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Abstract
Shape sensing, i.e., reconstruction of the displacement field of a structure from surface-
measured strains, has relevant implications for the monitoring, control and actuation of smart 
structures. The inverse finite element method (iFEM) is a shape-sensing methodology shown 
to be fast, accurate and robust. This paper aims to demonstrate that the recently presented 
iFEM for beam and frame structures is reliable when experimentally measured strains are used 
as input data.

The theoretical framework of the methodology is first reviewed. Timoshenko beam theory 
is adopted, including stretching, bending, transverse shear and torsion deformation modes. The 
variational statement and its discretization with C0-continuous inverse elements are briefly 
recalled. The three-dimensional displacement field of the beam structure is reconstructed 
under the condition that least-squares compatibility is guaranteed between the measured 
strains and those interpolated within the inverse elements.

The experimental setup is then described. A thin-walled cantilevered beam is subjected to 
different static and dynamic loads. Measured surface strains are used as input data for shape 
sensing at first with a single inverse element. For the same test cases, convergence is also 
investigated using an increasing number of inverse elements. The iFEM-recovered deflections 
and twist rotations are then compared with those measured experimentally. The accuracy, 
convergence and robustness of the iFEM with respect to unavoidable measurement errors, due 
to strain sensor locations, measurement systems and geometry imperfections, are 
demonstrated for both static and dynamic loadings.

Keywords: Timoshenko beam theory, shape sensing, frame structures, inverse finite 
element method, experimental strain

1. Introduction

A key capability to enable the development of smart structures 
is real-time estimation of the deformed shape using in situ

strain measurements. This technology is commonly referred 
to as shape sensing. Aircraft wings with embedded conformal 
antennas and those with morphing capability require real-time 
shape sensing to provide feedback for their actuation and con-
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trol systems [1–3]. For large deployable frame structures that 
carry antennas, accurate on-orbit shape estimation presents an 
attractive solution to increase communication quality [4–6]. 
Knowledge of the structural displacements also enables real-
time reconstruction of structural strains and stresses, and the 
application of failure criteria for structural health assess-ment 
[7].

The computation of the displacement field is traditionally 
performed on the basis of in situ strain data measured in real 
time by a network of strain sensors. Due to their lightness, 
accuracy and ease of embedding, fiber Bragg grating (FBG) 
sensors have been extensively studied for smart structure 
applications. On the other hand, traditional strain gauges 
can be conveniently used to perform laboratory tests and for 
validation purposes [8–10].

Some authors have performed deformed shape estimation by 
using methods based on global or piece-wise continuous basis 
functions [8, 9, 11–15]. Basis-function methods make use of 
an a priori set of functions and proper weights which are 
determined using strain–displacement relationships and 
measured surface strains. Todd and Vohra [12] showed how 
the shear effect can be included for the beam problem. In many 
cases [8, 9, 13–15] mode shapes are used as basis functions. 
Other works are based on classical beam equations that are 
used to integrate discretely measured strains and to determine 
the deflection of a beam [10, 16, 17]. For example, Ko et al [17] 
proposed a one-dimensional scheme based on classical beam 
theory to evaluate the deflection and cross-sectional twist angle of 
an aircraft wing. Using a two-line strain-sensing system on 
the top surface of the wing, the curvature is obtained at 
discrete locations along the wing span (by knowing the axial 
surface strain and the distance of the measuring device from 
the neutral axis), then the deflection is evaluated by numerical 
integration. The cross-sectional twist angle is computed by 
considering the difference in the deflection of the two sensing 
lines. Jones et al [18] employed a least-squares formulation for 
shape sensing of a cantilevered plate, where FBG measured 
strains were fitted with a cubic polynomial. The strain field 
was then integrated to obtain the plate deflection according to 
classical bending assumptions. Mainc¸on and co-workers [19,
20] developed a finite element formulation, seeking the solu-
tion for displacements and loads simultaneously. Starting from 
measured displacements and strains and requiring a priori 
knowledge of the material properties and a subset of applied 
loading, the formulation results in a number of unknowns 
that is three times the number of degrees of freedom in the 
finite element discretization. Nishio et al [21] employed a 
weighted-least-squares formulation to reconstruct the deflec-
tion of a composite cantilevered plate with embedded optical 
fibers. In this approach, the compatibility between analytical 
and measured bending curvatures is enforced in a least-squares 
sense.

Many of the aforementioned algorithms require suffi-
ciently accurate loading and/or elastic-inertial material 
information—the kind of data that are either unavailable or 
difficult to obtain outside a laboratory environment. Some of 
these approaches also require mode shape analysis (Foss and 
Haugse [8], Lively et al [9], Bogert et al [13], Rapp

et al [14], Kim et al [15]) or global equilibrium conditions to 
be fulfilled (Mainc¸on [19, 20]). For these reasons, few of 
these methods are applicable for real-time shape sensing of 
aerospace structures. A well-suited algorithm for real-time 
monitoring should be computationally fast, robust with respect to 
inherent errors in the strain measurements and general 
enough to model complex structural topologies under a wide 
range of loadings, material systems and inertial/damping 
characteristics. Tessler and Spangler [7] developed an inverse 
finite element method (iFEM) for shear-deformable plate and 
shell structures. The formulation is based on a least-squares 
variational principle and allows full-field reconstruction of the 
three-dimensional displacement vector from measured surface 
strains. Because only strain–displacement relations are used in 
the formulation, both static and dynamic responses can be 
reconstructed without any a priori knowledge of loading, 
material, inertial or damping structural properties. An 
experimental assessment of the method was presented in [22, 
23], where the deformed shape of a slender beam was 
reconstructed by an iFEM shell model using FBG strain 
measurements. Recently, Gherlone et al [24–29] presented an 
iFEM formulation for shear-deformable beam and frame 
structures. Beam and frame shape-sensing analyses were 
performed for static and dynamic loadings using strain 
data from high-fidelity FE models. An application of the 
beam-iFEM approach to experimentally measured strains has 
been presented by Gherlone et al [28], who used low-fidelity 
iFEM discretizations to reconstruct accurate deflections and 
twist rotations of a statically loaded cantilevered beam.

This paper presents a brief review of the iFEM varia-
tional formulation which incorporates experimentally mea-
sured strains within a simple inverse-beam-frame element. The 
element is based on Timoshenko beam theory which includes the 
axial, bending, torsion and transverse shear deformations. Some 
experimental tests are then presented and discussed in which a 
thin-walled cantilevered beam is subjected to static and 
dynamic loadings. The experimentally measured strain data are 
used within a single inverse-beam element to model the entire 
beam. Alternatively, by applying linear regression to the 
available strain measurements, axially-distributed strain data are 
obtained; therefore, the new set of surface strains is used within 
higher-fidelity discretization models. To verify the accuracy of 
the methodology, the iFEM-predicted dis-placements and 
rotations are compared with those measured experimentally by 
displacement transducers distributed along the beam’s span (for 
the static load cases) and recovered by means of an 
accelerometer (for the dynamic load cases). The accuracy 
achieved in all the tests demonstrates that this method is robust 
with respect to various sources of errors that inevitably afflict 
laboratory experiments as well as real applications. These errors 
include measurement errors, but also uncertainty in the strain 
gauge positions, boundary conditions and geometry.

2. The inverse-beam finite element formulation

Consider an isotropic, straight beam-frame structural member of 
Young’s modulus E, shear modulus G and Poisson ratio
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Figure 1. Beam geometry and kinematic variables.

ν (figure 1). The structural member is referred to a Cartesian 
coordinate system (x, y, z), where x is positioned along the 
centroidal and shear axis, and y and z are the cross-section’s 
principal inertial axes. The frame member has length ` and its 
cross-section has area A, second moments of area with respect 
to the y- and z-axes Iy and Iz , respectively, and torsion 
constant JT (figure 1).

Consistent with the hypotheses of Timoshenko beam 
theory (each cross-section remains flat and rigid with respect 
to thickness-stretch deformations along the y- and z-axes) [30] 
and neglecting axial warping due to torsion, the displacement 
field may be written as follows:

ux (x, y, z)= u(x)+ zθy(x)− yθz(x)
u y(x, y, z)= v(x)− zθx (x)
uz(x, y, z)=w(x)+ yθx (x)

(1)

where ux , uy , and uz are the displacements along the x-, y-, 
and z-axes respectively; u, v, and w are the corresponding 
average displacements; θx , θy , and θz are the rotations about 
the three coordinate axes. The kinematic variables, u ≡ [u, v, 
w, θx , θy , θz ]T, and their positive orientations are shown in 
figure 1. The displacement field, equation (1), gives rise to the 
linear strains

εx (x, y, z)= e1(x)+ z e2(x)+ y e3(x)
γxz(x, y)= e4(x)+ y e6(x)
γxy(x, z)= e5(x)− z e6(x)

(2)

where the section strains e(u)≡ [e1, e2, e3, e4, e5, e6]T are
given by

e1(x)≡ u,x (x) e4(x)≡w,x (x)+ θy(x)
e2(x)≡ θy,x (x) e5(x)≡ v,x (x)− θz(x)
e3(x)≡−θz,x (x) e6(x)≡ θx,x (x).

(3)

The inverse finite element method (iFEM) reconstructs 
the deformed structural shape by minimizing a weighted least-
squares functional 8 containing the section strains obtained 
by in situ strain measurements, eε, and e(u) defined by 
equations (3), i.e.,

8(u)= ‖e(u)− eε‖2. (4)

The kinematic variables u are then discretized within a finite
element framework based on C0-continuous shape functions,
N (x),

u(x)' uh(x)=N(x)qh (5)

where qh denotes the nodal degrees of freedom of the element.
Consequently, the total least-squares functional is a sum
of the N individual element contributions, 8e(uh, eε), i.e.,
8=

∑N
e=18

e. Accounting for the axial stretching, bending,
twisting, and transverse shearing, the element functional 8e

is given by the dot product of the weighting coefficients

e
k

vector, we 
≡ {wk

e
} = {1, (Iy

e/Ae), (Iz
e/Ae), 1, 1, (JT

e/Ae)}, 
and the least-squares component vector, 8e 

≡ {8 }, (k = 
1, . . . , 6), [29]

8e(uh, eε)≡
6∑

k=1

we
k8

e
k (6)

where Ae, I e
y , I e

z , and J e
T are, respectively, the cross-section

area, second moments of area with respect to the y- and
z-axes, and torsion constant of the element cross-section. The
six components of the element functional are given as the
Euclidean norms

8e
k ≡

`e

n

n∑
i=1

[ek(i)(uh)− eεk(i)]
2

(k = 1, . . . , 6) (7)

where `e is the element length, n is the number of locations 
where the section strains are evaluated (with axial coordinate 
xi , 0 ≤ xi ≤ `e), ek

ε
(i) denotes the kth section strain that is 

computed from the measured strains (experimental values) at 
xi , and ek(i) indicates the kth section strain interpolated within 
the element and evaluated at the same location. Invoking 
equations (3) and (5), the analytic element-level section 
strains are expressed in matrix form as

e(uh)=B(x)qh (8)

where the matrix B(x) contains derivatives of the shape 
functions N(x) [29].

Substituting equation (8) into equation (7) and minimizing 
the element functional with respect to qh results in the element 
matrix equation ah qh 

= bh , where the matrix ah depends on 
the strain-gauge locations, xi , and their number, n, whereas 
the vector bh incorporates the corresponding strain values [29]. 
The usual finite element assembly of element contributions of a 
discretized structure, consistent with appropriate displacement 
transformations from an element (local) to a global coordinate 
system, is then performed by prescribing problem-specific 
displacement boundary conditions. The resulting system of 
equations has the form

A q= b (9)

where A is a non-singular system matrix provided that at least
a minimum number of strain-gauge points, n = nmin, is used,
i.e., nmin = 1 and 2, respectively, for constant and linearly
distributed element section strains.
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Figure 2. Inverse finite element geometry and nodes.

Solutions of equation (9) for the displacement degrees-
of-freedom, q, are efficient. The matrix A is inverted only 
once because it remains unchanged for a given distribution of 
strain sensors and is independent of the measured strain 
values. The b vector, however, is dependent on the measured 
strain values; thus, at any strain measurement update during 
deformation, the matrix–vector multiplication, A−1 b, gives 
rise to the unknown degrees-of-freedom vector, q.

For frame structural elements loaded only by forces and 
moments at the end points, the section strains can be shown to 
exhibit the following span-wise distributions: e1, e4, e5, and e6 
are constant, whereas e2 and e3 are linear [29]. From equation 
(3), it is deduced that u and θx are linear, θy and θz parabolic, v 
and w cubic. Thus, the following interpolations are adopted 
[29] (also refer to figure 2):

u(x)=
∑

i=1,2

L(1)i (x)ui ,

θx (x)=
∑

i=1,2

L(1)i (x)θxi

θy(x)=
∑

j=1,r,2

L(2)j (x)θy j ,

θz(x)=
∑

j=1,r,2

L(2)j (x)θz j

v(x)=
∑

i=1,2

L(1)i (x)vi −
∑

j=1,r,2

N (3)
j (x)θz j ,

w(x)=
∑

i=1,2

L(1)i (x)wi +
∑

j=1,r,2

N (3)
j (x)θy j

(10)

where the subscripts 1, r and 2 denote positions along the
beam length at the left-end, middle, and right-end node, re-
spectively; L(1)i (x) (i = 1, 2) are linear Lagrange polynomials;
L(2)j (x) ( j = 1, r, 2) are quadratic Lagrange polynomials. The

cubic polynomials N (3)
j (x) ( j = 1, r, 2) are obtained from

standard cubic Lagrange polynomials by forcing the transverse
shear section strains (e4 and e5) to be constant along the

element. Refer to appendix A for the expression of Li
(1)
(x),

L(2)j (x), and N (3)
j (ξ). The element has fourteen degrees of

freedom: six at each end node plus the rotations θyr and θzr
at the mid-span. By solving the element system of equations
ahqh

= bh exactly with respect to the external degrees-of-
freedom, the two internal rotation degrees-of-freedom are
condensed, yielding a two-node/twelve-degrees-of-freedom
element topology.

A key step in the formulation is to compute the section
strains, eε, from the experimentally measured surface strains.
We shall restrict the present analysis to the beam-frame
members with circular cross-sections only, and employ the

Figure 3. Orthogonal and cylindrical coordinate systems and strain
gauge location and coordinates.

cylindrical coordinate system (θ, x, r) shown in figure 3. A 
strain gauge is placed on the external surface (r = Rext), at x = 
xi and at a circumferential angle θ, and oriented along the β 
angle (figure 3). The relationship between the
measured strain εε = ε2

∗ and the six section strains at x = xi , 
ek
ε
(i) (k = 1, . . . , 6), is [29]

εε(xi , θ, β)= eε1(i)(c
2
β − νs2

β)+ eε2(i)(c
2
β − νs2

β)sθ Rext

+ eε3(i)(c
2
β − νs2

β)cθ Rext+ eε4(i)cβsβcθ
− eε5(i)cβsβsθ + eε6(i)cβsβ Rext (11)

where cθ ≡ cos θ , sθ ≡ sin θ , cβ ≡ cosβ, and sβ ≡ sinβ.
For the case of end-node forces and moments, the constant
distributions of eε1, eε4, eε5, and eε6 and the linear distributions
of eε2 and eε3 can be determined, requiring a total of eight
strain measurements. This number may be reduced to six by
invoking the equilibrium equations of the Timoshenko beam
theory which relate the bending moments (My,Mz) to the
transverse shear forces (Q y, Qz)

dMz

dx
= Q y (12a)

dMy

dx
= Qz . (12b)

By using the constitutive relations of the Timoshenko beam
theory,

Q y =G ye5 My = Dye2

Qz =Gze4 Mz = Dze3
(13)

where G y ≡ k2
yG A and Gz ≡ k2

z G A are the shear rigidities,
with ky

2 and kz
2 denoting the shear correction factors [30, 31], 

and Dy ≡ E Iy and Dz ≡ E Iz denoting the bending rigidities, 
equations (12) can be written in terms of experimental trans-
verse shear and bending section strains as

eε5 =
E
G

Iz

k2
y A

eε3,x (14a)

eε4 =
E
G

Iy

k2
z A

eε2,x . (14b)

ε
4

ε
5

It is worth noting that this procedure should be viewed as a 
convenient means of reducing the required number of strain 
gauges by solving for e and e analytically rather than 
measuring these quantities experimentally. The use of 
equations (15) requires knowledge of the geometry (A, Iy , Iz ) 
and of the Poisson’s ratio, ν (E/G = 2(1 + ν)).
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Figure 4. Static test setup. (a) A: clamping system; B: lever arm for static load case (iv); C: loading system; D: LVDT measuring deflection
along the beam span; E: LVDT measuring displacement due to torsion for static load case (iv); F: LVDT measuring beam deflection at the
clamped end; G: aluminum beam. (b) Clamping system (detail). (c) H: aluminum cap; I: pulley for static load case (ii); J: LVDT used to
verify that the vertical displacement is negligible during static load case (ii).

3. Experimental results

Experiments were conducted at the AERMEC Laboratory of 
the Department of Mechanical and Aerospace Engineering of 
Politecnico di Torino in order to assess the iFEM for beam 
structures. The test article, shown in figure 4(a), was a thin-
walled beam with a circular cross-section, with thickness s = 
1.9 mm, external radius Rext = 40 mm and length ` = 800 
mm. The material was a 6060 aluminum alloy (E = 61 922 
MPa, ν = 0.33). The beam was mounted on a test-bed in a 
cantilevered configuration with one end clamped between two 
couples of iron blocks locked together by twelve bolted 
connections (figure 4(b)).

Nine stacked strain rosettes were placed at three different 
stations along the beam span (x = `/3, `/2, 2`/3); for each 
station, three rosettes were placed at θ = −120◦, 0◦, +120◦, 
respectively. Each rosette had three strain gauges measuring 
at β = 0◦, 45◦, 90◦ (figure 3). Table 1 summarizes the strain

gauge configurations used in the iFEM model (also refer to 
figure 5). Details of the evaluation of the section strains for 
each strain gauge configuration can be found in appendix B. 
Displacement measurements were taken at different locations 
along the beam span by means of linear variable differential 
transformers (LVDTs) and used to assess the iFEM-recovered 
deflections and rotations (figure 4(a)). An LVDT was also 
placed as close as possible to the beam root in order to verify 
the effectiveness of the clamping system (figure 4(a)).

3.1. Static tests

For the static tests, four different load cases were considered 
(figure 6):

(i) tip vertical force,
(ii) tip horizontal force,

5



Figure 5. Schematic representation of the strain gauge configurations: C1 (a), C2 (b), C3 (c) and C4 (d).

Table 1. Description of the strain gauge configurations. For each configuration, the gauges’ axial locations and orientations are reported
(angles are expressed in degrees).

Notation Description Orientation (θ, β) at x = `/3 Orientation (θ, β) at x = `/2 Orientation (θ, β) at x = 2`/3

C1 — (−120, 0), (−120, 45), —
(0, 0), (0, 45), (120, 0),

• Six strain gauges • 
One axial location • 
Equations (12) used (120, 45)

C2 —
(−120, 0), (0, 0), (120, 0) (−120, 0), (0, 45), (120, 0)

• Six strain gauges • 
Two axial locations • 
Equations (12) used

C3 • Eight strain gauges (−120, 0), (−120, 45), — (0, 0), (0, 45), (120, 0),
• Two axial locations (0, 0), (120, 45) (120, 45)

C4 (−120, 0), (−120, 45),
• Eight strain gauges (−120, 0) (0, 0), (0, 45), (120, 0), (120, 0)
• Three axial locations (120, 45)

(iii) tip force inclined 30◦ with respect to the horizontal y-axis
of the cross-section,

(iv) tip vertical force applied at a distance b= 300 mm from
the center of the cross-section.

The loading was achieved by placing several weights on 
a cradle (for a total weight of F = 26.83 kg). For cases (i),
(ii), and (iii), the cradle was linked to a screw at the center 
of the beam tip cross-section by means of an aluminum cap 
embedded at the beam end (figure 4(c)), whereas, for load case 
(iv), the cradle was suspended from a proper lever arm provided 
by a thick plate embedded at the beam tip (figure 4(a)). 
Depending on the load case, LVDT transducers were placed 
at different locations along the beam span (refer to table 2). 
For load case (iv), the tip twist rotation was recovered by 
measuring the vertical displacement at two points, one in 
correspondence with the beam’s free-end and the second at 
a certain distance d along the lever arm (see figure 4(a));

knowing the distance between the two LVDT transducers, d, and 
the difference between the two measured deflections,1wLVDT, 
the twist rotation of the beam free end was evaluated as θx (`) = 
arctan(1wLVDT/d). For the presented results, d = 350 mm. 
Moreover, for load cases (i), (ii) and (iv), an additional LVDT 
was placed at the beam tip in order to control the load direction; 
for example, in load case (ii) (figure 4(b)), the load has to be 
horizontal and a vertical LVDT was used to verify that the 
vertical displacement was negligible.

The accuracy of the solution is assessed by means of the 
percentage difference of the predicted displacements and the 
rotation with respect to the experimentally measured ones. The 
percentage difference is defined as

%Diff(δ)= 100×
[
δiFEM(xi )− δ

exp(xi )

δexp(`)

]
(15)

where δ = (v, w, θx ); the superscript ‘iFEM’ refers to the 
predicted value while ‘exp’ refers to the experimental measure;

6



Table 2. The experimental displacements (mm) and rotations (rad) measured using LVDTs for the static load cases.

Load case (i)

w(`/2) w(3`/4) w(7`/8) w(`)

−0.648 −1.300 −1.635 −1.985

Load case (ii)

v(`/2) v(3`/4) v(7`/8) v(`)

0.636 1.272 1.648 1.994

Load case (iii)

v(3`/4) v(7`/8) v(`) w(3`/4) w(7`/8) w(`)

1.098 1.414 1.667 0.644 0.802 0.963

Load case (iv)

w(`/2) w(3`/4) w(7`/8) w(`) θx (`)

−0.664 −1.319 −1.647 −1.958 3.5× 10−3

Figure 6. Static load cases.

xi is the i th point along the axial coordinate where δ is
measured.

At first, a single inverse element is adopted to model the 
entire beam. Figures 7–10 display the percentage differences 
of the predicted deflections, evaluated at different locations 
along the beam span, for load cases (i)–(iv). For each load 
case, results obtained with all the strain gauge configurations 
referred to in table 1 are compared. For load case (iv) the 
percentage difference in the twist rotation evaluated at x = ` 
is given by %Diff(θx ) = (−9.36, −5.24, −7.84, −9.36) for 
the four considered strain gauge configurations, C1–C4, 
respectively.

For all load cases and using any of the considered strain-
gauge configurations, the iFEM-predicted tip deflections 
differ from the measured values by less than 7%. The inverse 
models that use eight strain gauges generally produce more 
accurate predictions compared to the six-strain gauge 
configurations, with the exception of case (iv) corresponding 
to C2 (see table 1) which produces a slightly more accurate 
prediction for the tip twist rotation. It is noted that the strain 
gauge configuration C2 has only one strain gauge rotated at 
45◦ with respect to the beam axis (β = 45◦), whereas the other 
configurations have at least three strain gauges along β = 45◦. 
It may be reasonable

Figure 7. Percentage difference in the iFEM-predicted deflection,
w, for load case (i), using a single inverse-element discretization and
four different strain gauge configurations, C1–C4 (see table 1).

Figure 8. Percentage difference in the iFEM-predicted deflection, v, 
for load case (ii), using a single inverse-element discretization and 
four different strain gauge configurations, C1–C4 (see table 1).

to suppose that a strain gauge placed at β = 45◦ gives a slightly
less accurate measure, because of the curvature of the external
beam surface. Therefore, the configuration C2 should be more

7



Figure 9. Percentage difference in the iFEM-predicted deflections, v (a) and w (b), for load case (iii), using a single inverse-element 
discretization and four different strain gauge configurations, C1–C4 (see table 1).

Figure 10. Percentage difference in the predicted deflection, w, for 
load case (iv), using a single inverse-element discretization and four 
different strain gauge configurations, C1–C4 (see table 1).

accurate especially for those cases where the strains measured
at β = 45◦ are essential. This is particularly true for load case
(iv) because the strain gauges with an orientation angle of
β = 45◦ are the only ones measuring the strain due to torsion.
Thus, for this load case, the solution is dominated by the
measurement errors of the strain measured at β = 45◦, and
this effect is particularly evident in the twist rotation.

As a second strategy, more inverse elements are used to
discretize the beam. A finer discretization of the structure
would usually require a denser distribution of strain mea-
surements. Alternatively, curve fitting can be applied to the
available strain-gauge measurements to simulate experimental
strain data in more locations. Following this concept, a linear
function of the axial coordinate, x , is used to fit the strain values
measured at x = `/3, `/2, 2`/3 for each of the considered
orientations (θ, β); this yields six continuous functions of x
representing the experimental evaluation of the strains at the
orientation angles (−120, 0), (−120, 45), (0, 0), (0, 45), (120,
0), and (120, 45). Using this strategy it is possible to model
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Figure 11. Percentage difference in the iFEM-predicted tip
deflection, using fitted strain data, versus the number of inverse
elements, for load case (i).

the test article with as many inverse elements as needed and
with all the possible strain-gauge distributions described above
within each element.

Figures 11–14 summarize the results obtained for the 
tip displacements and rotation for each load case, using 
the procedure described above and an increasing number of 
inverse elements. The strain-gauge distribution corresponding 
to each curve is adopted in all the elements. As the number 
of inverse elements increases, the percentage difference in 
the predicted iFEM deflection converges to a value that is 
lower than 6% for all load cases. The twist angle at the 
beam free-end for load case (iv) is somehow less accurate; 
configuration C2 provides the best estimate of the twist 
rotation with a percentage difference of about 5.8% using 16 
elements (see figure 14). The above-mentioned considerations 
concerning improvement in accuracy due to the C2 strain-
gauge configuration apply in this case as well.

Comparing figures 7–10 with figures 11–14, some 
obser-vations can be made. The results presented in figures 
7–10 are

8



Figure 12. Percentage difference in the iFEM-predicted tip
deflection, using fitted strain data, versus the number of inverse
elements, for load case (ii).

obtained using measured raw-strain data, whereas in figures 
11–14 every input strain is obtained by a linear fitting per-
formed over three different values, measured at x = `/3, `/2, 
2`/3, respectively. As expected, the results obtained with only 
one inverse element are different when using the raw strain 
data (figures 7–10) or the fitted strain data (figures 11–14), 
since these data may be different at the same axial location. 
The major advantage of applying a fitting procedure to the raw 
data is that the frame member can be discretized using a large 
number of inverse elements without requiring the acquisition 
of further data. For example, a five element discretization, 
together with the strain gauge distribution C1, would require 
thirty pieces of strain data to be measured, whereas using 
the present strain interpolation, only eighteen are needed, 
independently of the number of inverse elements. This is par-
ticularly important when a more complex loading is applied, 
for example, a distributed load. In that case, it is advantageous 
to use higher-fidelity discretizations for the iFEM model. In 
general, the number of inverse elements to be used is related to

Figure 13. Percentage difference in the iFEM-predicted tip deflections, v (a) and w (b), using fitted strain data, versus the number of inverse
elements, for load case (iii).
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Figure 14. Percentage difference in the iFEM-predicted tip deflection (a) and twist rotation (b), using fitted strain data, versus the number of
inverse elements, for load case (iv).
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Figure 15. Dynamic test setup. A: clamping system; B: aluminum beam; C: accelerometer; D: shaker.

the complexity of the applied loading and expected structural 
deformations. Another important consideration is that, using 
the raw data, different strain-gauge configurations can lead 
to significantly different results (see figures 7–10), whereas 
using fitted data, results obtained with different strain gauge 
configurations converge to nearly the same values (see figures 
11–14); that is, the accuracy of the solution is independent of 
the strain gauge configuration.

It is important to observe that the computational time 
is slightly affected by the number of inverse elements used, 
since the solution of equation (9) requires that the matrix A 
is inverted only once, whereas the remaining computation 
involves an extremely fast matrix–vector multiplication. In 
fact, most of the computational time involved in the shape 
reconstruction is merely due to data acquisition rather than the 
actual computation of the deformed shape.

An important property of the displacement field recon-
struction through the iFEM is its resolution, i.e., the minimum
displacement that can be evaluated using the input strain
data. An estimate of the resolution is not trivial since it
depends on many factors, first of all the resolution of the data
acquisition system. To investigate this aspect, an experimental
campaign will be conducted where a step-wise load appli-
cation is adopted, the minimum measurable strain variation
is recorded at each step and the corresponding reconstructed
displacement field is evaluated. Since this study is not within
the scope of the present paper, it will be addressed in a future
work.

3.2. Dynamic tests

The same thin-walled, circular cross-section, cantilevered 
beam (figure 4) was used for the dynamic experiments. A 
harmonic vertical force was applied at the free end of the beam 
through a shaker rigidly linked to the screw at the center of 
the tip cross-section (figure 15). The displacement transducers

used in the static tests were no longer operable, since they 
are only accurate in detecting very low-frequency motion. 
Thus, to verify the accuracy of the beam iFEM, a mono-axial 
piezoelectric accelerometer was placed at the beam free end, 
measuring the vertical acceleration. The trapezoidal integra-
tion rule was applied twice in order to obtain the tip vertical 
deflection time–history. Discrete-time integration is affected 
by errors that increase in time and are known as drift [32]; 
these errors result in a global linear trend in the integrated 
signal (parabolic trend for double integration). Furthermore, 
the trapezoidal rule greatly amplifies low-frequency noise, 
while inherently filtrating high-frequency noise [33]. Thus, 
in order to correct the integrated displacement, a high-pass 
Butterworth filter was used after integration [32]; to obtain 
zero-phase filtering, the filter was applied twice to the signal 
in the forward and backward directions [34]. The filter design 
and filtering operations were achieved by using available 
functions of the commercial code MATLAB©R R2007a. 
In order to suppress high-frequency noise that affects the 
strain gauge measurements, a low-pass filter was applied 
to the measured strains. Moreover, to keep the phase un-
shifted, double forward–backward filtering was applied to 
the strain gauge measured signals. A sixth-order Butterworth 
filter was designed again using MATLAB R© R2007a 
functions (cut-off frequency equal to 200 Hz).

Using a harmonic vertical force, F = F0 sin(2π f0t), two
different tests were conducted:

(a) at f0 = 10 Hz withF0 = 70 N;
(b) at f0 = 40 Hz withF0 = 80 N.

In both tests, f0 was lower than the fundamental frequency 
of the beam, i.e. approximately 130 Hz, as predicted by a high-
fidelity FEM modal analysis of the test article conducted with 
MSC/NASTRAN©R [29]. In figures 16 and 17 the tip’s 
vertical displacement evaluated using one inverse finite 
element and the strain gauge configuration C2 of table 1 
is compared

10
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Figure 16. Tip deflection of the beam loaded by a harmonic force
(frequency 10 Hz and amplitude 70 N).

Figure 17. Tip deflection of the beam loaded by a harmonic force
(frequency 40 Hz and amplitude 80 N).

with the twice-integrated accelerometer signal for the two 
excitation frequencies. Taking only maximum or minimum 
values in the sinusoidal response obtained by the accelerometer 
measurement, the largest iFEM percentage differences, for the 
given time histories, are summarized in table 3. The percentage 
differences are calculated as follows:

%Diff(w)= 100×
[
wiFEM(`)

wexp(`)
− 1

]
(16)

where wexp(`) is obtained from integration of the accelerom-
eter signal.

The results of the dynamic experimental assessment of 
the iFEM for beams confirm t he a ccuracy a nd e fficiency of 
the present formulation, particularly taking into account that 
only a single inverse element has been used to model the 
beam. Naturally, modeling of more complex deformations 
associated with the higher-frequency regime would require 
a higher-fidelity discretization for the iFEM model. In this 
case, more strain measurements would have to be acquired 
or, as discussed in section 3.1, a suitable polynomial fitting

Table 3. Percentage difference of iFEM-predicted
maximum/minimum tip deflection.

Load, F Frequency, f0 (Hz) 10 40
Force magnitude, F0 (N) 70 80

%Diff (w) C1 −3.16 −5.89
C2 −2.00 −3.36
C3 3.95 2.19
C4 3.54 −5.21

would have to be applied to the raw strain data. Thus, a
higher-fidelity discretization would result in larger matrices;
nevertheless, the computation remains extremely efficient
using the matrix–vector multiplication A−1 b, where only the
values in the b vector will change for different time/strain
evaluations.

4. Conclusions

Shape sensing is an inverse problem aiming at the recon-
struction of the three-dimensional displacement field of a
structure from strains measured at discrete locations on its
surface. An inverse finite element method (iFEM) has been
presented in this paper for the shape sensing of beam and
frame structures based on Timoshenko’s kinematic assump-
tions. The methodology is based on a least-squares functional
which is discretized by C0-continuous displacement-based
inverse frame elements. The variational statement enforces
least-square compatibility between the experimentally mea-
sured strains due to stretching, torsion, bending and transverse
shear, and those interpolated within the inverse elements.

The fundamentals of the iFEM have been briefly reviewed
to set the framework for an assessment of the methodol-
ogy when used with experimental strain data. A thin-walled
cantilevered beam has been subjected to static and dynamic
loads in a mechanics laboratory. Strains measured by surface-
mounted strain gauges have been employed in the shape-
sensing analyses. Displacement transducers and accelerom-
eters have been used to measure the beam’s response, with
these measurements used to verify the accuracy of the iFEM
reconstructed displacements.

With the use of a single inverse element, the iFEM-
reconstructed displacements and rotations compared favorably
with those measured experimentally. When the beam was
discretized with multiple elements, a convergent trend of the
results towards the experimentally measured displacements
and rotations was demonstrated. The number and the distribu-
tion of strain gauges have also been shown to influence the ac-
curacy of the iFEM predictions. The studies have demonstrated
the robustness of the approach with respect to unavoidable
measurement errors due to strain-gauge location, measurement
systems, and geometric imperfections.

The results of this work point towards the possibility
of determining optimally distributed locations of the strain
gauges in order to achieve further improvements in the
shape-sensing predictions. Moreover, further benefits to the
accuracy and robustness of the methodology can be achieved
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by the use of distributed strain-measurement techniques,
e.g., fiber Bragg grating (FBG) sensors. The proposed inverse
finite element method represents a powerful tool for both shape
sensing and health monitoring of smart structures that are
instrumented with embedded strain-sensing systems.
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Appendix A

The first- and second-degree Lagrange shape functions are
given as follows:

[L(1)1 , L(1)2 ] ≡
1
2 [(1− ξ), (1+ ξ)]

[L(2)1 , L(2)r , L(2)2 ] ≡
1
2 [ξ(ξ − 1), 2(1− ξ (2)), ξ(ξ + 1)]

(A.1)

where ξ ≡ 2x/`e
− 1 ∈ [−1, 1] is a non-dimensional axial

coordinate; x ∈ [0, `e
] and `e denotes the element length. The

subscripts 1 and 2 are labels representing the end nodes, r
denotes the middle node.

The third-degree shape functions, N (3)
j (ξ), have the form

[N (3)
1 , N (3)

r , N (3)
2 ] ≡

`e

24
(1− ξ (2))

× [(2ξ − 3),−4ξ, (2ξ + 3)]. (A.2)

Appendix B

For each strain-gauge configuration, the sections’ strains are
evaluated at xi = `/3 and xi = 2`/3 as follows.

(C1) The strain-gauge configuration C1 consists of six strain 
gauges located at xi = `/2. By writing equation (11) for each 

measured strain, the section strains are evaluated

ε
2

ε
3

ε

ε

ε
2

ε

1
ε
4

ε
5

ε
6

at the beam mid-span, ek
ε(`/2), k = 1, . . . , 6. Thus, 

remembering that the bending section strains e and e are 
assumed to be linear and evaluating their derivatives, e2,x 
and e3,x , at xi = `/2 by means of equation (15), the values 
of e and e3 can be easily estimated at xi = `/3 and 2`/3. As 
eε, e , e and e are supposed to be constant, their values along 
the beam span are assumed to be the same as at xi = `/2.

(C2) For the strain-gauge configuration C2, equation (11)
gives rise to six equations—one for each strain-gauge
measurement—with eight unknowns: the constant sec-
tion strains eε1, eε4, eε5 and eε6, and two values for each
of the linear strain measures, eεj (`/3) and eεj (2`/3),
j = 2, 3. The system can be solved by adding the
following two equations:
3
`
(eεj (2`/3)− eεj (`/3))= eεj,x ( j = 2, 3) (B.1)

ε
2

ε
3where the derivatives e ,x and e ,x are given by 

equa-tion (15).

(C3) Equation (11) is written eight times, thus enabling the
evaluation of the eight unknowns, eε1, eε4, eε5 and eε6, and
eεj (`/3) and eεj (2`/3), j = 2, 3.

(C4) By writing equation (11) for each of the eight strain
gauges, we introduce ten unknowns: eε1, eε4, eε5 and eε6,
and eεj (`/3), eεj (`/2) and eεj (2`/3), j = 2, 3. Then, in
order to solve this problem, the following relationships
can be written:

eεj (`/3)+ eεj (2`/3)

2
= eεj (`/2) ( j = 2, 3) (B.2)

where we use the assumption that the bending curvatures
are linear along the element span.
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