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“..So is not true , as a recent article would have it, that we each should ”cultivate

our own valley, and not attempt to build roads over the mountain ranges ... between

the sciences.” Rather, we should recognize that such roads, while often the quickest

shortcut to another part of our own science, are not visible from the viewpoint of

one science alone.” [1]

P. W. Anderson
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Introduction

This thesis describes the path done by his author during his four years of PhD.

The starting point of my PhD can be seen as relatively far from the final one. My

hope is that at the end of the thesis the connections will appear.

The starting point was the study of optimization algorithms based on cavity

method [2]. These algorithms have been developed to a high degree of complexity

in the last decade and they are also known as message passing algorithms (MPAs).

MPAs are able to solve very difficult random combinatorial optimization problems

(COP) [3–5] of central interest for the computer science community [6]. The main

algorithmic approaches with which the MPAs have to compare are Integer lineal

programming methods [7] and randomized searches.

My work has started by a question posed by my supervisor: what links can be

found between those different approaches to the same problems? The starting

aim of the PhD project was to explore the new ideas and algorithms that could

result from a cross-fertilization between different approaches. During the first

years we made a long and accurate comparison between different algorithms on

a specific COP: the prize collecting Steiner tree problem. This was published in

[8] and it is discussed in chapter 2. What has emerged from this analysis is the

great performance of the cavity algorithm when compared with the integer linear

programming techniques. The latter have a very long history, stated from 1951

[9], and their main ingredient consists in extending to real number the discrete

variables of original problems.

What have these different approaches in common?

If we look at how such algorithms work at a very high level, we observe a sort of

dynamical evolution of real quantities. In the case of message passing algorithms

v



Chapter 0. Introduction vi

we have messages, particular marginal probabilities defined over the discrete vari-

ables of the problem, changing all along the evolution of the algorithm. In the

case of integer linear programming the relaxed discrete variables of the problem (to

real values), change during running time. This is one of the main contact points

between these different approaches which is discussed in more depth in chapter 2.

Their temporal evolution is obviously very different form the Monte Carlo method

where we have discrete configurations changing step by step.

Looking to MPAs as an evolution of probability distributions of discrete variables

led me to find some possible links with many body quantum physics, where typ-

ically we deal with probability amplitudes over discrete variables. In the recent

years several results have appeared concerning the extension of the cavity method

and message passing technics to quantum context [10–14]. In 2012 Ramezanpour

proposed a method for finding approximate ground state wave functions based on

a new messages passing algorithm used in stochastic optimization[16]. Roughly

speaking the idea was the following: giving a parametrization of a wave func-

tion with real parameters, the variational quantum problem of finding the optimal

parameters maps onto a classical one which can be approached with the cavity

method. Ramezanpour and I have extended this approach to find low excited

states [17]. The results are presented in chapter 3.

What was not completely satisfying for me was the idea of working with two levels

of probability distribution, one defined by the wave function and another defined

over the parameters. The problem was solved using the imaginary time evolution

operator which led to a great simplification of the problem and to a more accurate

approximation of the optimal wave function. Moreover, this mapping allowed me

to find a simple connection with an annealing in temperature of an approximate

density matrix. These arguments are presented in chapter 4.



Chapter 1

Cavity method and message

passing algorithms

1.1 Introduction

In this chapter I will describe the cavity method, a technique initially invented

to deal with the Sherrington Kirkpatrick model of spin glasses, alternative to

the replica approach [18]. The cavity method uses a probabilistic approach that

allows to have more intuitive feeling on what is going on compared to the replica

formalism [2]. This method was initially applied on infinite dimension systems,

then in 2001 it was extended to finite temperature systems with a finite number

of neighbors like Bethe lattice and random graphs [19].

The interest of such systems relies on several different aspects. On one hand we

may hope to get a better knowledge on finite dimension problems due to notions

of neighborhood included by these systems. On the other hand we can have the

possibility to solve these problems with iterative methods. The cavity method, in

fact, is a generalization of the Bethe-Peierls method [20]. Another reason comes

from the strong connection with optimization problems which typically have finite

connectivity structures.

The cavity method was also extended to deal with zero temperature systems;

this was a crucial step in order to develop new class of algorithms that allow to

solve difficult optimization problems [3–5]. The cavity method has several levels

1



Chapter 01. Cavity method 2

of approximation, from the replica symmetric case to replica symmetric breaking

solutions [2].

The cavity method can be applied to a single instance of a problem under the

form of a message passing algorithm. The first level of approximation, the replica

symmetric case, is equal to the so called Belief propagation (BP) equations. The

BP equations have been rediscovered many times in many different contexts. In

Bayesian inference context the BP equations were developed by Pearl [21], in

decoding context by Gallagen [22]. In 1935, in physics, Bethe used them on a

homogenous system, and their generalization to inhomogeneous systems waited

until the application of Bethe’s method to spin glasses [23]. An algorithm that

utilizes the 1RSB cavity method to find solutions for a single instance of a problem

was done by Mézard et al. [3, 4]. The idea that the 1RSB method can be derived

applying the BP equations over an auxiliary model, solved by a low layer BP

equations, appears for the first time in the articles [24, 25]. The idea of more level of

BP equations has led to write new algorithms that can solve, in efficient ways, very

difficult optimization problems, like stochastic optimization and sampling over a

huge space of parameters that should minimize an energy function [15, 16, 26].

In the section 1.2 I will show the cavity method at replica symmetric level, then

in the sec 1.3 are presented the BP and the Max-Sum equations and their gener-

alization to generic graph. In the last section 1.4 the 1RSB equations are derived,

and it is explained the procedure to solve stochastic optimization problems with

several layers of BP equations.

1.2 Cavity Methods

Statistical physics, in general, provides a framework for relating the microscopic

properties of individual objects to the macroscopic or bulk properties of the system

under study. The statistical physics started, at the end of XIX century, on purpose

to explain thermodynamics as a natural result of statistics, classical mechanics,

and then quantum mechanics at the microscopic level. Central in the statistical

physics, at least in equilibrium statistical physics, is the partition function Z.

Given all possible configuration q of a system, the Z is defined as:

Z =
∑
q

e−βH(q), (1.1)
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where β = 1/T is the inverse of temperature, and H (q) is a function depending

on the configuration of the system, typically the energy function. The partition

function is directly connected to a macroscopic quantity, the Helmholtz free energy:

F = − 1

β
lnZ (1.2)

where the Helmholtz free energy is the average energy of the system minus the

temperature times the entropy, F = 〈H〉 − 1
β
S.

Given the partition function is also possible to define the probability of a config-

uration:

P (q, β) =
e−βE(q)

Z
. (1.3)

Given this probability measure it is possible to compute explicitly macroscopic

quantity e.g., the average energy

E =
∑
q

P (q, β)H (q) , (1.4)

the entropy

S =
∑
q

P (q, β) lnP (q, β) . (1.5)

The number of configurations typically grows exponentially with the number of

elements that belong to the system. This makes, in general, a hard task computing

the partition function.

This thesis is devoted to a new class of algorithms that permits to compute, in

general, an approximate probability measure of systems in efficient way. The

theoretical substrate of these algorithms is the cavity method described in the

next section. The cavity method, initially invented to deal with the Sherrington

Kirkpatrick model of spin glasses, is a powerful method to compute the properties

of systems in many condensed matter and optimization problems [2]. There are

several levels of approximation, in this section I will present only the first one,

called replica symmetric solution, for further informations see [27, 28].

Before explaining the cavity method, I will show how to solve classical statistical

physics models on trees. Consider a system with N discrete variables σ that can

take only two values {−1, 1}. For simplicity, the system has only a two body
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interaction:

E (σ) =
∑
〈i,j〉

Eij (σiσj) (1.6)

where the 〈i, j〉 represent the links present in the system. The links generate a

graph and we consider now a tree structure. In this case the computation of the

partition function can be achieved using the recursion properties of the tree. I

define ∂i as the set of variables adjacent to a given vertex i, and ∂i\j as vertices

around i distinct from j. Consider the quantity Zi→j (σi), for two adjacent sites i

and j, as the partial partition function for the subtree rooted ad i, excluding the

branch directed towards j, with a fixed value of σi. Then consider the quantity

Zi (σi) as the partition function of the whole tree with a fixed value of σi. These

quantities can be computed according to recursion rules:

Zi→j (σj) =
∑
σi

ψik (σi, σk)
∏
k∈∂i\j

Zk→i (σi) , (1.7)

Zi (σi) =
∏
j∈∂i

Zj→i (σi) , (1.8)

where ψij = e−βEij . In general it’s useful to work with normalized quantities

which can be interpreted as probability laws for the variables. The first one is

the marginal probability law of the variable σj in a modified system where all the

links around j have been removed but 〈i, j〉:

µi→j (σj) =
Zi→j (σj)∑
σj
Zi→j (σj)

=
1

zi→j

∑
σi

ψik (σi, σk)
∏
k∈∂i\j

µk→i (σi) . (1.9)

The second one is the marginal of σi on the whole system:

ρi (σi) =
Zi (σi)∑
σi
Zi (σi)

=
1

zi

∏
j∈∂i

µj→i (σi) (1.10)

The quantities zi→j and zi are normalization constants. If we consider a generic

system composed by N variables {σ} the computation of the partition function

(1.1) involves a sum over 2N configurations. But if we are on tree, and if we start

to iterate the (1.7) from leaves, the computation of the partition function

scales linearly with the system size N .
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1.2.1 Marginal distribution

The marginal distributions of a set of connected variables on tree admit an explicit

expression in terms of messages. Let σR be a subset of variables of the system, let

ER be the subset of energy terms that connect or belong to variables that are in

the set σR, let ∂R be the subset of variables that are connected to the variables

σR but don’t belong to it. It’s easy to show that the marginal distribution is:

ρ (σR) =
1

ZR

∏
〈a〉∈ER

ψa (σa)
∏
i∈σR

∏
j∈∂i∩∂R

µj→i (σi) . (1.11)

Figure 1.1: A graphical picture of the computation of a marginal region. The
variables that belong to the region of the marginal probability are the blue filled
circles. White filled circles are the variables in the neighborhood of the region
R. Red lines represent the energy terms that are inside the region R and orange

arrows are the messages entering in the region R.

The figure 1.1 gives a graphical picture of the equations. For instance the marginal

probability of two adjacent variables is:

ρi,j (σi, σj) =
1

zij
ψij (σi, σj)

∏
p∈∂i\j

µp→i (σi)
∏
q∈∂j\i

µq→j (σj) (1.12)

where zij =
∑

σiσj
ψij
∏

p∈∂i\j µp→i (σi)
∏

q∈∂j\i µq→j (σj) is the normalization.
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1.2.2 Bethe free energy

When the structure of the system under study is a tree, it’s possible to factorize

the probability distribution by a product of local marginals. The explicitly form

is:

P (σ) =

∏
〈i,j〉 e

βEij

Z
=
∏
i

ρi
∏
〈i,j〉

ρij
ρiρj

(1.13)

In order to demonstrate the equation above, we have to consider that:

1.

∑
σ

P (σ) = 1 (1.14)∑
σ

∏
i

ρi
∏
〈i,j〉

ρij
ρiρj

= 1. (1.15)

The equation (1.14) is true by definition. Considering the marginalization

constraints
∑

σj
ρi,j (σi, σj) = ρi (σi), it is possible to recover the eq.(1.15)

just starting the sum over all configurations from leaves: every factor itera-

tively simplifies.

2.

∏
i

ρi
∏
〈i,j〉

ρij
ρiρj

= (1.16)

=
∏
i

∏
j∈∂i µj→i (σi)

zi

∏
i,j

zizjψij
∏

p∈∂i\j µp→i (σi)
∏

q∈∂j\i µq→j (σj)

zi,j
∏

p∈∂i µp→i (σi)
∏

q∈∂j µq→j (σj)
(1.17)

=
∏
i

1

zi

∏
i,j

zizjψij
zij

(1.18)

∝
∏
i,j

ψij =
∏
〈i,j〉

eβEij (1.19)

∝ P (σ) , (1.20)

where to obtained the final outcome I just substituted the definition of the

marginals eq.(1.10) and eq.(1.12), and simplified the remaining terms.
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The point one (both quantities sum to one) and the point two (they are propor-

tional each other) imply that the two quantities are the same and the eq. (1.13)

is correct. Moreover it’s easy to show that:

Z =
∏
i

zi
∏
〈i,j〉

zij
zizj

(1.21)

Given the eq.(1.13) for the probability distribution and the eq.(1.21), the entropy

reads:

S = −
∑
i,j
σiσj

ρij ln ρij + (di − 1)
∑
i,σi

ρi ln ρi, (1.22)

where di is the number of adjacent sites of i. The average energy is:

E =
∑
i,j
σiσj

Eijρij. (1.23)

Then, when we are dealing with tree structures also the free energy takes a simpler

form, called Bethe free energy:

F = E − 1

β
S = − 1

β

∑
i,j
σiσj

ρij ln
ρij
ψij
− (di − 1)

∑
i,σi

ρi ln ρi

 (1.24)

1.2.3 From tree to generic graphs

Now we suppose that the interaction graph is no longer a tree. We Consider

however a site i where we cut all the edges around it but one 〈i, j〉. We make a

”cavity”. Then we want to knows what is the marginal probability law µj→i (σi)

of the variable i in that modified graph. It is:

µj→i (σi) =
1

zi→j

∑
σj

ψijµ∂j\i→j (σj) (1.25)

where we introduced a multi-variable cavity field µ∂j\i→j (σj) that describes the

probability distribution of σj due to the presence of the link connection between

j and the variables ∂j\i. The eq.(1.25) is not in a closed form, if we want to close
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it we have to factorize the µ∂j\i→j:

µ∂j\i→j (σj) =
∏
k∈∂j\i

µk→j (σj) . (1.26)

In generic graphs the assumption (1.26) is not correct, but it can be a good or bad

assumption depending on problems. The (replica symmetric) cavity method

consists in using recursion equations (1.9), assuming the (1.26), to com-

pute the free energy and other quantities of interest of the system. The

recursive equation (1.9) is at the base of the message passing algorithms used in

this thesis.

1.3 Belief propagation

The cavity method described in the section 1.2 has a natural algorithmic inter-

pretation. On a generic graph, with ‖E‖ number of edges, we have 2‖E‖ cavity

equations (1.9) and 2‖E‖ number of unknown messages µi→j. We can hope for

unique solution and try to solve that system of equations (1.9) by recursion:

µt+1
i→j (σj) =

1

zi→j

∑
σi

ψik (σi, σk)
∏
k∈∂i\j

µtk→i (σi) . (1.27)

This is known as belief propagation equations (BP). When such equations hope-

fully converge we have a set of messages {µ∗i→j} through which we can compute

quantities of interest like one-body marginal:

ρi =
1

zi

∏
j∈∂i

µ∗j→i (σi) . (1.28)

When we are on tree the quantities that we compute by the messages are exact, but

on generic graph the quantities computed are approximate. Typically the belief

propagation equations (1.27) give very precise result on sparse random graphs.

They are locally tree like and the length of loop is ∼ logN where N is the number

of sites or variables of the system.

The usual procedure to find the fixed point of the eq.(1.27) is to start from random

values of messages and to update in random order the messages on each edge.
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1.3.1 Max-Sum

When we are interested in ground-state configurations it is possible to rewrite

the BP equations directly at zero temperature. The probability distribution of

the system P (σ) = eβH

Z
, when β → ∞, is concentrated over the ground-state

configurations. Taking the limit β →∞ for the BP equations read:

lim
β→∞

µt+1
i→j (σj) = lim

β→∞

 1

zi→j

∑
σi

e−βEij (σi, σk)
∏
k∈∂i\j

µtk→i (σi)

 (1.29)

= max
σi

 lim
β→∞

 1

zi→j
e−βEij (σi, σk)

∏
k∈∂i\j

µtk→i (σi)

 . (1.30)

Defining Mi→j = 1
β

log µi→j we can write:

M t+1
i→j (σj) = max

σi

−Eij +
∑
k∈∂i\j

M t
k→i (σi)

+ Ci→j. (1.31)

These are called Max-Sum equations. The constant Ci→j is typically set imposing

that maxσj Mi→j = 0. When the equations, hopefully, converge we can find the

configuration that minimizes the energy by:

σ∗i = arg max
σi
{−Eij +

∑
j∈∂i

M∗
j→i} (1.32)

1.3.2 BP equations on generic graph

It’s easy to generalize the BP and Max-Sum equations to a generic interaction

graph. Consider a system that has M interactions ψ and N variables σ. We

define the variables σ∂a as the neighborhood of the interaction ψa (σ∂a), they are

the variables involved in the interaction a. Then we define the interaction a ∈ ∂i
neighborhood of a variable i as the interaction a that includes i. Giving a general

probability distribution:

P (σ) =

∏
a ψa (σ∂a)

Z
(1.33)
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where Z is the usual normalization constant, we have two sets of BP equations:

µt+1
i→a (σi) =

1

zi→a

∏
b∈∂i\a

µta→i (σi) (1.34)

µt+1
a→i (σi) =

1

za→i

∑
x∂a\i

ψa (σ∂a)
∏

k∈∂a\i

µtk→a (σk) . (1.35)

These sets of equation permit to compute in a efficient way all the quantities of

interest of a system, in an exact way if the structure is a tree, in an approximate

way otherwise. The Max-Sum equations can be derived in the same way showed

in the sec.(1.3.1). The free energy reads:

F =
∑
a

Fa +
∑
i

Fi −
∑
ia

Fia (1.36)

where

Fa = log

[∑
σ∂a

ψa (σ∂a)
∏
iin∂a

µi→a (σi)

]
, (1.37)

Fi = log

[∑
σi

∏
b∈∂i

µb→i (σi)

]
(1.38)

Fai = log

[∑
σi

ρi→a (σi)µb→i (σi)

]
(1.39)

1.4 One-step replica symmetry breaking

The effectiveness of belief propagation depends on one basic assumption: when a

node is pruned from the system, the adjacent variables become weakly correlated

with respect to the resulting distribution. This hypothesis may break down either

because of the existence of small loops in the factor graph or because variables are

correlated at large distances. When we consider locally tree like systems the grow

of the long distances correlation is responsible for the failure of BP equations.

The one-step replica symmetry breaking (1RSB) cavity method is a non rigorous

approach to deal with this phenomenon. The long range correlation can be made

in connection to the appearance of metastable states. The metastable states can

be described by pure states. It is a general result of statistical physics [2, 29] that

it is always possible to decompose the equilibrium probability distribution as a
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sum over pure states. In principle it is possible to select one pure state, among

many, by adding an external field to the system: the probability distribution of

pure states is the limit to zero field of the Gibbs measure of the system. The

overall probability measure is the sum over the distribution of each pure state:

P (σ) =
e−βH

Z
=
∑
α

ωαP
α (σ) , (1.40)

where the ωα are positive weights normalized to one. An important property of

pure states is the cluster property, i.e. the correlation vanishes at large distances

[30]. One of the basic assumption of 1RSB is on the values of ωα, they are pro-

portional to the Bethe free energy of the pure state:

ωα =
eFα

Ξ
, Ξ =

∑
α

ωα. (1.41)

The second basic assumption is that the number of Bethe pure state is equal to the

number of solutions of BP equations (1.9). We introduce an auxiliary statistical

physics problem through the definition of a canonical distribution over this Bethe

pure state. We assign to each pure state the probability ωα = exFα

Ξ
where x play

the role of the inverse temperature, called the Parisi 1RSB parameter. So we have

the partition function:

Ξ (x) =
∑
α

exFα . (1.42)

The 1RSB can be summarized as: Introducing a Boltzmann measure over Bethe

measure, and solve it using BP equations. We now deal with two systems, two

levels, the first one is the usual one, and the second one has the messages over the

first system as variables. We consider now the simpler version of BP equations

described in the section 1.2, where we consider only pairwise interactions:

P (σ) =

∏
ij ψij (σi, σj)

Z
. (1.43)

In order to compute the number of solutions of BP equations, we rewrite them:

µi→j (σj) =
1

zi→j

∑
σi

ψik (σi, σk)
∏
k∈∂i\j

µk→i (σi) = fi→j [µk→i, k ∈ ∂i\j] . (1.44)
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The Bethe free energy (1.2.2) of each state is:

− βFα
[
µαi→j

]
=
∑
i,j

log
zαij
zαi z

α
j

+
∑
i

log zαi (1.45)

where:

zαij =
∑
σiσj

ψij
∏
p∈∂i\j

µαp→i (σi)
∏
q∈∂j\i

µαq→j (σj) (1.46)

zαi =
∑
σi

∏
j∈∂i

µαj→i (σi) . (1.47)

The set of messages µαi→j is one solution of the equations (1.44). Now it is possible

to compute the partition function:

Ξ =
∑
α

exFα (1.48)

=

∫
Dµi→j

∑
α

exFα[µi→j]
∏
ij

δ (µi→j − fi→j) δ (µj→i − fj→i) (1.49)

=

∫
Dµi→j

∏
i

[
zi
∏
j∈∂i

δ (µj→i − fj→i)
]∏

ij

zij
zizj

(1.50)

We solve this problem using BP equations:

Qi→j (µi→j, µj→i) =

=
1

Zi→j
∑

{µk→i,µi→k}
k∈∂i\j

zi→j
∏
q∈∂i

δ (µi→q − fi→q)
∏
k∈∂i\j

Qk→i (µk→i, µi→k) , (1.51)

where we use the identity zij = zjzi→j. The message equation can be further

simplified summing over the µk→i,k∈∂i\j and using the delta function. What we

obtain is the following equation:

Qi→j (µj→i) =
1

Zi→j
∑

{µi→k}k∈∂i\j

zi→jδ (µi→j − fi→j)
∏
k∈∂i\j

Qk→i (µk→i) . (1.52)

The set of messages {Qi→j} allows to compute the partition function:

Ξ =
∏
i

Zi
∏
ij

Zij
ZiZj

(1.53)
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where:

Zij =
∑

µi→j ,µj→i

zijQj→iQi→j (1.54)

Zi =
∑

µ{j→i},j∈∂i

zi
∏
j∈∂i

Qj→i. (1.55)

The 1RSB equations have been used to devise new classes of algorithms. One

example is the Survey Propagation algorithm that is very effective to solve hard

optimization problems like K-SAT [4].

1.4.1 Sampling and stochastic optimizations

Most real-world optimization problems involve uncertainty: the precise value of

some of the parameters is often unknown, either because they are measured with

insufficient accuracy, or because they are stochastic in nature and revealed in sub-

sequent stages. The objective of the optimization process is thus to find solutions

which are optimal in some probabilistic sense, a fact which introduces fundamental

conceptual and computational challenges [31]. Examples of stochastic optimization

problems can be found in many areas of sciences ranging from resource allocation

and robust design problems in economics and engineering, to problems in physics

and biology. A key computational difficulty in optimization under uncertainty

comes from the size of the uncertainty space, which is often huge and leads to

very large-scale optimization models, e.g. the sampling. Moreover, optimizing un-

der uncertainty is further complicated by the discrete nature of decision variables.

The idea is to solve such problems using equations that are similar to the 1RSB

method [16]. We consider now for simplicity a particular stochastic optimization

problem, the two stage problem. The input of the problem is an energy function

E (σ1,σ2, t). We have two sets of discrete variables (σ1,σ2) and an independent

set of stochastic parameters t, extracted from a distribution P (t). The goal is to

find σ1 that minimize the average energy obtained with the following process: first

σ1 are fixed, then t are extracted, and finally we minimize over the σ2 variables.

The problem can be expressed as follow:

σ∗1 = arg min
σ1

∫
dtP (t) min

σ2

E (σ1,σ2, t) (1.56)
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The method, that Altarelli et al. proposed, consists in performing the minimiza-

tions and expectations in the previous equations by means of respectively Max-

Sum and BP equations. The key point of this method is that in both cases the

optimal or expected value of the cost function can be computed in terms of the

messages, and these are again a sum of local terms. This allows to perform also

the next minimization or expectation operation by Max-Sum or BP equations, by

considering the messages of the previous problem as the variables of a new one.

I do not give here a complete derivation of equations that can be found in the

article [26]. The procedure can be summarized as:

1. First we write the Max-Sum(MS) equations for the inner minimum of eq.

(1.4.1); we have a set of messages m. We build the distribution Q (t,m) ∝
P (t)1MS (m, t), where 1MS (m, t) is the Max-Sum equation constraint over

the values of messages m like in 1RSB equations (1.4).

2. Write the BP equations for Q, with messages Q.

3. Consider now the average energy:

E (σ1,Q) = 〈E (σ1,σ2, t)〉Q. (1.57)

It depends by σ1, that we have considered until now constant, and by BP

messages Q.

4. At the end we perform the last minimization with Max-Sum equations of

E (σ1,Q) over bothQ and σ1 imposing the BP constraints over the messages

Q.

This algorithm is able to find better solutions than the standard algorithms (greedy

approach, linear programming) for a large set of hard instances [16, 26].



Chapter 2

Optimization

2.1 Introduction

In the last two decades there have been a huge convergence of interests between

different fields of science: coding theory, statistical mechanics, statistical inference

and computer science. Probabilistic models and technique have been the main

underline reason for this convergence. The probabilistic approach in statistical

physics [32], statistical inference [33] and in information theory [21, 34] has a long

history. Technics and concepts borrowed from statistical physics have led to new

insights into theoretical computer science, see for instance [35, 36].

The connection between these fields is not only formal, due to the common prob-

abilistic background, but they share problems, questions and results of central

interest for each of them. This set of problems and technics can be named as “the-

ory of large graphical model” [37]. The typical definition is the following: “a large

set of random variables taking values in a finite (typically quite small) alphabet

with a local dependency structure; this local dependency structure is conveniently

described by an appropriate graph.” [37]. In computer science, combinatorial op-

timization problems (COPs) plays a central role. COPs typically consist of finding

configurations of a system that minimize a cost function. Many COPs belong to

the NP-complete class. It means, roughly speaking, that the computer time to find

a problem’s solution, in the worst case, grows exponentially with the system size.

In physics, optimization problems are equal to find the ground state energy of a

system. Physics models, like the spin glass, have been proven belong to the NP-

complete class. Physicists, usually, are interested in the typical solution instead

15
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of a worst case analysis [38]. In these last decades the development of a typical

case analysis has become a major goal [39–41], motivated also by experimental

evidence that many instances of NP-complete problems are easy to solve [36]. In

recent years the cavity method, described in the first chapter, has led to design a

family of algorithmic techniques for combinatorial optimization problems. In spite

of the numerical evidence of the large potentiality of these techniques in terms of

efficiency and quality of results, their use in real-world problems has still to be

fully expressed. The main reasons for this reside in the fact that the derivation

of the equations underlying the algorithms are in many cases non-trivial and that

the rigorous and numerical analyses of the cavity equations are still largely incom-

plete. Both rigorous results and benchmarking would play an important role in

helping the process of integrating message passing algorithms (MPAs) with the

existing techniques.

In what follows we focus on a very well known NP-hard optimization problem over

networks, the so-called Prize Collecting Steiner Tree problem on graphs (PCST).

The PCST problem can be stated in general terms as the problem of finding a

connected subgraph of minimum cost. It has applications in many areas ranging

from biology, e.g. finding protein associations in cell signaling [42–44], to network

technologies, e.g. finding optimal ways to deploy fiber optic and heating networks

for households and industries [45].

In this chapter it’s shown how msgsteiner – an algorithm derived from the zero

temperature cavity equations for the problem of inferring protein associations in

cell signaling [43, 44] – compares with state-of-the-art techniques on benchmarks

problem instances. Specifically, we provide comparison results with an enhanced

derivative of the Goemans-Williamson heuristics (MGW) [46, 47] and with the

DHEA solver [48], a Branch and Cut Linear/Integer Programming based approach.

We made the comparison both on random networks and in known benchmarks.

We show that msgsteiner typically outperforms the state-of-the-art algorithms

in the largest instances of the PCST problem both in the values of the optimum

and in running time.

Finally, it’s shown how some aspects of the solutions can be provably charac-

terized. Specifically it’s shown some optimality properties of the fixed points of

the cavity equations, including optimality under the two post-processing proce-

dures defined in MGW (namely Strong Pruning and Minimum Spanning Tree)

and global optimality of the MPA solution in some limit cases.
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In section 2.2 there is an introduction to combinatorial optimization problems and

case complexity. Then, in section 2.3 the prize collecting steiner tree is defined,

and it is shown how to make local the global constraint of the problem. The

derivation of the Max-Sum equations for the PCST is made in sec. 2.4. In sec.

2.5 concurrent algorithms are presented. Numerical results are shown in sec. 2.6,

and then in the last sec. 2.7 some optimality properties of the solutions found by

msgsteiner are proved.

2.2 Combinatorial Optimization Problems

The Combinatorial Optimization problems (COPs) are a large family of problems

that belong to the general class of computational problems. In general a COP

consists in finding an element of a finite set which minimizes an easy-to-evaluate

cost function. The reasons why this class of problems is interesting are:

• The COPs is one of the most fundamental class of problems within computational-

complexity theory.

• They are ubiquitous both in applications and in pure sciences.

• There are strong connection between statistical physics and COPs.

The definition of a COP is easy. We have a finite set Ξ of allowed configurations

of a systems and a cost function E (or energy) defined on this set and taking real

values. We want to know what is the optimal configuration C that minimize the

cost function E (C). The connection to statistical physics is straightforward. If

we define a measure in this way:

Pβ (C) =
e−βE(C)

Zβ
, Zβ =

∑
C∈Ξ

e−βE(C) (2.1)

where β is a fictitious inverse temperature, and we take the limit β → ∞ we

recover the ground state of the system, namely the configuration that minimize

the energy or cost function E.
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2.2.1 Complexity scenario and NP class

COPs can be classified by own complexity. For instance a COP is considered

feasible if it belong to the P (Polynomial time) class. The P class contains the

problems that require a time to be solved that grows at least polynomially with

the problem size. The P class belong to the NP class. A problem belongs to

NP class if it is possible to test, in polynomial time, whether a specific presumed

solution is correct. In NP exists another class, the NP-complete one. The COPs

that belong to the latter class have the property that all NP problems can be

mapped, in polynomial time, to them. Typically the computer time needed to

solve a NP-complete problem grows exponentially with the problem size, in the

worst case. Then there is the NP-hard class that contains problems hard as the

NP-complete ones1 that don’t belong to NP class. The COP described in this

thesis, the prize collecting steiner tree, belong to the NP-hard class.

2.3 Prize collecting steiner tree (PCST)

The PCST problem can be stated in general terms as the problem of finding a

connected subgraph of minimum cost. It has applications in many areas ranging

from biology, e.g. finding protein associations in cell signaling [42–44], to network

technologies, e.g. finding optimal ways to deploy fiber optic and heating networks

for households and industries [45].

2.3.1 definition

In the following we will describe the Prize-Collecting Steiner Tree problem on

Graphs (see e.g. [47, 49]).

Given a network G = (V,E) with positive (real) weights {ce : e ∈ E} on edges and

{bi : i ∈ V } on vertices, consider the problem of finding the connected sub-graph

G′ = (V ′, E ′) that minimizes the cost or energy function H(V ′, E ′) =
∑

e∈E′ ce −
1Each problems in NP-hard can be mapped in polynomial time to a problem in NP-complete.
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λ
∑

i∈V ′ bi, i.e. to compute the minimum:

min

E ′ ⊆ E, V ′ ⊆ V

(V ′, E ′) connected

∑
e∈E′

ce − λ
∑
i∈V ′

bi. (2.2)

It can be easily seen that a minimizing sub-graph must be a tree (links closing

cycles can be removed, lowering H). The parameter λ regulates the tradeoff

between the edge costs and vertices prizes, and its value has the effect to determine

the size of the subgraph G′: for λ = 0 the empty subgraph is optimal, whereas for

λ large enough the optimal subgraph includes all nodes.

This problem is known to be NP-hard. To solve it we will use a variation of a

very efficient heuristics based on belief propagation developed on [43, 44, 50] that

is known to be exact on some limit cases [50, 51]. We will partially extend the

results in [51] to a more general PCST setting.

2.3.2 Rooted, depth bounded PCST and forests

We will deal with a variant of the PCST called D-bounded rooted PCST (D-

PCST). This problem is defined by a graph G, an edge cost matrix c and prize

vector b along with a selected “root” node r. The goal is to find the r-rooted tree

with maximum depth D of minimum cost, where the cost is defined as in (2.2).

A general PCST can be reduced to D-bounded rooted PCST by setting D = |V |
and probing with all possible rootings, slowing the computation by a factor |V |
(we will see later a more efficient way of doing it). A second variant which we will

consider is the so-called R multi-rooted D-bounded Prize Collecting Steiner Forest

((R,D)-PCSF). It consists of is a natural generalization of the previous problem:

a subset R of “root” vertices is selected, and the scope is to find a forest of trees

of minimum cost, each one rooted in one of the preselected root nodes in R.

2.3.3 Local constraints

The cavity formalism can be adopted and made efficient if the global constraints,

which may be present in the problem, can be written in terms of local constraints,
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see cap ?. In the PCST case the global constraint is connectivity which can be

made local as follows.

We start with the graph G = (V,E) and a selected root node r ∈ V . To each

vertex i ∈ V there is an associated couple of variables (pi, di) where pi ∈ ∂i∪ {∗},
∂i = {j : (ij) ∈ E} denotes the set of neighbors of i in G and di ∈ {1, . . . , D}.
Variable pi has the meaning of the parent of i in the tree (the special value pi = ∗
means that i /∈ V ′), and di is the auxiliary variable describing its distance to

the root node (i.e. the depth of i). To correctly describe a tree, variables pi

and di should satisfy a number of constrains, ensuring that depth decreases along

the tree in direction to the root (the root node must be treated separately), i.e.

pi = j ⇒ di = dj + 1. Additionally, nodes that do not participate to the tree

(pi = ∗) should not be parent of some other node, i.e. pi = j ⇒ pj 6= ∗. Note

that even though di variables are redundant (in the sense that they can be easily

computed from pj ones), they are crucial to maintain the locality of the constraints.

For every ordered couple i, j such that (ij) ∈ E, we define fij (pi, di, pj, dj) =

1pi=j⇒di=dj+1∧pj 6=∗ = 1 − δpi,j
(
1− δdi,dj+1(1− δpj ,∗)

)
(here δ is the Kroenecker

delta). The condition of the subgraph to be a tree can be ensured by imposing

that gij = fijfji has to be equal to one for each edge (ij) ∈ E. If we extend

the definition of cij by ci∗ = λbi, then (except for an irrelevant constant additive

term), the minimum in (2.2) equals to:

min {H(p) : (d,p) ∈ T }, (2.3)

where d = {di}i∈V , p = {pi}i∈V , T = {(d,p) : gij(pi, di, pj, dj) = 1 ∀(ij) ∈ E) and

H(p) ≡
∑
i∈V

cipi . (2.4)

This new expression for the energy accounts for the sum of taken edge costs plus

the sum of uncollected prizes and has the advantage of being non-negative.
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Figure 2.1: (Color online) A schematic representation of the Prize Collecting
Steiner Tree problem and its local representation. Numbers next to the nodes
are the distances (depths) from the root node (square node). The prize value is
proportional to the darkness of the nodes. Arrows are the pointers from node
to node. Distances and pointers are used to define the connectivity constraints

which appear in the message-passing equations.

2.4 Derivation of the message-passing cavity equa-

tions

The algorithmic scheme we propose originates from the cavity method describe in

the sec[1.2]. The starting point for the equations is the Boltzmann-Gibbs distri-

bution:

P (d,p) =
exp(−βH(p))

Zβ
, (2.5)

where (d,p) ∈ T , β is a positive parameter (a fictitious inverse temperature), and

Zβ is a normalization constant (the partition function). In the limit β → ∞ this

probability concentrates on the configurations which minimize H. Given i, j ∈ V ,

the message Pji (dj, pj) is defined as the marginal distribution
∑

(dk,pk)k∈V \{j,i}
PG(i)(d,p)

on a graph G(i), which equals to graph G minus node i and all its edges. The BP

equations are derived:

Pji (dj, pj) ∝ e−βcjpj
∏
k∈∂j\i

Qkj (dj, pj) (2.6)

Qkj (dj, pj) ∝
∑
dk

∑
pk

Pkj (dk, pk) gjk (dk, pk, dj, pj) . (2.7)
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This assumption is correct if G is a tree, in which case (2.6)-(2.7) are exact and

have a unique solution (see e.g. chapter 14.2 of [27]). The solutions of equations

(2.6)-(2.7 are searched through iteration: substituting (2.7) onto (2.6) and giving a

time index t+1 and t to the cavity marginals in respectively the left and right hand

side of the resulting equation, this system is iterated until numerical convergence

is reached. On a fixed point, the BP approximation to the marginal is computed

as

Pj (dj, pj) ∝ e−βcjpj
∏
k∈∂j

Qkj (dj, pj) . (2.8)

2.4.1 Max-sum: β →∞ limit

In order to take the β →∞ limit, (2.7) can be rewritten in terms of “cavity fields”

ψji (dj, pj) = β−1 logPji (dj, pj) (2.9)

φkj (dj, pj) = β−1 logQkj (dj, pj) . (2.10)

The BP equations take the so-called Max-sum form:

ψji (dj, pj) = −cjpj +
∑
k∈∂j\i

φkj (dj, pj) + Cji (2.11)

φkj (dj, pj) = max
pk,dk:gjk(dk,pk,dj ,pj)=1

ψkj (dk, pk) , (2.12)

where Cji is an additive constant chosen to ensure maxdj ,pj ψji (dj, pj) = 0

Computing the right side of (2.12) is in general too costly in computational terms.

Fortunately, the computation can be carried out efficiently by breaking up the set

over which the max is computed into smaller (possibly overlapping) subsets. We

define

Adkj = max
pk 6=j,∗

ψkj (d, pk) (2.13)

Bd
kj = ψkj (d, ∗) (2.14)

Cd
kj = ψkj (d, j) . (2.15)
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Equation (2.12) can now be rewritten as:

Adji =
∑
k∈∂j\i

Ed
kj + max

k∈∂i\j

{
−cjk − Ed

kj + Ad−1
kj

}
(2.16)

Bji = −cj∗ +
∑
k∈∂j\i

Dkj (2.17)

Cd
ji = −cji +

∑
k∈∂j\i

Ed
kj (2.18)

Dji = max
(

max
d
Adji, Bji

)
(2.19)

Ed
ji = max

(
Cd+1
ji , Dji

)
. (2.20)

Using some simple efficiency tricks including computing
∑

k∈∂j\iE
d
kj as

∑
k∈∂j E

d
kj−

Ed
ki, the computation of the right side of (2.16)-(2.20) for all i ∈ ∂j can be done in a

time proportional to D|∂j|, where D is the depth bound. The overall computation

time is then O(|E|D) per iteration.

2.4.2 Total fields

In order to identify the minimum cost configurations, we need to compute the total

marginals, i.e. the marginals in the case in which no node has been removed from

the graph. Given cavity fields, the total fields ψj (dj, pj) = limβ→∞ β
−1 logPj (dj, pj)

can be written as:

ψj (dj, pj) = −cjpj +
∑
k∈∂j

φkj (dj, pj) + Cj, (2.21)

where Cj is again an additive constant that ensures maxdj ,pj ψj (dj, pj) = 0. In

terms of the above quantities we find ψj (dj, i) = F d
ji

def
=
∑

k∈∂j E
d
kj+
(
−cij − Ed

ji + Ad−1
ji

)
if i ∈ ∂j and ψj (dj, ∗) = Gj

def
= −cj∗ +

∑
k∈∂j Dkj. The total fields can be in-

terpreted as (the Max-Sum approximation to) the relative negative energy loss of

chosing a given configuration for variables pj, dj instead of their optimal choice, i.e.

ψj (dj, pj) = min {H(p′) : (d′,p′) ∈ T }−min
{
H(p′) : (d′,p′) ∈ T , dj = d′j, pj = p′j

}
.

In particular, in absence of degeneracy, the maximum of the field is attained for

values of pj, dj corresponding to the optimal energy. In our simulations, the en-

ergies computed always correspond to the tree obtained by maximizing the total

fields in this way.
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2.4.3 Iterative dynamics and reinforcement

Equations (2.16)-(2.20) can be thought as a fixed-point equation in a high dimen-

sional euclidean space. This equation could be solved by repeated iteration of

the quantities A,B, and C starting from an arbitrary initial condition, simply by

adding an index (t+ 1) to A,B,C in the left-hand side of (2.12) and index (t) to

all other instances of A,B,C,D,E.

This system converges in many cases. When it does not converge, the reinforce-

ment is of help [52]. The resulting new Max-sum equations become:

Adji (t+ 1) =
∑
k∈∂j\i

Ed
kj (t) + (2.22)

+ max
k∈∂j\i

{
−cjk − Ed

kj (t) + Ad−1
kj (t) + γtF

d
jk (t)

}
(2.23)

Bji (t+ 1) = −cj∗ +
∑
k∈∂j\i

Dkj (t) + γtGj (t) (2.24)

Cd
ji (t+ 1) = −cji +

∑
k∈∂j\i

Ed
kj (t) + γtF

d
ji (t) (2.25)

Dji (t) = max
{

max
d
Adji (t) , Bji (t)

}
(2.26)

Ed
ji (t) = max

{
Cd+1
ji (t) , Dji (t)

}
(2.27)

Gj (t+ 1) = −cj∗ +
∑
k∈∂j

Dkj (t) + γtGj (t) (2.28)

F d
ji (t+ 1) =

∑
k∈∂j

Ed
kj (t) +

(
−cji − Ed

ij (t) + Ad−1
ij (t)

)
+ (2.29)

+γtF
d
ji (t) . (2.30)

In our experiments, the equations converge for a sufficiently large γt. The strategy

we adopted is, when the equations do not converge, to start with γt = 0 and slowly

increase it until convergence in a linear regime γt = tρ (although other regimes

are possible). The number of iterations is then found to be inversely dependent

on the parameter ρ. This strategy could be interpreted as using time-averages of

the MS marginals when the equations do not converge to gradually bootstrap the

system into an (easier to solve) system with sufficiently large external fields. A

C++ implementation of these equations can be found (in source form) on [53].
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Note that the cost matrix (cij) need not to be symmetric, and the same scheme

could be used for directed graphs (using cji =∞ if (i, j) ∈ E but (j, i) /∈ E).

2.4.4 Root choice

The PCST formulation given in the introduction is unrooted. The MS equations

on the other hand, need a predefined root. One way of reducing the unrooted

problem to a rooted problem is to solveN = |V | different problems with all possible

different rooting, and choose the one of minimum cost. This unfortunately adds a

factor N to the time complexity. Note that in the particular case in which some

vertex has a large enough prize to be necessarily included in an optimal solution

(e.g. λbi >
∑

e∈E ce), this node can simply be chosen as as root.

We have devised a more efficient method for choosing the root in the general case,

which we will now describe. Add an extra new node r to the graph, connected

to every other node with identical edge cost µ. If µ is sufficiently large, the best

energy solution is the (trivial) tree consisting in just the node r. Fortunately, a

solution of the MS equations on this graph gives additional information: for each

node j in the original graph, the marginal field ψj gives the relative energy shift of

selecting a given parent (and then adjusting all other variables in the best possible

configuration). Now for each j, consider the positive real value αj = −ψj(1, r),
that corresponds with the best attainable energy, constrained to the condition that

r is the parent of j. If µ is large enough, this energy is the energy of a tree in

which only j (and no other node) is connected to r (as each of these connections

costs µ). But these trees are in one to one correspondence with trees rooted at j

in the original graph. The smallest αj will thus identify an optimal rooting.

Unfortunately the information carried by these fields is not sufficient to build

the optimal tree. Therefore one needs to select the best root j and run the MS

equations a second time on the original graph using this choice.

2.5 other method

We compared the performance of msgsteiner with three different algorithms: two

that employ an integer linear programming strategy to find an optimal subtree,
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namely the Lagrangian Non Delayed Relax and Cut (LNDRC) [54] and branch-

and-cut (DHEA) [48], and a modified version of the Goemans and Williamson

algorithm (MGW)[47].

2.5.1 integer linear progamming

The goal of Integer Linear Programming (ILP) is to find an integer vector solution

x∗ ∈ Zn such that:

cTx∗ = min{cTx∗ | Ax ≥ b, x ∈ Zn}, (2.31)

where a matrix A ∈ Rm∗n and vector b ∈ Rm and c ∈ Rn are given. Many

graph problems can be formulated as an integer linear programming problem [55].

In general, solving (2.31) with x∗ ∈ Z is NP-Complete. The standard approach

consists in solving (2.31) for x∗ ∈ R (a relaxation of the original problem) and

use the solution as a guide for some heuristics or complete algorithm for the

integer case. The relaxed problem can be solved by many classical algorithms,

like the Simplex Method or Interior Point methods [56]. In order to map the

PCST problem in a ILP problem we introduce a variable vector z ∈ {0, 1}E and

y ∈ {0, 1}V where the component for an edge in E or for a vertex in V is one if it

is included in the solution and zero otherwise. Now (2.2) can be written as

H =
∑
e∈E

ceze −
∑
i∈V

biyi , (2.32)

and the constraints Ax ≥ b in (2.31), that are used to enforce that induced sub-

graph is a tree, generally involve all or most of the variables z and y. Roughly

speaking Ax ≥ b in (2.31) defines a bounded volume in the space of parameters,

i.e. a polytope. The equation to minimize is linear (2.31) so the minimum is on a

vertex of this polytope. In general for hard problems, in order to ensure that each

vertex of the polytope (or more in particular just the optimal vertex) is integer, a

number of extra constraints that grows exponentially with the problem size may

be needed [55].

DHEA and LNRDC use different techniques to tackle the problems of the enor-

mous number of resulting constraints. Both programs are able in principle to prove

the optimality of the solution (if given sufficient/exponential time), and when it
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is not the case they are able to give a lower bound for the value of the optimum

given by the the optimum of the relaxed problem.

2.5.2 Goemans-Williamson

The MGW algorithm is based on the primal-dual method for approximation algo-

rithms [46]. The starting point is still the ILP formulation of the problem (2.31),

but it employs a controlled approximation scheme that enforces the cost of any

solution to be at most twice as large as the optimum one. In addition, MGW im-

plements two different post-processing strategies, namely a pruning scheme that

is able to eliminate some nodes while lowering the cost, and the computation of

the minimum spanning tree in order to find an optimal rewiring of the same set of

nodes. The overall running time is O(n2 log n). A complete description is available

in [46].

2.6 Computational Experiments

2.6.1 Instances

Experiments were performed on several classes of instances:

• C, D and E available at [57] and derived from the Steiner problem instances of

the OR-Library [58]. This set of 120 instances was previously used as bench-

mark for algorithms for the PCST[58]. The solutions of these instances were

obtained with the algorithms[48, 54]. The class C, D, E have respectively

500, 1000, 2000 nodes and are generated at random, with average vertex

degree: 2.5, 4, 10 or 50. Every edge cost is a random integer in the interval

[1, 10]. There are either 5, 10, n/6, n/4 or n/2 vertices with prizes different

from zero and random integers in the interval [1, maxprize] where maxprize

is either 10 or 100. Thus, each of the classes C, D, E consists of 40 graphs.

• K and P available at [57]. These instances are provided in [47]. In the

first group instances are unstructured. The second group includes random

geometric instances designed to have a structure somewhat similar to street
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maps. Also the solution of these instances were found with the algorithms

[48, 54].

• H are the so-called hypercubes instances proposed in [59]. These instances

are artificially generated and they are very difficult instances for the Steiner

tree problem. Graphs are d-dimensional hypercubes with d ∈ 6, ..., 12. For

each value of d, the corresponding graph has 2d vertices and d · 2d−1 edges.

We used the prized version of these instances defined in [48]. For almost all

instances in this class the optimum is unknown.

• i640 are the so-called incidence instances proposed in [60] for the Mini-

mum Steiner Tree problem. These instances have 640 nodes and only the

nodes in a subset K ⊆ V have prizes different from zero (in the origi-

nal problem these were terminals). The weight on each edge (i, j) is de-

fined with a sample r from a normal distribution, rounded to an integer

value with a minimum outcome of 1 and maximum outcome of 500, i.e.,

cij = min{max{1, round(r)}, 500}. However, to obtain a graph that is

much harder to reduce by preprocessing techniques three distributions with

a different mean value are used. Any edge (i, j) is incident to none, to one,

or to two vertices in subset K. The mean of r is 100 for edges (i, j) with

i, j /∈ K, 200 on edges with one end vertex in K, and 300 on edges with

both ends in K. Standard deviation for each of the three normal distribu-

tions is 5. In order to have prizes also on vertices we extracted uniformly

from all integer in the interval between 0 and 4∗maxedge where maxedge is the

maximum value of edges in the samples considered. There are 20 variants

combining four different number of vertices in K (rounding to the integer

value [.]): |k| = [log2 |V |], [
√|V |], [2

√|V |], and [|V |/4] with five edge num-

ber: |E| = [3|V |/2], 2|V |, [|V | log |V |], [2|V | log |V |], and [|V |(|V | − 1)/4].

Each variant is drawn five times, giving 100 instances.

• Class R. The last class of samples are G(n, p) random graphs with n vertices

and independent edge probability p = (2ν)/(n− 1). The parameter ν is the

average node degree, that was chosen as ν = 8. The weight on each edge

(i, j) can take three different value, 1, 2 and 4, with equal probability 1
3
.

Node prizes were extracted uniformly in the interval [0, 1]. We generated

different graphs with four different values of λ (λ = 1.2, 1.5, 2 or 3), see

(2.2), in order to explore different regimes of solution sizes. We find that

the average number of nodes that belong to the solution for λ = 1.2, 1.5, 2
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and 3 are respectively about 14%, 33%, 51%, 67% of the total nodes in the

graph. We have created twelve instances of different size for the four class of

random graph, from n = 200 up to n = 4000 nodes. For each parameter set

we generated ten different realizations. The total number of samples is 480.

The msgsteiner algorithm was implemented in C++ and run on a single core

of an AMD Opteron Processor 6172, 2.1GHz, 8 Gb of RAM, with Linux, g++

compiler, -O3 flag activated. A C++ implementation of these equations can be

found in source form on [53]. The executable of DHEA is available in [57], and in

order to compare the running time we ran DHEA and msgsteiner on the same

workstation. The executable of LNDRC and MGW programs was not available.

We implemented the non-rooted version of MGW to compare only the optimum

on the random graph instances.

2.6.2 Results

We analyzed two numeric quantities: the time to find the solution, and the gap

between the cost of the solution and the best known lower bound (or the optimum

solution when available) typically found with programs based on linear program-

ming. The gap is defined as gap = 100 · Cost−LowerBound
lowerBound

.

In Table (2.1) we show the comparison between msgsteiner and the DHEA pro-

gram. DHEA is able to solve exactly K, P and C, D, E instances. The worst

performance of msgsteiner is on the K class, where the average gap is about

2.5%. In this class the average solution is very small as it comprises only about

4.4% of total nodes of the graph. msgsteiner seems to have most difficulty with

small subgraphs. msgsteiner is able to find solutions very close to the optimum

for the P class, that should be model a street network. msgsteiner is also able to

find solutions very close to the optimum, with a gap inferior to 0.025% on the C,

D, and E classes.

In Figure (2.2) we show the gap of msgsteiner and MGW from the optimum

values found by the DHEA program in the class R. msgsteiner gaps are almost

negligible (always under 0.05%) and tend to zero when the size grows. MGW gaps

instead are always over 1%. For intermediate size of solutions trees the gaps of

MGW are over 3%.
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Figure 2.2: (Color online) Gap from the optimum found by DHEA program
of respectively (a) MGW and (b) msgsteiner as a function of the number of
nodes. msgsteiner gaps are always under 0.05%. MGW gaps are always over
1% and for intermediate sizes of the solution tree the gaps of MGW are over

3%.

In Figure (2.3) we show the running time for the class R, with increasing solution

tree size. In general we observe that the running time of msgsteiner grows much

slower than the one of DHEA for increasing number of nodes in the graph and

msgsteiner largely outperforms DHEA in computation time for large instances;

furthermore the differences between the algorithms became specially and large for

large expected tree solution. In at least one case DHEA could not find the optimum

solution whithin the required maximum time and the msgsteiner solution was

slightly better.

The class i640 consists in graphs with varying number of edges and nodes, and a

varying number of nodes with non-zero prize. We define K as the subset of nodes

with non-zero prize. Table (2.2) shows, for each type of graph, the average time

and the average gap on five different realizations of the graphs for msgsteiner

and DHEA algorithms. We set the time limit to find a solution of DHEA to

2000 seconds. We observe that DHEA obtains good performance in terms of the

optimality of the solution when the size of subset K is small. msgsteiner finds

better result than DHEA when the size of K is sufficiently large, within a time of

one or two order of magnitude smaller. Moreover DHEA seems to have difficulty

to find reasonable good solution when the graph have high connectivity.

We show in Table (2.3) a comparison between msgsteiner, LNDRC [54] and

DHEA. The results and running time of LNDRC are taken from [54]. The com-

puter reportedly used for the optimization is comparable with ours. We have
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Figure 2.3: (Color online) Result on the random graphs class R. Points cor-
respond to the running time of msgsteiner and DHEA versus graph size. The
four cases show how running time behavior depends on size of the expected
solution tree. The plots (a), (b), (c), (d) have respectively λ = 1.2, 1.5, 2, 3 and
average value of the fraction of nodes that belongs to the solution respectively
|V (T )|/|V (G)| = 0.14, 0.33, 0.51, 0.67. The quantities shown in figure are aver-
aged over ten different realizations. Data are fitted with function y = axb. The
b values found for DHEA are for (a), (b), (c), (d) respectively : 2.4, 2.8, 2.8,
2.8. BP performance is as expected roughly linear in the number of vertices.
The fitted b parameters are for (a), (b), (c), (d) respectively: 1.5, 1.3, 1, 1. For
instances that are large enough, the running time of msgsteiner is smaller than
the one of DHEA and the difference increases with the expected solution tree.

imposed to DHEA a time limit of 6000 seconds and we show two results of

msgsteiner with different values of the reinforcement parameter. The lower bound

is taken from [54]. In almost all instance msgsteiner obtains better results, both

in time and in quality of solution. The difference is accentuated for large instances.

As expected, decreasing the reinforcement parameter allows to find lower costs at

the expense of larger computation times.
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Group MS gap MS time (s) DHEA gap DHEA time (s) Size Sol
K 2.62% 6.51 0.0% 127.97 4.4%
P 0.46% 2.31 0.0% 0.18 31.4%
C 0.006% 16.24 0.0% 2.30 20.2%
D 0.005% 35.06 0.0% 16.12 20.2%
E 0.024% 305.49 0.0% 1296.11 26.4%

Table 2.1: Results class KPCDE

Name time MS time DHEA gap MS (%) gap DHEA (%)
0-0 0.8 0.2 1.3 0
0-1 2.5 4.2 1.0 0
0-2 100.8 226.6 1.4 0
0-3 1.2 0.3 0.05 0
0-4 37.3 72.8 1.8 0
1-0 1.0 0.85 0.3 0
1-1 2.6 1060.1 1.2 1.5
1-2 90.6 1133.8 0.7 0.2
1-3 1.5 3.8 0.8 0
1-4 33.7 2000.0 1.8 7.8
2-0 0.8 0.7 0.1 0
2-1 4.3 2000.0 2.2 11.6
2-2 149.7 2011.1 0.8 14.8
2-3 1.2 12.0 0.2 0
2-4 39.2 2001.0 1.9 11.2
3-0 1.1 2.4 0.3 0
3-1 3.9 2001.0 1.7 5.6
3-2 112.6 2015.1 0.8 4.9
3-3 1.6 145.3 0.2 0
3-4 33.1 2000.5 1.2 59.9

mean 31.0 834.6 1.0 5.9

Table 2.2: Results i640 class

2.6.3 discussion

In this chapter we compared msgsteiner, with two state-of-the art algorithms

for the Prize-Collecting Steiner Problem. The Cavity Theory is expected to give

asymptotically exact results on many ensembles of random graphs, so we expected

it to give better performance for large instances. The comparison was performed

both on randomly-generated graphs and existing benchmarks. We observed that

msgsteiner finds better costs in significantly smaller times for many of the in-

stances analyzed, and that this difference in time and quality grew with the size

of the instances and their solution. We find these results encouraging in views of
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Name MS(-5) MS(-3) LNDRC DHEA
gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s)

6p 2.2 3.5 2.6 0.6 4.2 0.5 2.2 21.3
6u 1.5 6.4 4.3 0.7 4.3 0.5 1.5 0.4
7p 2.3 90.2 3.9 1.7 7.7 1.5 2.3 6000.3
7u 2.2 134.1 2.2 1.8 3.6 1.2 2.2 596.4
8p 2.4 255.5 3.4 3.8 7.1 5.2 2.3 6004.2
8u 1.8 351.1 3.3 4.9 7.5 4.1 3.3 6000.9
9p 1.8 555.6 2.3 10.8 8.6 16.1 22.1 6000.0
9u 1.9 775.8 3.3 11.1 6.2 13.1 Not Found 6000.4
10p 1.7 1761.9 1.7 28.0 10.4 114.4 31.3 6000.5
10u 2.7 2468.4 2.7 32.2 7.7 59.8 Not Found 6000.6
11p 1.5 972.3 1.6 49.3 11.6 630.0 Not Found 6003.1
11u 2.2 5632.8 2.6 71.9 9.0 360.6 Not Found 6001.5
12p 1.5 4970.8 1.6 121.4 11.3 3507.7 Not Found 6009.8
12u 2.0 4766.7 2.4 174.1 10.0 1915.7 Not Found 6002.3
mean 2.0 1624.7 2.7 36.6 7.8 473.6 − 4760.1

Table 2.3: Results H class

future applications to problems in biology in which optimization of networks with

millions of nodes may be necessary, in particular given the conceptual simplicity

of the scheme behind msgsteiner (a simple fixed-point iteration).

2.7 Post-processing and optimality

For this section we will assume unbounded depth D. Results are not easily general-

izable to the bounded-D case. Results in this section apply to the non-reinforced

MS equations (γt = 0). The results here are based in construction of certain

trees associated with the original graph and in the fact that MS/BP equations are

always exact and have a unique solution on trees [51].

Definition 1. Let {ψij} be a MS fixed-point (2.11)-(2.12), and let d,p be the de-

cisional variables associated with this fixed point, i.e. (d∗i , p
∗
i ) = arg maxψi (di, pi)

for the physical field ψi from (2.21). We will assume this maximum to be non

degenerate. We will employ the induced subgraph S∗=(V ∗, E∗) defined by V ∗ =

{i ∈ V : p∗i 6= ∗}∪{r} and E∗ = {(i, p∗i ) : i ∈ V, p∗i ∈ V }. The cost of this subgraph

is H (S∗) = H (p) =
∑

i∈V cip∗i .

The following local optimality property of the Max-Sum-induced solution will be

proven in the appendix A. It states that a MS solution is no worse than any

subgraph containing a subset of the nodes.
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Theorem 2. Given a MS fixed point {ψij} on G (unbounded D) with induced

subgraph S∗ = (V ∗, E∗) and any subtree S ′ = (V ′, E ′) ⊆ G with V ′ ⊆ V ∗, then

H (S∗) ≤ H (S ′)

This result has an easy generalization to loopy subgraphs:

Corollary 3. With S∗ as in Theorem 2, given any connected subgraph S ′ =

(V ′, E ′) ⊆ G with V ′ ⊆ V ∗, then H (S∗) ≤ H (S ′).

Proof. Apply Theorem (2) to a spanning tree of S ′.

This trivially implies the following result of global optimality of the MS solution

in a particular case:

Corollary 4. With S∗ = (V ∗, E∗) as in Theorem 2, if V ∗ = V then H (S∗) =

PCST (G)

In [47], the MGW algorithm includes two additional methods to obtain a better

PCST solution: StrongPrune and Minimum Spanning Tree (MST) maintaining

the same vertex set. Both methods give a substantial improvement boost to the

MGW candidate computed in the first phase. A natural question may arise, does

any of these two methods may help to improve the solution of MS? The answer is

negative in both cases, and it is a trivial consequence of Theorem (2).

Corollary 5. MST (V ∗, E ∩ (V ∗ × V ∗)) = H (S∗)

Proof. The minimum spanning tree of (V ∗, E ∩ (V ∗ × V ∗)) satisfies the hypothesis

of Theorem (2), so H (S∗) ≤ MST (V ∗, E ∩ (V ∗ × V ∗)). The converse inequality

is trivially true due to the optimality of the MST.

Corollary 6. H (StrongPrune (S∗)) = H (S∗)

Proof. This is a consequence of the fact that V (StrongPrune (S∗)) ⊆ V (S∗) = V ∗

and thus Theorem (2) applies, implying H (S∗) ≤ H (StrongPrune (S∗)). The

opposite inequality H (StrongPrune (F )) ≤ H (F ) was proved in [47].
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Variational Quantum Cavity

Method

3.1 Introduction

In this chapter it is presented a technique that allows to compute approximate low

excite states of many body quantum systems. In general it is a computationally

hard task even founding the ground-state in one-dimensional quantum systems.

Exact diagonalization algorithms are very helpful but they are limited to small

systems due to the exponential growth of the Hilbert space with the system size

[61]. For larger systems one has to resort to approximation methods, e.g., the

variational quantum Monte Carlo algorithms, to study the low-energy states of

the Hamiltonian [62–64]. On the other hand, one can always obtain useful insights

by studying some exactly solvable mean-field models [65].

The estimation of local expectation values is of central importance in classical and

quantum statistical physics in order to infer the physical state of an interacting

system. This is in general a computationally hard problem especially for disordered

systems displaying glassy behaviors, where approximation algorithms based on

the Monte Carlo sampling could be very time consuming. At least for mean-field

systems and finite-connectivity models with a locally tree-like interaction graph,

the cavity method, described in the first chapter, provides efficient message-passing

algorithms.

35
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In the work of Ramezanpour it was presented an approach that merges the tech-

nique explained in 1.4.1 for stochastic optimization problems with the variational

principle of quantum mechanics, i.e. the fact that any trial wave function provides

an upper bound for the ground-state energy. The problem of finding the optimal

state can be recast as an optimization problem with an objective function that

evaluates the energy of the system. The idea is to map the trial wave function on

a Gibbs state of a classical system and to consider the set of couplings as varia-

tional parameters. Crucial in this respect is the choice of the classical systems that

should be able to capture the quantum nature of the original system. Given the

trial wave function, the average of the quantum Hamiltonian can be estimated by

cavity method. When we work on quantum systems that have a structure different

from trees, Hamiltonian averages computed by the cavity method is an estimation

of the true one, so in this case the upper bound property of the Hamiltonian is

lost. In the chapter 4 it is presented a different technique that solves the same

optimization problems in a faster and more precise way.

In order to study to the lower excited state of a system we can use the same

procedure described above imposing additionally the orthogonality conditions be-

tween lower-energy eigenstates of the Hamiltonian. The main point is to write the

overlap between two wave functions in the Bethe approximation, which is asymp-

totically exact as long as the trial wave functions can be represented by classical

systems of locally tree-like interaction graphs. This allows us to replace the global

orthogonality condition with some local constraints on the variational parameters

and the cavity messages in the Bethe expression for the overlap.

In section 3.2 the variational quantum cavity method [15] is presented. Then, in

section 3.3 it s shown the method to find low energy excite states within the Bethe

measure [17].

3.2 Ground state approximate wave function

Given a HamiltonianH and a trial wave function |ψ(P )〉, we have 〈ψ(P )|H|ψ(P )〉 ≥
Eg where Eg is the ground-state energy of H and P denotes a set of parameters

characterizing the trial wave function. To find the optimal parameters we define
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the following optimization problem:

Z =
∑
P

e−βopt〈ψ(P )|H|ψ(P )〉, (3.1)

where eventually one is interested in the limit βopt →∞. Note that βopt is just the

inverse of a fictitious temperature and has nothing to do with the physical tem-

perature. In the equation (3.2) we have to perform a sum over a set of parameters

that change the average value of a energy function defined, at least for systems

addressed in this thesis, over discrete variables. This problems is very close to a

stochastic optimization problems showed in sec 1.4.1, as well as the technics I will

show in the next sections to solve it.

Assume H = H0 + H1, where H0 is diagonal in the orthonormal basis |σ〉; H0

and H1 are Hermitian operators with real eigenvalues and orthonormal eigen-

vectors. The trial wave function is represented in this representation as |ψ(P )〉 =∑
σ ψ(σ;P )|σ〉. The coefficients ψ(σ;P ) are complex numbers, and |ψ(σ;P )|2 =

ρ(σ;P ) is a normalized probability distribution over σ. The average energy can

be written as

〈ψ(P )|H|ψ(P )〉 =
∑
σ

|ψ(σ;P )|2[E0(σ) + E1(σ)] (3.2)

=
∑
σ

ρ(σ;P ) [E0(σ) + E1(σ)] , (3.3)

where

E0(σ) ≡ 〈σ|H0|σ〉, E1(σ) ≡ Re

{∑
σ′

ψ∗(σ′;P )

ψ∗(σ;P )
〈σ′|H1|σ〉

}
. (3.4)

We consider ρ(σ;P ) ≡ |ψ(σ;P )|2 as a probability measure in a classical sys-

tem and compute the above average quantities within the Bethe approximation.

For ψ(σ;P ) ∝ ∏
a∈Ec φa(σ

∂a;Pa), the classical measure is given by ρ(σ;P ) ∝∏
a |φa(σ∂a;Pa)|2 with the set of classical interactions Ec ≡ {φa(σ∂a)|a = 1, . . . , A}.

Here ∂a is the subset of variables that appear in φa. We write the BP equation
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(1.44) over this classical systems:

µi→a(σi) ∝
∏
b∈∂i\a

µb→i(σi), (3.5)

µa→i(σi) ∝
∑
σ∂a\i

|φa(σ∂a;Pa)|2
∏
j∈∂a\i

µj→a(σj). (3.6)

The average of any local quantity like E0 and E1 can be written as a function of

the BP cavity marginals (or messages). Therefore, the optimization problem reads

Z =
∑
P

∑
µ

e−βopt〈E0〉ρ−βopt〈E1〉µ1BP , (3.7)

where the indicator function 1BP ensures that the messages µ satisfy the BP

equations, like shown for stochastic optimization problem in sec.1.4.1. In the case

of multiple BP fixed points the above partition function would be concentrated on

one minimum of the average energy for βopt →∞. More accurate average energies

are obtained, of course, by considering replica symmetry breaking, for instance the

1RSB equations considered in sec.1.4, and working with a probability distribution

of the BP fixed points.

3.2.1 Quantum ising model

We consider the quantum Ising model with Hamiltonian H = H0 + H1 where

H0 = −∑(ij)∈Eq Jijσ
z
i σ

z
j and H1 = −∑N

i=1 hiσ
x
i . The Jij are real parameter

describing the interactions in the z direction between spins, and the hi are also

real parameter representing transverse external fields on the x direction. The

interaction graph is defined by Eq, andN is the size of the system. The σx,y,z are the

standard Pauli matrices. The states |σ〉 are the 2N configurations of the σz spins.

In this case 〈σ|H0|σ〉 = −∑(ij)∈Eq Jijσiσj and 〈σ′|H1|σ〉 = −∑i hiδσi,−σ′iδσ\i,σ′\i,

where δa,b is the the delta of Dirac between two variable (a, b). We consider

only real parameter in the Hamiltonian, then the ground state wave function can

be always describe by a real function. Moreover, if h > 0, the ground state is

a positive wave function1. In this thesis we consider only positive h values of

transverse external field.

1giustify
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3.2.2 Pairwise model

For the trial wave functions we take a pairwise model plus external field ansatz:

ψ(σ;P ) =
e
∑
iBiσi+

∑
(ij)∈Ec Kijσiσj(∑

σ e
∑
i 2Biσi+

∑
(ij)∈Ec 2Kijσiσj

)1/2
, (3.8)

with real parameters P = {Bi, Kij|i = 1, . . . , N, (ij) ∈ Ec}. This results in the

Gibbs measure µ(σ;P ) = |a(σ;P )|2 of a classical spin-glass model with external

fields 2Bi and couplings 2Kij. Notice that the classical interaction graph Ec could

be different from the quantum one Eq. For simplicity, in the following we will

assume that the two coincide as happens in zero transverse fields; better represen-

tations could be obtained by adding the higher order neighbors to Ec.

Given the classical measure, the BP equations read:

µi→j(σi) ∝ e2Biσi
∏
k∈∂i\j

(∑
σk

e2Kikσiσkµk→i(σk)

)
≡ BP i→j, (3.9)

where ∂i refers to the set of spins interacting with spin i in Ec. Figure 3.1 displays

the set of variables and interactions in the classical interaction graph. Having the

cavity marginals, the average of local energies eij ≡ −Jijσzi σzj and ei ≡ −hiσxi read

〈eij〉µ = −Jij
∑
σi,σj

σiσjµij(σi, σj), (3.10)

〈ei〉µ = −hi
∑
σi,σ∂i

e−2Biσi−
∑
j∈∂i 2Kijσiσjµi,∂i(σi, σ∂i), (3.11)

with the local BP marginals µij(σi, σj) ∝ e2Kijσiσjµi→j(σi)µj→i(σj) and µi,∂i(σi, σ∂i) ∝
e2Biσi

∏
j∈∂i[e

2Kijσiσjµj→i(σj)].

The above average energies define the Boltzmann weight e−βopt〈E0〉µ−βopt〈E1〉µ for a

given configuration of the variational parameters and the BP messages; see figure

3.1. The cavity marginals of the parameters (including the BP messages) can

be written in a higher-level Bethe approximation, resembling the one-step RSB

equations (sec.[1.4]):

Mi→j(Kij, µij) ∝ e−βopt〈eij〉µ
∑
Bi

{Kik,µik|
k∈∂i\j}

e−βopt〈ei〉µ
∏
k∈∂i\j

Mk→i(Kik, µik)1BP (i), (3.12)
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µ
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ijK µ ij

ijK

σi

σj
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Bj

Mi−−>j

<e  >ij

<e >,i

Bi

BP

Figure 3.1: (top) The interaction graphs of the classical system representing
the trial wave function and (bottom) the resulting variational problem. The
variables are shown with solid circles, and the interactions are shown with open

polygons.

where for brevity we defined µij ≡ {µi→j, µj→i} and 1BP (i) ≡
∏

j∈∂i δ(µi→j −
BP i→j). The Bethe free energy is given by F =

∑
i Fi −

∑
(ij)∈Ec Fij with

e−βoptFi ≡
∑

Bi,{Kij ,µij |j∈∂i}

e−βopt〈ei〉µ
∏
j∈∂i

Mj→i(Kij, µij)1BP (i), (3.13)

e−βoptFij ≡
∑
Kij ,µij

e+βopt〈eij〉µMi→j(Kij, µij)Mj→i(Kij, µij), (3.14)

Notice that in the last equation we have the positive sign in the exponential to

count correctly the energy contribution 〈eij〉µ.

The βopt → ∞ limit of the above equations, taking the scaling Mi→j(Kij, µij) =

eβoptMi→j(Kij ,µij), read

Mi→j(Kij, µij) = −〈eij〉µ + max
Bi,{Kik,µik|k∈∂i\j}:1BP (i)

−〈ei〉µ +
∑
k∈∂i\j

Mk→i(Kik, µik)

 ,

(3.15)
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they are the Max-Sum/BP equations like in the stochastic optimization (sec.[1.4.1]).

The minimum energy is given by Eg = limβopt→∞ F = −(
∑

i ei−
∑

(ij)∈Ec eij) with

the local energy shifts

ei ≡ max
Bi,{Kij ,µij |j∈∂i}:1BP (i)

{
−〈ei〉µ +

∑
j∈∂i

Mj→i(Kij, µij)

}
, (3.16)

eij ≡ max
Kij ,µij

{〈eij〉µ +Mi→j(Kij, µij) +Mj→i(Kij, µij)} . (3.17)

Before solving the above equations we will consider some simpler cases.

3.2.3 Zero couplings: Mean field solution

In the zeroth order of the approximation we take Kij = 0 for any edge (ij).

This is a mean-field approximation with a factorized measure µ(σ) =
∏

i µi(σi),

where µi(σi) = e2Biσi/[2 cosh(2Bi)]. Then using equations (3.10) and (3.11) we

obtain the average local energies: 〈eij〉µ = −Jij tanh(2Bi) tanh(2Bj) and 〈ei〉µ =

−hi/ cosh(2Bi); therefore

〈ψ(B)|H|ψ(B)〉 = −
∑

(ij)∈Eq

Jij tanh(2Bi) tanh(2Bj)−
∑
i

hi
cosh(2Bi)

. (3.18)

Here we write directly the MaxSum equations that can be used to estimate the

optimal parameters and the minimum average energy:

Mi→j(Bi) = −〈ei〉µ +
∑
k∈∂i\j

max
Bk
{−〈eik〉µ +Mk→i(Bk)} . (3.19)

Then we find the optimal paramters by maximizing the local MaxSum weights:

B∗i = arg max
Bi

{
−〈ei〉µ +

∑
j∈∂i

max
Bj
{−〈eij〉µ +Mj→i(Bj)}

}
. (3.20)

3.2.4 Zero fields: Symmetric solution

As long as the fields Bi are zero we have always a symmetric solution µi→j(σi) =

1/2 to the BP equations in the classical system. This gives the average local
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energies: 〈eij〉µ = −Jij tanh(2Kij) and 〈ei〉µ = −hi/[
∏

j∈∂i cosh(2Kij)], and

〈ψ(K)|H|ψ(K)〉 = −
∑

(ij)∈Eq

Jij tanh(2Kij)−
∑
i

hi∏
j∈∂i cosh(2Kij)

. (3.21)

The resulting MaxSum equations are

Mi→j(Kij) = −〈eij〉µ + max
{Kik|k∈∂i\j}

−〈ei〉µ +
∑
k∈∂i\j

Mk→i(Kik)

 , (3.22)

and the optimal couplings are estimated by

K∗ij = arg max
Kij
{〈eij〉µ +Mi→j(Kij) +Mj→i(Kij)} . (3.23)

Notice that here we have 〈σzi 〉 = 0, which is not the case in the ordered phase.

In addition, the symmetric solution does not give an accurate average energy

when replica symmetry is broken, which may happen for large couplings in the

classical system; the Bethe approximation works well when distant spins are nearly

independent, whereas the symmetric solution does not respect this property in an

RSB phase. To get around this problem one can work with the nontrivial BP

fixed points, e.g., by demanding a total magnetization of magnitude greater than

δm � 1. At the same time one may need to limit the range of couplings to

|Kij| < Kmax in order to avoid dominance by very large couplings.

3.2.5 General solution

In general to solve the MaxSum-BP equations we have to work with discrete fields

Bl ∈ {lδB|l = −LB, . . . , LB}, couplings Kl ∈ {lδK|l = −LK , . . . , LK}, and BP

cavity fields νl ∈ {lδν|l = −Lν , . . . , Lν}. The BP cavity fields νi→j are defined by

µi→j(σi) ∝ eνi→jσi . An exhaustive solution of the MaxSum-BP equations would

take a time of order Nd(2LB)[(2LK)(2Lν)]
d where d is the maximum degree in Ec.

Notice that given the couplings Kij and the input BP messages νj→i around spin i,

one obtains νi→j for any value of Bi from the BP equations. The above equations

can be solved more efficiently (for large degrees) by using a convolution function

of four variables (needed to compute 〈ei〉µ in the MaxSum-BP equations) resulting

in a time complexity of order Nd(2LK)(2Lν)
6; see appendix in the article[]. In

the following instead we use a computationally easier but approximate way of
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solving the equations by restricting the domain of variables: We start by assigning

a small number of randomly selected states Sij = {(K1
ij, ν

1
ij), . . . , (K

S
ij, ν

S
ij)} to each

variable (Kij, νij). Then we run the MaxSum-BP equations with these restricted

search spaces to converge the equations and sort the states in Sij according to

their MaxSum-BP weights:

wij(K
l
ij, ν

l
ij) = 〈eij〉µ +Mi→j(K

l
ij, ν

l
ij) +Mj→i(K

l
ij, ν

l
ij). (3.24)

Next we update the search spaces by replacing the states having smaller weights

with some other ones generated randomly but close to the best state observed

during the algorithm. The above two steps are repeated to find better search

spaces and therefore parameters. The algorithm performance would depend on

the size of the search spaces, approaching the correct one for S →∞.

The search spaces at the beginning are chosen randomly therefore we introduce

a tolerance δν to accept those BP messages that satisfy the BP equations within

±δν. One may start from a large tolerance and decrease it slowly after each update

of the search spaces. The mean-field solution mentioned before can provide a good

initial point for the search spaces.

3.2.6 Numerical results

3.2.6.1 Random coupling chain

First, we consider a spin chain in uniform and positive transverse field but with

random couplings. In figure 3.2 we compare the results obtained by the above

approximations with the exact ones obtained by the modified Lanczos method [66].

As expected, the mean-field ansatz is better than the symmetric solution in the

ordered phase where the local magnetizations are nonzero. The reverse happens

in the disordered phase and even in the ordered phase close to the transition point

where the local magnetizations are still small. The two limiting behaviors are

therefore displayed in the general solution.
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Figure 3.2: Comparing the exact results with those of the mean-field (MF),
the symmetric solution (SS) and the general solution (GS) in a single instance
of the quantum Ising model in transverse field h on a chain of size N = 20.
For comparison we also display the GS results for N = 1000. Here Eg and mx

are the ground-state energy and magnetization in the x direction, respectively.
The inset shows the Edwards-Anderson order parameter qz = (

∑
i〈σzi 〉2)/N .

The couplings Jij are Gaussian random numbers of mean zero and variance
one. δB, δK, and δν are the sizes of bins in the discrete representation of the
parameters, and S is the number of states in the restricted domains. The data
for GS are obtained by restricting the search algorithm to total magnetizations

of magnitude greater than δm = 0.05.
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3.2.6.2 Random graph

As another example we study the same model on a single instance of random

regular graphs where each spin interacts with a fixed number of other randomly

selected spins. The results displayed in figure 3.3 show similar behaviors observed

above, except that in the ordered phase the symmetric solution gives a lower

ground state energy than the exact one. As explained before, this is due to the

poor estimation of the average energy by the symmetric solution when there are

multiple BP fixed points. Moreover, due to the loops and small size of the system

we find larger deviations from the exact data compared to the chain model.

Similar qualitative behaviors are observed in ferromagnetic (Jij = 1) and ±J spin-

glass (Jij = ±1 with equal probability) models on a random regular graph of degree

d = 3. In the ferromagnetic case, a reasonable trial wave function is obtained by

taking Bi = B and Kij = K. This simplification allows us to find easily the

optimal parameters, and so the critical field hferroc ∼ 2.29 in the thermodynamic

limit. Figure 3.4 displays the phase diagram of the ferromagnetic model obtained

in this way. For the ±J spin-glass model, the general solution on single instances

of size N = 1000 gives h±Jc ' 2.0. The corresponding values in the thermodynamic

limit given in Refs. [13] and [12] are: hferroc ∼ 2.23 and h±Jc ∼ 1.77.

3.3 Low temperature excitations

In this section we use the variational quantum cavity method, shown in the pre-

vious section, to find approximate solutions for the exited-states of the transverse

Ising model. The main point of this study is to write the overlap between two

wave functions in the Bethe approximation, which is asymptotically exact as long

as the trial wave functions can be represented by classical systems of locally tree-

like interaction graphs. This allows us to replace the global orthogonality condition

with some local constraints on the variational parameters and the cavity messages

in the Bethe expression for the overlap. In summary, given an appropriate trial

wave function, we evaluate the Hamiltonian expectation in the subspace of wave

functions orthogonal to the lower-energy states of the Hamiltonian and find an

estimation of the optimal variational parameters, all within the Bethe approxima-

tion. We implemented it by a local message-passing algorithm.
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Figure 3.3: The quantum Ising model in transverse field h on a random regular
graph (RRG) of degree d = 3 and size N = 20. For comparison we also display
the GS results for N = 1000. The couplings Jij are Gaussian random numbers
of mean zero and variance one. The data for GS are obtained by restricting the
search algorithm to total magnetizations of magnitude greater than δm = 0.05

and couplings of magnitude less than Kmax = 1.
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Figure 3.4: The quantum Ising model with ferromagnetic interactions (Jij =
1) in transverse field h on RRG of degree d = 3. The results of homogeneous
mean field Bi = B and Ising (Bi = B,Kij = K) trial wave functions are com-
pared with the results of the quantum cavity method [13] for a small temperature

in the thermodynamic limit.
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Note that, usually, for large and disordered systems we do not have the exact

ground-state of the system. The best that we can do is to find a good variational

wave function that represent the low-energy state of the system. Obviously, an

excited state that is orthogonal to an approximate ground state does not neces-

sarily provide an upper bound for the excited-state energy. There are, of course,

other ways to find the excited states that do not rely on the orthogonality to a

priori known ground state, but we found the above procedure more amenable to

the cavity method that we are going to use in this paper. Nevertheless, any or-

thogonal set of quantum states defines a subspace of wave vectors that according

to the Courant min-max theorem [67] can be used to find some upper bounds for

the Hamiltonian eigenvalues.

3.3.1 Orthogonality constraints

Let us denote by |Ψn(P n)〉 the nth trial wave function that minimizes the av-

erage energy 〈Ψn(P n)|H|Ψn(P n)〉 conditioned on the orthogonality constraints

〈Ψn(P n)|Ψm(Pm)〉 = 0 for m = 0, . . . , n− 1. The corresponding classical systems

are represented by measures µn(σ;P n). In the following we are going to satisfy

the orthogonality constraints within the Bethe approximation,

〈Ψn(P n)|Ψm(Pm)〉 =
∑
σ

ψ∗n(σ;P n)ψm(σ;Pm) ' e−(
∑
i Fi+

∑
a Fa−

∑
(ia) Fia) = 0,(3.25)

where Fi, Fa, and Fia are the free energy changes by adding variable node i,

interaction node a, and link (ia) to the complex measure νn,m(σ;P n, Pm) ∝
ψ∗n(σ;P n)ψm(σ;Pm) ∝ ∏

a φ
∗
a(σ

∂a;P n
a )φa(σ

∂a;Pm
a ). These quantities are given

by (see sec.1.3.2),

e−Fi =
∑
σi

∏
a∈∂i

νa→i(σi), (3.26)

e−Fa =
∑
σ∂a

φ∗a(σ
∂a;P n

a )φa(σ
∂a;Pm

a )
∏
i∈∂a

νi→a(σi) (3.27)

e−Fia =
∑
σi

νi→a(σi)νa→i(σi), (3.28)

where the cavity marginals νi→a(σi) and νa→i(σi) satisfy the BP equations for the

complex measure νn,m(σ;P n, Pm). Thus, to have orthogonality it is enough to
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have e−Fa = 0 for some a. This defines a constraint on the parameter P n
a given

Pm.

In summary, to estimate the average energy and to satisfy the orthogonality

constraints we need to know the BP marginals of the classical measure µn and

{νn,m|m = 0, . . . , n− 1}. In addition, we have to choose the set of constrained pa-

rameters An ≡ {am|m = 0 . . . , n− 1} for the orthogonality constraints e−Fam = 0.

In this paper we will use a greedy strategy to construct An, by choosing the param-

eters that at least locally minimize the energy expectation. Finally, the problem

of minimizing over the variational parameters is:

Zn =
∑
Pn

∑
µn,{νn,m}

IBP
∏

m=0,...,n−1

In,me−βopt〈E(σ)〉µn , (3.29)

where for βopt →∞ the Gibbs measure is concentrated on the optimal parameters.

The indicator functions 1BP and 1n,m ensure that the messages µn, {νn,m} satisfy

the BP equations and the states n and m are orthogonal. Starting from n = 0, one

can find the other states one by one after solving the above optimization problem.

One may find an approximate solution to the above problem by a two-stage al-

gorithm: Given {Pm|m = 0, . . . , n − 1} and an arbitrary set of the constrained

parameters An, we run BP to find the set of marginals {νn,m|m = 0, . . . , n − 1}.
These are used to fix the constrained parameters in An to satisfy the orthogonality

constraints. Then we minimize the average energy 〈E(σ)〉µn over the remaining

parameters. The above two stages are repeated to converge the algorithm.

3.3.2 The mean-field approximation

Let us start with the mean-field (MF) approximation, where the trial wave func-

tions are represented by the product states:

ψ(σ;B) ∝
∏
i

eBiσi , (3.30)

with complex parameters Bi. This results to ei(σi) = −hie−2BRi σi cos(2BI
i σi) and

the following classical measure µ(σ;B) ∝ ∏i e
2BRi σi . By superscripts R and I we

mean the real and imaginary part of the parameters. Given the above measure we
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find

〈ei(σi)〉µ = −hi
cos(2BI

i )

cosh(2BR
i )
, (3.31)

〈eij(σi, σj)〉µ = −Jij tanh(2BR
i ) tanh(2BR

j ). (3.32)

We see that for non-negative hi the average energy is minimized by setting BI
i = 0.

Therefore, as long as we are interested in the ground state, we can set the imaginary

parts to zero. In this case, the variational problem reads

Z0 =
∑
B

e−βopt
∑

(ij)∈Eq 〈eij〉µ−βopt
∑
i〈ei〉µ , (3.33)

The cavity marginals of the parameters in the Bethe approximation are

Mi→j(Bi) ∝ e−βopt〈ei〉µ
∏
k∈∂i\j

(∑
Bk

e−βopt〈eik〉µMk→i(Bk)

)
. (3.34)

For βopt → ∞ and scaling Mi→j(Bi) = e−βoptMi→j(Bi) we find the Min-Sum equa-

tions [68]:

Mi→j(Bi) = 〈ei〉µ +
∑
k∈∂i\j

min
Bk
{〈eik〉µ +Mk→i(Bk)} . (3.35)

The equations are solved by iteration starting from random initial messages. After

each iteration we subtract a constant from the messages to have minBiMi→j(Bi) =

0. Then we find the optimal parameters by minimizing the local Min-Sum weights,

B0
i = arg min

Bi

{
〈ei〉µ +

∑
j∈∂i

min
Bj
{〈eij〉µ +Mj→i(Bj)}

}
. (3.36)

Note that in the MF approximation the orthogonality condition reads

〈Ψn(Bn)|Ψm(Bm)〉 ∝
∏
i

cosh(Bn∗
i +Bm

i ) = 0, (3.37)

thus, it is enough to have cosh(Bn∗
i +Bm

i ) = 0 for some i. This meansBnR
i = −BmR

i

and BnI
i − BmI

i = π/2. Therefore, the nth excited state can be obtained by the
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following set of constraints:

In,m =

{
BnR
im +BmR

im = 0,

BnI
im −BmI

im = π
2
,

(3.38)

for m = 0, . . . , n − 1. The index im is chosen to minimize the local energy

〈eim(σi)〉µn . Then, one can use the same Min-Sum equations as above to minimize

over the remaining parameters. In this way we can find at most N orthogonal

product states of minimum energies En.

Given the states |Ψm(Bm)〉 for m = 0, . . . , n, we can easily compute the Hamil-

tonian matrix elements Hmm′ ≡ 〈Ψm(Bm)|H|Ψm′(B
m′)〉, which for arbitrary pa-

rameters read

Hmm′ =
∏
i

(
cosh(Bm∗

i +Bm′
i )

(cosh(2BmR
i ) cosh(2Bm′R

i ))1/2

)

×

− ∑
(ij)∈Eq

Jij tanh(Bm∗
i +Bm′

i ) tanh(Bm∗
j +Bm′

j )−
∑
i

hi
cosh(Bm∗

i −Bm′
i )

cosh(Bm∗
i +Bm′

i )

 .

(3.39)

One can diagonalize the Hamiltonian in the subspace spanned by the above states

to obtain the eigenvalues λm. Then, using the min-max principle, we know that

λn is an upper bound for the nth eigenvalue of the Hamiltonian. Indeed, we found

that in this case λn ' En for large N as the off-diagonal matrix elements Hmm′

decay exponentially with the size of system.

Notice that instead of imposing the orthogonality exactly we could ask for an

exponentially small overlap 〈Ψn(Bn)|Ψm(Bm)〉 < εN by demanding

cosh(Bn∗
i +Bm

i )

(cosh(2BnR
i ) cosh(2BmR

i ))1/2
< ε ≤ 1, (3.40)

for all i, which can easily be imposed in the above Min-Sum equations. Indeed to

apply the min-max theorem we do not need a set of orthogonal states [67]; accord-

ing to the theorem, the nth eigenvalue is given by minSn+1 max|ψ〉∈Sn+1:〈ψ|ψ〉=1〈ψ|H|ψ〉
where Sn+1 is any subspace of dimension n+ 1.
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3.3.3 Beyond the mean-field approximation

We can do better than the MF approximation by adding the local two-body or

Jastrow interactions [69] to the trial wave functions:

ψ(σ;P ) ∝
∏
i

φi(σi)
∏

(ij)∈Ec

φij(σi, σj), (3.41)

with

φi(σi) ≡ eBiσi , φij(σi, σj) ≡ eKijσiσj . (3.42)

For simplicity we are going to assume Ec = Eq. As a result, we obtain

ei(σi, σ
∂i) = −hie−2BRi σi−

∑
j∈∂i 2KR

ijσiσj cos(2BI
i σi +

∑
j∈∂i

2KI
ijσiσj). (3.43)

The average energy is computed with respect to the following classical measure

µ(σ) ∝∏i |φi(σi)|2
∏

(ij)∈Ec |φij(σi, σj)|2. To estimate the average energies 〈eij(σi, σj)〉µ
and 〈ei(σi, σ∂i)〉µ we need the following local marginals

µij(σi, σj) =
1

Zij
|φij(σi, σj)|2µi→j(σi)µj→i(σj), (3.44)

µi,∂i(σi, σ
∂i) =

1

Zi,∂i
|φi(σi)|2

∏
j∈∂i

|φij(σi, σj)|2µj→i(σj), (3.45)

given in terms of the cavity marginals

µi→j(σi) ∝ |φi(σi)|2
∏
k∈∂i\j

(∑
σk

|φik(σi, σk)|2µk→i(σk)
)
. (3.46)

For Bi = 0 we can simplify the equations by taking the symmetric (or paramag-

netic) solution of the BP equations. This is of course exact for a tree classical

interaction graph Ec. Then, the average local energies are given by

〈ei(σi, σ∂i)〉µ = −hi
∏
j∈∂i

(
cos(2KI

ij)

cosh(2KR
ij )

)
, (3.47)

〈eij(σi, σj)〉µ = −Jij tanh(2KR
ij ). (3.48)
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The resulting Min-Sum equations are

Mi→j(Kij) = min
{Kik|k∈∂i\j}

〈ei〉µ +
∑
k∈∂i\j

(〈eik〉µ +Mk→i(Kik))

 , (3.49)

and the optimal couplings are estimated by

K0
ij = arg min

Kij
{〈eij〉µ +Mi→j(Kij) +Mj→i(Kij)} . (3.50)

The orthogonality condition for two symmetric states reads

〈Ψn(Kn)|Ψm(Km)〉 ∝
∑
σ

e
∑

(ij)∈Ec (Kn∗
ij +Km

ij )σiσj ∝
∏

(ij)∈Ec

cosh(Kn∗
ij +Km

ij ) = 0,

(3.51)

using the symmetric solution of the BP equations. Thus, to have orthogonality

we need cosh(Kn∗
ij +Km

ij ) = 0 for some link (ij). That is, for the nth excited state

we have the following set of constraints:

In,m =

{
KnR
imjm +KmR

imjm = 0,

KnI
imjm −KmI

imjm = π
2
,

(3.52)

for m = 0, . . . , n − 1. The link (imjm) is chosen to minimize the local energy

〈eimjm〉µn . Then, one can use the same Min-Sum equations as above to minimize

over the remaining parameters. The number of orthogonal states that we can find

in this way is limited by the number of the coupling parameters in the classical

system which for a tree structure is N − 1. The Hamiltonian matrix elements are

given by

Hmm′ =
∏

(ij)∈Eq

(
cosh(Km∗

ij +Km′
ij )

(cosh(2KmR
ij ) cosh(2Km′R

ij ))1/2

)

×

− ∑
(ij)∈Eq

Jij tanh(Km∗
ij +Km′

ij )−
∑
i

hi
∏
j∈∂i

(
cosh(Km∗

ij −Km′
ij )

cosh(Km∗
ij +Km′

ij )

) . (3.53)

Similarly, we can make more general orthogonal states |Ψn(Bn, Kn)〉 and |Ψn(Bm, Km)〉
by choosingBn

i such that for the complex measure νnm ∝ e
∑
i(B

n∗
i +Bmi )σi+

∑
(ij)∈Ec (Kn∗

ij +Km
ij )σiσj
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Figure 3.5: The ground-state and excited-state energies (E0 and E1) for the
transverse Ising model on a random tree (RT) of size N = 20 with random
Gaussian couplings Jij of mean zero and variance one in a uniform transverse
field hi = h. The exact results are compared with the upper bounds that are
obtained by a minimal energy subspace spanned by product states (MFoMF),

symmetric states (SoS), and tree states (ToT).

we have e∆Fi = 0 for some i. This gives

e2(Bn∗i +Bmi ) = −
∏
j∈∂i

(∑
σj
e−(Kn∗

ij +Km
ij )σjνj→i(σj)∑

σj
e(Kn∗

ij +Km
ij )σjνj→i(σj)

)
. (3.54)

The node i can be chosen in a greedy way to minimize 〈ei(σi, σ∂i)〉µn in the mean-

field approximation. Here it is more difficult to minimize the average energy

〈E(σ)〉µn , which depends not only on the variational parameters but also on the

BP cavity marginals µi→j(σi). More precisely, the Min-Sum equations read

Mi→j(Kij, µij) = min
Bi,{Kik,µik|k∈∂i\j}:I

(i)
BP

〈ei〉µ +
∑
k∈∂i\j

(〈eik〉µ +Mk→i(Kik, µik))

 ,

(3.55)

where µij ≡ (µi→j, µj→i). Note that the minimum in the right hand side is condi-

tioned on satisfying the local BP equations. The reader can find more details in

Ref. [15].

3.3.4 Results

Let us start with a small system to compare the above approximations with the

exact results for the ground and excited states. We take a random tree with

random Gaussian couplings Jij of mean zero and variance one in uniform transverse
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Figure 3.6: Left panel: The ground-state energy density (E0/N) for the one-
dimensional (1D) transverse Ising model with uniform and ferromagnetic cou-
plings (Jij = 1) obtained by the product states (MF) and the symmetric states
(S) in the thermodynamic limit. Right panel: The energy gap E1−E0 obtained
by the product states (MFoMF) and tree states (TOT) for the same model with
N = 100 spins. In both the cases the gap is non-analytic at the corresponding
phase transition point, but it is non-vanishing close to the transition due to the

local nature of the orthogonality constraints.
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Figure 3.7: The ground-state and excited-state energy densities (E0/N and
E1/N) for the transverse Ising model on a random tree (RT) of size N = 1000
with random Gaussian couplings Jij of mean zero and variance one in a uniform
transverse field hi = h. We compare the upper bounds that are obtained by
a minimal energy subspace spanned by product states (MFoMF), symmetric

states (SoS), and tree states (ToT).

fields hi = h. This system displays a phase transition from the ordered phase for

h < hc with a nonzero Edwards-Anderson order parameter q ≡ ∑i〈σzi 〉2/N to a

disordered phase for h > hc.

As Fig. 3.5 shows, we obtain better ground-state energies with the product and

symmetric states in the ordered and disordered phases, respectively. While the

product states allow for a nonzero magnetization, the symmetric states have by

definition zero magnetization and therefore more appropriate to represent the dis-

ordered ground state. Indeed, an estimate of the transition point can be obtained
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Figure 3.8: The ground-state and excited-state energy densities (E0/N and
E1/N) for the transverse Ising model on a two-dimensional (2D) square lattice
of size N = 4×5 with random Gaussian couplings Jij of mean zero and variance
one in a uniform transverse field hi = h. The exact results are compared with
the upper bounds that are obtained by a minimal energy subspace spanned by

product states (MFoMF).

by comparing the ground-state energies that are computed by the product and

symmetric states. Figure 3.6 displays these energies for the one-dimensional trans-

verse Ising model with ferromagnetic couplings. Nevertheless, for small system

sizes we always obtain better energies for the excited state by a minimal energy

subspace of the product states. In Fig. 3.5 we also display the results obtained by

more general trial wave functions having a tree structure defined by Ec = Eq. As

expected, we obtain much better upper bounds by introducing both the variational

parameters Bi and Kij. Figure 3.7 shows the results for a larger number of spins.

Here, in the disordered phase we find better upper bounds for the excited-state

energy by the symmetric trial wave function. This is due to the presence of very

small couplings that reduce the cost of the orthogonality constraint.

Finally, we present the MF results for the transverse Ising model in a two-dimensional

square lattice. In Fig. 3.8 we compare the upper bounds for the ground and excited

states with the exact ones in a small lattice.

3.4 Discussion

In the section 3.3 it is shown a generalized variational quantum cavity method to

study low-temperature excitations of quantum systems within the Bethe approxi-

mation. We constructed orthogonal sets of minimal energy quantum states, where

the Hamiltonian matrix elements can be computed exactly to obtain some upper
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bounds for the Hamiltonian eigenvalues. For more general trial wave functions we

have only an approximate estimation of the Hamiltonian matrix elements but the

estimation is expected to be asymptotically exact as long as the trial wave func-

tions are represented by locally tree-like classical interaction graphs. And finally,

the method can also be extended to include some appropriate global interactions

in the trial wave functions that are essential to deal with the fermion sign problem

[70].



Chapter 4

Variational Quantum Density

Matrix

4.1 Introduction

This last chapter is divided in two parts. In the first one a new method to find

approximate wave functions is described. The wave function is approximated in

the same way presented in chapter 3, i.e. by a product of local terms. The

algorithm proposed applies iteratively the imaginary time evolution operator to

find the ground state wave function. This algorithm is able to find better solution

and in more efficient way than the variational quantum cavity method presented

in the previous chapter.

The imaginary time approach slowly modifies the parameters during the evolution

in order to minimize the energy. This procedure permit to avoid the binning of

the parameters used in the variational cavity method. This allows to use better

approximate wave functions. The whole procedure is presented in the density

matrix formalism because it is easier to extend it to finite temperature systems.

In the second part of the chapter we discuss a method to find approximate density

matrices at finite temperature. In this case the density matrix is approximate by

a product of local reduced density matrices. The algorithm performs an annealing

in temperature, starting from infinite temperature. We force the density matrix,

at each small temperature reduction, to remain a product of local reduced density

matrices. The results obtained are encouraging, but the accumulation of the error

58
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during the annealing process, due to the ansaltz of the density matrix, reduces the

precision of the algorithm.

Improved results can be obtained, from both algorithms presented in this chapter,

using better expansions of the density matrix and working with generalize belief

propagation equations [71]. This should be the case, above all, when we deal with

square lattice problems [72].

In section 4.2 it is shown the imaginary time evolution of a Bethe density matrix.

In sec. 4.3 it is described the finite temperature algorithms .

4.2 Imaginary time evolution

In this chapter I work directly with the density matrix formalism instead of the

wave matrix formalism developed in chapter 3.

Let’s consider an N body hamiltonian H with real parameters. Taking a base |σ〉,
the density operator at zero temperature (isolated system) ρ is defined as:

ρ = |ψ〉 〈ψ| =
∑
σ,σ′

C∗(σ)C(σ′) |σ〉 〈σ′| (4.1)

where we have expanded the wave function |ψ〉 over a complete base {|σ〉} and

C(σ) = 〈ψ |σ〉. If the wave function |ψ〉 is normalized, the diagonal elements

of the density matrix are probabilities, they define a measure. We proceed now

in the same way of the variational quantum cavity method, see section 3.2. We

have two different graphs, one Eq generated by the physical interactions due to the

hamiltonian, and another graph Ec generated by the approximated measure. From

now, I will consider Ec = Eq = E . Let me approximate the probability distribution

|C(σ)|2 with a Bethe form:

|C(σ)|2 ∼
∏
i

ψ2
i (σi)

∏
ij

ψ2
ij (σi, σj)

ψ2
i (σi)ψ2

j (σj)
. (4.2)

We consider ψi and ψij positive real functions, for simplicity. The ψ2
i (σi) = ρi (σi)

and ψ2
ij (σi, σj) = ρij (σi, σj) are respectively the one body and two body marginals
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of the system. We define a zero temperature Bethe density matrix as:

ρ (σ,σ′) =
∏
i

ρ
1
2
i (σi) ρ

1
2
i (σ′i)

∏
ij

ρ
1
2
ij (σi, σj) ρ

1
2
ij

(
σ′i, σ

′
j

)
ρ

1
2
i (σi) ρ

1
2
i

(
σ′j
)
ρ

1
2
i (σj) ρ

1
2
j

(
σ′j
) (4.3)

When the interaction graph of Ec generated by a zero temperature Bethe density

matrix is a tree, it is easy to show that the following identities hold1:

ρi (σi) =
∑
σ\σi

〈σ| ρ |σ〉 =
∑
σ\σi

ρ (σ,σ)

ρij (σi, σj) =
∑
σ\σiσj

〈σ| ρ |σ〉 =
∑
σ\σiσj

ρ (σ,σ) .
(4.4)

More accurate zero temperature density matrices can be obtained by considering

interactions between a larger number of variables, for example,

ρ(σ;σ′) =
∏

(ij)∈Ec

ρij(σi, σj)
1
2ρij(σ

′
i, σ
′
j)

1
2

∏
i

ρi∂i(σi, σ∂i)
1
2ρi∂i(σ

′
i, σ
′
∂i)

1
2∏

k∈∂i ρik(σi, σk)
1
2ρik(σ′i, σ

′
k)

1
2

, (4.5)

where σ∂i = {σj|j ∈ ∂i}, and ∂i denotes the neighborhood set of i in the interaction

graph Ec. The same identity equations (4.4) hold for the measure (4.5) in the case

of tree interaction graph Ec. We have also the following one:

ρi∂i(σi, σ∂i) =
∑

σ\σi,σ∂i

〈σ| ρ |σ〉 =
∑

σ\σi,σ∂i

ρ (σ,σ) . (4.6)

4.2.1 Imaginary time evolutions of a Bethe density matrix.

The imaginary time evolution is a technique that, in principle, allows to compute

the ground state of quantum systems. The idea is to apply to a trail density matrix

the imaginary time evolution operator e−tH . The excited states are exponentially

suppressed in the limit of t→∞. Let’s consider a density matrix ρ and let’s apply

the imaginary time operator to it:

e−tHρe−tH =
∑
n,m

e−tHC∗mCn |En〉 〈Em| e−tH =
∑
n,m

e−t(En+Em)C∗mCn |En〉 〈Em|

(4.7)

1This identity can be derived considering the normalizations and marginalization constraints
over the marginals ρi (σi) and ρij (σi, σj), and starting the trace over the variables from leafs.
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where we have expanded over a base where the hamiltonian is diagonal. Taking

the limit of t→∞ we obtain:

lim
t→∞

e−tHρe−tH ≈ e−2tEg |Cg|2 |Eg〉 〈Eg| (4.8)

where the |Eg〉 is the ground state of the system. If we apply, iteratively, the

operator e−εH to a trial density matrix and if the initial trial density matrix has

an overlap different from zero with the ground state, the final outcome, at least

approximatively, is the ground state.

We want to apply iteratively the imaginary time evolution operator e−εH in order

to find an approximated ground state matrix. Let’s consider, for simplicity, a zero

temperature Bethe density matrix at imaginary time t:

ρt (σ,σ′) =
∏
i

√
ρti (σi) ρti (σ′i)

∏
ij

√
ρtij (σi, σj) ρtij

(
σ′i, σ

′
j

)√
ρti (σi) ρti

(
σ′j
)
ρti (σj) ρtj

(
σ′j
) (4.9)

the density matrix at time t+ ε reads:

ρt+ε =
e−εHρte−εH

Tr{e−εHρte−εH} (4.10)

where I normalized the expression (4.7). Now we assume that also the density

matrix ρt+ε has a Bethe form and so we compute the quantities ρt+εi and ρt+εij

through the formula(4.4). We need to compute the marginal probabilities ρi (σi)

and ρij (σi;σj) of the following system:

Tr{ρε+t} =
∑
σ

〈σ| ρt+ε |σ〉 (4.11)

∝
∑
σ

〈σ| e−εHρte−εH |σ〉 (4.12)

=
∑
σ

〈σ| e−2εHρt |σ〉 (4.13)

=
∑
σ,σ′

〈σ| e−2εH |σ′〉 〈σ′| ρt |σ〉 (4.14)

where in the third line I used the ciclic property of trace, and in the fourth I inserted

the identity operator 1 =
∑
σ′ |σ′〉 〈σ′|. The marginals can be computed in the

limit of ε� 1. In effect, let’s consider a quantum interaction graph Eq generated

by an hamiltonian H, the 〈σ| e−εH |σ′〉 can be decomposed, by a Suzuky-Trotter
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expansion [73, 74], in a product of functions that have the same graph structure of

Eq. Then if the hamiltonian H has local interactions, also 〈σ| e−εH |σ′〉 is composed

by products of local functions [75]. The eq.(4.11) is a product of local quantities

and the marginal of this system can be computed by the BP equations. In the

next section this procedure is applied to the transverse Ising model.

4.2.2 Tranverse ising model

Consider the transverse field Ising model with Hamiltonian H =
∑

(ij)∈Eq Hij +∑
iHi where Hij ≡ −Jijσzi σzj , Hi ≡ −hiσxi , and i = 1, . . . , N labels the sites in

the quantum interaction graph Eq. The σx,y,zi are the standard Pauli matrices. We

assume that hi > 0. In the following we will work in the σz representation with

orthonormal basis |σ〉 ≡ |σ1σ2 · · ·σN〉. The Suzuky-Trotter [73, 74] expansion

allows to simplify the exponential of two non commutative quantities. In the case

of the exponential of the transverse Ising hamiltonian we can write:

e−εH =
∏

(ij)∈Eq

eεJijσ
z
i σ
z
j /2
∏
i

eεhiσ
x
i

∏
(ij)∈Eq

eεJijσ
z
i σ
z
j /2 +O(ε3). (4.15)

The matrix element 〈σ| e−εH |σ′〉 with the approximation above is:

〈σ| e−εH |σ′〉 ≈
∏
i

wi(σi, σ
′
i)
∏

(ij)∈Eq

wij(σi, σj;σ
′
i, σ
′
j) (4.16)

where

wij(σi, σj;σ
′
i, σ
′
j) ≡ eεJij(σiσj+σ

′
iσ
′
j)/2, (4.17)

wi(σi, σ
′
i) ≡ cosh(εhi)δσi,σ′i + sinh(εhi)δσi,−σ′i . (4.18)

Taking a Bethe zero temperature density matrix (4.9) at imaginary time t we have

to find marginals at time t+ ε of the following probability distribution:

ρε+t (σ) =
∑
σ′

〈σ| e−2εH |σ′〉 〈σ′| ρt |σ〉 =

=
∑
σ′

∏
i

wi(σi, σ
′
i)
√
ρti (σi) ρti (σ′i)

∏
(ij)∈Eq

wij(σi, σj;σ
′
i, σ
′
j)

√
ρtij (σi, σj) ρtij

(
σ′i, σ

′
j

)√
ρti (σi) ρti

(
σ′j
)
ρti (σj) ρtj

(
σ′j
) .

(4.19)
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Figure 4.1: In this figure it’s shown a 1 dimension two layers system. The
messages µi→j group the two layers variables.

It is a two layers classic system, see fig. 4.1. Then, the BP equations over the

system are:

µn+1
i→j (σjσ

′
j) =

∑
σiσi

wiwij

√
ρtijρ

t′
ij√

ρtjρ
t′
j

∏
k∈∂i\j

µnk→i(σiσ
′
i) (4.20)

where the index n refers to the iteration of BP equations, and ρt
′
ij ≡ ρtij

(
σ′i, σ

′
j

)
.

Given the set of fixed point messages {µ∗i→j} of the eq.(4.20), the marginals can

be computed by the following formulas:

ρt+εi (σi) =
∑
σ′i

wi

√
ρtjρ

t′
j

∏
j∈∂i

µ∗j→i(σiσ
′
i) (4.21)

ρt+εij (σi, σj) =
∑
σ′i,σ

′
j

wij

√
ρtijρ

t′
ij

∏
p∈∂i\j

µ∗p→i(σiσ
′
i)
∏
q∈∂j\i

µ∗q→j(σjσ
′
j). (4.22)

We can summarize the procedure of finding the zero temperature Bethe density

matrix by the following steps:

1. Initialize the marginals ρ0
i and ρ0

ij with a flat or random distribution.

2. Run the BP equations (4.20) until convergence.

3. Update the marginals, eq.(4.21).

4. Return to point 2 until the marginals converge.
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In general we are looking for the fixed point solution of the set of marginals {ρi,ρij
and messages µi→j of the equations (4.21) and (4.20). The procedure above can

be simplified when we consider homogenous systems where we assume that each

one-body, two-body marginals and the messages are the same in the whole system.

We can consider the fixed point equations for both marginals and BP equations

at the same time. The problem of finding the zero temperature Bethe density

matrix reduces to find the quantities ρi ρij and µ that solves the following set of

equations: 

µ(σjσ
′
j) =

∑
σiσ′i

wiwij

√
ρijρ

′
ij√

ρjρ
′
j

µd−1(σiσ
′
i)

ρi(σi) =
∑
σ′i

wi

√
ρjρ

′
jµ

d(σiσ
′
i)

ρij(σi, σj) =
∑
σ′i,σ

′
j

wij

√
ρijρ

′
ijµ

d−1(σiσ
′
i)µ

d−1(σjσ
′
j)

(4.23)

where d is the number of neighbors of one node. In the next subsection I will

show numerical results obtained by c++ programs that implement the procedure

described above for different approximated measures: mean-field, Bethe measure

eq.(4.3) and near neighbors region eq.(4.5). The programs can take as input what-

ever transverse Ising model hamiltonian. The only restriction is due to the con-

vergence problems of BP equations over particular interaction graphs. Moreover

when we deal with interaction graphs with loops, the average quantities computed

are Bethe approximations of the real ones.

4.2.3 Numerical results

The first question that we face is: is this procedure able to really minimize the

approximate wave function? In figure 4.2 are shown the energies of a transverse

Ising chain computed by a zero temperature pairwise density matrix eq.(4.3).

These energies are compared with those found by the variational quantum cavity

method with the same structure of the wave function. As we can see from the plot

4.2, there is no difference between the two energies.

The graphs 4.4 and 4.3 are the magnetizations respectively on chain and on random

regular graph of degree three computed by imaginary time evolution. The blue

curve is the magnetization computed by mean-field approximation, the red one is

the pairwise density matrix eq.(4.3), and the green one is computed by neighbors
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region eq.(4.5). The exact transition point is located at hc = 1 and hc = 2.232

[13] respectively for chain and for random regular graph with degree three. The

critical transition fields found by the neighbors region zero temperature density

matrix are closer to the correct ones than those found by pairwise and mean-field

approximations (see captions of the figures 4.4 and 4.3 for precise values of the

critical fields).

Moreover we run the algorithm on small disorder system in order to compare the

energies on loopy graphs to the exact one found by brute force diagonalization of

the hamiltonian. We consider the gaps between the exact energies Eex and those

found by imaginary time evolution with pairwise Epw and neighbor region Enr

density matrix approximations. The gap is defined as 100 ∗ (Eex − Eapprox)/Eex.
In the fig 4.5 we show the gaps computed between the exact energies and those

found by imaginary time evolution of two different matrix approximations on a

2d lattice with 20 spins (4 times 5 spins) with periodic boundary conditions. In

this case the Jij = 1 and the transverse fields hi are random numbers uniformly

distributed in [0, h]. In the same plot the magnetizations M z is shown (dashed

lines). We can note that the gaps are always under 0.5. They differer from zero

only near the quantum critical point where the magnetization in the z direction

drops to zero. Also in this case using larger regions improve the results.

4.3 Annealing of quantum systems

In this section we face the problem to find approximate density matrices at finite

temperature T.

The equilibrium density matrix at inverse finite temperature β should satisfy the

following equation [76]:

∂ρ(β)

∂β
= −Hρ with ρ(0) = 1 (4.24)

where H is the hamiltonian of the system. Then giving the density matrix at

inverse temperature β, ρβ, we may write:

ρβ+ε =
e−εHρβ

Zβ+ε
(4.25)
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Figure 4.2: In this figure it is shown the energy density found on chain with
Jij = 1 with two different methods that minimize a trial density matrix in
the form eq.(4.3). The blue line is computed by the quantum cavity method
presented in the chapter 3 and the red one by imaginary time evolution. There
is no significant difference between them. The imaginary time step used is

ε = 10−3

where Zβ+ε = Tr{e−εHρβ} is a normalization constant. We want to give an ap-

proximate description of the density matrix that is locally and globally consistent

on tree structures. The idea is to write the density matrix as a product of reduced

density matrices. In the mean-field approximation the density matrix is simply

approximated by ρ(σ;σ′) =
∏

i ρi(σi;σ
′
i). In the Bethe approximation we may

write the density matrix as

ρ(σ;σ′) =
∏
i

ρi(σi;σ
′
i)
∏

(ij)∈E

ρij(σi, σj;σ
′
i, σ
′
j)

ρi(σi;σ′i)ρj(σj;σ
′
j)
, (4.26)

for a locally tree-like interaction graph Ec that could be different from the quantum

interaction graph Eq. Here we consider Ec = Eq = E . Note that this is an ansatz

for the matrix elements of ρ that is Hermitian but not necessarily semi-positive.

In appendix B we see that when the interaction graph E is a tree and the reduced
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Figure 4.3: The plot shows the magnetization M = 〈σz〉 of a chain with
Jij = 1 and varying hx. The number of spins are N = 50 with periodic boundary
conditions. The imaginary time step used is ε = 10−3. The red line is the Bethe
zero temperature density matrix (pw) eq.(4.3). The green one is the neighbors
region zero temperature density matrix (nn) eq.(4.5). The critical fields found

are respectively hpwc = 1.22 and hnnc = 1.12. The exact one is hc = 1.

density matrices ρij and ρi are locally consistent we have ρij = Tr\i,jρ and ρi =

Tr\iρ.

More accurate density matrices can be obtained by considering interactions be-

tween a larger number of variables, for example,

ρ(σ;σ′) =
∏

(ij)∈E

ρij(σi, σj;σ
′
i, σ
′
j)
∏
i

ρi∂i(σi, σ∂i;σ
′
i, σ
′
∂i)∏

k∈∂i ρik(σi, σk;σ
′
i, σ
′
k)
, (4.27)

where σ∂i = {σj|j ∈ ∂i}, and ∂i denotes the neighborhood set of i in the interaction

graph E . In the same lines of appendix B we can show that for tree interaction

graphs E and locally consistent ρi∂i and ρij we have ρi∂i = Tr\i,∂iρ and ρij = Tr\i,jρ.
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Figure 4.4: The plot shows the magnetization M = 〈σz〉 of a random regular
graph with degree three with Jij = 1 and varying hx. The number of spins
are N = 50. The imaginary time step used is ε = 10−3. The blue line is
the mean-field zero temperature density matrix, the red one is the Bethe zero
temperature density matrix eq.(4.3) and the green one is the neighbors region
zero temperature density eq.(4.5). The critical fields found are respectively

hmfc = 3, hpwc = 2.29 and hnnc = 2.25. The exact one is hc = 2.232.

4.3.1 Annealing algorithm of quantum Ising model

In order to find the density matrix describing the equilibrium state of the system

at temperature T = 1/β we start from the density matrix at infinite temperature

ρ ∝ I and we decrease slowly the temperature in an annealing process. We use a

similar procedure described for the imaginary time evolution in subsection 4.2.2.

The density matrix ρβ+ε reads:

ρβ+ε(σ;σ′) ∝
∑
σ′′

∏
i

wi(σi, σ
′′
i )
∏

(ij)∈Eq

wij(σi, σj;σ
′′
i , σ

′′
j )ρβ(σ′′;σ′), (4.28)
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Figure 4.5: The plot shows the gaps (100 ∗ (Eex −Eapprox)/Eex) between the
exact energies and two different approximate energies found by imaginary time
evolution. The red one is founded using a Bethe density matrix eq. (4.3), and
the green one by neighbors region density matrix eq. (4.5). Dashed lines show
the magnetizations M z =< σz > of the same approximate density matrices.
We note that the gaps are different from zero only near the quantum transition
point, where the magnetizations drop to zero. The gaps are always below 0.5.
Better results are obtained with neighbors region approximate density matrix.

where

wij(σi, σj;σ
′′
i , σ

′′
j ) ≡ eεJij(σiσj+σ

′′
i σ
′′
j )/2, (4.29)

wi(σi, σ
′′
i ) ≡ cosh(εhi)δσi,σ′′i + sinh(εhi)δσi,−σ′′i . (4.30)

Let us start from the mean-field approximation of the density matrix ρ =
∏

i ρi

where in each step the density matrix is updated as follows

ρβ+ε(σ;σ′) ∝
∑
σ′′

∏
i

[
wi(σi, σ

′′
i )ρβi (σ′′i ;σ′i)

] ∏
(ij)∈Eq

wij(σi, σj;σ
′′
i , σ

′′
j ). (4.31)
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Then, within the Bethe approximation the reduced density matrices ρβ+ε
i = Tr\iρ

β+ε

are obtained by

ρβ+ε
i (σi;σ

′
i) ∝

∑
σ′′i

[
wi(σi, σ

′′
i )ρβi (σ′′i ;σ′i)

]∏
j∈∂i

∑
σ′′j

wij(σi, σj;σ
′′
i , σ

′′
j )µj→i(σj, σ

′′
j )

 .

(4.32)

Here ∂i denotes the neighborhood set of i in Eq, and the cavity marginals µi→j(σi, σ
′′
i )

are determined by the BP equations for the Gibbs measure ρβ+ε(σ;σ),

µi→j(σi, σ
′′
i ) ∝

∑
σ′′i

[
wi(σi, σ

′′
i )ρβi (σ′′i ;σi)

] ∏
k∈∂i\j

∑
σ′′k

wik(σi, σk;σ
′′
i , σ

′′
k)µk→i(σk, σ

′′
k)

 .

(4.33)

Given the ρi and the weights wi, wij, we solve the above equations by iteration

starting from random initial cavity marginals µi→j(σi, σ
′′
i ), and use the cavity

marginals to find the lower-temperature reduced density matrices ρβ+ε
i . The equa-

tions showed in this section is very close to those presented in sec. 4.2 for the

imaginary time evolution algorithm. Indeed the imaginary time procedure, started

from a flat distribution, can be seen as an annealing process where at each step we

force the density matrix to have a zero temperature structure like in the equation

(4.3).The main difference between the two procedures relies in the form of the

density matrix: the diagonal elements are parametrized in a different way.

4.3.2 Numerical result

The figure 4.6 shows the phase transition points that are obtained in this way for

the ferromagnetic transverse Ising model on a random regular graph. Unfortu-

nately, the errors in each step of the annealing algorithm accumulate, giving rise

to larger and larger errors as we decrease the temperature. The point is that at

each step of the annealing process we assume that the present density matrix ρ

is the right density matrix at inverse temperature β which is correct only if we

work with the most general density matrix representation. As a result the density

matrix that we obtain is not the optimal one; indeed, minimizing the free energy

directly at inverse temperature β with the same density matrix representation

could result to smaller free energies [14]. However, as the figure shows, the error

is reduced by enlarging the space of the trial density matrices. In appendix C we

give the update equations for neighbor region density matrices.
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Figure 4.6: Comparing the phase transition points in the transverse Ising
model (Jij = 1 and hi = h) on a random regular graph of degree K = 3 obtained
by the annealing algorithm (for system size N = 50 and different density matrix
representations) and the exact solution of the path integral quantum cavity

method [13] in the thermodynamic limit.



Appendix A

Post-processing and optimality

proofs

Before tackling the proof of the Theorem 2, we will need the following definitions

and a technical result.

Definition 7. (Computation tree) The computation tree is a cover of the graph

G, in the following sense: it is an (infinite) tree TG along with an application

π : TG → G that satisfies (a) π is surjective and (b) π|i∪∂i : i∪ ∂i→ π (i ∪ ∂i) is a

graph isomorphism for every i ∈ TG. It can be explicitly constructed as the graph

of non-backtracking paths in G starting on a given node v0, with two paths being

connected iff the longest one is identical to the other except for an additional final

node (and edge). Up to graph isomorphisms, this tree does not depend on the

choice v0.

The (finite) tree TG (t, v0) is defined by the radius t ball centered around vo in

TG. Alternatively, it can be directly constructed as the graph of non-backtracking

paths of length up to t starting on v0, with two paths being connected iff the

longest one is identical to the other except for an additional final node (and edge).

Clearly the finite computation tree depends strongly on the choice of v0

For both computation trees, edge weights (and node prizes) will be lifted (trans-

ported) naturally as cij = cπ(i)π(j).

Lifting edge constraints by gij = gπ(i)π(j) defines a (R,D)-PCSF problem with

R = π−1({r}) on TG. On TG (t, v0) instead, it gives a slightly relaxed (R,D)-PCSF

72
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problem in which leaf nodes can point to neighbors in G that are not present in

TG. For convenience, let us extend π by setting π (∗) = ∗.

Remark 8. As TG(t, v) is a tree, the Max-Sum equations are exact and have a

unique fixed point in TG (t, v)[27].

Lemma 9. Any Max-Sum fixed point in a graph G can be naturally lifted to a

Max-Sum fixed point in TG. Moreover, any Max-Sum fixed point can be naturally

lifted to a Max-Sum fixed point over a slightly modified TG(t, v) with extra cost

terms only on leaves.

Proof. As Max-Sum equations are local and the two graphs are locally isomorphic,

given a fixed point {ψij}(i,j)∈E, the messages Ψij = ψπ(i)π(j) satisfy the fixed point

equations on TG. On TG(t, v) the Max-Sum equations are satisfied everywhere ex-

cept possibly on leaf nodes (where the graphs are not locally isomorphic). Given a

leaf i attached with edge (i, j), add an energy term−Ei (dipi) = ψπ(i)π(j) (di, π (pi)).

Now Max-Sum equations are satisfied everywhere on for this modified cost func-

tion.

Now we proceed to prove Theorem 2

A.0.3 Proof of Theorem 2

Proof. Assume S ′ oriented towards the root node r, i.e. defining a parenthood

vector (p′i)i∈V ′ , such that E ′ = {(i, p′i) : i ∈ V ′ \ {r}}. Consider the subgraph

S = (VS, ES) of TG(N + 1, r) induced by S∗, i.e. defined by VS = {v : π (v) ∈ V ∗},
ES = {(i, j) : (π (i) , π (j)) ∈ E∗}.

It can be easily proven that the connected component in S of the root node of

TG(N+1, r) is a tree S ′′ isomorphic to S∗ (see [51]). Denote by {p∗} the decisional

variables induced by S∗ and by {p′} the ones induced by S ′. The parenthood

assignment

qi =

p′i i ∈ VS′′
p∗i i /∈ VS′′

satisfies qi 6= ∗ if qj = i (as V ′ ⊆ V ∗) and so depths di can be assigned so as

to verify all gij constraints in TG(N + 1, r). Now the cost associated with q is

H (q) =
∑

i∈VS′′
cip′i +

∑
i/∈VS′′

cip∗i ≥
∑

i∈TG(N+1,r) cip∗i =
∑

i∈VS′′
cip∗i +

∑
i/∈VS′′

cip∗i
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due to the optimality of the MS solution p∗ in the computation tree (this is because

MS is always exact on a tree). This implies clearly that H (S∗) ≤ H (S ′).



Appendix B

Locally and globally consistent

reduced density matrices

Consider the following Bethe ansatz for the density matrix

ρ(σ;σ′) =
∏
i

ρi(σi;σ
′
i)
∏

(ij)∈E

ρij(σi, σj;σ
′
i, σ
′
j)

ρi(σi;σ′i)ρj(σj;σ
′
j)
. (B.1)

Here we prove that when E is a tree and the reduced density matrices are locally

consistent we have ρij = Tr\i,jρ and ρi = Tr\iρ.

Let us start from computing Trρ to show that ρ is trace normalized when ρi =

Trjρij and Trρi = Trρij = 1. Expanding the trace we have

Z = Trρ =
∑
σ

∏
i

ρi(σi;σi)
∏

(ij)∈E

ρij(σi, σj;σi, σj)

ρi(σi;σi)ρj(σj;σj)
. (B.2)

For tree structures we can compute the above sum recursively

Z =
∑
σi

ρi(σi;σi)
∏
j∈∂i

∑
σj

ρij(σi, σj;σi, σj)

ρi(σi;σi)ρj(σj;σj)
Zj→i(σj)

 , (B.3)

using the Bethe equations [27],

Zi→j(σi) = ρi(σi;σi)
∏
k∈∂i\j

(∑
σk

ρik(σi, σk;σi, σk)

ρi(σi;σi)ρk(σk;σk)
Zk→i(σk)

)
, (B.4)
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where Zi→j(σi) is the cavity partition function when spin i has state σi. Note that

for the leaves we have Zi→j(σi) = ρi(σi;σi) and from the marginalization relations

ρi = Trjρij we find Zi→j(σi) = ρi(σi;σi) for all the cavity partition functions.

Therefore we obtain Z =
∑

σi
ρi(σi;σi) = 1.

To compute the one-body reduced density matrices we use again the recursive

equations to write

〈σi|Tr\iρ|σ′i〉 = ρi(σi;σ
′
i)
∏
j∈∂i

∑
σj

ρij(σi, σj;σ
′
i, σj)

ρi(σi;σ′i)ρj(σj;σj)
Zj→i(σj)

 . (B.5)

But Zj→i(σj) = ρj(σj;σj) which along with the marginalization relations give

Tr\iρ = ρi. Similarly, one can prove that Tr\i,jρ = ρij thanks to the tree interaction

graph E and the consistency of the local density matrices ρi and ρij.

One can easily extend the above arguments to more general density matrices with

higher order interactions

ρ(σ;σ′) =
∏
i

ρi(σi;σ
′
i)
∏
a

ρa(σ∂a;σ
′
∂a)∏

i∈∂a ρi(σi;σ
′
i)
, (B.6)

as long as the bipartite graph representing the dependency of the interactions to

the variables is a tree. Here σ∂a ≡ {σi|i ∈ ∂a} and ∂a defines the set of variables

in interaction a.
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Computing the reduced density

matrices in the annealing

algorithm

Consider the following Bethe ansatz for the density matrix

ρ(σ;σ′) =
∏
i

ρi(σi;σ
′
i)
∏

(ij)∈E

ρij(σi, σj;σ
′
i, σ
′
j)

ρi(σi;σ′i)ρj(σj;σ
′
j)
. (C.1)

In each step of the annealing process we need to compute the local reduced density

matrices given the updated density matrix

ρ̃(σ;σ′) ∝
∑
σ′′

∏
i

[
wi(σi, σ

′′
i )ρi(σ

′′
i ;σ′i)

] ∏
(ij)∈E

[
wij(σi, σj;σ

′′
i , σ

′′
j )

ρij(σ
′′
i , σ

′′
j ;σ′i, σ

′
j)

ρi(σ′′i ;σ′i)ρi(σ
′′
j ;σ′j)

]
.

(C.2)

The local density matrix ρ̃ij = Tr\i,j ρ̃ is obtained from the above expression after

summing over the σk = σ′k for k 6= i, j. For tree interaction graphs E this sum

can be computed by considering the cavity messages that the boundary variables
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∂(ij) receive from the other parts of the system in addition to the local weights,

ρ̃ij(σi, σj;σ
′
i, σ
′
j) ∝

∑
σ′′i ,σ

′′
j

wij(σi, σj;σ
′′
i , σ

′′
j )ρij(σ

′′
i , σ

′′
j ;σ′i, σ

′
j)

× wi(σi, σ′′i )
∏
k∈∂i\j

[ ∑
σk,σ

′′
k

wik(σi, σk;σ
′′
i , σ

′′
k)

ρik(σ
′′
i , σ

′′
k ;σ′i, σk)

ρi(σ′′i ;σ′i)ρk(σ
′′
k ;σk)

µk→i(σk;σ
′′
k)
]

× wj(σj, σ′′j )
∏
k∈∂j\i

[ ∑
σk,σ

′′
k

wjk(σj, σk;σ
′′
j , σ

′′
k)

ρjk(σ
′′
j , σ

′′
k ;σ′j, σk)

ρj(σ′′j ;σ′j)ρk(σ
′′
k ;σk)

µk→j(σk;σ
′′
k)
]
.

(C.3)

Here the cavity messages µi→j are determined recursively by the Bethe equations,

µi→j(σi;σ
′′
i ) ∝ wi(σi;σ

′′
i )ρi(σ

′′
i ;σi)

×
∏
k∈∂i\j

[ ∑
σk,σ

′′
k

wik(σi, σk;σ
′′
i , σ

′′
k)

ρik(σ
′′
i , σ

′′
k ;σi, σk)

ρi(σ′′i ;σi)ρk(σ′′k ;σk)
µk→i(σk;σ

′′
k)
]
. (C.4)
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mit einatomigen Molekülen, deren dimensionen gegen die Mittlere weglänge

verschwinden. J. A. Barth, 1896.

[33] Claude Elwood Shannon. The Mathematical Theory of Communication. Uni-

versity of Illinois Press, 1949. ISBN 9780252725487.

[34] Judea Pearl. Fusion, propagation, and structuring in belief networks.

Artificial Intelligence, 29(3):241–288, September 1986. ISSN 0004-3702.

doi: 10.1016/0004-3702(86)90072-X. URL http://www.sciencedirect.

com/science/article/pii/000437028690072X.

http://iopscience.iop.org/1742-5468/2004/06/P06007
http://iopscience.iop.org/1742-5468/2004/06/P06007
http://iopscience.iop.org/1742-5468/2011/11/P11009
http://iopscience.iop.org/1742-5468/2011/11/P11009
http://arxiv.org/abs/1008.4844
http://dl.acm.org/citation.cfm?id=1074100.1074233
http://dl.acm.org/citation.cfm?id=1074100.1074233
http://www.sciencedirect.com/science/article/pii/000437028690072X
http://www.sciencedirect.com/science/article/pii/000437028690072X


Bibliography 83
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