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Abstract
Neural networks are able to extract information from the timing of spikes. Here we provide new results on

the behavior of the simplest neuronal model which is able to decode information embedded in temporal spike

patterns, the so called tempotron [1]. Using statistical physics techniques we compute the capacity for the

case of sparse, time-discretized input, and “material” discrete synapses, showing that the device saturates

the information theoretic bounds with a statistics of output spikes that is consistent with the statistics of the

inputs. We also derive two simple and highly efficient learning algorithms which are able to learn a number

of associations which are close to the theoretical limit. The simplest versions of these algorithms correspond

to distributed on-line protocols of interest for neuromorphic devices, and can be adapted to address the

more biologically relevant continuous-time version of the classification problem, hopefully allowing for the

understanding of some aspects of synaptic plasticity.
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I. INTRODUCTION

Recent studies concerning learning processes in neural circuits have highlighted the role of spike

timing and synchrony (e.g. in sensory systems [2–5]), leading to a view of the learning devices as

a class of time coincidence detectors of a limited number of spikes (at least under certain circum-

stances). These observations are at the root of several fundamental questions concerning neural

coding, the most important one possibly being how do neurons learn to recognize multiple spa-

tiotemporal patterns.

A very stimulating contribution in this field has been the recent introduction by Gutig and Som-

polinsky [1] of a perceptron-like model neuron which is able to process spatio-temporal patterns, the
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so called tempotron. In spite of its simplicity, such a device is capable of decoding the information

contained in the synchrony of spike patterns through a relatively simple supervised gradient learn-

ing rule. Subsequent work [6] has analyzed by statistical physics techniques the storage capacity

(i.e. the typical maximum number of distinct input-output associations which the device can in

principle be trained to reproduce, assuming that the inputs and the expected responses are drawn

from some probability distribution) and the geometry of the space of solutions of the tempotron

for continuous synaptic weights.

In a nutshell, the tempotron is the simplest form of an integrate and fire (IF) neuron, with

N input synapses of strength Ji, i = 1, . . . , N (also called synaptic weights). In the tempotron,

each input corresponds to N sequences of spikes, where the set of spiking times is denoted by {ti}.

The tempotron performs a binary classification of the inputs depending on whether the membrane

potential reaches or not the firing threshold θ in the given time interval. The potential at time t

is given by V (t) =
∑

i Ji
∑

ti<t
v (t− ti), where v (t) is the temporal kernel of the membrane. A

standard choice for the kernel is the exponential one, namely v (t) = v0

(
e−t/tm − e−t/ts

)
, where

tm and ts are the membrane and synaptic integration time constants. For this model the precise

timings and the number of output spikes (if greater than one) play no role in the binary classification,

allowing for multiple equivalent output spiking profiles for positive classifications of a given time

interval.

As discussed in [6], a key parameter is the quantity K = T/
√
tmts where T is the duration of

the input pattern. When both N and K are large, and N � K, certain time correlations can be

neglected and the analysis simplifies. This has allowed the authors of [6] to estimate the storage

capacity of the device for the case of continuous weights and random i.i.d. patterns. It is interesting

to observe that these conditions are not far from being actually realistic [6]. The vanishing of the

correlations at different times is due to the sparse regime under which the device operates, and it

means that the width of the kernel v (t) is much shorter than the typical interval between incoming

spikes; this in turn means that, under this regime, only quasi-simultaneous input spikes actually

contribute to the depolarization at any given time, which explains why in [6] the theoretical and

experimental results are closely reproduced with a simplified model in which time is discretized in

Kdiscrete = K/8 bins and the output is simply given by a perceptron rule applied on each bin (see

paragraph I for additional details).

Basic devices like the temportron have the potential virtue of touching those fundamental ques-

tions in neural coding which are preserved in spite of the simplicity of the device itself. In such

a framework, we have approached the problem from a different angle, namely adopting a compu-
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tational scheme which that is not based on a gradient-like computation but is still fully local and

distributed. We study the simplified (time-discretized) tempotron by both the replica method and

the so called message-passing approach (or cavity method) which allows us to study analytically the

storage capacity and at the same time to derive simple learning protocols (i.e. training rules for the

modifications of the synaptic strengths, which the device applies upon receiving input patterns and

being made aware of the expected response, such that at the end of the training the desired set of

input-output associations is learned) which are efficient and do not rely on any continuity condition

of the synaptic weights. We also show how to adapt the simplest of these learning protocols to

address the original, continuous-time model. For the sake of simplicity we focus directly on the

case of discrete synapses, although the results could be extended to the continuous case.

For the cases of single and multilayer perceptrons with firing rate coding and binary synapses we

have shown in previous works [7–9] that the message-passing approach is indeed efficient in solving

the learning problem for random patterns and that the computational scheme can be simplified to

the point of providing extremely simple learning protocols. These past results together with the

novel ones on spatio-temporal coding presented here should be of practical interest for large scale

neuromorphic devices and hopefully for providing novel hints on aspects of synaptic plasticity.

The model We studied two tempotron scenarios, one in which synaptic conductances can take

values in {−1,+1}, and one in which they can take values in {0, 1}, focusing on the former case

in simulations. As in the final paragraphs of [6], we worked under the simplifying assumption that

input and output spike patterns can be encoded (via binning) as sparse strings of 0’s and 1’s,

and that the relationship between the inputs and the output at any given time bin is given by a

perceptron rule. As mentioned in [6] and in the Introduction, we expect that this simplification

does not qualitatively alter the overall picture under the sparse regime considered, since even in

the integrate-and-fire model only quasi-simultaneous input spikes affect the overall depolarization

at any given time, due to the fast membrane decay constant w.r.t. the typical inter-spike interval;

indeed, our numerical results (see section III C) show that it is even possible to use a time-discretized

learning protocol to address the original continuous-time classification problem.

We thus consider a classification device with N binary synapses, Ji with i ∈ {1, . . . , N}, which

has to learn to classify M = αN input patterns. The input patterns are N ×K matrices (where

K here corresponds to the Kdiscrete discussed in the Introduction) whose elements are ξµit ∈ {0, 1}

with i ∈ {1, . . . , N}, t ∈ {1, . . . ,K} and µ ∈ {1, . . . ,M}. For each pattern µ and at each time

step t, the device response is given by V µ
t = Θ

(∑N
i=1 Jiξ

µ
it − θ

)
, where Θ (x) is the Heaviside step

function and θ is a threshold; we call the vector V µ = {V µ
t }t∈{1,...,K} the internal representation for
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the pattern µ. Finally, a pattern µ is classified according to sµ = 1−
∏K
t=1 (1− V µ

t ), i.e. the overall

output sµ equals 0 if the internal representation is a vector of all 0’s, or it equals 1 if at least one

element of V µ is 1. Each pattern has a desired output sµexp ∈ {0, 1} which is to be compared to the

actual output sµ: the classification problem is satisfied when sµ = sµexp for all µ. For notational

simplicity, we also define σµ = 2sµ − 1 and σµexp = 2sµexp − 1 when we need to convert the outputs

so that they take values in {−1,+1}.

We studied the case in which all inputs and expected outputs are i.i.d. random variables. We

call f ′ the output frequency (i.e. sµexp = 1 with probability f ′) and f the input frequency (i.e. ξµit = 1

with probability f). We will assume in the following that f =
(

1− (1− f ′)
1
K

)
: this ensures that

the probability that a vector {ξµit}t∈{1,...,K} is composed of all 0’s is (1− f ′), i.e. has the same

statistics as the internal representations which satisfy the input/output associations. Clearly, the

model reduces to a standard perceptron when K = 1.

We assume that N � 1, K � 1 and N � K; in this case, f ' −K−1 log (1− f ′), which shows

that the inputs are sparse at large K with our choice for f . For simplicity, all our theoretical

results and simulations will be presented for the case f ′ = 0.5, which is the value that maximizes

the capacity.

II. THEORETICAL ANALYSIS

A. Replica theory

We studied the device described above within the replica theory, in a replica symmetric (RS)

setting for the internal representations, in the limit of large K, both for the case in which Ji ∈

{−1,+1} and Ji ∈ {0, 1}, and estimated the entropy, the critical capacity, the optimal value

for the threshold, and studied the structure of the space of the solutions and the valid internal

representations. The results are almost identical for both ±1 and 0/1 cases, so in the following we

will only specify the model when a difference arises. We confirmed the results, where possible, with

the cavity method (see section II B). All details of the calculations are provided in the Appendix

(section V); here we summarize the results.

The zero-temperature entropy of the device is defined as S (α) = 1
N 〈log (V)〉, where V is the

number of solutions (valid configurations of J ’s) to the problem associated with some choice of the

patterns ξµit and their expected outputs sµexp (see also eq. 15), and 〈·〉 denotes the average over the

patterns. S (α) can’t be negative (since the number of valid configurations is an integer number);
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the value of α at which S (α) vanishes is called the critical capacity, and represents the typical

number of patterns per synapse which can be correctly classified by the device (i.e. stored) when

the patterns are extracted according to the random i.i.d. distribution which we are studying.

The RS replica calculation predicts S (α) = log (2) (1− α), which interestingly does not depend

on K (provided K � 1). This function goes to zero at αc = 1, which coincides with the information

theoretic upper bound, i.e. the device is able to store one bit of information per synapse. This is

in contrast with other related architectures, e.g. the multi-layer perceptron. After this point, the

entropy is negative, and therefore the RS solution is no longer valid.

The typical value of the overlap between two different solutions to the same classification prob-

lem, defined as q = 1
N

〈∑N
i=1 J

a
i J

b
i

〉
for two solutions {Jai }i∈{1,...,N} and

{
Jbi
}
i∈{1,...,N}, is constant

for all values of α, and as low as possible, i.e. q = 0 in the ±1 case and q = Q2 = 1/4 in the 0/1

case, where Q is the typical fraction of non-null synapses (which we found to be Q = 1/2). In terms

of the structure of the space of the solutions, this means that the clusters of solutions are isolated

(point-like).

We expand the threshold in series of
√
N and write θ = θ0N + θ1

√
N . The optimal value of θ0

is 0 in the ±1 case and f
2 for the 0/1 case; the value of θ1 does not affect the capacity, but we can

set it so that synaptic values are unbiased:

θ1 = −
√

2f (1− f)erfc−1
(

2 K
√

1− f ′
)

(1)

where erfc−1 is the inverse of the complementary error function.

We found that the valid internal representations follow a binomial distribution at large K,

i.e. that the probability distribution for the value at each time bin is independent of the others.

This fact is in agreement with the continuous model findings [6], and it is interesting for two

reasons: on one hand, it confirms that different time bins are uncorrelated in the sparse limit,

which is important in order to achieve efficiency in applying the cavity method. On the other

hand, it means that the distributions of the input and output spike trains are identical (note that

our choice of f only ensures that the all-zero string occur with the same probability in input and

output, but does not imply that the non-zero strings have the same distribution of the number of

spikes). In turn, this is a necessary condition for recurrent networks to be built and work under

this regime, which would be an interesting direction for future research.

We also computed how the internal representations are partitioned, and found that the rescaled

entropy of the dominant internal representations (i.e. the logarithm of the number of different

internal representations for a pattern which are associated with the largest portions of the solution
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space) is given by log (2) log
(

K
log(2)

)
. This means that, asK increases, the number of valid dominant

internal representations increases as KM log 2, while the number of synaptic states associated with

each of them correspondingly shrinks, so that the overall entropy remains constant.

B. Cavity method

The cavity method has been shown [10] to provide an alternative scheme for deriving the results

from replica theory in the case of the binary perceptron with binary ±1 inputs and binary ±1

synapses. It has also been used on single instances of the learning problem on such devices (in

which case it is known as the Belief Propagation algorithm, i.e. BP) to study the space of the

solutions for some particular instance and for deriving heuristic learning algorithms [7, 8]. In those

studies, the problem is represented as a factor graph in which synaptic weights are represented

by variable nodes, and input patterns (and their desired outputs) are represented by factor nodes;

messages are exchanged between the two types of nodes along the edges of the graph, representing

marginal probabilities over the states of the variables; global thermodinamic quantities such as

the entropy can be computed from the messages provided they satisfy the BP equations (which

is typically achieved by reaching a fixed point in an iterative algorithm). Replica theory results

can then be reproduced numerically with BP by averaging the computed quantities from a large

number of samples of sufficient size.

In the case of the present study, however, in which the input patterns take values in {0, 1}, the

approach used in [7] can not be applied directly for the sake of reproducing replica theory results,

not even in the perceptron limit K = 1. This is due to a violation of the underlying assumption of

the cavity method, known as the clustering property, as will be explained in greater detail at the end

of this section, and as a result the standard BP equations are approximate, rather than becoming

asymptotically exact in the large N regime. Thus, in order to reproduce the replica theory results,

the standard BP equations must be amended; however, since the heuristic algorithm described in

section IIIA is based on the standard BP, which is simpler and more computationally efficient, and

proves equally effective to the corrected-BP version, we will first derive the standard BP equations,

and describe how to correct them afterwards.

Standard Belief Propagation algorithm As mentioned above, messages on the factor graph

represent probabilities over the variable nodes (i.e. the synaptic weights), and therefore can be

represented by a single real value: as in [7], we use average values for this purpose (also called

magnetizations).
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The BP equations, written in terms of the cavity magnetizations m and n, read:

mi→µ = tanh

∑
ν 6=µ

tanh−1 (nν→i)

 (2)

nµ→i ∝ P

σµexp = 1−
K∏
t=1

Θ

θ −∑
j 6=i

Jjξ
µ
jt − ξ

µ
it

+ (3)

−P

σµexp = 1−
K∏
t=1

Θ

θ −∑
j 6=i

Jjξ
µ
jt + ξµit


where i, j are synapse indices and µ, ν are pattern indices. The second equation is the difference

between the probabilities that the pattern µ is satisfied when synapse i takes the values 1 and −1,

respectively, assuming all other synaptic values are distributed according to the cavity magnetiza-

tionsmj→µ (for j 6= i). These can be computed from the probability that the internal representation

is all zero given the value of Ji:

Bµ→i (Ji) =
∑
{Jj}j 6=i

∏
j 6=i

(
1

2
+ Jj

µ

2

) K∏
t=1

Θ

θ −∑
j 6=i

Jjξ
µ
jt − Jiξ

µ
it

 (4)

With this, and using the shorthand notation B±µ→i = Bµ→i (±1), we can write eq. 3 as:

nµ→i =
B+
µ→i −B

−
µ→i

B+
µ→i +B−µ→i

(
1− 2sµexp

2−B+
µ→i −B

−
µ→i

)
(5)

In order to compute efficiently the function B, we use the central limit theorem, which ensures

that for large N we have:

Bµ→i (Ji) =

ˆ
Sµ→i(Ji)

K∏
t=1

dyt N
(
ȳ; āµ→i, Σ̄µ→i

)
(6)

where N
(
ȳ; ā, Σ̄

)
is a K-dimensional multivariate Gaussian with mean ā and covariance matrix Σ̄,

whose elements are given by:

(āµ→i)t =
∑
j 6=i

ξµjtmj→µ (7)

(
Σ̄µ→i

)
tt′

=
∑
j 6=i

ξµjtξ
µ
jt′
(
1−m2

j→µ
)

(8)

The region of integration is a product of semi-bounded intervals: Sµ→i (Ji) =⊗K
t=1 (−∞, θ − Jiξµit].

Computing this integral in general is very expensive, and rapidly becomes infeasible for large

K. However, the sparsity of the input patterns implies that diagonal terms are of order K−1, while
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off-diagonal terms are of order K−2 and can be neglected, simplifying the computation:

Bµ→i (Ji) =
K∏
t=1

1

2
erfc

(
1√
2

(
θ − Jiξµit − (āµ→i)t(

Σ̄µ→i
)
tt

))
(9)

Equations 2,5,7,8 and 9 form a closed system which allows computations to be performed effectively,

and which can conveniently be modified to derive a heuristic solver algorithm (see section IIIA).

However, as stated at the beginning of this section, these equations fail to exactly reproduce the

replica theory results.

Corrected Belief Propagation algorithm The reason for the failure of the standard BP equations

to provide correct results (e.g. when computing the entropy) is that when the inputs are unbalanced,

i.e. they don’t average to 0 (as is necessarily the case when the values are in {0, 1}), the clustering

property, i.e. the assumption that that the messages incoming into variable nodes from different

factor nodes are uncorrelated, is violated. This can be seen by considering (see [10]):

cµν→i =
1

N

(〈
(āµ→i)t (āν→i)t

〉
−
〈
(āµ→i)t

〉
〈(āν→i)t〉

)
=

1

N

〈∑
j 6=i

ξµjtJj

∑
j 6=i

ξνjtJj

〉−〈∑
j 6=i

ξµjtJj

〉〈∑
j 6=i

ξνjtJj

〉
=

1

N

∑
j 6=i

ξµjtξ
ν
jt (1−mj→µmj→ν)

which isO (1) unless the average input ξ̄ is zero, in which case it isO
(
N−

1
2

)
and becomes negligible.

Only in that case, therefore, standard BP equations become asymptotically correct for large N ; in

all other circumstances, they only provide an approximation (numerical experiments show that for

our model they sistematically predict a slightly lower entropy than the correct one).

We also note that, if we define ξµit = ξ̄ + ρµit, where ξ̄ = f and ρµit ∈ {−f, 1− f} with average

ρ̄ = 0, we can split the depolarization as such:∑
i

Jiξ
µ
it = f

∑
i

Ji +
∑
i

Jiρ
µ
it ≡ f

√
NT +

∑
i

Jiρ
µ
it (10)

where we defined the overall magnetization T = 1√
N

∑
i Ji. It becomes apparent that the depolar-

ization distributions induced by the different patterns are all correlated via T , which is a global

quantity. We can however amend the BP algorithm, and derive correct marginals and therefore

correct global thermodynamic quantities, by studying a related problem, in which this contribu-

tion is removed from the factor nodes and induced by an external field instead; this suggests the

following modification to the cavity equations: we start by choosing a value for the magnetization,

call it T ′, and we consider the problem with patterns ρ instead of ξ, thereby ensuring that the
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clustering property holds, and with an additional external field F applied to each variable node,

thus modifying eqs. 2 and 3 as such:

mi→µ = tanh

∑
ν 6=µ

tanh−1 (nν→i) + F

 (11)

nµ→i ∝ P

σµexp = 1−
K∏
t=1

Θ

θ −∑
j 6=i

Jjρ
µ
jt − ρ

µ
it

+ (12)

−P

σµexp = 1−
K∏
t=1

Θ

θ −∑
j 6=i

Jjρ
µ
jt + ρµit


The total magnetization T can be obtained from the cavity marginals as:

T =
∑
i

tanh

(∑
µ

tanh−1 (nµ→i) + F

)
(13)

Therefore, we can ensure that, at the fixed point, T = T ′ by just adding an extra step to the BP

iterative process in which F is modified at each iteration according to the difference T − T ′.

After convergence, we compute the entropy S (T ′), and via this define T ? = argmaxT ′S (T ′).

Then, the marginals computed for the problem defined by T ? are the same as those to the original

problem, and are asymptotically correct (within the RS assumption), allowing us to compute all the

desired properties on a given instance of the original problem via this modified cavity method. By

averaging over many different samples, we can recover the results of the replica method, as shown

for the entropy curves in fig. 1.

III. SOLVING SINGLE INSTANCES: LEARNING ALGORITHMS

A. Reinforced Belief Propagation

Belief propagation equations, in their message passing form over single problem instances, have

repeatedly proven to provide very effective heuristics when modified in order to produce optimal

configurations [8, 11, 12]. Two main ways in which this can be achieved are decimation [13, 14]

and reinforcement [7], which can be seen as a “soft decimation” process. In decimation, cycles

are performed which alternate message passing and fixing (or “freezing”, or “decimating”) the most

polarized free variables, until all variables are fixed. In reinforcement, the iterative equations have

an additional term which has the role of a time-dependent external field, and which is computed

from the magnetizations obtained at the preceding time step, so that the system is driven towards
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Figure 1: Entropy vs. α as computed by the cavity method at different values of K, compared to the

one predicted by the replica theory for K � 1 and N � K. Each point shows the average and standard

deviation over 10 random samples with N = 1000.

a completely polarized state. Following [7] the reinforced BP equations are the same as the normal

BP equations with one single difference for eq. 2, which becomes:

mτ+1
i→µ = tanh

γ (τ) tanh−1 (mτ
i ) +

∑
ν 6=µ

tanh−1
(
nτ+1
ν→i
) (14)

where τ is the iteration step, mτ
i = tanh

(∑
ν tanh−1 (nτν→i)

)
is the total magnetization of variable i

at iteration τ , and γ (τ) is an iteration-dependent reinforcement parameter, which we set as γ (τ) =

γ0τ . Note that the additional term is proportional to the iteration step, and therefore dominates for

large τ , ensuring that polarization towards one single configuration is eventually achieved (although

in practice computational problems will arise in difficult or unsatisfiable situations, due to the

limited precision of the floating point representation).

We implemented both the decimation and the reinforcement schemes, for both the standard ver-

sion of BP (for which the marginals are approximate due to correlations between different messages)

and the corrected version (for which marginals are exact, at the cost of increased computational

complexity and running time). Since we did not find the corrected version to provide any significant

advantage over the naïve version (which is not particularly surprising, considering that the approx-

imation provided by standard BP is rather good, and that the introduction of the reinforcement

term introduces spurious correlations by itself), here we will only present results for the latter case.

The value of γ0 is a parameter of the solver algorithm; higher values of γ0 make the algorithm
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greedier, in that the messages are polarized more quickly but can get trapped into a non-zero-

energy state, while reducing γ0 improves the accuracy of the algorithm at the cost of requiring

more iterations. In practical tests, we found that by using eq. 5 we were able to reach values of α

as high as 0.7, but only at the cost of using extremely small values of γ0 (of the order of 10−7 for

N = 1000 and K = 10), and therefore of an impractically high computational time.

However, we found heuristically that, by detecting when an excessively polarized state was

reached, and introducing a “depolarization event” triggered by such condition, we could achieve

the same results with much higher values of γ0, and therefore in a much shorter computational

time. More in detail, we introduced, at each iteration step, a check to detect cases in which any of

the terms in the denominator if eq. 5 goes to 0, indicating a numerical problem due to excessively

polarized magnetizations in a state of non-zero energy. Whenever this condition is found, we divide

all messages mτ
i→µ and total magnetizations mτ

i by a positive factor b (thus depolarizing all the

messages), and reset γ (τ) to 0. In subsequent iterations, we keep increasing γ (τ) linearly in steps

of γ0 (until another event is detected). We obtain good results by setting the factor b to 2 initially,

and increasing it by one at every invocation of this additional depolarization rule. Indeed, since

γ (τ) does not increase monotonically any more in this scheme, this modified algorithm will not be

guaranteed to polarize towards a single state, unless the state itself has zero energy and therefore

represents a solution to the problem.

Fig. 2 shows the performance of this algorithm for N = 1000 and K = 10. Setting 10000 as the

maximum number of iterations, a critical capacity of almost 0.8 is achieved.

B. Simplified BP-inspired scheme

As for the case of the simple perceptron [7–9], it is possible to drastically simplify the reinforced

BP equations (in a purely heuristic way), and obtain an online algorithm which, when parameters

are set to their optimal values, proves to be almost as effective at learning as reinforced BP itself,

while dramatically reducing computational requirements.

This algorithm requires a hidden state hi to be endowed with each synapse. This hidden state

can only assume odd integer values, and is capped by a maximum absolute value hmax, so that each

synapse has a total of hmax + 1 hidden states. The hidden state and the synaptic weight Ji are

related by the simple expression Ji = sign (hi). In all simulations, we set the initial state of the hi

states by randomly drawing values from {−1, 1}.

The learning protocol turns out to be as follows: patterns ξµ are presented in random order

12



Figure 2: Number of iterations until solving (green curve) and solving probability (red curve) for different

values of α, for a tempotron device with N = 1000 and K = 10, with the reinforced BP algorithm. The

parameter γ was set to 0.01. For each point, 10 samples were used. The number of iterations was capped

at 10000.

to the device, computing the depolarization ∆µ
t =

(∑N
i=1 Jiξ

µ
it − θ

)
; from this, we determine t? =

argmaxt∆
µ
t and compute Φµ = σµexp∆µ

t? ; depending on the value of Φµ, we choose one of three

actions:

Φµ > 1 : do nothing

0 < Φµ ≤ 1 : with probability r, update synapses for which ξµit? = 1 and Ji = σµexp; with probability

(1− r) do nothing

Φµ ≤ 0 : update all synapses for which ξµit? = 1

The synaptic update rule is always of this form:

hi → hi + 2σµexp

which implies that synaptic values Ji are only updated in the Φµ < 0 case, and only if ξµit? = 1 and

hi = −σµexp. As stated above, we impose −hmax ≤ hi ≤ hmax, so that the update rule is not applied

when hi = hmaxσµexp.

The probability r of taking an action in the “barely correct” case 0 ≤ Φµ ≤ 1 is a parameter

of the algorithm, just as hmax. We determined empirically the optimal values of r and hmax for

different values of N and K by extensively testing the space of the parameters. Our results, shown

in fig. 3, indicate that r = 0.4 works best for all values (we explored the values of r in steps of

13



Figure 3: Optimal critical capacity (left) and optimal value of the number of hidden states hmax + 1 (right)

for various values of N and K. Critical capacity is defined as the value of α for which the probability of

successfully solving the problem in 10000 iterations or less is 0.5. Optimal hmax is defined as the value of

hmax which yields the highest critical capacity. The parameter r is set to 0.4 in all plots shown here, since

that was found to be the optimal value independently of other parameters. At least 40 random samples

were generated for each combination of (N,α,K, hmax, r) in order to determine the success probability and

therefore the critical capacity. α was explored in steps of 0.05. The inset in the left panel shows the critical

capacity as a function of 1/N for K = 10; the solid black line is a fit by an exponential function. The solid

black lines in the right panel show the fit of hmax + 1 as a function of N and K via λ
√

N/K.

0.05), and that the optimal value of hmax is reasonably well fitted by a function λ
√
N/K, where

λ = 2.06 ± 0.02. The capacity decreases with N , for fixed K, but does not seem to tend to 0

asymptotically (see inset in fig. 3).

C. Generality of the discrete-time model

As a way to verify that the model and learning protocols which we studied are relevant in a

more biologically realistic setting, we adapted the simplified BP-inspired scheme described in the

previous section to address the continuous-time classification problem (see Introduction): for a given

an instance of the problem, we discretize the time inK bins, apply the BP-inspired learning protocol

(slightly modified to use continuous inputs), and test the resulting synaptic weights assignments on

the continuous device (see the Appendix for details, section VI). We found that in a device with

N = 1000 synapses, with time constants tm = 10ms and ts = 2.5ms, tested on T = 500ms long

14



input patterns discretized in 50 bins, this scheme can achieve a classification error lower than 1%

up to α = 0.4, demonstatrating that indeed under these conditions not much relevant information

is typically lost in the time discretization process, and that the proposed time-discretized learning

protocol can be effective even in a continuous-time setting.

IV. CONCLUSIONS

We have presented a theoretical analysis of the computational performance of the tempotron

model with discretized time and discrete synaptic weights. The results show that the device is

able to learn random spatio-temporal patterns at a learning rate which saturates the information

theoretic bounds.

In addition to this, and possibly of more practical interest, we have been able to derive some novel

learning protocols which are local and distributed and do not rely on a gradient descent process

on the synaptic weights. These algorithms are based on the message-passing method and extend

previous works on rate-coding networks. Specifically, we have shown that the message-passing

algorithms can store spatio-temporal patterns at very high loads and that even some extremely

simplified versions are still able to store an extensive number of patterns efficiently. Furthermore,

we showed that the discretized-time algorithm can even be adapted to effectively address the orig-

inal, continuous-time version of the problem. Our approach can be applied to both discrete and

continuous synapses.

Many open problems remain to be studied, starting from how these protocols can be made even

simpler in a biologically plausible modeling context. Still we believe that at least as far as artificial

neural systems is concerned these results could find direct application in neuromorphic devices.

V. APPENDIX: STATISTICAL PHYSICS ANALYSIS AND REPLICA CALCULATIONS

A. Entropy

We will consider the case in which synaptic weights take values in {−1, 1} first.

The volume of the space of the solutions for a given instantiation of the patterns can be written

as:

V =
∑
{Ji}i

∑
{τµt }µt

∏
µ

χ
(
sµexp, {τ

µ
t }t
)∏
µt

Θ

(
τµt

(
1√
N

∑
i

Jiξ
µ
it −

θ√
N

))
(15)
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where index i ∈ {1, . . . , N} is used for synapses, index t ∈ {1, . . . ,K} is used for time bins, index µ ∈

{1, . . . , αN} is used for patterns, the auxiliary variables τµt ∈ {−1, 1} are the internal representations

(they are equal to 2V µ
t −1, see section I), andχ (s, {τt}t) = Θ

(
s−

(
1−

∏K
t=1

(
1− 1

2 (1 + τµt )
)))

is

a characteristic function ensuring that the internal representation τt is compatible with the output

s.

From here on, for simplicity, we will omit the subscript exp from the outputs sµ.

In order to compute the entropy, we need to compute the quenched average 〈logV〉ξ,s; we do

this by using the replica trick:[7, 8]

〈logV〉ξ,s = lim
n→0

〈Vn〉ξ,s − 1

n
(16)

where we compute 〈Vn〉ξ,s for integer values of n, and use the analytic continuation to compute

the limit n→ 0. The average over the replicated volume is:

〈Vn〉ξ,s =

〈 ∑
{Jai }ia

∑
{τµat }µta

∏
µa

χ
(
sµ, {τµat }t

)∏
µta

Θ

(
τµat

(
1√
N

∑
i

Jai ξ
µ
it −

θ√
N

))〉
ξ,s

(17)

We used the index a ∈ {1, . . . , n} to denote the replica. We can now use the integral representation

of the Θ function, Θ (y) =
´∞
−∞

dx
2π

´∞
0 dλ eix(λ−y), and compute the average over the input patterns,

using their independence and the N � 1 limit (in the following, all integrals are assumed to be on

[−∞,∞] unless otherwise specified) :〈∏
a

Θ

(
τµat

(
1√
N

∑
i

Jai ξ
µ
it −

θ√
N

))〉
ξ

= (18)

=

ˆ ∏
a

dxµat
2π

ˆ ∞
0

∏
a

dλµat
∏
a

exp

(
ixµat

(
λµat − τ

µa
t

(
ξ̄

1√
N

∑
i

Jai −
θ√
N

)))
·

· exp

− vξ
2N

∑
a,b

τµat τµbt xµat x
µb
t

∑
i

Jai J
b
i


where ξ̄ = f and vξ = f (1− f) are the average value and the variance of the inputs ξµit, respectively.

We then introduce order parameters qab = 1
N

∑
i J

a
i J

b
i and T

a = −
√
NJ̄+ 1√

N

∑
i J

a
i via Dirac-delta
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functions, and their conjugates q̂ab,T̂ a via integral expansion of the deltas, and get:

〈Vn〉ξ,s =

ˆ ∏
a

dT adT̂ a
√
N

2π

ˆ ∏
a≥b

dqabdq̂abN

2π
exp

√N∑
a

(
T a +

√
NJ̄
)
T̂ a −N

∑
a≥b

qabq̂ab

 · (19)
·

 ∑
{Jai }ia

∏
i

exp

∑
a≥b

q̂abJai J
b
i −

∑
a

T̂ aJai


 ·

·

〈 ∑
{τµat }µta

∏
µa

χ
(
sµ, {τµat }t

)
·

·
∏
µt

(ˆ ∏
a

dxµat
2π

ˆ ∞
0

∏
a

dλµat
∏
a

exp

(
ixµat

(
λµat − τ

µa
t

(
ξ̄
(
T a +

√
NJ̄
)
− θ√

N

)))
·

· exp

−vξ
2

∑
a,b

τµat τµbt xµat x
µb
t q

ab

〉
s

=

ˆ ∏
a

dT adT̂ a
√
N

2π

ˆ ∏
a≥b

dqabdq̂abN

2π
exp

√N∑
a

(
T a +

√
NJ̄
)
T̂ a −N

∑
a≥b

qabq̂ab

 ·
·

∑
{Ja}a

exp

∑
a≥b

q̂abJaJb −
∑
a

T̂ aJa

N

·

·

〈 ∑
{τat }ta

∏
a

χ (s, {τat }t) ·

·
∏
t

(ˆ ∏
a

dxat
2π

ˆ ∞
0

∏
a

dλat
∏
a

exp

(
ixat

(
λat − τat

(
ξ̄
(
T a +

√
NJ̄
)
− θ√

N

)))
·

· exp

−vξ
2

∑
a,b

τat τ
b
t x

a
t x

b
tq
ab

〉αN
s

where in the second step we dropped indices i and µ. We expand the threshold θ in series of
√
N :

θ = Nθ0 +
√
Nθ1 (20)

from which we immediately get the relation:

J̄ =
θ0

ξ̄
(21)
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This leaves us with:

〈Vn〉ξ,s =

ˆ ∏
a

dT adT̂ a
√
N

2π

ˆ ∏
a≥b

dqabdq̂abN

2π
· (22)

· exp

√N∑
a

T aT̂ a +NJ̄
∑
a

T̂ a −N
∑
a≥b

qabq̂ab

 ·
·

∑
{Ja}a

exp

∑
a≥b

q̂abJaJb −
∑
a

T̂ aJa

N

·

·

〈 ∑
{τat }ta

∏
a

χ (s, {τat }t)
∏
t

(ˆ ∏
a

dxat
2π

ˆ ∞
0

∏
a

dλat
∏
a

exp
(
ixat
(
λat − τat

(
ξ̄T a − θ1

)))
·

· exp

−vξ
2

∑
a,b

τat τ
b
t x

a
t x

b
tq
ab

〉αN
s

In the N � 1 limit, this integral can be computed by the saddle point method: we introduce the

RS Ansatz for the solution: T a = T ∀a, qab = q ∀a, b : a 6= b, qaa = Q∀a, and analogous expressions
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for the conjugate parameters. Therefore:

〈Vn〉ξ,s = exp
(
NJ̄T̂ +N

n

2
q̂q −NnQ̂Q

)
· (23)

·

∑
{Ja}a

exp

 q̂
2

(∑
a

Ja

)2

− 1

2

(
q̂ − 2Q̂

)∑
a

(Ja)2 − T̂
∑
a

Ja

N

·

·

〈 ∑
{τat }ta

∏
a

χ (s, {τat }t)
∏
t

(ˆ ∏
a

dxat
2π

ˆ ∞
0

∏
a

dλat
∏
a

exp
(
ixat
(
λat − τat

(
ξ̄T − θ1

)))
·

· exp

−vξ
2

q(∑
a

τat x
a
t

)2

+ (Q− q)
∑
a

(xat )
2

〉αN
s

= exp
(
NJ̄T̂ +N

n

2
q̂q −NnQ̂Q

)
·

·

ˆ Du

∑
{J}

exp

(
−1

2

(
q̂ − 2Q̂

)
J2 +

(√
q̂u− T̂

)
J

)nN

·

·

ˆ ∏
t

Dut

〈∑
{τt}t

χ (s, {τt}t)
∏
t

(ˆ
dxt
2π

ˆ ∞
0

dλt exp
(
−
vξ
2

(Q− q) (xt)
2
)
·

· exp
(
ixt
(
λt − τt

(
ξ̄T − θ1 −

√
vξqut

)))))n〉
s

)αN
= exp Nn

(
J̄ T̂ +

1

2
q̂q − Q̂Q +

+

ˆ
Du log

∑
{J}

exp

(
−1

2

(
q̂ − 2Q̂

)
J2 +

(√
q̂u− T̂

)
J

)
+ α

ˆ ∏
t

Dut

〈
log

∑
{τt}t

χ (s, {τt}t)
∏
t

H

(
−τt

ξ̄T − θ1 −
√
vξqut√

vξ (Q− q)

)〉
s


where in the second step we introduced auxiliary Gaussian integrals (we use the shorthand notation

Du = du 1√
2π
e−

u2

2 and define H (x) =
´∞
x Dy), which allows to drop the replica index a, and in

the last step we used the n→ 0 limit. Finally, we obtain the expression for the entropy:

S =
1

N
〈logV〉ξ,s = J̄ T̂ +

1

2
q̂q − Q̂Q+ ZJ

(
Q̂, q̂, T̂

)
+ ZS (Q, q, T ) (24)

ZJ
(
Q̂, q̂, T̂

)
=

ˆ
Du log

∑
{J}

exp

(
−1

2

(
q̂ − 2Q̂

)
J2 +

(√
q̂u− T̂

)
J

) (25)

ZS (Q, q, T ) = α

ˆ ∏
t

Dut

〈
log

∑
{τt}t

χ (s, {τt}t)
∏
t

H (−τt η (ut, Q, q, T ))

〉 (26)

η (u,Q, q, T ) =
ξ̄T − θ1 −

√
vξqu√

vξ (Q− q)
(27)

The expression for ZJ is the familiar expression for perceptron models, and it can be written more
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explicitly for the two cases J ∈ {−1, 1} and J ∈ {0, 1}:

Z±J
(
Q̂, q̂, T̂

)
= −1

2

(
q̂ − 2Q̂

)
+

ˆ
Du log

(
2 cosh

(√
q̂u− T̂

))
(28)

Z01
J

(
Q̂, q̂, T̂

)
=

ˆ
Du log

(
1 + exp

(
−1

2

(
q̂ − 2Q̂

)
+
√
q̂u− T̂

))
(29)

The expression for ZS can be manipulated further:

ZS (Q, q, T ) = α
(
1− f ′

)
K

ˆ
Du logH (η (u,Q, q, T )) + (30)

+αf ′
ˆ ∏

t

Dut log

(
1−

∏
t

H (η (ut, Q, q, T ))

)
(31)

In the limit of K � 1, we can use the central limit theorem and keep only the higher order

terms in K, and obtain:

ZS (Q, q, T ) = α
((

1− f ′
)
KΛ (Q, q, T ) + f ′ log (1− exp (KΛ (Q, q, T )))

)
(32)

where we defined:

Λ (Q, q, T ) =

ˆ
Du logH (η (u,Q, q, T )) (33)

The saddle point equation for T gives:

0 =
∂ZS
∂T

= αK

(
1− f ′ 1

1− eKΛ

)
∂Λ (Q, q, T )

∂T

which implies:

Λ (Q, q, T ) =
1

K
log
(
1− f ′

)
(34)

This in turn puts to zero q̂ and Q̂:

q̂ = −2
∂ZS
∂q

= −2αK

(
1− f ′ 1

1− eKΛ

)
∂Λ (Q, q, T )

∂q
= 0

Q̂ =
∂ZS
∂Q

= αK

(
1− f ′ 1

1− eKΛ

)
∂Λ (Q, q, T )

∂Q
= 0

Optimizing with respect to θ0, i.e. imposing ∂S
∂J̄

= 0, we also get T̂ = 0.

The remaining equations are different for the cases ±1 and 01. For the ±1 case:

q = −2
∂ZJ
∂q̂

= 1− 1√
q̂

ˆ
Duu tanh

(√
q̂u− T̂

)
(35)

Q =
∂ZJ
∂Q̂

= 1 (36)

J̄ = −∂ZJ
∂T̂

=

ˆ
Du tanh

(√
q̂u− T̂

)
(37)
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The result Q = 1 is obvious. From T̂ = 0 and q̂ = 0, and since ξ̄ 6= 0, we get q = 0 and θ0 = 0.

For the 01 case:[7, 8]

q = −2
∂ZJ
∂q̂

=

ˆ
Du

1

1 + exp
(

1
2

(
q̂ − 2Q̂

)
−
√
q̂u+ T̂

) (1− u√
q̂

)
(38)

Q =
∂ZJ
∂Q̂

=

ˆ
Du

1

1 + exp
(

1
2

(
q̂ − 2Q̂

)
−
√
q̂u+ T̂

) (39)

J̄ = −∂ZJ
∂T̂

= Q (40)

From q̂ = 0 and Q̂ = 0 these simplify to:

Q = J̄ =
1

1 + eT̂
=

1

2

q =
1(

1 + eT̂
)2 = Q2 =

1

4

θ0 =
f

2

From q = Q2 we see that the cross-overlap is as low as possible, like in the ±1 case: the physical

interpretation is that clusters of solution are isolated, i.e. point-like.

The only remaining order parameters are T and θ1, which are related by eq. 34 and give:

T =
1

f

(
θ1 +

√
2f (1− f)erfc−1

(
2 K
√

1− f ′
))

(41)

Therefore, in order to have unbiased synapses, i.e. T = 0, we may set θ1 to:

θ1 = −
√

2f (1− f)erfc−1
(

2 K
√

1− f ′
)

(42)

With our choice for the distribution of the inputs, f = 1 − K
√

1− f , this formula starts from 0 at

K = 1, has a maximum for K = 6 and slowly decreases (as
√

log(K)
K ) to 0 as K diverges; the reason

for this behaviour is that there are two competing tendencies at work as K increases: on one hand,

the increase in the length of the internal representation while f ′ is kept constant requires that more

and more individual bins fall below threshold; on the other hand, the sparsification of the inputs

reduces the fluctuations in the depolarization; this second contribution dominates for large K and

so the threshold goes to 0, but for practical purposes (i.e. for biologically relevant values of K) it

does not become negligible.

From the above results, we can determine the entropy:

S = log (2)− α
((

1− f ′
)

log
(
1− f ′

)
+ f ′ log

(
f ′
))

(43)
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which goes to 0 at:

αc =
(
1− f ′

)
log2

(
1− f ′

)
+ f ′ log2

(
f ′
)

(44)

which coincides with the information theoretic upper bound.

B. Distribution of output spikes

The probability distribution of the number of output spikes (i.e. 1’s in the internal representation)

can be obtained by taking the ratio between the volume of the solution space in which one pattern

is restricted to produce Y spikes and the total volume:

P (Y ) =
1

V

〈 ∑
{τµt }µl

δk

(∑
t

(
1 + τ1

t

2

)
, Y

)
· (45)

·
∑
{Ji}i

∏
µ

χ
(
sµ, {τµt }t

)∏
µt

Θ

(
τµt

(
1√
N

∑
i

Jiξ
µ
it −

θ√
N

))〉
ξ,s

where δk (x, y) is the Kronecker delta function:

δk (x, y) =


1 ifx = y

0 otherwise

We can write V−1 = limn→0 Vn−1, restrict ourselves to integer n and obtain an expression almost

identical to eq. 17, except for the Kronecker delta affecting pattern µ = 1:

P (Y ) =

〈 ∑
{τµat }µta

δk

(∑
t

(
1 + τ1a

t

2

)
− Y

)
· (46)

·
∑
{Jai }ia

∏
µa

χ
(
sµ, {τµat }t

)∏
µta

Θ

(
τµat

(
1√
N

∑
i

Jai ξ
µ
it −

θ√
N

))〉
ξ,s

The computation follows the one for the entropy; the only affected term is ZS , and only one

term survives the limit n→ 0, giving:

P (Y ) = δk (Y, 0)
(
1− f ′

)
+ (1− δk (Y, 0)) f ′

ˆ ∏
t

Dut

(
K
Y

)∏Y
t=1H

+ (ut)
∏K
t=Y+1H

− (ut)

1−
∏K
t=1H

− (ut)
(47)

where we wrote H± (u) = H (∓η (u,Q, q, t)) (see eq. 27) for short. For large K and finite Y , this

approximates to:

P (Y ) = δk (Y, 0)
(
1− f ′

)
+ (1− δk (Y, 0)) f ′

(
K

Y

)
e(K−Y )Λ

1− eKΛ

(
1− eΛ

)Y (48)

=

(
K

Y

)(
eΛ
)K−Y (

1− eΛ
)Y
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where Λ = Λ (Q, q, T ) (see eq. 33), and in the second step we used eq. 34 from the saddle point

solution. The result is a binomial distribution, in which the probability of producing a spike is

1− eΛ = 1− K
√

1− f ′, which is our choice for the input frequency f .

C. Structure of the internal representations

We can study the structure of the space of the internal representations by following [15, 16]: we

consider the volume of each internal representation VT , where T = {τµt }µt is an internal represen-

tation, such that the overall volume can be written as V =
∑
T VT ; then we define:

V (r) =
∑
T

(VT )r (49)

and study the free energy defined by:

g (r) = −〈log (V (r))〉
Nr

(50)

which, once known, allows to derive the size of the internal representations from the quantity

w (r) =
∂

∂r
(−rg (r)) (51)

(for r = 1, w (1) = 1
N logV?T where V?T is the typical volume of the dominant internal representa-

tions), and their number from the micro-canonical entropy

N (r) = − ∂

∂1/r
g (r) (52)

(for r = 1, N (1) is the logarithm of the typical number of internal representation of size V?T , divided

by N).

The computation is performed by using the replica trick for r integer and then performing an

analytic continuation:

〈V (r)n〉 =

〈 ∑
{τµat }µta

∑
{Jaνi }iaν

∏
µa

χ
(
sµ, {τµat }t

) ∏
µtaν

Θ

(
τµat

(
1√
N

∑
i

Jaνi ξµit −
θ√
N

))〉
ξ,s

(53)

where we introduced the new internal representation replica index ν ∈ {1, . . . , r}. The computation

follows the steps of the entropy computation of section VA, but requires the introduction of order

parameters with 2 replica indices; in particular qaν,bφ = 1
N

∑
i J

aν
i Jbφi , which in the RS Anzatz can
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take 3 values:

qaν,bφ =


Q if a = b, ν = φ

q1 if a = b, ν 6= φ

q0 if a 6= b

We obtain, for large K:

g (r) = −J̄ T̂ − 1

2
rq0q̂0 +

r − 1

2
q1q̂1 + Q̂Q− 1

r
ZJ +

1

r
ZS (54)

ZJ =

ˆ
Du log

ˆ Dz

∑
{J}

e
1
2(2Q̂−q̂1)J2+(

√
q̂0u+

√
q̂1−q̂0z−T̂)J

r (55)

ZS = α
((

1− f ′
)
KΛ (Q, q1, q0, T ) + f ′ log

(
eKΦ(Q,q1,q0,T ) − eKΛ(Q,q1,q0,T )

))
(56)

Λ (Q, q1, q0, T ) =

ˆ
Du log

(ˆ
DzH (η (u, z,Q, q1, q0, T ))r

)
(57)

Φ (Q, q1, q0, T ) =

ˆ
Du log

(ˆ
DzH (−η (u, z,Q, q1, q0, T ))r +H (η (u, z,Q, q1, q0, T ))r

)
(58)

η (u, z,Q, q1, q0, T ) = −
u
√
vξq0 − z

√
vξ (q1 − q0) + θ1 − Tξ√
vξ (Q− q1)

(59)

The saddle point equations for r = 1 give the same results as before, as expected; in particular,

we find q0 = q1 = 0 in the ±1 case and q0 = q1 = 1/4 in the 01 case, and g (1) = −S as expected.

Furthermore, we have:

∂ZS
∂r

∣∣∣∣
r=1

= αK

ˆ
Du

ˆ
Dz
(
H+ (u, z) logH+ (u, z) +H− (u, z) logH− (u, z)

)
(60)

where we used the shorthand notation H± (u, z) = H (∓η (u, z,Q, q1, q0, T )). From this and from

the saddle point equations at r = 1, in particular from eq. 34, we obtain the weight and the entropy

of the dominant internal representations for f ′ = 1/2:

w (1) =
∂

∂r
(−rg (r))

∣∣∣∣
r=1

= log 2 (−1 + α+ α logK − α log log 2) (61)

N (1) = − ∂

∂1/r
g (r)

∣∣∣∣
r=1

= −α (log log 2− logK) log 2 (62)

From these, we can find the leading terms of the number of different dominant internal repre-

sentations:

eNN (1) =

(
K

log 2

)Nα log 2

(63)

and their volume:

e−Nw(1) = 2N(1−α)

(
log 2

K

)Nα log 2

(64)
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VI. APPENDIX: TIME DISCRETIZATION

A. Modified BP-inspired learning scheme for continuous inputs

The learning protocol presented in section III B can be easily generalized to the case in which

the input patterns ξµit are not binary, but positive and continuous: the only required change is that

the update rules, rather then being applied only to those synapses for which ξµit? = 1, are applied

to all synapses with probability pµi = min (ξµit? , 1). Therefore, the actions taken upon determining

t? and the value Φµ are:

Φµ > 1 : do nothing

0 < Φµ ≤ 1 : with probability r, update synapses for which Ji = σµexp, each with probability pµi ;

with probability (1− r) do nothing

Φµ ≤ 0 : update all synapses, each with probability pµi

In order for this generalization to be effective without furher modifications of the algorithm, it is

crucial that a normalization step is applied to the inputs (see next section).

As an additional generalization, we also introduce a robustness parameter ρ and re-define Φµ =

σµexp∆µ
t? − ρθ, where θ is the firing threshold: this forces the learning algorithm to seek solutions

in which the depolarization is far from the threshold. In the numerical experiments described in

section III C we used the value ρ = 0.2, increasing it from 0 in steps of 0.01 for 1000 iterations at

each step; the other parameters of the model used in those tests were N = 1000, K = 50, hmax = 25

and r = 0.3.

B. Pattern time-discretization

In this section we describe the time-discretization process mentioned in section III C: we consider

a continuous-time model as described in the Introduction; then, for any given input spike train,

we compute the post-synaptic-potential trace Rµi (t) =
∑

tµi <t
v (t− tµi ), where v (t) is the temporal

kernel of the membrane. We divide the time window T in K equal bins, and for each bin k we

compute the input ξµik as the fraction of the membrane kernel in that bin:

ξµik =
1

tm − ts

ˆ
k−th bin

dt Rµi (t) (65)

where we used the fact that
´∞

0 dt v (t) = tm − ts with out choice of v.
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Note that the resulting ξµik can be greater than 1, but this is rare under the sparsity regime

which we considered.

The time-discretized patterns can then be passed to the discrete algorithm for deriving a vector of

synaptic weights, which in turn can be tested on the original model. In our numerical experiments,

we generated input spike trains by a Poisson process with a rate chosen as to obtain the correct

value of the input frequency f (see section I) after the discretization in K time bins. When testing

the solution, we used the value of the firing threshold for the continuous unit which gave the lowest

number of errors.
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