

Given an index i ∈ I and a fra
ture S ∈ Si, we de�ne matri
es BS
i ∈ R

Ni×NS
as

(
BS

i

)
kℓ

=

∫

S

φi,k |Sψ
S
l dγ.

Matri
es BS
i , S ∈ Si, are then grouped row-wise to form the matrix Bi, whi
h a
ts on

a 
olumn ve
tor ui 
ontaining all the NSi

ontrol DOFs 
orresponding to the tra
es of

Fi, obtained 
olle
ting ve
tors uSi , for S ∈ Si, with the same ordering introdu
ed for the

tra
es on Fi and used in the de�nition of Bi. For ea
h fra
ture Fi let us introdu
e ve
tors

hi ∈ R
Ni
, hi = (hi,1, . . . , hi,Ni

)T , and pi ∈ R
Ni
, pi = (pi,1, . . . , pi,Ni

)T . Furthermore,

we de�ne ve
tors u ∈ R
NT

, with NT =
∑

i∈INSi
, and h ∈ R

NF
, with NF =

∑
i∈INi,

as u = (uT1 , ...u
T
#I

)T and h = (hT1 , ...h
T
#I

)T . The algebrai
 formulation of the primal

equations (7.6) is then

Aihi = q̃i +Biui, i ∈ I, (3.15)

where q̃i a

ounts for the term qi in (7.6) and for the weak dis
rete imposition of bound-

ary 
onditions on the fra
ture Fi. We pro
eed similarly for the equations (7.9), (7.10) and

(3.13), in whi
h the operators CS
i and B∗

i , i ∈ I, are nothing but restri
tion operators.

We thus obtain the algebrai
 equations for the de�nition of the dis
rete approximations

pi and δhi. Further, given two indi
es q, r ∈ I (possibly q = r), we de�ne matri
es CS
q,r

and Cq,r as

(CS
q,r)kℓ =

∫

S

φq,k |Sφr,ℓ|S dγ, Cq,r =
∑

S∈Sq

CS
q,r.

The dis
rete 
ounterpart of equations (7.9) and (3.13) ∀i ∈ I are

Aipi = Ci,ihi −
∑

j∈Ji

Ci,jhj − α[Biui +
∑

j∈Ji

Bjuj − α(Ci,ihi +
∑

j∈Ji

Ci,jhj)], (3.16)

Aiδhi = Biδui. (3.17)
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The dis
rete gradient of the fun
tional J(U) and the optimal step-size λ be
ome

∇J(ui) = Pi|Si
+ ui − αhi(ui)|Si

+
∑

j∈Ji

(uj |Si
− αhj(uj)|Si

), (3.18)

∇J(u) = Π
i∈I

∇J(ui), (3.19)

λ = −
∑

i∈I

(∇J(ui), δui)Si

{
−2α

∑

i∈I

(δui + δuj |Si
, δhi|Si

)Si

+
∑

i∈I

(
||δhi |Si − δhj |Si

||2Si
+ ||δui + δuj |Si

||2Si
+ α2||δhi |Si + δhj |Si

||2Si

)}−1

. (3.20)

We end this Se
tion with the dis
rete version of Algorithm 3.1.

Algorithm 3.2.

1. Set k = 0 and initial guess for 
ontrol variable u0;

2. �nd h0 = h(u0) solving on ea
h fra
ture (7.19);

3. �nd p(u0) solving on ea
h fra
ture (3.16);

4. evaluate ∇J(u0) by (3.19);

5. set (δu)0 = −∇J(u0);

6. While(stopping 
riterion not satis�ed)

6.1. 
ompute optimal step-size λk along dire
tion (δu)k by (3.20);

6.2. set uk+1 = uk + λk(δu)k;

6.3. ∀i ∈ I �nd hi(u
k+1) by (7.19);

6.4. ∀i ∈ I �nd pi(u
k+1) by (3.16);

6.5. evaluate ∇J(uk+1);

6.6. set βk+1 = ‖∇J(uk+1)‖2S/‖∇J(uk)‖2S
6.7. set (δu)k+1 = −∇J(uk+1) + βk+1δuk

6.8. k = k + 1;

We noti
e that, thanks to the minimization approa
h adopted, only the solution of

many simple problems on the fra
tures is required, with a small ex
hange of tra
e-related

data among them. This algorithm is therefore suitable for massively parallel 
omputers

and GPU-based 
omputers.
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3.5.1 Stopping 
riterion

The stopping 
riterion used in Algorithm 3.2 plays a relevant role for e�
ien
y rea-

sons. In fa
t, due to the arbitrary interse
tions of the tra
es with elements independently

pla
ed on ea
h fra
ture, the two terms of the fun
tional J do not vanish, in general.

This follows from the fa
t that on ea
h tra
e S the dis
rete fun
tions hi|S and hj |S with

i, j ∈ IS are pie
ewise polynomials on di�erent partitions of the tra
e. As a 
onsequen
e,

δhi|S − δhj |S is typi
ally di�erent from zero. Appropriate 
hoi
e for stopping 
riteria is


ru
ial in order to prevent a premature stop of the algorithm far from the minimum of

the fun
tional, avoiding at the same time useless iterations when we are already 
lose to

the minimum, when only negligible further redu
tion of the fun
tional 
ould be a
hieved

at the expenses of a large number of additional iterations. We will dis
uss this in the

next Se
tion.

3.6 Numeri
al Results

In this se
tion we present some numeri
al experiments aiming at showing the be-

haviour of our algorithm in relation to various stopping 
riteria and the quality of the

solution obtained. After introdu
ing the DFN problems used for the simulations, and

dis
ussing stopping 
riteria used in our 
omputations, we analyze the solution obtained

on the most 
omplex DFN 
on�guration investigated.

3.6.1 DFN 
on�gurations

A set of four di�erent DFN 
on�gurations is 
onsidered with an in
reasing number

of fra
tures and tra
es as des
ribed in Table 3.1.

Table 3.1: Problems des
ription

DOFs (
oarse grid) DOFs (�ne grid)

Label #I #M h u h u

7fra
t 7 11 1140 163 4007 378

11fra
t 11 26 2244 337 7172 825

50fra
t 50 153 13211 2187 42161 5166

100fra
t 100 313 26512 4637 85900 10978
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In Figure 3.2 we show se
tion on the x − y plane of fra
ture systems. All fra
tures

extend, orthogonally to x − y plane, from z = 0 to z = 1, ex
ept for fra
tures in

dashed line that range between z = 0 and z = 0.5. Homogeneous or non-homogeneous

Diri
helet boundary 
onditions are pres
ribed on the sides marked with a dark 
ir
le or

with a dark re
tangle respe
tively, while homogeneous Neumann 
onditions are set on

the other edges. Problem formulation is as in equation (7.1), where the transmissivity
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Figure 3.2: DFN 
on�gurations, se
tion on x − y plane. Left to right, top to bottom:

7fra
t, 11fra
t, 50fra
t, 100fra
t. Number is reported for fra
tures 
arrying Diri
helet

boundary 
onditions (squared edge non homogeneous, �lled 
ir
le homogeneous).

is assumed 
onstant and equal to 1, and the sour
e term is q = 0 on all the fra
tures.

For the dis
retization we use �rst order Lagrangian �nite elements and two di�erent

grids: a 
oarse grid with about 35 elements per unit area and a �ner grid with about

100 elements per unit area. The 
orresponding number of DOFs is reported in Table 3.1.

In all 
ases we set the parameter α = 0.5 in the de�nition of the 
ontrol variable and

the starting guess for the 
ontrol variable is u0 = 0. For ea
h 
on�guration and grid, we
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Figure 3.3: Zoom of grid for 11fra
t problem.

Table 3.2: Exit 
riteria used in simulations

Label Criterion

t1 R1 = Jk − Jk−1 < tol1

t2 R2 = ||uk − uk−1|| < tol2

t3 R3 = Jk(Jk − Jk−1) < tol3

de�ne a referen
e solution obtained performing a large number of gradient iterations in

order to safely approa
h the minimum of the fun
tional. As an example, to highlight

the 
omplete non 
onformity of the mesh to the tra
es, we show in Figure 3.3 a zoom

of the 
oarse grid for the DFN problem with eleven fra
tures.

3.6.2 Stopping 
riteria

For ea
h problem and grid a large set of simulations is performed, 
onsidering the

di�erent stopping 
riteria des
ribed in the following.

In Figure 3.4 and Figure 3.5 we plot, for the various problems 
onsidered and for

in
reasing number of iterations, s
aled by the number of problem tra
es, the distan
e
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Figure 3.4: Relative distan
e in H1
-norm of solution at di�erent number of iterations,


oarse grid. Right: zoom at lower number of iterations.

in H1
-norm between the referen
e solution and the 
urrent solution, relative to the

H1
-norm of the referen
e solution: ‖hcurr − href ‖H1/‖href ‖H1 . The referen
e solution

is obtained on the same grid, performing a very large number of 
onjugate gradient

iterations. Figure 3.4, on the left, gives an overview on a wide range of iterations for the


oarse grid, while on the right provides a zoom at lower iterations. Figure 3.5 provides

a similar zoom for the �ner grid. It should be noti
ed that the 
urves show initially a

strong de
reasing trend and, after a number of iterations that is few times the number of

problem tra
es, variations of the solution with respe
t to the referen
e solution be
ome

smaller than 1%. Afterwards, the 
urves be
ome almost �at and a large number of

iterations would be required for negligible improvements in the solution. Therefore, we


an see that the algorithm 
an provide a solution 
lose to the best solution a
hievable

within a reasonably small number of iterations, this number being proportional to the

total number of tra
es in the system, with a proportionality fa
tor in the order of few

units.

As mentioned in Subse
tion 3.5.1, fun
tional minimum is an unknown value di�erent

from zero. Hen
e, the 
hoi
e of a exit 
riterion able to stop iterations when we are 
lose

enough to the solution, while avoiding useless iterations, is a 
ru
ial point. In Table 3.2

we report three possible 
riteria. Condition t1 dete
ts small variations in the fun
tional

values. Sin
e the fun
tional des
ent path 
an be step-like (see Figure 7.4 for an example),

in order to avoid premature stops, the algorithm is terminated whenR1 < tol1 for a �xed

number of subsequent iterations (six, in our 
omputations). Approa
hing fun
tional

minimum we have that R1 → 0. In Figure 3.7, left, we show the relative distan
e of
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Figure 3.5: Relative distan
e in H1
-norm

of solution at di�erent number of itera-

tions, �ner grid. Zooming al lower number

of iterations.
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Figure 3.6: Example of fun
tional step-like

des
ent path. Problem 100fra
t on the


oarse grid.

the 
omputed solution from the referen
e solution, 
orresponding to several values of

the toleran
e tol1. It 
an be noti
ed that a value around tol1 = 10−6
provides a good

solution for all the problems 
onsidered.

Similarly, 
ondition t2 seeks small variations in the 
ontrol variable. Again, to take

into a

ount possible temporary stagnation during the des
ent pro
ess, iterations are

stopped when R2 < tol2 six times subsequently. Also in this 
ase as the fun
tional

approa
hes its minimum R2 tends to zero. We 
an see in Figure 3.7, middle, the

behaviour of the solution in relation to the 
hoi
e of tol2. The value tol2 = 10−7

appears to be a good 
hoi
e.

As a possible alternative, 
riterion t3 aims at dete
ting fun
tional minimum, again

avoiding premature stop at large values of the fun
tional due to lo
al stagnation. The

rationale behind this 
riterion is to avoid stopping the iterates when Jk − Jk−1
is small

but Jk
is not small as well. Algorithm is then stopped the �rst time thatR3 < tol3. Also

in this 
ase R3 
an be arbitrarily redu
ed with iterations. We plot solution behaviour

in relation to tol3 in Figure 3.7, right. We noti
e that in this 
ase low toleran
e values,

around tol3 = 10−8
, should be 
hosen.

3.6.3 DFN system solution

We now show the quality of the numeri
al solution obtained on the more 
omplex

DFN 
on�guration 
onsidered herein. First we show in details the results obtained on
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Figure 3.7: Relative distan
e in H1
-norm from referen
e solution for di�erent toleran
es

and stopping 
riteria. Left: 
ondition t1; middle: 
ondition t2; right: 
ondition t3. Coarse

grid in dashed line, �ner grid in solid line.

two of the fra
tures in the 100fra
t system: the sour
e fra
ture 82 and the sink fra
ture

18 (see Figure 3.2). On the 
oarse grid, in Figures 3.8 and 3.9, left, we 
ompare the

solution on fra
ture tra
es,

{
hi|S

}

S∈Si

, i = {18, 82}, and the solution on the tra
es of

interse
ting fra
tures, {hj} with j ∈ Ji. We 
an see a very good agreement between

these values, ensuring the global 
ontinuity of the hydrauli
 head. In the right part

of the same �gures, we 
ompare the 
o-normal derivative of solution on the tra
es of

the 
urrent fra
ture and on tra
e-twin fra
ture (with opposite sign). In these �gures

φ(h) =
[[

∂h
∂ν̂S

]]
S
. Again, we 
an observe, as expe
ted, a very good agreement between

these values, ensuring �ux 
onservation.

In Figure 3.10 we show, for the same fra
tures, the solution on the tra
es obtained

with four di�erent meshes. Reported results show that, under grid re�nement, the


omputed solutions are 
learly approa
hing the same values. In Figure 3.11 we plot the

whole solution obtained with the 
oarse grid on the fra
tures 82 and 18. In Figures

3.12 and 3.13 we report 3D pi
tures representing the DFN. The 
omputing meshes are

drawn and the solution is reported on the fra
tures using a 
olorbar. The arrows point

the sour
e fra
ture 93 and the sink fra
ture 7.

In Figure 3.14, left, the L2
-norm of solution against iterations is plotted. The table

of Figure 3.14, right, gives an indi
ation of the 
onservativity of the method on the

whole network of fra
tures, as it reports the values of the total �uxes dis
harged by the

sour
e fra
tures to the system and the total �ux re
eived by the sink fra
tures from the

system. As expe
ted the data mat
h very well.
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Figure 3.8: Problem 100fra
t, sour
e fra
ture 82, 
oarse grid. Solution on the tra
es

(left) and 
o-normal derivative (right) 
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orresponding values 
omputed on

tra
e-twin fra
tures.
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Figure 3.10: Solution on the tra
es of sour
e fra
ture 82 (left) and sink fra
ture 18 (right)

for two di�erent grids, 100fra
t problem.
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Figure 3.12: Solution on the DFN 100fra
t. Arrow points sour
e fra
ture 93.

Figure 3.13: Solution on the DFN 100fra
t. Arrow points sink fra
ture 7.
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3.7 Con
lusions

Major drawba
ks in DFN numeri
al simulations lie in the de�nition of a good quality

�nite element triangulation and in the huge 
omputational demand. The method intro-

du
ed in [7, 6℄ and further developed in the present work provides a possible approa
h

for 
ir
umventing these di�
ulties. The proposed method allows a fully independent

triangulation on ea
h fra
ture, thus eliminating any mesh related problem. Further, the

method 
an be easily implemented on parallel ma
hines, sin
e the DFN simulation is

split in many sub-problems on ea
h fra
ture that 
an be solved independently by parallel

pro
esses, with little ex
hange of tra
e related data between tra
e-twin pro
esses.

The 
ontribution of the present work to the method is twofold. We introdu
e a

new de�nition of the 
ontrol variable for the optimal problem in order to eliminate

the requirement of having a non-empty portion of the boundary of ea
h fra
ture with

Diri
helet boundary 
ondition. We also introdu
e a 
onjugate gradient method for the

optimization pro
ess in order to speed up 
onvergen
e. By means of several numeri
al

results we show that our algorithm provides a good quality solution within a small

number of iterations that in
reases linearly with the number of tra
es in the system.

The proportionality fa
tor is in the order of few units for all the problems 
onsidered.

The main 
omputational e�ort in ea
h iteration is devoted to the resolution of the linear

systems on the fra
tures, that however are independent ea
h other. Assuming that these

linear systems have a 
omparable dimension, the total 
ost of ea
h iteration s
ales as the

number of fra
tures. E�e
tiveness of some stopping 
riteria for the gradient iterations
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is also dis
ussed.

Further developments on the topi
 should in
lude on one side an investigation of the

s
alability of the algorithm using an in
reasing number of parallel pro
esses on di�erent

parallel ar
hite
tures, and on another side the analysis of non-stationary problems. In

the non-steady 
ase, in order to redu
e the 
omputational e�ort, the appli
ation of

reliable and e�
ient spa
e-time a posteriori error estimates and adaptive algorithms,

following the approa
hes of [4, 5℄, 
ould be fruitful.
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Chapter 4

The eXtended Finite Element

Method for subsurfa
e �ow

simulations

Abstra
t In this paper the appli
ation of the extended �nite element method (XFEM)

to a novel approa
h to Dis
rete Fra
ture Network (DFN) simulations is fully des
ribed.

The proposed DFN simulation approa
h does not require any 
onformity of the trian-

gulation at fra
ture interse
tions, thus over
oming one of the major limitations in DFN

simulations. Furthermore the initial problem 
omplexity is split in a large number of

quasi-independent simple problems on the fra
tures that 
an be easily handled by paral-

lel 
omputers. The use of the XFEM allows a good-quality reprodu
tion of the solution

also at fra
ture interse
tions, despite the non 
onformity of the mesh. The issue of en-

ri
hment fun
tion sele
tion is addressed, and suitable simple enri
hment fun
tions are

identi�ed in order to keep 
omputational 
ost as low as possible without 
ompromising

representation 
apabilities of the enri
hed spa
e. All the relevant aspe
ts of XFEM

implementation are thoroughly dis
ussed and numeri
al examples reprodu
ing 
riti
al


on�guration are provided and 
ommented. Simulations on 
omplex DFN 
on�gurations

are also reported in order to show the e�e
tiveness of the method.
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4.1 Introdu
tion

E�
ient simulation and investigation of subsurfa
e �ow is an up-to-date open re-

sear
h topi
: the 
omplexity of the problem and the in
reasing interest of many appli
a-

tions, su
h as analysis of pollutant di�usion in aquifers, oil/gas extra
tion, gas storage,

make this resear
h issue of great interest. In these appli
ations, the 
omputational do-

main for the simulations 
onsists of underground geologi
al reservoirs, that usually have

huge 
omplex heterogeneous stru
ture and for whi
h only sto
hasti
 data are typi
ally

available. Among others, Dis
rete Fra
ture Network (DFN) models are widely used for

the simulation. A DFN model des
ribes a geologi
al reservoir as a system of interse
t-

ing planar polygons representing the network of fra
tures in the underground. Fra
ture

interse
tions are 
alled tra
es. In the present work we 
onsider impervious surrounding

ro
k matrix, so that no �ux ex
hange o

urs with the surrounding medium. The quan-

tity of interest is the �ow potential, 
alled hydrauli
 head, given by the sum of pressure

and elevation. The hydrauli
 head is ruled by Dar
y law in ea
h fra
ture, with addi-

tional mat
hing 
onditions whi
h ensure hydrauli
 head 
ontinuity and �ux balan
e at

fra
ture interse
tions. Thanks to these mat
hing 
onditions, hydrauli
 head is 
ontinu-

ous a
ross tra
es but jumps of gradients may o

ur as a 
onsequen
e of �ux ex
hange

between interse
ting fra
tures. Hen
e, tra
es are typi
ally interfa
es of dis
ontinuities

for the gradient of the solution.

Standard �nite element methods or mixed �nite elements are widely used for obtain-

ing a numeri
al solution also in this 
ontext, but they require mesh elements to 
onform

with the tra
es in order to 
orre
tly des
ribe the irregular behaviour of the solution.

This poses a severe limitation, sin
e realisti
 fra
ture networks are typi
ally very intri-


ate, with fra
tures interse
ting ea
h other with arbitrary orientation, position, density

and dimension. A 
onforming meshing pro
ess may result infeasible, or might generate

a poor quality mesh, sin
e a 
oupled meshing pro
ess on all the fra
tures of the system

may lead to elongated elements. The following strategies are mainly suggested in the

literature in order to over
ome these di�
ulties. In some 
ases mesh and/or geometry

modi�
ations and simpli�
ations are proposed to ease meshing pro
ess, as for example in

[12, 8, 17℄. Another approa
h 
onsists in developing methods whi
h allow for a so 
alled

partial non
onformity. For example in [14, 15℄ mortar methods are used in order to relax

mesh 
onformity 
onstraints on interse
ting fra
tures, but still requiring that element

edges lie on the tra
es. A di�erent strategy is used in [4, 5, 6℄, in whi
h the authors pro-
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pose a PDE-
onstrained optimization approa
h in whi
h neither fra
ture/fra
ture nor

fra
ture/tra
e mesh 
onformity is required. The method is based on the minimization

of a quadrati
 fun
tional 
onstrained by the state equations des
ribing the �ow on the

fra
tures. Extended Finite Elements (XFEM) are used in order to enri
h the solution

des
ription and 
orre
tly reprodu
e irregularities in the solution.

The XFEM [2, 13, 7, 16, 3℄ allows the des
ription of irregular solutions regardless

of the position of mesh elements with respe
t to the irregularity interfa
es, so that the

numeri
al triangulation for DFN simulations 
an be generated independently on ea
h

fra
ture, without any kind of mat
hing 
onstraint along the tra
es, thus 
ir
umventing

any problem related to mesh generation. As proved by the numeri
al results, the be-

haviour of the solution is well reprodu
ed thanks to spe
ial enri
hment fun
tions that

in�uen
e the numeri
al approximation lo
ally around the tra
es. Simple, easily inte-

grable enri
hment fun
tions should be preferred, in order to limit the number of the

related additional unknowns and the 
omputational 
ost in general.

In the present work we dis
uss in full details the appli
ation of XFEM to the approa
h

des
ribed in [4, 5, 6℄. Suitable enri
hment fun
tions for very 
omplex DFNs are proposed.

Furthermore, other issues ensuring an e�e
tive implementation of the method are fully

addressed.

The present work is organized as follows: in Se
tion 7.2 the PDE-
onstrained opti-

mization model for DFN �ow simulations is brie�y re
alled. In Se
tion 4.3 a thorough

des
ription of the XFEM in the DFN 
ontext is provided, as well as implementation


hoi
es. In Se
tion 4.4 the numeri
al solver is depi
ted. Se
tion 4.5 is devoted to numeri-


al experiments on test problems and DFNs of in
reasing 
omplexity, whi
h highlight the

e�e
tiveness of the XFEM in this 
ontext. We end with some 
on
lusions in Se
tion 4.6.

4.2 Problem des
ription

Let us 
onsider a DFN Ω given by the union of open planar polygonal sets Fi, with

i = 1, . . . , I, 
alled fra
tures, and let us denote by ∂Fi the boundary of Fi and by ∂Ω the

set of all the fra
ture boundaries, ∂Ω = ∪I
i=1∂Fi. We de
ompose ∂Ω = ΓD ∪ ΓN with

ΓD∩ΓN = ∅, ΓD 6= ∅ being ΓD the Diri
helet boundary and ΓN the Neumann boundary.

Similarly, the boundary of ea
h fra
ture is divided in a Diri
helet part ΓiD = ΓD ∩ ∂Fi

and a Neumann part ΓiN = ΓN ∩∂Fi, hen
e ∂Fi = ΓiD∪ΓiN , with ΓiD∩ΓiN = ∅. Note
that ΓiD = ∅ is allowed whenever ∂Fi∩ΓD = ∅. Fra
tures have arbitrary orientations in
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spa
e, so that Ω is a 3D domain. Tra
es are denoted by Sm, m = 1, . . . ,M ; S denotes

the set of all the tra
es of the system, and Si, for i = 1, . . . , I, denotes the subset of S

orresponding to tra
es belonging to Fi. Ea
h Sm uniquely identi�es a 
ouple of indi
es

ISm = {i, j}, su
h that Sm ⊆ F̄i ∩ F̄j .

A

ording to Dar
y law, the hydrauli
 head H in Ω is given by a system of equations

on ea
h fra
ture, de�ned as follows. For the sake of simpli
ity of notation, in this

se
tion let us assume that tra
es are non-interse
ting. We remark that the numeri
al

method des
ribed in the following is not a�e
ted by this assumption. Let Hi denote the

restri
tion of the solution H to fra
ture Fi and let Ki be a symmetri
 and uniformly

positive de�nite tensor (the fra
ture transmissivity). Let us introdu
e for ea
h fra
ture

the following fun
tional spa
es:

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}
,

and

V D
i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HD
i

}
.

Then Hi satis�es, for i = 1, . . . , I, the following problem: �nd Hi ∈ V D
i su
h that

∀v ∈ Vi

∫

Fi

Ki∇Hi∇vdΩ =

∫

Fi

qivdΩ+ 〈GN
i , v|S〉

H

− 1
2
(ΓiN),H

1
2
(ΓiN)

+
∑

S∈Si

〈
[[
∂Hi

∂ν̂iS

]]

S

, v|S〉
H

− 1
2
(S),H

1
2
(S)

, (4.1)

where qi denotes a sour
e term on Fi and the symbol

∂Hi

∂ν̂i
represents the outward 
o-

normal derivative of the hydrauli
 head:

∂Hi

∂ν̂i
= n̂Ti Ki ∇Hi

with n̂i outward normal to the boundary ΓiN , and

[[
∂Hi

∂ν̂i
S

]]

S
denotes the jump of the 
o-

normal derivative along the unique normal n̂iS �xed for the tra
e S on Fi, and represents

the �ux in
oming into the fra
ture Fi through the tra
e S. Fun
tions H
D
i ∈ H

1

2
(ΓiD) and

GN
i ∈ H

− 1

2
(ΓiN ) are given and pres
ribe Diri
helet and Neumann boundary 
onditions

respe
tively on the boundary ∂Fi.

Equations (4.1) for i = 1, ..., I are 
oupled with the following additional mat
hing
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onditions imposing hydrauli
 head 
ontinuity and �ux balan
e a
ross the tra
es:

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , ∀m = 1, ...M, (4.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm . (4.3)

Following the method des
ribed in [4, 5, 6℄, instead of solving the 
oupled system of

equations (4.1)-(4.3), the solution is obtained solving a PDE 
onstrained optimization

problem.

For ea
h tra
e in ea
h fra
ture let us introdu
e the 
ontrol variables US
i ∈ US =

H

− 1

2
(S), de�ned as US

i = αHi|S
+
[[
∂Hi

∂ν̂i
S

]]

S
, where α is a �xed positive parameter.

Equation (4.1), pres
ribed on the fra
tures, 
an be equivalently restated as:

∫

Fi

Ki ∇Hi∇vdΩ+ α
∑

S∈Si

∫

S

Hi|Sv|SdΓ = (4.4)

∫

Fi

qivdΩ+ 〈GN
i , v|S〉

H

− 1
2
(ΓiN),H

1
2
(ΓiN)

+
∑

S∈Si

〈US
i , v|S〉US ,US ′ .

Let us de�ne USi = H

− 1

2
(Si ) and let Ri denote the operator providing lifting of the

Diri
hlet boundary 
onditions on ΓiD, if not empty. Let us 
onsider the following linear

bounded operators:

Ai ∈ L(Vi, V ′
i ), 〈AiH

0
i , v〉V ′

i ,Vi
= (Ki∇H0

i ,∇v) + α
(
H0

i |Si
, v|Si

)

Si

,

AD
i ∈ L(V D

i , V ′
i ), 〈AD

i RiH
D
i , v〉V ′

i ,Vi
= (Ki ∇RiH

D
i ,∇v) + α

(
(RiH

D
i )|Si

, v|Si

)

Si

,

BS
i ∈ L(US , V ′

i ), 〈BS
i U

S
i , v〉V ′

i ,Vi
= 〈US

i , v|S 〉US ,US ′ ,

Bi = Π
S∈Si

BS
i ∈ L(USi , V ′

i ), 〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉
USi ,USi

′ ,

with H0
i ∈ Vi, H

D
i ∈ V D

i , v ∈ Vi, and Ui ∈ USi
is the tuple of 
ontrol variables

US
i for S ∈ Si. Analogously, U ∈ US

denotes the tuple of 
ontrol variables Ui for

i = 1, ..., I. The dual operator of Ai is denoted by A∗
i ∈ L(Vi, V ′

i ). The operator

BiN ∈ L(H− 1

2
(ΓiN ), V

′
i ) imposing Neumann boundary 
onditions is de�ned su
h that

〈BiNG
N
i , v〉V ′

i ,Vi
= 〈GN

i , v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

= 〈 ∂Hi

∂ν̂ΓiN

, v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

.

With these de�nitions at hand, problems (4.1) are rewritten as: ∀i = 1, ..., I, �nd

Hi ∈ V D
i , with Hi = H0

i +RiH
D
i and H0

i ∈ Vi, su
h that

AiH
0
i = qi +BiUi +BiNG

N
i −AD

i RiH
D
i , in Fi. (4.5)
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We remark that, if α > 0, for a given Ui, the solution Hi to (4.5) exists and is unique

for a non isolated fra
ture even if we set Neumann boundary 
onditions on the whole

∂Fi.

Now let us introdu
e the fun
tional

J(H,U) =

M∑

m=1

∥∥∥Hi|Sm
−Hj|Sm

∥∥∥
2

H

1
2
(S)

+

M∑

m=1

∥∥∥USm

i + USm

j − α
(
Hi|Sm

+Hj|Sm

)∥∥∥
2

H

− 1
2
(S)

. (4.6)

The fun
tional J is quadrati
 and using the same arguments as in [4℄, it 
an be shown

that its unique minimum is obtained for values of H and of the 
ontrol fun
tions U that


orrespond to the ful�lment of 
onditions (4.2) and (4.3) on the tra
es. In other words,

the solution of the problem

minJ subje
t to (4.5) (4.7)


orresponds to the solution of the 
oupled system of equations (4.1)-(4.3).

4.3 The XFEM for DFN simulations

A

ording to the approa
h depi
ted in the previous se
tion, mat
hing 
onditions

along tra
es are not exa
tly imposed but they are made as small as possible via an

optimization approa
h. Only lo
al problems on fra
tures (i.e. problems (4.5)) are in-

dependently solved. As a 
onsequen
e, meshes on the fra
tures are neither required to


onform to ea
h other, nor to 
onform to the tra
es. Clearly, the �ner the grid, the

smaller is the global mismat
h provided by J . In order to provide a better des
ription

of the solution also near tra
es, whi
h represent possible nonsmoothness interfa
es, the

XFEM turns out to be a 
onvenient approa
h.

The XFEM 
an reprodu
e irregular solutions by means of 
ustom enri
hment fun
-

tions that are added to the trial and test fun
tional spa
es of standard �nite elements,

in order to give the required behaviour to the numeri
al approximation, independently

of the position of mesh elements with respe
t to the interfa
es. A key point of our

approa
h is that we a priori know that the solution displays derivative dis
ontinuities

at the tra
es: the solution is in general a 
ontinuous fun
tion with dis
ontinuous normal

derivatives a
ross the tra
es due to the term representing �ux jump. Standard �nite
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F1

F2

F3

S2

S3

S1

Figure 4.1: Example of a 
onforming mesh with three tra
es interse
ting with a small angle.

S1 = F̄1 ∩ F̄2, S2 = F̄2 ∩ F̄3, S3 = F̄3 ∩ F̄1.

element methods reprodu
e this behaviour only if mesh element edges lie on the tra
es,

thus requiring the simultaneous 
onforming triangulation of all the fra
tures in the sys-

tem. As dis
ussed, this pro
ess often results infeasible for DFNs of realisti
 size and

geometry, or might lead to meshes of poor quality due to the presen
e of elongated ele-

ments trapped between interse
ting tra
es. This situation is des
ribed in Figure 4.1 for

a simple DFN 
omposed by three fra
tures and three interse
ting tra
es with a 
onform-

ing mesh. Due to the re
ipro
al position of tra
es, the 
oloured element 
ould display

a very small angle. This problem 
an be over
ome by the use of XFEM; an example of

non-
onforming mesh suitable for our approa
h is displayed in Figure 4.2.

In the following of this se
tion, we fully a

ount for details 
on
erning use of XFEM,

su
h as sele
tion of enri
hment fun
tions for DFN problems and implementation strate-

gies adopted for this spe
i�
 appli
ation of the XFEM. Before pro
eeding, we brie�y

re
all some key points 
on
erning XFEM in the 
ontext of DFN simulations.

Let us 
onsider a standard �nite element des
ription of the hydrauli
 head in a

given fra
ture F ⊂ R
2
, with a lo
al referen
e system x̂, and MF tra
es Sm, m =

1, . . . ,MF . Here and in the sequel of the paper, we use lower
ase letters h, u for �nite

element approximations of the 
orresponding quantities H and U . Let us introdu
e a

triangulation Tδ of F , with N el
elements τe ⊂ R

2
su
h that F̄ =

⋃
1≤e≤Nel τe. Let V

fem
δ

be the standard �nite element trial and test spa
e de�ned on the elements of Tδ and

spanned by Lagrangian basis fun
tions φk 
ompa
tly supported with support ∆k, with

k ∈ I set of degrees of freedom (DOF). We remark that dis
ontinuities of the gradient

of the solution h o

ur at tra
es, whi
h are always segments. If elements of Tδ are
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onforming to the tra
es, the solution is given by

hfem(x̂) =
∑

k∈I

hkφk(x̂),

where hk is the degree of freedom 
orresponding to φk. In the more general 
ase in whi
h

we allow elements to be non-
onforming to tra
es, we use our a-priori knowledge on the

irregularity of the solution, and use the XFEM on the non-
onforming grid, introdu
ing,

for ea
h tra
e Sm, a global enri
hment fun
tion Φm that well mat
hes the behaviour of

the solution a
ross the tra
e (see for example Figure 4.3). Additional basis fun
tions,


alled lo
al enri
hment fun
tions are generated from fun
tions Φm by means of the

Partition of Unity Method [1℄ on the partition of unity given by the standard Lagrange

basis fun
tions φk on the triangulation Tδ. The numeri
al approximation given by the

XFEM is built on the enri
hed fun
tional spa
e V

xfem
δ

V xfem
δ = span

(
{φk}k∈I , {φkΦ1}k∈J1

, . . . , {φkΦMF
}k∈JMF

)
,

and has the following stru
ture:

hxfem(x̂) =
∑

k∈I

hxfemk φk(x̂) +

MF∑

m=1

∑

k∈Jm

ĥxfemk,m φk(x̂)Φm(x̂), (4.8)

where hxfemk are the unknowns related to standard �nite element basis fun
tions and

ĥxfemk,m are the DOFs of the enri
hment basis fun
tions related to the m-th tra
e. The

set Jm ⊂ I 
olle
ts the a
tive DOFs for the m-th enri
hment (
alled enri
hed DOFs).

By properly 
hoosing Jm, we 
an 
ontrol lo
ality of the enri
hments. Indeed, ea
h lo
al

enri
hment fun
tion φkΦm has 
ompa
t support equal to the support of φk, ∆k, and, as

a 
onsequen
e, the region ∆m of the domain subje
t to the enri
hment Φm is determined

by the set of a
tive standard FE DOFs: ∆m =
{⋃

k∈Jm
∆k

}
.

In the remaining of this Se
tion, we fo
us on three major issues 
on
erning the use

of XFEM in the 
ontext of DFN simulation: (i) enri
hment fun
tion 
hoi
e, (ii) preser-

vation of optimal 
onvergen
e rates, and (iii) ill 
onditioning prevention. To simplify

the notation, also in the sequel our dis
ussion refers to a single fra
ture plane F with

MF tra
es. We remark that all 
onsiderations are independent of the number of fra
-

tures in the DFN, being the dis
retization of the governing equations on ea
h fra
ture

independent from the others. Our dis
ussion is also independent of possible tra
es in-

terse
tions, as thanks to additivity property highlighted by (4.8), no spe
ial enri
hment

is 
onsidered for tra
es interse
tion (see the next Subse
tion 4.3.1).
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Figure 4.2: Example of DFN with a non
onforming mesh (left). Zoom of mesh detail on

the right.

4.3.1 Sele
tion of enri
hment fun
tions

Enri
hment fun
tion sele
tion is a key issue for XFEM implementation, and it is ruled

by the kind of irregular behaviour to be reprodu
ed and by the nature of the interfa
es

(see [10℄ for a 
omprehensive review). In the 
ontext of DFN models 
on
erning the �rst

point we have to fa
e 
ontinuous solutions with dis
ontinuous derivatives; going to the

se
ond point, irregularity interfa
es are usually 
lassi�ed as 
losed or open interfa
es:


losed interfa
es extend throughout the whole 
omputational domain, whereas open

interfa
es end and/or begin inside the domain. In DFN models tra
es 
an be arbitrarily

pla
ed inside the fra
tures, thus originating open and 
losed interfa
es whi
h might have

multiple interse
tions among ea
h other.

In addition to this geometri
al 
omplexity, sin
e the number of interfa
es may be large,

a high number of enri
hment unknowns 
ould be required. As a 
onsequen
e, in order to

mitigate 
omplexity of the enri
hed spa
e, we 
hoose a rather simple enri
hing fun
tion,

given by the distan
e fun
tion:

Φm(x̂) = d(x̂, Sm) ∀m = 1, . . . ,MF , (4.9)

where, following standard notation, d(x, S) denotes the distan
e of point x from the

set S. Setting Jm = {k ∈ I : ∆k ∩ Sm 6= ∅}, the in�uen
e of ea
h global enri
hment is

limited to the elements with a non-empty interse
tion with the tra
e. This 
hoi
e 
an

strongly redu
e the number of DOFs if 
ompared with [5, 6℄, where more enri
hment

fun
tions are used for the tips of the tra
es. The typi
al behaviour of fun
tions (4.9) is

shown in Figure 4.3, and they are used for both open and 
losed interfa
es, thus keeping

as low as possible the number of required enri
hments (and 
onsequently the number
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Figure 4.3: Example of global enri
hment fun
tion Φm.

of unknowns), but still giving a good approximation of the behaviour of the solution

around tra
es, as shown in the numeri
al examples of Se
tion 4.5.

The gradient of the enri
hment fun
tions has a dis
ontinuous 
omponent normal to

the tra
e, and therefore spe
ial 
are is needed for the numeri
al integration. To this aim,

mesh elements 
rossed by tra
es are divided in sub-elements, in su
h a way that only

sub-elements edges or verti
es lie on the tra
es (see for example Figure 4.6, right). Low

order Gaussian formulae are then used on the sub-elements without loss of a

ura
y,

thanks to the simple stru
ture of the enri
hment fun
tions, and with a moderate number

of fun
tion evaluations. This point is of paramount importan
e in order to limit the


omputational 
ost when a large number of tra
es is 
onsidered.

We remark that no spe
i�
 enri
hment fun
tions are required in the 
ase of inter-

se
ting tra
es, sin
e the enri
hments enjoy an additivity property, as emphasized by the

stru
ture of (4.8). The linear 
ombination of the enri
hments (4.3) introdu
ed for ea
h

interse
ting tra
e is su�
ient to approximate the irregular behaviour of the solution.

Figure 4.4 shows a linear 
ombination of fun
tions (4.3) for two interse
ting tra
es with

triangular �rst order �nite elements. This simple example shows that it is possible to

reprodu
e a solution whi
h is 
ontinuous a
ross the tra
es (Figure 4.4) but with a di�er-

ent value of the normal 
omponent of the gradient in ea
h of the four regions separated

by the tra
es.
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Figure 4.4: Example of approximated solution on the referen
e triangle for two 
rossing

tra
es and �rst order basis fun
tions.

4.3.2 Convergen
e rates

As previously dis
ussed, for ea
h global enri
hment Φm a set of additional enri
hment

basis fun
tions is generated and 
orrespondingly some DOFs are added. Mesh elements

might therefore have a variable number of DOFs, depending on the number of enri
hed

DOFs and additional basis fun
tions hosted. Hen
e, mesh elements are 
lassi�ed as

follows: 1) standard elements, if no enri
hment a
ts on the element; 2) reprodu
ing

elements, if the full set of DOFs is enri
hed with a given enri
hment Φm; 3) blending

elements, if only some DOFs are enri
hed with a given fun
tion Φm [9℄. Figure 4.5

depi
ts this 
lassi�
ation in the 
ase of a single tra
e with �rst order triangular elements.

Note that ea
h mesh element 
an be involved by several enri
hments, and it 
an be of

di�erent type in relation to di�erent enri
hment fun
tions. The behaviour of enri
hment

fun
tion Φm 
an be 
orre
tly reprodu
ed only in reprodu
ing elements, where the whole

set of enri
hment basis fun
tions is available, whereas in blending elements only a partial

re
onstru
tion of Φm is possible, and spurious terms are generated whi
h might a�e
t

the optimal 
onvergen
e rates expe
ted for standard �nite elements of the same order.

At the same time, blending elements, sharing the DOFs of neighbouring reprodu
ing

elements preserve the 
ontinuity of the numeri
al solution.

In order to restore optimal 
onvergen
e rates, a modi�ed version of the XFEM is
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Figure 4.5: Classi�
ation of mesh elements.

adopted, as suggested in [9℄. The global enri
hment fun
tions Φm are repla
ed by

fun
tions ΦmRm where Rm =
∑

k∈Jm
φk and is 
alled ramp fun
tion. The set of a
tive

DOFs, Jm, is repla
ed by the set J̃m =
{
k ∈ I : ∆k ∩ ∆̄m 6= ∅

}
. With these 
hoi
es,

elements formerly 
lassi�ed as blending elements, be
ome reprodu
ing elements for the

modi�ed enri
hment fun
tions ΦmRm, thus avoiding spurious terms, and thanks to the

stru
ture of ramp fun
tions the 
ontinuity of the solution is preserved.

It is also bene�
ial to introdu
e a shifting of the enri
hment basis fun
tions to restore

the Lagrangian property to the dis
rete fun
tional spa
e. The XFEM test and trial spa
e

is then:

V xfem
δ = span

(
{φk}k∈I ,

{
φk

(
Φ1R1 − Φ1(x̂

k)R1(x̂
k)
)}

k∈J1

, . . . ,

{
φk

(
ΦMF

RMF
−ΦMF

(x̂k)RMF
(x̂k)

)}
k∈JMF

)
,

where x̂k is the node su
h that φk(x̂
k) = 1.

4.3.3 Ill 
onditioning prevention

The XFEM sti�ness matrix (here and in the following denoted by A) might result

ill 
onditioned or even singular due to the presen
e of redundant basis fun
tions in the

enri
hed fun
tional spa
e V xfem
δ . When two (or more) parallel tra
es are present in the
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same mesh element, the lo
al enri
hment fun
tions are generated starting from global

fun
tions that di�er only for a translation. This translation, besides being ne
essary

in order to reprodu
e the behaviour of the solution, is also enough to provide linear

independen
e of enri
hment fun
tions in the mesh element under 
onsideration. On

the other hand, linear dependen
ies in the lo
al enri
hment fun
tions of neighbouring

elements 
an arise. Almost parallel tra
es may also result in a ill-
onditioned sti�ness

matrix, or even numeri
ally sigular. Preventive dete
tion of redundant basis fun
tions,

whi
h is a typi
al 
hoi
e in some 
ases [9℄, is infeasible in this 
ontext due to the 
omplex

geometri
al 
on�guration of realisti
 DFNs. For this reason, we adopt here a di�erent

approa
h whi
h 
onsists in dete
ting (almost) linearly dependent rows and 
olumns in

A after having assembled the matrix on ea
h fra
ture. This is done operating a rank

revealing QR-fa
torization of A (see for example [11℄), exploiting the spe
ial stru
ture

of the sti�ness matrix. Indeed, while referring the reader to the Appendix for details,

we brie�y mention here that the matrix A is a blo
k diagonal matrix, being the Ai blo
k

given by the sti�ness matrix built on fra
ture Fi. Therefore, the QR fa
torization is

a
tually independently 
omputed for ea
h diagonal blo
k, and sin
e on ea
h fra
ture

we have a moderate amount of DOFs, the 
ost for 
omputing the QR fa
torizations

is a

eptable. After having 
omputed the rank revealing QR fa
torization for ea
h

diagonal blo
k, i.e. Ai = QiRi, with diagonal entries of the upper triangular matrix Ri

in des
ending order with respe
t to their absolute value, we negle
t rows and 
olumns


orresponding to diagonal entries with modulus lower than a given toleran
e. Fa
tors

Qi and Ri are then used in the resolution of the linear systems. In order to redu
e


omputational 
ost, this pro
edure is performed only for fra
tures with parallel tra
es

far from ea
h other less than maximum element diameter, sin
e the dete
tion of parallel

tra
es and 
omputation of their distan
e is a 
heap task.

4.4 Solution of the optimization problem

As shown in Se
tion 7.2, the problem has been reformulated as a PDE-
onstrained

optimization problem (see equation (7.7)) in whi
h the quadrati
 fun
tional J has to be

minimized subje
t to linear 
onstraints. In this se
tion, following a �rst-dis
retize-then-

optimize approa
h, we give some details about the numeri
al approa
h for 
omputing a

solution to the problem.

While referring the reader to the Appendix for all the details, we just sket
h here
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the stru
ture of the �nite dimensional optimization problem to be solved.

Let us introdu
e a �nite dimensional basis on ea
h fra
ture Fi and on ea
h tra
e

Sm, with a total number of NF
DOFs on fra
tures and NT

DOFs on tra
es. Referring

to equation (4.6), we write the dis
rete fun
tional in terms of L2
norms instead of H− 1

2

and H
1

2
norms on the set of tra
es. With suitable de�nitions, given in the Appendix,

the fun
tional J is written

J(h, u) :=
1

2
hTGhh− αhTBu+

1

2
uTGuu, (4.10)

where Gh ∈ R
NF×NF

, Gu ∈ R
NT×NT

are symmetri
 positive semide�nite sparse ma-

tri
es, B ∈ R
NF×NT

is a sparse matrix, and ve
tors h ∈ R
NF

and u ∈ R
NT


olle
t

all DOFs for the hydrauli
 head on fra
tures and for the 
ontrol variable on tra
es,

respe
tively. The 
onstraints are written

Ah− B u = q, (4.11)

where A ∈ R
NF×NF

is the sti�ness matrix, B ∈ R
NF×NT

is a sparse matrix, and

q ∈ R
NF

is a ve
tor whi
h a

ounts for possible sour
e terms and boundary 
ondi-

tions. The problem under 
onsideration is therefore the equality 
onstrained quadrati


programming problem

min J(h, u) subje
t to (7.21) (4.12)

The �rst order optimality 
onditions for problem (7.20) are the following:




Gh −αB AT

−αBT Gu −BT

A −B 0







h

u

−p


 =




0

0

q


 (4.13)

being p the ve
tor of Lagrange multipliers.

The previous saddle point problem is known to be a symmetri
 inde�nite system.

Note that it is a very large s
ale problem, with highly sparse blo
ks, as A, Gu
are blo
k

diagonal matri
es, Gh
, B and B are blo
k-sparse.

By (formally) using the linear 
onstraint for eliminating the unknown h as

h = A−1(B u+ q), (4.14)

we obtain the following equivalent un
onstrained problem :

min Ĵ(u) :=
1

2
uT (BT A−TGhA−1 B+Gu − αBT A−TB − αBTA−1 B)u

+qTA−T (GhA−1 B−αB)u.
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For further 
onvenien
e we rewrite Ĵ(u) = 1
2u

T Ĝu+ q̂Tu. A gradient-based method for

the minimization of the fun
tional requires the 
omputation of the gradient of Ĵ :

∇Ĵ(u) = (BT A−TGhA−1 B+Gu − α(BT A−TB +BTA−1 B))u+

(BT A−TGh − αBT )A−1q.

The gradient 
an be written in terms of some auxiliary variables as follows. Rear-

ranging previous expression, we obtain

∇Ĵ(u) = BT A−TGhA−1(B u+ q) +Guu− αBT A−TBu− αBTA−1(B u+ q)

and re
alling (7.23), one has

∇Ĵ(u) = BT A−TGhh+Guu− αBT A−TBu− αBTh.

Now set p := A−T (Ghh− αBu), i.e. given h and u, p solves

AT p = Ghh− αBu. (4.15)

We have

∇Ĵ(u) = BT p+Guu− αBTh. (4.16)

Note that setting to zero previous expression for obtaining stationary points for Ĵ(u),

and 
olle
ting su
h equation together with (7.23) and (7.24), we obtain system (4.13).

Con
erning the numeri
al solution of the otimization problem, we mention here two

possible approa
hes. The �rst one 
onsists in solving the linear system (4.13). An

iterative solver is 
learly a re
ommended 
hoi
e, and symmlq would be a suitable 
hoi
e;

this approa
h has been used in [5℄. An other approa
h 
onsists in applying an iterative

solver to the minimization of Ĵ(u). We fo
us here on this se
ond approa
h, sket
hing

the 
onjugate gradient method applied to the minimization of Ĵ(u). In the algorithm,

let us denote by gk the gradient ∇Ĵ(uk) at step k and by dk the dire
tion of movement.

Conjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (7.23) and (7.24) and g0 by (7.25)

3. Set d0 = −g0, k = 0
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4. While gk 6= 0

4.1. Compute λk with a line sear
h along dk

4.2. Compute uk+1 = uk + λkdk

4.3. Update gk+1 = gk + λkĜdk

4.4. Compute βk+1 =
gT
k+1

gk+1

gT
k
gk

4.5. Update dk+1 = −gk+1 + βk+1dk

4.6. k = k + 1

Due to linearity, Step 4.3 is equivalent to 
ompute gk+1 = Ĝuk+1 + q̂. Indeed,

gk+1 = Ĝuk+1 + q̂ = Ĝ(uk + λkdk) + q̂ = Ĝuk + q̂ + λkĜdk = gk + λkĜdk.

Nonetheless, we remark that this step is 
learly performed without forming matrix Ĝ,

but rather 
omputing ve
tor yk = Ĝdk through the following steps:

1. Solve At = B dk

2. Solve AT v = Ght− αBdk

3. Compute yk = BT v +Gudk − αBT t.

Furthermore, sin
e Ĵ is quadrati
, the stepsize λk in Step 4.1 
an be 
omputed via

an exa
t line sear
h. Given a des
ent dire
tion dk, we 
ompute λk su
h that it minimizes

the fun
tion φ(λ) := Ĵ(uk + λdk). Straightforward 
omputations show that one has

λk = − dTk gk

dTk Ĝdk
. (4.17)

The stepsize λk is therefore 
omputed without mu
h e�ort, as quantity Ĝdk is the same

needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of

the linear systems with 
oe�
ient matrix A (whi
h a
tually equals AT
). Nevertheless,

we re
all that matrix A is a
tually symmetri
 positive de�nite, blo
k diagonal with ea
h

blo
k de�ned on a fra
ture (see the Appendix). The systems are therefore de
omposed in

as many small �lo
al� systems as the number of fra
tures. Right-hand-sides of the lo
al

systems gather information both from the 
urrent fra
ture, and from the interse
ting

fra
tures, whi
h typi
ally are in a moderate number. Hen
e, these independent linear

systems 
an be e�
iently solved on parallel 
omputers.
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4.5 Numeri
al results

Some numeri
al results are now provided to show the e�e
tiveness of XFEM imple-

mentation in the 
ontext of DFN simulations. All numeri
al simulations are performed

with �rst order �nite elements on triangular meshes. The presentation is organized as

follows: two test problems are introdu
ed, in order to highlight the performan
es of

the enri
hment fun
tions and the 
onvergen
e properties of the adopted XFEM; then, a

simple DFN 
on�guration with a 
riti
al geometri
al 
on�guration is used for dis
ussing

ill-
onditioning issues; �nally, the solution of a 
omplex DFN 
on�guration is shown.

4.5.1 Test problems

The �rst two test 
ases aim at showing the e�e
tiveness of XFEM implementation

in representing irregular solution on ea
h fra
ture of a given DFN, therefore, a single

problem of the form (4.1) is solved on a sample fra
ture, using the known exa
t value of

�uxes on the tra
es. Results obtained with the full algorithm des
ribed in Se
tion 4.4

are presented afterwards.

The domain of the �rst problem (TP1) is a single re
tangular fra
ture F1 ⊂ R
2
, with

two tra
es S1 and S2, de�ned by:

F1 =
{
(x, y) ∈ R

2 : x ∈ (0, 3), y ∈ (0, 1)
}

S1 =
{
(x, y) ∈ R

2 : x− y − 1 = 0
}

S2 =
{
x ∈ R

2 : 2− x− y = 0
}
,

and S = S1∪S2. The domain is shown in Figure 4.6 where a 
oarse mesh with parameter

δmax = 0.25 is also plotted. Here and in the sequel the mesh parameter 
orresponds to

the square root average area of the mesh elements. The problem is set as follows:

−∆H1 = −∆Hex
1 Ω \ S,

H1 = 0 on ∂F1,

U1 = fS1
on S1,

U2 = fS2
on S2,

with

Hex
1 (x, y) =





xy(y − 1)(x− y − 1)(x+ y − 2)|A2|/(4c1) in A1,

(1− y)(x− y − 1)(x + y − 2) in A2,

y(x− y − 1)(x+ y − 2) in A3,

y(1− y)(x− 3)(x− y − 1)(x + y − 2)|A3|/(4c2) in A4,
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Figure 4.6: Problem TP1. Domain with 
oarse grid δmax = 0.25. Right: a detail of

sub-elements division.

where A1, A2, A3 and A4 denote the four regions in whi
h F1 is divided by the tra
es,

as indi
ated in Figure 4.6, and c1 and c2 are two 
onstants used to res
ale the solution.

We set fS1
=
[[
∂Hex

1

∂ν̂S1

]]
S
and fS2

=
[[
∂Hex

1

∂ν̂S2

]]
S
. We set c1 = 7 and c2 = 5 and being

|A2| = |A3| = 1/4 we have

fS1
(x, y) =





1/(7
√
2)(2− x− y) (7− x(6 + x) + 20y

+2x(1 + x)y − 5xy2 + y3
)

x+ y − 2 ≤ 0

1/(5
√
2)(2− x− y) (−8 + y(1 + y)(11 + y)

+x2(−1 + 2y)− x(1 + y(4 + 5y))
)

x+ y − 2 > 0,

and

fS2
(x, y) =





1/(5
√
2)(−1 + x− y) (−16− (−10 + x)x+ 38y

+2(−7 + x)xy + 5(−3 + x)y2 + y3
)

y − x+ 1 ≤ 0

1/(7
√
2)(−1 + x− y)

(
−28 + x2(−1 + 2y)

+y(23 + (−3 + y)y) + x(9 + y(−8 + 5y))) y − x+ 1 > 0.

In Figure 4.6, right, a detail of tra
es interse
tion is given: in parti
ular, for the element


ontaining the interse
tion, the sub-elements introdu
ed for quadrature are shown. Fig-

ure 4.7 reports the analyti
al solution, while Figure 4.8 displays the numeri
al solution

on a �ne mesh with parameter δmax = 0.1. On elements 
ut by the tra
es, the solution is

represented using the same sub-elements introdu
ed for quadrature. We 
an noti
e that

the irregular trend a
ross tra
es is well reprodu
ed, without requiring any 
onformity

between mesh elements and tra
es.
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Figure 4.7: Problem TP1. Exa
t solution.

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

−0.01

0

0.01

0.02

0.03

x

y

Figure 4.8: Problem TP1. Numeri
al solu-

tion with XFEM on the mesh with δmax =

0.1.

We 
onsider now a modi�ed version of TP1, problem TP1-X7, in whi
h the angle

underlying the interse
ting tra
es is rather small (7◦ instead of 90◦). This is a potentially


riti
al situation. The 
on�guration is shown in Figure 4.9. The two problems, original

TP1 and TP1-X7, are solved both with the XFEM on non
onforming grids and standard

�nite elements on 
onforming grids. Figure 4.10 shows the L2
and H1

-error norms

against grid re�nement, with grid parameters ranging from δmax = 0.32 to δmax = 0.025.

In the original TP1 problem (
urves labelled X90◦ in Figure 4.10), the behaviour of

XFEM and FEM is 
omparable, with 
onvergen
e orders that approa
h the optimal

values for both H1
and L2

error norms. When the angle between tra
es redu
es (
urves

X7◦), the performan
e of standard �nite elements in H1
norm deteriorates, while it

remains una�e
ted for the XFEM. This is an expe
ted behaviour and is a 
onsequen
e

of the poor quality of the 
onforming mesh for standard �nite elements.

The se
ond test problem (TP2) 
onsiders a tra
e ending inside the fra
ture, i.e.

an open interfa
e. This test problem has been 
onsidered also in [5℄ with di�erent

tip enri
hing fun
tions, in order to analyze behavior of the solution 
lose to an open

interfa
e. Here again we want to show quality of the solution but with the di�erent

enri
hment fun
tions here adopted, as now the same enri
hment fun
tion (4.3) is used

to des
ribe the behaviour of the solution 
lose to tra
e tips and away from tra
e tips.

Furthermore, for ea
h tra
e tip, just one enri
hment fun
tion is used here instead of
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Figure 4.9: Problem TP1-X7. Detail of a 
onforming mesh

with δmax = 0.25.
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three as in [5, 6℄. Let us de�ne the domain F2 as

F2 =
{
(x, y) ∈ R

3 : −1 < x < 1, −1 < y < 1, z = 0
}
,

with a single tra
e S =
{
(x, y) ∈ R

2 : y = 0 and − 1 ≤ x ≤ 0
}
thus ending in the inte-

rior of F2. We introdu
e the fun
tion Hex
2 (x, y) in F2 as:

Hex
2 (x, y) = (x2 − 1)(y2 − 1)(x2 + y2) cos

(
1

2
arctan2(x, y)

)

where arctan2(x, y) is the four-quadrant inverse tangent, giving the angle between the

positive x-axis and point (x, y), and di�ers from the usual one-argument inverse tangent

arctan(·) for pla
ing the angle in the 
orre
t quadrant. The fun
tion H2 is the solution

of the system:

−∆H2 = −∆Hex
2 in Ω \ S,

H2 = 0 on ∂F2,

U = x− x3 on S,

where U is the exa
t value of the jump of �uxes a
ross the tra
e S. In Figure 7.6 we

report the numeri
al solution obtained with the XFEM on a non
onforming grid with

δmax = 0.1, while in Figure 4.12 error norms for the numeri
al solution are shown both

with the XFEM and with standard �nite elements on 
onforming grids. The 
urves are

perfe
tly overlapped and 
onvergen
e orders reported in the �gure are optimal, thus

proving good approximation 
apabilities for the 
hosen enri
hments.

4.5.2 DFN problems

We now show some numeri
al results on DFN-like 
on�gurations obtained with the

PDE 
onstrained optimization method des
ribed in Se
tion 4.4. Here we fo
us on the

main aspe
ts related to the use of extended �nite elements, referring to [5, 6℄ for a

detailed analysis of the behaviour of the optimization algorithm.

The �rst example of this se
tion, problem DFN3, is a simple network 
omposed

of three fra
tures as shown in Figure 4.13. Here Ω = F1 ∪ F2 ∪ F3; S1 = F1 ∩ F2;

S2 = F1 ∩F3. We solve −∆H = 0 in Ω \ (S1 ∪S2), with Diri
helet boundary 
onditions

H|ΓD,1
= 1 on ΓD,1, H|ΓD,2

= 1.5 on ΓD,2, H|ΓD,3
= −0.5 on ΓD,3 and homogeneous

Neumann boundary 
onditions on the other sides (see Figure 4.13). This 
on�guration

reprodu
es a 
riti
al situation for the fra
ture F1, in whi
h two parallel tra
es very
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on�guration and solution (
olorbar). Right:
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ture


lose ea
h other are present. A 
onforming mesh would be 
onstrained by the presen
e

of these tra
es, with a large number of elements to be pla
ed between the tra
es in

order to preserve quality. The XFEM do not require a 
onforming mesh, but in this


ase the set of lo
al enri
hment fun
tions introdu
ed for the two tra
es 
ould be not

linearly independent, as detailed in Subse
tion 4.3.3. Applying the des
ribed strategy

for redundant basis fun
tions removal with a toleran
e of 10−14
, a new matrix with

a 
ondition number of 104 is extra
ted from the formerly singular sti�ness matrix of

the proposed problem, removing four redundant DOFs. The quality of the solution is

not a�e
ted as shown by Figure 4.14, where the solution on F1 is plotted. It 
an be

noti
ed that the numeri
al approximation reprodu
es the expe
ted behaviour for the

exa
t solution that is pie
ewise linear and displays jumps of derivatives in the dire
tion

normal to the tra
es. Sin
e the solution belongs to the dis
rete subspa
e spanned by

the FEM and XFEM basis fun
tions, the exa
t solution is 
orre
tly reprodu
ed up to

ma
hine error.

We �nally present the numeri
al results on a realisti
 DFN 
on�guration 
omposed

of 40 fra
tures and 96 tra
es (problem DFN40). The fra
tures have an average size of

4× 103 m2
. The problem is solved with several non-
onforming meshes with maximum

element sizes ranging from 2 to 25m2
. As in problem DFN3, a simple Lapla
e problem for

the hydrauli
 head is 
onsidered, with for
ing term equal to zero and 
onstant Diri
helet

boundary 
onditions applied to one edge of a �sour
e� fra
ture (H = 100) and of a �sink�

fra
ture (H = 0). All other edges are treated as insulated, imposing homogeneous

Neumann boundary 
onditions. Figure 4.15, left, shows the geometri
al 
on�guration
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e history for global 
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Figure 4.17: Problem DFN40. Convergen
e history for global 
ontinuity error and �ux

mismat
h. Left: XFEM; right: FEM. Grids on tra
es twi
e as �ne as the previous 
ase

of the DFN along with a shading of the obtained solution on the 7m2
elements mesh,

while in Figure 4.15, right, we plot isolines for hydrauli
 head 
omputed on a sele
ted

fra
ture with the same mesh. Dashed lines in this �gure represent tra
es on the fra
ture.

It 
an be noti
ed that the isolines have sudden variations a
ross the tra
es, showing that

dis
ontinuities in gradients are 
orre
tly reprodu
ed by the XFEM.

Finally, we analyze on problem DFN40 the numeri
al 
onservation properties of

the method, using both enri
hed and non-enri
hed basis. Indeed, we re
all that our

approa
h does not exa
tly impose mat
hing 
onditions (4.2) and (4.3), but it minimizes

the sum of global 
ontinuity error and �ux mismat
h. The label FEM in the table and

�gures whi
h follow, refers to results obtained with the optimization approa
h on non-
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Table 4.1: Dis
ontinuity errors and �ux mismat
hes

XFEM FEM

40fra
t

Grid ∆cont ∆flux ∆cont ∆flux

25 1.375e-04 1.623e-04 1.033e-04 1.154e-04

23 1.738e-04 1.979e-04 1.077e-04 1.151e-04

22 1.520e-04 1.698e-04 1.116e-04 1.101e-04

20 1.128e-04 1.577e-04 1.016e-04 1.024e-04

18 1.081e-04 1.616e-04 9.477e-05 1.041e-04

15 1.117e-04 1.425e-04 1.029e-04 1.053e-04

7 6.675e-05 1.041e-04 7.787e-05 8.834e-05

5 6.362e-05 7.359e-05 8.032e-05 6.766e-05

2 4.274e-05 4.055e-05 4.253e-05 4.580e-05

40fra
t2x

Grid ∆cont ∆flux ∆cont ∆flux

25 3.251e-05 1.433e-04 4.053e-05 3.582e-05

23 3.109e-05 1.373e-04 3.997e-05 3.09e-05

22 2.712e-05 1.152e-04 4.031e-05 2.82e-05

20 3.140e-05 1.005e-04 3.665e-05 2.776e-05

18 2.936e-05 1.039e-04 3.600e-05 2.521e-05

15 2.439e-05 8.868e-05 3.263e-05 2.956e-05

7 2.432e-05 5.973e-05 2.747e-05 1.945e-05

5 1.304e-05 3.202e-05 2.316e-05 1.579e-05

2 8.095e-06 1.624e-05 1.842e-05 1.110e-05

40fra
t3x

Grid ∆cont ∆flux ∆cont ∆flux

25 1.946e-05 1.329e-04 3.503e-05 1.776e-05

23 1.969e-05 1.262e-04 3.326e-05 1.635e-05

22 1.696e-05 1.121e-04 3.408e-05 1.736e-05

20 1.779e-05 1.012e-04 3.137e-05 1.571e-05

18 1.764e-05 1.016e-04 3.099e-05 1.453e-05

15 1.719e-05 7.957e-05 2.772e-05 1.624e-05

7 1.522e-05 5.072e-05 2.521e-05 1.301e-05

5 9.098e-06 2.631e-05 2.099e-05 8.104e-06

2 6.608e-06 1.594e-05 1.613e-05 6.373e-06
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Figure 4.18: Problem DFN40. Convergen
e history for global 
ontinuity error and �ux

mismat
h. Left: XFEM; right: FEM. Grids on tra
es three times as �ne as the previous


ase


onforming meshes without enri
hment fun
tions. In Table 4.1 we report values of the

total 
ontinuity error and the total �ux mismat
h relative to total tra
e length, de�ned

respe
tively as:

∆cont =

√∑M
m=1 ‖hi|Sm

− hj |Sm
‖2

∑M
m=1 |Sm|

,

∆flux =

√∑M
m=1 ‖umi + umj − α(hi |Sm

+ hj |Sm
)‖2

∑M
m=1 |Sm|

.

The table referes to all the non-
onforming meshes used on fra
tures both using enri
h-

ment fun
tions (XFEM label) and without enri
hments (FEM label), and to three di�er-

ent grids used on tra
es obtained doubling (label 40fra
t2x) and tripling (label 40fra
t3x)

the initial number of DOFs for the 
ontrol variables on the tra
es. Figures 4.16-4.18

show, under fra
ture mesh re�nement, the 
onvergen
e behaviour of global 
ontinuity

error and �ux mismat
h. The �gures also show the behaviour of

√
J , again relative to

total tra
e length. Abs
issas 
orrespond to the square root of the maximum element

sizes. Despite on 
oarser grid the starting mismat
h errors are larger for XFEM, it


an be noted that for XFEM vanishing rates (the slopes reported in the legend of the

�gures) are 
lose to 1, whereas for FEM it is 
loser to 0.5. Con
erning re�nement of

tra
e grids, it 
an be seen that, as expe
ted, �ux mismat
h bene�ts from re�nement to

a larger extent with respe
t to 
ontinuity error.
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4.6 Con
lusions

The use of the XFEM for DFN simulations is very promising for the possibility of

using non-
onforming meshes on the fra
tures but a number of issues are to be 
onsidered

in order to ensure an e�e
tive implementation. In the present work we address some of

them.

The enri
hment fun
tions suggested have a very simple stru
ture and represent a

unifying approa
h to handle open, 
losed and interse
ting interfa
es, thus simplifying

implementation, limiting the 
omputational 
ost for the enri
hment part of the approx-

imation and still ensuring good a

ura
y for DFN simulation purposes.

A thorough des
ription of the implementation strategy suggested in [9℄ to restore

optimal 
onvergen
e rates is provided in the 
ase of interest, and numerous numeri
al

examples are reported showing the expe
ted 
onvergen
e performan
es.

The major sour
e of ill-
onditioning in DFN simulations is identi�ed in the possi-

bility of having linear dependen
e or almost linear dependen
e in the enri
hment basis

fun
tion spa
e, and a strategy to over
ome this problem is identi�ed and su

essfully

implemented.

Finally, the optimization approa
h results to be very e�e
tive in dealing with very


omplex DFNs.

4.7 Appendix

In this se
tion we give some details 
on
erning the dis
rete form (7.20) of the opti-

mization problem (7.7).

In order to simplify the dis
ussion, let us 
onsider the following di�erent numbering

for the 
ontrol fun
tions uSi , indu
ed by the tra
e numbering. Being S = Sm a given

tra
e, with ISm = {i, j} and assuming i < j, we denote by u−m and by u+m the 
ontrol

fun
tions related to the m-th tra
e and 
orresponding to fra
tures Fi and Fj , respe
-

tively. Let us introdu
e basis fun
tions ψ−
m,k, k = 1, ..., N−

m and ψ+
m,k, k = 1, ..., N+

m for

the spa
e of the 
ontrol fun
tion u−m and u+m, respe
tively. Note that here we allow to

use di�erent spa
es on the two �sides� of ea
h tra
e. Then we have, for m = 1, ...,M ,

⋆ = −,+, u⋆m =
∑N⋆

m

k=1 u
⋆
m,kψ

⋆
m,k. Setting N

T =
∑M

m=1(N
−
m +N+

m), we de�ne u ∈ R
NT


on
atenating u−1 , u
+
1 , . . . , u

−
M , u

+
M .

Let us 
onsider the fun
tional J , whose expression is given in Se
tion 7.2 by equation
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(4.6). Denoting by φi,k the k-th basis fun
tion of the XFEM approximation of hi on

fra
ture Fi, the dis
rete form of the fun
tional is

J =
1

2

I∑

i=1

∑

S∈Si



∫

S

(

Ni∑

k=1

hi,kφi,k|S −
Nj∑

k=1

hj,kφj,k|S)
2 dγ+ (4.18)

∫

S

(

N−
m∑

k=1

u−m,kψ
−
m,k +

N+
m∑

k=1

u+m,kψ
+
m,k − α

Ni∑

k=1

hi,kφi,k|S − α

Nj∑

k=1

hj,kφj,k|S)
2 dγ


 .

The �rst integral in (7.18) after straightforward manipulation rewrites as

IS,1ij = hTi C
S
i,ihi + hTj C

S
j,jhj − 2hTi C

S
i,jhj

where CS
p,q, for either p = q or p, q ∈ IS for some tra
e S, is the matrix de�ned by

(CS
p,q)k,ℓ =

∫

S

ϕp,k|S
ϕq,ℓ|S

dγ.

Note that sin
e (CS
ij)

T = CS
ji, we 
an also write IS,1ij = hTi C

S
i,ihi+h

T
j C

S
j,jhj −hTi CS

i,jhj −
hTj C

S
j,ihi.

The se
ond integral after some straightforward algebrai
 manipulation rewrites

IS,2ij =

N−
m∑

k=1

u−m,k

2
∫

S

ψ−
m,k

2
dγ + 2

N−
m∑

k=1

N−
m∑

ℓ=1

u−m,ku
−
m,ℓ

∫

S

ψ−
m,kψ

−
m,ℓ dγ

+

N+
m∑

k=1

u+m,k

2
∫

S

ψ+
m,k

2
dγ + 2

N+
m∑

k=1

N+
m∑

ℓ=1

u+m,ku
+
m,ℓ

∫

S

ψ+
m,kψ

+
m,ℓ dγ

+2

N−
m∑

k=1

N+
m∑

ℓ=1

u−m,ku
+
m,ℓ

∫

S

ψ−
m,kψ

+
m,ℓ dγ + α2

Ni∑

k=1

h2i,k

∫

S

φi,k
2
|S
dγ

+2α2
Ni∑

k,ℓ=1

hi,khi,ℓ

∫

S

φi,k|Sφi,ℓ|S dγ + α2

Nj∑

k=1

h2j,k

∫

S

φj,k
2
|S
dγ

+2α2

Nj∑

k,ℓ=1

hj,khj,ℓ

∫

S

φj,k|Sφj,ℓ|S dγ + 2α2
Ni∑

k=1

Nj∑

ℓ=1

hi,khj,ℓ

∫

S

φi,k |Sφj,ℓ|S dγ

−2α

N−
m∑

k=1

Ni∑

ℓ=1

u−m,khi,ℓ

∫
ψ−
m,kφi,ℓ|S dγ − 2α

N−
m∑

k=1

Nj∑

ℓ=1

u−m,khj,ℓ

∫
ψ−
m,kφj,ℓ|S dγ

−2α

N+
m∑

k=1

Ni∑

ℓ=1

u+m,khi,ℓ

∫
ψ+
m,kφi,ℓ|S dγ − 2α

N+
m∑

k=1

Nj∑

ℓ=1

u+m,khj,ℓ

∫
ψ+
m,kφj,ℓ|S dγ.
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Let us introdu
e the following matri
es: for m = 1, ...,M and ⋆ = −,+ de�ne C⋆
m ∈

R
N⋆

m×N⋆
m
, C±

m ∈ R
N−

m×N+
m
and Cm as:

(C⋆
m)kℓ=

∫

Sm

ψ⋆
m,kψ

⋆
m,ℓ dγ, (C±

m)kℓ=

∫

Sm

ψ−
m,kψ

+
m,ℓ dγ, Cm=

(
C−
m C±

m

(C±
m)T C+

m

)
.

If fra
tures Fi and Fj share tra
e Sm, we de�ne matri
es B−
i,m ∈ R

Ni×N−
m
and B+

i,m ∈
R
Ni×N+

m
de�ned as

(B−
i,m)kℓ =

∫

Sm

ψ−
m,kφi,ℓ|Sm

dγ, (B+
i,m)kℓ =

∫

Sm

ψ+
m,kφi,ℓ|Sm

dγ.

An analogous de�nition holds for matri
es B−
j,m and B+

j,m. Integral I
S,2
ij is then written

in 
ompa
t form as

IS,2ij = (u−m,k)
T C−

m u
−
m,k + (u+m,k)

T C+
m u

+
m,k + 2(u−m,k)

T C±
m u

+
m,k +

α2hTi C
S
i,ihi + α2hTj C

S
j,jhj + 2α2hTi C

S
i,jhj − α(hTi B

−
i,mu

−
m,k)

−α(hTi B+
i,mu

+
m,k)− α(hTj B

−
j,mu

−
m,k)− α(hTj B

+
j,mu

+
m,k)

−α((u−m,k)
T (B−

i,m)Thi)− α((u+m,k)
T (B+

i,m)Thi)

−α((u−m,k)
T (B−

j,m)Thj)− α((u+m,k)
T (B+

j,m)Thj).

We have therefore

J(u) =
1

2

I∑

i=1

∑

S∈Si

(1 + α2)hTi C
S
i,ihi + (1 + α2)hTj C

S
j,jhj − 2(1 − α2)hTi C

S
i,jhj

+(u−m)T C−
m u

−
m + (u+m)T C+

m u
+
m + 2(u−m)T C±

m u
+
m − α(hTi B

+
i,mu

+
m)

−α(hTi B−
i,mu

−
m)− α(hTj B

−
j,mu

−
m)− α(hTj B

+
j,mu

+
m)− α((u−m)T (B−

i,m)Thi)

−α((u+m)T (B+
i,m)Thi)− α((u−m)T (B−

j,m)
Thj)− α((u+m)T (B+

j,m)Thj).

We now allow for a more 
ompa
t form of J(u) by assembling previous matri
es as

follows. We set

Bi,m = (B−
i,m B+

i,m) ∈ R
Ni×(N−

m+N+
m), um = (u−m, u

+
m).

For ea
h �xed i = 1, ..., I, matri
es Bi,m, with m su
h that Sm ∈ Si, are then grouped

row-wise to form the matrix Bi ∈ R
Ni×NSi

, with NSi
=
∑

Sm∈Si
(N−

m +N+
m), whi
h a
ts

on a 
olumn ve
tor ui obtained appending the blo
ks um in the same order used for
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Bi,m, as the a
tion of a suitable operator Ri : R
NT 7→ R

NSi
su
h that ui = Riu. Also,

let B ∈ R
NF×NT

be de�ned by

B =




B1R1

.

.

.

BIRI


 .

Let now Gh ∈ R
NF×NF

be de�ned blo
kwise as follows: for i = 1, ..., I we set

Gh
ii = (1 + α2)Ci,i, Gh

ij = (α2 − 1)CS
i,j if j ∈ Ji (0 elsewhere) ,

where, �xed Fi, Ji 
olle
ts the indi
es j su
h that |F̄j ∩ F̄i| > 0. Sin
e, obviously, j ∈ Ji

if and only if i ∈ Jj , and due to the straightforward property (Gh
ij)

T = Gh
ji, we have

that Gh
is a symmetri
 matrix. Next, let us de�ne the matrix Gu ∈ R

NT×NT
blo
kwise

as Gu = diag(Cm,m = 1, ...,M) and �nally set

G =

(
Gh −αB

−αBT Gu

)
.

Due to previous observations, matrix G is straightforwardly symmetri
. Furthermore, it

is positive semide�nite by 
onstru
tion. With these de�nitions at hand, the fun
tional

J is rewritten

J =
1

2
wTGw, w = (h, u)

being h obtained appending ve
tors hi, i = 1, ..., I.

Constraints (4.5) are written as a unique linear system as follows. For all i = 1, ..., I

de�ne the matrix Ai ∈ R
Ni×Ni

as

(Ai)kℓ =

∫

Fi

∇ϕi,k∇ϕi,ℓ dFi + α
∑

S∈Si

∫

S

φi,k |Sφi,ℓ|S dγ,

For ea
h fra
ture Fi, we set N
i
Si

=
∑

Sm∈Si
N⋆

m as the number of DOFs on tra
es of Fi

on the Fi �side�, and we de�ne matri
es Bi ∈ R
Ni×NSi

grouping row-wise matri
es B⋆
i,m,

with m spanning tra
es in Si, and setting for ea
h m either ⋆ = + or ⋆ = − a

ording

to whi
h one of the two �sides� of tra
e Sm is on Fi.

Matri
es Bi a
t on a 
olumn ve
tor ui 
ontaining all the N i
Si


ontrol DOFs 
orre-

sponding to the tra
es of Fi, obtained 
olle
ting ve
tors uSi , for S ∈ Si, with the same

ordering introdu
ed for the tra
es on Fi and used in the de�nition of Bi.
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The algebrai
 formulation of the primal equations (4.5) is then

Aihi = q̃i + Bi ui, i = 1, ..., I, (4.19)

where q̃i a

ounts for the term qi in (4.5) and for the boundary 
onditions on the fra
ture

Fi.

We set A = diag(Ai, i = 1, ..., I) ∈ R
NF×NF

and de�ne B ∈ R
NF×NT

as

B =




B1R
′
1

.

.

.

BI R
′
I




where the operator R′
i now extra
ts from u only subve
tors u⋆m 
orresponding to 
ontrol

fun
tion on the �
orre
t side� of the tra
e. Setting C = (A − B) and q̃ = (q̃1, . . . , q̃I),


onstraints (4.19) are then written Cw = q̃. The overall problem is then reformulated

as follows:

min
w

1

2
wTGw, s.t. Cw = q̃. (4.20)
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The material 
olle
ted in the present Part of the Thesis 
onsists of a large number of

very re
ent simulations on 
omplex DFN 
on�gurations, and 
onsequently the analysis of

these numeri
al results is not su�
iently detailed and analysed in depth yet. We believe,

however that the material presented 
an be of great help in showing the performan
es of

the proposed method. Also, through the analysis of these results many implementation

details 
an be highlighted and dis
ussed.





Chapter 5

On the resolution of 
omplex DFN


on�gurations

This 
hapter is devoted to the presentation of a large number of numeri
al results

obtained with 
omplex DFN 
on�gurations, 
olle
ting and des
ribing in a systemati


way the performan
es of di�erent implementation 
hoi
es for the optimization algorithm

des
ribed in Se
tion 4.4. Further we show a preliminary investigation on the s
alability

properties of the proposed method.

On a mesh non 
onforming to the tra
es, the use of the enri
hment fun
tions of the

XFEM 
an give an a

urate des
ription of the solution around the tra
es, as thoroughly

dis
ussed in the previous 
hapters. Standard �nite elements 
an also be used on the same

non
onforming 
omputational mesh, with the advantage of a slightly redu
ed number

of unknowns (the degrees of freedom related to the enri
hment fun
tions) but at the

expenses of a less a

urate representation of the result. This possibility was already

dis
ussed in Chapter 2 and some results are also shown in Chapter 3. Here a deeper

analysis is presented and numeri
al results on realisti
 DFN 
on�gurations are provided

and dis
ussed with both these approa
hes. The des
ription of a the method with a

di�erent dis
retization 
hoi
e involving the new Virtual Element Method is deferred to

Chapter 7.

The dis
retization of the 
ontrol variables on the tra
es 
an be performed 
ompletely

independently from the dis
retization on the fra
tures. The dis
rete fun
tional spa
e for

the 
ontrol variables 
hosen is the spa
e of dis
ontinuous pie
ewise linear polynomials,

and two di�erent node dispositions are envisaged. Let us 
onsider a generi
 tra
e S =

141
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F̄i ∩ F̄j in a DFN, we 
an have:

• a disposition of nodes on S for uSi and uSj given by the interse
tion points between

S and the element edges of the non
onforming meshes on Fi and Fj respe
tively;

this node 
on�guration is 
alled indu
ed, labelled IN;

• or simply equally spa
ed nodes on S for uSi and uSj , 
ompletely independent from

the dis
retization of the state-variables on the fra
tures; this strategy is termed

equally-spa
ed, label EN.

Results are des
ribed with both these 
on�guration of nodes.

The quality of the obtained solutions is evaluated in terms of three error indi
ators,

∆

ont

, ∆
�ux

and ∆
sour
e-sink

, as detailed in the following. The two �rst indi
ators

measure how well the numeri
al solution satis�es the 
ontinuity and �ux balan
e 
ondi-

tions a
ross the tra
es, while the third indi
ator evaluates the global mismat
h between

the �ux inje
ted in the network of fra
tures and the total �ux that leaves the network

through the non insulated fra
ture edges.

After a des
ription of the various DFN 
on�gurations 
onsidered, some results on the


onditioning of the problem in relation to key parameters are presented in Se
tion 5.2.

Numeri
al simulations are then shown and dis
ussed in Se
tion 5.3 and in Se
tion 5.4

where DFNs with non-uniform fra
ture transmissivity are 
onsidered and some 
on
lu-

sions on 
onvergen
e properties of the method are also proposed. Se
tion 5.5 ends this

Chapter reporting some results on a preliminary investigation on the s
alability of the

proposed approa
h.

5.1 Problems des
ription

The panel of problems 
onsidered is 
omposed of six DFN 
on�gurations of in
reasing


omplexity, as summarized in Table 5.1. In the networks 
onsidered, fra
tures have

dimensions ranging between 2.8 × 103 m

2
and 1.2 × 104 m

2
and tra
es interse
ting in

fra
tures form angles of about 35◦, 45◦, 55◦, 70◦ or 90◦, while the minimum distan
e

between non interse
ting tra
es varies between 0.5 m and 1.1×102 m. Tra
e length spans

between 4.2×10−2
m to 2.3×102 m. All the DFNs share the same two boundary fra
tures

F1 and F2, while all the other fra
tures might be di�erent from a system to another.

Homogeneous Diri
helet boundary 
ondition is pres
ribed on one edge of fra
ture F1
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Table 5.1: DFN 
on�gurations

Label N◦
of fra
tures N◦

of tra
es

11F 11 13

27F 27 57

36F 36 65

55F 55 120

68F 68 142

120F 120 256

(sink fra
ture), while a 
onstant value Diri
helet 
ondition of 100m is pres
ribed on one

edge of F2 (sour
e fra
ture) for all systems. All other fra
ture edges are insulated.

Numeri
al simulations are performed with �rst order �nite elements and triangular

meshes for the state-variable h on the fra
tures and results are reported using both the

XFEM on non
onforming grids and with the standard FEM on the same non
onforming

meshes. The dis
rete subspa
e of the 
ontrol variable u is 
hosen as the spa
e of dis-


ontinuous pie
e-wise linear polynomials with indu
ed or equally-spa
ed nodes. When

equally-spa
ed nodes are used the number of nodes 
an be arbitrarily 
hosen. We de�ne

a referen
e number of nodes for the equally-spa
ed 
on�guration as a number of nodes


lose to the number of nodes of the dis
retization indu
ed and a parameter nU is in-

trodu
ed to express the number of equally-spa
ed nodes in terms of the ratio with the

referen
e value.

The 
omputational mesh is identi�ed by means of the maximum element area, and

labelled in the �gures with this value without unit of measure (m

2
). Meshes with

maximum element area ranging between 120m2
and 7m2

are 
onsidered.

5.2 Study of system 
onditioning

In Se
tion 7.2 we have formally written the un
onstrained formulation of the DFN

problem with the proposed approa
h, and an expli
it formulation of the un
onstrained

fun
tional gradient, (7.25):

∇Ĵ(u) = (BT A−TGhA−1 B+Gu − α(BT A−TB +BTA−1 B))u+ (5.1)

(BT A−TGh − αBT )A−1q

= Ĝu+ q̂.
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Figure 5.1: Condition number of the 27F

DFN system matrix for α ranging from

0.05 to 100. Indu
ed nodes
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Figure 5.2: Stagnation fun
tional values of

the 27F DFN for α ranging from 0.05 to

100. Indu
ed nodes

For small DFN 
on�gurations it is possible to resort to this formulation in order

to evaluate the e�e
t of some implementation 
hoi
es on the 
onditioning of the dis-


rete problem, analysing the 
onditioning of matrix Ĝ. The DFN 27F, 36F and 68F

are 
onsidered in this analysis, with indu
ed or equally-spa
ed nodes for the 
ontrol

variables.

Figures 5.1-5.6 show the behaviour of the 
ondition number of Ĝ and of fun
tional

minimum in logarithmi
 s
ale for di�erent values of the parameter α appearing in the

de�nition of the 
ontrol variable U given in Chapter 3, and of mesh element maximum

area. In these �gures the XFEM is 
hosen for the des
ription of the solution and indu
ed

nodes are used on the tra
es. Looking at Figures 5.1, 5.3 and 5.5 we 
an see that, for

ea
h 
on�guration and mesh there is an optimal value of α for good 
onditioning. This

optimal value is 
ontained in a range of values of few units for all the 
ases 
onsidered,

with a weak dependen
e from the size of the mesh or from the 
omplexity of the problem.

Con
erning fun
tional values, Figures 5.2, 5.4 and 5.6, show that lower minimum values

are rea
hed redu
ing α. However over the entire range of α values 
onsidered, the

variations of fun
tional is quite small for all the problems and grids. A possible optimal


hoi
e appears to be α = 1, sin
e this value gives low 
ondition numbers and fun
tional

minimum and has the desirable property of redu
ing matrix Gh
blo
k diagonal, as follows

immediately from the de�nition given in Se
tion 4.7. This value is used to obtain all

the results presented in this Chapter.

Figures 5.7-5.12 show the 
ondition number and fun
tional minimum in fun
tion
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Figure 5.3: Condition number of the

36fra
t DFN system matrix for α ranging

from 0.05 to 100. Indu
ed nodes
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Figure 5.4: Stagnation fun
tional values of

the 36fra
t DFN for α ranging from 0.05

to 100. Indu
ed nodes
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Figure 5.5: Condition number of the 68F

DFN system matrix for α ranging from

0.05 to 100. Indu
ed nodes
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Figure 5.10: Stagnation fun
tional values of the 36F DFN for α ranging from 0.05 to 100

and nU from 0.5 to 3.5. Equally-spa
ed nodes
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Figure 5.11: Condition number of the

68F DFN system matrix for α ranging

from 0.05 to 100 and nU from 0.5 to 3.5.
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of α and of the number of DOFs for the 
ontrol variables, expressed in terms of the

parameter nU . In this 
ase equally-spa
ed nodes are pla
ed on the tra
es and the XFEM

is used for the dis
retization of h. Looking at Figures 5.7, 5.9 and 5.11 we 
an see that

in
reasing the number of nodes for the 
ontrol variable has a detrimental impa
t on the


onditioning of the system, but with a moderate trend, and this in independent of the

value of α and of problem 
omplexity or mesh size. At the same time higher values of

nU give lower fun
tional minimum for all the 
on�gurations examined, as Figures 5.8,

5.10 and 5.12 show. For these reasons in
reasing nU is a viable option for improving the

quality of the solution, 
learly at the 
ost of an in
rease in the number of unknowns.

The e�e
t of variations of α is similar to the previous 
ase. More in general signi�
ant

di�eren
es are not observed between equally-spa
ed and indu
ed node strategies.

Con
erning the e�e
t of mesh size on the 
onditioning of the system, it is possible to


on
lude that redu
ing mesh size has the e�e
t of an in
rease of the 
ondition number

of the problem, as expe
ted. At the same time fun
tional minimum 
an be redu
ed by

mesh re�nement.

DFNs with a larger number of fra
tures are expe
ted to have a worse 
onditioning

that simpler 
on�gurations as 
an be seen 
omparing, for example, Figure 5.9 with

Figure 5.11, but this is not true in general, as 
an be noti
ed 
omparing Figure 5.1

with Figure 5.3 or Figure 5.7 with Figure 5.9. The 27F DFN 
on�guration has a higher

tra
e-to-fra
ture ratio than the 36F DFN, as 
an be seen looking at Table 5.1, su
h that

an in�uen
e of this parameter on system 
onditioning 
ould be envisaged. The in�uen
e

of tra
e-to-fra
ture ratio to problem 
onditioning has not been investigated and 
ould

be the obje
t of a deeper analysis.

Some results on system 
onditioning when standard �nite elements are used for the

dis
retization of the solution on the fra
tures are reported in Table 5.2 for the 36F DFN

with equally-spa
ed nodes, 
ompared to the results obtained with the XFEM on the

same grid with maximum element area of 30m2
. The two approa
hes have a similar

impa
t on the 
onditioning of the dis
rete problem.
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Table 5.2: Condition numbers for the DFN 36F with XFEM and FEM for di�erent values

of nU . Equally-spa
ed nodes, Area=30.

nU XFEM FEM

0.5 1.75973e+06 2.64085e+06

1.0 3.22126e+06 3.66881e+06

1.5 4.50964e+06 3.34477e+06

2.0 5.24292e+06 3.96676e+06

5.3 Numeri
al results with 
onstant fra
ture transmissivity

This Se
tion shows some numeri
al results on the DFN 
on�gurations named 27F,

36F, 68F and 120F in Table 5.1 with an uniform distribution of the fra
ture trans-

missivity K = 1 a
ross the fra
tures. Three di�erent mesh sizes are 
onsidered, with

maximum element area of 120m2
, 30m2

and 7m2
.

Table 5.3: Results for DFNs 27F, 36F, 68F and 120F with nodes IN and EN. XFEM and

standard FEM 
ompared.

XFEM FEM

Grid Node ∆

ont

∆
�ux

Iter ∆

ont

∆
�ux

Iter

27 fra
tures EN

120 725 0.0009953 0.0007214 1317 0.001516 0.001224 2111

30 1201 0.0008213 0.0007262 960 0.001152 0.0007263 1390

7 2207 0.0004234 0.0004367 779 0.0006694 0.0005569 1084

36 fra
tures IN

120 744 0.001363 0.001596 1174 0.002536 0.00174 1749

30 1292 0.001344 0.001109 1118 0.00156 0.001239 1522

7 2474 0.0007618 0.0005185 1353 0.000947 0.0005337 1708

36 fra
tures EN

120 833 0.00139 0.001395 915 0.002395 0.001721 1396

30 1390 0.001169 0.001066 810 0.001628 0.001295 1096

7 2567 0.0009253 0.0006411 771 0.001015 0.0005989 934

68 fra
tures EN

120 1887 0.0006116 0.0004216 2238 0.0008863 0.0005681 4271

30 3179 0.0004667 0.0003912 1906 0.0006633 0.0003817 2501

7 5906 0.0002358 0.0002511 1605 0.0003713 0.0003195 2117

120 fra
tures IN

120 2676 0.000561 0.000557 4737 0.0006866 0.0004544 18177

30 4616 0.0003636 0.0002812 3075 0.0004421 0.0002824 7137

7 8793 0.0001875 0.0001517 4639 0.0002496 0.0001703 6075

120 fra
tures EN

120 3016 0.0004186 0.0003841 4042 0.0005124 0.0004198 12928

30 4993 0.0003235 0.0002657 3235 0.0004044 0.0003239 5917

7 9169 0.0001919 0.0001912 2892 0.0002522 0.0002195 3558

Table 5.3 reports the results obtained for all the 
on�gurations 
onsidered, with both

the XFEM and standard FE for the des
ription of the solution h. Results for the 27F
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and 68F DFNs are shown using equally-spa
ed nodes on the tra
es, while the 36F and

120F DFNs are solved with both equally-spa
ed and indu
ed nodes.

The quality of the results is evaluated in terms of the global 
ontinuity error and the

global �ux mismat
h error relative to tra
e length, de�ned respe
tively in Se
tion 4.5

as:

∆cont =

√∑M
m=1 ‖hi|Sm

− hj |Sm
‖2

∑M
m=1 |Sm|

,

∆flux =

√∑M
m=1 ‖umi + umj − α(hi |Sm

+ hj |Sm
)‖2

∑M
m=1 |Sm|

.

In Table 5.3 also the number of nodes for the 
ontrol variable (
olumn Node) and the

number of iterations required to obtain stagnation of the fun
tional at its minimum

value (
olumn Iter) are reported for ea
h problem. The number of iterations should

be interpreted as the maximum number of iterations for the problem and grid 
onsid-

ered, sin
e the use of a stopping 
riterion 
ould 
onsiderably de
rease the iterations

required avoiding a large number of iterations 
lose to fun
tional minimum that do not

substantially a�e
t the quality of the solution, as dis
ussed in the next Se
tion.

Looking at the values In Table 5.3 
on
erning error indi
ators, we 
an see that the

global 
ontinuity and �ux mismat
h errors are 
omparable between XFEM and FEM

dis
retization, the former being in general slightly more a

urate than the latter, while a


onsiderably lower number of iterations is required with the XFEM based dis
retization

to rea
h fun
tional minimum.

Figures 5.13-5.14 display the 
onvergen
e of the global 
ontinuity and �ux mismat
h

errors relative to tra
e length against mesh size, indi
ated by the parameter δ repre-

senting the square root of grid maximum element area. Results are plotted for the DFN


on�gurations 36F and 120F. Mesh re�nement 
an redu
e the global 
ontinuity and �ux

mismat
h errors, and an higher trend is observed with indu
ed nodes on the tra
es than

with equally-spa
ed nodes. Sin
e the number of nodes for the tra
es is similar for all

grids for indu
ed and equally-spa
ed nodes, the motivation of this di�eren
e is to be

found in the disposition of nodes, and the indu
ed disposition 
onforms better to the

stru
ture of the dis
rete solution h than the equally-spa
ed disposition. The redu
tion

trend is in general 
omparable between XFEM and FEM. Superior performan
es of the

XFEM on very 
oarse grids 
an also be noti
ed. This is expe
ted, sin
e the XFEM dis-


retization relies on spe
ial enri
hment fun
tions to des
ribe solution behaviour a
ross
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Figure 5.13: Continuity and �ux mismat
h errors relative to tra
e length against grid

re�nement for the DFN 36F. Indu
ed (left) and equally-spa
ed (right) nodes.
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Figure 5.14: Continuity and �ux mismat
h errors relative to tra
e length against grid

re�nement for the DFN 120F. Indu
ed (left) and equally-spa
ed (right) nodes.

the tra
es, and this reprodu
tion 
apabilities are less a�e
ted from grid re�nement than

the non
onforming FEM dis
retization. In fa
t standard �nite elements on non
onform-

ing grids would 
orre
tly reprodu
e the jump in derivatives of the solution a
ross the

tra
es only on an in�nitely re�ned grid.

The solution obtained for the 36F network with the XFEM dis
retization (Area=30m2
)

and indu
ed nodes is shown in Figure 5.15, where iso-h lines are also plotted to show

the distortion of gradient a
ross the tra
es. Figure 5.16 instead shows a sour
e fra
ture

view of the solution on the 120F DFN with FEM (Area=30m2
) and indu
ed nodes on

the tra
es, and Figure 5.17 reports a detail of the 
omputational mesh, highlighting the

non-
onformity of mesh elements to fra
ture interse
tions.



152 Chapter 5

Figure 5.15: Solution for DFN 36F with the XFEM and indu
ed nodes on the tra
es.

Area=30.
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Figure 5.16: Solution for DFN 120F with the FEM and indu
ed nodes on the tra
es.

Area=30.
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Figure 5.17: Detail of the 
omputational grid with Area=30 for the DFN 120F.

As envisaged in Se
tion 5.2 using equally-spa
ed nodes on the tra
es, in
reasing the

number nodes for the 
ontrol variables has the potential of redu
ing fun
tional minimum

for the same grid for the state variable h, with a 
orresponding redu
tion of the global


ontinuity and �ux mismat
h errors. The results of this analysis are reported in Table 5.4

for the 27F, 36F, 68F and 120F DFN 
on�gurations with both XFEM and FEM based

dis
retizations. It is possible to observe that in
reasing nU both the global 
ontinuity

and �ux mismat
h error are redu
ed with a small in
rease in the number of iterations

required for fun
tional stagnation.

When dealing with 
omplex networks of fra
tures, another error indi
ator that 
an

be 
onsidered to evaluate solution quality is the mismat
h between the �ux inje
ted in

the system by the sour
e fra
ture and the total �ux re
eived from the network by the

sink fra
ture. To this end a new error indi
ator is introdu
ed, de�ned as:

∆
sour
e-sink

=
∑

k∈FΓ



∑

m∈Jk

∫

Sm

uSm

k − αhk |Sm


 /

∑

k∈FΓ

∑

m∈Jk

|Sm|

where FΓ represents the set of fra
ture indexes 
arrying boundary 
onditions, and Jk


olle
ts the indexes to the tra
es on Fk. Numeri
al eviden
e shows that in order to


ontrol the sour
e-sink �ux mismat
h it is bene�
ial to introdu
e penalty fa
tors in
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Figure 5.18: 36F DFN: ∆

ont

and ∆
�ux

for di�erent penalty fa
tors with the

XFEM. Indu
ed nodes
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Figure 5.19: 36F DFN: ∆
sour
e-sink

for

di�erent penalty fa
tors with the XFEM.

Indu
ed nodes

the de�nition of the fun
tional, and di�erentiating the weight of 
ontinuity and �ux

mismat
h. The 
ost fun
tional rewrites as:

J(h, u) =

M∑

m=1

(
Pf1

∥∥∥hi|Sm
− hj|Sm

∥∥∥
2
+ Pf2

∥∥∥uSm

i + uSm

j − α
(
hi|Sm

+ hj|Sm

)∥∥∥
2
)
.

The results for various values of the penalty fa
tors are reported in Table 5.5 for

the 36F and 120F DFNs with both XFEM and FEM dis
retizations for h and indu
ed

nodes for the 
ontrol variables, while Figures 5.18-5.23 report the plots of table data

for the 36F DFN with XFEM and FEM dis
retization and for the 120F with standard

FE. It 
an be noti
ed that in
reasing the weight of the �ux term of the fun
tional with

respe
t to the 
ontinuity term has a strong e�e
t in redu
ing both the �ux mismat
h

error and the sour
e-sink �ux mismat
h with a relatively small penalization of the


ontinuity error. Sin
e the 
ontinuity error remains in an a

eptable range of values

it appears that the use of a penalty on the �ux term is advisable, mainly for 
omplex

DFN 
on�gurations, to improve solution quality. On the other hand, in
reasing Pf2

and redu
ing Pf1 
auses a signi�
ant in
rease in the maximum number of iterations

required for fun
tional stagnation (
olumns Iter in Table 5.5), su
h that a trade-o�

between a

ura
y and 
omputational e�ort is ne
essary.
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Figure 5.20: 36F DFN: ∆

ont

and ∆
�ux

for di�erent penalty fa
tors with standard

FE. Indu
ed nodes
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Figure 5.21: 36F DFN: ∆
sour
e-sink

for

di�erent penalty fa
tors with standard

FE. Indu
ed nodes
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Figure 5.22: 120F DFN: ∆

ont

and ∆
�ux

for di�erent penalty fa
tors with standard

FE. Indu
ed nodes
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Figure 5.23: 120F DFN: ∆
sour
e-sink

for di�erent penalty fa
tors with standard

FE. Indu
ed nodes
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Table 5.4: E�e
t of nU on 
ontinuity and �ux balan
e errors. XFEM and standard FEM


ompared, equally-spa
ed nodes

XFEM FEM

Grid nU ∆

ont

∆
�ux

Iter ∆

ont

∆
�ux

Iter

27 fra
tures

120

1 0.0009953 0.0007214 1317 0.001516 0.001224 2111

1.5 0.0008252 0.0004977 1513 0.001201 0.0008163 2614

2 0.0007432 0.000445 1432 0.001083 0.0006971 3218

30

1 0.0008213 0.0007262 960 0.001152 0.0007263 1390

1.5 0.0005528 0.0005619 1190 0.0009182 0.0006567 1787

2 0.0004097 0.0004008 1172 0.0007408 0.0005357 2024

7

1 0.0004234 0.0004367 779 0.0006694 0.0005569 1084

1.5 0.0002907 0.0002599 908 0.0004729 0.0003669 1307

2 0.000241 0.000198 1032 0.0004183 0.0002822 1463

36 fra
tures

120

1 0.00139 0.001395 915 0.002395 0.001721 1396

1.5 0.001059 0.00109 1067 0.002033 0.001397 1691

2 0.0008266 0.0009029 1103 0.001715 0.001297 1775

30

1 0.001169 0.001066 810 0.001628 0.001295 1096

1.5 0.0008244 0.0007246 921 0.001244 0.0009339 1349

2 0.0006507 0.0005739 976 0.00109 0.0007246 1499

7

1 0.0009253 0.0006411 771 0.001015 0.0005989 934

1.5 0.0006953 0.0005292 916 0.0008782 0.000456 1161

2 0.0005169 0.0004915 1049 0.0008088 0.0003994 1315

68 fra
tures

120

1 0.0006116 0.0004216 2238 0.0008863 0.0005681 4271

1.5 0.0004791 0.0003322 2536 0.0007222 0.0004366 5737

2 0.0004361 0.0002868 2650 0.0006526 0.0003947 4859

30

1 0.0004667 0.0003912 1906 0.0006633 0.0003817 2501

1.5 0.0003171 0.0002996 2100 0.0005367 0.0003535 3113

2 0.0002329 0.0002247 2130 0.0004263 0.0003194 3776

7

1 0.0002358 0.0002511 1605 0.0003713 0.0003195 2117

1.5 0.0001519 0.0001623 1713 0.0002551 0.0002304 2408

2 0.0001204 0.0001199 1893 0.0002071 0.0001832 2679

120 fra
tures

120

1 0.0004186 0.0003841 4042 0.0005124 0.0004198 12928

1.5 0.0003191 0.0002713 4125 0.0004246 0.0003007 9470

2 0.000274 0.0002298 4132 0.0003856 0.0002686 10520

30

1 0.0003235 0.0002657 3235 0.0004044 0.0003239 5917

1.5 0.0002589 0.0001893 3521 0.0003091 0.0002383 7017

2 0.000225 0.0001684 3761 0.0002771 0.0002026 6995

7

1 0.0001919 0.0001912 2892 0.0002522 0.0002195 3558

1.5 0.0001509 0.0001323 3150 0.0002068 0.0001578 4043

2 0.0001287 0.0001054 3329 0.000183 0.0001282 4629
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Table 5.5: E�e
t of penalty fa
tors on ∆

ont

, ∆
�ux

and ∆
sour
e-sink

. DFNs 36F and

120F with indu
ed nodes. XFEM and standard FEM 
ompared.

XFEM FEM

Grid Pf1 − Pf2 ∆

ont

∆
�ux

∆
sour
e-sink

Iter ∆

ont

∆
�ux

∆
sour
e-sink

Iter

36 fra
tures

120

1 - 10 0.002782 0.0009164 -0.1347 969 0.003668 0.0006137 -0.028 1787

1 - 100 0.005125 0.0005185 -0.0477 1539 0.004736 0.0001887 0.0014 3182

1 - 1000 0.008723 0.0003634 -0.026 2409 0.005499 6.032e-05 3.367e-4 5870

1/100 - 100 0.01785 0.000165 -0.0102 2943 0.006258 2.507e-05 -3.425e-5 7690

30

1 - 10 0.00205 0.0005705 -0.0531 1146 0.002536 0.0006313 -0.0735 2056

1 - 100 0.003612 0.0002532 -0.0258 1536 0.003966 0.0001995 -0.0167 2914

1 - 1000 0.005158 9.107e-05 -0.0048 3062 0.005023 6.316e-05 -0.0016 5094

1/100 - 100 0.00639 5.143e-05 -0.0011 4889 0.005853 1.8e-05 -1.335e-4 9742

7

1 - 10 0.001084 0.0002419 -0.0055 1394 0.001234 0.0002728 -0.004 1991

1 - 100 0.001593 0.0001234 -0.0017 1741 0.00185 0.0001114 -7.605e-4 3075

1 - 1000 0.0025 5.381e-05 -7.62e-4 2721 0.002501 3.397e-05 -2.074e-4 4360

1/100 - 100 0.003462 2.471e-05 -4.657e-5 5326 0.002942 1.626e-05 -3.602e-5 9406

120 fra
tures

120

1 - 10 0.001004 0.0002823 -0.1088 4310 0.0009781 0.0001503 -0.1295 17601

1 - 100 0.001487 0.0001964 -0.0789 7658 0.001208 5.068e-05 -0.0142 37118

1 - 1000 0.002703 0.0001445 -0.0464 11457 0.001448 1.917e-05 -0.0028 30585

1/100 - 100 0.006056 0.0001023 -0.0242 10941 0.001749 6.727e-06 -4.627e-4 31170

30

1 - 10 0.0005485 0.0001584 -0.0958 3625 0.0006226 0.0001192 -0.0635 11663

1 - 100 0.0008711 0.0001008 -0.0211 3562 0.0008539 4.175e-05 -0.0149 13285

1 - 1000 0.001414 8.061e-05 -0.0037 4327 0.001061 1.436e-05 -0.0024 21996

1/100 - 100 0.003473 6.136e-05 -0.0026 5575 0.001269 5.167e-06 -3.33e-4 22205

7

1 - 10 0.0002967 7.43e-05 -0.0228 4404 0.0003628 8.06e-05 -0.0191 7481

1 - 100 0.0004575 3.686e-05 -0.003 5791 0.0005353 3.589e-05 -0.0023 9666

1 - 1000 0.0007086 1.936e-05 -6.224e-4 8804 0.0007546 1.55e-05 -4.237e-4 18468

1/100 - 100 0.00111 1.147e-05 -2.449e-4 16228 0.001103 6.314e-06 -1.539e-4 25349
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5.4 Variable fra
ture transmissivity

In this se
tion DFN 
on�gurations with values of fra
ture transmissivity 
onstant on

ea
h fra
ture but di�erent from a fra
ture to another are 
onsidered. The DFN analysed

are reported in Table 5.6 along with the range of fra
ture transmissivity allowed for the

various 
on�gurations. The XFEM and indu
ed nodes are used throughout this Se
tion.

When dealing with large variations of fra
ture trasmissivities, o

urring possibly

between interse
ting fra
tures, a possible 
hoi
e for the penalty fa
tors introdu
ed in

the previous Se
tion is to set Pf1 = 1 and Pf2 = 1/Kmin = 1/mini(Ki). As shown

in the sequel, this improves the numeri
al behaviour of the method for 
omplex DFN


on�gurations, sin
e it magni�es the in�uen
e of the 
ontrol variable u on the solution.

As usual we set α = 1, and all simulations are started with an initial guess for the


ontrol variable u0 = 0. Simulations are performed on three di�erent grids 
hara
terized

by maximum element area of 7m2
, 15m2

and 30m2
.

In Figure 5.24 the 
oarse grid for problem 11F is shown. It should be noti
ed that

elements are arbitrarily pla
ed with respe
t to the tra
es, and the mesh on ea
h fra
ture

is independent from the mesh on the other fra
tures. The solution is shown in Figure 5.25

along with iso-h lines, in order to highlight that, as expe
ted, the highest gradients in

the solution o

ur in fra
tures with the lower values of fra
ture transmissivity, whi
h


an be noti
ed looking at Figure 5.26 where the values of K on the fra
tures of the

system are reported. Figures 5.27-5.31 refer to the 68F system on the intermediate grid.

In addition to previous 
onsiderations, looking at iso-h lines in Figure 5.27 we 
an see

that the �ux tends to stagnate in fra
tures that are a dead end or that are 
onne
ted

to the system by fra
tures with low transmissivity values. This is again an expe
ted

behaviour. Figure 5.28 shows the distribution of K for this system, while Figure 5.29

Table 5.6: DFN fra
ture transmissivity

Label Kmin Kmax

11F 2.46× 10−3 9.66 × 10−2

27F 5.43× 10−4 9.66 × 10−2

37F 5.43× 10−4 9.66 × 10−2

55F 5.43× 10−4 9.67 × 10−2

68F 5.43× 10−4 9.67 × 10−2
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Figure 5.24: Problem 11F: 
oarse grid

Figure 5.25: Problem 11F: solution with

iso-h lines on the 
oarse grid

provides a detail of the intermediate grid. The Figure shows that 
omplex geometries

and intri
ate fra
ture interse
tions 
an be easily handled with no requirement for mesh

adjustments and without 
ompromising the des
ription of the numeri
al solution, as

it 
an be seen looking at Figure 5.30-5.31 where the solution on sele
ted fra
tures are

plotted not on the 
omputational grid but on sub-triangles not 
rossing the tra
es, for

graphi
al reasons. The irregular behaviour a
ross tra
es and around tra
e tips is well

de�ned, regardless of the re
ipro
al position of tra
es and mesh elements.

In Table 5.7 the �uxes entering the system through the tra
es of the sour
e fra
ture

(
olumn in), the �uxes leaving the system from the sink fra
ture (
olumn out) and

the mismat
h between these two quantities (
olumn di� ) are reported for ea
h system

and grid 
onsidered. We 
an observe that �ux 
onservation is very good and is stable

under grid re�nements for ea
h problem. Moreover �ux mismat
h remains stable also

for in
reasing problem 
omplexity.

The proposed approa
h 
an easily deal with non-uniform transmissivities on ea
h

fra
ture plane, requiring either a di�erent implementation of the integrals for the dis-


rete operators on the fra
tures either the approximation of the fra
ture transmissivity

fun
tion on ea
h fra
ture with a pie
ewise 
onstant fun
tion on ea
h element of the

mesh. We remark that the latter approa
h would not a�e
t the a

ura
y of the method.

A deeper investigation with this kind of 
on�gurations will be the obje
tive of future

analysis.



5.4 Variable fra
ture transmissivity 161

Figure 5.26: Problem 11F: fra
ture trans-

missivity K distribution

Figure 5.27: Problem 68F: solution with

iso-h lines on the intermediate grid

Figure 5.28: Problem 68F: fra
ture trans-

missivity K distribution

F42

Figure 5.29: Problem 68F: detail of the

intermediate grid
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Figure 5.30: Problem 68F: Solution on

fra
ture F42. Intermediate grid.
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Figure 5.31: Problem 68F: solution on a

sele
ted fra
ture. Intermediate grid
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Table 5.7: Flux unbalan
e for approximate solution

grid 30 grid 15 grid 7

DFN in out di� in out di� in out di�

11F 0.16 -0.16 4.4e-4 0.16 -0.16 1e-5 0.16 -0.16 2e-5

27F 0.42 -0.42 2.9e-4 4.19 -4.19 1.4e-4 0.42 -0.42 2e-5

37F 1.10 -1.10 1.2e-4 1.09 -1.09 2.0e-4 1.08 -1.08 8e-5

55F 1.45 -1.45 6.3e-4 1.44 -1.44 3.3e-4 1.43 -1.43 9e-5

68F 1.12 -1.12 9.4e-4 1.11 -1.11 3.5e-4 1.10 -1.10 1e-5

5.4.1 Convergen
e study

Let us introdu
e for ea
h problem and grid a referen
e solution href , 
orresponding

to the stagnation of the fun
tional J around its minimum. For an approximate solu-

tion obtained at a given number of iterations, hcurr we de�ne a relative distan
e from

the referen
e solution as the H1
-norm of the di�eren
e between 
urrent approxima-

tion and referen
e solution divided by the H1
-norm of the referen
e solution: ‖hcurr −

href‖H1/‖href‖H1 . As a reasonable 
hoi
e we measure the 
omplexity of ea
h problem

with the number of tra
es in the system. In Figure 5.32 the relative distan
e of solution

at various number of iterations against the ratio of iteration and number of tra
es is

displayed for the 27F, 37F and 68F DFNs on the 
oarse and �ne grid. A similar plot is

in Figure 5.33 for all the problems 
onsidered on the intermediate grid. In both Figures

the global trend is plotted on the left side, showing that the 
urves are well 
lustered

and show an initial steep des
ent path, after whi
h the slope redu
es. On the right there

is a zoom at low values of iterations over the number of tra
es. After a small number

of iterations 
ompared to the number of tra
es, the 
urrent approximation is 
lose to

the referen
e solution, with variations lower than 1%. In the simulations performed

this o

urs typi
ally in a range of iterations between two and four times the number of

tra
es, independently of the problem and grid 
onsidered. A similar behaviour is also

do
umented in Chapter 3, showing that the algorithm 
an provide a good solution with

a 
ost that in
reases linearly with problem 
omplexity.

We end the presentation of numeri
al results providing some stopping 
riteria for

the dis
rete algorithm. Two possible 
riteria are dis
ussed here and, summarized in Ta-

ble 5.8: 1) algorithm stops when the di�eren
e between subsequent iterations is small,
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Figure 5.32: Relative distan
e in H1
norm of solution at various number of iterations for

sele
ted problems. Coarse grid in dashed lines, �ne grid in solid lines. Full pi
ture on the

left, zoom on the right.

0 50 100 150 200 250 300
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations/Ntrace

R
el

at
iv

e 
di

st
an

ce
 fr

om
 b

es
t s

ol
ut

io
n

 

 
11F
27F
37F
55F
68F

0 5 10 15 20

10
−3

10
−2

Number of iterations/Ntrace

R
el

at
iv

e 
di

st
an

ce
 fr

om
 b

es
t s

ol
ut

io
n

 

 
11F
27F
37F
55F
68F

Figure 5.33: Relative distan
e in H1
norm of solution at various number of iterations for

sele
ted problems on the intermediate grid. Full pi
ture on the left, zoom on the right.
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Table 5.8: Exit 
riteria used in simulations

Label Criterion

t1 R1 = Jk − Jk−1 < Tol1

t2 R3 = Jk(Jk − Jk−1) < Tol2
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Figure 5.34: Distan
e of solution from ref-

eren
e solution versus di�erent values of

Tol1. Intermediate grid.
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Figure 5.35: Distan
e of solution from ref-

eren
e solution versus di�erent values of

Tol2. Intermediate grid.

i.e. R1 < Tol1 six subsequent times; 2) stop o

urs when th di�eren
e between subse-

quent iterations s
aled with fun
tional value is small, i.e. R2 < Tol2. Both 
onditions

seek fun
tional stagnation, di�ering in the fa
t that 
ondition t2 also takes into a

ount

fun
tional absolute value, see also Chapter 3. The 
riterion on u introdu
ed in Chap-

ter 3 has been removed, sin
e we a
tually solve the res
aled problem in whi
h the e�e
ts

of the 
ontrol variable u are ampli�ed. The behaviour of the suggested 
riteria is shown

in Figures 5.34-5.35. A value of 10−3
appears to be a suitable 
hoi
e for both 
riteria

for all the problems.

5.5 S
alability

We end this Chapter with a preliminary analysis on the s
alability performan
es

of the proposed approa
h for dis
rete fra
ture network simulations on large s
ales. As

mentioned the method allows an independent meshing pro
ess on ea
h fra
ture of the
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network, and the resolution of the 
onstrained optimality problem with a gradient based

method 
an be performed in parallel with a very limited ex
hange of data related to the

tra
es.

The implementation of the parallel version of the method is performed using an MPI

pa
kage for O
tave, [3℄, 
alled openMPI_ext, [4℄, that provides a subset of the standard

MPI library for the C programming language.

Sin
e dealing with an implementation oriented to 
omputer ar
hite
tures with non-

shared memory, the parallel version of the algorithm is stru
tured in order to limit the

amount of 
ommuni
ations. To this end a hierar
hi
al organization is envisaged, with

Master pro
esses managing groups of Slave pro
esses. The DFN is subdivided into

smaller subsets of fra
tures, ea
h managed by one Slave pro
ess. The Slave pro
esses

refer to a Master pro
ess for the 
ommuni
ation phase, su
h that all the information

shared by the Slave pro
esses transit through the Master . For very large DFN 
on�gu-

rations this basi
 stru
ture 
an be repeated, introdu
ing a hierar
hy in Master pro
esses

with higher level Masters managing groups of lower level Master pro
esses, down to the

Slave pro
esses managing groups of fra
tures. We remark that this 
on�guration would

not be optimal for shared memory 
omputer ar
hite
tures, su
h as GPU based ma
hines,

where a more e�
ient implementation would 
onsist in assigning ea
h fra
ture to a dif-

ferent pro
ess. Investigation of the parallel approa
h on shared memory ar
hite
tures is

postponed to a future work.

5.5.1 Partitioning the DFN

The �rst task that the parallel implementation of the proposed method has to a
-


omplish 
onsists in determining the subsets of fra
tures that will be asso
iated to ea
h

Slave pro
ess. To this end, the DFN 
an be suitably represented by a non-dire
ted

graph G(V,E), with fra
tures representing the verti
es V of the graph and tra
es the

edges, E. The obje
tive is to minimize the number of edge 
uts, i.e. the amount

of 
ommuni
ation between pro
esses, balan
ing the workload among pro
esses at the

same time. Let us assume that k represents the number of Slave pro
esses, and I is

the total number of verti
es (i.e. fra
tures) in the graph, than we want to determine a

subdivision of G(V,E) su
h that the weight (i.e. the 
omputational 
ost) of ea
h part

is lower than ν I
k
, where ν is a parameter 
lose to one, and the 
apa
ity (i.e. the amount

of data shared) of edge 
uts is minimized. This problem is well known in graph theory
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Figure 5.36: S
alability analysis for the

DFN 36F
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as (k, ν)-balan
ed graph partitioning, see e.g. [1℄ . For this preliminary investigation a

simple unweighted graph partitioning pro
edure is implemented, ensuring that all the

verti
es of the graphs, (i.e. the fra
tures of the DFN) have a similar 
omputational


ost. This 
ondition is quite restri
tive, but is appropriate for the 
urrent preliminary

investigation, sin
e it redu
es the 
omplexity of the graph partitioning pro
edure and


an be easily a
hieved by pres
ribing a similar number of degrees of freedom on all the

fra
tures in the DFN.

5.5.2 The message passing pro
ess implementation

As mentioned, all the information are shared by Slave pro
esses through Master

pro
esses and ea
h Slave pro
ess sends to and re
eives from the Master pro
ess only

the portion of data related to those tra
es in 
ommon with other pro
esses. Sin
e the

DFN is partitioned in a way that minimizes the number of tra
es shared by di�erent

pro
esses, the 
ommuni
ation phase is minimized. In any 
ase only arrays of small

size 
ompared to the size of the problems on the fra
tures need to be shared. The

openMPI_ext pa
kage does not allow for non-blo
king 
ommuni
ation routines and this

is a severe limitation for this appli
ation. Indeed non-blo
king send routines would

allow to partially hide the overhead for 
ommuni
ations, allowing ea
h pro
ess to send

the information required by other pro
esses and 
ontinue 
omputing on other fra
tures

whose data is not required by other pro
esses. This kind of limitations will be removed

in future implementations of the method based on the C language.
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5.5.3 S
alability results

We now show the s
alability results obtained on the DFN 36F, using the XFEM

for the dis
retization of the hydrauli
 head on the fra
tures and indu
ed nodes for the


ontrol variables. The mesh parameter is di�erent on ea
h fra
ture in order to obtain

a number of DOFs similar for all the fra
ture around 3500 DOFs, thus allowing for an

unweighted graph partitioning for determining the workload for the Slave pro
esses.

Simulations are performed on a 
omputer with two six-
ore pro
essors, for a total of

twelve physi
al 
ores and twenty-four virtual 
ores. The ma
hine has a shared memory

ar
hite
ture but is treated as a non-shared memory ma
hine.

The s
alability results for the 36F DFN are shown in Figure 5.36 in terms of exe
ution

time relative to the exe
ution time in serial mode. It 
an be noted that s
alability

performan
es are good and quite 
lose to the ideal ones when using up to 9 Slave

pro
esses. When using more than 10 Slave pro
esses the slope of the 
urve redu
es

with respe
t to the ideal one, and there is no further redu
tion of exe
ution time using

more than 12 Slave pro
esses. This is partly due to the overhead in 
ommuni
ation and

partly to the bottlene
k of memory a

ess due to the ar
hite
ture of the 
omputer used.

The ideal 
urve 
onsiders that none part of the algorithm is stri
tly serial.

An analysis is performed to measure the level of independen
e among the virtual


ores and to highlight 
on�i
ts in memory a

ess observed during the simulations. A

large size (6400 × 6400) sparse linear system with about 3 × 104 non zero elements is

solved 10 times in serial mode by an in
reasing number of pro
esses running in parallel,

su
h that ea
h pro
ess performs exa
tly the same operations and no 
ommuni
ation

o

urs. The average exe
ution time a
ross the 10 repeated resolutions, tj10, is stored for

ea
h pro
ess j. The mean value tkav = k−1
∑k

j=1 t
j
10 among the k di�erent pro
esses,

relative to exe
ution time with a single pro
ess, is reported in Figure 5.37 for di�erent

values of k (number of pro
esses) ranging from 1 to 19. It is possible to note that,

even with a small number of pro
esses running in parallel, the exe
ution time in
reases

between 5− 15%, due to 
on�i
ts in a

essing the memory. When using more than ten

pro
esses the degradation of performan
es be
omes severe.

Con
luding, this preliminary investigation on the s
alability performan
es of the

proposed algorithm for DFN simulations shows a very high potential, despite the limi-

tation of the MPI library used and of the parallel 
omputer available. Implementation

improvements 
an have the potential of further redu
ing the gap with the ideal s
alabil-
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ity performan
es and of extending the s
alability range to a higher number of parallel

pro
esses.
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Chapter 6

Pre
onditioning

In this Chapter a preliminary investigation of a possible strategy for pre
ondition-

ing the 
onjugate gradient method for DFN problems with the proposed approa
h is

investigated, aiming at a redu
tion in the overall 
omputational 
ost.

Let us re
all the optimization algorithm des
ribed in Se
tion 4.4:

Conjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (7.23) and (7.24) and g0 by (7.25)

3. Set d0 = −g0, k = 0

4. While gk 6= 0

4.1. Compute λk with a line sear
h along dk

4.2. Compute uk+1 = uk + λkdk

4.3. Update gk+1 = gk + λkĜdk

4.4. Compute βk+1 =
gT
k+1

gk+1

gT
k
gk

4.5. Update dk+1 = −gk+1 + βk+1dk

4.6. k = k + 1

where gk indi
ates the gradient ∇Ĵ(uk) at step k and dk the dire
tion of movement. Let

us denote by dexk the des
ent dire
tion at iteration k that vanishes the residual gk, i.e.

gk + Ĝdexk = 0. The idea for pre
onditioning 
onsists in evaluating an approximation

169
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dpk of dexk to be used in pla
e of the 
onjugate gradient dire
tion. In order to make

the 
omputation of dire
tion dpk a�ordable, it 
an be determined on a 
oarser grid with

respe
t to the 
omputational grid. In this respe
t this kind of pre
onditioning borrows

the stru
ture of multi-grid (MG) pre
onditioners, but relying on a di�erent 
on
ept.

In fa
t MG pre
onditioning is based on a 
orrelation between error frequen
ies and


omputational grid typi
al of problems with an ellipti
 stru
ture with solvers that have


ertain smoothing properties, [1℄. Even if on ea
h fra
ture of a DFN ellipti
 problems are

solved, Ĝ does not share the spe
tral properties expe
ted for e�
ient appli
ation of MG

pre
onditioning. As a 
onsequen
e, the speed up will not be given by the redu
tion of

lower error frequen
ies on the 
oarser grids as in multi-grid pre
onditioners, but rather

it depends on the quality of dire
tion dpk in approximating dexk .

Let us introdu
e a two grid framework with a �ner 
omputational grid for the res-

olution of the DFN problem and a 
oarser grid for pre
onditioning purposes, and let

us denote by Uδ,f and Uδ,c the dis
rete spa
es for the 
ontrol variable on the �ne and


oarse grid respe
tively. Let then Ĝf be the matrix Ĝ on the �ne grid and Ĝc the 
orre-

sponding matrix on the 
oarse grid. We de�ne a prolongation operator Ifc : Uδ,c → Uδ,f

and a restri
tion operator Icf : Uδ,f → Uδ,c, su
h that

(
Icfu, v

)

Uδ,c

=
(
u, Ifc v

)

Uδ,f

, for all

u ∈ Uδ,f and for all v ∈ Uδ,c, (see [1℄). Given the gradient dire
tion gk,f at iteration k on

the �ne grid provided by the 
onjugate gradient algorithm, the pre
onditioned des
ent

dire
tion 
an be written as:

dpk = Ifc (dk,c), Ĝcdk,c = −
(
Icf (gk,f )

)
(6.1)

The resolution of the linear system in (6.1) for dk,c on the 
oarse grid does not ne
essarily

require to form matrix Ĝc. It is possible to rewrite it as a minimization problem on the


oarse grid as follows:

Ĝcdk,c +
(
Icf (gk,f )

)
= Ĝc

(
uc − Icf (uk,f )

)
+
(
Icf (gk,f )

)
= 0

⇔ min
uc

uTc Ĝcuc +
(
Icf (gk,f )− ĜcI

c
f (uk,f )

)T
uc

thus having the same stru
ture of the problem on the �ner grid, and, as su
h, solved

with an optimization (iterative) method. As in multi-grid pre
onditioning, more levels

with su

essive 
oarsening of the grids 
ould be used and, depending on the size of the


oarsest grid, the 
omputational 
ost for assembling Ĝc 
ould be 
omparable or even

less than that of solving (6.1) as a minimization problem. We remark that matrix Ĝc


an be assembled working independently on ea
h fra
ture of the DFN.
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As in a multi-grid s
heme the 
orre
tion on the 
oarse grid 
an be evaluated after a

given number of iterations of 
onjugate gradient, a

ording to the value of a parameter

nCG. The pre
onditioned algorithm 
an be then written as:

Algorithm 6.1. Pre
onditioned 
onjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (7.23) and (7.24) and g0 by (7.25)

3. Set d0 = 0, β0 = 0, k = 0, kCG = 0

4. While gk 6= 0

5. if kCG < nCG (Conjugate Gradient s
heme)

5.1. Compute dk = −gk + βkdk

5.2. Compute λk with a line sear
h along dk

5.3. Compute uk+1 = uk + λkdk

5.4. Update gk+1 = gk + λkĜdk

5.5. Compute βk+1 =
gT
k+1

gk+1

gT
k
gk

5.6. k = k + 1, kCG = kCG + 1

6. else (Pre
onditioned s
heme)

6.1. Compute dpk a

ording to (6.1)

6.2. Compute uk+1 = uk + dpk

6.3. Update gk+1 = gk + Ĝdpk

6.4. k = k + 1, kCG = 0

7. end (if)

Some numeri
al results on this pre
onditioning te
hnique are now dis
ussed. All the

simulations are performed solving system (6.1) exa
tly on the 
oarse grid. The XFEM

is used for the dis
retization of the solution h on the fra
tures, while a node strategy ED

is 
hosen for the 
ontrol variables. The �ne grid has maximum elements area of 7m2
,

while the 
oarse grid of 30m2
. The ED dis
retization for the 
ontrol variables on the
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Figure 6.1: Fun
tional value vs iterations

for di�erent values of nCG
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Figure 6.2: Fun
tional value vs 
pu time

for di�erent values of nCG
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Figure 6.3: System residual value vs iter-

ations for di�erent values of nCG
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Figure 6.4: System residual value vs 
pu

time for di�erent values of nCG

�ne and 
oarse grids are nested, in order to ease the generation of the restri
tion and

prolongation operators. Numeri
al result are shown for the DFN 120F. A maximum

number of 2000 iterations is pres
ribed for all the simulations. The results relative to

simpler DFN 
on�gurations, in fa
t, are not signi�
ant for the analysis performed here,

sin
e the 
omputational 
ost of a single iteration of the non pre
onditioned s
heme (in

serial) might be signi�
antly more expensive that the evaluation of the dire
tion dpk, while

this is not the 
ase for more 
omplex 
on�gurations, where the use of pre
onditioning

is of interest.

The quality of the solution is evaluated in terms of fun
tional �nal value and of the

L2
-norm of the residual gk at iteration exit. In both 
ases lower values are desirable.
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Figure 6.5: Fun
tional value vs iterations

for di�erent values of nU
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Figure 6.6: Fun
tional value vs 
pu time

for di�erent values of node fa
tor nU

Looking at Table 6.1, Panel A, it is possible to noti
e that the use pre
onditioning

allows to rea
h a mu
h lower residual than the non-pre
onditioned 
ase in the same

number of iterations. The 
omputational 
ost in terms of 
pu time required to perform

the maximum number of iterations allowed is higher for the pre
onditioned 
ase, but

observing Figures 6.1-6.4 we 
an see that at the same time the pre
onditioned s
heme

rea
hes a better solution in terms of residual norm. The minimum for the residual

is obtained for a value of nCG = 10. The results of Table 6.1, Panel B show the

performan
es of the pre
onditioner when the number of nodes for the 
ontrol variables

are redu
ed on the �ne and 
oarse grid of the same fa
tor nU . De
reasing the number

of nodes leads to a redu
tion of the 
omputational 
ost in terms of 
pu time, but also

the bene�ts of pre
onditioning vanish, and if nU < 0.25 there is no advantage in the use

of pre
onditioning, as 
an be noti
ed observing Figures 6.5-6.8.

Figures 6.9-6.12 show the e�e
tiveness of pre
onditioning when the maximum area

of the 
oarse grid elements is in
reased, imposing the same number and disposition of

nodes for the 
ontrol variables on the �ne and 
oarse grids (i.e. Ifc = Icf = I, identity

matrix). The results obtained highlight that in
reasing 
oarse grid area is not a viable

option to redu
e the 
ost of this pre
onditioning te
hnique.

Con
luding, the presented pre
onditioning te
hnique has a good potential in redu
-

ing the 
omputational 
ost of the optimization algorithm, both in terms of number

of iterations and 
pu time, but further investigations on more 
omplex 
on�gurations

are required. Also the e�
ien
y of di�erent resolution strategies for the resolution of
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Figure 6.7: Residual value vs iterations for

di�erent values of nU
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Figure 6.8: Residual value vs 
pu time for

di�erent values of nU
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Figure 6.9: Fun
tional value vs iterations

for di�erent values of 
oarse grid area, dis-


retization of 
ontrol variables on 
oarse

grid equal to �ne grid (ED).
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Figure 6.10: Fun
tional value vs 
pu time

for di�erent values of 
oarse grid area, dis-


retization of 
ontrol variables on 
oarse

grid equal to �ne grid (ED).
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Figure 6.11: System residual value vs it-

erations for di�erent values of 
oarse grid

area, dis
retization of 
ontrol variables on


oarse grid equal to �ne grid (ED).
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Figure 6.12: System residual value vs 
pu

time for di�erent values of 
oarse grid

area, dis
retization of 
ontrol variables on


oarse grid equal to �ne grid (ED).

system 6.1 need to be evaluated. The obtained speed up is not 
omparable to the ex-

ponential 
onvergen
e velo
ity a
hievable with proper multi-grid pre
onditioners, and a

spe
tral analysis of the method is advisable to design pre
onditioning te
hniques 
apable

of providing exponential 
onvergen
e rates.

Table 6.1: Pre
onditioner behaviour for the DFN 120F, node strategy: ED

Panel A: nU = 1, varying n
CG

Grid �ne - Coarse CGsteps Iter Iter 
pu time [s℄ Residual J

7 - 30

Ref. 2000 2628.72 0.000524984 0.000223922

1 1743 2737.17 3.56557e-06 0.000151742

5 2000 3248.51 7.08703e-07 0.000151179

10 2000 3219.46 1.64967e-07 0.000151127

20 2000 2887.91 2.76264e-07 0.000151125

Panel B: n
CG

= 5 , varying nU

Grid �ne - Coarse nU Iter Iter 
pu time [s℄ Residual J

7 - 30

Ref. 2000 2628.72 0.000524984 0.000223922

0.075 2000 2791.64 0.000255202 0.000263584

0.125 2000 2681.03 0.000238779 0.000213198

0.250 2000 2808.57 3.7036e-05 0.000196008

0.500 2000 2912.5 2.61896e-06 0.00015778

1.000 2000 3248.51 7.08703e-07 0.000151179
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Chapter 7

The Virtual Element Method for

Dis
rete Fra
ture Network

simulations

Abstra
t The present work dis
usses the appli
ation of the Virtual Element Method

(VEM) to the simulation of dis
rete fra
ture network �ows, with the optimization ap-

proa
h developed in [5, 6, 8℄. The VEM is a newly developed te
hnique for solving partial

di�erential equation problems with meshes 
onstituted of polygonal elements with an

arbitrary number of edges. The generation of a 
onforming mesh is a demanding task

for DFN simulations given the intri
ate geometry of realisti
 network 
on�gurations.

The possibility of handling elements of arbitrary polygonal shape eases the pro
ess of

mesh generation, still giving a mesh 
onforming to the tra
e on a given fra
ture, but

non-
onforming to the dis
retization of the interse
ting fra
tures. The non-
onformities

are easily handled by the optimization approa
h used. The implementation of the VEM

in the 
ontext of DFN simulations is fully des
ribed, and a panel of test problems and

some numeri
al results on 
omplex networks are provided to show the e�e
tiveness of

the method.

7.1 Introdu
tion

Subsurfa
e �uid �ow has appli
ations in a wide range of �elds, in
luding e.g. oil/gas

re
overy, gas storage, pollutant per
olation, water resour
es monitoring, et
. Under-

179
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ground �uid �ow is a 
omplex heterogeneous multi-s
ale phenomenon that involves


ompli
ated geologi
al 
on�gurations. Dis
rete Fra
ture Networks (DFNs) are 
om-

plex sets of planar polygonal fra
tures used to model subsurfa
e �uid �ow in fra
tured

(porous) ro
ks. Typi
ally, a DFN is obtained sto
hasti
ally using probabilisti
 data to

determine a distribution of orientation, density, size, aspe
t ratio, aperture and hydro-

logi
al properties of the fra
tures [1, 13, 14℄, and it is a viable alternative to 
onventional


ontinuum models in sparse fra
ture networks. DFN simulations are very demanding

from a 
omputational point of view and due to the un
ertainty of the statisti
al data,

a great number of numeri
al simulations is required. Furthermore, the resolution of

ea
h 
on�guration requires vast 
omputational e�ort, in
reasing greatly with problem

size. In this work, we fo
us on the resolution of the steady-state �ow in large fra
ture

networks. The quantity of interest is the hydrauli
 head in the whole network, whi
h

is the sum of pressure and elevation and is evaluated by means of the Dar
y law. We


onsider impervious ro
k matrix and �uid 
an only �ow through fra
tures and tra
es

(interse
tions of fra
tures), but no longitudinal �ow along the tra
es is allowed. Mat
h-

ing 
onditions need to be added in order to preserve 
ontinuity along tra
es and �ux

balan
e at fra
ture interse
tions. The 
lassi
al approa
h to DFN simulations 
onsists

in a �nite element dis
retization of the network and in the resolution of the resulting

algebrai
 linear system. With this approa
h, a great numeri
al obsta
le to over
ome is

the need to provide on ea
h fra
ture a good quality mesh 
onforming not only to the

tra
es within the fra
ture, but also 
onforming to the other meshes on fra
tures sharing

a tra
e. If this kind of 
onformity is required, the meshing pro
ess for ea
h fra
ture is

not independent of the others, leading in pra
ti
e to a demanding 
omputational e�ort

for the mesh generation. In large realisti
 systems, whi
h 
an 
ount thousands, or even

millions, of fra
tures, this mesh 
onformity 
onstraints might lead to the introdu
tion of

a very large number of elements, independently of the a

ura
y required on the solution

and possibly leading to over solving, if we 
onsider the level of a

ura
y of the physi
al

model.

Strategies are proposed in literature to ease the pro
ess of mesh generation and

resolution for DFNs of large size. Some authors, see e.g. [15, 19℄, propose a simpli�
ation

of DFN geometry to better handle the meshing pro
edure. In other 
ases, dimensional

redu
tion is explored as in [11℄ and [12℄, where a system of 1D pipes that 
onne
t tra
es

with fra
tures has been used to simplify the problem. Mortar methods are used to relax

the 
onformity 
ondition with fra
ture meshes, that are only required to be aligned
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along the tra
es (see [17℄ and [18℄).

In the re
ent paper [9℄ and follow up works [7℄ and [8℄, the problem of �ow in a DFN

is retooled as a PDE 
onstrained optimization problem. The approa
h proposed in these

works 
ompletely drops the need for any kind of mesh 
onformity, regardless of tra
e

number and disposition; this goal is attained via the minimization of a given quadrati


fun
tional, allowing to obtain the solution for any given mesh. In this framework, any

mesh independently generated on ea
h fra
ture 
an be used. Sin
e the solution may dis-

play a non-smooth behaviour along tra
es (namely, dis
ontinuous normal derivatives),

FEM on meshes not 
onforming to tra
es would result in poor solutions in a neighbour-

hood of the tra
es. In [9, 7, 8℄ the XFEM is used in order to improve the solution near

tra
es. In the present work the newly 
on
eived Virtual Element Method is in 
harge

for the spa
e dis
retization on ea
h fra
ture. Taking advantage from the great �exibility

of VEM in allowing the use of rather general polygonal mesh elements, several 
omplex-

ities related to XFEM enri
hment fun
tions 
an be avoided. Indeed, a suitable mesh for

representing the solution 
an be easily obtained starting from an arbitrary triangular

mesh independently built on ea
h fra
ture, and independent of the tra
e disposition.

Then, whenever a tra
e 
rosses a mesh element, this 
an be split in two sub-elements

obtaining a partial 
onformity.

All the steps needed for the use of the VEM in 
onjun
tion with the optimization

approa
h for DFNs simulations are inherently fra
ture oriented, and 
an be exe
uted

in parallel. Numeri
al tests show that this approa
h leads to an e�
ient and reliable

method.

We remark that the polygonal mesh obtained for VEM dis
retization naturally paves

the way also for the use of a Mortar approa
h. This possibility is 
urrently under inves-

tigation by the authors. Nevertheless, our main target here is to assess the viability of

the optimization approa
h in 
onjun
tion with the VEM. Furthermore, within the opti-

mization method, mixing of di�erent dis
retization strategies (standard �nite elements

on meshes not ne
essarily 
onforming to tra
es, extended �nite elements and virtual

elements of di�erent orders) remains possible, thus improving the �exibility to deal with

any possible DFN 
on�gurations.

The present work is organized as follows: a des
ription of the general problem is

provided in Se
tion 7.2, followed by a brief introdu
tion to the appli
ation of virtual

element method to the problem at hand in Se
tion 7.3. Formulation and resolution of

the dis
rete problem are sket
hed in Se
tion 7.4. Some te
hni
al issues 
on
erning VEM
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implementation in this 
ontext as well as numeri
al results are given in Se
tion 7.5. We

end with some 
on
lusions in Se
tion 7.6.

7.2 Problem des
ription

In this se
tion we brie�y sket
h the main ideas of the PDE optimization method for

dis
rete fra
ture network simulations introdu
ed in [9, 7, 8℄.

Let us denote by Ω the DFN, 
omposed by the union of planar open polygons Fi, with

i = 1, . . . , I, resembling the fra
tures in the network. Let us denote by ∂Fi the boundary

of Fi and by ∂Ω the set of all the fra
ture boundaries, ∂Ω = ∪I
i=1∂Fi. We de
ompose

∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, ΓD 6= ∅ being ΓD the Diri
hlet boundary and ΓN

the Neumann boundary. The boundary of ea
h fra
ture is divided into a Diri
hlet part

ΓiD = ΓD ∩ ∂Fi and a Neumann part ΓiN = ΓN ∩ ∂Fi, hen
e ∂Fi = ΓiD ∪ ΓiN , with

ΓiD ∩ ΓiN = ∅. An empty Diri
hlet boundary, ΓiD = ∅ is allowed on fra
tures su
h

that ∂Fi ∩ ΓD = ∅. Fun
tions HD
i ∈ H

1

2
(ΓiD) and GN

i ∈ H

− 1

2
(ΓiN ) are given and

pres
ribe Diri
hlet and Neumann boundary 
onditions, respe
tively, on the boundary

∂Fi of ea
h fra
ture. Interse
tions between fra
tures are 
alled tra
es and are denoted

by Sm, m = 1, . . . ,M , while S denotes the set of all the tra
es of the system, and Si,

for i = 1, . . . , I, denotes the subset of S 
orresponding to the Mi tra
es belonging to

Fi. Ea
h Sm uniquely identi�es two indi
es ISm = {i, j}, su
h that Sm ⊆ F̄i ∩ F̄j .

Finally Ji 
olle
ts all the indi
es {j} relative to the fra
tures Fj interse
ted by Fi, i.e.

j ∈ Ji ⇐⇒ F̄j ∩ F̄i 6= ∅.
The quantity of interest is the hydrauli
 head H that 
an be evaluated in Ω by

means of the Dar
y law. This originates a system of equations on the fra
tures de�ned

as follows. Let us introdu
e for ea
h fra
ture the following fun
tional spa
es:

Vi = H

1
0

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= 0
}
,

and

V D
i = H

1
D

(Fi) =
{
v ∈ H

1
(Fi) : v|ΓiD

= HD
i

}
,

and let us denote by Hi the restri
tion of H on Fi. Furthermore, let Ki denote a

symmetri
 and uniformly positive de�nite tensor representing the fra
ture transmissiv-

ity. Without loss of generality and for the sake of simpli
ity, we assume that all tra
es

are disjoint; this is not a restri
ting assumption as noted in [9℄. Then Hi satis�es, for
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i = 1, . . . , I, the following problem: �nd Hi ∈ V D
i su
h that ∀v ∈ Vi

∫

Fi

Ki∇Hi∇vdΩ =

∫

Fi

qivdΩ+ 〈GN
i , v|S〉

H

− 1
2
(ΓiN),H

1
2
(ΓiN)

+
∑

S∈Si

〈
[[
∂Hi

∂ν̂iS

]]

S

, v|S〉
H

− 1
2
(S),H

1
2
(S)

, (7.1)

where qi ∈ L2(Fi) denotes a sour
e term on Fi and the symbol

∂Hi

∂ν̂i
represents the

outward 
o-normal derivative of the hydrauli
 head:

∂Hi

∂ν̂i
= n̂Ti Ki∇Hi,

with n̂i outward normal to the boundary ΓiN , and

[[
∂Hi

∂ν̂i
S

]]

S
denotes the jump of the 
o-

normal derivative along the unique normal n̂iS �xed for the tra
e S on Fi, and represents

the �ux in
oming into the fra
ture Fi through the tra
e S. The equations (7.1) for

i = 1, ..., I are 
oupled with the following mat
hing 
onditions, ensuring hydrauli
 head


ontinuity and �ux balan
e a
ross the tra
es:

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , ∀m = 1, . . . ,M, (7.2)

[[
∂Hi

∂ν̂iSm

]]

Sm

+

[[
∂Hj

∂ν̂jSm

]]

Sm

= 0, for i, j ∈ ISm . (7.3)

The simultaneous resolution of equations (7.1)-(7.3) might result infeasible for pra
ti-


al appli
ations, as previously dis
ussed. In 
ontrast, the approa
h developed in [9, 7, 8℄

only requires the resolution of lo
al problems on ea
h fra
ture independently, resorting

to an optimization approa
h to enfor
e mat
hing at the interse
tions. In order to de-

s
ribe this strategy, let us introdu
e for ea
h tra
e in ea
h fra
ture the 
ontrol variables

US
i ∈ US = H

− 1

2
(S), de�ned as US

i = αHi|S
+
[[
∂Hi

∂ν̂i
S

]]

S
, where α is a �xed positive

parameter, and the quadrati
 fun
tional

J(H,U) =

M∑

m=1

(∥∥∥Hi|Sm
−Hj|Sm

∥∥∥
2

H

1
2
(S)

(7.4)

+
∥∥∥USm

i + USm

j − α
(
Hi|Sm

+Hj|Sm

)∥∥∥
2

H

− 1
2
(S)

)
.

Equations (7.1), pres
ribed on the fra
tures, are equivalently restated as:

∫

Fi

Ki ∇Hi∇vdΩ+ α
∑

S∈Si

∫

S

Hi|Sv|SdΓ = (7.5)

∫

Fi

qivdΩ+ 〈GN
i , v|S〉

H

−1
2
(ΓiN),H

1
2
(ΓiN)

+
∑

S∈Si

〈US
i , v|S〉US ,US ′ .
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Let us de�ne USi = H

− 1

2
(Si ) and let Ri denote an operator providing lifting of the

Diri
hlet boundary 
onditions on ΓiD, if not empty. We then introdu
e the following

linear bounded operators:

Ai ∈ L(Vi, V ′
i ), 〈Aiw, v〉V ′

i ,Vi
= (Ki∇w,∇v) + α

(
w|Si

, v|Si

)

Si

,

BS
i ∈ L(US , V ′

i ), 〈BS
i U

S
i , v〉V ′

i ,Vi
= 〈US

i , v|S〉US ,US ′ ,

Bi = Π
S∈Si

BS
i ∈ L(USi , V ′

i ), 〈BiUi, v〉V ′
i ,Vi

= 〈Ui, v|Si
〉
USi ,USi

′ ,

with w, v ∈ Vi, and Ui ∈ USi
is the tuple of 
ontrol variables US

i for S ∈ Si. Analogously,

U ∈ US
denotes the tuple of 
ontrol variables Ui for i = 1, ..., I. The dual operator of Ai

is denoted by A∗
i and B

∗
i denotes the dual of Bi. The operator BiN ∈ L(H− 1

2
(ΓiN ), V

′
i )

imposing Neumann boundary 
onditions is de�ned su
h that

〈BiNG
N
i , v〉V ′

i ,Vi
= 〈GN

i , v|ΓiN
〉
H

− 1
2
(ΓiN),H

1
2
(ΓiN)

.

A

ording to this fun
tional setting and de�nitions, problems (7.5) are restated as:

∀i = 1, ..., I, �nd Hi ∈ V D
i , with Hi = H0

i +RiH
D
i and H0

i ∈ Vi, su
h that

AiH
0
i = qi +BiUi +BiNG

N
i −AD

i RiH
D
i , in Fi, (7.6)

where AD
i is an operator de�ned similarly to Ai, but operating on elements in H

1
(Fi).

We remark that, if α > 0, for a given Ui, the solution Hi to (7.6) exists and is unique

for a non isolated fra
ture even if we set Neumann boundary 
onditions on the whole

∂Fi.

Following the arguments proposed in [8℄, it 
an be shown that the unique minimum

of fun
tional (7.4) is obtained for values of H and of the 
ontrol fun
tions U that


orrespond to the ful�lment of 
onditions (7.2) and (7.3) on the tra
es. In other words,

the solution of the problem

minJ subje
t to (7.6) (7.7)


orresponds to the solution of the 
oupled system of equations (7.1)-(7.3).

As shown in previous works (see e.g. [8℄) this optimization problem 
an be ta
kled

with a gradient based method. Even if di�erent approa
hes 
ould also be employed,

gradient-based methods are parti
ularly appealing sin
e they allow to independently

solve problems on fra
tures and 
an be straightforwardly plugged in a parallel resolution

pro
ess.
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In the 
ontinuous setting, the gradient based method is formally devised on the

following 
onsiderations: the optimal U ∈ U , solution to (7.7), satis�es the following

system of equations, 
orresponding to the Fré
het derivatives of J with respe
t to the


ontrol variables: ∀i = 1, . . . , I

Bi
∗Pi + ΛUSi

(
Ui + Π

S∈Si

US
j

)
− α Π

S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)
= 0, (7.8)

where the operators CS
i = Bi

∗
are restri
tion operators on the tra
es, ΛUSi : USi → USi

′

is the Riesz isomorphism, and fun
tions Pi ∈ Vi are the solution to

A∗
iPi = Ci

∗Λ−1
USi

[
Π

S∈Si

(
CS
i Hi(Ui)− CS

j Hj(Uj)
)

+α2 Π
S∈Si

(
CS
i Hi(Ui) + CS

j Hj(Uj)
)]

− αCi
∗

(
Ui + Π

S∈Si

US
j

)
, in Fi, (7.9)

with homogeneous Neumann and Diri
hlet boundary 
onditions. Then, we 
an set

∀i = 1, . . . , I

∇J(Ui) = Bi
∗Pi + ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US(C

S
i Hi(Ui) + CS

j Hj(Uj))), (7.10)

and

∇J(U) =
I

Π
i=1

∇J(Ui). (7.11)

The gradient based algorithm for solving (7.7) is fully des
ribed in [8℄. Here, we fo
us

on a �rst-dis
retize-then-optimize approa
h, and we move on by introdu
ing, in the next

se
tion, the spa
e dis
retization.

7.3 The virtual element method

The Virtual Element Method [3, 4, 10, 2℄ is a very re
ent te
hnique for solving

partial di�erential equations on meshes of fairly general polygonal elements with an

arbitrary number of sides. This 
hara
teristi
 is very attra
tive for the appli
ation


onsidered herein. Indeed, on ea
h fra
ture we solve equation (7.6), whose solution


an have a dis
ontinuous gradient a
ross the tra
es. In order to 
orre
tly reprodu
e

this irregular behaviour, we 
an take advantage of the �exibility of virtual elements

by transforming, on ea
h fra
ture, a given triangulation (non 
onforming to tra
es) in

a more general mesh, 
onforming to tra
es, simply obtained by splitting the triangles

along tra
es into more general sub-polygons not 
rossed by tra
es. We remark that
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F1

F2

Figure 7.1: Example of the mesh for the VEM: elements shaded have been 
ut into polygons

to mat
h the tra
e on the two fra
tures independently

we do not require 
onformity between the meshes of the two fra
tures interse
ting at a

tra
e. As a 
onsequen
e of the meshing pro
ess, a partial 
onformity (i.e. 
onformity to

tra
es but no 
onformity between the meshes of interse
ting fra
tures) will result, but

the meshing pro
ess is still independent on ea
h fra
ture and thus easy and reliable( see

Figure 7.1).

Let us now des
ribe the appli
ation of the VEM to the problem 
onsidered. For the

sake of simpli
ity, we 
onsider in this se
tion homogeneous 
onditions on the Diri
hlet

boundary; furthermore, we 
onsider in this work the 
ase of virtual elements of order

k = 1 and we assume that the fra
ture transmissivity Ki is 
onstant on ea
h fra
ture,

but might vary from one fra
ture to another. We will fo
us on a generi
 fra
ture Fi ⊂ Ω,

sin
e the pro
ess is independent on ea
h fra
ture. Let {Ti,δ}δ be a family of meshes on

Fi, being δ the mesh parameter (
orresponding to the square root of the largest element

size). Ea
h mesh is built as previously sket
hed: we start with a given triangulation,

and whenever a tra
e 
rosses an element, the latter is split by the tra
e itself in two

sub-polygons. If the tra
e ends inside an element, it is prolonged up to the boundary of

the element. To note is that we obtain 
onvex polygons, thus satisfying the assumptions

in [3℄. Ea
h Ti,δ is therefore made of open polygons {E} with an arbitrary number nE

of edges e, and we 
all Ni the total number of verti
es. We de�ne for ea
h δ a spa
e

Vi,δ ⊂ H

1
(Fi) as follows. Following the notation in [3℄, for a generi
 element E of the

mesh, let us introdu
e the spa
e

B1(∂E) =
{
v ∈ C

0(∂E) : v|e ∈ P1(e), ∀e ⊂ ∂E
}
.
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Let V E,1
be the spa
e of harmoni
 fun
tions that are linear on the boundaries of the

element,

V E,1 =
{
v ∈ H

1
(E) : v|∂E ∈ B1(∂E),∆v|E = 0

}
.

We �nally set

Vi,δ =
{
v ∈ H

1
0(Fi) : v|E ∈ V E,1, ∀E ∈ Ti,δ

}
.

For ea
h element, fun
tions in V E,1
are uniquely identi�ed by pres
ribing the polynomial

fun
tions on ∂E, or, equivalently, spe
ifying the values at the nE verti
es of the polygon.

With this natural 
hoi
e for the degrees of freedom, the C0

ontinuity of fun
tions

in Vi,δ is easily enfor
ed. The dimension of Vi,δ is Ni, and we introdu
e a Lagrange

basis {φ1, . . . , φNi
}, de�ned by φj(xk) = δjk, where xk is the k-th vertex in the mesh.

Fun
tions {φj} are in general not known expli
itly inside the elements, but only on the

boundaries of the elements, and this is a key point of VEM. Further we observe that

the spa
e of polynomials P1(E) ⊂ Vi,δ |E for ea
h element E in Ti,δ.
On the spa
e Vi,δ we de�ne a symmetri
 bilinear form ai,δ : Vi,δ × Vi,δ 7→ R as the

dis
rete 
ounterpart of the bilinear form ai : Vi × Vi 7→ R de�ned as

ai(Hi, v) = 〈AiHi, v〉V ′
i ,Vi

.

On ea
h element E we introdu
e the bilinear form aEi,δ(·, ·) : Vi,δ |E × Vi,δ|E 7→ R:

aEi,δ(φ,ϕ) = (Ki ∇PE φ,∇PE ϕ)E + α
(
φ|Si ∩∂E

, ϕ|Si ∩∂E

)

Si ∩∂E
+ SE(φ,ϕ), (7.12)

and for any two fun
tions φ, ϕ ∈ Vi,δ we have

ai,δ(φ,ϕ) =
∑

E∈Ti,δ

aEi,δ(φ,ϕ). (7.13)

In (7.12), the proje
tion operator PE : Vi,δ |E 7→ P1(E) is de�ned for any fun
tion

φ ∈ Vi,δ |E by




(Ki∇PE φ,∇p)E = (Ki∇φ,∇p)E ∀p ∈ P1(E)
∑nE

k=1PE φ(xk) =
∑nE

k=1 φ(xk)
(7.14)

being {xk}k the 
oordinates of the verti
es of element E, and SE : Vi,δ|E × Vi,δ|E 7→ R

is a properly designed fun
tional that is non-zero on the kernel of PE
.
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Remark 7.1. Let us observe that the de�nition (7.12) for the bilinear form and (7.14)

for the proje
tion operator slightly di�er from the de�nitions introdu
ed in [3℄. In our

de�nition of the dis
rete bilinear form the proje
tion operator does not a�e
t the portion

of the operator de�ned on the tra
es, and 
onsequently this term does not appear in

(7.14) or in the de�nition of the stability operator SE
. A

ording to [3℄ we assume that

there exist two positive 
onstants c0 and c1 independent from the mesh element E and

of element diameter, su
h that:

c0(Ki ∇ϕ,∇ϕ)E ≤ SE(ϕ,ϕ) ≤ c1(Ki∇ϕ,∇ϕ)E , ∀ϕ ∈ Vi,δ|E, with PE ϕ = 0.

(7.15)

On ea
h element E of the triangulation we have:

aEi (φ,ϕ) = aEi (φ− PE φ+ PE φ,ϕ −PE ϕ+ PE ϕ)

= aEi (PE φ,PE ϕ) + aEi (φ− PE φ,ϕ− PE ϕ)

+aEi (φ−PE φ,PE ϕ) + aEi (PE φ,ϕ −PE ϕ)

= aEi (PE φ,PE ϕ) + aEi (φ− PE φ,ϕ− PE ϕ)

+α
(
φ− PE φ,PE ϕ

)
Si ∩∂E

+ α
(
ϕ− PE ϕ,PE φ

)
Si ∩∂E

+
(
Ki∇(φ− PE φ),∇(PE ϕ)

)
E
+
(
Ki ∇(ϕ−PE ϕ),∇(PE φ)

)
E

= aEi (PE φ,PE ϕ) + aEi (φ− PE φ,ϕ− PE ϕ)

+α
(
φ− PE φ,PE ϕ

)
Si ∩∂E

+ α
(
ϕ− PE ϕ,PE φ

)
Si ∩∂E

(7.16)

where the orthogonality 
ondition (7.14) has been used for the last equality.

It is possible to show that the given de�nition of the bilinear form is 
onsistent and

stable. Consisten
y easily follows from de�nition (7.12) and from (7.14): for all E ∈ Ti,δ,
∀p ∈ P1(E), ∀φ ∈ Vi,δ |E we have:

aEi,δ(φ, p) =
(
Ki ∇(φ− PE φ),∇p

)
E
+
(
Ki∇(PE φ),∇p

)
E
+ α (φ, p)Si ∩∂E

=
(
Ki ∇(PE φ),∇p

)
E
+ α (φ, p)Si ∩∂E

= aEi (φ, p),

being aEi (·, ·) the restri
tion to a mesh element of the 
ontinuous bilinear form. Sta-

bility 
an be proved similarly to [3℄, using (7.12) and (7.16), as there exist two pos-

itive 
onstants a and a independent from the element E and from δ su
h that ∀φ ∈
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Vi,δ |E, a aEi (φ, φ) ≤ aEi,δ(φ, φ) ≤ a aEi (φ, φ). For all φ ∈ Vi,δ|E we have:

aEi,δ(φ, φ) =
(
Ki∇(PE φ),∇(PE φ)

)
E
+ α (φ, φ)Si ∩∂E

+ SE(φ− PE φ, φ− PE φ)

=
(
Ki∇(PE φ),∇(PE φ)

)
E
+ α

(
PE φ,PE φ

)
Si ∩∂E

−α
(
PE φ,PE φ

)
Si ∩∂E

+ α (φ, φ)Si ∩∂E
+ SE(φ− PE φ, φ− PE φ)

≤ aEi (PE φ,PE φ) + α (φ, φ)Si ∩∂E
− α

(
PE φ,PE φ

)
Si ∩∂E

+c1
(
Ki ∇(φ− PE φ),∇(φ− PE φ)

)
E

≤ max {1, c1}
(
aEi (PE φ,PE φ) +

(
Ki ∇(φ− PE φ),∇(φ− PE φ)

)
E

+α
(
φ− PE φ, φ− PE φ

)
Si ∩∂E

+ 2α
(
φ− PE φ,PE φ

)
Si ∩∂E

)

= a aEi (φ, φ),

and in a similar fashion:

aEi,δ(φ, φ) ≥ min {1, c0}
(
aEi (PE φ,PE φ) +

(
Ki ∇(φ− PE φ),∇(φ − PE φ)

)
E

+α
(
φ− PE φ, φ− PE φ

)
Si ∩∂E

+ 2α
(
φ− PE φ,PE φ

)
Si ∩∂E

)

= a aEi (φ, φ).

Assuming basi
 quality properties for the triangulation, fun
tional SE

an be 
hosen

as in [3℄ to satisfy 
onditions (7.15), thus having for all φ,ϕ ∈ Vi,δ|E :

SE(φ,ϕ) =

nE∑

k=1

Ki(φ(xk)− (PE φ)(xk))(ϕ(xk)− (PE ϕ)(xk)). (7.17)

Con
erning the treatment of the sour
e term qi at right hand side of equation (7.6), it

is shown in [4℄ that 
onvergen
e rates are preserved approximating qi with a pie
ewise


onstant fun
tion on ea
h element of the triangulation.

Given the previous results and de�nitions it is possible to use the 
onvergen
e theo-

rem in [3℄ to prove that the dis
rete problems on the fra
tures are well posed and enjoy

the 
onvergen
e rates of standard �nite elements of the same order.

Even if fun
tions in Vi,δ are only known on the edges of triangulation elements, the

knowledge of the degrees of freedom allows us to 
ompute the dis
rete bilinear forms.

In fa
t, in order to 
ompute PE φ, for any φ ∈ Vi,δ |E and p ∈ P1(E) we evaluate:

(Ki ∇φ,∇p)E =

∫

E
Ki ∇φ∇p dE =

∫

E
Ki ∆p φ dE +

∫

∂E
Ki

∂p

∂n∂E
φ dγ

=

∫

∂E
Ki

∂p

∂n∂E
φ dγ

where n∂E is the outward unit normal ve
tor to ∂E.
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7.4 Formulation and resolution of the dis
rete problem

As shown in Se
tion 7.2, the problem has been reformulated as a PDE-
onstrained

optimization problem (see equation (7.7)) in whi
h the quadrati
 fun
tional J is to be

minimized subje
t to linear 
onstraints. In this se
tion, following a �rst-dis
retize-then-

optimize approa
h, we give some details about the dis
rete formulation of the problem

and the numeri
al approa
h for 
omputing a solution to the problem. In the following,

we will use lower 
ase letters for the �nite dimensional approximations of fun
tions H

and U .

7.4.1 Dis
rete formulation

As outlined in the previous se
tion, we introdu
e a �nite dimensional basis for ea
h

fra
ture Fi, with a total number NF =
∑I

i=1Ni of DOFs on the fra
tures. Con
erning

the fun
tional spa
e on the tra
es, in order to simplify the dis
ussion, we 
onsider the

following di�erent numbering for the 
ontrol fun
tions uSi , indu
ed by the tra
e num-

bering. Being S = Sm a given tra
e, with ISm = {i, j} and assuming i < j, we denote

by u−m and by u+m the 
ontrol fun
tions related to the m-th tra
e and 
orresponding

to fra
tures Fi and Fj , respe
tively. By overloading the notation, we use the same

symbol for the 
orresponding ve
tor of DOFs. Let us introdu
e basis fun
tions ψ−
m,k,

k = 1, ..., N−
m and ψ+

m,k, k = 1, ..., N+
m for the spa
e of the 
ontrol fun
tion u−m and

u+m, respe
tively. Note that here we allow to use di�erent spa
es on the two �sides� of

ea
h tra
e. Then we have, for m = 1, ...,M , ⋆ = −,+, u⋆m =
∑N⋆

m

k=1 u
⋆
m,kψ

⋆
m,k. Setting

NT =
∑M

m=1(N
−
m +N+

m), we de�ne u ∈ R
NT


on
atenating u−1 , u
+
1 , . . . , u

−
M , u

+
M .

Let us 
onsider the fun
tional J , whose expression is given in Se
tion 7.2 by equation

(7.4), and let us write the dis
rete fun
tional in terms of L2
norms instead of H− 1

2
and

H
1

2
norms on the tra
es: its dis
rete 
ounterpart is

J =
1

2

I∑

i=1

∑

S∈Si



∫

S

(

Ni∑

k=1

hi,kφi,k|S −
Nj∑

k=1

hj,kφj,k|S)
2 dγ+ (7.18)

∫

S

(

N−
m∑

k=1

u−m,kψ
−
m,k +

N+
m∑

k=1

u+m,kψ
+
m,k − α

Ni∑

k=1

hi,kφi,k|S − α

Nj∑

k=1

hj,kφj,k|S)
2 dγ


 .

Let us de�ne for all Sm ∈ S, for p, q ∈ ISm (possibly p = q), the matri
es

(CSm
p,q )k,ℓ =

∫

Sm

ϕp,k |Sm
ϕq,ℓ|Sm

dγ, Cp,q =
∑

Sm∈Sp

CSm
p,q .
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Furthermore, for m = 1, ...,M and ⋆ = −,+ de�ne C⋆
m ∈ R

N⋆
m×N⋆

m
, C±

m ∈ R
N−

m×N+
m
and

Cm as:

(C⋆
m)kℓ=

∫

Sm

ψ⋆
m,kψ

⋆
m,ℓ dγ, (C±

m)kℓ=

∫

Sm

ψ−
m,kψ

+
m,ℓ dγ, Cm=

(
C−
m C±

m

(C±
m)T C+

m

)
,

and B⋆
i,m ∈ R

Ni×N⋆
m
and B⋆

j,m ∈ R
Nj×N⋆

m
as

(B⋆
i,m)kℓ =

∫

Sm

ψ⋆
m,kφi,ℓ|Sm

dγ, (B⋆
j,m)kℓ =

∫

Sm

ψ⋆
m,kφj,ℓ|Sm

dγ.

The fun
tional J in (7.18) is therefore written, in algebrai
 form, as

J(h, u) =
1

2

I∑

i=1

∑

S∈Si

(1 + α2)hTi C
S
i,ihi + (1 + α2)hTj C

S
j,jhj − 2(1− α2)hTi C

S
i,jhj

+(u−m)T C−
m u

−
m + (u+m)T C+

m u
+
m + 2(u−m)T C±

m u
+
m − α(hTi B

+
i,mu

+
m)

−α(hTi B−
i,mu

−
m)− α(hTj B

−
j,mu

−
m)− α(hTj B

+
j,mu

+
m)− α((u−m)T (B−

i,m)Thi)

−α((u+m)T (B+
i,m)Thi)− α((u−m)T (B−

j,m)Thj)− α((u+m)T (B+
j,m)Thj).

We now allow for a more 
ompa
t form of J(h, u) by assembling previous matri
es as

follows. We set

Bi,m = (B−
i,m B+

i,m) ∈ R
Ni×(N−

m+N+
m), um = (u−m, u

+
m).

For ea
h �xed i = 1, ..., I, matri
es Bi,m, for m su
h that Sm ∈ Si, are then grouped

row-wise to form the matrix Bi ∈ R
Ni×NSi

, with NSi
=
∑

Sm∈Si
(N−

m + N+
m). Matrix

Bi a
ts on a 
olumn ve
tor ui obtained extra
ting blo
ks um, for Sm ∈ Si, from u and

appending them in the same order used for Bi,m, as the a
tion of a suitable operator

Ri : R
NT 7→ R

NSi
su
h that ui = Riu. Finally, let B ∈ R

NF×NT
be de�ned by

B =




B1R1

.

.

.

BIRI


 .

Let now Gh ∈ R
NF×NF

be de�ned blo
kwise as follows: for i = 1, ..., I we set

Gh
ii = (1 + α2)Ci,i, Gh

ij = (α2 − 1)CS
i,j if j ∈ Ji (0 elsewhere) ,

where, �xed Fi, Ji 
olle
ts the indi
es j su
h that |F̄j ∩ F̄i| > 0. Sin
e, obviously, j ∈ Ji

if and only if i ∈ Jj , and due to the straightforward property (Gh
ij)

T = Gh
ji, we have
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that Gh
is a symmetri
 matrix. Next, let us de�ne the matrix Gu ∈ R

NT×NT
blo
kwise

as Gu = diag(Cm,m = 1, ...,M). With these de�nitions at hand, the fun
tional J is

rewritten

J(h, u) :=
1

2

(
hTGhh− αhTBu− αuTBTh+ uTGuu

)

being h ∈ R
NF

obtained appending ve
tors hi, i = 1, ..., I.

We �nally note that, setting

G =

(
Gh −αB

−αBT Gu

)

and w = (h, u), J 
an be simply written as J = 1
2w

TGw, with G straightforwardly

symmetri
, due to previous 
onsiderations, and positive semide�nite by 
onstru
tion.

Constraints (7.6) are written as a unique linear system as follows: For all i = 1, ..., I

de�ne the matrix Ai ∈ R
Ni×Ni

as

(Ai)kℓ =
∑

E∈Ti,δ

(∫

Fi

Ki∇PE φi,k∇PE φi,ℓ dFi + SE(φi,k, φi,ℓ)

)

+ α
∑

S∈Si

∫

S

φi,k |Sφi,ℓ|S dγ, k, ℓ = 1, . . . , Ni

where the operators PE
and SE

are de�ned by (7.14) and (7.17), respe
tively.

For ea
h fra
ture Fi, we set N
i
Si

=
∑

Sm∈Si
N⋆

m as the number of DOFs on tra
es of

Fi on the Fi �side�, and we de�ne matri
es Bi ∈ R
Ni×N i

Si
grouping row-wise matri
es

B⋆
i,m, with m spanning tra
es in Si, and setting for ea
h m either ⋆ = + or ⋆ = −

a

ording to whi
h one of the two �sides� of tra
e Sm is on Fi. Matri
es Bi a
t on a


olumn ve
tor u′i 
ontaining all the N
i
Si


ontrol DOFs 
orresponding to the tra
es of Fi,

obtained extra
ting blo
ks u⋆m, for Sm ∈ Si, from u and appending them in the same

order used in the de�nition of Bi. Again, this 
an be obtained as the a
tion of a suitable

operator R′
i : R

NT 7→ R
N i

Si
su
h that u′i = R′

iu. In pra
ti
e, R
′
i extra
ts only sub-ve
tors

u⋆m from u 
orresponding to 
ontrol fun
tions on the "
orre
t side" of the tra
e.

The algebrai
 formulation of the primal equations (7.6) is then

Aihi = q̃i + Bi u
′
i, i = 1, ..., I, (7.19)

where q̃i a

ounts for the term qi in (7.6) and for the boundary 
onditions on the fra
ture

Fi.
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We set A = diag(Ai, i = 1, ..., I) ∈ R
NF×NF

and de�ne B ∈ R
NF×NT

as

B =




B1R
′
1

.

.

.

BI R
′
I




Setting q = (q̃1, . . . , q̃I) ∈ R
NF

, 
onstraints (7.19) are then written Ah− B u = q.

The problem under 
onsideration is therefore reformulated as the following equality


onstrained quadrati
 programming problem:

min J(h, u) =
1

2

(
hTGhh− αhTBu− αuTBTh+ uTGuu

)
(7.20)

s.t. Ah− B u = q. (7.21)

7.4.2 Solving the optimization problem

The �rst order optimality 
onditions for problem (7.20)-(7.21) are the following:




Gh −αB AT

−αBT Gu −BT

A −B 0







h

u

−p


 =




0

0

q


 (7.22)

being p the ve
tor of Lagrange multipliers.

The previous saddle point problem is, for real appli
ations, a very large s
ale prob-

lem, with highly sparse blo
ks, as A, Gu
are blo
k diagonal matri
es, Gh

, B and B are

blo
k-sparse.

By (formally) using the linear 
onstraint for eliminating the unknown h as

h = A−1(B u+ q), (7.23)

we obtain the following equivalent un
onstrained problem :

min Ĵ(u) :=
1

2
uT (BT A−TGhA−1 B+Gu − αBT A−TB − αBTA−1 B)u

+qTA−T (GhA−1 B−αB)u.

For further 
onvenien
e we rewrite Ĵ(u) = 1
2u

T Ĝu+ q̂Tu. A gradient-based method for

the minimization of the fun
tional requires the 
omputation of the gradient of Ĵ :

∇Ĵ(u) = (BT A−TGhA−1 B+Gu − α(BT A−TB +BTA−1 B))u+

(BT A−TGh − αBT )A−1q.
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or, equivalently, ∇Ĵ(u) = Ĝu+ q̂.

The gradient 
an be written in terms of some auxiliary variables as follows. Rear-

ranging previous expression, we obtain

∇Ĵ(u) = BT A−TGhA−1(B u+ q) +Guu− αBT A−TBu− αBTA−1(B u+ q)

and re
alling (7.23), one has

∇Ĵ(u) = BT A−TGhh+Guu− αBT A−TBu− αBTh.

Now set p := A−T (Ghh− αBu), i.e. given h and u, p solves

AT p = Ghh− αBu. (7.24)

With these de�nitions, we may write

∇Ĵ(u) = BT p+Guu− αBTh. (7.25)

Note that setting to zero the previous expression for obtaining stationary points for

Ĵ(u), and 
olle
ting su
h equation together with (7.23) and (7.24), we obtain system

(7.22).

Con
erning the numeri
al solution of the optimization problem, we mention here

two possible approa
hes. The �rst one 
onsists in solving the linear system (7.22). An

iterative solver is 
learly a re
ommended 
hoi
e, and symmlq [16℄ would be a suitable


hoi
e; this approa
h has been used in [7℄. Another approa
h 
onsists in applying an

iterative solver to the minimization of Ĵ(u). We fo
us here on this se
ond approa
h,

sket
hing the 
onjugate gradient method applied to the minimization of Ĵ(u). In the

algorithm, let us denote by gk the gradient ∇Ĵ(uk) at step k and by dk the des
ent

dire
tion.

Conjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (7.23) and (7.24) and g0 by (7.25)

3. Set d0 = −g0, k = 0

4. While gk 6= 0
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4.1. Compute λk with a line sear
h along dk

4.2. Compute uk+1 = uk + λkdk

4.3. Update gk+1 = gk + λkĜdk

4.4. Compute βk+1 =
gT
k+1

gk+1

gT
k
gk

4.5. Update dk+1 = −gk+1 + βk+1dk

4.6. k = k + 1

Due to linearity, Step 4.3 is equivalent to 
ompute gk+1 = Ĝuk+1 + q̂. Indeed,

gk+1 = Ĝuk+1 + q̂ = Ĝ(uk + λkdk) + q̂ = Ĝuk + q̂ + λkĜdk = gk + λkĜdk.

Nonetheless, we remark that this step is 
learly performed without forming matrix Ĝ,

but rather 
omputing ve
tor yk = Ĝdk through the following steps:

1. Solve At = B dk

2. Solve AT v = Ght− αBdk

3. Compute yk = BT v +Gudk − αBT t

Furthermore, sin
e Ĵ is quadrati
, the stepsize λk in Step 4.1 
an be 
omputed via

an exa
t line sear
h. Given a des
ent dire
tion dk, we 
ompute λk su
h that it minimizes

the fun
tion φ(λ) := Ĵ(uk + λdk). Straightforward 
omputations show that one has

λk = − dTk gk

dTk Ĝdk
. (7.26)

The stepsize λk is therefore 
omputed without mu
h e�ort, as quantity Ĝdk is the same

needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of

the linear systems with 
oe�
ient matrix A (whi
h a
tually equals AT
). Nevertheless,

we re
all that matrix A is a
tually symmetri
 positive de�nite, blo
k diagonal with ea
h

blo
k de�ned on a fra
ture. The systems are therefore de
omposed in as many small

�lo
al� systems as the number of fra
tures. Right-hand-sides of the lo
al systems gather

information both from the 
urrent fra
ture, and from the interse
ting fra
tures, whi
h

are typi
ally small in number. Hen
e, these independent linear systems 
an be e�
iently

solved on parallel 
omputers.
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7.5 VEM implementation and numeri
al results

In this se
tion we address some implementation issues 
on
erning the use of VEM

in 
onjun
tion with the optimization approa
h des
ribed in Se
tion 7.4. In addition,

we present some numeri
al results in order to show the viability of the VEM for the

simulation of dis
rete fra
ture networks and to highlight the e�e
tiveness of the overall

method in this 
ontext. Simpler test problems fo
used on parti
ular implementation

issues anti
ipate some numeri
al results on more 
omplex DFNs.

7.5.1 VEM for DFN

We start des
ribing the pro
edure for obtaining the 
omputing mesh on the fra
ture

network. Let us re
all that ea
h fra
ture in a DFN is represented by a 2D polygonal

domain and is interse
ted by other fra
tures of the network in a set of tra
es. As a �rst

step, triangular meshes are generated on ea
h fra
ture independently, without taking

into a

ount tra
e positions or 
onformity requirements of any kind. Next, we pro
eed

independently on ea
h fra
ture and whenever a tra
e interse
ts one element edge, a new

node is 
reated. New nodes are also 
reated at tra
e tips. If the tra
e tip falls in the

interior of an element, the tra
e is prolonged up to the opposite mesh edge. Interse
ted

elements are then split into two new �sub-elements�, whi
h be
ome elements in their

own right, as shown in Figures 7.2 and 7.3 that represent the two phases of the pro
ess

des
ribed above. In these pi
tures, 
oloured elements are the new virtual elements,

whereas blank elements are the original triangular elements. Elements with up to 6

edges are introdu
ed in these examples. In the Figures, ea
h 
olor 
orresponds to a

di�erent number of edges in the element. The reader might refer to the PDF �le to

zoom in the pi
tures for a more detailed view.

The polygonal mesh obtained with the pro
edure des
ribed is possibly improved

through the displa
ement of some nodes. Namely, when a node falls very 
lose to a tra
e,

it 
an be moved onto the tra
e itself, and therefore redu
ing the number of element edges

and total degrees of freedom. The mesh improvement pro
ess is performed as detailed

in the following. The distan
e of ea
h node of interse
ted elements from the nearest

tra
e is 
ompared to a given mesh dependent toleran
e. If the distan
e of the node to

the 
losest tra
e is below the toleran
e, then the node is moved to its proje
tion on the

tra
e. Verti
es of the fra
tures always remain �xed and nodes in the border are only

moved provided that they remain on the same border in order to avoid 
hanging the
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Figure 7.2: Mesh example. Left: original triangulation. Right: mesh for VEM.
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Figure 7.3: Left: detail of a mesh around a tra
e interse
tion. Right: detail of a mesh

around a tra
e tip.
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0 10 20 �0 40 50 0 10 20 30 40 50

Figure 7.4: Left: example of VEM mesh without modi�
ation. Right: Same mesh after

modi�
ations.

shape of the fra
ture. This pro
edure is performed independently for every fra
ture,

and although not stri
tly ne
essary, it is advisable. The e�e
t of this additional mesh

modi�
ation is shown in Figure 7.4.

Sin
e VEM basis fun
tions are not known in the interior of mesh elements in general,

we resort to the following mesh-dependent L2
and H1

norms 
ommonly used in the


ontext of mimeti
 �nite di�eren
es, and de�ned ∀u ∈ Vi,δ and for all i = 1, . . . , I,

respe
tively as:

||u||20,δ =
∑

E∈Ti,δ

(
|E|
∂E

∑

e⊂∂E

|e|
(
uh(vi) + uh(ve)

2

)2
)
,

||u||21,δ =
∑

E∈Ti,δ

(
|E|

∑

e⊂∂E

(
uh(vi)− uh(ve)

|e|

)2
)
,

where vi and ve are the initial and �nal point of the edge, respe
tively.

7.5.2 Test problems

We �rst propose two test problems aimed at evaluating VEM approximation 
apa-

bilities in the DFN 
ontext by means of applying them to very simple 
on�gurations

representative of 
ommon situations in DFN simulations. In these test 
ases, a single



7.5 VEM implementation and numeri
al results 199

problem of the form (7.1) is solved, i.e. a single fra
ture F is 
onsidered, assigning u on

the tra
es. In the �rst 
ase, two interse
ting tra
es are present in F , 
ompletely 
ross-

ing the domain, while a single tra
e ending inside the domain is studied in the se
ond

problem. The proposed numeri
al results show very good approximation 
apabilities of

virtual elements in dealing with these geometri
al 
on�gurations.

Problem 1

The �rst test problem, labeled P1, displays two tra
es interse
ting ea
h other inside

the domain. The domain is a single re
tangular fra
ture F ⊂ R
2
with two tra
es S1 and

S2 de�ned by:

F =
{
(x, y) ∈ R

2 : x ∈ (0, 3), y ∈ (0, 1)
}
,

S1 =
{
(x, y) ∈ R

2 : x− y − 1 = 0
}
, S2 =

{
(x, y) ∈ R

2 : 2− x− y = 0
}
.

The domain is shown in Figure 7.5 with a 
oarse mesh with parameter δmax = 0.2 along

with a detail of tra
e interse
tion. Here and in the sequel δmax denotes the square root

of the maximum element area for the initial triangulation on ea
h fra
ture. For this

mesh, the original triangular element 
ontaining tra
e interse
tion is split into four new

elements, two triangles and two quadrilaterals.

The problem is set as follows:

−∆H = −∆Hex Ω \ S,
H = 0 on ∂F,

U1 = fS1
=

[[
∂Hex

∂ν̂S1

]]

S

on S1,

U2 = fS2
=

[[
∂Hex

∂ν̂S2

]]

S

on S2,

with

Hex(x, y) =





xy(y − 1)(x− y − 1)(x+ y − 2)/7 in A1,

(1− y)(x− y − 1)(x+ y − 2) in A2,

y(x− y − 1)(x+ y − 2) in A3,

y(1− y)(x− 3)(x− y − 1)(x+ y − 2)/5 in A4,

where A1, A2, A3 and A4 denote the four regions in whi
h F is divided by the tra
es,
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Figure 7.5: Problem P1. Left: Domain with 
oarse grid δmax = 0.2. Right: a detail of

tra
e interse
tion.

as indi
ated in Figure 7.5. Values of fS1
and fS2

are

fS1
(x, y) =





1/(7
√
2)(2− x− y) (7− x(6 + x) + 20y

+2x(1 + x)y − 5xy2 + y3
)

x+ y − 2 ≤ 0

1/(5
√
2)(2− x− y) (−8 + y(1 + y)(11 + y)

+x2(−1 + 2y)− x(1 + y(4 + 5y))
)

x+ y − 2 > 0,

and

fS2
(x, y) =





1/(5
√
2)(−1 + x− y) (−16− (−10 + x)x+ 38y

+2(−7 + x)xy + 5(−3 + x)y2 + y3
)

y − x+ 1 ≤ 0

1/(7
√
2)(−1 + x− y)

(
−28 + x2(−1 + 2y)

+y(23 + (−3 + y)y) + x(9 + y(−8 + 5y))) y − x+ 1 > 0.

In Figure 7.7, left, the numeri
al solution obtained on a �ne mesh with parameter

δmax = 0.05 is displayed. This problem has been solved using both the VEM and

the XFEM for the spa
e dis
retization, as des
ribed in [9, 7, 8℄. Figure 7.7, right,

reports, for both spa
e dis
retizations, errors 
omputed versus the number of DOFs.

We remark that, when applying the two approa
hes, we always start from the same

triangular mesh. The XFEM deals with irregularities in the solution along tra
es by

adding suitable enri
hment fun
tions (see [7, 8℄ and referen
es therein), resulting the

two methods in a di�erent number of DOFs, when the same mesh parameter is used.

Computed 
onvergen
e rates are 
lose to the expe
ted ones both in the L2
and the H1

mesh-dependent norms, and both for the VEM and for the XFEM: namely, L2
norm


onvergen
e rate is 1.03 for the VEM and 0.99 for the XFEM, whereas the H1
norm


onvergen
e rate is 0.49 both for the VEM and for the XFEM. The L2
norm of the error

on the restri
tion of the solution to the tra
es is also reported (label 'L2H on tra
e' in
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Figure 7.6: Problem P1: approximate solution on a mesh with δmax = 0.05
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Figure 7.7: Problem P1: error behaviour

the legend), and displays a 
onvergen
e rate of 1.0 for the VEM and 0.91 for the XFEM.

As a whole, the two spa
e dis
retizations yield a 
omparable level of a

ura
y, and the

interse
tion between tra
es is easily handled by the VEM on a polygonal mesh with very

good approximation properties.

Problem 2

Let us de�ne the domain F for the se
ond test problem P2 as

F =
{
(x, y) ∈ R

3 : −1 < x < 1, −1 < y < 1, z = 0
}
,
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with a single tra
e S =
{
(x, y) ∈ R

2 : y = 0 and − 1 ≤ x ≤ 0
}
ending in the interior

of F . This test problem has also been 
onsidered in [7℄. Here we set out to show the

behaviour of virtual elements in handling the non-smooth behaviour of the solution

around tra
e tips. Let us introdu
e the fun
tion Hex(x, y) in F as:

Hex(x, y) = (x2 − 1)(y2 − 1)(x2 + y2) cos

(
1

2
arctan2(x, y)

)

where arctan2(x, y) is the four-quadrant inverse tangent, giving the angle between the

positive x-axis and point (x, y), and di�ers from the usual one-argument inverse tangent

arctan(·) for pla
ing the angle in the 
orre
t quadrant.

The problem is de�ned by the system:

−∆H = −∆Hex
on Ω \ S,

H = 0 on ∂F,

U = x− x3 on S,

where U is the pres
ribed value of the jump of �uxes a
ross the tra
e S.

Figure 7.8 shows the VEM mesh and the resulting elements near the tip. In this

implementation of the method, the tip be
omes a new node of the triangulation, and

three new four-sided elements are generated. Two of them are obtained from the original

triangle that 
ontained the tra
e tip, while the third one appears when the node given

by the interse
tion between the prolonged tra
e and the opposite mesh element is added

to the 
orresponding neighbouring triangle that be
omes a quadrilateral.

The approximate solution is shown in Figure 7.9. In Figure 7.10 we report errors


omputed both with the L2
and with the H1

mesh dependent norms, both for the VEM

and for the XFEM. Computed 
onvergen
e rates are, also for this test problem, quite

similar for the two spa
e dis
retizations: 1.05 in the L2
norm, and 0.51 in the H1

norm

for the VEM; 1.02 in the L2
norm, and 0.47 in the H1

norm for the XFEM. The Figure

also reports the errors on the restri
tion of H to the tra
e S, 
omputed in the L2
norm.

Computed 
onvergen
e rate are in this 
ase 0.85 for the VEM and 0.96 for the XFEM.

As for problem P1, the approximation properties of the two spa
e dis
retizations are

therefore quite similar. As a whole, also this geometri
al 
on�guration in
luding a tra
e

tip is e�e
tively handled by the VEM, thanks to the �exibility in using polygonal mesh,

without a�e
ting the approximation 
apabilities if 
ompared, e.g., with extend �nite

elements.
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Figure 7.8: Problem P2. Domain meshed with δmax = 0.1. Right: a detail of elements

near tra
e tip.
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Figure 7.10: Problem P2: error behaviour

7.5.3 DFN problems

In this se
tion we deal with networks of fra
tures, addressing both simple DFN prob-

lems and more 
omplex and realisti
 problems. Computations are perfomed using the

PDE-
onstrained optimization approa
h des
ribed, in 
onjun
tion with virtual element

spa
e dis
retization. The general DFN problem is set as follows:

−∆H = q Ω \ S, (7.27)

H|ΓD
= HD

on ΓD,

∂H

∂ν̂
= GN

on ΓN ,

with referen
e to the nomen
lature introdu
ed in Se
tion 7.2.

DFN2

Here we analyze a very simple DNF 
onsisting of two identi
al fra
tures that interse
t

ea
h other orthogonally, as 
an be seen in Figure 7.11 where the domain Ω is depi
ted.

Fra
tures 1 and 2 and the tra
e S are de�ned as:

F1 =
{
(x, y, z) ∈ R

3 : z ∈ (−1, 1), y ∈ (0, 1), x = 0
}
,

F2 =
{
(x, y, z) ∈ R

3 : x ∈ (−1, 1), y ∈ (0, 1), z = 0
}
,

S =
{
(x, y, z) ∈ R

3 : x = 0, y ∈ (0, 1), z = 0
}
.
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Figure 7.11: DFN2: spatial distribution of fra
tures and the obtained solution for the

hydrauli
 head.

Homogeneous Diri
hlet boundary 
onditions are imposed on the edges 
orrespond-

ing to z = 0 and z = 1 of F1 and to y = 0 and y = 1 of F2 . On the remaining edges

we set homogeneous Neumann 
onditions for fra
ture F1, and a non-
onstant Neumann

boundary 
ondition for fra
ture F2 given by GN = 16y(1− y)2on ΓN . With this de�ni-

tion of the problem, the exa
t solutions for the hydrauli
 head Hex
and the tra
e �ux

U are:

Hex
1 (x, y, z) =

{
4y(1 − y)(z − 1)2 for z ≥ 0

4y(1 − y)(z + 1)2 for z < 0

U ex
1 (x, y, z) = 16y(1− y)

Hex
2 (x, y, z) =

{
4y(1 − y)(x+ 1)2 for x ≥ 0

4y(1 − y)(x− 1)2 for x < 0

U ex
2 (x, y, z) = −16y(1− y).

In Figure 7.12 we present the results obtained for the hydrauli
 head on fra
ture

F1 (left) and F2 (right) using a mesh size δmax =
√
0.002. Figure 7.13 shows the


omparison of the obtained �ux with the exa
t solution and the trend of the minimization

of fun
tional J against iteration number. Here, we have performed a number of iterations
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Figure 7.12: DFN2: approximate solution for fra
ture 1 (left) and fra
ture 2 (right).
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Figure 7.13: DFN2. Left: 
omparison between exa
t and approximate �ux. Right: values

of J versus number of iterations.

large enough to let J rea
h stagnation at its minimum. The 
omputed �ux relative to

the minimum of the fun
tional approximates the exa
t solution well.

Error norms are 
omputed for the solution on the fra
tures in terms of the mesh-

dependent L2
and H1

norms and are shown in Figure 7.14 against the number of degrees

of freedom. Errors for the �ux on the tra
e and for the restri
tion of the solution h on the

tra
e are also evaluated and displayed on the same �gure. Convergen
e rates are of 1.05

and of 0.51 for the solution error in the L2
and H1

mesh dependent norms respe
tively,

while a slope of 0.91 is shown for the L2
error norm relative to the �ux and a slope

of 0.94 for the L2
error norm of h at the tra
e. The results obtained show very good

approximation properties of the VEM in 
onjun
tion with the proposed optimization

method. E�e
tiveness of the method in handling more 
omplex 
on�gurations is shown

with the examples that follow.
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Figure 7.14: DFN2: error behaviour

DFN7

This problem 
onsists of 7 fra
tures interse
ting in 11 tra
es. The spatial distribution

of the fra
tures 
an be seen in Figure 7.15. The sour
e term is q = 0 in equation (7.27).

The Diri
hlet boundary ΓD is given by only two fra
ture edges: namely, 
onstant

Diri
hlet boundary 
ondition HD = 3 is set on one edge of fra
ture F3 (see Figure 7.15)

and HD = 7 is set on one edge of fra
ture F7. On all the remaining boundaries of the

network we set homogeneous Neumann 
onditions.

Due to the disposition of the fra
tures and the boundary 
onditions, the exa
t so-

lution to this DFN problem is pie
ewise a�ne and displays a slope 
hange at ea
h

tra
e (the jump in the slope 
orresponding to �ux ex
hange). In this problem we show

the 
apability of the VEM dis
retization, 
ombined with the optimization approa
h, to


orre
tly 
at
h the solution in the spa
e of dis
rete fun
tions.

Results are shown for a very 
oarse mesh (from 8 to 18 elements for ea
h fra
ture)

and for a �ner mesh with δmax = 0.2. See Figure 7.16 for a detail of the meshes for

fra
ture 3.

Table 7.1 details the �ux ex
hange in fra
tures and tra
es for the solution on the

�ner mesh. Rows 
orrespond to tra
es and 
olumns to fra
tures. The last row 
ontains

the sum of all the in
oming and outgoing �ow for ea
h fra
ture, while the last 
olumn

shows the balan
e in �ux ex
hange between the two fra
tures that share a tra
e. An

almost perfe
t balan
ing of the �uxes 
an be seen, both within fra
tures and in tra
e
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Figure 7.15: DFN7: spatial distribution of fra
tures and the obtained solution for the

hydrauli
 head.
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Figure 7.16: DFN7: mesh on F6 with parameter δmax = 1.2 (left) and �ner mesh with

δmax = 0.2 (right).
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Table 7.1: Flux data for the DFN7 
on�guration with �ux mismat
hes a
ross tra
es (last


olumn) and �ux balan
e on fra
tures (last row).

DFN7

F1 F2 F3 F4 F5 F6 F7

T1 -0.036 0.036 -9.8e-12

T2 -0.17 0.17 4.6e-12

T3 0.21 -0.21 -1.6e-12

T4 -0.24 0.24 -1.6e-12

T5 0.24 -0.24 -1.1e-11

T6 0.064 -0.064 -2.7e-12

T7 0.039 -0.039 -8.9e-12

T8 0.34 -0.34 1.1e-11

T9 0.31 -0.31 4.8e-12

T10 0.029 -0.029 8.3e-12

T11 0.039 -0.039 8.1e-13

-2.1e-14 4.4e-14 0.7505 1e-14 4.2e-16 -1.4e-14 -0.7505 -5.9e-12

ex
hanges. Fra
ture F7 a
ts as a sour
e that provides 0.7505 of �ux to the system

(negative values represent �ux leaving the fra
ture), whi
h leaves the system at fra
ture

F3 with an approximately 0 unbalan
e reported in the bottom-right 
ell of the table. All

other fra
tures show a quasi non-existent net �ow, whi
h agrees with the homogeneous

Neumann boundary 
ondition.

DFN36

We end the se
tion with a realisti
 (though rather small) DFN 
onsisting of 36

fra
tures interse
ting in 65 tra
es. The spatial distribution of the fra
tures 
an be seen

in Figure 7.18. Assuming meters as unit of length, fra
ture size spans from 2.8× 103m2

to 1.2× 104m2
.

The Diri
hlet boundary is 
omposed by two edges of two fra
tures, namely ΓD is


omposed by the borders of fra
ture F1 and F2 indi
ated in Figure 7.18, pres
ribing


onstant value Diri
hlet 
onditions, HD
1 = 100 and HD

2 = 0. Homogeneous Neumann

boundary 
onditions are set on all the remaining boundaries. With these boundary


onditions fra
ture F1 is a sour
e of hydrauli
 head, F2 is a sink fra
ture and all other

fra
tures are insulated. Also in this 
ase we set q = 0 in (7.27).
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F1

F2

Figure 7.18: DFN36: Spatial distribution of fra
tures and the obtained solution for the

hydrauli
 head.

The problem is solved on several meshes, with 2m2 < δ2max < 50m2
. In Figure 7.19

the detail of a mesh with δ2max = 30m2
on a sele
ted fra
ture and the 
orresponding

obtained solution are shown.

The quality of the obtained solution 
an be evaluated in terms of two indi
ators,

representing the mismat
h errors in the 
ontinuity 
ondition and in the �ux balan
e


ondition on the tra
es per unit of tra
e length, de�ned respe
tively as:

∆cont =

√∑M
m=1 ‖hi|Sm

− hj |Sm
‖2

∑M
m=1 |Sm|

,

∆flux =

√∑M
m=1 ‖umi + umj − α(hi |Sm

+ hj |Sm
)‖2

∑M
m=1 |Sm|

.

These mismat
h errors are reported in Table 7.2 for di�erent mesh sizes. Namely, we

report values obtained with both the VEM and the XFEM based spa
e dis
retizations.

The table also reports the number of degrees of freedom in the two 
ases, 
orresponding

to ea
h mesh parameter. We remark that the number of DOFs for u is the same in

the two 
ases, as we use on the tra
es a �nite element dis
retization whi
h is indu
ed

by the interse
tion points among the initial triangular mesh element edges (the same
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Figure 7.19: DFN36: Left: Mesh with maximum element size of 30m2
on a sele
ted fra
ture.

Right: Solution on the same grid.

Table 7.2: DFN36: ∆

ont

and ∆
�ux

for various mesh sizes.

VEM XFEM

δ2max u dof h dof ∆flux ∆cont h dof ∆flux ∆cont

50 776 4091 9.515e-04 9.432e-04 5772 1.039e-03 9.521e-04

30 942 6048 9.621e-04 8.394e-04 8106 1.147e-03 1.181e-03

12 1342 13967 6.736e-04 6.514e-04 16932 7.358e-04 8.189e-04

5 1885 30782 5.972e-04 6.083e-04 34958 5.930e-04 7.019e-04

2 2862 74107 4.847e-04 3.949e-04 80403 4.342e-04 4.664e-04

for the two approa
hes) and the tra
e itself. On the other hand, the number of DOFs

for h is di�erent for the two approa
hes here adopted, and is in general smaller for the

VEM. This is due to the fa
t that the XFEM deals with totally non-
onforming meshes

through the introdu
tion of suitable enri
hment fun
tions in triangles 
lose to the tra
es,

thus yielding a bit larger number of DOFs. Note that this larger number of DOFs for

the XFEM is required for handling a total non-
onforming mesh, but it does not yield

more a

urate mismat
h errors with respe
t to the VEM approa
h. As a whole, a good

a

ura
y is obtained with both approa
hes, and the mismat
h errors redu
e with mesh

re�nement.

7.6 Con
lusions

The very re
ent Virtual Element Method is 
oupled with the optimization based

algorithm presented in [9, 7, 8℄ for the numeri
al simulation of DFNs on large s
ales.

The �exibility of virtual elements in handling meshes with elements of fairly general
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polygonal shape allows an easy mesh generation pro
ess, reliable and independent on

ea
h fra
ture, suitable for the optimization approa
h used. The resulting method is

robust as 
an approa
h any DFN with arbitrary fra
ture density, and e�
ient, sin
e it

provides an easy parallel approa
h to the simulation of large networks. The numeri
al

results reported show the viability and e�e
tiveness of the VEM for the simulation of

DFNs.
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