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Abstra
t

In re
ent years the fo
us on ele
troni
 integration shifted from high perfor-

man
e mi
ropro
essors, whose integration trend is di
tated by the famous

Moore law, to System on Chip (SoC) and System in Pa
kage (SiP) for mo-

bile and embedded appli
ations. The most 
ommon example of SoC 
an

be found in smartphones and tablets: multi
ore CPU (Central Pro
essing

Unit) and GPU (Graphi
s Pro
essing Unit), memory and Radio Frequen
y

(RF) trans
eivers are often integrated in the same die or pa
kage leading to

tremendous redu
tion in size and power 
onsumption of the devi
e. There-

fore SoCs/SiPs are by de�nition heterogeneous ele
tri
al systems, in the sense

that analog and digital 
omponents for RF and Base Band (BB) appli
ations

are 
losely tied together.

To blend su
h a variety of 
omponents in the same ele
troni
 pa
kage

engineers fa
e new di�
ulties both in design and veri�
ation phases. Signal

and Power integrity need to be 
arefully addressed in 
onjun
tion with noise

levels to address devi
es 
onstraints. In the 
ontext of Analog Mixed Signal

(AMS) validation, analog blo
ks are still the simulation time bottlene
ks.

The main issues are: the huge 
omplexity of the parasiti
 networks extra
ted

from 
omponents layouts and inter
onne
ts, the need of parametri
 models

for non-linear 
omponents for what-if analyses, the need of redu
ed order

models for devi
es having huge ports 
ount like Power Delivery Networks

(PDNs) and pa
kages and the la
k of low 
omplexity noise 
omplaint syn-

thesis methods for linear ma
romodels. Although tremendous steps forward

were a
hieved in the last de
ades in the areas of system identi�
ation and

model order redu
tion there are still 
han
es for improvement.

In this thesis the state of the art from system identi�
ation of Linear Time

Invariant (LTI) systems is revised and improved tailoring the needs of AMS

simulations for SoC/SiP appli
ations: a new system identi�
ation algorithm

to 
ope with linear 
omponents having huge dynami
al order and ports 
ount

(more than two order of magnitudes) is proposed and passivity 
onstraints

are veri�ed and imposed by means of parallel algorithms. The identi�
a-

tion of parametri
 linear models is extended to parameterized small-signal

models for non-linear devi
es. Finally a low-
omplexity noise 
ompliant syn-

thesis algorithm is introdu
ed in order to export the ma
romodels in standard

SPICE-based solvers. The main 
ontributions of this work are: redu
tion of

simulation time for the veri�
ation of modern SoCs/SiPs, introdu
tion of

parameterized small-signal models for non-linear RF 
omponents enabling a

simpli�ed assessment of di�erent proje
t s
enarios supporting the widespread



Intelle
tual Property (IP) reuse pattern, optimization and simpli�
ation of

the veri�
ation �ow based on the provision of multi-purpose IP blo
ks in the

form of noise 
ompliant networks.

We are fa
ing the rise of a new era for 
onsumer ele
troni
, and time-

to-market is a key feature in the development of new produ
ts. Therefore

the availability of e�e
tive Analog Mixed Signal methodologies be
omes a

sustainable 
ompetitive advantage for 
ompanies that are willing to lead

these new market segments. The novel algorithms proposed in this work

were proved to be of pra
ti
al relevan
e in that sense.

Most part of the material presented in this work is based on a resear
h

a
tivity 
arried out at the Muni
h site of Intel Mobile Communi
ation. As a


onsequen
e the methodologies proposed here, arising from pra
ti
al needs,

were tested on several 
ommer
ial ben
hmarks demonstrating the importan
e

of melting resear
h a
tivities with industries requirements.
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Chapter 1

System on Chip for mobile

appli
ations

Businesses fail either be
ause they leave their 
ustomers or be
ause their


ustomers leave them! [1℄

Andrew S. Grove, Intel 
orporation senior advisor

1.1 History and market perspe
tives

System on Chip (SoC) de�nes a highly integrated design pattern for Inte-

grated Cir
uits (IC). Sundry levels of integration are grouped by the SoC

de�nition: starting from a simple 
hip to memory inter
onne
tion up to the

integration of a 
omplete trans
eiver

1


hain for 
ellphones appli
ations. The

SoC paradigm raised naturally in the last de
ade to meet the requirements

of a new fast-growing market segment, i.e. the so 
alled mobile market.

Only a few years ago Personal Computer (PC) users were always demand-

ing for an in
rease of the 
omputational power. Central Pro
essing Unit

(CPU) evolution was well predi
ted by the famous Moore's law [2℄ and the

out
ome nowadays are very 
omplex devi
es delivering huge 
omputing 
a-

pabilities. The �rst step towards mobility was the introdu
tion of Laptops.

Thereupon new design 
onstraints appeared: power 
onsumption and form

fa
tor.

Tele
ommuni
ation systems pro�ted from the ele
troni
 evolution as well:

internet and the world wide web in
reased in usage and popularity, 
ellphones

evolved delivering a wide range of appli
ations exploiting the potentiality of

a fast growing network infrastru
ture. The standards for mobile 
ommuni
a-

1

Trans
eiver: devi
e 
omprising both a transmitter and a re
eiver whi
h are 
ombined

and share 
ommon 
ir
uitry or a single housing.

1
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Figure 1.1: The most 
ommon system integration te
hnologies are grouped

in the �gure above as a fun
tion of form fa
tor and 
ir
uit-to-
ir
uit inter-


onne
t density [3, 4℄.

tion from the third generation (3G) on pushed toward an optimized usage of

the 
ommuni
ation 
hannel in order to allow the transmission of 
onsiderable

amounts of data.

In order to 
ombine laptop features with 
ellphones portability, SiP (Sys-

tem in Pa
kage) and SoC are nowadays the integration paradigm for smart-

phones, tablets and phablets. A ni
e overview of the most 
ommon system

integration

2

te
hnologies as a fun
tion of form fa
tor and 
ir
uit-to-
ir
uit

density [3, 4℄ is depi
ted in Figure 1.1. Planar integration te
hnologies are

be
oming more 
hallenging as transistor 
hannel lengths hit the range 20-30

nm. In order to meet the requirements of the market, 3D sta
king te
hniques

are emerging as a promising workaround to planar integration limitations [5℄.

1.2 Design 
hallenges

Compared with the design of nowadays 
lassi
 ICs, Radio Frequen
y (RF)

SoC design is more involved due to the melt of heterogeneous ele
troni


systems in a small pa
kage [6℄. Moreover, for RF and mobile appli
ations,

Analog Mixed Signal (AMS) methodologies are a must sin
e Digital Signal

2

System integration is de�ned as the 
ombination of 
ir
uits and Intelle
tual Property

(IP) blo
ks on the same die.
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Figure 1.2: Fabri
ation 
apital versus test 
apital based on Semi
ondu
tor

Industry Asso
iation (SIA) and International Te
hnology Roadmap for Semi-


ondu
tors (ITRS), sour
e [12℄.

Pro
essing (DSP) blo
ks are in 
lose 
onne
tion with analog and RF 
ompo-

nents [7℄ thus in
reasing the overall design 
omplexity.

The main issues arising in RF SoC appli
ations 
an be divided in two

ma
ro groups.

1. Die and pa
kage: At this level the growth in transistor 
ount and op-

erating frequen
y has a dire
t impa
t on design 
omplexity leading to

• poor manufa
turability: as the miniaturization pro
ess gets 
loser

to the theoreti
al limits of CMOS (Complementary Metal-Oxide-

Semi
ondu
tor) te
hnology [8℄ the design be
omes very sensitive

to pro
ess variation. This a�e
ts the throughput yield

3

, reliability

and testability. In 1999 the Semi
ondu
tor Industry Asso
iation

(SIA) proposed an International Te
hnology Roadmap for Semi-


ondu
tors (ITRS) showing how the 
ost of test is going to surpass

the 
ost of sili
on manufa
turing as depi
ted in Figure 1.2. As a


onsequen
e there is an in
reasing interest in automati
 testing

methodologies [10℄ and adaptive design te
hniques [11℄ to stem

the drawba
ks related with pro
ess toleran
es;

• power 
onsumption: four are the main sour
es of power dissipation

in CMOS te
hnology [13℄. Pdyn: dynami
 swit
hing power due to

the 
harging and dis
harging of 
ir
uit 
apa
itan
es. Pleak: due

to the leakage 
urrent from the reverse-biased diodes and sub-

threshold 
ondu
tion. Pshort: due to the �nite signal rise/fall

times. Pbias: stati
 biasing power. Those issues are addressed

by supply power s
aling te
hniques and Low Power (LP) CMOS

te
hnologies [14℄;

3

The de�nition of Yield in the 
ontext of Integrated Cir
uits is: the ratio of the number

of fun
tional 
hips to that of the total 
hips manufa
tured[9℄
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• power delivery issues: low-power 
onsumption 
onstraints trans-

formed the design of Power Delivery Networks (PDNs) into a very


hallenging task in 
omparison with previous IC te
hnologies [15,

16℄. Multi-layer pa
kages and grids are 
ommon to supply 
lean

power to the integrated 
ir
uits. Two are the �gures of merit

for PDNs: the target impedan
e

4

[18℄ and the voltage IR drop.

Both a

ount for two di�erent phenomena: the stati
 IR voltage

drop

5

whi
h is introdu
ed by the resistive nature of the PDN 
on-

du
tors, and the indu
tive di/dt voltage drop whi
h derives from

lo
alized power demand and swit
hing patterns [19℄. Moreover,

large voltage drops in on-
hip PDN due to large di/dt may lead

to Ele
tro-migration

6

(EM) that is one of the most 
riti
al inter-


onne
t failure me
hanism in ICs [17℄. Besides Power Integrity

(PI) 
onsiderations, PDN should be also designed to a�ord dy-

nami
 power management methodologies meant for power saving

modes driven by the 
ontrol �rmware [21℄;

• heat dissipation: the typi
al range of operating jun
tion temper-

ature for modern VLSI designs is between 80◦ and 120◦ on the

sili
on substrate [22℄. Su
h boundaries are easily ex
eeded due

to the 
umulative power dissipation of the transistors leading to

the generation of extreme amounts of heat in a relatively small

area. High thermal density has a negative impa
t on 
ir
uit per-

forman
es by in
reasing the gate delay and shortening the life of

the devi
e. Therefore the pa
kages are 
arefully designed to re-

move the heat from the IC substrate;

• on-
hip 
rosstalk: this is mainly introdu
ed by the inter-wire 
ou-

pling 
apa
itan
e between adja
ent signal lines in on-
hip buses [23℄.

Both hardware (shielding via grounded 
ondu
tors or parti
ular

layout fabri
s [24℄) and 
oding signal te
hniques (
rosstalk avoid-

an
e 
odes, CACs [25℄) are available to 
ope with this problem;

• noise: the e�e
t of thermal/white noise due to the in
rease of

temperature be
omes always more relevant and needs to be 
are-

fully addressed. The �i
ker (1/f) noise is tightly related with the

4

The target impedan
e is 
al
ulated from: power supply toleran
e, 
urrent and swit
h-

ing a
tivity and has to be satis�ed by the PDN from DC to at least the �rst harmoni
 of

the 
lo
k frequen
y [17℄.

5

Stati
 IR Voltage drop: is the redu
tion of the nominal referen
e voltage for transistors

due to the transition of 
urrent (I) in the resistive (R) power delivery network.

6

Ele
tro-migration: �ow of metal atoms under the in�uen
e of high 
urrent densities.

May be the 
ause for in
reased resistan
e and reliability problems [20℄.
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CMOS te
hnology and be
omes relevant only below a spe
i�
 
or-

ner frequen
y [13℄.

2. System and 
omponents: 
onsidering that portable devi
es are meant

to support di�erent 
ommuni
ation standards like: Bluetooth (IEEE

802.15.1), Wi-Fi (IEEE 802.11), GSM, GPRS, UMTS and many more,

it is sensible that the same trans
eiver has to be used for all the 
om-

muni
ations standards to meet the form-fa
tor 
onstraints of a portable

devi
e. As a 
onsequen
e trans
eivers and 
ommuni
ations systems be-


ome more 
omplex due to the advent of new standards and the need

to preserve retro-
ompatibility leading to

• inter
onne
t delay: for o�-
hip buses the main bottlene
k is rep-

resented by the pa
kage. Data rate limits are related with the

quality of the pa
kage. Be
ause of that the performan
e of the

pa
kage are 
ru
ial for the assessment of Signal and Power In-

tegrity (SI,PI) analysis;

• o�-
hip 
rosstalk: this is mainly due to inter-symbol interferen
e

(ISI) and indu
tive 
rosstalk [26℄. Eye diagram analysis [27℄ is

usually adopted to study su
h kind of problems.

Exploiting Sili
on On Insulator (SOI) te
hnology [28℄ the future of IC inte-

gration goes in the dire
tion of 3D sta
king [29℄. Integration density, power


onsumption and form-fa
tor 
an be e�e
tively addressed by 3D SoC design

methodologies[30℄ while Through Sili
on Via (TSV) and Network on Chip

(NoC) are the emerging inter
onne
t paradigms [31℄.

All the design 
hallenges and methodologies des
ribed in this se
tion are

fa
ed relying on advan
ed modelling te
hniques and a well established design

�ow. Next se
tions will outline the state of the art on ma
romodeling and

design �ow for RF SoC.

1.3 Ma
romodeling and Design �ow

Computer Aided Design (CAD) te
hniques are well established and widespread

in the ele
troni
 industries sin
e de
ades. The introdu
tion of Ele
troni
 De-

sign Automation (EDA) dates ba
k to 1980 when it be
ame 
lear that the

gap advan
es in engineering produ
tivity (P1) 
ompared with the in
rease in

sili
on 
omplexity (P2) was widening, as depi
ted in Figure 1.3. This trend,

know as produ
tivity gap [32℄, be
ame more relevant due to the advent of

SoC designs and stringent time-to-market 
onstraints. The 
lassi
 design

�ow, depi
ted in a simpli�ed version in Figure 1.4, is no longer e�e
tive in
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Figure 1.3: The bordeaux line represents the in
rease for the number of

transistors per 
hip as a fun
tion of years (P2) while the green line indi
ates

the advan
es in engineering (P1), sour
e [32℄.


oping with the produ
tivity gap in the 
ontext of SoC for mobile appli
a-

tions. The following requirements should be met by an e�e
tive SoC design

�ow:

• rapid development to satisfy time-to-market pressures;

• quality of results: performan
e, form-fa
tor and power 
onsumption;

• simple veri�
ation of 
omplex 
hips;

• simple to use for teams with di�erent levels and areas of expertise.

To satisfy the 
onstraints listed above modern design �ows are heavily re-

lying on the 
on
ept of IP (Intelle
tual Property) reuse [33℄: ea
h step in

the design �ow depi
ted in Figure 1.4 is now enhan
ed and supported by

well established IP blo
ks. In a similar fashion to the 
ode reuse pattern

widely used in Information Te
hnology appli
ations, the main idea behind

the IP reuse strategy relies upon the 
onstru
tion of a library of 
omponents

(generally 
alled IP blo
ks or ma
ros) to be used in several di�erent proje
ts.

More details on this topi
 are provided in the next se
tion.

Together with IP reuse, as ICs and design �ows be
ome more involved,

ma
romodels and related tools must improve and a

omplish new features.

A ma
romodel is a high-level mathemati
al des
ription of the system under

analysis that a

urately represents its behaviour. The pre�x ma
ro empha-

sizes that only the input/output response is des
ribed, while no information

is retained on the internal stru
ture of the physi
al system. Besides the typi-


al requirements of a

ura
y, numeri
al robustness, physi
al 
onsisten
y and

e�
ien
y, a few new 
onstraints must be taken into a

ount for ma
romodels



CHAPTER 1. SYSTEM ON CHIP FOR MOBILE APPLICATIONS 7

Figure 1.4: The mains steps involved in the design �ow of mobile devi
es

are sket
hed. Starting from spe
i�
ations and standards the 
on
ept of the

devi
e is built. A model prototype is 
reated using a pe
uliar te
hnology in a

CAD environment. Several EDA software are used in the pre-tape-out phase

to address: fun
tional spe
i�
ations, manufa
turability and physi
al 
onsis-

ten
y of the prototype model. In the tape-out phase fun
tional spe
i�
ations

are 
he
ked on physi
al designs. In 
ase of issues the model prototype is used

as a test ben
h. Of 
ourse, to redu
e produ
tion 
osts, the minimum number

of tape-outs should be used to meet all the spe
i�
ations.

• parameterization: in order to speed up what-if analysis and optimiza-

tion pro
edures ma
romodels should admit some of the most 
ommon

design parameters (temperature, Vdd and geometry) as input variables.

With su
h a feature there is no need to build a new ma
romodel in 
ase

of variations of design parameters;

• usability: ma
romodels should be available in a standard format, like

Spi
e netlist or HDL (Hardware Des
rition Language). The same model

must be e�e
tive for di�erent type of analyses (time/frequen
y domain,

noise). Inputs, parameters and options must en
lose a simple and 
lear

des
ription together with appli
ability bounds. Thereby independently

of user's expertise the model 
an be used e�e
tively, in a short time

and in several di�erent 
ontexts;

• s
alability: it is well known that SoCs 
omplexity, intended as dy-

nami
al order and elements/inter
onne
tions 
ount, grows really fast

with time. Modelling te
hniques must 
ope with this trend, providing

a

urate models with low 
omplexity in a short time.

Design 
omplexity and produ
tivity gap will further in
rease with the advent

of 3D integration te
hnologies; therefore the availability of a

urate models
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providing low 
omplexity is the 
orner stone for a modern design �ow in-

tended to meet tight time-to-market 
onstraints. Ma
romodels asso
iated to

the sub-blo
ks of a 
omplex system 
an be 
ombined to mimi
 the behaviour

of the whole system leading to a tremendous simpli�
ation in the analysis

of 
omplex devi
es. In the following se
tions the main features of IP reuse

and how to deliver adequate ma
romodels for this new design paradigm is

dis
ussed.

1.3.1 IP reuse

Design te
hniques based on IP reuse were born in the beginning of the 1990's

[33℄. Two major events are 
onsidered as the starting points for the IP reuse

di�usion:

• Establishment of the Virtual So
ket Interfa
e Allian
e (VSIA): in 1996

this 
ross-industry organization, fo
used on IP reuse for SoC design,

was founded to help foster this new design pattern by 
ombining the

skills and knowledge of semi
ondu
tor 
ompanies, system 
ompanies

and EDA industry;

• Register Transfer Level (RTL) IP reuse: in 1997 teams from Mentor

Graphi
s and Synopsis proposed the so 
alled Reuse Methodology for

soft IP. The di
tates of this design pattern are 
olle
ted in the widely

known Reuse Methodology Manual [34℄.

The 
ore idea behind IP-oriented SoC design relies upon the availability

of reusable IP blo
ks that support plug-and-play integration in a pre-de�ned

�ow. As su
h IP blo
ks are the highest level building blo
ks of an SoC, they

are 
olle
ted in libraries with various timing, area and power 
on�gurations

providing to designers simple to use IP ma
ros.

The form of a reusable IP 
ore 
an vary depending on the IP devel-

oper/vendor; as a high level 
lassi�
ation, three are the following main 
at-

egories of IP blo
ks [34℄:

• soft IP: blo
ks de�ned using RTL or higher level des
riptions. They are

typi
ally used for digital 
ores relying on a pro
ess-independent hard-

ware des
ription language (HDL) that 
an be synthesized to gate level.

Advantages: �exibility, portability and reusability; while the drawba
ks

are: la
k of timing and power 
hara
teristi
s be
ause performan
es are

tightly related with the te
hnology used to synthesize the HDL. Those

ma
ros 
an be en
rypted to hide IP details and prevent the introdu
-

tion of unreliable features; as a drawba
k en
rypted blo
ks 
an not be

adapted to �t new design s
enarios;
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Figure 1.5: The sele
tion of the most suitable form to deliver and IP blo
k

should take into a

ount the trade-o� depi
ted in this plot [35℄.

• hard IP: usually de�ned by means of faithful layouts tailored for a

spe
i�
 appli
ation based on a given te
hnology. For those blo
ks,

performan
es are predi
table but the 
onsequent drawba
k is the la
k

of portability;

• �rm IP: in the middle between hard and soft blo
ks, �rm IP is delivered

as parametrized analog 
ir
uit meant to be tailored by designers for a

spe
i�
 appli
ation. Blo
k's features 
an be trimmed leveraging on the

available parameters while retaining predi
table performan
es.

As a 
onsequen
e, sele
ting the most suited IP form for ea
h blo
k is of

paramount importan
e in order to build an e�e
tive and reliable design �ow

for SoC appli
ations. To drive su
h an important de
ision, the plot depi
ted

in Figure 1.5 is suggested as a referen
e map in [35℄.

When the IP reuse strategy is applied to the AMS design for RF SoC, one

problem arises [36℄, i.e. the sele
tion of the IP form most suited for an AMS

blo
k. Compared to digital design, for whi
h a 
ommon design methodology

is available [37℄, AMS design usually relies on spe
i�
 design pro
ess. This

issue 
an be addressed using an e�e
tive mixed-signal SoC �ow [38, 39℄ based

on the AMS IP blo
ks in [40, 41, 42℄.

Currently, due to the 
omplexity of AMS designs, the soft and hard IP

forms are used for analog-mixed signal appli
ations [40, 41, 42℄. Of 
ourse,

this 
hoi
e restri
ts the s
ope of appli
ations redu
ing the overall SoC de-

sign �ow e�
ien
y [36℄. The migration of hard AMS IP blo
ks to the �rm

form 
alls for new features on the ma
romodels used to derive netlists and

s
hemati
s. Indeed, as stated in Se
tion 1.3, parametrizability and s
ala-

bility are the new features required on the ma
romodel side. Moreover, in
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order to provide a high level of usability for su
h models (
onsequently for

the �rm AMS IP blo
ks) a 
lear and simple taxonomy is needed; next se
tion

introdu
es su
h a 
lassi�
ation for ma
romodels.

1.3.2 Ma
romodels taxonomy

A simple and 
lear taxonomy for ma
romodels is needed in order to meet

the usability 
onstraints imposed by the IP reuse paradigm detailed in Se
-

tion 1.3.1. Considering that the main bottlene
k in the design of analog-

mixed-signal 
omponents is represented by the analog blo
ks, two will be the

main 
riteria behind the proposed taxonomy: all the 
omponents are analog

(indeed also digital blo
ks are synthesized via analog elements), and their

level of non-linearity is the base for 
lassi�
ation. As a 
onsequen
e of this


oarse 
lassi�
ation the proposed taxonomy is �orthogonal� to �ne te
hnolog-

i
al details attaining the degree of portability required by IP blo
ks meant

to the �rm IP form.

In the following for ea
h level of 
lassi�
ation the state of the art on

ma
romodeling and system identi�
ation will be brie�y outlined together

with a list of AMS 
omponents belonging to ea
h level of the proposed tax-

onomy.

Linear Time Invariant (LTI) systems

There are several 
omponents that 
an be a

urately modelled as Linear

Time Invariant systems: pa
kages [43℄, buses and inter
onne
ts [44℄, Printed

Cir
uit Boards (PCB) [45℄, Power Distribution Networks (PDNs) [46℄ and

Through Sili
on Via (TSV) for 3D SoC [47℄. The 
onstru
tion of LTI models

for those 
omponents is usually based on the work �ow depi
ted in Figure 1.6

from [43℄: S
attering parameters are extra
ted from the layout or 3D model

of the 
omponent under analysis using a full wave solver. Thus the LTI

model 
an be extra
ted using the time or frequen
y raw data leading to a

state-spa
e [48℄ or des
riptor representation. Several well assessed te
hniques

are available to 
onstru
t LTI models from tabulated data:

• Nevanlinna-Pi
k interpolation [49, 50℄ is a well known result of 
om-

plex analysis. Two matrix versions exist for this problem: the ma-

trix Nevanlinna-Pi
k problem [51℄ and the tangential Nevanlinna-Pi
k

problem [52℄. This method was adopted for the �rst time in the system

identi�
ation 
ontext by [53℄ and more re
ent appli
ation 
an be found

in [54℄. A 
omprehensive des
ription of the Nevanlinna-Pi
k problem,

its extensions and variations 
an be found in [55℄. Despite this method
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Figure 1.6: The typi
al work �ow used for the 
reation of LTI models from

pa
kages, PCB, TSV and related 
omponents is presented. Starting from the

layout or the 3D model a full wave solver is applied in order to extra
t the

S
attering parameters. From S-parameters the LTI model is identi�ed via

the standard te
hniques summarized in Se
tion 1.3.2. On
e the LTI model is

available it 
an be synthesized as a Spi
e network and the results from Spi
e

are validated with the results from the 3D full wave solver, sour
e [43℄.



CHAPTER 1. SYSTEM ON CHIP FOR MOBILE APPLICATIONS 12

is theoreti
ally attra
tive it is seldom used in pra
ti
e due to 
ompu-

tational 
omplexity and numeri
al stability reasons;

• Löwner interpolation dates ba
k to the work of Löwner for the interpo-

lation of given data on a full ar
 of the unit 
ir
le in the 
omplex plane

[56℄. It was introdu
ed in the 
ontext of 
ontrol theory and system

identi�
ation by Kalman and Belevit
h [57℄. More re
ent appli
ations

of this method 
an be found in [58, 59℄;

• The Sanathanan-Koerner iteration was originally proposed in [60℄ and

it is based on the 
omplex 
urve �tting proposed by Levy in [61℄. This

is a general strategy to re
ast a non-linear interpolation problem to

the solution of a sequen
e of linear overdetermined systems. The most

popular evolution of the Sanathanan-Koerner iteration is the Ve
tor

Fitting (VF) algorithm [62, 63℄. Nowadays this is the de fa
to standard

for the identi�
ation of linear systems in the EDA 
ontext. Despite

VF has no guarantees of 
onvergen
e when dealing with noisy data

[64℄, it o�ers the best trade-o� between 
omputational 
omplexity and

robustness [65℄. As a 
onsequen
e the Sanathanan-Koerner iteration

and VF are used in this work and are presented in more details in

Se
tion 2.2;

• Padé approximation, originally proposed by the mathemati
ian Henri

Padé [66℄, addresses the best approximation of a fun
tion under a spe-


i�
 norm by a rational fun
tion of a given order. It was introdu
ed

in 
ontrol theory to model exponential delays [67℄. Re
ent appli
ations


an be found in system identi�
ation literature [68℄. This method was

quite popular before the introdu
tion of VF and 
an be still 
onsidered

a good alternative to the Sanathanan-Koerner iteration for low-order

systems [69, 70℄;

• subspa
e methods [71℄ are all 
omposed by three steps: estimation of

the predi
table subspa
e from raw data, extra
tion of the state vari-

able from the predi
table subspa
e and �tting the estimated states to a

state spa
e model. Several algorithms are available both for 
ontinuous

[72℄ and dis
rete [73℄ time models identi�
ation. Those te
hniques are

numeri
ally stable and e�
ient [74℄. The la
k of a priori physi
al prop-

erties impositions, like stability and passivity, prevents the systemati


appli
ation of those methods on analog 
ir
uits.

It is worth noting that the te
hniques listed above are meant for ele
troni


devi
es whose behaviour 
an be e�e
tively approximated via lumped element
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networks, i.e. the propagation delay of the signal 
an be negle
ted, otherwise

di�erent te
hniques should be used, like [75, 76℄.

Parameterized LTI (P-LTI) systems

Although LTI models are helpful and their usage is widespread, the main

drawba
k of the LTI approa
h lies in the la
k of �exibility. Indeed several


omponents like: PCBs, inter
onne
ts, pa
kages, RF indu
tors and TSVs

are designed and tested 
onsidering di�erent geometri
al 
on�gurations and

working temperatures. As a 
onsequen
e, a 
onsiderable e�ort was spent in

the last years to extend the identi�
ation algorithms introdu
ed in Se
tion

1.3.2 to obtain Parameterized-LTI models:

• parameterized Nevanlinna-Pi
k interpolation was �rst proposed in [77℄

but found only few appli
ations in robust 
ontrol appli
ations [78℄;

• parameterized Löwner interpolation was introdu
ed by [79℄. Due to the

major memory 
onsumption this method is not used in pra
ti
e;

• parameterized Sanathanan-Koerner (SK) iteration was �rst proposed

by Triverio in [80℄ and then extended by the same author to a

ount

for stability [81℄ and passivity [82℄. In a similar fashion VF was used

by Ferranti for the P-LTI identi�
ation [83℄ and then with passivity


onstraints [84℄. Currently those are the most di�used te
hniques for

the identi�
ation of P-LTI models. Some appli
ations and advan
es

are presented in Se
tion 3.2;

• parameterized Padé approximation 
an be found in [85℄. Being a 
om-

petitive alternative to VF and SK iteration it found several appli
ations

[86, 87℄;

• parameterized subspa
e methods were addressed re
ently [88℄. Those

methods su�er from a 
urse of dimensionality leading to an ill-posed

parameter estimation problem; a re
ent attempt to over
ome su
h a

limitation 
an be found in [89℄.

Despite the theoreti
al e�ort, up to now none of the te
hniques listed above

for the identi�
ation of P-LTI systems has the robustness and the e�
ien
y

to be
ome part of a user-friendly EDA tool.

Small-Signal P-LTI

Using a proper Dire
t Current (DC) 
orre
tion strategy [90℄, presented in

Se
tion 3.1, P-LTI models 
an be also applied to mimi
 the behaviour of
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non-linear devi
es that behave almost linearly in the neighbourhood of one

equilibrium point

7

. This is a 
ommon s
enario in RF appli
ations, indeed


omponents like: Low Dropout (LDO) regulators, Operational Ampli�ers

(Op Amp), Low Noise Ampli�ers (LNA), bu�ers and a
tive �lters are de-

signed to behave almost linearly under spe
i�
 working 
onditions. In the


ontext of RF appli
ations, linear behaviour means that the devi
e does not

generate spurious harmoni
s or that the spurious harmoni
s are strongly at-

tenuated and thus negligible. For AMS high integration te
hnologies, like

in SoC and SiP, the suppression of spurious harmoni
s is relevant to 
ontrol


oupling noise and undesired mixing e�e
ts.

Pie
ewise linear P-LTI

The P-LTI method 
an be extended to model strong non-linear devi
es like

drivers, mixers and Phase-Lo
ked-Loops (PLLs) using a pie
ewise linear in-

ter
onne
tion of P-LTI models. The �rst work dealing with pie
e wise linear

(PWL) networks dates ba
k to Stern in 1956 [92℄. A more rigorous study on

PWL models for non-linear devi
es is due to Chua [93℄, while several PWL

te
hniques are 
ompared in [94℄. The idea to use state-spa
e models with

PWL states is quite re
ent and found several appli
ations for the modelling

of non-linear devi
es [87℄. In the 
ontext of AMS 
ir
uits PWL te
hniques 
an

be found in: formal veri�
ation of analog 
ir
uits [95℄, behavioural modelling

of nonlinear power ampli�ers [96℄ and mixed-signal 
ir
uits [97℄.

1.4 Proposed advan
es

Despite the resear
h e�ort spent in the development of EDA tools and al-

gorithms, design and veri�
ation of AMS SoC is still an open issue, whi
h


osts to mobile 
ommuni
ations 
ompanies huge resour
es [32℄. Therefore

the main obje
tive of this do
toral work 
onsists in the development of new

methodologies to 
ope with the 
hallenges posed by SoC integration high-

lighted in Se
tion 1.2. The proposed solutions, while advan
ing the state of

the art for ma
romodeling of ele
troni
 devi
es, arise from industrial 
on-

straints and real design test 
ases, providing an immediate 
ontribution to

pra
ti
al needs.

Chapter 2 deals with the identi�
ation of linear ma
romodels belonging

to the LTI taxonomy 
lass presented in Se
tion 1.3.2. State-spa
e models

7

In this work by equilibrium or �xed point the Lyapunov de�nition of lo
al stability is


onsidered [91℄.
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representation and basi
 identi�
ation tools are summarized in Se
tion 2.1

and 2.2. The main 
ontributions of Chapter 2 are:

• a 
ompressed ma
romodeling algorithm is introdu
ed in Se
tion 2.3 to

over
ome the limitations of VF when dealing with 
omponents having

huge ports 
ount, from tens to hundreds. As dis
ussed in Se
tion 1.2,

at system level the main bottlene
k for inter
onne
tions is represented

by the pa
kage, while at 
hip level 3D te
hnologies like TSV and NoC

are meant to in
rease the 
onne
tivity. The original version of VF [62℄

and also the more re
ent advan
es like [98, 99℄ are not suited to address

su
h devi
es be
ause of the ex
essive memory 
onsumption or due to

ill-
onditioning. The proposed 
ompressed ma
romodeling algorithm

over
omes those issues relying on a 
lever redu
tion of the data set used

for the identi�
ation of the model. A

ura
y and physi
al properties

like 
ausality and passivity 
an be imposed dire
tly on the 
ompressed

ma
romodel, as presented in Se
tion 2.3.4, leading to a tremendous

speedup on the overall identi�
ation pro
edure (see Se
tion 2.4.4) in


omparison with state of the art te
hniques [100℄;

• a parallel algorithm to verify the passivity of linear ma
romodels is

introdu
ed in Se
tion 2.5. Sin
e the most 
ommon algorithms for sys-

tem identi�
ation (VF and SK) do not guarantee the generation of

passive models, passivity needs to be addressed independently [101℄.

Moreover, passivity 
hara
terization is of 
ourse the �rst step for the

passivity enfor
ement [102℄, and needs to be repeated several times.

Several algorithms are available for the passivity 
hara
terization [101,

103, 104℄. Some of them are already available for parallel ar
hite
tures

[105℄. The algorithm proposed in Se
tion 2.5 is an e�
ient parallel

implementation of [104℄;

Chapter 3 dis
usses the identi�
ation of parameterized LTI (P-LTI) mod-

els. The availability of parameterized models is the 
ornerstone for the devel-

opment of a modern and e�e
tive design and veri�
ation �ow. Considering

that several methodologies for the identi�
ation of P-LTI models are available

as dis
ussed in Se
tion 1.3.2, the main 
ontributions of Chapter 3 are

• a Dire
t Current (DC) 
orre
tion strategy for small-signal models of

non-linear 
ir
uits, presented in Se
tion 3.1. This simple but e�e
tive

idea is the link between linear and small-signal models for non-linear

devi
es. RF devi
es like LDO and OpAmp are designed to behave al-

most linearly under appropriate biasing. The so 
alled small-signal LTI

models of those devi
es are a

urate around a spe
i�ed operating point
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but fail to reprodu
e the DC response of the real non-linear devi
e.

The proposed DC 
orre
tion 
an be used to over
ome this issue;

• parameterized small-signal models are proposed in Se
tion 3.2. A
-


ording to the taxonomy proposed in Se
tion 1.3.2 models are sorted

depending on the level of non-linearity. The 
ombination of P-LTI

models with a parameterized DC 
orre
tion strategy makes it possible

to model fairly non-linear devi
es using a smooth 
ombination of linear

models parameterized by the operating point. The e�e
tiveness of this

strategy is demonstrated in Se
tion 3.3 by analysing some test 
ases of

pra
ti
al relevan
e.

Chapter 4 presents the synthesis of State-Spa
e models as linear lumped net-

works. As already noted in Se
tion 1.3.1, the �rst step for the migration of

AMS IP blo
ks towards the IP �rm des
ription relies on the availability of

�exible and e�
ient implementations of the ma
romodels. Therefore 
anoni-


al synthesis

8

algorithm in Spi
e 
ompatible format are des
ribed. The main


ontributions of Chapter 4 are:

• modern presentation of 
anoni
al synthesis methods for stati
 and dy-

nami
 networks dis
ussed in Se
tion 4.2 and 4.3. For ea
h synthesis

method: 
omplexity of the network and pra
ti
al relevan
e are de-

tailed. In parti
ular: stability, a

ura
y and noise analysis 
omplian
e

are 
onsidered. Stati
al network synthesis te
hniques are 
onsidered in

their own be
ause of pra
ti
al relevan
e for 
onne
tivity, stati
 IR drop

[106℄ and power distribution analysis;

• a new synthesis method for dynami
 networks, based on Darlington

resistan
e extra
tion framework, is presented in Se
tion 4.3.4. Ea
h

step of this new algorithm is des
ribed fo
using on numeri
al robustness

and noise 
omplian
e of the resulting Spi
e netlist.

Finally, 
on
lusions are summarized in the last Chapter, highlighting both

theoreti
al and pra
ti
al relevan
e of results and methodologies dis
ussed in

this work.

8

As explained in Chapter 4, a network synthesis is de�ned as 
anoni
al when it requires

the theoreti
al minimum number of primitive network elements.



Chapter 2

Linear Time Invariant

ma
romodels

Ma
romodeling te
hniques have be
ome a standard pra
ti
e in system design

and veri�
ation �ows. Su
h methods allow to 
onvert external 
hara
teriza-

tions of linear and time-invariant stru
tures su
h as passive devi
es and ele
-

tri
al inter
onne
ts into 
ompa
t 
losed-form mathemati
al expressions or


ir
uit equivalents. This 
onversion is needed to allow system-level transient

simulations and veri�
ations starting from a native 
hara
terization that is

typi
ally available in the frequen
y domain in form of tabulated s
attering

responses, the latter being determined from dire
t measurements or full-wave

numeri
al solutions.

This Chapter introdu
es some advan
es to the state of the art of Linear

Time Invariants (LTI) ma
romodeling te
hniques. The ne
essary ba
kground

on state-spa
e models and system identi�
ation is dis
ussed in Se
tion 2.1,

while two of the most popular algorithms for linear systems identi�
ation

are des
ribed in Se
tion 2.2, i.e. the Sanathanan-Koerner iteration and Ve
-

tor Fitting. Extensions and improvements for those identi�
ation methods

are the main 
ontributions of this Chapter. In Se
tion 2.3, the Compressed

ma
romodeling algorithm is introdu
ed as a 
lever system identi�
ation pro-


edure based on Ve
tor Fitting for systems having a large port 
ount. In

Se
tion 2.5, a highly e�
ient parallel passivity veri�
ation method is pre-

sented.

2.1 State-spa
e ma
romodels

The state-spa
e representation was introdu
ed in 
ontrol engineering and


ir
uit theory by Bashkow [48℄ and nowadays is the most 
ommon des
rip-

17
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tion for dynami
al systems. State-spa
e equations 
onstitute a mathemati
al

model of the physi
al system under analysis as a set of input, output and

internal state variables related by 
oupled �rst-order di�erential equations.

Dealing with linear time-invariant systems the asso
iated state-spa
e equa-

tions read

ẋ(t) = Ax(t) +Bu(t), (2.1)

y(t) = Cx(t) +Du(t). (2.2)

with A ∈ RN×N
, B ∈ RN×P

, C ∈ RP×N
and D ∈ RP×P


onstant matri
es.

Inputs are 
olle
ted in ve
tor u, outputs in ve
tor y while the internal states

are in ve
tor x. Two features are of paramount importan
e for a state-spa
e

system

• observability: de�ned as the ability to always re
onstru
t the initial

state x(0) observing the outputs of the system for t ≥ 0 provided that

also the input evolution is known for t ≥ 0;

• 
ontrollability: de�ned as the possibility to always design an input

sequen
e that steers the system to a desired �nal state.

Both 
onditions are guaranteed when the model (2.1)-(2.2) has minimal dy-

nami
 order, de�ned as the M
Millan degree of the system [107℄. If the

state-spa
e is not minimal, it 
an be 
onverted to a minimal one by means

of standard te
hniques [108℄.

Taking now the Lapla
e transform of (2.1) and (2.2) and assuming x(0) =
0, it follows

sX(s) = AX(s) +BU(s), (2.3)

Y(s) = CX(s) +DU(s), (2.4)

whi
h leads to the transfer fun
tion matrix relating U(s) and Y(s)

H(s) = D+C(sI−A)−1B. (2.5)

The transfer fun
tion (2.5) is rational. In 
ase of poles (eigenvalues of A)

with unit multipli
ity, H(s) 
an also be written in the so 
alled pole-residue

form, i.e.

H(s) = D+
N∑

n=1

Rn

s− pn
, (2.6)

where pn are the simple poles, Rn are the asso
iated residue matri
es, and D

is the dire
t 
oupling term. Please note that the three des
riptions (2.1)-(2.5)
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Figure 2.1: In
ident ai and re�e
ted bi power waves for a two-port network.

and (2.6) asso
iated to the minimal state-spa
e (2.1) system are equivalent

to ea
h other and one is preferred to the others depending on the appli
ation


ontext.

The identi�
ation work �ow des
ribed in Se
tion 1.3 (Figure 1.4) heavily

relies on the availability of a

urate models in the form of (2.1). Su
h mod-

els 
an be 
onverted to linear lumped networks to be solved using SPICE

based solvers using the synthesis te
hniques dis
ussed in Chapter 4. In or-

der to extra
t a

urate state-spa
e models using the raw data obtained from

measurement or full-wave solvers an identi�
ation algorithm must be used.

In the following the raw data used for the identi�
ation are supposed to be

S
attering (S)-parameters [109℄. Re
all that the S-parameters for a 2-port

(the extension to P -port is straightforward) linear time-invariant network, as

depi
ted in Figure 2.1, are de�ned as

[
b1
b2

]
=

[
S11 S12

S21 S22

] [
a1
a2

]
→ b = Sa , (2.7)

where Z0 is a pres
ribed real referen
e impedan
e and the travelling waves

ai and bi are de�ned as

a1 =
V1 + Z0I1

2
√
Z0

, a2 =
V2 + Z0I2

2
√
Z0

, (2.8)

b1 =
V1 − Z0I1

2
√
Z0

, b2 =
V2 − Z0I2

2
√
Z0

. (2.9)

The main 
onstraint 
ommon to all identi�
ation pro
edures 
onsists in the

minimization of the di�eren
e between the linear identi�ed model response

and the referen
e raw data-set. Working with S-parameters (2.7) the raw

data for an LTI network is 
omposed of matri
es Sl = S(sl) ∈ RP×P
, with

l = 1, . . . , L number of dis
rete frequen
y samples sl = ωl. In this 
ontext

the identi�
ation problem 
an be formulated as: �nd a state-spa
e model

S(s) su
h that

min

∑

l

‖S(sl)− Sl‖2 (2.10)
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for a given norm.

Among all the identi�
ation algorithms, listed in Se
tion 1.3.2 of Chap-

ter 1, for the extra
tion of a

urate state-spa
e models starting from raw

data the two most used in pra
ti
e are the Sanathanan-Koerner iteration

and the Ve
tor Fitting pro
edure. Those two methods are presented in the

following se
tion.

2.2 Sanathanan-Koerner and Ve
tor Fitting

The minimization 
onstraint (2.10) asso
iated to the identi�
ation problem

was addressed by Sanathanan and Koerner in [60℄, the resulting Sanathanan-

Koerner (SK) Iteration is brie�y summarized in this se
tion together with

his most popular extension, i.e. the Ve
tor Fitting (VF) algorithm [62℄.

The identi�
ation of a s
alar transfer fun
tion h(s) is 
onsidered, instead
of the matrix 
ase (2.10), in order to simplify and fo
us the presentation on

the algorithm. The extension to multi-port devi
es is straightforward [60℄. In

the basi
 SK Iteration framework a set of frequen
y-domain samples (sl, hl)
for l = 1, . . . , L is used to identify a rational model of the form

h(s;x) =
n(s;x)

d(s;x)
=

a0 + a1s+ · · ·+ ams
m

b0 + b1s+ · · ·+ bn−1sn−1 + sn
(2.11)

where n(s;x) and d(s;x) are respe
tively numerator and denominator poly-

nomials of degree m and n. The unknown 
oe�
ients are 
olle
ted in the

ve
tor

x = (a0, a1, . . . , am, b0, b1, . . . , bn−1)
T . (2.12)

The general identi�
ation problem requires to �nd 
oe�
ients x whi
h min-

imize in some norm the residual error r(x), whose 
omponents are

rl(x) = hl −
n(sl;x)

d(sl;x)
. (2.13)

To avoid the solution of a non-linear interpolation problem the strategy pro-

posed by Levy in [61℄ 
an be used, i.e. instead of minimizing the non-linear

residual (2.13), the following modi�ed residual is minimised

el(x) = d(sl;x)rl(x) = d(sl;x)hl − n(sl;x) (2.14)

by solving the linear least square problem

Fx ≃ g (2.15)
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where gl = hls
n
l , F = (Vm+1,−H̃Vn) with H̃ = diag(hi), i = 1, . . . , L and

Vn Vandermonde matrix [110℄

Vn =




1 s1 s21 . . . sn1
1 s2 s22 . . . sn2
.

.

.

.

.

.

.

.

.

.

.

.

1 sL s2L . . . snL


 (2.16)

based on the available frequen
y points sl with n + 1 
olumns. Minimizing

‖e(x)‖ or ‖r(x)‖ is not equivalent due to the weight d(sl;x), therefore the SK
iteration [60℄ tries to over
ome this limitation using an iteration-dependent

residual, de�ned as

rνl (xν) =
d(sl;xν)hl − n(sl;xν)

d(sl;xν−1)
(2.17)

where the normalization weight d(sl;xν−1) is known from the previous itera-

tion ν−1. The iteration-dependent ve
tor xν whi
h minimizes the iteration-

dependent residual (2.17) 
an be found solving the overdetermined linear

system

Mν−1Fxν ≃Mν−1g (2.18)

where Mν−1 = diag(m
(ν−1)
i ) with i = 1, . . . , L and m

(ν−1)
i = d−1(si;xν−1).

In 
ase of 
onvergen
e, as ν → ∞ the minimization of (2.17) is equiva-

lent to minimizing (2.13). In pra
ti
e some numeri
al issues arise: it is

well known that Vandermonde matri
es and their 
ompositions are very ill-


onditioned [111℄, moreover raw input data 
an be a�e
ted by noise thus

making the identi�
ation problem more di�
ult.

In order to avoid those issues a general basis expansion 
an be used for

the numerator and denominator in (2.11), i.e.

h(s;x) =
n(s;x)

d(s;x)
=

m∑
j=0

cjφj(s)

n∑
j=0

djφj(s)
(2.19)

with x 
olle
ting the unknown 
oe�
ients cj, dj leading to the so-
alled

Generalized-SK iteration [112℄. A typi
al 
hoi
e is to use partial fra
tion

basis fun
tions asso
iated to a set of pres
ribed poles qj, j = 1, . . . , n, i.e.

φ0(s) = 1, and φj(s) =
1

s− qj
, j = 1, . . . , n. (2.20)
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Substituting (2.20) into (2.19) leads to

h(s;x) =
n(s;x)

d(s;x)
=

c0 +
n∑

j=1

cj
s−qj

1 +
n∑

j=1

dj
s−qj

(2.21)

whi
h is equivalent to the model in (2.11). Indeed supposing that cj, dj and
the basis poles qj are known, (2.21) 
an be 
onverted in a standard rational

form with the zeros of the numerator zj, and the zeros of the denominator

pj su
h that

h(s;x) =
n(s;x)

d(s;x)
= c0

n∏
j=1

s−zj
s−qj

n∏
j=1

s−pj
s−qj

= c0

n∏
j=1

(s− zj)

n∏
j=1

(s− pj)
(2.22)

where it is 
lear that the poles qj 
an
el out being 
ommon to both numer-

ator and denominator. The GSK iteration is thus obtained by repla
ing the

monomials sjl in (2.16) with φj(sl).
A simple update on the basis poles and fun
tions of ea
h iteration leads

to the VF algorithm: starting from an arbitrary guess of the model poles

used to de�ne the basis fun
tions (2.20), the non-linear problem (2.13) is

solved using one GSK; then the initial basis poles are improved by using,

at the se
ond iteration, the set pj de�ned in (2.22) to 
onstru
t the partial

fra
tion basis fun
tions. The pro
ess is then iterated until 
onvergen
e. A

more detailed des
ription of VF algorithm 
an be found in Appendix B or

in [62℄. No more details are provided here sin
e in the following VF is used as

an identi�
ation engine, the main fo
us will be in prepro
essing of the data

and post-pro
essing of the model.

One drawba
k of VF appears when dealing with devi
es with large ports


ounts like TSV, pa
kages and PDNs. Sin
e the 
omplexity of VF in the

most advan
ed formulation [98℄ s
ales as O (P 2LN2) per iteration, the iden-
ti�
ation of devi
es having more than one hundred ports (P ) and requir-

ing several frequen
y samples (L) for an a

urate 
hara
terization will run

out-of-memory on 
ommodity hardware, and will take a long time on high

performan
e servers. Therefore a 
lever reformulation of the identi�
ation

problem aimed at redu
ing the impa
t of ports (P ) 
ount and number of sam-

ples (L) on the overall 
omplexity of Ve
tor Fitting (VF) is of great interest.

Next se
tion introdu
es an innovative te
hnique, the so 
alled 
ompressed

ma
romodeling. This new methodology allows to perform the identi�
ation
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of large ports 
ount devi
es, a

urately sampled in frequen
y, on 
ommodity

hardware (laptop) and in a short time 
ompared to standard identi�
ation

pro
edures.

2.3 Compressed ma
romodeling

In this Se
tion an approa
h for improving the e�
ien
y of rational �tting and

passivity enfor
ement for medium and large-s
ale stru
tures is presented.

Problems 
hara
terized by possibly hundreds of ports and requiring thou-

sands of internal states for their models are addressed. Requirements for

problems of su
h 
omplexity arise, as dis
ussed in Se
tion 1.2, in power bus

modeling and optimization, 
hip-pa
kage 
o-design, TSV and NoC inter
on-

ne
ts for 3D pa
kages and mixed-signal system design.

The basi
 idea behind the proposed strategy 
an be easily understood


onsidering a generi
 P -port ele
tri
al inter
onne
t stru
ture 
hara
terized

through tabulated s
attering frequen
y samples Sl ∈ CP×P
at frequen
ies ωl,

with l = 1, . . . , L. This raw data is usually available from �eld simulations or

dire
t measurements. The VF algorithm from Se
tion 2.2 is routinely used

to �t these data samples with a rational model

S(s) = S∞ +

N∑

n=1

Rn

s− pn
, (2.23)

where pn are the poles of the ma
romodel, Rn are the asso
iated residue ma-

tri
es, and S∞ is the dire
t 
oupling term. Standard formulations of the VF

algorithm [62℄ minimize the global model error (2.10) through an iterative

sequen
e of linear least squares solutions. Sin
e the 
ompression strategy

presented here is 
omplementary to the VF implementation, a detailed de-

s
ription of VF algorithm is not reported here, more details 
an be found

in Appendix B or [62℄.

The main idea of the 
ompression s
heme is presented through an exam-

ple. Figure 2.2 depi
ts several s
attering responses of a high-speed 
onne
tor.

As it 
an be seen the various responses that are depi
ted look very similar,

with only marginal di�eren
es. Of 
ourse, these di�eren
es may be impor-

tant, so they should be preserved in the �nal ma
romodel. However, it is


on
eivable that all these responses 
an be represented as a linear superposi-

tion of sele
ted �representative� responses or, more formally, �basis fun
tions�.

Therefore expansions of the form

Sij(s) ≃
ρ∑

q=1

α(i,j)
q wq(s), (2.24)



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 24

0 1 2 3 4 5 6 7 8 9 10
−80

−60

−40

−20

0

Frequency [GHz]

M
a
g
n
it
u
d
e
, 
d
B

Scattering matrix entries, magnitude (dB)

 

 

Figure 2.2: Various s
attering responses of a high-speed 
onne
tor (top


urves: re�e
tion 
oe�
ients, bottom 
urves: 
rosstalks).

with 
onstant 
oe�
ients α
(i,j)
q and frequen
y-dependent �basis fun
tions�

wq(s), are suited for a 
lever redu
tion of the dataset. It is 
lear that if

the number of required basis fun
tions wq(s) is mu
h smaller than the total

number of responses, ρ≪ P 2
, it is possible to a
hieve a signi�
ant 
omputa-

tional 
ost redu
tion by applying VF to the few fun
tions wq(s), rather than
to the 
omplete set of P 2

raw s
attering responses. This idea is developed

in the following Subse
tion 2.3.1, relying on the well known Singular Values

De
omposition [110℄.

2.3.1 SVD-based 
ompression

Consider the set of raw s
attering samples Sl, ∀l. For ea
h sele
ted frequen
y

ωl, all elements of the s
attering matrix are sta
ked into a single row-ve
tor

xl ∈ CP 2

, 
onstru
ted as xl = vec(Sl)
T
. The vec() operator sta
ks all


olumns of its matrix element into a single 
olumn ve
tor. More pre
isely,

element (Sl)ij with 1 ≤ i, j ≤ P 
orresponds to element (xl)k for 1 ≤ k ≤ P 2

through

k = i+ (j − 1)P
i = 1 +mod(k − 1, P )
j = ⌈k/P ⌉

(2.25)

where mod(a, b) returns the remainder of the integer division a/b and ⌈c⌉
is the 
eil operator that returns the smallest integer not less than c. The

mapping (i, j)↔ k in (2.25) will be used 
onsistently during the presentation.
All the ve
tors xl 
orresponding to di�erent frequen
ies ωl are now 
olle
ted
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as rows in a matrix X ∈ CL×P 2

, i.e.

X =



←− x1 −→
.

.

.

.

.

.

.

.

.

←− xL −→


 =



↑ · · · ↑
z1 · · · zP 2

↓ · · · ↓


 . (2.26)

Ea
h row xl of this matrix 
orresponds to a single frequen
y ωl, while

ea
h 
olumn zk 
olle
ts all frequen
y samples of a single s
attering response

(zk)l = Sij(ωl).
Assume that the P 2

s
attering responses 
an be represented as an ap-

proximate sum of few basis fun
tions. This implies that the 
olumn span of

matrix X 
an be safely approximated by proje
tion onto a subspa
e W hav-

ing a dimension ρ ≪ P 2
. Several alternatives are available for 
onstru
ting

this subspa
e. In this work, the Singular Value De
omposition (SVD) is used

sin
e it provides a full 
ontrol over the approximation error [113℄.

A dire
t appli
ation of SVD to matrix X leads to

X = ŨΣ̃Ṽ
H
= W̃Ṽ

H
(2.27)

where Ũ and Ṽ are 
omplex unitary matri
es 
olle
ting the left and right

singular ve
tors and Σ̃ 
olle
ts the sorted real and positive singular values

σ̃q on its main diagonal. Matrix W̃ = ŨΣ̃ is orthogonal with ea
h 
olumn

w̃q s
aled by the 
orresponding singular value, ‖w̃q‖ = σ̃q. The k-th 
olumn

of X is thus represented, using (2.27), as

zk =
∑

q

ṽ∗kqw̃q . (2.28)

This expression is exa
t, with no approximation error, if all singular val-

ues/ve
tors are 
onsidered in the expansion. Ea
h sampled s
attering re-

sponse is thus represented as a superposition of �basis ve
tors� w̃q, whose

norm de
reases uniformly with in
reasing q.
The 
oe�
ients ṽ∗kq are 
omplex-valued 
onstants. Sin
e a real expansion


oe�
ient is needed in order to guarantee the 
ausality and the realness

of ea
h element in the expansion (2.24), the SVD is slightly modi�ed by

splitting real and imaginary parts X = X′ + X′′
where X′,X′′ ∈ RL×P 2

, or

equivalently

X =
[
IL IL

] [X′

X′′

]
(2.29)

where IL is the identity matrix of size L. Then, a trun
ated SVD de
ompo-

sition is performed, based on the optimized implementation for large matri-


es [114℄, where only the �rst ρ singular values are retained

[
X′

X′′

]
= UΣVT ≃ ŪΣ̄V̄

T
, (2.30)
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where Ū ∈ R2L×ρ
, Σ̄ ∈ Rρ×ρ

, V̄ ∈ RP 2×ρ
with ρ≪ r = min{2L, P 2} , and V̄

is orthonormal, V̄
T
V̄ = I. De�ning now

W̄ =
[
IL IL

]
ŪΣ̄ (2.31)

leads the low-rank approximation

X ≃ X̄ = W̄V̄
T
. (2.32)

Equivalently,

zk ≃
ρ∑

q=1

vkqw̄q , (2.33)

whi
h is similar to (2.28) but has guaranteed real 
oe�
ients vkq. The q-
th 
olumn w̄q ∈ CL

of W̄, 
olle
ts all frequen
y samples that de�ne the

q-th basis fun
tion. Sharp bounds, in di�erent norms, 
an be provided for

the error between the original matrix X 
olle
ting all s
attering data and its

low-rank approximation X̄. Using the spe
tral norm, de�ned in Appendix A,

leads to

E2 =
∥∥X̄−X

∥∥
2
=
∥∥∥
[
IL IL

] [
ŪΣ̄V̄

T −UΣVT
]∥∥∥

2

≤
∥∥[IL IL

]∥∥
2

∥∥∥ŪΣ̄V̄
T −UΣVT

∥∥∥
2

≤
√
2σρ+1 , (2.34)

where the last row follows from standard properties of the SVD de
omposi-

tion. It follows that the a

ura
y of the approximation is fully 
ontrolled by

the �rst negle
ted singular value σρ+1. Using the Frobenius norm the error

bound be
omes

EF =
∥∥X̄−X

∥∥
F
≤
√
2L

√√√√
r∑

n=ρ+1

σ2
n , (2.35)

in terms of the 
umulative energy of the negle
ted singular values in (2.30).

The a

ura
y of the proposed 
ompression strategy is demonstrated in Fig-

ure 2.3: The top panel depi
ts two s
attering responses of the same 
onne
tor

already 
onsidered in Figure 2.2, together with the 
orresponding low-rank

approximation. The di�eren
e is hardly visible; while the bottom panel re-

ports the �rst three basis ve
tors w̄q in the 
orresponding expansion (2.33).

2.3.2 Fitting the basis fun
tions

On
e expansion (2.33) is available, a rational approximation of ea
h basis

ve
tor w̄q is performed. Consider a row-ve
tor of s
alar fun
tions of frequen
y

w(s) =
(
w1(s) w2(s) . . . wρ(s)

)
, (2.36)
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Figure 2.3: Top: raw s
attering responses of a high-speed 
onne
tor before


ompression (red dashed line), its 
ompressed (ρ = 30) approximation (blue

dashed line), and its low-rank rational approximation 
omputed by VF (bla
k

line). Bottom: �rst three ve
tors w̄q (blue dashed lines) in expansion (2.33)

and 
orresponding VF approximation (bla
k line).
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with ea
h element assumed in rational form

wq(s) = wq,∞ +
Nw∑

n=1

rq,n
s− pn

. (2.37)

The unknown poles pn, residues rq,n and dire
t 
oupling 
onstants wq,∞ are


omputed by applying a standard VF run. Sin
e only ρ independent re-

sponses are 
on
urrently �tted instead ot P 2
, it is expe
ted that the runtime

of the VF pro
ess is drasti
ally redu
ed. This is indeed the 
ase, as it is shown

in Se
tion 2.3.3. Note that a set of 
ommon poles pn for all basis fun
tions

is used in w(s), sin
e these will be used to re
onstru
t the original s
atter-

ing matrix through (2.33), thus obtaining a global rational ma
romodel in

form (2.23).

A su

essful �tting pro
ess with stable poles is guaranteed by the realness

of the expansion 
oe�
ients in (2.33). In fa
t, post-multiplying (2.32) by V̄,

sin
e V̄
T
V̄ = I, it follows

w̄q ≃
P 2∑

k=1

vkqzk , (2.38)

whi
h shows that ea
h basis ve
tor 
an be represented as a linear 
ombination

of the raw s
attering responses with real 
oe�
ients. This is su�
ient to


on
lude that if the original responses are 
ausal, ea
h of the basis fun
tions

will be 
ausal. Therefore, the rational approximation (2.37) is guaranteed to

have stable poles pn, see [115℄.
A state-spa
e realization 
an be 
onstru
ted from (2.37) using standard

te
hniques. For later 
onvenien
e, this realization is 
onstru
ted for the trans-

pose system, whi
h has a Single-Input Multiple-Output stru
ture, as

w(s)T ↔
(

Aw Bw

Cw Dw

)
(2.39)

with Aw ∈ RNw×Nw
, Bw ∈ RNw×1

, Cw ∈ Rρ×Nw
, Dw ∈ Rρ×1

. A reshaped

global rational ma
romodel is de�ned a

ording to the expansion (2.32), as

XT (s) = V̄wT (s) =

= V̄Dw + V̄Cw(sINw
−Aw)

−1Bw ,
(2.40)

where XT (s) is a 
olumn ve
tor of P 2
rational responses. Finally, a global

rational ma
romodel for the original s
attering representation is obtained

with a simple reshape operation

S(s) = mat(XT (s)) , (2.41)
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where the mat(·) operator re
onstru
ts a P × P matrix starting from the


orresponding P 2 × 1 ve
tor vec(S). It is easy to show that a state-spa
e

realization of S(s) 
an be obtained as

S(s)↔
(

A B

C D

)
(2.42)

with

A = IP ⊗Aw , B = IP ⊗Bw ,
C = Ψ(IP ⊗Cw) , D = Ψ(IP ⊗Dw) ,

(2.43)

where ⊗ denotes the Krone
ker matrix produ
t [116℄ and

Ψ =
(
V̄1 V̄2 · · · V̄P

)
(2.44)

with V̄j ∈ RP×ρ

olle
ting the P rows {j(P − 1) + 1, . . . , jP} of matrix V̄

V̄ =



V̄1
.

.

.

V̄P


 (2.45)

In (2.43) the size of the various matri
es is A ∈ RN×N
, B ∈ RN×P

, C ∈
RP×N

, D ∈ RP×P
, where N = NwP denotes the global dynami
 order of the

realization. The transfer matrix of the 
ompressed ma
romodel asso
iated

to (2.43) reads

S(s) = C(sI−A)−1B+D . (2.46)

On
e the rational approximation (2.37) is available,w(s) is evaluated at ea
h

raw frequen
y point ωl and the results are 
olle
ted as rows in matrix Ŵ ∈
CL×ρ

, whi
h in turn is used to re
onstru
t the samples of the global rational

ma
romodel, 
olle
ted in matrix X̂ = ŴV̄
T
. Due to the orthonormality of

the 
olumns of V̄ it follows∥∥∥X̄− X̂

∥∥∥
2
=
∥∥∥W̄V̄

T − ŴV̄
T
∥∥∥
2
=
∥∥∥W̄ − Ŵ

∥∥∥
2
. (2.47)

This implies that the 
onstru
tion of a global rational model starting from

the rational basis fun
tions is well-behaved, sin
e it results in a �tting error

that is identi
al to the �tting error a
hieved in the 
onstru
tion of the low-

rank system w(s). The global approximation error between raw s
attering

samples and global rational ma
romodel 
an thus be 
hara
terized as

δ2 =
∥∥∥X− X̂

∥∥∥
2
≤
∥∥X− X̄

∥∥
2
+
∥∥∥X̄− X̂

∥∥∥
2

≤
√
2σρ+1 +

∥∥∥W̄ − Ŵ

∥∥∥
2
,

(2.48)

where the individual 
ontributions of SVD trun
ation and VF approximation

are expli
it.
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Table 2.1: Ben
hmark stru
tures: L is the number of raw frequen
y samples,

P the number of ports, ρ the number of basis fun
tions; Nx and Nw denote

the number of poles used for full and 
ompressed �tting, respe
tively.

Case L P P 2 ρ Nw Nx

1 471 12 144 17 20 22

2 690 48 2304 24 27 28

3 1001 56 3136 30 30 30

4 572 25 625 5 5 5

5 71 92 8464 22 22 23

6 570 34 1156 40 57 58

7 1001 24 576 13 12 12

8 1228 83 6889 31 30 31

9 100 8 64 6 29 29

10 197 245 60025 14 45 29

11 13 52 2704 3 3 3

12 40 800 640000 8 8 8

13 572 41 1681 10 11 11

14 141 542 293764 16 21 -

15 1000 34 1156 10 10 15

16 501 28 784 9 12 16

17 364 20 400 40 58 59

18 367 181 32761 6 24 39

2.3.3 Compressed �tting examples

Here are introdu
ed some ben
hmark 
ases of pra
ti
al interest. Table 2.1

lists a total of 18 inter
onne
t stru
tures, 
hara
terized by di�erent number

of ports P and raw frequen
y samples L. These stru
tures in
lude high-speed

onne
tors (
ases 2, 3, 7), PCB inter
onne
ts (
ases 9, 17), pa
kage inter-


onne
ts (
ases 5, 8, 13, 15, 16), power or mixed signal/power distribution

networks (
ases 1, 4, 6, 10, 11, 14, 18), and Through Sili
on Via (TSV) �elds

(
ase 12). All raw frequen
y samples were obtained from 2D or 3D �eld


hara
terizations.

The last 
olumn in Table 2.1 shows the number of poles Nx that were

required by Ve
tor Fitting to �t the full set of responses with a global model-

vs-data deviation ‖δX‖2 = δ2 de�ned in (2.48). The publi
ly available VF


ode [117℄ was used for these tests, by iteratively in
reasing the number of

poles until the above a

ura
y 
ondition was met.

In this subse
tion, the performan
e of standard and 
ompressed VF are
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Figure 2.4: Two sample s
attering responses for 
ase 6 before (dash-dotted

lines) and after (dashed lines) 
ompression, 
ompared to the 
ompressed

rational �tted model responses (solid lines).


ompared. To this end, the 
ompression error E2, de�ned in (2.34), and VF

approximation error are �xed to a 
onstant value de�ned later (usually 
lose

to 0.1). This 
hoi
e results in a number of basis fun
tions ρ and in a number

of poles for the basis fun
tions Nw, also reported in Table 2.1. These results

show 
olle
tively that

• the number of basis fun
tions always results ρ ≪ P 2
, therefore the


omputational 
omplexity of the 
ompressed VF run always results

mu
h less than the standard full VF;

• the number of poles required for the 
ompressed and the full ma
ro-

models is 
omparable,Nw ≃ Nx, showing that the 
ompression strategy

does not 
reate spurious or arti�
ial 
omponents in the basis fun
tions

that would require an ex
essive number of poles for their �tting.

Figure 2.4 
ompares the results of full and 
ompressed ma
romodels to

the raw s
attering responses for ben
hmark 
ase 6, showing that an ex
ellent

a

ura
y is obtained using both te
hniques. Figure 2.5 shows some of the


orresponding basis fun
tions together with their rational �tted models.

Table 2.2 reports the exe
ution time in se
onds that was required for 
om-

pression, denoted as TSVD (based on [114℄), for �tting the ρ basis fun
tions

and 
onstru
ting the 
ompressed ma
romodel, denoted as TVFW, and for ap-

plying standard VF to the full set of raw responses, denoted as TVFX. The
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Figure 2.5: First three basis fun
tions for 
ase 6. Original frequen
y samples

w̄q (dashed lines) and rational model wq(s) (solid lines).

Table 2.2: CPU time in se
onds required for data 
ompression (TSVD), based

on the SVD optimized implementation for large matri
es [114℄, and 
om-

pressed �tting (TVFW) 
ompared to full �tting (TVFX).

Case TSVD [s℄ TVFW [s℄ TVFX [s℄ Speedup

1 0.03 0.66 4.2 6.03

2 0.8 1.7 183.5 70.5

3 1.3 3.7 419.7 82.4

4 0.28 0.02 1.42 4.6

5 0.7 0.23 59.4 63

6 0.33 10.6 355.2 32.1

7 0.37 0.28 11.6 17.8

8 3.2 4.6 1273 160

9 0.004 0.2 0.94 4.44

10 2.4 1.2 1609 437.1

11 0.01 0.006 0.2 12

12 12.8 0.04 592 45.8

13 1.7 0.3 17.8 8.8

14 9.2 0.8 - -

15 4.8 1.5 39 6.1

16 0.3 0.154 12 24.2

17 0.15 8.05 77.3 9.4

18 2.2 0.4 2074 760.4
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overall speedup reported in the last 
olumn demonstrates how e�e
tive 
an

the 
ompressed ma
romodeling approa
h be for those 
ases that are 
hara
-

terized by a large port 
ount or a large number of frequen
y samples. For


ase 14, standard VF 
ould not even be applied due to an ex
essive memory

requirement.

2.3.4 Passivity of 
ompressed ma
romodels

There is no guarantee that the global ma
romodel (2.46) with state-spa
e

matri
es (2.43) is passive. It is however possible to expli
itly enfor
e model

(asymptoti
) stability by 
onstraining the poles pn to have a stri
tly negative
real part, a standard pra
ti
e in VF appli
ations [62℄. The fundamental


ondition under whi
h a s
attering transfer matrix S(s) (2.102) represents
a passive ma
romodel is bounded realness [118, 119, 120, 115℄. A transfer

matrix S(s) is Bounded Real (BR) if

• ea
h element of S(s) is de�ned and analyti
 in Re{s} > 0;

• S∗(s) = S(s∗);

• Θ(s) = I− S(s)HS(s) � 0 for Re{s} > 0.

The �rst two 
onditions are guaranteed if the state-spa
e realizations (2.102)

is real-valued and asymptoti
ally stable [115℄. Under these assumptions the


ondition on Θ(s) 
an be relaxed and 
he
ked only on the imaginary axis

s = ω
Θ(ω) � 0 , ∀ω , (2.49)

whi
h in turn is equivalent to requiring that all singular values of S(ω) must
be uniformly bounded by one at any frequen
y

σi ≤ 1 , ∀σi ∈ σ(S(ω)) , ∀ω . (2.50)

Considering that σi =
√
1− λi, where λ ∈ λ(Θ(ω)) are the eigenvalues of

Θ(ω), it follows that (2.49) is equivalent to

λi ≥ 0 , ∀λi ∈ λ(Θ(ω)) , ∀ω. (2.51)

The passivity 
ondition (2.51), whi
h 
an be 
he
ked either via adaptive

frequen
y sampling [104℄, see Se
tion 2.5, or through identi�
ation of imagi-

nary eigenvalues of the asso
iated Hamiltonian matrix [121℄, 
an be violated

over �nite or in�nite frequen
y bands. In parti
ular, this se
ond 
ase o

urs

if the model is not asymptoti
ally passive, i.e. minλ{Θ(∞)} < 0. In this

situation, asymptoti
 passivity 
an be re
overed by perturbing just the dire
t
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oupling matrix D; this is the subje
t of Se
tion 2.3.5. Then, in Se
tion 2.4

a global passivity enfor
ement s
heme for enfor
ing (2.51) at all frequen
ies

ω ∈ R is presented.

2.3.5 Asymptoti
 passivity enfor
ement

The ma
romodel (2.46) is asymptoti
ally (stri
tly) passive if

‖D‖2 ≤ δp < 1 , (2.52)

where δp is some desired passivity threshold. In 
ase (2.52) is not veri�ed,

matrix D is modi�ed so that this 
ondition is met. Of 
ourse it is more

e�
ient to operate dire
tly on the 
ompressed ma
romodel (2.42), therefore

a perturbation ve
tor ∆w is added to the 
orresponding dire
t 
oupling ve
tor

dw, preserving the proje
tion 
oe�
ients in matrixΨ. The perturbed matrix

results

Dp = Ψ[IP ⊗ (dw +∆w)] , (2.53)

with

Dp −D = Ψ(IP ⊗∆w) . (2.54)

The minimal perturbation of (2.54), in the standard 2-norm, should be used

to a
hieve asymptoti
 passivity. This leads to the following formulation

min
∆w

‖Ψ(IP ⊗∆w)‖2 s.t. ‖Dp‖2 ≤ δp . (2.55)

The solution of (2.55) is now addressed using various di�erent approa
hes,

with results presented and 
ompared in Se
tion 2.3.6.

On
e a solution ∆w of (2.55) is available, an asymptoti
ally passive

ma
romodel is 
onstru
ted by

1. 
onstru
ting the ve
tor dp = dw +∆w;

2. subtra
ting the q-th 
omponent dp,q of this ve
tor from the frequen
y

samples of the q-th basis fun
tion w̄q by rede�ning

w̄q ← w̄q − dp,q (2.56)

3. �tting the resulting frequen
y samples with a stri
tly proper rational

fun
tion

wq(s) =

Nw∑

n=1

rq,n
s− pn

, (2.57)

where the poles pn are kept �xed to the poles of the original unper-

turbed ma
romodel (2.37);
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4. de�ning the state-spa
e realization of the 
ompressed ma
romodel as

in (2.42), but with dw repla
ed by dp.

The following methods 
an be used to identify the perturbation ve
tor ∆w

and the 
orresponding w̄q.

Dire
t s
aling

The easiest way to enfor
e the asymptoti
 passivity is through the dire
t

res
aling

dp = dw
δp
‖D‖2

, Dp = Ψ(IP ⊗ dp) . (2.58)

This de�nition imposes asymptoti
 passivity by 
onstru
tion, but does not

guarantee that the asymptoti
 model perturbation ‖Ψ(IP ⊗∆w)‖2 is mini-

mized, as required by (2.55). However, sin
e the 
ompressed ma
romodel will

be re-generated via a new 
onstrained ve
tor �tting run (2.57), the asymp-

toti
 perturbation will have a signi�
ant e�e
t only at high frequen
ies, re-

sulting in a quite a

eptable a

ura
y within the modeling band. These

statements will be validated through numeri
al examples in 2.3.6. There-

fore, this s
aling method is a
tually quite 
ompetitive due to its simpli
ity

with respe
t to the more pre
ise approa
hes that follow.

Linearization

The method des
ribed in this se
tion is based on two simpli�
ations of (2.55).

First, the norm of ∆w is minimized instead of the norm of Dp −D. Se
ond,

the 
onstraint ‖Dp‖2 ≤ δp is repla
ed by an approximate 
onstraint on ∆w

based on a linearization pro
ess. These two 
onditions lead to a problem of

smaller size with respe
t to (2.55), whi
h should require less 
omputational

e�ort for its solution.

Start with a SVD de
omposition of D = LΣDR
T
. Denoting the singular

values as ςi, i = 1, . . . , P with the asso
iated left and right singular ve
tors

li and ri it follows

ςi = lTi Dri . (2.59)

Apply now the same proje
tion to the perturbed dire
t 
oupling matrix Dp

obtaining

lTi Dpri = ςi + lTi Ψ(IP ⊗∆w)ri . (2.60)

Note that this quantity is not equal to the i-th singular value ςp,i of Dp, but

it provides only a �rst-order approximation. Thus, 
ondition

lTi Dpri ≤ δp (2.61)
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orresponds to a linearised proje
tion of 
onstraint ‖Dp‖2 ≤ δp. Using (2.60),
after some straightforward algebrai
 manipulations leads to

(rT
i ⊗ lTi )V̄∆w ≤ δp − ςi . (2.62)

Colle
ting the various 
onstraints (2.62) for all i leads to the linear under-

determined system

M∆w = b , (2.63)

where the number of rows in M de�nes the number of singular values of D

being perturbed. Among all ve
tors ∆w satisfying (2.63), the minimum-norm

solution is needed, whi
h is available in 
losed form as

∆w = M†b , (2.64)

with M†
denoting the Moore-Penrose pseudoinverse of M.

Due to the approximate nature of (2.62), the solution (2.64) of (2.63) does

not guarantee that ‖Dp‖2 ≤ δp. Therefore, the pro
ess 
an be iterated until

this 
ondition is a
hieved. At ea
h iteration, two slightly di�erent 
onstraints


an be used, leading to di�erent numeri
al s
hemes

1. system (2.63) si formed by 
olle
ting all P singular values, setting at

the right hand side

bi =

{
δp − ςi ςi > δp ,
0 ςi ≤ δp .

(2.65)

This 
hoi
e tries to expli
itly preserve those singular values that are

already below the threshold δp.

2. only 
onstraints with ςi > δp are formed, so that only the singular value

terms ex
eeding the threshold δp are expli
itly perturbed.

Linear Matrix Inequalities

The problem stated in (2.55) 
an be 
ast as a Linear Matrix Inequality

(LMI) [122, 123℄. In fa
t, introdu
ing the sla
k variable γ, minimization

of the obje
tive fun
tion in (2.55) 
an be restated as

min γ s.t.

[
γIP Ψ(IP ⊗∆w)

(IP ⊗∆T
w)Ψ

T γIP

]
≻ 0 , (2.66)

whereas the asymptoti
 passivity 
onstraint is equivalent to

[
δpIP D +Ψ(IP ⊗∆w)

DT + (IP ⊗∆T
w)Ψ

T δpIP

]
≻ 0 . (2.67)
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Expressions (2.66) and (2.67) form a system of LMI's. This formulation is

based on 
onvex 
onstraints with a 
onvex obje
tive fun
tion. Therefore, its

solution 
an be a
hieved numeri
ally within arbitrary pre
ision and with a �-

nite number of steps using some spe
ialized software. All results do
umented

in the following were obtained with the SeDuMi pa
kage [124℄.

2.3.6 Numeri
al Results

Table 2.3 
ompares the asymptoti
 passivity enfor
ement results obtained

by the various s
hemes presented in Se
tions 2.3.5 for those 
ases that re-

sulted non-asymptoti
ally passive after the 
ompressed �tting stage. The

maximum singular value ‖D‖2 of the dire
t 
oupling matrix is reported for


onvenien
e in the se
ond 
olumn. The four s
hemes are 
ompared in terms

of dire
t 
oupling perturbation amount∆ = Dp−Dmeasured in the spe
tral

norm, number of iterations (when appli
able), and total runtime. The latter

in
ludes not only the dire
t 
oupling perturbation, but also the 
omputa-

tion of the perturbed residues and the 
onstru
tion of the global state-spa
e

realization, as des
ribed in Se
. 2.3.5.

The dire
t s
aling method requires no iterations. Only the 
omputation

of the norm ‖D‖2 is required. S
aling requires negligible time, so that the

total runtime is pra
ti
ally used for re
omputing the updated residue matri-


es. The linarization and the LMI methods instead require several iterations

and require signi�
antly larger runtime. These three methods fail for the

largest 
ases 12 and 14 due to ex
essive memory o

upation (LMI) or la
k

of 
onvergen
e (linearisation) within a maximum number of 600 iterations.

If 
onverging, the linearization methods are faster than the LMI approa
h.

However, the linearisation methods are not guaranteed to attain the optimal

solution, as does the LMI approa
h. This is 
on�rmed by the amount of

perturbation, whi
h is smallest for the LMI 
ase among all other methods.

It is worth noting that the simplisti
 dire
t s
aling approa
h provides �nal

perturbation errors that are 
omparable with the LMI s
heme. Due to its

e�
ien
y, the dire
t s
aling approa
h appears as the most 
ompetitive. Of


ourse, in 
ase the resulting perturbation is ex
essive, one 
an resort to the

LMI s
heme, whi
h is guaranteed to be optimal though slow.

2.4 Global passivity enfor
ement

This se
tion addresses the enfor
ement of global passivity for the ma
romodel

(2.46) 
hara
terized by the state-spa
e realization (2.43), assumed to be

asymptoti
ally stable and asymptoti
ally passive. It is assumed that (2.51)
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Figure 2.6: Singular value plot before passivity enfor
ement for the S-

parameter state-spa
e model of a PCB. Passivity violations are highlighted

near 10GHz by a small red 
ir
le.

is violated at some frequen
ies ω ∈ Ω, where Ω is the union of �nite-width

frequen
y bands like in Figure 2.6, whi
h refers to the state-spa
e model of

a PCB.

In order to enfor
e passivity, one of the standard perturbation approa
hes


an be followed [121, 104℄. Passivity violations 
an be identi�ed via standard

te
hniques [104℄ or using the parallel algorithm presented later in Se
tion 2.5.

The main di�eren
e in the present framework with respe
t to published re-

sults is that the system perturbation should not be arbitrary but stru
tured,

a

ording to the form of (2.43). In the following only the state-to-output

map is perturbed, i.e.

Cp = C+∆C , (2.68)

where the perturbation term ∆C is de�ned as

∆C = Ψ(IP ⊗∆Cw
) . (2.69)

As for the asymptoti
 passivity enfor
ement of Se
. 2.3.5, the expansion 
oef-

�
ients in matrixΨ are preserved and only the lower-dimensional 
ompressed

ma
romodel (2.42) is perturbed.

2.4.1 Passivity enfor
ement

Consider a single frequen
y ω0 at whi
h 
ondition (2.51) is violated by some

negative eigenvalue λi < 0, and let the 
orresponding eigenve
tor of Θ(ω0)
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(de�ned in Se
tion 2.3.4) be ζi, normalized su
h that ‖ζi‖2 = 1. Ap-

plying (2.68) leads to a �rst-order approximation of the perturbed eigen-

value [125℄

λp,i ≃ λi + ζH
i ∆Θζi , (2.70)

where

∆Θ ≃ −KH
0 ∆CS0 − SH

0 ∆
T
CK0 (2.71)

and

S0 = D+CK0 , K0 = (ω0I−A)−1B . (2.72)

Standard manipulations lead to

λp,i ≃ λi + ti vec(∆C) , (2.73)

where the row-ve
tor ti is de�ned as

ti = −2Re{(K0ζi)
T ⊗ (S0ζi)

H} . (2.74)

Enfor
ing now λp,i > 0 leads to the following linear inequality 
onstraint

ti vec(∆C) > −λi . (2.75)

Also an additional 
onstraint is in
luded, i.e.

ti vec(∆C) 6 1− λi (2.76)

to guarantee that the perturbed eigenvalue remains in [0,1℄, as required by

the assumed s
attering representation. The above 
onstraints are built for

all M eigenvalues λi to be perturbed, possibly at multiple frequen
ies, and

formulated as 



min θ

‖vec(∆C)‖22 < θ
T vec(∆C) > b

(2.77)

where θ is a sla
k variable. The last row 
olle
ts in a 
ompa
t form all


onstraints (2.75)-(2.76).

Now the perturbation stru
ture (2.69) is imposed. Using (2.44), it is easy

to show that

∆C =
(
V̄1∆Cw

, . . . , V̄P∆Cw

)
. (2.78)

Applying the vec(·) operator to the i-th 
olumn blo
k in (2.78) leads to

vec(V̄i∆Cw
) = (INw

⊗ V̄i) vec(∆Cw
) , (2.79)

so that (2.78) 
an be written in �ve
torized� form as

vec(∆C) = Π vec(∆Cw
) , (2.80)



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 41

where Π ∈ RPN×ρNw
is de�ned as

Π =



INw
⊗ V̄1
.

.

.

INw
⊗ V̄P


 (2.81)

Finally, de�ning Tw ∈ R2M×ρNw
as

Tw = TΠ , (2.82)

the stru
tured and 
ompressed passivity enfor
ement problem reads





min θ

‖vec(∆Cw
)‖22 < θ

Tw vec(∆Cw
) > b

(2.83)

Note that matrix Π is never 
onstru
ted in pra
ti
e, sin
e all 
onstraints

in (2.83) and in parti
ular matrix Tw 
an be built dire
tly using optimized


ode.

Comparing the standard formulation (2.77) with the 
ompressed and

stru
tured formulation (2.83), it is evident that the latter is mu
h more


onvenient, sin
e the number of de
ision variables is redu
ed by a fa
tor

#{∆Cw
}

#{∆C}
=

ρNw

PN
=

ρ

P 2
≪ 1 . (2.84)

This makes the 
ost for the solution of (2.83) pra
ti
ally negligible with

respe
t to all other ma
romodeling steps. Note that the 
onverse is typi
ally

the 
ase in standard ma
romodeling, sin
e passivity enfor
ement is usually

the most demanding part of state of the art s
hemes. This big advantage is

due to the parti
ular state-spa
e stru
ture in (2.43).

2.4.2 A

ura
y 
ontrol

The formulations in (2.77) and (2.83) aim at �nding the minimum norm of

the perturbation terms ∆C or ∆Cw
that are 
ompatible with the passivity


onstraints. This 
ondition however does not ensure that the energy (squared

L 2
-norm) of the transfer matrix perturbation is minimized. To this end, the

minimum of

‖∆S‖2L 2 =
1

2π

∫ ∞

−∞
tr{∆S(ω)∆

H
S
(ω)}dω (2.85)

should be found. However, it is well known [126℄ that this norm 
an be


hara
terized as

‖∆S‖2L 2 = tr{∆CPC∆
T
C} (2.86)
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where PC is the 
ontrollability Gramian asso
iated to (2.43), found as the

unique symmetri
 and positive de�nite solution of the Lyapunov equation

APC +PCA
T = −BBT . (2.87)

Computing the Cholesky fa
torization PC = QT
CQC and de�ning

Ξ = ∆CQ
T
C , ξ = vec(Ξ) = (QC ⊗ IP ) vec(∆C) , (2.88)

it follows

‖∆S‖2L 2 = tr{ΞΞT} = ‖ξ‖22 . (2.89)

Therefore, problem (2.77) 
an be 
ast as a minimum L 2
-norm formulation

by performing the 
hange of variable (2.88), obtaining





min θ

‖ξ‖22 < θ
Γξ > b

(2.90)

where Γ = T(Q−1
C ⊗ IP ) .

Apply now the same pro
edure to (2.83). The 
ontrollability Gramian

asso
iated to the 
ompressed state-spa
e realization (2.42) reads

AwPCw
+PCw

AT
w = −BwB

T
w , (2.91)

together with its Cholesky fa
torization PCw
= QT

Cw
QCw

. Note that the

numeri
al solution of (2.42) requires onlyO (Nw) operations due to the sparse
(diagonal or tridiagonal) realization of w(s)T . This 
ost is negligible with

respe
t to all other ma
romodeling steps in the proposed framework. De�ning

Ξw = ∆Cw
QT

Cw
,

ξw = vec(Ξw) = (QCw
⊗ Iρ) vec(∆Cw

) ,
(2.92)

and denoting as ∆
w

T (s) the indu
ed perturbation on the 
ompressed ma
ro-

model, it follows

‖∆
w

T ‖2
L 2 = ‖ξw‖22 , (2.93)

so that substitution into (2.83) leads to





min θ

‖ξw‖22 < θ
Γwξw > b

(2.94)

where Γw = Tw(Q
−1
Cw
⊗Iρ). The solution of (2.94) thus provides the minimum

L 2
-norm perturbation of the 
ompressed ma
romodel wT (s).
It follows that
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Lemma 1. De�ne PC and PCw
as in (2.87) and (2.91). Then

PC = IP ⊗PCw
. (2.95)

Proof. Suppose that PCw
is the solution of (2.91), then PC de�ned in (2.95)

is a solution of (2.87) by dire
t substitution. Using (2.43),

APC +PCA
T

= (IP ⊗Aw)(IP ⊗PCw
) + (IP ⊗PCw

)(IP ⊗AT
w)

= IP ⊗ (AwPCw
+PCw

AT
w)

= IP ⊗ (−BwB
T
w)

= −(IP ⊗Bw)(IP ⊗BT
w)

= −BBT .

Sin
e both A and Aw are stri
tly negative de�nite, PC and PCw
are the

unique solutions of Lyapunov equations (2.87) and (2.91), whi
h implies (2.95).

It is now possible to state an important result.

Theorem 1. De�ning the 
ompressed ma
romodel perturbation

∆
w

T ↔
(

Aw Bw

∆Cw
0

)
(2.96)

and the 
orresponding global ma
romodel perturbation

∆S ↔
(

A B

∆C 0

)
, (2.97)

with state-spa
e matri
es 
onstru
ted as in (2.43), if follows

‖∆S‖2L 2 = ‖∆w
T ‖2

L 2 (2.98)

Proof. As a preliminary result, 
onsider matrix V̄ in (2.30). Using (2.45), the

orthogonality 
ondition V̄
T
V̄ = I 
an be rewritten in terms of its 
onstituent

blo
ks V̄i as

P∑

i=1

P∑

m=1

(V̄i)mℓ(V̄i)mn = δnℓ , n, ℓ = 1, . . . , ρ , (2.99)

where δnℓ = 1 if n = ℓ and 0 otherwise. Considering now (2.78) and us-

ing (2.95), a straightforward algebrai
 manipulation leads to

∆CPC∆
T
C =

P∑

i=1

V̄iΥwV̄
T
i , (2.100)
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where Υw = ∆Cw
PCw

∆T
Cw
. The L 2

-norm of the global ma
romodel pertur-

bation is 
hara
terized as

‖∆S‖2L 2 = tr{∆CPC∆
T
C}

=

P∑

m=1

(
P∑

i=1

V̄iΥwV̄
T
i

)

mm

=
P∑

m=1

P∑

i=1

ρ∑

n=1

ρ∑

ℓ=1

(V̄i)mℓ(Υw)ℓn(V̄i)mn

=

ρ∑

n=1

ρ∑

ℓ=1

(Υw)ℓn

P∑

m=1

P∑

i=1

(V̄i)mℓ(V̄i)mn

=

ρ∑

ℓ=1

(Υw)ℓℓ

= ‖∆
w

T ‖2
L 2 ,

whi
h 
ompletes the proof.

The pra
ti
al relevan
e of this theorem is that the solution of the small-

size optimization problem (2.94), in addition to providing the minimum-

energy perturbation of the 
ompressed ma
romodel, will also provide as a by-

produ
t the minimum-energy solution of the full-size passivity enfor
ement

problem, whi
h is the main obje
tive. Global passivity enfor
ement is thus

a
hieved with optimal a

ura
y and negligible 
ost through (2.94).

2.4.3 Passivity enfor
ement examples

In this subse
tion, the performan
e of the passivity enfor
ement s
hemes (2.90)

and (2.94) are 
ompared for ea
h of the ben
hmark 
ases of Table 2.1. The

results are summarized in Table 2.4, where the total exe
ution time and

number of iterations for both s
hemes are grouped in 
olumns 2 and 3 for


onvenien
e. It 
an be seen that the number of iterations for the 
ompressed

s
heme is pra
ti
ally always less than for the full s
heme. This implies that,

independent on the runtime required for a single iteration, the 
ompressed

s
heme performs generally better. This 
onsideration should be taken into

a

ount when interpreting the total runtime, reported in the se
ond 
olumn.

Note that a dramati
 redu
tion is a
hieved by the 
ompressed s
heme, whi
h

is able to 
omplete the passivity enfor
ement also for those large 
ases (12,

14, and 18) for whi
h the full s
heme requires ex
essive memory.

Two di�erent speedup fa
tors are reported in the fourth 
olumn of Ta-

ble 2.4. The �rst is the overall speedup fa
tor, obtained as the ratio of the



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 45

Table 2.4: Comparison of full and 
ompressed passivity enfor
ement s
hemes

in terms of number of iterations ♯ it, runtime, and a

ura
y ‖δX‖2. Last

two 
olumns report the overall speedup (SU) and the speedup per iteration

(SUit).

Full / Compressed

Case ♯ it Time [s℄ ‖δX‖2 SU SUit

1 6 / 7 2.42 / 1.52 0.22 / 0.26 1.6 1.8

2 2 / 1 9.63 / 1.85 0.22 / 0.11 5.2 2.6

3 12 / 7 255 / 3.87 2.61 / 2.61 66.1 38.5

4 2 / 1 3.7 / 0.36 0.04 / 0.04 10.2 5.1

5 12 / 9 687.5 / 22.6 0.16 / 0.21 30.4 22.8

6 50 / 30 324.3 / 12.1 0.53 / 0.41 26.8 16.1

7 2 / 2 1.45 / 0.36 0.05 / 0.06 4.1 4.1

8 28 / 10 510 / 15.9 1.43 / 1.26 32.1 11.4

9 2 / 26 5.83 / 1.64 4.15 / 4.21 3.5 3.1

10 9 / 8 3865 / 145 3.31 / 3.32 26.6 23.6

11 2 / 4 9.34 / 1.81 0.04 / 0.05 5.2 10.4

12 - / 32 -.- / 17344 -.- / 1.21 -.- -.-

13 8 / 7 24.7 / 4.86 0.16 / 0.21 5.1 4.2

14 - / 13 -.- / 5049 -.- / 1.21 -.- -.-

15 1 / 2 5.85 / 3.17 0.08 / 0.08 1.8 3.6

16 10 / 8 13.1 / 1.95 0.21 / 0.25 6.8 5.4

17 10 / 6 13.7 / 1.26 0.51 / 0.51 11.4 6.8

18 - / 5 -.- / 1621 -.- / 6.79 -.- -.-
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Figure 2.7: Singular value plot before and after passivity enfor
ement for


ase 17.

total runtime required by the full and 
ompressed s
hemes. The se
ond is

the average runtime per iteration, whi
h provides a more pre
ise metri
 for

assessing the enhan
ement in e�
ien
y that 
an be a
hieved with proposed

approa
h. In any 
ase, both speedup per iteration and overall speedup are

between 1 and 2 orders of magnitude for the most 
hallenging 
ases, ex
ept

for the largest 
ases for whi
h only the 
ompressed s
heme 
ould a
hieve its

goal.

Finally, the last 
olumn of Table 2.4 reports the deviation of the obtained

passive models with respe
t to the original raw data, showing that the a
-


ura
ies of both full and 
ompressed s
hemes are 
omparable. Figure 2.7

reports as an example the singular value plot for 
ase 17, showing all singu-

lar values before and after 
ompressed passivity enfor
ement. As expe
ted,

the singular values of the passive model are uniformly unitary bounded.

2.4.4 A summary of numeri
al results

The main results for all ben
hmark 
ases are now summarized. Table 2.5

provides a detailed report on the a

ura
y of all intermediate steps of the

proposed 
ompressed passive ma
romodeling approa
h. The se
ond 
olumn

reports the thresholds ǫSVD and ǫVF that were used, respe
tively, to bound

the approximation error for SVD trun
ation and 
ompressed VF. Note that

these thresholds are used to bound the spe
tral 2-norm of error matri
es

‖δX‖2 
olle
ting all responses at all frequen
ies. Sin
e the relationship of
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Table 2.5: A

ura
y with respe
t to raw data of 
ompressed data (δXSVD)

and 
ompressed ma
romodel before (δXVF) and after (δXPAS) passivity en-

for
ement.

ǫ δXSVD δXVF δXPAS

Case svd / vf ‖·‖2 / ‖·‖max ‖·‖2 / ‖·‖max ‖·‖2 / ‖·‖max

1 0.1 / 0.1 0.07 / 0.0039 0.09 / 0.006 0.26 / 0.014

2 0.1 / 0.1 0.06 / 0.0045 0.09 / 0.007 0.11 / 0.007

3 0.1 / 0.1 0.06 / 0.0029 0.08 / 0.003 2.61 / 0.064

4 0.1 / 0.1 0.04 / 0.0015 0.04 / 0.002 0.04 / 0.002

5 0.1 / 0.1 0.06 / 0.0105 0.09 / 0.051 0.23 / 0.057

6 0.1 / 0.1 0.07 / 0.0041 0.09 / 0.006 0.42 / 0.015

7 0.1 / 0.1 0.01 / 0.0005 0.04 / 0.001 0.06 / 0.002

8 0.1 / 0.5 0.08 / 0.0027 0.48 / 0.016 1.05 / 0.014

9 0.1 / 0.1 0.05 / 0.0084 0.05 / 0.008 4.12 / 0.632

10 0.1 / 3.0 0.07 / 0.0061 2.21 / 0.048 2.53 / 0.048

11 0.1 / 0.1 0.01 / 0.0012 0.01 / 0.001 0.18 / 0.016

12 0.1 / 0.1 0.02 / 0.0002 0.05 / 0.001 1.22 / 0.011

13 0.1 / 0.1 0.04 / 0.0046 0.05 / 0.011 0.21 / 0.011

14 0.1 / 0.1 0.07 / 0.0213 0.08 / 0.021 1.26 / 0.031

15 0.1 / 0.1 0.06 / 0.0018 0.08 / 0.002 0.08 / 0.002

16 0.1 / 0.1 0.04 / 0.0147 0.08 / 0.015 0.25 / 0.015

17 0.1 / 0.4 0.07 / 0.0241 0.39 / 0.315 0.43 / 0.315

18 0.1 / 6.8 0.07 / 0.0055 6.79 / 0.212 6.91 / 0.218
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these thresholds to the a
tual deviation that is a
hieved at a given frequen
y

for a given response is not obvious, the results in terms of the worst-
ase

norm, de�ned as

‖δX‖max = max
ℓk
|(δX)ℓk| . (2.101)

are also reported.

The last three 
olumns of Table 2.5 report the spe
tral and worst-
ase

a

ura
ies (with respe
t to raw data) of 
ompressed data δXSVD, 
ompressed

�tted model δXVF, and �nal model after 
ompressed passivity enfor
ement

δXPAS, respe
tively. The table 
learly shows that a

ura
y is well preserved

through all modeling steps. For illustration, in Figures 2.8 and 2.9, respe
-

tively, the responses 
hara
terized by the worst-
ase absolute error 
an be

found for 
ase 17, and the responses 
hara
terized by the worst-
ase relative

error for 
ase 2. Similar results were obtained for all other 
ases and are not

reported here.

2.5 Parallel passivity 
he
k

In order to use the passivity enfor
ement s
heme previously introdu
ed in

Se
tion 2.4.1, passivity violations of the state-spa
e model

H(s) = D+C(sI−A)−1B (2.102)

must be properly identi�ed. While 
ausality and stability are guaranteed

by the unique 
ondition that all model poles should have negative real part,

passivity is more di�
ult to guarantee sin
e a spe
ial set of 
onstraints are

ne
essary a

ording to Se
tion 2.3.4. It is important to note that 
ondi-

tion (2.51) must be 
he
ked for ea
h frequen
y ω ∈ R. The �rst idea is

then to use a frequen
y sampling pro
ess to extra
t a signi�
ant set of fre-

quen
y points ωl and to 
he
k 
ondition (2.51) on these samples only. Of


ourse for the sake of reliability the set of samples ωl must be determined

adaptively a

ording to the dynami
 features of the ma
romodel. As a 
on-

sequen
e, dealing with models having large port 
ount and high dynami
al

order makes this strategy 
omputationally expensive. Therefore the main

obje
tive of this se
tion is to introdu
e an highly e�
ient parallel implemen-

tation of the available adaptive sampling s
heme proposed in [104℄. The 
ore

idea of the adaptive sampling s
heme is presented in the rest of this se
-

tion and in Se
tion 2.5.1, while the new parallel implementation strategy is

detailed in Se
tions 2.5.2, 2.5.3 and 2.5.4.

The main obje
tive of the proposed Parallel Adaptive Sampling (PAS)

s
heme is to determine a partition of the frequen
y axis Ω = [0,∞) into
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Figure 2.8: A s
attering response of a PCB inter
onne
t (
ase 17) before

(red dashed line) and after (blue dashed line) 
ompression. The bla
k line

represents the response of the passive 
ompressed ma
romodel.
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Figure 2.9: As in Figure 2.8, but for a high-speed 
onne
tor (
ase 2).
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sampling. See text for details.
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disjoint sub-bands

Ω =

Q⋃

q=1

Ωq , Ωq = [ωq−1, ωq) (2.103)

with ω0 = 0 and ωQ = +∞. De�ning the interior of ea
h sub-band as

Ω̌q = (ωq−1, ωq) = Ωq − {ωq−1} , (2.104)

the partition (2.103) is determined su
h that one of the following 
onditions

will hold for ea
h sub-band Ω̌q

• maxi σi(ω) > 1, ∀ω ∈ Ω̌q: in this 
ase, passivity 
ondition (2.49) is

violated at any point within the sub-band, whi
h is thus �agged as

�non-passive� with the supers
ript

np
.

• maxi σi(ω) < 1, ∀ω ∈ Ω̌q: in this 
ase, (2.49) holds at any point within

the sub-band, whi
h is thus �agged as �passive� with the supers
ript

p
.

• maxi σi(ω) ≈ 1, ∀ω ∈ Ω̌q: in this 
ase, the maximum singular value

will be too 
lose to the threshold γ = 1 in order to qualify the system

as lo
ally passive or non-passive in Ω̌q. It should be guaranteed that

this last 
ase is su
h that |Ωq| = ωq−ωq−1 is small. This undetermined


ase will be �agged with the supers
ript

?
.

Passive, non-passive, and undetermined bands will be 
olle
ted as

Ωnp =
⋃

q Ωq : maxi σi(ω) > 1, ∀ω ∈ Ω̌q

Ωp =
⋃

q Ωq : maxi σi(ω) < 1, ∀ω ∈ Ω̌q

Ω? =
⋃

q Ωq : Ωq * Ωnp ∪ Ωp

(2.105)

In addition, for ea
h non-passive sub-band Ωq ⊆ Ωnp
, all lo
al maxima σ̂l

and the 
orresponding frequen
ies ω̂l at whi
h these maxima are attained

are needed. See Figure 2.10 for a graphi
al illustration.

2.5.1 A

ura
y-
ontrolled sampling via eigenve
tor tra
k-

ing

Re
all that, when S
attering models are used the state-spa
e matrix A has

no purely imaginary poles, as a 
onsequen
e of VF implementation [117, 62℄,

thus the singular values σi(ω) are 
ontinuous and di�erentiable fun
tions of

frequen
y [125℄. However, when 
omputing these singular values numeri
ally

over a pres
ribed dis
rete set of frequen
ies {ωl}, there is no guarantee that
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ea
h σi(ωl) for �xed i 
olle
ts samples from the same singular value traje
-

tory. The 
omputation at ea
h frequen
y ωl is in fa
t independent, and the

adopted singular value or eigenvalue solver may return its results with an

order that may di�er from one sample to the next.

The �rst obje
tive is thus to dynami
ally determine a set of frequen
ies

{ωl} that is su�
ient to tra
k the individual smooth singular value traje
-

tories by a suitable reordering. This reordering 
an be a
hieved by a mode

tra
king s
heme [127℄, su
h as the one presented in [104℄. Given two avail-

able (adja
ent) frequen
y samples ωm and ωm+1, the eigende
omposition of

Θ(ωm) and Θ(ωm+1) is 
omputed, then the eigenvalues are 
olle
ted into

matri
es Λm and Λm+1 while the (orthogonal and unit-normalized) eigen-

ve
tors are stored into matri
es Vm and Vm+1. Note that these matri
es


oin
ide with the right singular ve
tors of S(ω). Then, all possible mutual
s
alar produ
ts among all these eigenve
tors are 
omputed as

p̃m,m+1 = VH
mVm+1 . (2.106)

If the two frequen
ies are su�
iently 
lose so that the dire
tion of the eigen-

ve
tors undergoes a small 
hange from ωm to ωm+1, then p̃m,m+1 will have

approximately the stru
ture of a permutation matrix, with one single element

per row and 
olumn with magnitude 
lose to 1, and with all other elements

nearly 0. If this is true, the permutation matrix pm,m+1 that reorders the

eigenve
tors and eigenvalues from sample m to sample m+ 1 is obtained by

rounding the magnitude of ea
h element of p̃m,m+1 towards 0 or 1. A numer-

i
al test whether this tra
king/permutation is su

essful 
an be obtained by


he
king

max
i,i′

{∣∣(|pT
m,m+1p̃m,m+1| − I

)∣∣
i,i′

}
< ε (2.107)

for a suitable threshold ε ≪ 1. Refer to [104℄ for more details. If 
ondi-

tion (2.107) is ful�lled, it follows that the behaviour of the system transfer

fun
tion and its singular values is well resolved within [ωm, ωm+1]. Otherwise,
a new sample ωm+1/2 = (ωm+ωm+1)/2 is added and the 
he
k is applied again
to the two subintervals [ωm, ωm+1/2] and [ωm+1/2, ωm+1]. Binary subdivision

of ea
h pair of adja
ent samples drawn from an initial distribution is applied

re
ursively until (2.107) is met everywhere.

2.5.2 Parallel Adaptive Sampling

Consider in more details the above des
ribed adaptive re�nement s
heme.

Formally, the re�nement 
he
k is expressed as

ν = R(ωm, ωm+1) , (2.108)
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Figure 2.11: Adaptive frequen
y sampling via lo
al re�nement (serial imple-

mentation). Ea
h row from top to bottom 
orresponds to one appli
ation of

the R 
he
k (2.108). White dots denote samples still to be pro
essed. Bla
k

dots denote samples being used by 
urrent R 
he
k. Bla
k squares denote

samples that do not need any more pro
essing. A thi
k line highlights a

frequen
y band that is �nalized and whi
h does not need further re�nement.

where the input arguments de�ne the lo
al band to be 
he
ked, and the

output ν 
an be either ωm+1/2 or the empty set ∅, in whi
h 
ase no further

re�nement is required. Evaluation of (2.108) requires the 
omputation of

transfer matrix S(ω) at the two frequen
ies ωm, ωm+1, together with its

right singular ve
tor matri
es Vm and Vm+1. As part of the R 
he
k, the

following 
omputations are in
luded: if ν is empty, the resulting permutation

matrix Pm,m+1 is immediately applied to reorder the singular values at ωm+1;

otherwise, the new sample ωm+1/2 is 
omputed together with its asso
iated

transfer matrix S(ωm+1/2) and singular ve
tor matrix Vm+1/2, whi
h are

stored for the next 
he
k.

Iterative appli
ation of (2.108) determines a binary subdivision tree of

the frequen
y axis, where ea
h node in the tree denotes a frequen
y sample.

Figure 2.11 illustrates the order in whi
h the R 
he
k is applied in a serial

implementation, where it is assumed that the leftmost lo
al sub-band that

is still to be re�ned is pro
essed �rst. Figure 2.11 shows that the sub-bands

are �nalized starting from the left edge of the initial frequen
y interval. This


onsideration leads to a simple strategy for the parallelization of this re�ne-

ment s
heme using T 
on
urrent threads, based on the following steps and

rules.
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Startup

At startup, a set of initial frequen
y samples S0
is determined. Here, this

set is 
onstru
ted as the union of samples obtained independently through

di�erent strategies:

• an upper frequen
y Ωmax is determined following the pro
edure in [102℄,

with the guarantee that no passivity violations o

ur for ω > Ωmax;

therefore, only the interval [0,Ωmax] needs to be 
he
ked instead of the

full imaginary axis;

• a set Slin of llin uniformly spa
ed samples are determined in [0,Ωmax],
in
luding edges;

• a set Slog of logarithmi
ally spa
ed samples with ld samples per de
ade

are 
omputed from ωmin to ωmax, where ld, ωmin and ωmax depend on

the parti
ular appli
ation and stru
ture of interest;

• a set Sp of samples is obtained as in [104℄ from the model poles pi =
αi ± βi by sampling uniformly with 2R + 1 points the phase of the

asso
iated resonan
e 
urve, as

Sp =
⋃

i,r

{
ωi,r = βi + αi tan

rπ

2(R + 1)

}
(2.109)

with r = −R, . . . , R.

As a result, the set of initial samples that will be subje
t to the R iteration

is de�ned as

S0 = Slin ∪ Slog ∪ Sp , (2.110)

with all samples reordered for in
reasing values.

Initial workload allo
ation

Supposing that T 
on
urrent threads are available, the set of initial samples

is partitioned as

S0 =

T⋃

t=1

S0
t , (2.111)

where the number of elements of ea
h subset is #{S0
t } = ⌊#{S0}/T ⌋ for

t = 0, . . . , T −1. The remaining samples are assigned to S0
T . The subdivision

is ordered, su
h that for t1 < t2,

∀ωi ∈ S0
t1

and ∀ωj ∈ S0
t2
⇒ ωi ≤ ωj , (2.112)
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Figure 2.12: Parallel adaptive frequen
y sampling via lo
al re�nement using

T = 2 threads. Samples assigned to thread t = 1 (t = 2) are depi
ted with


ir
les (triangles). Arrows indi
ate start points (leftmost sample) for the two

threads. White �ll denotes samples still to be pro
essed, whereas bla
k �ll

denotes samples used by 
urrent iteration. Bla
k squares denote samples

that do not need any more pro
essing. A thi
k line highlights a frequen
y

band that is �nalized and whi
h does not need further re�nement.

with ea
h pair of adja
ent sub-bands S0
ti
and S0

ti+1
sharing the single sample

ω̃i = maxS0
ti
= minS0

ti+1
. (2.113)

Ea
h subset S0
t is allo
ated stati
ally to thread t, whi
h iteratively applies

theR re�nement 
he
k until the entire sub-band is 
overed, as in Figure 2.11.

This initial allo
ation ensures that, if no re�nement is required, approxi-

mately the same amount of work is allo
ated for ea
h thread. Figure 2.12

illustrates this pro
ess, showing the evolution of ea
h subset of samples Sν
t

at few iterations ν. In the following, the iteration 
ount ν will be dropped.

Dynami
 thread reallo
ation

As the iterative re�nement 
he
k pro
eeds and ea
h sub-band is pro
essed

independently by ea
h thread, it may happen that some bands require more

adaptive re�nement steps than others. Therefore, it may happen that one

thread tj 
ompletes its re�nement task when the other threads are still work-

ing. In this 
ase, the thread should not be left ina
tive, sin
e this would


ompromise parallel e�
ien
y. In order to �nd some work to do for the idle

thread tj , the remaining threads ti are s
anned for i 6= j and the number of

sample pairs in set Sti that at 
urrent iteration are still to be pro
essed is
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Figure 2.13: Parallel adaptive frequen
y sampling via lo
al re�nement using

T = 2 threads and dynami
 res
heduling (same notation as in Figure 2.12).

Note that thread t = 2 is restarted at the third iteration after 
ompleting its

initially assigned workload.

found by the R 
he
k. Although it is not guaranteed that the work for these

threads will 
oin
ide with the 
orresponding number of un
he
ked sub-bands,

the number of expe
ted R iterations will not 
ertainly be smaller. There-

fore, the thread tℓ that requires the largest amount of estimated R 
he
ks is

identi�ed and thread tj is restarted by assigning to it one half of the samples

still to be pro
essed by tℓ. More pre
isely

Sℓ → Ŝtℓ ∪ Ŝtj (2.114)

is divided with the 
onstraint

∀ωi ∈ Ŝtℓ and ∀ωl ∈ Ŝtj ⇒ ωi ≤ ωl , (2.115)

with the two sets Ŝtℓ , Ŝtj sharing only one sample. This strategy guaran-

tees an initially equal subdivision of the workload between tj and tℓ. Fig-

ure 2.13 provides a graphi
al illustration of this thread reallo
ation. Then,

the thread reallo
ation pro
ess is repeated any time some thread be
omes

idle, by res
heduling it to help the most busy thread at that time.

End of re�nement pass

The above des
ribed multi-thread adaptive re�nement pro
ess stops when all

threads have 
ompleted their tasks. Due to the proposed optimized dynami


s
heduling, the algorithm is automati
ally load balan
ed, ex
ept for the last

iteration during whi
h a group of threads might remain idle while the other

threads are 
ompleting their last task. The maximum total duration of this

last step is the time required for a single R iteration.
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In addition to the natural stopping 
ondition for the R iteration, whi
h

o

urs when ∅ is returned by (2.108) and in whi
h 
ase all singular value

traje
tories are tra
ked based on their singular ve
tor perturbation, an ad-

ditional stopping 
ondition is added in terms of the maximum number of

nested re�nements Imax. This parameter intervenes when tra
king is not

possible, e.g., in the 
ase of singular values with higher multipli
ity, whose

singular ve
tors 
annot be de�ned uniquely. In all numeri
al tests in this

paper Imax = 6 was used, providing a good 
ompromise between a

ura
y

and e�
ien
y.

2.5.3 Lo
al passivity 
he
k

The �nal result of the above re�nement s
heme is a set of frequen
y samples

ωl and a reordered sequen
e (through the above-de�ned permutation matri-


es pm,m+1) of singular values samples. For �xed i, the reordered samples

σi(ωl) 
an thus be 
onsidered to be drawn from a 
ontinuous and di�er-

entiable traje
tory σi(ω). Exploitation of this smoothness leads to various

straightforward ways of 
he
king passivity between ea
h pair of adja
ent fre-

quen
ies. One 
an de�ne a worst-
ase linear predi
tion error at sample ωm

based on a �rst-order eigenvalue perturbation from the adja
ent left and right

samples [104℄

∆±
m = max

i

{∣∣(vH
m±1 Θmvm±1

)
ii
− (Λm)ii

∣∣} , (2.116)

and infer that the model is lo
ally passive in a neighbourhood of ωm if

max
i

σi(ωm) + βmax{∆−
m,∆

+
m} < 1 , (2.117)

where β > 1 is a parameter used to 
ompensate for the missing higher or-

der terms in the linear predi
tion. This lo
al 
he
k at ωm 
an be formally

expressed as

ϑm = C(ωm−1, ωm, ωm+1) , (2.118)

where ϑm is either 0 (�agging lo
ally non-passive samples) or 1 (lo
ally pas-

sive samples), sin
e a symmetri
 
he
k is performed using both samples at

the left and right of 
urrent sample. The only ex
eption is when the 
he
k is

performed at the edge of the bandwidth of interest, in whi
h 
ase only two

samples are used to 
onstru
t a one-sided linear predi
tion error ∆−
m or ∆+

m.

Performing this lo
al passivity 
he
k using T 
omputational threads is

straightforward, sin
e a dire
t stati
 s
heduling is su�
ient. In fa
t, sin
e

the C 
he
k is performed on a pres
ribed set of samples whi
h remains �xed
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and does not grow through iterations, the stati
 work allo
ation dis
ussed in

Se
 2.5.2 is already optimal. Therefore, this aspe
t is not further dis
ussed.

As a result from above pro
edure, the model is 
on
luded to be passive in

(ωm, ωm+1) if (2.117) is satis�ed at both ωm and ωm+1. Conversely, the model

is 
on
luded to be non-passive in (ωm, ωm+1), or at least in some portion of

it, if any of the maximum singular values at sample m and m + 1 is larger

than one,

max
i

σi(ωm) > 1 or max
i

σi(ωm+1) > 1 . (2.119)

For all other 
ases in whi
h

max
i

σi(ωm) ≤ 1 and max
i

σi(ωm+1) ≤ 1 , (2.120)

but (2.117) is not satis�ed at ωm and ωm+1, the sub-band is �agged as unde-

termined sin
e the singular value traje
tories are too 
lose to the threshold.

On
e all sub-bands are �agged, adja
ent passive (non-passive or unde-

termined) bands are merged to form the subdivision (2.103). Finally, the

lo
al maxima (ω̂l, σ̂l) of the singular value traje
tories for ea
h non-passive

sub-band are determined by 
onstru
ting a lo
al quadrati
 polynomial that

interpolates three adja
ent samples and by taking its peak value. All these

operations require negligible time and are performed as a serial post pro
ess-

ing in the a
tual implementation.

2.5.4 Optimizations

The lo
al passivity 
he
k C as des
ribed above is performed after the adap-

tive re�nement iterationR is 
ompleted. This strategy presents some 
riti
al

aspe
ts related to memory use and management. In fa
t, the C 
he
k requires
to store, for ea
h sample ωm to be 
he
ked, the matrix Θ(ωm), the eigen-

value matrix Λm, and the eigenve
tor matri
es at the left and right samples

Vm±1. As a 
onsequen
e, until a sub-band (ωm, ωm+1) is de�nitely �agged as

passive/non-passive/undetermined, all the above quantities need to be stored

for ea
h of the two samples m, m+1. For a P ×P transfer fun
tion resulting

into a number L of �nal frequen
y samples, the overall storage requirement

s
ales as O (2P 2L). For instan
e, a 100-port stru
ture with 10000 frequen
y
samples requires more than 1.6 GB of storage using 
omplex double-pre
ision

arithmeti
.

This large storage requirement 
an be relaxed and signi�
antly redu
ed

with a modi�ed s
heduling approa
h that interleaves the appli
ation of R
and C iterations. In fa
t, after ea
h sub-band (ωm, ωm+1) is �agged after

running the C 
he
k at both its endpoints, only the P eigenvalues along the
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Table 2.6: Peak memory usage during parallel adaptive sampling and lo
al

passivity 
he
k for a test 
ase (L = 4392, P = 56) with (M2) and with-

out (M1) memory optimization. Results are shown for di�erent number of

threads T .

T M1, MB M2, MB

1 442 21
2 446 24
3 451 28
4 455 34
5 461 32
6 471 39
7 480 41
8 491 50

diagonal of Λm need to be stored for the �nal identi�
ation of lo
al singular

value maxima. The idea is then, during the R re�nement loop, to

• apply a C 
he
k whenever a triplet of adja
ent samples (ωm−1, ωm, ωm+1)
is �nalized by the R 
he
k;

• �ag sub-band (ωm, ωm+1) as soon as both samples are pro
essed by a

C 
he
k;

• free the memory from data that is not required by later R or C 
he
ks,
and reuse it to store new samples data, as required by lo
al re�nement.

The a
tual implementation does not free or allo
ate any memory during

the main re�nement loop, sin
e this would dramati
ally impa
t performan
e

(memory management operations require ex
lusive a

ess to resour
es and

are not thread-safe). A preallo
ated pool (bu�er) of elementary memory 
ells

is used, whose dimension is based on some heuristi
 
riterion depending on

the number of 
on
urrent threads T . These 
ells are reused by suitable link-

ing through pointer reassignment. If the preallo
ated memory pool is full,

then another blo
k is allo
ated at on
e, thus limiting impa
t on parallel per-

forman
e. Table 2.6 illustrates the memory savings obtained for a signi�
ant

test 
ase. Note that this memory optimization is a
hieved with no loss of

performan
e or parallel e�
ien
y.
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Table 2.7: Test 
ases A-I: L, P and N denote the number of frequen
y

samples in the raw data, the number of ports and the dynami
 order of the

obtained model, respe
tively.

Case L P N
A 511 18 4572

B 4096 36 4968

C 2000 36 8064

D 2043 18 2952

E 4096 18 3600

F 145 35 700

G 990 155 10540

H 282 164 6888

I 348 172 5504

2.5.5 Parallel passivity 
he
k results

The performan
e of the proposed passivity 
he
k s
heme is dis
ussed in this

se
tion. From the test 
ases listed in Table 2.1 the most relevant examples

are sele
ted for this se
tion, i.e. 
ases 5 and 6. Cases A-J are high order

models, whose details 
an be found in Table 2.7, spe
i�
ally sele
ted to test

and 
hallenge the proposed algorithm. Those test 
ases are very 
halleng-

ing in term of exe
ution time, therefore are very good ben
hmarks for the

parallelization strategy proposed in Se
tion 2.5. The �rst set of results in

Table 2.8 reports the number of frequen
y samples required by a 
ontinuous

smooth tra
king of the singular values/ve
tors. The set of initial samples S0

was generated using the guidelines of Se
tion 2.5.2, with llin = 300 linearly

spa
ed samples, ld = 4 samples per de
ade over 9 de
ades of frequen
y, and

2R + 1 = 7 samples per pole. Sin
e this number of initial samples is quite

limited, it is expe
ted that the PAS s
heme will add many samples in order

to tra
k unambiguously the singular value traje
tories. This is 
on�rmed by

the number of �nal samples #{Send} reported in Table 2.8, whi
h is always

in the order of several thousands. Figure 2.14 reports few sele
ted singular

value traje
tories for 
ase 5 within a restri
ted frequen
y band, showing how

the �nal set of samples is able to resolve all �ne variations of the 
urves,

whi
h are sampled too 
oarsely by the initial sample distribution.

The passivity violations dete
ted by the PAS s
heme are depi
ted in Fig-

ure 2.15 while Table 2.9 reports the timing results and the parallel speedup

for T = 8 and T = 16 
on
urrent threads obtained the proposed PAS s
heme,
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Figure 2.14: Starting (
ir
les) and �nal tra
ked frequen
y samples of few

sele
ted singular values for 
ase 5.

Table 2.8: Passivity 
he
k: number of initial #{S0} and �nal #{Send}
frequen
y samples obtained by the proposed adaptive frequen
y sampling

s
heme.

Case #{S0} #{Send}
5 376 5229

6 451 3129

A 1187 13216

B 766 6568

C 1093 16049

D 873 6932

E 1007 10112

F 348 1969

G 558 12712

H 467 11229

I 429 10128
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Table 2.9: Timing results for the Parallel Adaptive Sampling and lo
al pas-

sivity 
he
k s
heme for T = 1, 8 and 16 threads, with 
orresponding speedup

fa
tors.

Case τ1, s τ8, s τ16, s
5 112.76 14.31 (7.88×) 7.11 (15.87×)
6 5.69 0.73 (7.80×) 0.37 (15.39×)
A 444.01 59.02 (7.52×) 30.90 (14.37×)
B 4088.17 533.90 (7.66×) 277.28 (14.74×)
C 104.72 13.89 (7.54×) 7.35 (14.25×)
D 373.64 49.65 (7.53×) 25.66 (14.56×)
E 628.17 82.56 (7.61×) 41.82 (15.02×)
F 1.39 0.19 (7.15×) 0.11 (13.21×)
G 601.55 77.83 (7.73×) 40.54 (14.84×)
H 569.44 72.77 (7.83×) 36.66 (15.53×)
I 374.20 48.10 (7.78×) 24.05 (15.56×)

in
lusive of both adaptive sampling re�nement and lo
al passivity 
he
k. It


an be seen that the s
alability of this passivity 
he
k s
heme with the num-

ber of 
ores is ex
ellent, with a speedup superior to 15× in almost all 
ases.

Finally the average speedup on several test 
ases is depi
ted in Fig-

ure 2.16.

2.6 Con
lusions

In this Chapter, a 
omprehensive framework for 
ompressed passive ma
ro-

modeling of large-s
ale inter
onne
t stru
tures was presented. The main

enabling fa
tor for this new approa
h is the observation that the whole set

of P 2
s
attering responses of P -port large-s
ale systems 
an be expressed

through a mu
h lower-dimensional set of ρ ≪ P basis fun
tions. A singular

value trun
ation is able to determine both the number of su
h basis fun
-

tions and the 
orresponding expansion 
oe�
ients, with full 
ontrol over the

approximation error.

The above 
ompressed data representation was used to derive redu
ed-


omplexity Ve
tor Fitting and passivity enfor
ement s
hemes. The former

generates a rational ma
romodel for the set of basis fun
tions. The latter

enfor
es global passivity 
onstraints using a restri
ted set of perturbation

variables and relying on a robust and e�
ient parallel implementation of
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Case 5

Case 6

Figure 2.15: Maximum singular value (thin line) and frequen
y bands Ωp
q

that are �agged as passive after the adaptive sampling 
he
k (thi
k line).

Top panel: 
ase 5; bottom panel: 
ase 6.
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Figure 2.16: The plots report the ratio τT/τ1 versus the number T of 
ompu-

tational threads for the best and worst 
ases (dashed lines), and the average

(solid lines) among all analysed ben
hmarks.



CHAPTER 2. LINEAR TIME INVARIANT MACROMODELS 65

the passivity 
he
k algorithm. The overall result is a passive ma
romodel-

ing s
heme that has the potential to outperform state-of-the-art methods in

terms of s
alability, memory o

upation, and CPU requirements, as illus-

trated through several 
hallenging ben
hmark 
ases.



Chapter 3

Small-signal and parameterized

ma
romodels

A

ording to the design �ow des
ribed in Se
tion 1.3 on
e a prototype de-

sign is available, extensive numeri
al simulations are required using suitable

models for all Cir
uit Blo
ks (CBs), in order to verify the proper fun
tioning

of the entire system under realisti
 operating 
onditions. It is 
lear that the

adoption of full transistor-level models for su
h veri�
ations is not viable due

to ex
essive overall 
omplexity. In several situations, however, the dynami


behaviour of individual CB's 
an be approximated by suitable redu
ed-order

behavioural ma
romodels. This is in fa
t true for those devi
es, su
h as

Low Noise Ampli�ers (LNA), Operational Ampli�ers, Low Dropout regu-

lator (LDO), or programmable �lters, that operate almost linearly when

suitably biased around a spe
i�ed operating points. On
e validated against

the full transistor-level netlist models, su
h behavioural equivalents o�er an

ex
ellent solution for drasti
ally redu
ing the overall runtime of system-level

simulations.

In this Chapter, a new parameterized behavioural modelling approa
h is

des
ribed that is able to: i) reliably 
ompute a redu
ed order small-signal

ma
romodel of linearized CB; ii) enfor
e the DC response of the redu
ed

equivalent to mat
h exa
tly the DC response of the original CB; iii) in
lude

in the ma
romodel's 
oe�
ients a 
losed-form parameterization in terms of

both biasing 
onditions, e.g. the nominal Vdd applied to the CB, and even ad-

ditional design or operation parameters, e.g., the temperature. The approa
h

presented here builds on existing parameterized ma
romodeling approa
hes

that are available in the literature [112, 115, 128, 82, 129, 130, 131, 132,

133, 134℄. The fo
us here is to show what modi�
ations are needed in these

approa
hes in order to guarantee at the same time a good parameterization

and full DC 
omplian
e.

66
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For the sake of 
larity, Se
tion 3.1 is dedi
ated to the presentation of the

DC 
orre
tion strategy being su
h a methodology of interest by itself when

applied to Linear Transfer Fun
tion Models (LTFMs); the extension to the

parameterized 
ase is detailed in Se
tion 3.2 together with appli
ations to

real designs.

3.1 DC-
orre
ted small-signal models

Non-linear and 
ausal systems, for whi
h the wavelength asso
iated to the

operating frequen
y is mu
h larger than the 
ir
uits physi
al dimensions, 
an

be modelled via �nite-order non-linear state spa
e equations [135℄

ẋ(t) = f(x(t),u(t)) (3.1)

y(t) = g(x(t),u(t)) (3.2)

where u(t),y(t) ∈ RP
denote system inputs and outputs, x(t) ∈ RN

is an

internal state ve
tor, and ẋ(t) = dx(t)
dt

.

When (3.1)-(3.2) represent a non-linear 
ir
uit blo
k for AMS and RF

appli
ations, like LNA's (Low Noise Ampli�ers), OPA's (Operational Am-

pli�ers) and programmable a
tive �lters, a signi�
ant 
omplexity redu
tion

of these non-linear state equations is possible. In fa
t, sin
e these devi
es

are designed to operate almost linearly when driven below maximum allowed

input power or signal magnitude, the input, output and state ve
tors 
an be

represented as a superposition of a 
onstant DC term (uDC ,xDC ,yDC) on

all the ports and a small-signal time dependent term (ũ(t), x̃(t), ỹ(t)) as

u(t) = uDC + ũ(t) , (3.3)

x(t) = xDC + x̃(t) , (3.4)

y(t) = yDC + ỹ(t) , (3.5)

where ve
tors uDC ,xDC ,yDC 
olle
t the 
onstant DC 
ontributions. If only


onstant inputs are applied (DC 
onditions), it follows

u(t) = uDC and ẋ(t) = 0 , (3.6)

whi
h applied to (3.1) and (3.2) leads to the de�nition of the DC operation

point as the solution of

f(xDC ,uDC) = 0 , (3.7)

yDC = g(xDC ,uDC) . (3.8)
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The triplet uDC ,xDC ,yDC is available from a dire
t DC simulation of the

transistor-level 
ir
uit blo
k.

Using (3.3)-(3.5) into (3.1)-(3.2) leads to

˙̃x(t) = f (xDC + x̃(t),uDC + ũ(t)) , (3.9)

ỹ(t) + yDC = g(xDC + x̃(t),uDC + ũ(t)) , (3.10)

whi
h, under small-signal ex
itation, 
an be approximated by a �rst-order

Taylor expansion of both state and output equations

˙̃x(t) ≈ Ax̃(t) +Bũ(t) , (3.11)

ỹ(t) ≈ Cx̃(t) +Dũ(t) , (3.12)

where A ∈ RN×N
, B ∈ RN×P

, C ∈ RP×N
and D ∈ RP×P

denote 
onstant

state-spa
e matri
es de�ning the small-signal Linear Transfer Fun
tion Model

(LTFM) of the Cir
uit Blo
k (CB) around the spe
i�ed bias 
onditions, with

frequen
y-dependent input-output response

H(s) = C(sI−A)−1B+D. (3.13)

The elements of these state matri
es are formally de�ned as partial deriva-

tives of the various 
omponents of (3.1)-(3.2) evaluated at the 
urrent DC

point. However, as dis
ussed in [136℄, it is also possible to obtain the LTFM

by �rst extra
ting a set of frequen
y-dependent small-signal S
attering Sl,

Admittan
e Yl or Impedan
e Zl parameters, in the following 
olle
tively de-

noted as Hl with l = 1, . . . , L, by exploiting standard features of state of

the art 
ir
uit solvers, namely a set of small-signal AC analyses. Then, this

data is fed to a ma
romodeling algorithm, e.g. Ve
tor Fitting [62℄, to di-

re
tly obtain the redu
ed-order ma
romodel (3.11)-(3.12) by minimizing the

ma
romodel error ‖H(ωl)−Hl‖ in the desired norm.

The LTFM usually attains a very good a

ura
y for the small-signal 
har-

a
terization of the CB in the frequen
y domain [136℄. Unfortunately, similar

good results 
an not be obtained from time domain (transient) simulation.

In fa
t, a dire
t repla
ement of the non-linear CB with the LFTM in a tran-

sient simulation setup leads to possibly in
orre
t biasing, sin
e the small-

signal ma
romodel does not in
lude any information of the underlying DC

operation point. When ex
ited by 
onstant inputs u(t) = uDC , the LTFM

provides its 
losed form DC output solution

y̌DC = H(0)uDC = (D−CA−1B)uDC , (3.14)

whi
h has no relationship with the true DC operation point of the original

CB. This information is not embedded in the LTFM, whi
h only represents
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Figure 3.1: Graphi
al illustration of the DC point 
orre
tion for a stati
 one-

port 
ase. The LTFM (blue line) provides a good (�rst order) approximation

near the operating point of the non-linear 
hara
teristi
 (red 
urve), but the

DC solution of the LTFM y̌DC from (3.14) has no relation with the 
orre
t

DC solution yDC .

the dynami
s of the small variations around the bias point. This issue is

summarized graphi
ally in Figure 3.1.

Considering the 
ase of several CB's modelled as LTFM's and 
onne
ted

together in a long 
hain to realize a low 
omplexity model of an RF trans
eiver

path, it is 
lear that the DC solution of all individual simpli�ed models

must 
omply with the exa
t bias 
onditions, espe
ially when some non-linear


omponents are still present in the testben
h. An example is provided by the

system level s
hemati
 of a simple re
eiver stage in Figure 3.2 [137℄, whi
h

shows how a 
ir
uit blo
k driven by the outputs of the previous LTFM 
ould

re
eive as an input the wrong DC bias and 
ould therefore be operating

in
orre
tly.

3.1.1 DC 
orre
tion strategy

To over
ome the intrinsi
 DC-OP a

ura
y limitation of the LTFM at DC, the

following 
orre
tion strategy 
an be implemented. Assume that the 
orre
t

bias 
onditions provided by the input-output pair (uDC ,yDC) are known as

a solution of (3.8) for the original non-linear system. Then, on
e the small-

signal ma
romodel (3.11)-(3.12) is available, its 
losed-form DC solution y̌DC

driven by the same nominal biasing inputs uDC is 
omputed as in (3.14).

Compute the di�eren
e

∆yDC = yDC − y̌DC , (3.15)
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Figure 3.2: Top level s
hemati
 of a basi
 re
eiver 
hain [137℄. For the

simulation of su
h a CB 
hain it is essential that ea
h blo
k in the 
hain biases

the following CB 
orre
tly. Even a small error in the DC-OP modelling of

some CB, like the LNA, will 
orrupt the performan
e of the following CB's.

Figure 3.3: DC point 
orre
tion for a two port LTFM. The 
orre
t DC bias

is set via 
onstant 
urrent sour
es ∆IDC1 and ∆IDC2 applied at the input

ports of the LTFM. The 
urrent sour
e values are provided by the elements

of the 
orre
tion ve
tor (3.15).

whi
h represents the 
orre
tion that must be applied to the DC solution of

the LTFM in order to obtain the nominal CB bias level.

The 
orre
tion terms ∆yDC are applied by de�ning an enlarged DC-


orre
ted small-signal ma
romodel whi
h embeds the original LTFM and

adds at its interfa
e ports suitable 
onstant sour
es, whose values are the


omponents of ∆yDC . In 
ase the k-th port input uk is a voltage and the


orresponding k-th output yk is a 
urrent, the 
orre
tion is applied as a shunt


urrent sour
e with value ∆yDCk. Conversely, if uk is a 
urrent and yk is a

voltage, a series 
onstant voltage sour
e ∆yDCk is applied. The basi
 idea is

depi
ted in Figure 3.3 for a two-port voltage-
ontrolled devi
e. It should be

noted that using 
onstant 
orre
tion sour
es will a�e
t and �x the DC point

only, without any e�e
t on the a

ura
y of the LTFM around the OP point

under small-signal ex
itation.

The proposed strategy for the extra
tion of a low-
omplexity DC-
ompliant

small-signal linear ma
romodel 
an be summarized in the following steps:
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1. 
reate a suitable CB 
hara
terization test ben
h and apply there the

desired DC operation point setting to ea
h CB pin;

2. extra
t yDC and the small-signal frequen
y-dependent Sl, Yl, or Zl

parameters from a 
ir
uit simulation of the non-linear system, here

represented by (3.1)-(3.2);

3. perform a rational 
urve �tting of the Sl, Yl, or Zl parameters, e.g.

using VF [62℄, and obtain a state-spa
e realization of the LTFM;

4. 
ompute y̌DC from (3.14) and ∆yDC from (3.15);

5. synthesize a 
ir
uit netlist using one of the standard ma
romodel real-

ization des
ribed in Chapter 4, 
omplemented by DC 
orre
tion sour
es

∆yDC at its external ports.

3.1.2 Results

This se
tion presents some results to illustrate the e�e
tiveness of the pro-

posed method. The following test 
ases are 
onsidered.

• A two-stage bu�er: this is a simple non-linear example whose netlist

is depi
ted in Figure 3.7. The a

ura
y of the extra
ted LTFM 
an be

seen in Figure 3.4.

• A Low-Drop Out (LDO) regulator: the 
orresponding CB is taken from

a real 3G trans
eiver design. This is basi
ally a DC voltage regulator,


ontrolled by external biases and a logi
 unit. LDO's 
an operate with a

very small input-output di�erential voltage. The high level s
hemati
 of

this 
omponent is depi
ted in Figure 3.8. The a

ura
y of the extra
ted

LTFM 
an be seen in Figure 3.5.

• A Low Noise Ampli�er (LNA): the 
orresponding CB was also taken

from a real 3G trans
eiver design. LNA's are widely used in re
eiver


hains like the one depi
ted in Figure 3.2. A high level s
hemati
 for the

LNA is depi
ted in Figure 3.9. The a

ura
y of the extra
ted LTFM


an be seen in Figure 3.6.

For ea
h test 
ase, the relative error between the raw and DC-
orre
ted

LTFM responses is 
onsidered under 
onstant ex
itation by the nominal bias

inputs. These errors are de�ned, respe
tively, as

ǫy̌ =

∣∣∣∣
y̌DC − yDC

yDC

∣∣∣∣ , (3.16)



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS 72

10
0

10
2

10
4

10
6

10
8

10
10

10
12

−3

−2

−1

0

Scattering matrix entries, magnitude (dB)

 

 

S(3,3), data
S(3,3), model

10
0

10
2

10
4

10
6

10
8

10
10

10
12

−150

−100

−50

0

Frequency [Hz]

Scattering matrix entries, phase (degrees)

 

 

S(3,3), data
S(3,3), model

Figure 3.4: S3,3 from the small-signal model of the Bu�er. The red dashed

line is the model response while the blue lines are the data used for the

identi�
ation.
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Figure 3.5: S1,2 from the small-signal model of the LDO. The red dashed

line is the model response while the blue lines are the data used for the

identi�
ation.



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS 73

10
8

10
9

10
10

10
11

−25

−20

−15

−10

−5

0
Scattering matrix entries, magnitude (dB)

 

 

S(1,1), data
S(1,1), model

10
8

10
9

10
10

10
11

−200

−100

0

100

200

Frequency [Hz]

Scattering matrix entries, phase (degrees)

 

 

S(1,1), data
S(1,1), model

Figure 3.6: S1,1 from the small-signal model of the LNA. The red dashed

line is the model response while the blue lines are the data used for the

identi�
ation.

for the raw LTFM, and

ǫȳ =

∣∣∣∣
ȳDC − yDC

yDC

∣∣∣∣ (3.17)

for the DC-
orre
ted LTFM, where ȳDC represents the DC output obtained

from the LTFM after the appli
ation of the DC 
orre
tion sour
es de�ned

by (3.15).

The results obtained by a 
ir
uit simulation of the original CB and syn-

thesized LTFM are reported in Table 3.1, where all DC results for all port

Figure 3.7: A two-stage bu�er.
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Figure 3.8: High-level s
hemati
 of a Low-Drop Out (LDO) regulator CB

extra
ted from a real trans
eiver blo
k. The Control Logi
 
an be used to

sele
t the desired voltage output Vout, while Vref and VV DD are referen
e and

supply voltages.

Figure 3.9: High-level s
hemati
 of an integrated LNA, whi
h is part of a

real re
eiver 
hain (Figure 3.2); terminals Vinp and Vinn de�ne the di�erential

input, while VDD is the supply voltage and Vop Von de�ne the di�erential

output pair.
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Figure 3.10: Output transient results for the LNA example obtained with

the original CB (solid blue line) the raw LTFM (solid bla
k line), and the

DC-
orre
ted LTFM (dashed red line). The input signal for the LNA is a

simple sine wave having 1mV peak to peak amplitude. This simple example


learly demonstrates the e�e
tiveness of the proposed strategy. The transient

response obtained using the LTFM (bla
k solid line), is very a

urate ex
ept

for the verti
al shift due to its in
orre
t DC level. The DC-
orre
ted LTFM is


ompletely overlapped to the transient response obtained from the nonlinear

CB.

variables are reported, together with the 
orresponding LTFM relative er-

rors. As seen from this table the DC-
orre
ted LTFM results are exa
t, as

expe
ted, whereas the raw LTFM provides an in
orre
t DC solution.

In order to further illustrate the advantages of the proposed redu
ed-

order modelling strategy, a transient simulation is performed for the LNA

stru
ture using both the original nonlinear CB and the small-signal raw and

DC-
orre
ted ma
romodels. The results are depi
ted in Figure 3.10. It

is 
lear that the DC-
orre
ted ma
romodel provides pra
ti
ally 
oin
ident

results with the referen
e, whereas the raw LTFM results in a DC shift of its

response. Note that the referen
e simulation took 10 minutes to perform a

transient analysis of 500ns, whereas the DC-
orre
ted LTFM simulation only

required 5 se
onds, with a signi�
ant speedup.

3.2 Parameterized small-signal models

In this se
tion the DC 
orre
tion strategy from Se
tion 3.1.1 is extended to

the parameterized 
ase and 
ombined with the state of the art te
hniques for

the identi�
ation of parameterized models from a set of raw data.
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Table 3.1: Voltage and 
urrents for the test 
ases in Figure 3.7-3.9. Where

yDC are the DC data from the CB under analysis, y̌DC are the DC data

obtained from the LTFM before the appli
ation of the 
orre
tion strategy and

ȳDC are the same data after the appli
ation of the DC 
orre
tion strategy.

Error norms ǫy̌ and ǫȳ are de�ned a

ording to (3.16) and (3.17).

Test yDC y̌DC (ǫy̌) ȳDC (ǫȳ)

Bu�er

Iin -1.58e-11 0 (1) -1.58e-11 (0)

Iout 1.55e-3 3.87e-3 (1.5) 1.55e-3 (0)

IDD -1.55e-3 -3.87e-3 (1.5) -1.55e-3 (0)

Vout 1.55e-6 3.87e-6 (1.5) 1.55e-6 (0)

LDO

IDD -3.39e-4 -1.32e-3 (28) -3.39e-4 (0)

Iref -2.5e-3 -2.6e-3 (0.04) -2.5e-3 (0)

Iout 3.39e-4 1.32e-3 (28) 3.39e-4 (0)

Vout 1.294 1.295 (0.04) 1.294 (0)

LNA

IDD -1.81e-3 8.3e-5 (1) -1.81e-3 (0)

ISS -1.85e-3 0.024 (10) -1.85e-3 (0)

Iop -5.24e-3 -5.62e-3 (7e-2) -5.24e-3 (0)

Ion -5.24e-3 -5.62e-3 (7.2e-2) -5.24e-3 (0)

Vop -0.262 -0.28 (6.8e-2) -0.262 (0)

Von -0.262 -0.28 (6.8e-2) -0.262 (0)
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Consider a generi
 nonlinear and dynami
 Cir
uit Blo
k (CB) represented

by the following state-spa
e equations [135℄

ẋ(t;η) = f (x(t;η),u(t);η) (3.18)

y(t;η) = g(x(t;η),u(t);η) (3.19)

where u,y ∈ RP
denote system inputs and outputs, x ∈ RN

is an inter-

nal state ve
tor, and ẋ indi
ates the time derivative of the state ve
tor.

In (3.18), the ve
tor η ∈ Rν

olle
ts the ν physi
al or design parameters

whi
h the 
ir
uit blo
k response depends on, that are the main subje
t of

this investigation. Note that both state and output equations may depend

on η, indu
ing a parameter dependen
e on their solution. Therefore, both

state x(t;η) and output y(t;η) ve
tors are multivariate fun
tions of time t
and parameters η. Assume that inputs are invariant for ea
h geometri
al or

physi
al 
on�guration of the system, so that u(t) does not depend on η.

3.2.1 Linear Transfer Fun
tion Models

For AMS and RF appli
ations several 
ir
uit blo
ks su
h as Low Noise Am-

pli�ers (LNA's) or programmable a
tive �lters are designed to operate al-

most linearly when suitably biased and ex
ited by small-signal inputs within

the maximum allowed range of input power. Under these 
onditions, in-

put, output and state ve
tors 
an be represented as a superposition of 
on-

stant DC terms uDC ,xDC(η),yDC(η) and small-signal time dependent terms

ũ(t), x̃(t;η), ỹ(t;η) as

u(t) = uDC + ũ(t), (3.20)

x(t;η) = xDC(η) + x̃(t;η), (3.21)

y(t;η) = yDC(η) + ỹ(t;η). (3.22)

If the small-signal input ũ(t) is swit
hed o� and only the 
onstant DC

bias is applied, it follows

u(t) = uDC and ẋ(t;η) = 0 (3.23)

uniformly for ea
h instan
e of the parameter ve
tor η. Appli
ation to (3.18)-

(3.19) leads to the de�nition of the parameter-dependent DC operating point

as the solution of

f (xDC(η),uDC) = 0, (3.24)

yDC(η) = g(xDC(η),uDC). (3.25)
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The triplet uDC ,xDC(η),yDC(η) is available from a dire
t DC sweep of the

transistor-level 
ir
uit blo
k 
overing the desired range of variation of the

parameter ve
tor.

Conversely, when the small-signal input is swit
hed on, insertion of (3.20)-

(3.22) into (3.18)-(3.19) leads to

˙̃x(t;η) = f (xDC(η) + x̃(t;η),uDC + ũ(t)), (3.26)

ỹ(t;η) + yDC(η) = g(xDC(η) + x̃(t;η),uDC + ũ(t)), (3.27)

whi
h 
an be approximated by a �rst-order Taylor expansion of both state

and output equations as

˙̃x(t;η) ≈ A(η)x̃(t;η) +B(η)ũ(t), (3.28)

ỹ(t;η) ≈ C(η)x̃(t;η) +D(η)ũ(t), (3.29)

where A(η) ∈ RN×N
, B(η) ∈ RN×P

, C(η) ∈ RP×N
and D(η) ∈ RP×P

denote parameter-dependent state-spa
e matri
es de�ning the small-signal

Linear Transfer Fun
tion Model (LTFM) of the CB around the spe
i�ed bias


onditions, with frequen
y- and parameter-dependent input-output response

H(s;η) = C(η)(sI−A(η))−1B(η) +D(η). (3.30)

The elements of these state matri
es are formally de�ned as partial deriva-

tives of the various 
omponents of (3.18)-(3.19) evaluated at the 
urrent DC

point.

3.2.2 Frequen
y and Time-domain ma
romodeling

The standard approa
h for the 
hara
terization of the small-signal input-

output behaviour of the CB is to extra
t a set of frequen
y- and parameter-

dependent small-signal S
attering, Admittan
e or Impedan
e parameters,

through a set of small-signal AC (Alternate Current) analyses. Standard


ir
uit solvers of the SPICE 
lass are able to perform this operation only for

dis
rete values of frequen
y

ω ∈ {ωl, l = 1, . . . , L} (3.31)

and parameters

η ∈ {ηk, k = 1, . . . , K}, (3.32)

resulting in a set of P × P 
omplex matri
es

Hl,k = H(ωl;ηk) . (3.33)
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The 
omputed DC operating points for the state and the output ve
tors over

the parameter grid are denoted as

xDC,k = xDC(ηk) (3.34)

yDC,k = yDC(ηk) . (3.35)

The dis
rete samples (3.33) of the linearised system response provide an

ex
ellent approximation of the system behaviour for design and veri�
ation

purposes, as long as this veri�
ation is 
ondu
ted in the frequen
y domain

and for the available parameter values ηk. However, if the CB response

is required for an arbitrary parameter 
on�guration η∗ that is not part of

the dis
rete set {ηk}, a new extra
tion is required by solving the original

CB system (3.18)-(3.19). It is 
lear that for 
omplex CB's and for repeated

parameter instan
es this approa
h may be overly time-
onsuming.

If the veri�
ation has to be performed in the time-domain, a frequen
y-

to-time 
onversion is further required. Several ma
romodeling approa
hes

are available [62, 138, 139℄ for performing this 
onversion and obtaining an

approximate state-spa
e representation in form of (3.28)-(3.29) or (3.30).

This pro
ess usually leads to a redu
ed-order 
ompa
t system with a number

of states n≪ N .

Ma
romodeling approa
hes are standard for non-parameterized systems.

In the proposed setting, for any �xed parameter instan
e η = ηk, the fre-

quen
y dependen
e of the data samples Hl,k is approximated by a rational

model, or equivalently a state-spa
e system in form

Hk(s) = Ck(sI−Ak)
−1Bk +Dk (3.36)

by minimizing the ma
romodel error ‖Hk(ωl) −Hl,k‖ in the desired norm.

The Ve
tor Fitting (VF) s
heme [62℄ with all its possible variants provides

therefore an ex
ellent numeri
al tool.

The standard VF approa
h however does not solve the problem of making

a 
ompa
t model available for any desired values of the parameters η. Fortu-

nately, an expli
it treatment of the parameter dependen
e for the derivation

of a parameterized ma
romodel is also possible, using one of the available

parameterized ma
romodeling strategies [112, 140, 128, 82, 80, 129, 131,

130, 132, 134, 133℄. These methods are able to pro
ess 
olle
tively the

samples (3.33) to obtain a multivariate representation of the system as a

parameterized redu
ed-order ma
romodel in a form identi
al to (3.30), by

minimizing the error ‖H(ωl;ηk)−Hl,k‖ over the entire set of frequen
y and

parameter samples. A more detailed des
ription of this approa
h is post-

poned to Se
tion 3.2.5.
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3.2.3 Parameterized ma
romodeling

The Sanathanan-Koerner algorithm dis
ussed in Se
tion 2.2 is now extended

to the parameterized identi�
ation problem. Consider the following repre-

sentation for the parameterized small-signal ma
romodel

H(s,η) =
N(s,η)

d(s,η)
=

∑M
m=0 Rm(η)φm(s)∑M
m=0 rm(η)φm(s)

(3.37)

where the frequen
y-dependent basis fun
tions are partial fra
tions asso
i-

ated to a set of distin
t pres
ribed poles qm

φ0(s) = 1, φm(s) =
1

s− qm
(3.38)

and where the parameter-dependent 
oe�
ients are expressed as a superpo-

sition of multivariate basis fun
tions ξj(η) as

Rm(η) =
J∑

j=1

Rm,jξj(η), rm(η) =
J∑

j=1

rm,jξj(η) (3.39)

with 
onstant and unknown 
oe�
ients Rm,j and rm,j. The representa-

tion (3.37) is quite general, sin
e it provides an impli
it parameterization

of M-th order rational matri
es with both parameter-dependent poles and

residues [141, 112, 128℄.

Several 
hoi
es are possible for the basis fun
tions ξj(η), su
h as mono-

mials, orthogonal polynomials, or �nite elements de�ned over stru
tured or

unstru
tured grids in the parameter spa
e [112, 140, 128, 82, 80, 129, 130,

131, 132, 134, 133℄. In this work standard monomials are used by setting

ξj(η) =
∏

i

η
κj,i

i (3.40)

with i spanning the number of free parameters (
omponents of η), with j
interpreted as a global index spanning the set of all multivariate monomials

with overall degree

∑
i κj,i ≤ κ̄. The 
hoi
e of polynomials is justi�ed here

by the expe
ted smooth parameter dependen
e for the stru
tures of interest.

This will be 
on�rmed by all examples of Se
tion 3.3. This 
hoi
e is however

not restri
tive, sin
e the same pro
edure 
an be applied without any modi�-


ation to di�erent parameterization s
hemes based on general basis fun
tions

ξj(η).
Given the set Hl,k of small-signal transfer matri
es available at the fre-

quen
y points ωl and parameter grid values ηk, the 
oe�
ients Rm,j and rm,j



CHAPTER 3. SMALL-SIGNAL AND P-LTI MACROMODELS 81

are 
omputed through a generalized parametri
 Sanathanan-Koerner (SK) it-

eration [60, 81℄, an extension of the algorithm presented in Se
tion 2.2, whi
h

minimizes the following 
ost fun
tion

E2µ =
L∑

l=1

K∑

k=1

∥∥∥w(µ)
l,k

[
N(µ)(ωl;ηk)− d(µ)(ωl;ηk)Hl,k

]∥∥∥
2

(3.41)

at ea
h iteration µ = 1, 2, . . . , where the iteration-dependent weight w
(µ)
l,k is

de�ned as the inverse of the denominator estimate available at the previous

iteration

w
(µ)
l,k =

[
d(µ−1)(ωl;ηk)

]−1
(3.42)

with the initialization w
(0)
l,k = 1. The above SK formulation is a standard

approa
h in linear and parameterized ma
romodeling. As dis
ussed in Se
-

tion 2.2 it allows to 
ast a global non
onvex optimization problem as a se-

quen
e of linearized problems (3.41), sin
e the residual whose norm is being

minimized at ea
h iteration is an a�ne 
ombination of the free variables

Rm,j and rm,j. Therefore, the numeri
al solution of (3.41) does not involve

parti
ular di�
ulties, requiring a simple linear least squares solver. There

is however an additional di�
ulty, due to the fa
t that (3.41) will minimize

the least squares error, without any 
ontrol over the a

ura
y of the �tted

model at pres
ribed frequen
y points, in
luding DC. For the appli
ations of

interest, whi
h requires an exa
t representation of the DC response of the

small-signal ma
romodel, a better 
ontrol is needed.

The DC response of the parameterized ma
romodel is readily 
omputed

from (3.37) as

H(0,η) =
N(0,η)

d(0,η)
=

∑M
m=0Rm(η)φm(0)∑M
m=0 rm(η)φm(0)

. (3.43)

Denoting with

H0,k = H(0;ηk) (3.44)

the DC value of the linearized response of the original system, whi
h is easily

extra
ted or extrapolated from a 
ir
uit solution of the original s
hemati
,

the parameterized ma
romodel 
an be enfor
ed to mat
h exa
tly this DC

response by adding the following set of equality 
onstraints

M∑

m=0

Rm(ηk)φm(0)−H0,k

M∑

m=0

rm(ηk)φm(0) = 0 (3.45)

for k = 1, . . . , K to the linear least squares problem (3.41). The 
on-

straints (3.45) are also expressed as a�ne 
ombinations of the de
ision vari-

ables. Therefore, the minimization of (3.41) subje
t to (3.45) is easily a
hieved
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through any standard solver for linearly-
onstrained linear least squares prob-

lems.

On
e the ma
romodel 
oe�
ients are available, the 
omputation of the

DC bias 
orre
tion sour
es using (3.48) is performed, for ea
h of the available

parameter grid values ηk. Then, a parameterized set of DC 
orre
tion sour
es

is de�ned as a superposition of the basis fun
tions ξj(η) as

∆̄DC(η) =

J∑

j=1

∆̄jξj(η). (3.46)

The 
oe�
ients ∆̄j are 
omputed by enfor
ing the �tting/interpolation 
on-

dition (3.49) for ea
h k, whi
h requires the solution of a further linear least

squares system.

3.2.4 The need for DC 
orre
tion

Another issue may a�e
t the above des
ribed ma
romodeling �ow, possibly

making the resulting small-signal parametri
 ma
romodels 
ompletely use-

less when employed in time-domain transient simulations. In fa
t, a dire
t

repla
ement of the nonlinear CB with the Linear Transfer Fun
tion Model

(LFTM) in a transient simulation setup leads to possibly in
orre
t biasing,

sin
e the small-signalma
romodel does not in
lude any information of the un-

derlying DC operating point. When ex
ited by 
onstant inputs u(t) = uDC ,

the LTFM (3.30) provides its 
losed form DC output solution

y̌DC(η) = H(0;η)uDC

= (D(η)−C(η)A−1(η)B(η))uDC , (3.47)

whi
h has no relationship with the true DC operating point of the original

nonlinear CB. This information is not embedded in the LTFM, whi
h only

represents the dynami
s of small signal variations around the bias point.

This problem be
omes severe when several CB's are 
onne
ted together to

form a 
omplete RF trans
eiver path. If one of the CB models provides the

in
orre
t DC bias as its output, whi
h is in turn fed to the input of another

blo
k, the latter will not fun
tion properly due to in
onsistent biasing, and

the entire veri�
ation results will be wrong.

For the non-parametri
 
ase, or equivalently for any �xed instan
e η = ηk,

it was shown in [90℄ and Se
tion 3.1 how the 
orre
t DC bias 
an be re
overed

by adding suitable 
onstant DC 
orre
tion sour
es at the ma
romodel ports.

Assume that for any dis
rete parameter value ηk, the 
orre
t bias 
onditions

provided by the input uDC and output ŷDC,k = yDC(ηk) are known from
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Figure 3.11: DC point 
orre
tion for a two port LTFM, assuming a hybrid


on�guration with one 
urrent-
ontrolled (left) and one voltage-
ontrolled

(right) port. The 
orre
t DC bias is set via 
onstant 
urrent sour
es ∆VDC,1

and ∆IDC,2 applied at the input ports of the LTFM. The sour
e values are

provided by the elements of the 
orre
tion ve
tor (3.48).

a solution of (3.25) for the original non-linear system. The DC solution

yDC(ηk) of the LTFM driven by the same nominal biasing inputs uDC is


omputed as in (3.47), and the di�eren
e

∆DC(ηk) = yDC,k − y̌DC(ηk) (3.48)

is evaluated, whi
h represents the 
orre
tion that must be applied to the DC

solution of the LTFM in order to obtain the nominal CB bias level. The


orre
tion terms ∆DC(ηk) are applied by de�ning an enlarged DC-
orre
ted

small-signal ma
romodel whi
h embeds the original LTFM and adds at its

interfa
e ports suitable 
onstant sour
es (see Figure 3.11), whose values are

the 
omponents of ∆DC(ηk). It should be noted that using 
onstant 
or-

re
tion sour
es will a�e
t and �x the DC point only, without any e�e
t on

the a

ura
y of the LTFM around the operating point under small-signal

ex
itation.

The above approa
h is valid only for a �xed parameter value η = ηk.

Therefore, a new LTF ma
romodel extra
tion and a new 
omputation of the

DC 
orre
tion sour
es for any new instan
e of the parameters is required.

The main purpose of this work is to present a general strategy that is able

to pro
ess the full set of samples (3.33), providing a DC-
ompliant redu
ed-

order parameterized LTF ma
romodel that 
an be dire
tly used to repla
e a

transistor-level CB for any system-level time-domain veri�
ation and for any

arbitrary parameter value η within an admissible range.
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3.2.5 DC-
ompliant parameterized ma
romodeling

The proposed strategy for the extra
tion of a DC-
ompliant and parameter-

ized small-signal ma
romodel 
an be summarized in the following steps:

1. 
reate a suitable CB 
hara
terization test ben
h in the adopted 
ir
uit

simulation environment and apply the desired biasing 
ir
uitry to ea
h

CB pin;

2. extra
t DC bias information yDC,k and small-signal frequen
y response

Hl,k of the CB from a set of 
ir
uit simulations of the non-linear system,

here represented by (3.18)-(3.19), for a set of dis
rete parameter values

η ∈ {ηk, k = 1, . . . , K} and at a dis
rete set of frequen
ies ω ∈ {ωl, l =
1, . . . , L};

3. perform a parameterized rational 
urve �tting of the data Hl,k using

a multivariate parametri
 ma
romodeling s
heme, and obtain a state-

spa
e realization (3.30) of the LTFM;

4. 
ompute y̌DC(ηk) from (3.47) and ∆DC(ηk) from (3.48) over the dis-


rete parameter grid ηk;

5. interpolate the data∆DC(ηk) with a 
losed-form parametri
 expression

∆̄DC(η) so that

∆̄DC(ηk) = ∆DC(ηk) (3.49)

6. synthesize a 
ir
uit netlist with a standard parameterized ma
romodel

realization, 
omplemented by DC 
orre
tion sour
es ∆̄DC(η) 
onne
ted
at its external ports.

Figure 3.11 depi
ts the result of this pro
ess in terms of high-level s
hemati


blo
ks. Next se
tions provide more details on the proposed modelling strat-

egy for steps 3), 5), and 6).

3.2.6 Ma
romodel representation

The above des
ribed pro
edure results in a DC 
ompliant parameterized

small-signal ma
romodel H(s,η) de�ned in (3.37), plus a set of parameter-

dependent DC 
orre
tion sour
es ∆̄DC(η) de�ned in (3.46). These two blo
k

elements are 
onne
ted as in Figure 3.11. The �nal step 
onsists of 
asting

these expressions in a form that 
an be used in a 
ir
uit solver of the SPICE


lass.
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For the small-signal ma
romodel part, the detailed derivation in [81℄,

see also [126, 142, 143℄ shows that H(s,η) 
an be easily 
onverted into a

parameterized des
riptor form

E ˙̃x(t;η) = A(η)x̃(t;η) +B(η)ũ(t), (3.50)

ỹ(t;η) = C(η)x̃(t;η)

where

E =

[
I 0

0 0

]
A(η) =

[
A1 B1

C2(η) D2(η)

]
(3.51)

B =
[
0 −IP

]T
C(η) =

[
C1(η) D1(η)

]
(3.52)

and where

A1 = blkdiag{qmIP}Mm=1 (3.53)

B1 = [IP , . . . , IP ]
T

(3.54)

C1(η) = [R1(η), . . . ,RM(η)] (3.55)

C2(η) = [r1(η)IP , . . . , rM(η)IP ] (3.56)

D1(η) = R0(η) (3.57)

D2(η) = r0(η)IP (3.58)

with qm basis fun
tions poles from (3.38). The main advantage of representa-

tion (3.50) is that those state-spa
e matrix elements that are parameterized


oin
ide with the 
oe�
ients Rm(η) and rm(η). Sin
e polynomial basis fun
-

tions ξj(η) are used in the expansion, a SPICE synthesis of these equations

is straightforward using elementary dependent sour
es with polynomial gain.

The same 
onsideration and synthesis applies for the DC 
orre
tion sour
es

∆̄DC(η).

3.2.7 Stability and passivity

The proposed ma
romodeling �ow is applied here to des
ribe the linearized

behavior of a
tive nonlinear CB's. Therefore, passivity veri�
ation and en-

for
ement is not required at all sin
e the original CB is not a passive devi
e.

Should the appli
ation at hand require a guaranteed passive parameterized

ma
romodel, an internally passive parameterization should be used instead

of (3.37). See [129, 130, 131, 132, 133, 134℄ for more details.

Conversely, uniform stability is important for any subsequent transient

analysis. All ma
romodel poles (whi
h depend on the parameters η) should

be 
on�ned into the left half 
omplex plane for any value of the parameters
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Figure 3.12: Left panel: using a 
oarse grid (dots) for model identi�
ation

may lead to parameterized pole traje
tories (dashed line) leaking into the

right hand 
omplex plane. Right panel: grid re�nement 
onstraints the pa-

rameterized poles into the stable region.

within the admissible range. A simplisti
 approa
h to enfor
e uniform stabil-

ity is to not parameterize the poles at all, at the pri
e of a redu
ed a

ura
y

and generality of the small-signal ma
romodel. This is easily a
hieved by

removing in (3.37) the dependen
e on the parameters η of the denomina-

tor 
oe�
ients rm(η), see [136℄. In general, ne
essary and su�
ient 
rite-

ria that are able to guarantee uniform stability without 
ompromising the

ma
romodel a

ura
y, e.g. by imposing additional stru
ture in the model

equations, are still not available.

Guaranteed stable non-parameterized ma
romodels (3.36) for any �xed

parameter value are easy to obtain, see [62℄. When introdu
ing the external

parameters η, the essential 
ondition for preserving uniform stability is to

start with a su�
iently dense parameter grid ηk, so that all system poles are

tra
ked with su�
ient resolution between grid values. Figure 3.12 provides

an intuitive illustration that instability may o

ur for 
oarse grids due to

insu�
ient knowledge of the original system dynami
s between grid values.

A proper dense grid fa
ilitates the enfor
ement of uniform stability.

In the proposed implementation, after 
omputing an initial parameterized

ma
romodel (3.37), the ma
romodel poles are 
omputed, i.e. the generalized

eigenvalues of pen
il (E,A(η)), over a dense grid in the parameter spa
e.

Note that this veri�
ation involves a minimal 
ost due to the 
ompa
t size of

the ma
romodel. Should unstable poles be dete
ted for some parameter value

η∗, the identi�
ation grid ηk is enlarged by adding η∗ and the ma
romodel

is re
omputed. This last repeated �tting stage was never required for all

appli
ation examples that were tested.
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Figure 3.13: Magnitude (top) and phase (bottom) of S12 for the parame-

terized small-signal NMOS model (blue solid lines) 
ompared to the 
orre-

sponding original responses (dashed red lines), plotted for di�erent values of

the parameter Vds ranging from 0.8 V to 1.2 V. The S12 is the response with

the smaller values at DC for a sweep of the Vds. This result demonstrates

the e�e
tiveness of the proposed DC enfor
ement strategy.

3.3 Examples

The e�e
tiveness of the proposed methodology is demonstrated on three ex-

amples. The �rst two 
ases are very simple: a single NMOS transistor and a

two-stage bu�er. These examples are mainly used as a proof of 
on
ept. The

third example is instead a fully implemented 
ir
uit blo
k, namely a Low

Dropout Voltage regulator used in a 
ommer
ial 3G trans
eiver design.

3.3.1 A NMOS transistor

The �rst example illustrates the proposed methodology on a single NMOS

transistor, for whi
h a small-signal linearized model is derived using the

sour
e-drain bias voltage Vds as a free parameter. A 3-port 
on�guration

is 
onsidered, where port one is the drain, port two the gate, and port three

the bulk, all referen
ed to the sour
e, as depi
ted in Figure 3.14. This is the

typi
al test pattern used to 
hara
terize �eld e�e
t transistors. Be
ause of

the te
hnology used Vth ≈ 0.6V . The NMOS is biased with Vgs = 1.2V and

Vbs = 0V . As a 
onsequen
e a sweep of Vds from 0.8 V to 1.2 V explores the
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linear region of the NMOS 
hara
teristi
. A 
omparison of the small-signal

S12 response of the original devi
e with the 
orresponding parameterized

model is reported in Figure 3.13 for a Vds sweep ranging from 0.8 V to 1.2 V.

This �gure demonstrates that, even if the dynami
 variation of the responses

is very large, the proposed DC 
onstraint is able to guarantee a very a
-


urate ma
romodel, even at low frequen
ies where the magnitude response

is very small (lower than −150dB), thanks to the DC enfor
ement strategy

proposed.

BG

D

S

Figure 3.14: Typi
al


hara
terization test

pattern for NMOS.

Figure 3.15 shows the 
omputed parametri
 
or-

re
tion sour
e to be applied to the input port (Gate)

for DC 
omplian
e. Only the points marked with red

squares were used for the ma
romodel identi�
ation,

whereas the blue 
rosses indi
ate additional valida-

tion points used to verify the interpolation. As ex-

pe
ted, the dependen
e of this 
orre
tion sour
e on

Vds is very smooth and therefore well 
aptured by

a low-order interpolation. The parameterized model

has dynami
al order 2, while both numerator and

denominator polynomial bases (3.37) have degree 2.

Finally, Figure 3.16 reports the parameterized ma
romodel (real) poles, that

for this simple devi
e show a weak and smooth dependen
e on the free pa-

rameter Vds as a 
onsequen
e of the small variation of 
harges in the MOS


hannel while working in the linear region.

3.3.2 A two-stage bu�er

The se
ond example is the two-stage bu�er depi
ted in Figure 3.17. For this

test 
ase, two parameters are used: the supply voltage Vdd ∈ [0.7, 1.2] V and

the ambient temperature, in the range T ∈ [−25◦, 125◦] C. The a

ura
y

of the parameterized ma
romodel is demonstrated by 
omparing the small-

signal S-parameter S22 of the original bu�er to the ma
romodel response for

two sweeps of Vdd and T in the two panels of Fig. 3.18. For this exam-

ple, a dynami
al order 4 was used, with both numerator and denominator

polynomial bases (3.37) having degree 2.

Figure 3.19 depi
ts the parameterized DC 
orre
tion sour
es at the sup-

ply and output ports of the bu�er, 
omparing the raw data with the interpo-

lated model. Considering that temperature e�e
ts in transistors models are

des
ribed by low degree polynomials (two or three at most), these two di-

mensional 
orre
tion fun
tions 
an be expe
ted to be smooth as well thanks

to the proposed expli
it DC 
onstraint in the ma
romodel �tting. Therefore,

a low-order interpolation s
heme is appropriate. For this example it was used
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Figure 3.15: Parametri
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urrent 
orre
tion sour
e (Gate) for the small-

signal NMOS model, plotted as a fun
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Figure 3.16: Parameter-dependent poles of the small-signal NMOS model.
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Figure 3.17: A two-stage bu�er with ports numbering used in this work.
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Figure 3.18: S22 for the parameterized small-signal bu�er model (blue solid

lines) 
ompared to the 
orresponding original response (dashed red lines).

In the bottom panel, Vdd is �xed to 0.75 V and the temperature sweeps in

the range −25 ÷ 120◦C, while in the top panel T is �xed to 20◦C and Vdd

sweeps from 0.7 V to 1.2 V. S22 is presented being the S-parameter with the

wider variation with both parameters Vdd and T . The phase is not depi
ted
be
ause the variation with parameters Vdd and T is small.
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a multivariate polynomial of order 2, leading to a root mean square error of

the polynomial interpolation less than 10−5
.

3.3.3 A Low Dropout (LDO) voltage regulator

Here a Low Dropout (LDO) voltage regulator is 
onsidered, whose transistor

level s
hemati
 is taken from a 
ommer
ial 3G trans
eiver design. This devi
e

is intended to provide a stabilized output voltage, under 
ontrol by external

biases provided from the logi
 unit. The parameter that is 
onsidered is

again the supply voltage Vdd ∈ [1.2, 1.7] V. For su
h a sweep of Vdd and

using a referen
e voltage of 0.6V, the LDO works in the linear region of

the 
hara
teristi
. The original s
hemati
 in
ludes hundreds of transistors,

therefore a redu
ed-order ma
romodel is desirable to redu
e 
omplexity and

runtime in system-level simulations.

A representative s
attering response of the 
omputed parameterized ma
ro-

model is 
ompared to the 
orresponding small-signal s
attering response of

the transistor-level netlist in Figure 3.20. Also for this 
ase, it 
an be seen

that an ex
ellent a

ura
y is a
hieved for all values of the parameter Vdd

within the range of interest. The parameterized model has dynami
al order

16, while numerator and denominator polynomial bases (3.37) have respe
-

tively degree 3 and 2. Figure 3.21 shows the 
omputed parametri
 
orre
tion

sour
e to be applied to the power supply port (Vdd) for DC 
omplian
e. Only

the points marked with red squares were used for the ma
romodel identi�-


ation, whereas the blue dots indi
ate additional validation points used to

verify the interpolation.

The transient analysis result of the synthesized parameterized ma
ro-

model is 
ompared to the response obtained using the transistor-level netlist

in Figure 3.22. The simulation time for a short transient analysis like the

one depi
ted in Figure 3.22 require 3s using the synthesized parameterized

model and 30s using the transistor level model. The real bene�t of the

proposed methodology should be addressed on 
omplex system level simu-

lation s
enarios: repla
ing several CB with parameterized-LTFM 
an lead

to a tremendous 
omplexity redu
tion while preserving the a

ura
y of the

simulation.

3.3.4 A system-level appli
ation

The proposed ma
romodeling pro
edure is illustrated on a 
ir
uit blo
k 
om-

posed by a single OPerational Ampli�er whose voltage sour
e is provided by a

Low-DropOut (LDO) voltage regulator; test ben
h is depi
ted in Figure 3.23.
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Figure 3.19: Parameterized DC 
orre
tion sour
es for the supply (top) and

output port (bottom) of the two-stage bu�er. The 
urrent 
orre
tion sour
es,

are interpolated using a multivariate polynomial of order 2. The root means

square error of the polynomial interpolation is lower than 1e−5
.
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Figure 3.21: Parametri
 DC 
urrent [A℄ 
orre
tion sour
e (Power supply port

Vdd) for the small-signal LDO model, plotted as a fun
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results are obtained for the 
urrent 
orre
tion sour
es on the other ports.
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Figure 3.22: Transient simulation for a typi
al test 
ase s
enario of an LDO.

The e�e
t of a small variation on the Vdd is 
onsidered. In the top plot the

square wave applied to the Vdd is depi
ted. In the bottom plot the transient

response obtained from the synthesized parameterized-LTFM before the DC


orre
tion (blue 
ontinuous line) and after (blue dashed line) is 
ompared

with the response from the transistor level s
hemati
.
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Figure 3.23: Subset of high-level 
ir
uit blo
ks inside an hypotheti
al base-

band re
eiver 
hain.
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The operational ampli�er is a fundamental building blo
k of analogue 
ir-


uits, used in a vast variety of appli
ations like A/D-D/A 
onverters, high-

speed wired/wireless transmitter and re
eivers and sensors. In 
onjun
tion

with a negative-feedba
k network like in Figure 3.23, it 
an implement signal

ampli�
ation, 
omplex a
tive �lters, generation of voltage and 
urrent refer-

en
es and voltage bu�ers. In the 
ontext of RF and trans
eiver design OPAs

are the building blo
ks for voltage regulators, low-noise ampli�ers and a
tive

�lters. Under proper biasing the OPA behaves almost linearly, i.e. it does

not produ
e spurious harmoni
s thus preserving the quality of the signal in

the trans
eiver 
hain introdu
ing a negligible noise 
ontribution.

For the results of this work a real OPA 
omponent implemented in a


ommer
ial 3G trans
eiver was used. The OPA 
ir
uit blo
k, depi
ted in

Figure 3.23, is parameterized by a supply voltage Vdd ∈ [1.1, 1.3] V with

20mV steps and a gain α ∈ [1, 2] with steps 0.05, whi
h are ranges of pra
ti
al
interest. Linearity and 
losed-loop stability were veri�ed in pra
ti
e by means

of Spi
e simulations. The LDO model is parameterized by a Vd ∈ [1.2, 1.7] V
using a nominal voltage referen
e Vref = 0.6 V. The e�e
tiveness of the

proposed methodology for voltage regulars was dis
ussed in Se
tion 3.3.3.

Figures 3.24-3.25 
ompare the 
omputed ma
romodel responses to the

original small-signal s
attering responses for various 
ombination of the pa-

rameters. The a

ura
y is ex
ellent. These �gures show that the variability

indu
ed by supply voltage variations is very small, whereas the sensitivity to

a gain variation is larger. This is further demonstrated in Figure 3.26.

The same ma
romodeling pro
ess was also applied to the LDO in Se
-

tion 3.3.3. Then, the parameterized ma
romodels of OPA and LDO were

synthesized in SPICE, and a transient analysis was performed to validate the

ma
romodel vs the full transistor level 
ir
uits. For illustration, a 
ommon

signal-integrity s
enario is addressed: the output from a di�erential LNA in a

base-band re
eiver 
hain is ampli�ed and �ltered using an OPA. Signal qual-

ity and noise reje
tion are of paramount importan
e sin
e the analog output

from the OPA is then pro
essed by and A/D 
onverter and provided to a

Digital Pro
essing Blo
k. Disturban
es on the voltage referen
e Vd, due to


ross-talk or external noise sour
es must be handled by the LDO resulting in

a stable Vdd for the OPA. Therefore a multi-tone (1 GHz-567 MHz-40MHz)

multi-amplitude distortion is added to a 10 kHz square wave used as distur-

ban
e on the Vd of the LDO, while the input for the OPA is a 4 MHz square

wave.

A small part of the input signal and the 
orresponding outputs are de-

pi
ted in Fig. 3.28 for the OPA and in Fig. 3.27 for the LDO. A 200 µs
transient simulation is required in order to properly asses the e�e
t of the

disturban
es on the LDO voltage referen
e Vd. The transistor level simula-
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Figure 3.24: Comparison between parameterized small-signal ma
romodel

(red dashed lines) and small-signal S-parameters S1,3 and S2,3 responses of

the OPA 
ir
uit blo
k for �xed supply voltage Vdd = 1.2 V and variable gain.
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tion required 10 h. Su
h large simulation time is quite 
ommon and basi
ally

due to: the 
omplexity of the transistor level models, involving 600 tran-

sistors, 100 diodes and 600 dynami
al elements, and the 
omplexity of the

multi-tone disturban
e on the LDO. The linear ma
romodel 
ompleted the

simulation in only 8 minutes leveraging on the synthesized low order model:

order 11 for the OPA and 16 for the LDO. As 
an be seen in Figures 3.27

and 3.28, su
h a tremendous speedup 
an be a
hieved with no 
ompromise

on a

ura
y. The �gures further demonstrate the ne
essity of in
luding DC


orre
tion sour
es, sin
e the results without su
h sour
es present a 
lear DC

o�set. Dealing with two parameters, i.e. Vdd and α, the DC 
orre
tion 
ur-

rent sour
es were modelled using two-dimensional polynomials; results are

depi
ted in Figure 3.29.

3.4 Con
lusions

This Chapter presented a systemati
 methodology for the extra
tion of 
om-

pa
t parameterized small-signal ma
romodels of 
omplex nonlinear 
ir
uit

blo
ks for Mixed-Signal and RF appli
ations. Thanks to an expli
it 
on-

straint on the DC response of the ma
romodel and to the in
lusion of pa-
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Figure 3.27: Bottom panel: detail of the transient analysis of the LDO

transistor-level 
ir
uit blo
k (blue 
ontinuous line) and parameterized ma
ro-

model, with (red dashed line) and without (bla
k line) DC 
orre
tion sour
es.

The supply voltage a�e
ted by noise is depi
ted in the top panel. As ex-

pe
ted, the output from the LDO is always 
lose to the nominal value of

1.13 V.
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ir
uit blo
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ontinuous line) and parameterized ma
ro-

model, with (red dashed line) and without (bla
k line) DC 
orre
tion sour
es.

rameterized DC 
orre
tion sour
es, the proposed ma
romodel 
an seamlessly

repla
e the 
orresponding transistor level s
hemati
 in system-level Signal In-

tegrity veri�
ations, leading to a signi�
ant speedup in the 
omputing time

required by transient simulations.

The feasibility of the proposed approa
h was demonstrated on two sim-

ple a
ademi
 examples (a single transistor and a two-stage bu�er) as well

as on two 
omplex 
ir
uit models: a Low Dropout voltage regulator and an

Operational ampli�er, both taken from a real 3G trans
eiver design. The

availability of a

urate and e�
ient ma
romodels is 
onsidered as a key en-

abling fa
tor for 
omprehensive system veri�
ation, allowing a fast systemati


analysis of the large number of 
on�gurations and operation modes required

by modern digitally-programmable systems.
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Figure 3.29: OPA 
urrent 
orre
tion sour
es are depi
ted above as a fun
tion

of Vdd and gain α. The 2D polynomial models (blue 
ontinuous line grid)

attains a RMS error of 1e−5
. Polynomial degree is 4 in both variables. The

identi�
ation dataset is represented by red squares while the validation points

are the blue 
rosses in the plots above. Corre
tion sour
es I1 for the input

port of the OPA are not depi
ted here sin
e negligible in magnitude.



Chapter 4

Noise-
ompliant ma
romodel

synthesis

Lumped passive network synthesis, a

ording to Cauer's de�nition [144, 145℄,


onsists in the design of a primitive network, i.e. a 
ir
uit 
omposed only of

primitive elements (indu
tan
es, mutual indu
tan
es, resistan
es and 
apa
-

itan
es), whi
h exhibits a pres
ribed frequen
y response. Su
h a de�nition is

stri
tly related with the design of linear �lters, hot topi
 at the beginning of

last 
entury. In spite of the spe
i�
 appli
ation, Cauer's approa
h was very

general sin
e he was the �rst to 
onsider the synthesis of a linear network as

an inverse problem of network analysis. In this work, network synthesis is

mainly used to 
onvert linear ma
romodels, like the ones des
ribed in Chap-

ter 2 and 3, into Spi
e-based 
ompliant netlists for system-level simulations.

The synthesis of Linear Time Invariant (LTI) networks dates ba
k to the

beginning of the last 
entury with the pioneering work of Foster [146℄ and

Darlington [147℄. The fathers of network theory: Cauer [148℄, Brune [149℄,

Tellegen [150℄ and later Bott and Du�n [151℄ were the �rst to study and

establish synthesis pro
edures for 1-port networks des
ribed as positive real

fun
tions. The natural extension to the N-port 
ase required the study of pos-

itive real matri
es [107℄, leading to the more general results of Belevit
h [109℄.

Two are the main 
lasses of linear network synthesis methods: non-re
ipro
al

methods, based on the usage of gyrators [152℄ (passive and non-re
ipro
al

network elements) and gyratorless (re
ipro
al) methods. The required 
on-

ditions for both methods were deeply studied in [109℄.

After the introdu
tion of State-Spa
e te
hniques for the analysis of lin-

ear networks made by Bashkow [48℄ in 1957, several authors adopted the

State-Spa
e approa
h also in the synthesis 
ontext. As it was noted by An-

derson [153℄ and Youla [154℄ the state-spa
e methodology is theoreti
ally

sound and easier to be interpreted from a physi
al perspe
tive. Moreover,

102
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this mathemati
al approa
h was well 
onsolidated in Physi
s and Control

Theory, leading to a 
onvenient transfer of knowledge to the Cir
uit Theory

�eld. The seminal idea for an appli
ation of Control Theory results to the

problem of network synthesis 
an be found in the work of Kalman [155℄.

Indeed the Rea
tan
e Extra
tion Method [154, 119℄, 
ornerstone for all the

su

essive synthesis te
hniques, was inspired by [155℄. From a state spa
e

perspe
tive the 
onditions for a passive and re
ipro
al (gyratorless) synthe-

sis 
an be easily related with the physi
al properties of the network [119℄,

avoiding the involved and abstra
t mathemati
al details required by the pre-

vious methods [109℄. The set of primitive network elements required for

the re
ipro
al synthesis of a passive network 
an be restri
ted at most to

the RLCT subset, i.e.: Resistors, Indu
tors, Capa
itors and ideal multi-port

Transformers [156℄. Several years of resear
h a
tivity were devoted to further

redu
e this RLCT subset. The question whether ideal transformers 
ould be

avoided in the synthesis of passive networks had no answer for a long time,

see [151℄ and [157℄ as an example. In [156℄ M
Millan found the solution

demonstrating that ideal transformers 
an not be avoided in the synthesis

of passive networks. Motivated by the last results about the need to use

ideal transformers some resear
h e�ort was spent to redu
e the 
omplexity

of the Rea
tan
e extra
tion algorithm [154℄, being the 
anoni
al

1

synthesis

of 
hoi
e.

Although this topi
 was widely studied and is well 
onsolidated, no ef-

fort has been devoted so far in order to 
hara
terize the noise 
omplian
e of

the synthesized network, i.e. under whi
h 
onditions the obtained network

shows the same input-output noise response in 
omparison with the original

physi
al system/
ir
uit. Therefore, in this Chapter several of the most pop-

ular network synthesis algorithms are analysed fo
using on noise 
omplian
e

properties. As dis
ussed in Se
tion 1.3.1, the transition from hard to �rm IP

blo
ks requires the availability of �exible netlists, i.e. the same 
ir
uit de-

s
ription should �t to multiple simulation 
ontexts: transient, S-parameters

and noise analysis. As a 
onsequen
e, the adopted synthesis algorithm must

preserve not only input-output response of the original system but also the

noise behaviour.

This Chapter deals with the noise-
ompliant synthesis of linear, lumped,

�nite, time invariant, and passive networks. Se
tion 4.1 introdu
es the prob-

lem of noise-
omplian
e in the synthesis pro
ess. Se
tion 4.2 dis
usses stati


network synthesis, i.e. time/frequen
y independent 
ir
uits. This 
ase is of

1

The Rea
tan
e Extra
tion Synthesis is 
anoni
al, i.e. requires the minimum number

of passive elements only in the 
ase of non-re
ipro
al synthesis (using gyrators). In the

re
ipro
al (gyratorless) 
ase only the minimum number of dynami
 elements (C and L) or

the minimum number of resistors, but not both minima together, 
an be guaranteed [119℄.
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interest by itself sin
e stati
 networks are su�
ient to perform 
onne
tivity

and stati
 IR drop analysis for SoC devi
es like dis
ussed in Se
tion 1.2. The

extension to dynami
 networks is treated in Se
tion 4.3. For ea
h se
tion

results and example test 
ases are provided.

4.1 Problem statement

In the 
ontext of linear passive networks thermal noise (also known as Gaus-

sian or white noise) is the most relevant intrinsi
 noise 
ontribution. It results

in a small �u
tuation of voltage and 
urrent at the ports of a sour
e-free pas-

sive devi
e. This phenomenon was predi
ted by A. Einstein in 1905 [158℄ as a


onsequen
e of the Brownian motion of free ele
trons inside a pie
e of metal

in thermal equilibrium. Then, it was �rst observed by Johnson in 1928 [159℄

and explained by Nyquist the same year in [160℄.

Physi
ally, white noise is due to the random thermal motion of free ele
-

trons inside a pie
e of 
ondu
tive material whi
h leads to temporary agglom-

eration of 
arriers. At ma
ros
opi
 level it implies a �oating (in magnitude

and polarity) potential di�eren
e between two 
ondu
tor ends. In a physi
al

resistor this is per
eived as a �u
tuation in the ele
tri
al 
urrent (if the resis-

tor is in a 
losed loop) or in the ele
tri
al voltage a
ross its terminals (if the

resistor is open-
ir
uited). In both 
ases the Dire
t Current (DC) 
omponent

of the �u
tuation is zero.

In [160℄ Nyquist demonstrated that for linear resistan
es in thermal equi-

librium at temperature T , the 
urrent or voltage �u
tuations are quite in-

dependent of the 
ondu
tion me
hanism, type of material and shape and

geometry of the resistor. The generated thermal noise depends ex
lusively

upon the value of the resistan
e and its temperature. This result is known

as Nyquist's theorem and 
an be written as

V̄ 2
n (ω) = 4KbTR , (4.1)

with ω = 2πf , Kb = 1.38065 10−23J/K (Boltzmann 
onstant), resistor value

R and T temperature expressed in Kelvin. V̄n is the noise voltage spe
tral

density and is measured in V/
√
Hz. A dual result holds for the 
urrent, i.e.

Ī2n(ω) = 4KbTG , (4.2)

where G = 1/R is the 
ondu
tan
e.

Two equivalent 
ir
uit models for a noisy resistor follow from (4.1) and (4.2):

• Thevenin model: 
omposed by a noiseless resistor in series with a noise

voltage sour
e based on (4.1);
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Norton model

Figure 4.1: Thevenin and Norton equivalent 
ir
uits for a noisy resistor.

1/7Ω

1/2Ω

1/2Ω

P1 P2

Figure 4.2: Simple 2-port resistive 
ir
uit.

• Norton model: 
omposed by a noiseless 
ondu
tan
e in parallel with a

noise 
urrent sour
e based on (4.2).

Figure 4.1 depi
ts Thevenin and Norton equivalent 
ir
uits for a noisy resis-

tor.

The noise analysis on a passive network 
an be easily performed relying

on the equivalent 
ir
uits depi
ted in Figure 4.1. As an example 
onsider the

2-port resistive 
ir
uit in Figure 4.2. Noise analysis is 
ondu
ted on the equiv-

alent 
ir
uit in Figure 4.3, where ea
h noisy resistor was substituted with the

equivalent Thevenin model. To further simplify 
al
ulations it is assumed

that resistor noise sour
es are un
orrelated (statisti
ally independent, a 
on-

dition that is veri�ed in pra
ti
e). The output noise voltage spe
tral density

vo on port 2 is evaluated given the input voltage vin on port 1. Shorting the

�rst resistor and its noise sour
e, using linear superposition it follows

v2o =

(
1/2

1/2 + 1/2

)
2KbT︸ ︷︷ ︸
v2n2

+

(
1/2

1/2 + 1/2

)
2KbT︸ ︷︷ ︸
v2n3

= KbT , (4.3)

for T = 300K the voltage noise spe
tral density is

vo = 6.43e−11V/
√
Hz . (4.4)
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+−vn1

1/7Ω

1/2Ω

+−

vn2

+−vn3

1/2Ω

vin vo

Figure 4.3: Equivalent 
ir
uit for the noise analysis of the simple 2-port

resistive 
ir
uit in Figure 4.2.

+
−9i1

+
−−2i2

i1 o1

+
−−2i1

+
−4i2

i2 o2

Figure 4.4: Equivalent 
ontrolled sour
es network for the resistive network

in Figure 4.2.

This result is veri�ed with a noise analysis in Spi
e, sin
e Spi
e uses internally

the equivalent 
ir
uits of Figure 4.1

It is well known that a resistive network is ele
tri
ally equivalent to a


ir
uit 
omposed of 
ontrolled sour
es. Given the 
ondu
tan
e matrix for

the resistive network in Figure 4.2

Ge1 =

[
9 −2
−2 4

]
(4.5)

an equivalent 
ir
uit solely 
omposed of 
ontrolled sour
es is depi
ted in

Figure 4.4. Sin
e for 
ontrolled sour
es there does not exist an equivalent

noise model, the network in Figure 4.4 is noiseless. Indeed performing the

noise analysis in Spi
e leads to zero voltage and 
urrent noise spe
tral densi-

ties. Therefore, di�erent 
ir
uit realizations that are equivalent in the input-

output responses are not equivalent for what 
on
ern the noise analysis. Su
h
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an issue motivates the investigation of a noise-
ompliant network synthesis.

As it will be further explained in Se
tion 4.2 and 4.3, in order to obtain

a noise-
ompliant synthesis, 
ontrolled sour
es 
an only be used to realize

noiseless (lossless) 
omponents.

4.2 Stati
 network synthesis

Stati
 networks are used to perform 
onne
tivity analysis and stati
 IR drop

veri�
ation for Power Distribution Networks (PDNs). As dis
ussed in Se
-

tion 1.2, the design of PDNs is be
oming more and more 
umbersome due to

low power 
onstraints. The availability of a noise 
ompliant stati
 network

is therefore of paramount importan
e in order to asses Power Integrity.

In the following, some basi
 notions related with the des
ription of stati


networks are provided in Se
tion 4.2.1, then the synthesis with a prede�ned

network topology is 
onsidered in Se
tion 4.2.2, and in Se
tion 4.2.3 the


anoni
al RT (Resistors and ideal Transformers) synthesis is summarized.

4.2.1 Basi
 assumptions

Some fundamental results from network theory [109℄ are brie�y summarized

in the following sin
e they are needed to ta
kle the stati
 synthesis problem.

In parti
ular: matrix des
ription of stati
 networks, existen
e of ea
h rep-

resentation and passivity and re
ipro
ity 
onditions are 
onsidered. For an

exhaustive presentation of those topi
s refer to [161℄.

Several equivalent (when they exist) representations 
an be used to de-

s
ribe a stati
 network. Applying Kir
hho� 
urrent and voltage laws network

variables 
an be ordered (and weighted, in the 
ase of s
attering parameters)

obtaining: impedan
eR, admittan
eG, hybrid H and s
attering S matri
es.

It was demonstrated in [109℄ that for passive networks it is always possible to


ombine voltages and 
urrents in order to obtain a hybrid matrix (a similar

result hold for the S
attering matrix 
ase dealing with power waves). Casting

networks des
ription in matrix form greatly simpli�es analysis and synthesis

methods. Indeed passivity and re
ipro
ity 
onditions, whi
h are the 
on-

straint of interest here, 
an be summarized in Table 4.1. To further simplify

the notation for the 
hara
terization of re
ipro
ity in the Hybrid 
ase the

external signature matrix Sext ∈ RP×P
is introdu
ed. In general, signature

matri
es [162℄ are diagonal matri
es with 1 or −1 on the main diagonal. In

the parti
ular 
ase of hybrid matri
es the external signature matrix is de�ned
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Table 4.1: Summary of passivity and re
ipro
ity 
onditions for stati
 network

matrix representations. In the re
ipro
ity 
ondition for the Hybrid matrix

the external signature matrix Sext de�ned by (4.6) is used. In the passivity


onditions, zero equality means that the network is lossless, i.e. does not

absorb a
tive power.

Type R G H S

Passivity R+RT � 0 G+GT � 0 H+HT � 0 S+ ST � 2I
Re
ipro
ity R = RT G = GT SextH = HTSext S = ST

as

Sexti,i =

{
1, port i is voltage (
urrent) 
ontrolled
−1, port i is 
urrent (voltage) 
ontrolled

, (4.6)

From a mathemati
al perspe
tive, the 
ir
uit synthesis of a generi
 (not

ne
essarily asso
iated to a physi
al 
ir
uit) matrix N ∈ RM×N
, given N in-

put variables i and M outputs o 
an always be performed using 
ontrolled

sour
es. Despite its simpli
ity, su
h an approa
h is the 
ore idea behind all

the stati
 (and also dynami
) synthesis methods presented in the following

se
tions. Due to its relevan
e, a small example is provided to further 
lar-

ify the previous statement: 
onsider a generi
 matrix N ∈ RM×N
and the

resulting system of equations





o1 = n11i1 + . . .+ n1nin
.

.

.

om = nm1i1 + . . .+ nmnin

(4.7)

assuming that the inputs i are 
urrents and the outputs o are voltages, a

straightforward synthesis is depi
ted in Figure 4.5. Although simple, su
h

approa
h produ
es a 
anoni
al synthesis for the system (4.7) whi
h exa
tly

reprodu
es the system in (4.7). Similar realizations are straightforward if

(i, o) are (voltages, 
urrents). At this point the question is whether a generi


matrix N des
ribes a stable, passive and noise 
ompliant network (passive

and stable) and how to preserve those properties during a synthesis pro
ess.

The list of properties that should be 
onsidered when dealing with the

synthesis of a linear 
ir
uit is provided here:

• 
anoni
ity: a synthesis is 
anoni
al when it involves the minimum pos-

sible number of primitive network elements to synthesize all the systems
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+
−i1n11

.

.

.

+
−innm1

i1 o1 . . .

+
−i1n1n

.

.

.

+
−innmn

in on

Figure 4.5: Dire
t synthesis for the system of equations (4.7).

des
ribing a parti
ular set of networks

2

. The 
anoni
al property is of

paramount importan
e to keep under 
ontrol the 
omplexity of the

network resulting from the synthesis pro
ess.

• passivity: is de�ned as the in
apability of the network to provide a

power gain. Passivity 
onditions for stati
 network des
riptions are

summarized in Table 4.1. A linear network that does not absorb a
tive

power is lossless.

• re
ipro
ity: a P -port 
ir
uit is re
ipro
al if for any pair of voltages and

urrents at 
ir
uit ports, i.e. {va, ia} ∈ RP

and {vb, ib} ∈ RP
that

satisfy the 
ir
uit 
hara
teristi
s, it holds

iTb va = ia
Tvb .

All linear multi-port 
ir
uits 
omposed only by RLCT elements are

re
ipro
al [163, 164℄. Also for this property, a generi
 synthesis based on


ontrolled sour
es must meet the 
onditions listed in Table 4.1 in order

to preserve re
ipro
ity. A 
ir
uit only 
omposed by RLCT elements

will be 
alled purely-re
ipro
al in the following.

• topology-based: the primitive network elements involved by the syn-

thesis pro
edure 
an be 
onne
ted a

ording to a spe
i�
 topology. The

most 
ommon 
on�gurations are the Π and T , see Figure 4.6. As dis-

ussed in Se
tion 4.2.2 it is not possible in general to obtain a passive

2

Please note that in the 
lassi
 textbooks of network theory [109℄ 
anoni
al syntheses are


hara
terized 
onsidering the number of independent variables involved by the synthesis.

Instead in this work the number of primitive network elements is 
onsidered as the metri


of 
anoni
al de�nition begin more intuitive and immediate from a pra
ti
al point of view.
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and re
ipro
al synthesis with the added 
onstraint of topology. Condi-

tions under whi
h a �xed topology passive and re
ipro
al synthesis is

possible are dis
ussed in Se
tion 4.2.2 as well.

• noise 
omplian
e: this is a more sensitive property sin
e it is stri
tly

related to the 
omponents used to perform the synthesis. Due to the

fa
t that 
ontrolled sour
es are by de�nition noiseless 
omponents, the

only way to a
hieve a noise 
ompliant synthesis 
onsist in the use of

resistors. One possible approa
h 
onsists in the sele
tion of a parti
ular

topology leading to a pure resistive network synthesis. Unfortunately

the latter method 
an not be used in general, sin
e as explained in

more details in Se
tion 4.2.2, topology 
onstraints may lead to non-

physi
al networks (due to the need of negative resistors). In the general


ase a synthesis based on positive Resistors and ideal Transformers

(RT) is the noise 
ompliant synthesis of 
hoi
e for stati
 networks, see

Se
tion 4.2.3 for details, sin
e it extra
ts a purely resistive sub-network

(having only positive resistors) that 
onne
ted to a proper lossless one

realizes the desired 
ir
uit. In this way, the noise asso
iated to the

resistive subnetwork is not altered by the lossless one (whi
h 
an also be

non-re
ipro
al in general) thus produ
ing a noise-
ompliant synthesis

by 
onstru
tion.

4.2.2 Fixed topology

Several years of resear
h and 
onsiderable e�ort were spent in order to per-

form the synthesis of a stati
 network with a �xed topology [165, 166, 167℄ to

avoid the need of ideal transformers like in the synthesis of Belevit
h [109℄.

The �nal and negative answer to the general feasibility of a passive and re
ip-

ro
al network synthesis that does not involve ideal transformers was provided

only in more re
ent times by M
Millan [156℄.

Su�
ient and ne
essary 
onditions for a pure resistive synthesis based

on an admittan
e (similar results hold for the impedan
e) matrix G where

already 
onsidered in [109℄

• dominant matrix: the admittan
e G = GT ∈ RP×P
is dominant i�

gi,i −
P∑

j=1
j 6=i

|gi,j| ≥ 0, (4.8)

• superdominant matrix: a dominant matrix satisfying gi,j < 0 ∀ i 6= j
is 
alled superdominant [109℄.
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g̃1,1=7S

g̃1,2=g̃2,1=2S

g̃2,2=2S

P1 P2

Figure 4.6: Π topology synthesis for the impedan
e matrix Ge1 (4.11) based

on (4.9) and (4.10).

A real symmetri
 superdominant admittan
e matrix G admits a pure resis-

tive synthesis with Π topology. The admittan
es g̃ between nodes i and j

ome dire
tly from the admittan
e matrix G a

ording to

g̃i,j = −gi,j (4.9)

g̃i,i =
P∑

j=1

gi,j. (4.10)

As an example 
onsider the simple admittan
e matrix Ge1 for a 2-port net-

work

Ge1 =

[
9 −2
−2 4

]
. (4.11)

Ge1 is superdominant (positive de�nite). As a 
onsequen
e the dire
t ap-

pli
ation of (4.9) and (4.10) leads the Π topology synthesis depi
ted in Fig-

ure 4.6. Although superdominant matri
es are positive de�nite, i.e. passive

by 
onstru
tion, the opposite is not true, thus redu
ing the appli
ability of

this synthesis methodology and requiring the use of ideal transformers dis-


ussed in the following Se
tion 4.3. A small example demonstrates that it

is not di�
ult to 
onstru
t a symmetri
 positive de�nite matrix that is not

dominant. Consider the simple 2× 2 symmetri
 positive de�nite matrix

Ge2 =

[
9 −5
−5 4

]
(4.12)

applying (4.9) if follows g̃2,2 = −1, thus a Π topology synthesis based only on

positive resistors is not feasible for su
h a simple 
ase, and ideal transformers

are needed like dis
ussed in the following se
tion.
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i1
+

−

v1

i2
+

−

v2

1 : n

Figure 4.7: Ideal transformer 
ir
uit symbol. The �rst port on the left side is


alled the primary port while the se
ond port on the right is 
alled se
ondary

port. The 
oupling fa
tor n is de�ned as the ratio between the number of

turns on the primary N1 and on the se
ondary N2 port.

i1

−ni2
+

−

v1

+
−

nv1

i2

+

−

v2

Figure 4.8: Equivalent 
ir
uit for the 2-port ideal transformer based on equa-

tions (4.13)-(4.14).

4.2.3 Synthesis with Resistors and ideal Transformers

To over
ome the intrinsi
 limitations of the purely resistive synthesis of Se
-

tion 4.2.2, Belevit
h introdu
ed in [109℄ the use of multiport ideal trans-

formers. It was demonstrated in [156℄ that ideal transformers, together with

resistors, indu
tors and 
apa
itors, form the smallest set of network elements

needed for the synthesis of passive re
ipro
al linear systems. The restri
tion

to the stati
 
ase further limits this set to ideal transformers and positive

resistors only. The 
onstitutive equations for a 2-port ideal transformer are

i1 + ni2 = 0 (4.13)

v2 = nv1, (4.14)

and the 
omponent symbol is depi
ted in Figure 4.7. One possible 
ir
uit

equivalent for the ideal transformer based on (4.13)-(4.14) is depi
ted in Fig-

ure 4.8. It is important to note that the total instantaneous power absorbed

by an ideal transformer is zero [109℄, sin
e applying the 
onstitutive equa-

tions (4.13)-(4.14) for the two port 
ase leads to

i1v1 + i2v2 = 0. (4.15)
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The extension of this result to the multi-port 
ase is straightforward [109℄.

The Hybrid matrix asso
iated to a multi-port transformer, having R se
-

ondary ports and P primary ports, reads

[
ir
vp

]
=

[
0 −N
NT 0

]

︸ ︷︷ ︸
Ht

[
vr

ip

]
(4.16)

where N ∈ RR×P

olle
ts the turns ratio of the multi-port ideal transformer.

Using the results in Table 4.1 trivially 
on�rms that Ht +HT
t = 0, i.e. the

multi-port ideal transformer is lossless.

Belevit
h demonstrated in [109℄ that the synthesis of a passive re
ipro-


al impedan
e (admittan
e) matrix is equivalent to the synthesis of an ideal

multi-port transformer whose se
ondary ports are 
losed on positive 
ondu
-

tan
es (resistors). De�ne Gd = diag(Gdi) > 0 as a matrix 
olle
ting some

positive 
ondu
tan
es Gdi on its main diagonal, with i = 1, . . . , R; 
losing
the R se
ondary ports of the ideal multi-port transformer des
ribed by equa-

tion (4.16) on Gd imposes the relation

ir = −Gdvr , (4.17)

whose substitution in (4.16) reads

[
0

vp

]
=

[
Gd −N
NT 0

] [
vr

ip

]
. (4.18)

Sin
e Gd has full rank, elimination of vr from (4.18) leads to vp = Zip, where

Z = NTG−1
d N , (4.19)

and the dimension R of Gd is the rank of Z. An equivalent result to (4.19)

holds for the admittan
e matrix 
ase terminating the P ports on positive

resistors Rd

Y = NGdN
T . (4.20)

From a mathemati
al perspe
tive, equation (4.19) states that the synthe-

sis of a symmetri
 positive de�nite impedan
e matrix Z ∈ RP×P
is equivalent

to the synthesis of a multi-port ideal transformer with turns ratio matrix

N ∈ RR×P
and se
ondary ports 
losed on the R positive resistors asso
i-

ated to the diagonal elements of G−1
d . Therefore the synthesis problem is

now equivalent to a matrix de
omposition. The most 
onvenient de
ompo-

sition for full-rank symmetri
 positive de�nite matri
es is the LDL de
om-

position [111℄ (basi
ally an extension of the widespread Cholesky fa
toriza-

tion), while for the low-rank 
ase a modi�
ation of LDL de
omposition is

preferred [168℄.
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On
e the de
omposition (4.19) is performed on Z, the synthesis is straight-

forward: the turns ratio matrix N asso
iated to the multi-port ideal trans-

former is synthesized using 
ontrolled sour
es as explained in Se
tion 4.2.1

(like in Figure 4.5), while the positive elements on the main diagonal of G−1
d

are the resistors 
losing the R se
ondary ports of the ideal multi-port trans-

former. Note that in the 
ase of low-rank impedan
e or admittan
e matri
es,

R is less than P .
The RT (Resistors and ideal Transformers) synthesis resulting from the

appli
ation of (4.19) is noise 
ompliant by 
onstru
tion. Indeed the multi-

port ideal transformer, synthesized using 
ontrolled sour
es, results into a

lossless network that does not a�e
t the noise produ
ed by the positive re-

sistors pla
ed at its se
ondary ports. Sin
e the only noisy elements involved

in the RT synthesis are positive resistors, the synthesis is noise 
ompliant.

This result was veri�ed in pra
ti
e relying on the automated noise testing

pro
edure dis
ussed in Se
tion 4.2.4.

The RT synthesis is now applied to the admittan
e matrixGe2 from (4.12).

For this example the pure resistive synthesis with �xed topology failed in

Se
tion 4.2.2 due to the need of negative resistors. A

ording to the matrix

de
omposition (4.20), the LDL fa
torization is performed on Ge2 leading to

Ge2 =

[
1 0
−5

9
1

]

︸ ︷︷ ︸
N

[
9 0
0 11

9

]

︸ ︷︷ ︸
Gd

[
1 −5

9

0 1

]

︸ ︷︷ ︸
N

T

(4.21)

where the 
ontributions from (4.20) are highlighted. The resulting synthesis

for this example is depi
ted in Figure 4.9. Noise 
omplian
e for this simple


ase 
an be veri�ed analyti
ally relying on the results of Se
tion 4.1 or using

a Spi
e simulation, as in Se
tion 4.2.4. An automated pro
edure for the

validation of RT synthesis is dis
ussed in Se
tion 4.2.4.

4.2.4 Stati
 synthesis results

The automated test pro
edure des
ribed in this se
tion is fo
used on

• Synthesis a

ura
y: DC analysis results are 
ompared using the admit-

tan
e matrix (similar results hold for the impedan
e) and the asso
iated

RT synthesis, both in Spi
e. Of parti
ular relevan
e are the 
ases in

whi
h the admittan
e matrix is rank de�
ient, be
ause for su
h 
ases

a low-rank matrix de
omposition is used.

• Noise 
omplian
e: like for the DC analysis, the admittan
e matrix and

the resulting RT synthesis are used in Spi
e to perform the stati
 noise

analysis.
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Figure 4.9: Resistors ideal Transformers (RT) synthesis for the admittan
e

matrix Ge2 based on the LDL fa
torization (4.21).

For the sake of 
ompleteness several test 
ases are needed. Sin
e the

availability of many real test 
ases is not feasible in a short amount of time,

an automated pro
edure for the 
reation of semi-positive de�nite impedan
e

or admittan
e matri
es was 
reated based on the following methodologies:

• random matrix: starting from a pseudo random matrix, re
ipro
ity and

positive de�nitiveness are imposed (a
ting dire
tly on the eigenvalues

of the symmetrized random matrix);

• greatest 
ommon divisor matri
es: obtained from Matlab

R©'s fun
-

tion gallery (option: g
dmat). Those matri
es are symmetri
 positive

semide�nite by 
onstru
tion;

• symmetri
, ill-
onditioned Toeplitz matri
es: obtained fromMatlab

R©'s

fun
tion gallery (options: prolate and w ∈ [0, 0.5]). Those matri
es are

low-rank and symmetri
 positive de�nite.

The number of ports for ea
h 
ase is sele
ted randomly within a spe
i�ed

range, i.e. P ∈ [1, 50].
Two are the main steps of the proposed automated pro
edure

1. DC analysis: using unitary inputs, in a

ordan
e to the matrix rep-

resentation used, i.e. impedan
e or admittan
e, the DC analysis is

performed in Spi
e using the impedan
e/admittan
e matrix and the
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Table 4.2: Sele
tion of results obtained using the proposed automati
 pro
e-

dure. ǫDC is the error on the DC analysis de�ned by (4.22), while max ǫn is

the maximum on all the errors ǫn, de�ned by (4.23), obtained from the stati


noise analysis related to a spe
i�
 test 
ase.

Test P ǫDC max ǫn

1 4 1e-12 1e-13

2 8 2e-12 1e-13

3 20 8e-13 2e-13

asso
iated Belevit
h's (RT) synthesis. The results of the DC analysis

based on the dire
t usage of the admittan
e/impedan
e matrix are de-

noted by yd, while the results obtained from the synthesized netlist are

yb. The error metri
 used for the DC analysis is

ǫDC = |yd − yb| ; (4.22)

2. Stati
 noise analysis: 
onsidering all the possible 
ombinations of input-

output ports, voltage and 
urrent spe
tral densities are evaluated in

Spi
e, using the impedan
e/admittan
e matrix and the asso
iated Bele-

vit
h's (RT) synthesis. The results of the noise analysis obtained from

Spi
e using the admittan
e/impedan
e matrix are denoted by νd, while
the results obtained from the synthesized netlist are νb. The error met-

ri
 used for the DC analysis is

ǫn =
|νd − νb|
|νd|

, (4.23)

where the fra
tion is always well posed sin
e noiseless 
ases are not


onsidered, i.e. νd 6= 0 by 
onstru
tion.

A small subset of the results obtained with the automati
 veri�
ation strategy

are proposed here listed in Table 4.2. Similar results were obtained on a large

set of more than one thousand test 
ases.

4.3 Dynami
 network synthesis

Several te
hniques are available for the synthesis of dynami
 networks asso-


iated to state-spa
e models [119℄. The three most e�
ient and widespread

methods are: dire
t state-spa
e pro
edure, des
ribed in Se
tion 4.3.2, that

is based on the immediate 
onversion of state-spa
e equations into a 
ir-


uit [169℄; Darlington's resistan
e extra
tion, presented in 4.3.4 whi
h is an



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 117

extension of Resistors ideal Transformers (RT) stati
 synthesis from Se
-

tion 4.2; Youla's rea
tan
e extra
tion [154℄, dis
ussed in Se
tion 4.3.3, whi
h

is a 
lever reformulation of Darlington's resistan
e extra
tion. Results and


omplexity tables are summarized in Se
tion 4.3.5 for all synthesis methods,

des
ribed below.

The main 
ontributions of this 
hapter are: presentation of well known

synthesis methods fo
using on 
omplexity and noise 
omplian
e in order to


larify a topi
 not adequately 
overed in 
lassi
 books of network theory;

and thus introdu
tion of noise preserving sparsi�
ation te
hniques for ea
h

synthesis method aimed at redu
ing the 
omplexity of the synthesis while

preserving the desired physi
al properties.

Before des
ribing in more details the synthesis of dynami
 networks, some

preliminary results 
on
erning state-spa
e models of passive devi
es are sum-

marized in Se
tion 4.3.1.

4.3.1 Preliminaries on state-spa
e models

Some basi
 results 
on
erning state-spa
e models are summarized here sin
e

they are needed for the presentation of dynami
 synthesis methods in Se
-

tions 4.3.2 4.3.3 and 4.3.4. In this se
tion minimal state-spa
e realizations

and their 
anoni
al forms are dis
ussed, together with re
ipro
ity and pas-

sivity 
onditions.

As already mentioned in Se
tion 1.3, it is 
ommon pra
ti
e to model

re
ipro
al passive 
ir
uit blo
ks via frequen
y dependent network parameters

(s
attering or hybrid). Using standard te
hniques, like those presented in

Chapter 2, a mathemati
al model is extra
ted and 
onverted to state-spa
e

form (2.46), repeated here for reader 
onvenien
e

ẋ(t) = Ax(t) +Bu(t), (4.24)

y(t) = Cx(t) +Du(t), (4.25)

with A ∈ RN×N
, B ∈ RN×P

, C ∈ RP×N
and D ∈ RP×P

. This is the starting

point for the synthesis algorithms 
onsidered in this Chapter.

In the following, models are assumed without loss of generality to be in

the impedan
e input-output representation, i.e.

Z(s) = C(sI−A)−1B+D↔
(

A B

C D

)
, (4.26)

where s is the 
omplex frequen
y (Lapla
e) variable.
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It is worth noting that the 
omplexity of dynami
 network synthesis is

dire
tly related with the dynami
 order of the model. In parti
ular, a ne
-

essary but not su�
ient 
ondition to have a 
anoni
al

3

synthesis is that the

state-spa
e model must have M
Millan degree [119℄ of Z(s) equal to N (the

size of A). This is equivalent to state that the state-spa
e realization (4.26)

is minimal, i.e. the system is both 
ontrollable and observable.

Besides minimality, also the stru
ture of state-spa
e matri
es has a dire
t

impa
t on the number of elements required by the synthesis. State-spa
e

realizations are not unique. Two minimal state-spa
e realizations of the same

system (
A B

C D

)
↔
(

Ã B̃

C̃ D̃

)
(4.27)

are equivalent to ea
h other through a 
hange of basis in the state spa
e [119℄,

applied though a similarity transformation as

Ã = T−1AT, B̃ = T−1B, (4.28)

C̃ = CT, D̃ = D, (4.29)

with T ∈ RN×N
invertible. In parti
ular, Gilbert in [170℄ proposed a mini-

mal state-spa
e realization that is relevant for the dire
t synthesis dis
ussed

in Se
tion 4.3. Detail on how to 
onstru
t Gilbert's realization 
an be found

in [126℄. It is worth noting here that su
h realization presents a sparse state-

spa
e matrix A with the following blo
k-diagonal stru
ture

Ai,j =





pc, i = j = c[
Re{pl} Im{pl}
−Im{pl} Re{pl}

]
i = l, l + 1 j = l, l + 1

(4.30)

where {pl, pc} ∈ λ(A) are the eigenvalues (real poles pc, and 
omplex poles

pl) asso
iated to the minimal state-spa
e model. Note that Gilbert's realiza-

tion 
an be derived i� all the eigenvalues λ(A) have algebrai
 multipli
ity

one [126℄. This 
ondition is imposed by 
onstru
tion in the identi�
ation

methods des
ribed in Chapter 2.

Besides the 
omplexity 
onstraint, also physi
al 
onstraints must be taken

into 
onsideration when dealing with the state-spa
e model asso
iated to a

real 
ir
uit. It is a well known result of network theory [161℄ that all RLCT

linear networks are re
ipro
al. As a 
onsequen
e re
ipro
ity is a physi
al

3

Note that Anderson in [119℄ demonstrated that it is not possible to synthesize a

re
ipro
al dynami
 network attaining both the minimum number of dynami
 and resistive

elements.
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property of interest that should be preserved by a well posed synthesis pro-


ess. Su
h a property has a dire
t impa
t on the stru
ture of the state-spa
e

model. A square system (4.24)-(4.25) is re
ipro
al with respe
t to the signa-

ture matrix (4.6) if and only if [171℄ its hybrid transfer fun
tion H(s) is sign
symmetri
 with respe
t to Sext (4.6), i.e.

SextH(s) = H(s)TSext . (4.31)

For the impedan
e (admittan
e) 
ase 
ondition (4.31) simpli�es to

Z(s) = Z(s)T . (4.32)

It is 
lear that this is a straightforward extension of the de�nition of re
i-

pro
ity that was given for the stati
 
ase in Se
tion 4.2.1. In addition to


onditions (4.31)-(4.32), it 
an be demonstrated [171℄ that for re
ipro
al

state-spa
e models there exists a symmetri
 matrix Π = ΠT ∈ RN×N
su
h

that {
AΠ = ΠAT ,
B = ΠCTSext.

(4.33)

IfΠ = Sint with Sint = blkdiag(INl
,−INc

) ∈ RN×N
internal signature matrix,

then the state-spa
e model (4.25) is 
alled internally re
ipro
al. Two strate-

gies are available to evaluate matrix Π (4.33) for a re
ipro
al state-spa
e

model: solving dire
tly the system (4.33) via optimization pa
kages like Se-

DuMi [124℄, or by de�ning the similarity transformation matrix T (4.28)

relating the state-spa
e model and its transposed [119℄.

Another physi
al 
onstraint of paramount importan
e for linear mod-

els (4.25) is passivity. The general frequen
y-domain passivity 
onditions

dis
ussed in Se
tion 2.5 
an be transformed into purely algebrai
 ones [103℄


alled Positive Real Lemma (hybrid 
ase) and Bounded Real Lemma (s
atter-

ing 
ase), also know as Kalman-Yakubovi
h-Popov (KYP) lemma. For the

sake of 
larity and reader 
onvenien
e passivity and re
ipro
ity 
onditions

are summarized in Table 4.3. A real square state-spa
e model (4.25)-(4.24),

based on hybrid or s
attering representation, is passive if and only if the


orresponding Linear Matrix Inequality (LMI) in the 
olumn Passive admits

a symmetri
 positive de�nite solution matrix P. A similar result holds for

re
ipro
ity 
onsidering the 
olumn Re
ipro
al and the solution matrix Π. As

it will be more 
lear in (4.3.3) and (4.3.4), di�erent solution matri
es Π and

P obtained for the 
ondition in Table 4.3 will lead to di�erent Youla's and

Darlington's syntheses.

In the following se
tions the synthesis algorithms will be introdu
ed to-

gether with simple explanatory examples. Results and a 
omparative study

of 
omplexity for all the synthesis methods 
an be found in Se
tion (4.3.5).
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Table 4.3: Summary of passivity and re
ipro
ity 
onditions for dynami
 net-

works representations. In the passivity 
onditions equality to zero means

that the network is lossless, i.e. does not absorb instantaneous/a
tive power.

System Re
ipro
al Passive

H(s)
hybrid

{
AΠ = ΠAT

B = ΠCTSext

[
ATP+PA PB−CT

BTP−C −D−DT

]
� 0

S(s)
scattering

{
AΠ = ΠAT

B = ΠCT

[
ATP+PA+CTC PB+CTD

BTP+DTC DTD− IP

]
� 0

with Π = ΠT ∈ RN×N P = PT ≻ 0,P ∈ RN×N

internal if Π = Sint =

[
INl

0

0 −INc

]
P = IN

4.3.2 Dire
t state-spa
e synthesis

The dynami
 synthesis method presented in this se
tion 
an be 
onsidered

as the extension of the dire
t synthesis method introdu
ed in Se
tion 4.2.1

for the stati
 
ase. The basi
 idea relies on a mere �translation� of the state-

spa
e equations into an equivalent ele
tri
 network. It was proposed by [169℄

in the 
ontext of Model Order Redu
tion te
hniques in order to obtain a

low-
omplexity synthesis, in terms of number of primitive network elements,

for redu
ed order state-spa
e models. As su
h this synthesis algorithm found

a great di�usion and it is 
ommonly used in pra
ti
e.

Beside the low 
omplexity feature, another major bene�t is the simpli
ity

of the algorithm itself. Indeed, 
onsidering the state-spa
e model asso
iated

to an impedan
e matrix

ẋ(t) = Ax(t) +Bi(t) , (4.34)

v(t) = Cx(t) +Di(t) , (4.35)

with input ve
tor i ∈ RP
and output ve
tor v ∈ RP

, a dire
t 
onversion into

an equivalent network is straightforward and 
an be divided in two main

steps

1. state synthesis: 
onsider a single row l of (4.34)

ẋl(t) =
N∑

j=1

al,jxj(t) +
P∑

k=1

bl,kik(t) . (4.36)
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Colle
ting on the left side of (4.36) all the elements related with the

state xl(t) it follows

ẋl(t)− al,lxl(t) =

N∑

j=1
j 6=l

al,jxj(t) +

P∑

k=1

bl,kik(t) . (4.37)

The left-hand side of (4.37) 
an be seen as the parallel of a unitary


apa
itor and a resistor of value −1/al,l to whom a voltage xl(t) is ap-
plied. The resulting 
urrent must equal the right-hand side of (4.37),

whi
h 
an then be interpreted as the parallel inter
onne
tion of 
on-

trolled 
urrent sour
es, where the 
ontrol variables are the states xj(t)
and the inputs ik(t). The sub-network asso
iated to (4.37) is depi
ted

in Figure (4.10). Please note that resistors −1/al,l ∀ l will never be

negative

4

, sin
e the poles of (4.34) are in R−
by 
onstru
tion as a 
on-

sequen
e of model stability [62℄;

2. output equation synthesis: in a similar fashion to the previous synthesis

step, 
onsider a single row m of (4.35), i.e.

vm(t) =
N∑

j=1

cm,jxj +
P∑

k=1

dm,kik(t) (4.38)

with m, k = 1, . . . , P and j = 1, . . . , N . Sin
e the output of (4.35)

has voltage units, the right side of (4.38) is equivalent to a series in-

ter
onne
tion of 
ontrolled voltage sour
es, where the 
ontrol variables

are the states xj(t) and the inputs ik(t). The sub-network asso
iated

to (4.38) is depi
ted in Figure (4.11).

Performing the two steps above for ea
h row of (4.34) and (4.35) 
on
ludes

the synthesis pro
ess. Sin
e the network elements involved in the synthesis

are only Resistors, Capa
itors and Controlled Sour
es, in the following this

synthesis will be also de�ned as RCCS.

For what 
on
erns the 
omplexity of the resulting network, from equa-

tions (4.37) (4.38) it is 
lear how the number of elements used by the RCCS

synthesis is dire
tly related to the stru
ture of the state-spa
e matri
es

in (4.34)-(4.35). Consequently a low 
omplexity synthesis 
an be obtained


onverting a generi
 state-spa
e realization into the Gilbert 
anoni
al form

that was introdu
ed in 4.3.1. This way the number of primitive network

elements will s
ale as O (NP 2).

4

It is always possible to transform the negative de�nite state-spa
e matrix A into an

equivalent one having negative elements on the main diagonal.
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+

−

xl 1F − 1
al,l

al,1x1 al,NxN bl,1i1 bl,P iP

Figure 4.10: Dire
t states synthesis based on equation (4.37).

.

.

.

+
−cm,jxj

.

.

.

+
−dm,kik

.

.

.

im vm

Figure 4.11: Dire
t ports synthesis based on equation (4.38).

The main drawba
k of this method is the la
k of noise-
omplian
e. As

it was dis
ussed in Se
tion 4.2.1 for the stati
 synthesis 
ase, the use of


ontrolled sour
es in the synthesis pro
ess demands parti
ular 
are, sin
e

those 
omponents are not equipped with a noise model in standard Spi
e-

based solvers. A simple example in the following se
tion will further 
larify

this issue.

R R

C C

+−v1

+

−

v0

Figure 4.12: RC ladder 
ir
uit.
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Noise 
omplian
e issue

In order to further 
larify the la
k of noise 
omplian
e in the dire
t synthesis

method presented in Se
tion 4.3.2, the simple RC ladder network depi
ted in

Figure 4.12 will be analysed here. The state-spa
e model asso
iated to the


ir
uit in Figure 4.12 will be synthesized using the RCCS algorithm, then the

analyti
 expression of the output noise spe
tral density will be evaluated for

both 
ir
uits by means of standard te
hniques [172℄. Moreover, noise analysis

results will be 
ompared with Spi
e simulations for the sake of 
ompleteness.

First, the analyti
 expression of the output voltage spe
tral density is


onsidered for the RC ladder network in Figure 4.12. As explained in Se
-

tion 4.1, noise analysis is based on the substitution of noisy resistors with the

equivalent Norton/Thevenin noise model; the resulting network is depi
ted

in Figure 4.13. Considering now the KCL at two nodes results

{
G(V1 − Vn1

) + sCV1 +G(V1 + Vn2
− Vo) = 0

sCVo +G[Vo − (V1 + Vn2
)] = 0

(4.39)

From the se
ond row it follows

(G+ sC)Vo −GVn2
= GV1 (4.40)

leading to

(1 + sRC)Vo − Vn2
= V1. (4.41)

Substituting now (4.41) in the se
ond row of (4.39) after simple algebrai



al
ulations reads

(1 + sRC + 2sRC + s2R2C2)Vo − Vn1
− (1 + sRC)Vn2

= 0. (4.42)

Highlighting now the 
ontributions from ea
h noise sour
e it follows

Vo =
Vn1

1 + 3RCs+ s2R2C2
+

Vn2
(1 + sRC)

1 + 3RCs+ s2R2C2
. (4.43)

with Vn1
and Vn2

statisti
ally independent. The analyti
al expression for the

voltage noise spe
tral density is obtained after straightforward 
al
ulations

substituting (4.1) in (4.43) and 
onsidering the Root Mean Square (RMS)

value

V̄ 2
o (ω) =

2 + (ωRC)2

1 + 7(ωRC)2 + (ωRC)4
. (4.44)

This result 
an be veri�ed analyti
ally 
onsidering that, by Nyquist theo-

rem (4.1)

V̄ 2
o (ω) = 4KbTRe{Zout(ω)}. (4.45)
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R

+−

Vn2 R

1
sC

1
sC+

− Vn1

+

−

v0

Figure 4.13: RC ladder 
ir
uit for the noise analysis in the Lapla
e domain:

Vn are the noise equivalent voltage sour
es (the sign is arbitrary) and R are

noiseless resistors.

In fa
t, from the 
ir
uit in Figure 4.12, the expression of Zout 
an be easily

obtained as

Zout(s) =
1
sC

R(2+sCR)
1+sCR

1
sC

+ R(2+sCR)
1+sCR

=
R(2 + sCR)

1 + 3RCs+ (RCs)2
, (4.46)

whi
h mat
hes (4.44)-(4.45) as expe
ted. The real part of Zout 
an be found


onsidering that Re{Zout(s)} = 0.5(Zout(s) + Zout(−s)), i.e.

Re{Zout(s)} = R
2− (RCs)2

[1 + (RCs)2]2 − (3RCs)2
. (4.47)

Equation (4.44) 
an be veri�ed performing the noise analysis in Spi
e for

the network in Figure 4.12. The results depi
ted in Figure 4.14 mat
h to

ma
hine pre
ision.

Now, a state-spa
e model is derived for the RC ladder network and then

synthesized ba
k to a 
ir
uit whose spe
tral noise density is evaluated ana-

lyti
ally. From standard 
al
ulations

5

the state-spa
e model, normalized by

C, in Gilbert 
anoni
al form for the RC ladder network in Figure 4.12 results

in

A =
1

R

(
p1 0
0 p2

)
, b =

(
1
1

)
, c =

(
ρ1
ρ2

)T

, (4.48)


orresponding to

Z(s) =
Rρ1

sCR− p1
+

Rρ2
sCR− p2

, (4.49)

5

For a detailed derivation of the Gilbert 
anoni
al state-spa
e form asso
iated to the

RC ladder network example see Appendix C.
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Analytic
Spice

Figure 4.14: The result of the noise analysis from Spi
e performed using

the 
ir
uit in Figure 4.12 (blue dashed line) is 
ompared with the dire
t

appli
ation of (4.44) (red 
ontinuous line).

where p1,2 are

p1,2 =
−3±

√
9− 4

4
=
−3 ±

√
5

2
(4.50)

and

ρ1,2 =
5±
√
5

10
. (4.51)

Applying now the dire
t synthesis method to the state-spa
e model (4.48)

leads to the network depi
ted in Figure 4.15. Like for the RC ladder 
ir-


uit, also for the network resulting from the dire
t synthesis of the Gilbert


anoni
al model the analyti
 expression des
ribing the output spe
tral noise

density 
an be derived using the noise analysis method des
ribed in Se
-

tion 4.1. Considering that the mean square voltage noise asso
iated to ea
h

resistor in Figure 4.16 is

v̄2ni
= 4KbT

(
−R

pi

)
, pi ∈ R−, (4.52)

it follows that the mean square voltage noise v̄2ri from ea
h sub-
ir
uit in

Figure 4.16 reads

v̄2ri = v̄2ni

(
pi

pi +RCs

)2

. (4.53)

Voltage 
ontrolled 
urrent sour
es do not a�e
t the noise, therefore the noise


ontributions v̄2ri lead to the mean square voltage output by means of the

weighted sum

v̄2o = ρ21v̄
2
r1
+ ρ22v̄

2
r2
. (4.54)
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+

−

vr1isb11 − 1
a1,1 C

+

−

vr2isb21 − 1
a2,2 C

+
−c21vr2

+
−c11vr1

is vo

Figure 4.15: Dire
t synthesis from Gilbert 
anoni
al form (4.48). Note that

the values of the resistors are positive sin
e the poles pi must be negative to
des
ribe a stable system.

+

−

vr1
− 1

a1,1

+−vn1

C

+

−

vr2
− 1

a2,2

+−vn2

C

+
−ρvr2

+
−ρvr1

is vo

Figure 4.16: Noise analysis network from Gilbert 
anoni
al form (4.48) syn-

thesis.
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Spice Gilbert

Gilbert equation

Figure 4.17: Noise analysis results 
omparison: the red 
ontinuous line is the

result from equation (4.44) (previously veri�ed via Spi
e), while the bla
k

dashed line is the result from equation (4.55), veri�ed via Spi
e using the

network in Figure 4.15 (blue 
ontinuous line).

Substituting (4.53) and (4.52) into (4.54) leads to

V̄ 2
o (ω) = 4KbTR

(
− ρ21p1
ω2R2C2 + p21

− ρ22p2
ω2R2C2 + p22

)
. (4.55)

The two analyti
al expressions for the output spe
tral voltage noise de-

rived so far are 
ompared graphi
ally in Figure 4.17. As 
an be seen, equa-

tion (4.55), whi
h des
ribes the spe
tral noise asso
iated to the synthesised

network, mat
hes the result from Spi
e noise analysis. This 
on�rms that

equation (4.55) des
ribes properly the noise response of the 
ir
uit in Fig-

ure 4.15, but the two 
urves do not mat
h the result from (4.44) (previously

veri�ed via Spi
e), whi
h gives the output voltage noise spe
tral density of

the original RC ladder network (Figure 4.12). Sin
e the state-spa
e model is


orre
t, see Appendix C, this result 
on�rms that the dire
t synthesis method

is not able to preserve the noise response of the original 
ir
uit, i.e. the RC

ladder network.

The noise 
omplian
e issue des
ribed in this se
tion is the 
onsequen
e

of the improper usage of 
ontrolled sour
es in the synthesis pro
ess. In the

following se
tions two noise-
ompliant synthesis methods will be presented.

In both 
ases the root idea that allows to preserve the noise behaviour is

quite simple, and inherited from the stati
 synthesis 
ase: 
ontrolled sour
es


an only be used to 
onstru
t lossless sub-networks; in this way 
ontrolled

sour
es will have no impa
t on the noise produ
ed by resistors (the only
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NsP
.

.

.

.

.

. N

Figure 4.18: Generi
 (P +N)-port network Ns.

elements responsible for Gaussian noise in a linear 
ir
uit, as explained in

Se
tion 4.1.).

4.3.3 Youla's rea
tan
e extra
tion

To over
ome the la
k of noise 
omplian
e in the RCCS synthesis, the 
las-

si
 rea
tan
e extra
tion algorithm, originally proposed by Youla and Tissi

in [154℄, 
an be used. As for the RT synthesis in the stati
 
ase, also Youla's

synthesis is noise 
ompliant by 
onstru
tion, sin
e 
ontrolled sour
es are only

used to 
onstru
t lossless sub-networks. Moreover, re
ipro
ity 
onstraints are

also imposed, in order to avoid the usage of non-re
ipro
al elements (gyra-

tors), preserving all the physi
al properties of linear time-invariant lumped

network. As a preliminary step, the indu
tan
e extra
tion pro
edures is

brie�y outlined in order to simplify the presentation of Youla's synthesis.

Indu
tan
e extra
tion

The indu
tan
e extra
tion idea 
an be easily introdu
ed 
onsidering a stati


(P + N)-port network Ns depi
ted in Figure 4.18. Supposing that the

impedan
e matrix representation exists for this network, voltages and 
ur-

rents 
an be related by

vp = Z1,1ip + Z1,2in , (4.56)

vn = Z2,1ip + Z2,2in , (4.57)

with Z1,1 ∈ RP×P
, Z1,2 ∈ RP×N

, Z2,1 ∈ RN×P
and Z2,2 ∈ RN×N

. It is well

known that 
losing N ports of network Ns on unitary indu
tors imposes the

relation

vn = −ZLin , (4.58)
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where ZL = sINl
. Substituting (4.58) into (4.57) and solving for vp leads to

the input-output relation

vp = (Z1,1 − Z1,2(ZL + Z2,2)
−1Z2,1)ip . (4.59)

Note that (4.59) has a remarkable similarity with (4.26), repeated here for


onvenien
e

vp = (D+C(sI−A)−1B)ip . (4.60)

From a dire
t 
omparison, it follows that the state spa
e realization {A,B,C,D}
of a P -port system 
an be synthesised as a stati
 (P + N)-port impedan
e

network (4.56)-(4.57) with

• Z1,1 = D ∈ RP×P
;

• Z1,2 = −C ∈ RP×N
;

• Z2,1 = B ∈ RN×P
;

• Z2,2 = −A ∈ RN×N
,

and with its last N ports 
losed on unitary indu
tors INl
.

This simple example suggests that the state-spa
e matri
es of the transfer

fun
tion (4.60) 
ould 
onstitute the impedan
e matrix of a stati
 network.

The extension to the 
apa
itan
e extra
tion 
ase is straightforward and well

do
umented [119℄. The main question now is how and under whi
h 
ondi-

tions it is possible to 
onstru
t from state-spa
e matri
es (4.60) a passive

and symmetri
 impedan
e (or re
ipro
al hybrid matrix, in the general 
ase)

matrix (4.56) in a similar fashion to the previous example. Sin
e the state-

spa
e matri
es des
ribing a dynami
 network are not unique (like dis
ussed in

Se
tion 4.3.1) the main 
on
ern in the following will be to �nd the similarity

transformation (4.28) leading to a state-spa
e model that allows to 
onstru
t

the hybrid matrix asso
iated to a passive, re
ipro
al stati
 network. This

is the main task of Youla's rea
tan
e extra
tion method and the enabling

fa
tor for a re
ipro
al and noise-
ompliant synthesis. Note that this task is

tightly related with passivity and re
ipro
ity 
onditions outlined in Table 4.3

for a state-spa
e model.

As will be explained in the following, Youla's rea
tan
e extra
tion syn-

thesis requires to transform the state-spa
e matri
es of the transfer fun
-

tion (4.60) into a positive real balan
ed and internally re
ipro
al realization.

Details on how to de�ne and perform su
h transformations are the main topi


in the rest of this se
tion.
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Positive real balan
ed state-spa
e realizations

Starting from the passive state-spa
e realization {A,B,C,D} asso
iated to

the impedan
e transfer fun
tion

Z(s) = C(sI−A)−1B+D↔
(

A B

C D

)
, (4.61)

the following steps are required in order to obtain a positive real balan
ed

realization

• step 1: expli
itly solve the Positive Real Lemma (PRL) for P, i.e.

the LMI in Table 4.3 for the hybrid 
ase. Also form the dual system

{AT ,CT ,BT ,DT} and solve its asso
iated PRL for the 
orresponding

matrix Q. Restri
ting now the analysis to the 
ase R = D +DT ≻ 0
(
orresponding to asymptoti
 stri
t dissipativity), it follows that the

matri
es P and Q 
an be found by solving the Continuous Algebrai


Ri

ati Equations (CARE) [173, 174℄

ATP+PA+
(
PB−CT

)
R−1

(
BTP−C

)
= 0, (4.62)

AQ+QAT +
(
QCT −B

)
R−1

(
CQ−BT

)
= 0, (4.63)

with P = PT ≻ 0 and Q = QT ≻ 0. This 
al
ulation 
an be per-

formed through the Laub's method [175℄, based on the evaluation of

the invariant subspa
es of the Hamiltonianmatri
es asso
iated to (4.62)

and (4.63);

• step 2: 
ompute the Cholesky fa
torization [110℄ of P and Q

P = FTF, (4.64)

Q = GTG, (4.65)

with F,G ∈ RN×N
triangular matri
es;

• step 3: apply the Singular Value De
omposition [110℄ on the matrix

produ
t FGT
, i.e.

FGT = UΣVT , (4.66)

with U,V ∈ RN×N
orthogonal, where the diagonal matrix Σ ∈ RN×N

stores the singular values in de
reasing order on its main diagonal;

• step 4: 
onstru
t the invertible similarity transformation matrix T by

T = GTVΣ−1/2 . (4.67)

and apply it to the state-spa
e system (4.61).
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The result of this pro
ess has the following property:

P = Q = Σ , (4.68)

i.e. the solutions of CAREs (4.62)-(4.63) are equal and diagonal. The result-

ing state-spa
e realization {Ã, B̃, C̃, D̃} is 
alled "positive real balan
ed�.

Therefore the starting passive state-spa
e realization {A,B,C,D} 
an be


onverted into a positive real balan
ed one using the similarity transforma-

tion (4.67) a

ording to (4.27). A 
omplete proof that the resulting state-

spa
e realization veri�es the passivity 
onditions in Table 4.3 and is positive

real balan
ed 
an be found in [171℄.

It 
an be demonstrated [119℄ that the stati
 hybrid matrix M̃, resulting

from the rea
tan
e extra
tion method applied on the positive real balan
ed

realization {Ã, B̃, C̃, D̃}, i.e.

M̃ =

[
D̃ −C̃
B̃ −Ã

]
(4.69)

satis�es the stati
 passivity 
ondition in Table 4.1: M̃+ M̃
T � 0.

The next step is to obtain an internally re
ipro
al state-spa
e model start-

ing from {Ã, B̃, C̃, D̃}. Details on how to guarantee the re
ipro
ity in the

rea
tan
e extra
tion method are dis
ussed in the following.

Re
ipro
al state-spa
e realization

As it was demonstrated in [119℄, the rea
tan
e extra
tion pro
edure applied

to a internally re
ipro
al state-spa
e model leads to a re
ipro
al stati
 hybrid

matrix M̃ (4.69). In other words: if the state-spa
e matri
es {Ã, B̃, C̃, D̃}
verify the internal re
ipro
ity 
onditions in Table 4.3, repeated here as

ÃΠ = ΠÃ
T
, (4.70)

B̃ = ΠC̃
T
, (4.71)

(where Sext = IP be
ause an impedan
e transfer fun
tion is 
onsidered) then

the stati
 hybrid matrix resulting from the rea
tan
e extra
tion pro
edure

will satisfy stati
 re
ipro
ity 
onditions in Table 4.1, i.e.

SextM̃ = M̃
T
Sext . (4.72)

In order to attain a re
ipro
al and passive synthesis, two alternative

strategies are possible, depending whether re
ipro
ity 
onstraints (4.70)-

(4.71) are imposed before or after the solution of the Algebrai
 Ri

ati Equa-

tion (CARE) for the 
onstru
tion of the positive real balan
ed realization,

i.e.



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 132

• pre-
are re
ipro
ity: in this 
ase a state-spa
e with re
ipro
ity 
on-

straints is obtained before solving the CAREs (4.62)-(4.62). Whi
h

means that the matrix Π relating the state-spa
e matri
es in a re-


ipro
al model is found by means of standard te
hniques [124℄. To

preserve re
ipro
ity in the positive real balan
ed state-spa
e model re-

sulting from the similarity transformation obtained from the solution

of CAREs (4.62)-(4.62), a parti
ular solution to the dual-CARE (4.62)


an be found. Indeed on
e the solution matrix P of (4.62) is available,

sin
e all the solutions of the PRL in Table 4.3 are related by similar-

ity transformations [119℄, the solution of the dual-CARE (4.62) 
an be

found as

Q = ΠPΠ , (4.73)

with Π = ΠT = Π−1
, i.e. symmetri
 and orthogonal, from the so-

lution of the re
ipro
ity 
onstraint in Table 4.3. Relation (4.73) sim-

ply results from the imposition of state-spa
e re
ipro
ity 
onstraints

in the CARE (4.62). Applying now the similarity transformation ma-

trix T (4.67) leads to a balan
ed re
ipro
al state-spa
e model, with

re
ipro
ity matrix

Π̃ = TTΠT . (4.74)

In order to obtain an internally re
ipro
al model, a

ording to Ta-

ble 4.3, the re
ipro
ity matrix Π̃ has to be a signature matrix. There-

fore Π̃ is fa
tored a

ording to [171℄ (Algorithm 2) obtaining

Π̃ = VΛVT
(4.75)

with Λ signature matrix, i.e. diagonal matrix with 1 and −1 on the

main diagonal. Please note that fa
torization (4.75) 
an be performed

as a 
onsequen
e of (4.74), see [171℄ for details. Using now V as a

new similarity transformation, the resulting state-spa
e model will be

internally re
ipro
al and positive real balan
ed;

• post-
are re
ipro
ity: in this 
ase the starting point is the positive real

balan
ed state-spa
e model {Ã, B̃, C̃, D̃}. Re
ipro
ity 
onditions (4.70)-
(4.71) are expli
itly imposed using an orthogonal symmetri
 matrix Π̂

obtained from the dire
t solution of the system

Ã
T
Π̂ = Π̂Ã , (4.76)

C̃ = B̃
T
Π̂ , (4.77)

via standard tools like SeDuMi [124℄. Please note that in addition to

symmetry also orthogonality is required to preserve the positive real
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property [171℄. Internal re
ipro
ity is obtained de
omposing Π̂ as

Π̂ = VΛVT , (4.78)

with Λ signature matrix.

In both 
ases the out
ome will be an internally re
ipro
al balan
ed state-

spa
e model {Â, B̂, Ĉ, D̂} with internal signature matrix

Λ =

[
INl

0

0 −INc

]
, (4.79)

with Nl +Nc = N .

The balan
ed realization obtained via (4.67) guarantees the passivity of

the hybrid matrix

M̂ =

[
D̂ −Ĉ
B̂ −Â

]
(4.80)

resulting from the rea
tan
e extra
tion pro
edure, i.e.

M̂+ M̂
T � 0 . (4.81)

The internal re
ipro
ity guarantees the sign symmetry of the hybrid ma-

trix (4.80), i.e.

SMM̂ = M̂
T
SM , (4.82)

with signature matrix SM de�ned by

SM =

[
IP 0

0 Λ

]
(4.83)

and Λ internal signature matrix from (4.79).

On
e the internally re
ipro
al balan
ed state-spa
e model {Â, B̂, Ĉ, D̂} is
available, the dynami
 synthesis problem is mainly redu
ed to the synthesis

of the asso
iated hybrid stati
 matrix (4.80). Next subse
tion outlines how

to perform the synthesis of (4.80) thus 
ompleting the des
ription of Youla's

rea
tan
e extra
tion algorithm.

Synthesis algorithm

The starting point is the internally re
ipro
al and balan
ed state-spa
e re-

alization {Â, B̂, Ĉ, D̂} from whi
h the hybrid, passive and sign symmetri
,
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matrix M̂ (4.80) is obtained. In order to 
onvert (4.80) into an equiva-

lent stati
 P + N 
ir
uit it is important to note that the signature matrix

SM (4.83) suggests the following partition of matrix M̂ (4.80),

SM =



IP 0 0

0 INl
0

0 0 −INc


→ M̂ =



D̂ −Ĉl −Ĉc

B̂l −Âl,l −Âl,c

B̂c −Âc,l −Âc,c


 . (4.84)

A

ording to the partitioning of the hybrid matrix M̂ in (4.84), 
urrents and

voltages of the resulting stati
 hybrid network 
an be arranged as



vp

vl

ic


 =



D̂ −Ĉl −Ĉc

B̂l −Âl,l −Âl,c

B̂c −Âc,l −Âc,c





ip
il
vc




(4.85)

where ip ∈ RP
are the input ports of the state-spa
e model, il ∈ RNl

are the

ports of the hybrid matrix to be 
losed on indu
tors and vc ∈ RNc
are the

ports of the hybrid matrix to be 
losed on 
apa
itors.

Three are the main steps involved by the synthesis of the hybrid matrix M̂

partitioned as in (4.85) in order to extra
t noise-
ompliant positive resistors,

i.e.

1. impedan
e sub-network synthesis: from (4.85) an impedan
e sub-network

is identi�ed as

ZM =

[
D̂ −Ĉl

B̂l −Âl,l

]
. (4.86)

Due to passivity and re
ipro
ity of M̂, it 
an be demonstrated [119℄

that ZM is a symmetri
 positive de�nite matrix. The synthesis of a

stati
 impedan
e matrix was dis
ussed in Se
tion 4.2.3. Applying the

eigenvalue de
omposition on ZM leads to

ZM = NzDzN
T
z , (4.87)

with Dz ∈ RNr×Nr
positive diagonal matrix and Nz ∈ R(P+Nl)×Nr

turn

ratio matrix for a lossless ideal multi-port transformer having P + Nl

primary ports and Nr se
ondary ports. The rank of ZM determines the

value of Nr;

2. admittan
e sub-network synthesis: from (4.85) an admittan
e sub-

network is identi�ed as

YM = −Âc,c . (4.88)
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Due to the stability of the state spa
e model, it 
an be demonstrated [119℄

that YM is a symmetri
 positive de�nite matrix. The synthesis of a

stati
 admittan
e matrix was dis
ussed in Se
tion 4.2.3. Applying the

eigenvalue de
omposition on YM reads

YM = NyDyN
T
y , (4.89)

with Dy ∈ RNg×Ng
positive diagonal matrix and Nz ∈ R(P+Nc)×Ng

turn

ratio matrix for a lossless ideal multi-port transformer having P +Nc

primary ports and Ng se
ondary ports. The rank of YM determines

the value of Ng;

3. transformer sub-network: from (4.85) an ideal multi-port transformer


onne
ting impedan
e (4.87) and admittan
e (4.89) sub-networks pre-

viously identi�ed 
an be de�ned as

Nt =
[
B̂c −Âc,l

]
=
[
Ĉc Âl,c

]T
. (4.90)

As a 
onsequen
e of the sign symmetry of M̂ (4.82) it is easy to prove

that Nt ∈ RNc×(P+Nl)
is the turns ratio matrix of an ideal multi-port

transformer having P +Nl primary ports and Nc se
ondary ports.

The 
onne
tion of the three sub-networks ZM (4.87) YM (4.89) and

Nt (4.90), 
losed on Nl unitary indu
tan
es and Nc unitary 
apa
itan
es


on
ludes the synthesis of the state-spa
e model asso
iated to the impedan
e

transfer fun
tion (4.61). Figure (4.19) 
learly demonstrates how to inter
on-

ne
t the sub-
ir
uits that 
onstitute the desired Youla's rea
tan
e extra
tion

synthesis.

RC ladder network example

The RC ladder network example from Se
tion (4.3.3) is revisited here to show

the noise-
omplian
e of Youla's rea
tan
e extra
tion synthesis.

The starting point is the state-spa
e model for the RC ladder network in

Gilbert 
anoni
al form, i.e.

A =
1

R

(
p1 0
0 p2

)
, b =

(
1
1

)
, c =

(
ρ1
ρ2

)T

, (4.91)

where p1,2 are

p1,2 =
−3±

√
9− 4

4
=
−3 ±

√
5

2
(4.92)



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 136

1F

YM

Nt

(P )− + (Nl)
+ − 1H

ZM

+ −(P ) − +(Nl)

(Nc) M̂

(P )

Figure 4.19: Inter
onne
tion of the three sub-networks ZM (4.87) YM (4.89)

and Nt (4.90), whi
h 
losed on Nl unitary indu
tan
es and Nc unitary 
a-

pa
itan
es 
on
ludes the synthesis of the state-spa
e model asso
iated to the

impedan
e transfer fun
tion (4.61). Ea
h sub-network is synthesized using

resistors and ideal transformers like des
ribed in Se
tion 4.2.3, as an exam-

ple the synthesis of ZM is depi
ted in Figure 4.20. Note that ea
h port in

the �gure denotes 
olle
tively a set of P , Nl, or Nc ports for the interfa
e,

indu
tan
e, and 
apa
itan
e ports, respe
tively.
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Figure 4.20: Belevit
h (RT) synthesis for the sub-network ZM resulting from

Youla's pro
edure. A

ording to (4.87): the Nr se
ondary ports of the ideal

transformer des
ribed by Nz are 
losed on unitary resistors, while the �rst

P primary ports realize the port of the impedan
e (4.61) and the last Nl

primary ports are 
onne
ted in series to unitary indu
tors. Only a few turns

ratio values nj,i, with i = 1, . . . , P +Nl and j = 1, . . . , Nr, are 
onsidered for

the multi-port ideal transformer to simplify the presentation of the 
ir
uit.

P+, N+
l and P−, N−

l are, respe
tively, positive and negative terminals for the

P +Nl ports of ZM .



CHAPTER 4. NOISE-COMPLIANT MACROMODEL SYNTHESIS 138

and

ρ1,2 =
5±
√
5

10
. (4.93)

The 
onversion to a re
ipro
al and positive real balan
ed realization is straight-

forward: re
ipro
ity is guaranteed by 
onstru
tion when dealing with a 1-port


ir
uit, while to obtain a positive real balan
ed model it is su�
ient to im-

pose [162℄

A = AT , (4.94)

B = CT . (4.95)

Sin
e 
ondition (4.94) is already met by (4.91), only (4.95) should be 
onsid-

ered. It is easy to verify that the similarity matrix

T =

(√
ρ1 0
0
√
ρ2

)
(4.96)

transforms (4.91) into the positive real balan
ed realization

Â =
1

R

(
p1 0
0 p2

)
b̂ =

(√
ρ1√
ρ2

)
ĉ =

(√
ρ1√
ρ2

)T

. (4.97)

Using the rea
tan
e extra
tion pro
edure the stati
 hybrid matrix M̂ is

found as

M̂ =




0 −√ρ1 −√ρ2√
ρ1 −p1/R 0√
ρ2 0 −p2/R


 , (4.98)

with the 
orresponding signature matrix

SM =



1 0 0
0 −1 0
0 0 −1


 . (4.99)

The synthesis of the hybrid matrix M̂ is depi
ted in Figure 4.21. Please

note that: sin
e the impedan
e sub-network ZM in (4.98) is null, the input

port of Z(s) is dire
tly 
onne
ted to the transformer sub-network des
ribed

by the turns ration matrix Nt = [
√
ρ1
√
ρ2]

T
. While the admittan
e sub-

network YM is 
omposed by the two admittan
es−p1/R and −p2/R, dire
tly

onne
ted in parallel to the unitary 
apa
itors and to the se
ondary ports of

the multi-port transformer des
ribed by Nt.

The voltage output noise spe
tral density 
an be evaluated analyti
ally

like in Se
tion 4.3.2 leading to the equation

V̄ 2
o (ω) = 4KbTR

(
− ρ21p1
ω2R2C2 + p21

− ρ22p2
ω2R2C2 + p22

)
. (4.100)
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Figure 4.21: Youla's rea
tan
e extra
tion synthesis result from (4.98) for the

RC ladder network example.

Equation (4.100) is 
ompared in Figure (4.22) with the results obtained from

Spi
e noise analysis using the original RC ladder network and Youla's syn-

thesis based on (4.98). As expe
ted the three 
urves overlap ea
h other.

Cir
uit 
omplexity

The main issue of Youla's rea
tan
e extra
tion synthesis lies in the 
omplexity

of the resulting network, indeed the number of elements s
ales as O (P 2N2)

ompared with O (P 2N) for the dire
t synthesis method from Se
tion 4.3.2.

There are several reasons for su
h a big di�eren
e in the number of elements

between the two synthesis methods, i.e.

• 
anoni
ity: as it was demonstrated in [119℄, it is impossible for a purely-

re
ipro
al

6

passive synthesis to jointly use the minimum number of pas-

sive (resistors) and rea
tive (
apa
itors and indu
tors) elements. This

means that a purely-re
ipro
al passive synthesis will always require

more elements 
ompared to a passive non-re
ipro
al one;

• noise-
omplian
e: in order to preserve the noise response, the RT syn-

thesis is used on the hybrid stati
 matrix (4.80) resulting in three sub-

6

A 
ir
uit 
omposed only by RLCT elements was de�ned as purely-re
ipro
al in Se
-

tion 4.2.1.
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Figure 4.22: Comparison between noise analysis results obtained by means

of analyti
al equation (4.100) (red line), Spi
e simulation using the 
ir
uit in

Figure 4.21 (dot-dashed line) and Spi
e simulation on the original RC ladder

network (blue dashed line).

networks of multi-port ideal transformers. The synthesis of those trans-

formers requires a large number of 
ontrolled sour
es;

• sparsity: starting with a sparse model, i.e. Gilbert 
anoni
al form, will

not result into a sparse re
ipro
al balan
ed realization be
ause model

stru
ture is not preserved by the similarity transformation (4.67) in the

general 
ase.

As a 
onsequen
e to the 
onsiderations above, the pure-re
ipro
ity 
onstraint

will be relaxed in the following while preserving noise-
omplian
e in the syn-

thesis. Removing the 
onstraint of pure-re
ipro
ity leads to a synthesis with

a 
omplexity 
omparable to the dire
t synthesis method in Se
tion 4.3.2.

4.3.4 Darlington's resistan
e extra
tion

Duo to the 
omplexity of the resulting network, Youla's rea
tan
e extra
tion


an only be used in pra
ti
e for state-spa
e models possessing a low dynami


order. As dis
ussed in previous Se
tion 4.3.3, this limitation is tightly re-

lated with the requirement of preserving a purely-re
ipro
al 
ir
uit in the

synthesis pro
ess. Sin
e the main 
on
ern in this work lies in attaining a

noise-
ompliant synthesis, it is 
on
eivable to remove the pure-re
ipro
ity


onstraint in order to a
hieve a result of pra
ti
al relevan
e. Youla's rea
-

tan
e extra
tion pro
edure 
ould be modi�ed in that sense, but the similarity
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Figure 4.23: Darlington's Resistan
e extra
tion: lossless dynami
 sub-

network N0 
losed on Nr resistors.

transformation (4.67) will not allow to preserve the stru
ture of the state-

spa
e matri
es in any 
ase, thus loosing the sparsity pattern provided by

Gilbert 
anoni
al form. Therefore a di�erent approa
h is 
onsidered in this

se
tion, i.e. Darlington's Resistan
e extra
tion te
hnique.

The 
lassi
 Resistan
e extra
tion algorithm was proposed by Darlington

in [147℄. Given a linear and passive dynami
 network N , the main idea is:

extra
t all the resistors from N thus obtaining a lossless dynami
 network

N0 like depi
ted in Figure 4.23. Sin
e lossless networks are noise 
ompliant

by 
onstru
tion, even if non-re
ipro
al

7

, the dynami
 lossless sub-network

N0 
an be synthesized via the dire
t synthesis method from Se
tion 4.3.2,

leading to a 
ir
uit with a 
omplexity s
aling as O (P 2N). In this way a


anoni
al noise-
ompliant synthesis 
an be obtained.

In the following the Resistan
e extra
tion te
hnique will be applied to

the passive state-spa
e model

ẋ(t) = Ax(t) +Bi(t) , (4.101)

v(t) = Cx(t) +Di(t) , (4.102)

7

As dis
ussed in Se
tion 4.3.3, noise-
omplian
e is related with the proper usage of


ontrolled sour
es in the synthesis pro
ess: only lossless networks 
omposed of 
ontrolled

sour
es are noise 
ompliant. Sin
e re
ipro
ity is not required, even non-re
ipro
al lossless

networks will result into a noise-
ompliant 
ir
uit.
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with input ve
tor i ∈ RP
, output ve
tor v ∈ RP

and state-spa
e matri
es:

A ∈ RN×N
, B ∈ RN×P

, C ∈ RP×N
and D ∈ RP×P

. Similar results hold for

s
attering models [119℄.

State-spa
e resistan
e extra
tion

The main obje
tive of the resistan
e extra
tion method 
onsists in the ex-

tra
tion of a lossless dynami
 state-spa
e model N0

ẋ(t) = A0x(t) +B0

[
i(t)
ir(t)

]
, (4.103)

[
v(t)
vr(t)

]
= C0x(t) +D0

[
i(t)
ir(t)

]
, (4.104)

whi
h 
losed on Nr unitary resistors Ir, i.e.

vr(t) = −Irir(t) , (4.105)

leads to the state-spa
e of the starting passive dynami
 network N des
ribed

by (4.101)-(4.102). Please note that the lossless dynami
 state-spa
e real-

ization (4.103) has the same dynami
 order of the original dynami
 net-

work (4.101), i.e. A0 ∈ RN×N
, thus order minimality is preserved. The main

di�eren
e between network N and N0 is in the number of ports. Indeed

D0 ∈ R(P+Nr)×(P+Nr)
, where Nr is the number of resistors 
losing the Nr

inputs ir of the lossless sub-network, with Nr = rank{D+DT}.
Unfortunately it is not possible to provide a simple 
ir
uit interpretation

of the resistan
e extra
tion pro
edure, like it was done for the rea
tan
e

extra
tion in Se
tion 4.3.3, be
ause the extra
tion of resistan
es from a state-

spa
e

8

model involves the solution of the quadrati
 system of equations

PA+ATP = −LLT , (4.106)

PB = CT − LW , (4.107)

D+DT = WTW (4.108)

with L ∈ RN×Nr
, W ∈ RNr×P

and P ∈ RN×N
.

A

ording to [119℄, on
e the solution matri
es L,W,P for (4.106)-(4.108)

are known, the lossless state-spa
e model N0 (4.103)-(4.104) 
an be dire
tly

8

The extra
tion of the resistors from the state-spa
e model of N is equivalent to the

identi�
ation of the lossless dynami
al sub-network N0.
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onstru
ted as

A0
.
=

1

2
(A−AT ) , (4.109)

B0
.
=

[
1

2
(B+CT )− 1√

2
L

]
.
= CT

0 , (4.110)

D0
.
=

[
1
2
(D−DT ) 1√

2
WT

− 1√
2
W 0

]
. (4.111)

To verify that {A0,B0,C0,D0} 
onstitutes a lossless state-spa
e model it is

su�
ient to 
he
k the relations

A0 +AT
0 = 0 , (4.112)

B0 = CT
0 , (4.113)

D0 +DT
0 = 0 , (4.114)

that are 
alled the lossless PRL equations. The relation with the LMI in

Table 4.3 (passivity 
olumn) is dis
ussed in [119℄.

Please note that from (4.109) it is evident how the stru
ture of matrix

A is preserved by the resistan
e extra
tion pro
ess. It follows that Gilbert


anoni
al form 
an be used in order to attain a low 
omplexity synthesis like

in Se
tion 4.3.2. Moreover, if D = DT
in (4.111), whi
h is usually the 
ase if

the starting impedan
e model des
ribes the immittan
e of a linear re
ipro
al


ir
uit, D0 will only have the outer blo
k-diagonal element di�erent from

zero, i.e. W.

On
e the lossless state-spa
e model (4.109)-(4.111) is known from the

solution of the PRL, the synthesis is straightforward, being a simple appli
a-

tion of the dire
t synthesis method on (4.103)-(4.104), with the last Nr ports


losed on unitary resistors.

Positive Real Lemma solution

In the solution of the PRL (4.106)-(4.108), leading to L and W in (4.109)-

(4.111), the attention is restri
ted here to the 
ase in whi
h

D+DT ≻ 0 , (4.115)

i.e. the state-spa
e model (4.101)-(4.102) is stri
tly asymptoti
ally pas-

sive. A

ording to [119℄, under the hypothesis (4.115), the solution of the

PRL (4.106)-(4.108) is obtained by the following steps
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1. stating from a minimal and passive state-spa
e realization {A,B,C,D},
solve the Algebrai
 Ri

ati Equation for the positive de�nite matrix P,

i.e.

ATP+PA+
(
PB−CT

)
R−1

(
BTP−C

)
= 0 , (4.116)

using standard methods [173, 174℄;

2. obtain an internally passive model using the similarity transformation

de�ned by matrix P1/2
;

3. perform the de
omposition

D+DT = WTW ; (4.117)

4. de
ompose W as

W = VR1/2 ; (4.118)

with V orthogonal;

5. form L using the equation

L = (P1/2B−P−1/2CT )R−1/2VT
(4.119)

where B and C 
ome from the starting state-spa
e in step 1, R and V

are in (4.118).

This 
on
ludes the resistan
e extra
tion pro
ess.

Example

The simple RC 
ir
uit example 
onsidered in Se
tion 4.3.2 and 4.3.3 is pro-

posed here using the resistan
e extra
tion synthesis. Starting from the posi-

tive real state spa
e realization obtained in 4.3.3, i.e.

Â =
1

R

(
p1 0
0 p2

)
b̂ =

(√
ρ1√
ρ2

)
ĉ =

(√
ρ1√
ρ2

)T

(4.120)

with p1,2 =
−3±

√
9−4

4
= −3±

√
5

2
and ρ1,2 =

5±
√
5

10
, the 
onversion to an internally

passive realization is performed based on the steps outlined before. Sin
e

the state-spa
e matrix D is zero in (4.120), the solution matrix W in the

PRL (4.106)-(4.108) is zero as well. If follows that (4.106) and (4.107) are

de
oupled and (4.107) redu
es to B = CT
, whi
h is satis�ed by (4.120).
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Table 4.4: This table summarizes the most relevant features of the synthesis

methods presented in this work: dire
t synthesis (RCCS) from Se
tion 4.3.2,

Rea
tan
e extra
tion from Se
tion 4.3.3 and Resistan
e extra
tion from Se
-

tion 4.3.4. The 
onstant fa
tors di�erentiating the 
omplexity of the RCCS

synthesis with the Resistan
e extra
tion are su
h that y < x ∈ R.

RCCS

Rea
tan
e

extra
tion

Resistan
e

extra
tion

Pure-Re
ipro
ity no yes no

Complexity O (yNP 2) O (N2P 2) O (xNP 2)
Noise-
ompliant no yes yes

The solution matrix L in (4.106) 
an be obtained in this 
ase by a dire
t

appli
ation of the Cholesky fa
torization, leading to

L =



√

2p1
R

0

0
√

2p2
R


 . (4.121)

The state-spa
e model asso
iated to the lossless sub-network N0 in the re-

sistan
e extra
tion synthesis framework results from a dire
t appli
ation

of (4.109)-(4.111) based on (4.120) leading to

A0 = 0 , (4.122)

B0 =

[√
ρ1 −

√
p1
R

0√
ρ2 0 −

√
p2
R

]
= CT

0 , (4.123)

D0 = 0 . (4.124)

Sin
e the state-spa
e matri
es (4.122)-(4.124) de�ne a lossless network, the

RCCS synthesis method dis
ussed in Se
tion 4.3.2 
an be still used while pre-

serving noise-
omplian
e. The resistan
e extra
tion pro
edure is 
ompleted


losing the last two ports of the lossless sub-network N0 on unitary resistors

like depi
ted in Figure 4.24. The result of the frequen
y dependent noise

analysis performed in Spi
e are depi
ted in Figure 4.25. This result 
on�rm

the noise-
omplian
e property of the proposed synthesis strategy.

4.3.5 Dynami
 synthesis results and 
omparison

In this se
tion simulation time results and 
omplexity are 
ompared for the

state-spa
e synthesis methods previously des
ribed. Table 4.4 highlights the
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Figure 4.24: Darlington's resistan
e extra
tion synthesis resulting

from (4.122)-(4.124) for the RC ladder network example.
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Figure 4.25: Comparison between noise analysis results obtained by means

of Spi
e simulation using the 
ir
uit in Figure 4.24 (blue dashed line) and

Spi
e simulation on the original RC ladder network (red line).
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Figure 4.26: Noise analysis result for the �rst example in Table 4.5 (2 ports,

order 20). As 
an be seen the results obtained from Rea
tan
e (blue dashed)

and Resistan
e (red dashed) extra
tions-based synthesis methods mat
h (to

ma
hine pre
ision) the result of the noise analysis obtained from Spi
e using

the raw S-parameters (Sp, bla
k 
ontinuous line).

most relevant features of ea
h synthesis method.

In a similar way to the stati
 synthesis 
ase, dynami
 synthesis methods

are validated through test 
ases 
ondu
ted on arti�
ial state-spa
e models,

obtained from the 
ommer
ial software IdEM from IdemWorks, and on state-

spa
e models derived from real designs using the identi�
ation pro
edures

dis
ussed in Chapter 2. Frequen
y dependent noise responses are 
ompared

with the results of Spi
e-based noise simulations based on [176℄.

Automated testing pro
edure

A simple automated testing pro
edure is used to asses a

ura
y and 
om-

plexity for the synthesis methods presented in this 
hapter. Several passive

state-spa
e models, with ports 
ount in [2, 100] and order in [20, 600], are
automati
ally generated using the software IdEM from IdemWorks and 
on-

verted to Spi
e netlists. A small subset of those test 
ases is reported here

with a detailed 
omparison of the number of network elements required by

ea
h synthesis method. The following Tables 4.5-4.6 
ompare the number of:

nodes, 
apa
itors, 
urrent 
ontrolled sour
es, indu
tors, resistors and voltage


ontrolled sour
es used in the dire
t synthesis (RCCS), Rea
tan
e extra
tion

and the resistan
e extra
tion methods. Moreover S-parameters simulations
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Figure 4.27: S-parameters for the �rst example in Table 4.5. As 
an be

seen the results obtained from Rea
tan
e (blue dashed) and Resistan
e (red

dashed) extra
tions-based synthesis methods mat
h the original raw S
atter-

ing parameters with great a

ura
y.

were performed in Spi
e using the netlists resulting from ea
h synthesis and

exe
ution times are reported in the tables as well. The a

ura
y of the S-

parameters resulting from rea
tan
e and resistan
e extra
tion methods is

demonstrated in Figure 4.27. Noise analysis results are depi
ted in Fig-

ure 4.26 for the �rst test 
ase reported in Table 4.5. Note that the results


on
erning the RCCS synthesis refers to the Spi
e netlists obtained from the


ommer
ial software IdEM. The results 
olle
ted in Table 4.5 
on�rm that

the number of 
ir
uit elements s
ales as summarized in Table 4.4. When

the number of ports is larger or 
omparable to the order of the state-spa
e

model, like in the examples of Table 4.6, resistan
e and rea
tan
e extra
tion

methods have a 
omparable number of elements.

Tests derived from hardware designs

From the big set of real design test 
ases 
onsidered, two of parti
ular rel-

evan
e are 
onsidered in this se
tion to 
ompare the performan
es of the

synthesis methods. The number of network elements is 
ompared for both

test 
ases in Table 4.7.

The �rst example is based on the state-spa
e model for the 
entrally

involved LC-tank 
oil of a RF Digitally Controlled Os
illator (DCO). DCOs


an be tuned very a

urately: their noise behaviour is a key �gure of merit

and requires therefore a

urate noise modeling of all involved design parts.

Thus modeling of the 
entrally involved LC-tank 
oil is a good ben
hmark
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Table 4.5: Automati
 test 
ases results. The number of network elements:


apa
itors (
ap), 
urrent 
ontrolled sour
es (


s), indu
tors (ind), resistors

(res), voltage 
ontrolled voltage sour
es (v
vs), voltage 
ontrolled 
urrent

sour
es (v

s), is 
ompared for ea
h synthesis method. As a global estimate

of network 
omplexity the total number of 
ir
uit elements is also reported.

The simulation time refers to the exe
ution time of S-parameter analysis in

a Spi
e solver.

order: 20

ports: 2

RCCS

Rea
tan
e

extra
tion

Resistan
e

extra
tion

nodes 44 90 30

ap 40 10 20



s − 208 24
ind − 10 −
res 40 56 6
v
vs − 34 4
v

s 144 208 142
total 224 526 196

time 150ms 370ms 146ms

order: 64

ports: 4

nodes 72 869 84

ap 64 124 64



s − 20934 186
ind − 124 −
res 64 493 12
v
vs − 338 8
v

s 368 20934 820
total 568 42947 1090

time 300ms 1m35s 730ms
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Table 4.6: Automati
 test 
ases results. The number of network elements:


apa
itors (
ap), 
urrent 
ontrolled sour
es (


s), indu
tors (ind), resistors

(res), voltage 
ontrolled voltage sour
es (v
vs), voltage 
ontrolled 
urrent

sour
es (v

s), is 
ompared for ea
h synthesis method. As a global estimate

of network 
omplexity the total number of 
ir
uit elements is also reported.

The simulation time refers to the exe
ution time of S-parameter analysis in

a Spi
e solver.

order: 600

ports: 30

RCCS

Rea
tan
e

extra
tion

Resistan
e

extra
tion

nodes 660 2550 750

ap 600 300 600



s − 153915 17808
ind − 300 −
res 600 1590 90
v
vs − 960 60
v

s 19740 153915 55002
total 21600 310980 73560

time 20s 20min 2min

order: 100

ports: 241

nodes 1400 1463 741

ap 1200 121 241



s − 51051 28895
ind − 120 −
res 1200 902 300
v
vs − 561 200
v

s 131400 51051 77575
total 135200 103806 107211

time 5min 10min 10min
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Figure 4.28: S-parameters for the LC-tank 
oil example. As 
an be seen the

results obtained from Rea
tan
e (blue dashed) and Resistan
e (red dashed)

extra
tions-based synthesis methods mat
h the original raw S
attering pa-

rameters with great a

ura
y. A small part of the frequen
y response is

shown sin
e the response below 1GHz is very �at.

for the noise 
ompliant synthesis. The a

ura
y of the synthesis methods in

the 
al
ulation of the S-parameters is demonstrated in Figure 4.28. Noise

analysis results are depi
ted in Figure 4.29.

The se
ond example in Table 4.7 
onsider a 2-port base band �lter blo
k

used in the re
eiver 
hain of a 3G trans
eiver. Also in this 
ase noise-


omplian
e is of paramount importan
e. All the 
omponents in a re
eiver


hain are 
arefully designed in order to redu
e noise 
ontributions thus pre-

serving the weak signal from the antenna. S-parameters a

ura
y is 
on-

�rmed in Figure 4.30, while sele
ted noise analysis results are reported in

Figure 4.31.
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Figure 4.29: Noise analysis result for the LC-tank 
oil example. As 
an

be seen the results obtained from Rea
tan
e (blue dashed) and Resistan
e

(red dashed) extra
tions-based synthesis methods mat
h (to ma
hine pre-


ision) the result of the noise analysis obtained from Spi
e using the raw

S-parameters (Sp, bla
k 
ontinuous line). A small part of the frequen
y

response is shown sin
e the response below 1GHz is very �at.
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Figure 4.30: S-parameters for the base band �lter example. As 
an be

seen the results obtained from Rea
tan
e (blue dashed) and Resistan
e (red

dashed) extra
tions-based synthesis methods mat
h the original raw S
atter-

ing parameters with great a

ura
y.

10
8

10
9

10
10

10
11

10
−11

10
−10

10
−9

Frequency [Hz]

Noise Input [V/
√

Hz]

 

 

Sp
RCCS
reactance ext.
resistance ext.

Figure 4.31: Noise analysis result for the base band �lter example. As 
an

be seen the results obtained from Rea
tan
e (blue dashed) and Resistan
e

(red dashed) extra
tions-based synthesis methods mat
h (to ma
hine pre-


ision) the result of the noise analysis obtained from Spi
e using the raw

S-parameters (Sp, bla
k 
ontinuous line).
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Table 4.7: Results summary for the two test 
ases based on real designs. The

number of network elements: 
apa
itors (
ap), 
urrent 
ontrolled sour
es

(


s), indu
tors (ind), resistors (res), voltage 
ontrolled voltage sour
es

(v
vs), voltage 
ontrolled 
urrent sour
es (v

s), is 
ompared for ea
h synthe-

sis method. As a global estimate of network 
omplexity the total number of


ir
uit elements is also reported. The simulation time refers to the exe
ution

time of S-parameter analysis in a Spi
e solver.

order: 350

ports: 25

RCCS

Rea
tan
e

extra
tion

Resistan
e

extra
tion

nodes 400 1406 475

ap 350 177 350



s − 53096 8631
ind − 173 −
res 350 293 75
v
vs − 540 50
v

s 9925 53096 26817
total 11025 107915 35923

time 20s 10min 1min

order: 248

ports: 2

nodes 252 869 258

ap 248 124 248



s − 20934 245
ind − 124 −
res 248 493 6
v
vs − 338 4
v

s 874 20934 1731
total 1622 − 2234

time 0.5s 1min 1.2s
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4.4 Con
lusions

Two noise 
ompliant synthesis methods for linear behavioral ma
romodels

based on the 
lassi
al te
hniques have been presented: one preserves all the

physi
al properties of the original system requiring a large number of net-

work elements; the se
ond misses to preserve re
ipro
ity of the 
ir
uit blo
ks

involved in the synthesis (while preserving noise behaviour) but requires less

elements. Relying solely on the use of network elements possessing a proper

noise model in SPICE based solvers, the proposed strategies are able to repro-

du
e properly the noise behaviour of the system. The a

ura
y of the results

obtained from the noise analysis was assessed by 
omparing the proposed

synthesis with standard methods [176℄.

Noise 
omplian
e and network 
omplexity have been the 
onstraints of

interest. Unfortunately those 
onstraints 
an not jointly attain the optimum

in the available synthesis. Indeed the dire
t state-spa
e synthesis results

into a network whose number of elements s
ales linearly with model order

but that is not noise 
ompliant, while Youla's synthesis is noise 
ompliant

but the number of network elements s
ales quadrati
ally with model order.

The best trade-o� is provided by Darlington's resistan
e extra
tion, whi
h is

noise 
ompliant, but in order to have a 
omplexity 
omparable with the di-

re
t synthesis method requires the use of non-re
ipro
al elements. Therefore

the best suited synthesis method should be sele
ted depending on the appli-


ation: for redu
ed order models of IC inter
onne
ts and parasiti
 networks

for RF, SoC/SiP appli
ations noise 
omplian
e is a must and Darlington's

synthesis is the best 
hoi
e. When dealing with large-s
ale pa
kages, PCBs

and transmission lines, the dire
t synthesis is best suited to ta
kle large or-

der models but the resulting network will not be noise-
ompliant. Youla's

synthesis is appropriate for those 
ases in whi
h network re
ipro
ity of all

network 
omponent is needed.

The availability of a noise 
ompliant network synthesis 
an be of paramount

importan
e in analog behavioural modeling for devi
es and 
omplete building

blo
ks. Noise-preserving modeling is a must for simulation-based design and

design veri�
ation purposes of 
omplex analog systems. The methodology

proposed here is an important step toward the migration of hard IP blo
ks

into �rm IP blo
ks, like dis
ussed in Se
tion (1.3.1).



Con
lusions

This thesis proposed several improvements to various important steps in the

veri�
ation �ow of SoC/SiP 
omponents. All the issues ta
kled in this work

raised from pra
ti
al needs: fast identi�
ation and validation of 
omponent

with large ports 
ount, 
omplexity redu
tion in system level simulations in-

volving non-linear analog RF 
omponents and 
reation of versatile IP blo
ks

to be used in a high pro�
ien
y IP reuse-based modern design �ow.

For the identi�
ation of behavioural models asso
iated to linear devi
es

having hundreds of ports, an innovative algorithm was proposed and tested

on several test 
ases of pra
ti
al relevan
e. Combined with standard identi�-


ation methods like Ve
tor Fitting, the new pro
edure presented in this work

attains speed-ups of two order of magnitudes in 
omparison with standard

identi�
ation methods. A

ura
y is 
ompletely under 
ontrol and physi
al

properties like passivity and stability 
an be easily enfor
ed on 
ommodity

hardware relaying on a robust reformulation of 
ommon te
hniques.

A

urate small-signal models for RF analog non-linear 
omponents were

derived 
onsidering that: several RF non-linear blo
ks are designed in order

to behave in a linear way (no signal distortion or generation of spurious har-

moni
s) under appli
ation-de�ned operating 
onditions, therefore non-linear

e�e
ts are negligible and a small-signal model is a

urate enough to mimi


the response of the system. A simple and e�e
tive 
orre
tion strategy was

proposed in order to over
ome the la
k of a

ura
y at DC. The resulting mod-

els 
an substitute 
omplex non-linear RF blo
ks resulting in a tremendous

redu
tion of simulation time for system level simulations.

The small-signal models 
an then be extended by means of standard te
h-

niques to parameterized models. Appli
ation-de�ned operating 
onditions,

temperature and other design parameters 
an be 
onsidered in order to en-

han
e the appli
ability range. The appli
ation of the proposed methodology

on real design test 
ases 
on�rmed the quality of this approa
h.

Last but not the least, linear ma
romodels identi�ed using the aforemen-

tioned te
hniques are 
onverted (synthesized) in standard Spi
e netlists. In


omparison with the most 
ommon synthesis methods, parti
ular 
are was
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devoted in this work in order to provide low-
omplexity Spi
e 
ir
uits reliable

in all simulation s
enarios. The availability of su
h versatile models 
onverted

to Spi
e netlists is the enabling fa
tor for the migration of IP blo
ks from

�rm to hard form leading to a more robust design/veri�
ation �ow.

The solutions proposed in this thesis met quality standards and expe
-

tations of the host institution, i.e. Intel Mobile Communi
ations, and will

likely be
ome relevant part of a professional veri�
ation/design �ow.



Appendix A

Notation, a
ronyms and symbols

Though already introdu
ed in the text, notation, a
ronyms and symbols used

in the thesis are summarized here for 
onvenien
e of the reader.

Notation


onstant identi�ed by 
apital 
ase letters (either Latin or Greek); example

A. Some letters are reserved for parti
ular de�nitions, like: number of


ir
uit ports P .

index identi�ed by lower 
ase letters (either Latin or Greek); example a.

matrix identi�ed by bold 
apital fonts; example X. Some letters are re-

served for parti
ular appli
ations, like A,B,C,D whi
h are asso
iated

to state-spa
e models and I, whi
h is the identity matrix.

ve
tor identi�ed by bold lower 
ase fonts; example x.

A
ronyms

3G third Generation; refereed to Mobile 
ommu-

ni
ations standards.

A/D-D/A Analog/Digital-Digital/Analog.

AC Alternating Current.

AMS Analog-Mixed Signal.
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BB Base Band.

BR Bounded Real.

CAD Computer Aided Design.

CB Cir
uit Blo
k.

CMOS Complementary Metal-Oxide-Semi
ondu
tor.

CPU Central Pro
essing Unit.

DC Dire
t Current.

DSP Digital Signal Pro
essing.

EDA Ele
troni
 Design Automation.

GPU Graphi
s Pro
essing Unit.

GSK Generalized Sanathanan-Koerner.

HDL Hardware Des
ription Language.

IC Integrated Cir
uit.

IP Intelle
tual Property.

ITRS International Te
hnology Roadmap for Semi-


ondu
tors.

LDO Low Drop-Out regulator.

LNA Low Noise Ampli�er.

LP Low Power.

LTFM Linear Transfer Fun
tion Model.

LTI Linear Time Invariant.

MCM Multi-Chip Module, alternative name for SiP.

NoC Network on Chip.

OA,OpAmp,OPA Operational Ampli�er.

P-LTI Parameterized-Linear Time Invariant.

PAS Parallel Adaptive Sampling.

PC Personal Computer.

PCB Printed Cir
uit Board.

PDN Power Delivery Network.
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PI Power Integrity.

PLL Phase-Lo
ked-Loop.

PR Positive Real.

PWL Pie
e-Wise-Linear.

RF Radio Frequen
y.

SI Signal Integrity.

SIA Semi
ondu
tor Industry Asso
iation.

SiP System in Pa
kage.

SK Sanathanan-Koerner.

SoC System on Chip.

SU Speed Up.

SVD Singular Values De
omposition.

TSV Through-Sili
on Via.

VF Ve
tor Fitting.

List of symbols

∀ For all.

O (·) Big O notation. Des
ribes the limiting be-

haviour of a fun
tion when the argument tends

towards a parti
ular value or in�nity.

♯Ω Cardinality (number of elements) in set Ω.
⌈x⌉ Maps the real number x to the smallest fol-

lowing integer.

x∗
Complex 
onjugate of x.

λ(X) Set of all eigenvalues of matrix X.

∅ Empty set.

∃, ∄ There exists, there does not exist.

⌊x⌋ Maps the real number x to the largest previous
integer.

XH
Conjugate-transpose of matrix X.
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In Identity matrix of dimension n.
i� If and only if.

Im{x} Imaginary part of 
omplex number x.
 Imaginary unit.

∈ Is an element of.

∩ Set interse
tion.

⊗ Krone
ker produ
t.

mat(x) Transforms the ve
tor x in a matrix X sta
k-

ing sub-blo
ks of x as 
olumns of X with

proper dimensions.

maxΩ Maximum, the largest element of set Ω.
minΩ Minimum, the smallest element of Ω.
mod(x) Remainder of division x/2.

X ≺ 0,X � 0 X is negative (semi)de�nite.

X ≻ 0,X � 0 X is positive (semi)de�nite.∏
Produ
t.

X†
Moore-Penrose pseudoinverse of matrix X.

Re{x} Real part of 
omplex number x.

σ(X) Set of all singular values of matrix X.

‖X‖2 Spe
tral norm of matrix X, de�ned as

maxσ(X).
s.t. Subje
t to.

⊂,⊆ Is a subset of.∑
Sum.

C Set of 
omplex numbers.

‖X‖F Frobenius norm of matrix X.

R Set of real numbers.

tr(X) The tra
e of a square matrix X is de�ned as

the sum of the elements on the main diagonal

of X.

XT
Transpose of matrix X.
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∪ Set union.

vec(X) Ve
tor sta
king all 
olumns of matrix X.



Appendix B

The Ve
tor Fitting algorithm

The starting point for the identi�
ation of a rational ma
romodel is a set of

samples from the system frequen
y response of a P -port LTI devi
e:

Hl ∈ CP×P , {ωl} l = 1, . . . , L. (B.1)

The model resulting from the appli
ation of the VF algorithm will be in

pole-residue form

H(s) = D+
N∑

n=1

Rn

s− pn
. (B.2)

The main goal is to minimize the approximation error in a generi
 norm

min ‖H(sl)−Hl‖ ∀l (B.3)

Sin
e the model (B.2) requires the identi�
ation of poles pn and residues Rn,

the resulting minimization problem (B.3) will be non-linear. As dis
ussed in

Chapter 2, Se
tion 2.2, Ve
tor Fitting (VF) uses the Generalized Sanathanan-

Koerner (GSK) Iteration to avoid dealing with the non-linear minimization

problem (B.3) thus 
onverting it into a sequen
e of linear problems.

The original version of the VF algorithm as proposed by [62℄ is now

presented as a step-by-step pro
edure:

1. Starting poles sele
tion: 
hoose an arbitrary

1

set of poles qj with j =
1, . . . , N ;

1

Some hints on how to 
hoose the starting poles 
an be found in [62℄.
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2. Using the poles qj de�ne two rational fun
tions

σHi(s) = Di +

N∑

n=1

Ni
n

s− qin
, (B.4)

σi(s) = 1 +
N∑

n=1

din
s− qin

. (B.5)

Those will be numerator and denominator of the estimated model at

iteration i, i.e.

Hi(s) =
σHi(s)

σi(s)
; (B.6)

3. based on the GSK iteration 
onstru
t a linear system using the equation

σHi(ωl) ≃ Hlσ
i(ωl) , (B.7)

and solve it in the least-square sense for Ni
n and din;

4. poles relo
ation: update the starting set of poles in (B.4) and (B.5)

using the zeros of σi(s) and for
e them to have negative real part (poles

�ipping);

5. iterate steps (2)-(4), i = i + 1, until σi(s) → 1. This is the main

iteration for the identi�
ation of model poles.

6. When the poles relo
ation pro
edure 
onverged, set the poles of (B.4)

as pn = qin.

7. Finally solve the equation

Di +

N∑

n=1

Rn

s− qin
≃ Hl (B.8)

in least-square sense to identi�es the residues Rn of the �nal ma
ro-

model.



Appendix C

RC-example state-spa
e

derivation

The state-spa
e equations asso
iated to the impedan
e transfer fun
tion Zout

from the RC 
ir
uit of Figure 4.12 
an be extra
ted by dire
t inspe
tion,


onsidering the RC network in Figure C.1.

{
Cv̇1 = −v1

R
− v1−vo

R
,

Cv̇o = is +
v1−vo

R
.

(C.1)

A simple rearrangement of the equations in (C.1), i.e.

{
v̇1 = − 2

RC
v1 +

1
RC

vo,
v̇o = 1

RC
v1 − 1

RC
vo +

is
C
,

(C.2)

makes possible to identify the state ve
tor

x =

(
v1
vo

)
, (C.3)

R R

C

+

−

v1 C

+

−

v0 is

Figure C.1: RC ladder 
ir
uit for the identi�
ation of a state-spa
e model

using the dire
t inspe
tion method.
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and the matri
es (normalized by C) asso
iated to the state variables

A =
1

R

(
−2 1
1 −1

)
b =

(
0
1

)
c =

(
0
1

)T

d = 0 (C.4)

leading to the system of di�erential equations

{
ẋ = Ax+ bi
vo = cx.

(C.5)

with transfer fun
tion

Z(s) = d+ c(sCI−A)−1b. (C.6)

The state-spa
e equations obtained using the dire
t inspe
tion method


an be 
onverted to an equivalent state-spa
e form, i.e. the Gilbert 
anoni
al

form [170℄. In this representation the state-spa
e matrix Ã is a (blo
k)

diagonal matrix with the eigenvalues of the original A matrix (C.4) on the

main diagonal. As a 
onsequen
e the Gilbert 
anoni
al form is equivalent

to the de
omposition of the transfer fun
tion (C.6) in the sum of rational

fun
tions, i.e.

ξ(u) =
2 + u

u2 + 3u+ 1
=

ρ1
u− p1

+
ρ2

u− p2
, (C.7)

where u = RCs, ξ = Z(s)/R and p1,2 are the poles of ξ(u) (zeros of u2 +
3u+ 1), while ρ1,2 are the residues of ξ(u)

ρ1,2 = ξ(p1,2). (C.8)

Therefore the poles 
an be 
al
ulated from u2 + 3u+ 1

p1,2 =
−3±

√
9− 4

4
=
−3 ±

√
5

2
(C.9)

and the residues follows from (C.8)

ρ1,2 =
5±
√
5

10
. (C.10)

A simple way to 
onstru
t a diagonal 
anoni
al form 
onsists in 
olle
ting

the residues in the state-spa
e matrix c̃, the poles on the main diagonal of

Ã and ones in b̃, i.e.

Ã =
1

R

(
p1 0
0 p2

)
b̃ =

(
1
1

)
c̃ =

(
ρ1
ρ2

)T

(C.11)


orresponding to

Z(s) =
Rρ1

sCR− p1
+

Rρ2
sCR− p2

(C.12)

where the physi
al dimensions are 
onsistent.
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