
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting Semantic Technologies in Smart Environments and Grids: Emerging Roles and Case Studies / Bonino, Dario;
Procaccianti, Giuseppe. - In: SCIENCE OF COMPUTER PROGRAMMING. - ISSN 0167-6423. - ELETTRONICO. -
95:1(2014), pp. 112-134. [10.1016/j.scico.2014.02.018]

Original

Exploiting Semantic Technologies in Smart Environments and Grids: Emerging Roles and Case Studies

Publisher:

Published
DOI:10.1016/j.scico.2014.02.018

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2533890 since:

Elsevier

Exploiting Semantic Technologies in Smart
Environments and Grids: Emerging Roles and Case

Studies

Dario Boninoa,∗, Giuseppe Procacciantia

aPolitecnico di Torino, Dipartimento di Automatica ed Informatica, Corso Duca degli
Abruzzi 24, 10129 - Torino, Italy

Abstract

Semantic technologies are currently spreading across several application domains
as a reliable and consistent mean to address challenges related to organization,
manipulation, visualization and exchange of data and knowledge. Different roles
are actually played by these techniques depending on the application domain,
on the timing constraints, on the distributed nature of applications, and so on.
This paper provides an overview of the roles played by semantic technologies in
the domain of smart grids and smart environments, with a particular focus on
changes brought by such technologies in the adopted architectures, programming
techniques and tools. Motivations driving the adoption of semantics in these dif-
ferent, but strictly intertwined, fields are introduced using a strong application-
driven perspective. Two real-world case studies in smart grids and smart envi-
ronments are presented to exemplify the roles covered by such technologies and
the changes they fostered in software engineering processes. Learned lessons are
then distilled and future adoption scenarios discussed.

Keywords: Semantic technologies, Smart Grid, Smart Environments, Home
Automation, Ontologies

1. Introduction

In 2001 Tim-Berners Lee proposed the Semantic Web vision: a new genera-
tion of the World Wide Web in which content was given well-defined, machine
understandable meaning, better enabling cooperation between humans and com-
puters. Almost a decade later, Semantic technologies are recognized as a means
to reliably address issues related to information processing, organization, ma-
nipulation, visualization and exchange. As a consequence, semantic-based ap-
plications are crossing the boundaries of research-level applications and more
and more enterprise-grade solutions are now offered on the market. This tran-
sition contributes to shape the role of semantics in software engineering and
fosters previously unforeseen programming patterns.

∗Corresponding author
Email addresses: dario.bonino@polito.it (Dario Bonino),

giuseppe.procaccianti@polito.it (Giuseppe Procaccianti)

Preprint submitted to Science of Computer Programming February 12, 2014

This paper focuses on changes brought by semantic technologies in software
engineering approaches and solutions typical of the home automation (smart
homes) and smart grid domains. Starting from a detailed and updated overview
of the state of the art in these fields, we analyze how semantic technologies im-
pact the design of smart environments. The analysis follows two parallel paths:
firstly we analyze emergent, cross-domain adoption patterns, using a top-down
approach (see Section 3); secondly we address the specific domain of smart en-
vironments by focusing on two real-world case studies covering the vertical do-
main of energy monitoring and exchange, from smart environments (Section 4)
to smart grids (Section 5). The two selected case studies, stem respectively
from a 7-years old research effort carried by the some of the authors, currently
part of a larger effort towards standardization of Energy Using and Producing
Products Management [1], and from an on-going research in the smart grid do-
main involving one of biggest actors in the smart environment domain, in Italy,
i.e. the Loccioni group. As shown in the paper, some clear roles for semantic
technologies can be identified, involving both off-line modeling and run-time
operation. The latter, in particular, is particularly interesting, from a com-
puter programming standpoint, as it is currently fostering new programming
paradigms mainly based on automatic code generation. In general, a tangible
effort in finding the right trade-off between “pure” semantic-based operation,
supported by full logic inference, and hybrid approaches were semantic infor-
mation is translated into more operational representations, can be noticed. The
first approach exploits the full power of logic to provide advanced data process-
ing/management, but suffers from computationally intensive processes, seldom
suited for on-line/real-time operation. The last, instead, is less formal, possibly
dealing with, or generating, inconsistencies in modeled information, however
it can easily be exploited at runtime, with computation loads typically lower
than the full semantics approach. The results of our analysis provide hints on
the increasing importance of semantics in smart home and smart grid domains,
and, in the next years, we expect an even higher impact on related software
engineering processes, particularly for what concerns monitoring and big-data
issues.

The reminder of the paper is organized as follows: Section 2 depicts the
current state of the art, highlighting typical cases of semantic-based approaches
to smart homes and smart grids. Section 3 provides a top-down analysis of
emergent roles of semantics in the knowledge domain tackled by the paper and
provides an overview of technologies and approaches which are better detailed
in the following sections. Sections 4, and 5 exemplify the roles identified in the
former section by focusing on two real-world case studies respectively related to
smart environments and smart grids. Finally, Section 6 discusses the emerging
approaches and provides a view on the future trends in semantics-powered sys-
tems for the energy monitoring and exchange domain, while Section 7 concludes
the paper and proposes future works.

2. State of the Art

Firstly introduced by Tim Berners Lee [2] and lately evolved in one of the
main pillars of the next generation web, the Semantic Web and related tech-
nologies have quickly crossed the Web boundaries and have been considered as
one of the enabling technologies for smart environments, in particular for smart

2

homes and buildings. The earliest applications of semantic technologies (i.e., of
technologies such as ontology modeling, reasoning, etc., stemming from the Se-
mantic Web initiative) dealt with context modeling, a key technology for smart
homes. In this domain, several research efforts [3, 4, 5, 6] can be cited dating
back to the first Semantic Web years.

2.1. Context modeling
COBRA-ONT [3], for example, is an ontology-based modeling effort for sup-

porting pervasive context-aware systems, and provides a collection of ontologies
for describing places, agents and events and their associated properties in an in-
telligent meeting-room domain. The ontological core of COBRA is SOUPA [7]
a Standard Ontology for Ubiquitous and Pervasive Applications. SOUPA is
expressed using the Web Ontology Language (OWL) [8] and includes modular
component vocabularies to represent intelligent agents with associated beliefs,
desires, and intentions, time, space, events, user profiles, actions, and policies
for security and privacy.

Another relevant effort to adopt semantic technologies in the context of a
pervasive computing environment (GAIA [9]) is reported in [4], where the use
of ontologies helped to face some challenges that are not unique to pervasive
computing, but that are faced by any multi-agent software system. The work
considered three major issues that confront the development and deployment of
pervasive computing environments: discovery and matchmaking, interoperabil-
ity between different entities and context-awareness. From this work, several
challenges related to the adoption of semantic technologies in intelligent envi-
ronments emerged, part of which still have to be solved:

a) the need to simplify the construction and maintenance of ontologies,

b) the need to integrate ontologies with software generation and management,
for example using ontologies to semi-automatically generate interfaces1,

c) the need to handle ontology merging at run-time, and consequently the need
for upper ontologies defining the smart environments knowledge domain,

d) the need of languages with different expressive power, as Description Logic
(DL) is not suited for some critical aspects of pervasive computing. For
example it does not deal well with quantitative concepts; including order,
quantity, time, or rates.

2.2. Interoperability
Smart environments are too often “simple environments” filled with smart

devices, “isolated” and not collaborating with each other. Semantic technolo-
gies assume therefore a key role to bring such components together to provide
real Ambient Intelligence (AmI, see [10] for an overview). In this case the main
research efforts reported in the literature are about modeling and interoperabil-
ity.

Among many relevant domain ontologies, the EHS taxonomy is one of the
earliest home appliance classification systems, originally designed by the EHS
(European Home System) consortium (now evolved in the Konnex Association2)

1This has been extended to automatic code generation in the last few years.
2http://www.konnex.org

3

that mainly describes so-called white and brown goods located in a domestic en-
vironment. It is deployed along four main classes: Meter Reading, which groups
all measurement tools, House Keeping, which groups all household appliances
and systems, Audio and Video, which encompasses multimedia appliances, and
Telecommunication, grouping all tools able to establish a communication.

In [11] Chen et al. introduce semantic smart homes, a novel concept whose
aim is to move from the current state-of-the-art of smart home technologies
to the future infrastructure that is needed to fully support the smart home
vision. They present a conceptual system architecture for semantic smart homes
and elaborate functions, and explore the interplay of constituent components
by focusing on the methodology of semantic modeling, content generation and
management.

2.3. Domain and upper ontologies

DomoML [12, 13] represents one of the first approaches providing a full,
modular ontology for representing household environments. It describes op-
erational and functional aspects together with some preliminary architectural
and positioning information and is based on three core ontologies: DomoML-
env, DomoML-fun and DomoML-core. DomoML-env provides primitives for
the description of all “fixed” elements inside the house such as walls, furniture
elements, doors, etc., and also supports the definition of the house layout by
means of neighborhood and composition relationships. DomoML-fun provides
means for describing the functionalities of each house device, in a technology
independent manner. DomoML-core provides support for the correlation of el-
ements described by DomoML-env and DomoML-fun constructs, including the
definition of proper physical quantities.

More recently, the DogOnt [14] ontology3 provided one of the few domain
models specifically designed to fit real world domotic system capabilities and to
support inter-operation between currently available and future solutions. Tak-
ing advantage of technologies developed in the context of the Semantic Web, the
DogOnt ontology supports device/network independent description of houses,
including both “controllable” and architectural elements. States and function-
alities are automatically associated to the modeled elements through proper in-
heritance mechanisms, while automatic device recognition is achieved through
classification reasoning.

When crossing the home boundaries, devices are no more ”domotic” and
tend to be modeled as sensors, somewhat interconnected by a communication
mean. The Semantic Sensor Web (SSW) initiative tackles the world of sen-
sors and related issues by encoding sensor descriptions and sensor observation
data with Semantic Web languages to enable more expressive representation,
advanced access, and formal analysis of sensor resources. The W3C Semantic
Sensor Network Incubator group (SSN-XG), in particular, defined an OWL 2
ontology [15] to describe the capabilities and properties of sensors, the act of
sensing and the resulting observations.

In the last few years, semantic modeling for smart environments witnessed
the development of upper ontologies, as means to provide a solid conceptual
framework for emerging domain-level representations. In 2011, as an example,

3http://elite.polito.it/ontologies/dogont.owl

4

Dobson et al. [16] introduced a top-level ontology for smart environments serving
as a formal backbone when designing domain-specific ontologies, linking the
meaning implicit in elementary information to higher-level information that
is of interest to applications. In this way their ontology aims at providing
the common semantics for information at different levels of granularity, which
supports the communication, reuse and sharing of ontologies between systems.

2.4. Run-time operation

This increasing availability of modeling solutions grounded on real-devices
and extending up to higher conceptual layers, has given birth to a variety
ontology-based ambient intelligence systems [17, 18]. As a consequence, new
roles for semantic technologies emerge, which are currently crossing the domain
of static modeling and start to tackle run-time operations [19] and related issues,
also pertaining previously neglected domains such as: energy measurement [20]
and performance certification [21], simulation [22, 23], etc.

While it is well known that reasoning has not a good performance for real-
time systems, SPARQL-based approaches are used to get a better performance.
Current efforts on C-SPARQL or EP-SPARQL, for example, try to bring old-
fashioned techniques from the Complex Event Processing and Stream Reasoning
areas to the Semantic Web. This should allow better tackling of real-time op-
erations.

Xu et al. [24], for example, propose an ontology-based framework to fa-
cilitate automatic composition of applications for smart environments. Their
system composes appropriate services depending upon the available equipments
in each individual household, automatically. Moreover, it dynamically adjusts
environment parameters to match customer needs and available resources. Users
are able to specify their preferred behavior templates and to personalize existing
ones, thus guiding the services composition towards their own needs.

In [25], Katasonov et al. extend the process of software development for
smart environments with a full ontology-driven approach. The goal of their work
is, in fact, to raise the level of abstraction of smart application development, for
enabling end-user programming, and to partially automate the process to make
it easier and faster. A Smart Modeler enables the developer to graphically cre-
ate a model of a smart space application and, a semantics-based framework pro-
vides core interfaces for extensions, supporting both model and ontology-driven
development. These extensions enable: ontology-based creation of model ele-
ments, discovery and reuse of software components and partial models, through
a repository mechanism, and, generation of executable programming code for
models.

2.5. Smart grid

The application of semantic technologies to the smart grid domain has been
widely discussed in the scientific community in the last few years. The main
scientific efforts were directed to the definition of a common ontology for this
domain. The first examples of complete software frameworks and architectures,
which leverage these technologies to manage electric networks, are currently
emerging.

In 2010, the National Institute of Standards and Technology (NIST) pub-
lished a roadmap for smart grid interoperability [26], where a high-level reference

5

model of the smart grid is defined. This model provides an architectural view of
the smart grid domain, that helps in the identification of the actors, use cases
and interactions of the next generation energy network. Through this analysis,
NIST identified the top technical priorities for the smart grid development, and
selected 75 existing standards, related to the smart grid environment, which
address these priorities.

The Common Information Model (CIM) by the International Electrotechni-
cal Commission (IEC) is defined in two of those standards, IEC 61970 [27] and
IEC 61968 [28]. The first defines the semantic model, at the electrical level, of
a power system, in terms of components and relationships between them. The
latter provides a more high-level description of the processes involved, such as
energy billing, scheduling and monitoring. The conceptual model depicted in
the CIM was firstly translated into UML by a research group at ABB [29], then
Hughes [30] proposed to adopt the OWL language, in order to solve the prob-
lem of the harmonization with another IEC standard, the 61850 [31] and create
an Unified Model for the electric systems. This harmonization has been the
main subject of many studies: for example, Santodomingo et al. [32] propose
to adopt an Ontology Matching approach, developed for the Semantic Web,
to perform this matching. They also developed a tool, called ESODAT, which
automatically performs the translation between the two ontologies [33].

The CIM ontology, however, may be also considered as a component to a
more complex ontology for the smart grids. For example, Grassi et al. [34]
proposed an ontology framework, composed of several ontologies: in particular,
two of them, the Device and Energy ontologies, combine the concepts of Smart
Homes and smart grids. This enables the framework to express control strategies
at a fine granularity level. In this contribution, we will present another solution
based on the same principle.

Another field of application of semantic technologies in the smart grid do-
main is data management. Typically, smart grids produce large amounts of data,
coming from distributed sensors and monitoring systems. However, rather than
storing a continuous flow of data, it would be wiser, from a system manager
standpoint, to extract and store only the useful information. In such a case, se-
mantic technologies can be successfully exploited. In this sense, Pena et al. [35]
illustrate how Semantic Web repositories, commonly known as triplestores, can
be used to store the relevant information and extract it using semantic query
languages such as SPARQL.

3. Emergent roles

Semantic technologies lie at the basis of a great variety of applications in the
smart environment and smart grid domains, and play different roles depending
on the specific application goals. Although the adoption landscape is vast and
diversified, as hinted by Section 2, some clear roles of such technologies emerge,
encompassing: (a) context-modeling, (b) environment-modeling, (c) interop-
erability, (d) off-line reasoning, (e) code generation, (f) on-line reasoning and
(g) run-time operation. In this section a more systematic overview of these roles
is provided, describing each role and relating the roles with the computational
and application requirements they typically address.

6

3.1. Role definition

3.1.1. Context-modeling

This is one of the first roles played by ontologies and semantic techniques in
the smart environments domain. Context information is defined by A. Dey and
G. Abowd [36] as

Any information that can be used to characterize the situation of
entities (i.e. whether a person, place or object) that are considered
relevant to the interaction between a user and an application, includ-
ing the user and the application themselves. Context is typically the
location, identity and state of people, groups and computational and
physical objects.

Representing context information through semantic constructs and operators
allows: (a) easier information processing, as information is given well-defined
and machine understandable meaning, (b) safer information management, as
data inconsistencies can be easily detected by means of description logic, (c) bet-
ter knowledge handling and discovery, by means of automated inference process-
ing.

Moreover, according to the literature [37, 38] ontological models of context
provide clear advantages in terms of distributed composition, partial valida-
tion, richness and quality of information, incompleteness and ambiguity, for-
malism, applicability to existing environments, heterogeneity and interoperabil-
ity. Of course some aspect still deserve investigation, e.g., time modeling4 for
which little support is provided in current ontologies, topological aspects for
which approaches [7, 39] are available exploiting the Region Connection Cal-
culus (RCC) [40], or performance (typically with NEXPTIME worst case com-
plexity) [39, 41].

3.1.2. Environment-modeling

This role might be partially overlapping the previous one, but generally
identifies a quite distinct modeling target. To better clarify the interactions
between these two roles, we can draw a parallel with the Computation Inde-
pendent Model (CIM) and Platform Independent Model (PIM) defined in the
Model Driven Architecture (MDA). The CIM uses a vocabulary that is familiar
to the subject matter experts (SMEs), and presents exactly what the system
is expected to do, but hides all information technology related specifications to
remain independent of how that system will be (or currently is) implemented.
The Platform Independent Model (PIM), instead, exhibits a sufficient degree
of independence so as to enable its mapping to one or more platforms, but a
much more specific representation of technical details, typically in terms of ser-
vices. While Context modeling can be mapped to CIM models, in this parallel,
Environment modeling can be mapped to PIM.

In other words, Environment modeling aims at representing the environment
configuration and capabilities in detail, thus enabling applications, be they mid-
dleware (e.g., home gateways) or end-user applications (i.e., user interfaces),

4e.g., http://www.w3.org/TR/owl-time/

7

to exploit this information to define interaction patterns, to simulate the en-
vironment behavior, to support interoperability. Typical examples of semantic
technologies playing this role are the DogOnt [14] and the EEOnt ontology [21].

3.1.3. Interoperability

In the interoperability case, semantic technologies, and in particular ontolo-
gies, are used as a shared cross-language bridging communication between devices
and automation networks having different native technologies and protocols.

In the software agents domain, interoperability is defined as the ability of
cooperating through data or processes, and can only be achieved if agents can in-
teract and communicate with other agents using a common (shared) vocabulary.
Semantic-based interoperability involves the adoption of the same vocabulary
(ontology) and data-model (RDF). In the smart environment domain, instead,
interoperability involves different home automation technologies, i.e., subsys-
tems and has often to be ensured by a (de)centralized controller, as devices are
typically ”dumb” (they seldom carry enough computational power on board to
run a software agent).

In this scenario, semantics-based interoperability can be deployed both stat-
ically, i.e., off-line, or dynamically, i.e., on-line. In the former case, ontologies
define cross-technology semantics and primitives; a suitable software infrastruc-
ture takes care of translating low-level protocols in such higher-level representa-
tions. The translation might include some interaction paradigm conversion, e.g.,
master-slave to peer-to-peer, or polling-based operation to event-based interac-
tion. In on-line approaches, instead, static ontology information is exploited
to: (a) generate run-time inter-operation rules to automatically bridge different
technologies (e.g., as in [42, 43]), with the aim of composing cross-technology
home services, e.g., switching on a smart oven through the television remote
control, (b) correctly face faulty or anomalous situations as in [44], etc.

3.1.4. Off-line reasoning

When semantic technologies are used to extract implicit information con-
tained in ontology-based environment and context models, they play the role of
off-line reasoning. In this role, semantics and, in particular automated reasoning
techniques, enable off-line computation of relevant environment and device prop-
erties typically related to design, usability and normative issues [21, 45, 46, 47].
These properties can be asserted on the sole basis of the environment structure,
e.g., the layout of walls or the location of specific devices, and they are usually
checked off-line. They are particularly useful for validating design choices taken
by architects and home automation engineers against architectural, operational
and configuration constraints.

3.1.5. Code generation

Stemming from the validated model-driven development approach, and fos-
tered by the inherent complexity of smart environments, new approaches are
emerging, in literature [48, 49, 50, 51], where ontologies assume the role of
normative reference for application development. Automatic code generation
techniques then enforce consistency of application code and formal represen-
tations, and support quick and error safe development of relevant portions of

8

the smart environment logic. Some application of this new role is also emerg-
ing in assistive robot research [52], which is tightly interconnected with smart
environments and ambient intelligence research.

3.1.6. On-line reasoning

Context-aware and ambient intelligence systems proactively interact with
users by proposing actions or alternatives based on updated knowledge of the
ambient state and capabilities. In the last few years several research works have
shown that such a knowledge can be effectively modeled through semantics, by
using ontologies, and by providing systems with the ability of performing infer-
ence at run-time [6, 53, 54], through incremental reasoning techniques and/or
reasoning with ambiguity. These approaches define a new role for semantic tech-
niques that we name “On-line reasoning.” While reasoning performance issues
are still to be successfully addressed, the approach is promising and is worth of
consideration in smart environments design as it allows to uniformly tackle a
wide variety of design concerns, mostly related with the previously cited roles.

Run-time operation can be seen as an extension of the on-line reasoning role
where updated information triggers actions by means of inference processes.
Typical examples of technologies playing this role can be found in [55, 47].

3.2. Role peculiarities

Roles played by semantic technologies in the smart environments and smart
grid domain can be characterized from several standpoints, e.g., application
scenarios, involved complexity, performance, etc. Figure 1 roughly summarizes
the complexity facet (bubble shapes are used to show complexity levels and
possible intersections between roles) with a very high-level categorization of the
above-defined roles in terms of complexity vs. real-time requirements.

Figure 1: Overview of the roles played by semantic technologies in smart grid and environments

Approaches involving logic inference typically imply higher computational
complexity and are best suited for off-line deployment whereas approaches in-
volving code generation or simple ontology querying can be successfully ex-
ploited at run-time. Clearly run-time approaches based on logical inference
are subject to stricter requirements as they feature high complexity (typically
NEXPTIME) and near real-time requirements.

9

4. Semantic Technologies in Smart Environments

Top-down roles identified in Section 3 are integrated at different degrees in
current smart home systems. In this section we provide deeper insights on the
technology roles and applications by focusing on a case study which integrates
semantic technologies in almost all discussed roles (see Figure 2). The case
study involves the Domotic OSGI Gateway (Dog5, firstly presented in literature
in 2008 [18], and still very active), and analyzes the system architecture from
the semantic technology standpoint. As a consequence this section does not
provide full details on the software design and architecture but concentrates on
semantic-based features, limiting other aspects to a very high-level overview.

C
o
m

p
le

x
it

y

On-lineOff-line

lo
w

h
ig

h

Context
Modeling

Evironment
Modeling

Offline
Reasoning

Code
Generation

Deployment

Interoperability

On-line
Reasoning

Run-time
Operation

Semantic Technologies in Dog

Figure 2: Roles played by Semantic Technologies in Dog

4.1. Dog from 30’000 feet

Dog (Domotic OSGi Gateway) is a home gateway based on the OSGi frame-
work and designed to provide smart home capabilities to environments equipped
with commercial home automation systems. It was firstly presented in literature
in 2008 [18], by building on a former effort on home gateways [56], and it is still
evolving to include new features and bridge new technologies. The latest release
is Dog2.5 and includes support for most bus-based technologies (except X10),
and for wireless home automation solutions such as ZigBee (Home Automation
v1.0 [57]), Z-Wave and EnOcean (under development).

The Dog design aims at overcoming typical inter-operation issues related
to diverse and often competing market stakeholders, and at offering high-level,
semantics-based foundations for Intelligent Domotic Environments (IDEs), i.e.,
for “Environment settings in which existing automation technologies are inter-
faced by a low cost device (gateway) providing neutral access to the environment
for inter-operation, intelligent automation scenarios, energy saving, etc”. Fig-
ure 3 reports the logic architecture of the approach where Dog acts as a bridge
between low-level technology specific protocols and high-level requirements of
applications, be they ”simple” interfaces or complex data-processing systems
(e.g., for energy monitoring).

5http://domoticdog.sourceforge.net

10

Figure 3: The logic architecture of a Dog-based Intelligent Domotic Environment (GW: stands
for Gateway, D for device; simple lines identify a IP-based networks, whereas horizontal double
arrows are used to represent low-level communication infrastructures, be they using field buses
or wireless connections. Curved green arrows represent high-level protocols.).

The key aspect of the approach is neutral access which entails the ability to
interface, operate and query devices independently from the specific technology
with which they are realized. Such a neutrality is based on a cross-language
whose main terms and operators are defined by means of a domain-specific
ontology (DogOnt[14]) and on a driver-based technology abstraction layer (Fig-
ure 4 shows the Dog architecture from 30’000 feet, while more details can be
found in [18]) based on the Equinox OSGi framework.

4.2. DogOnt: a quick overview

DogOnt is a domain ontology specifically designed to model smart homes
equipped with off-the-shelf domotic plants and intelligent appliances (for a com-
plete description of the DogOnt design and modeling capabilities see [14]). It
is organized along 5 main hierarchies of concepts (Figure 5, hierarchy roots in
bold) supporting the description of:

• the environment structure (rooms, walls, doors, etc.), by means of concepts
descending from BuildingEnvironment ;

• the type of domotic devices and of smart appliances (concepts descending
from the Controllable subclass of the BuildingThing main concept);

• the working configurations that devices can assume, modeled by States
and StateValues (see the following paragraphs for more details);

• the device capabilities (Functionalities) in terms of accepted events and
generated messages, i.e., Commands and Notifications;

11

A
b
s
tr

a
c
ti
o

n

L
a

y
e
r

(D
o

g
O

n
t)

T
e

c
h
n

o
lo

g
y
-s

p
e

c
if
ic

la
y
e
r

(d
ri

v
e
rs

)

A
P

Is

Figure 4: The inner Dog architecture from 30’000 feet (angle brackets on the right group
modules into different abstraction layers).

12

• the technology-specific information needed for interfacing real-world de-
vices (NetworkComponent) and

• the kind of furniture placed in the home (concepts descending from the
UnControllable subclass of the BuildingThing main concept).

Figure 5: DogOnt in a nutshell (Solid lines represent inheritance relations, i.e., isA, whereas
dotted lines identify other relationships; the dashed shape around owl:Thing highlights the
implicit presence of such a concept, as dictated by the OWL specification [8]).

DogOnt models domotic devices in terms of functionalities and states.

Functionalities. They describe the device under the viewpoint of device interac-
tion capabilities, i.e., they describe how a given device can be controlled, queried
and whether it can autonomously generate “events.” For example, while a lamp
can only be switched on and off, a light sensor can either be queried for the cur-
rent measured luminance or can autonomously send luminance change events
at regular time intervals, or upon threshold trespassing. DogOnt functionalities
include:

• ControlFunctionalities, modeling the ability of a device to be controlled
by means of some message or command,

• QueryFunctionalities, modeling the ability of a device to be queried about
its current state, and

• NotificationFunctionalities, modeling the ability of a device to issue noti-
fications about state changes, in an event-driven interaction model.

Functionalities are either associated with commands (for ControlFunctional-
ities) or with notifications (NotificationFunctionalities) that further detail the
specific operations supported by DogOnt device instances.

13

States. They describe the various stable configurations that a device can assume
during its working life-cycle. From the modeling point of view, each device
may include one or more different simultaneous behaviors. If we refer to a CD
Player, it can either be on or off, it can be playing a CD track with a given
number, and it may have a specific output volume. In DogOnt such behaviors
are called dogont:States. The description of each dogont:State is represented
by a set of identifiers, called dogont:StateValue, that model each operating
condition. For example the CD player is modeled as having three independent
dogont:States (with discrete or continuous values): a dogont:OnOffState, a
dogont:PlayingState and a dogont:VolumeLevelState. Each of these three
states includes a specific set of possible state values (for example, the first state
includes a dogont:OnStateValue and a dogont:OffStateValue). The current
state of a device is therefore defined by a list containing one dogont:StateValue
per each dogont:State.

4.3. Roles of semantic technologies in Dog

Since discussing the Dog architecture design and implementation is out of
the scope of this paper, we discuss what are the roles played by semantic tech-
nologies in Dog and the issues solved by them. Dog exploits semantic tech-
nologies at different degrees: (a) DogOnt classes and relationships define the
API-level interfaces through automatic code generation, (b) DogOnt instances
define the configuration of specific environments, both at the gateway and at
the API level, (c) Basic ontology-merging allows plug-in modules (bundles) to
dynamically add information to the house model, which can then be exploited
by all gateway bundles, (d) Ontology querying/inference supports automatic
generation of inter-operation rules, (e) Off-line ontology querying / reasoning
supports generation of emulation drivers, (f) Off-line ontology inference permits
to check structural properties of the environment, (g) On-line ontology infer-
ence supports checking of properties depending on the current state of devices
(run-time).

4.3.1. Automatic Code Generation (off-line)

In Dog, all the Java classes defining devices and the respective commands,
states and notifications (Figure 4, DogOntLibrary and DogDeviceModel), are
generated off-line by extracting the relevant knowledge from the DogOnt ontol-
ogy (Figure 6).

Starting from the DogOnt ontology classes and relationships, a tool (Do-
gOnt2Dog, included in the Dog source release), generates the device represen-
tation classes (Java) used by Dog as inner model. The code generation process
is deployed along the following steps:

1) Ontology query. The ontology is analyzed and queried to extract device
classes (inheriting from dogont:Controllable) and related information. This
process exploits the Apache Jena framework and is accomplished by execut-
ing (through the ARQ system), and combining, several SPARQL queries
(see Figure 7 for an example) to finally get a complete specification of each
device, including functionalities, states, commands, etc.

2) Java Class generation. For each complete device description, DogOnt2Dog
loads the needed Java class templates defined in the Velocity VTL expression

14

Figure 6: Semantics-based library generation in Dog.

language and merges the template and the ontology extracted information
thus generating a Java source file representing the device. The same process
is applied for generating library classes for notifications, states and state
values defined in DogOnt. Generated classes are organized into homogeneous
packages including:

• it.polito.elite.dog.model.devicecategory defines the interfaces
describing the device (allows for instances inheriting from more than
one device class)

• it.polito.elite.dog.model.device model defines the base imple-
mentation of a device class, in dog.

• it.polito.elite.dog.model.notification contains the OSGi event
classes used to represent notfications generated by domotic devices

• it.polito.elite.dog.model.state represent the current state of a
device as a set of state values

• it.polito.elite.dog.model.statevalue defines classes for holding
device state values; available Java classes reflect the dogont:StateValue
classes defined in DogOnt.

3) Runtime Compilation. Generated source files are compiled at runtime by ex-
ploiting the java compiler (javac) through the Java Virtual Machine (JVM)
tools library (tools.jar, available as part of the standard Java Development
Kit) and result in a folder structure mirroring the source one and containing
compiled class files (*.class). Classes and libraries needed for successful
compilation are part of the DogOnt2Dog tool and they are made available
to the JVM by properly setting-up the classpath environment variable.

4) Bundling. Compiled classes are integrated with a suitable manifest file (gen-
erated through a similar VTL template) and bundled in 2 different jar files,
i.e., bundles which can then be used in Dog. The 2 bundles contain the de-
vice model and all the other packages, respectively. Such a separation allows
for easier maintenance of Dog versions, enabling separate evolution of device
models and related interfaces (be they device categories, notifications, states
or state values).

15

This solution allows to tackle two distinct issues in the Dog development
process: (a) error-prone manual coding of over 500 gateway classes; (b) full
consistency of the Dog implementation with respect to the DogOnt ontology
model; and requires a negligible time to be executed: around 90s vs several
days in the manual coding case.

SELECT DISTINCT ?notification ?notifValue ?notifParamValue

?functionality WHERE {{

<URI_of_the_Device_Class >

rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty dogont:hasFunctionality;

owl:someValuesFrom ?functionality] .

?functionality rdfs:subClassOf dogont:NotificationFunctionality.

?functionality rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty dogont:hasNotification;

owl:someValuesFrom ?notification] .

?notification rdfs:subClassOf dogont:Notification .

?notification rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty dogont:notificationName;

owl:hasValue ?notifValue] . OPTIONAL

{? notification rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty dogont:notificationParamName;

owl:hasValue ?notifParamValue]}}

UNION

{

<URI_of_the_Device_Class > rdfs:subClassOf ?ancestor.

?ancestor rdfs:subClassOf dogont:Controllable.

?ancestor rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty dogont:hasFunctionality;

owl:someValuesFrom ?functionality] .

?functionality rdfs:subClassOf dogont:NotificationFunctionality.

?functionality rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty dogont:hasNotification;

owl:someValuesFrom ?notification] .

?notification rdfs:subClassOf dogont:Notification .

?notification rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty dogont:notificationName;

owl:hasValue ?notifValue] . OPTIONAL

{? notification rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty dogont:notificationParamName;

owl:hasValue ?notifParamValue]}}};

Figure 7: A sample of the SPARQL queries needed to extract device information from DogOnt,
in particular for extracting notifications originating from a given <URI of the Device Class>

4.3.2. Instance-based configuration of specific environments

Dog is designed to run as the “core” software of an home gateway enabling
neutral access to real devices in real environments. How the environment is
configured (architecturally speaking) and what devices are available is a prop-
erty of the specific setup and must be configured during the installation process.
In Dog this operation is based on an environment description given as a set of
DogOnt class instances. Each device is described by (manually) creating in-
stances for the relevant classes defined in DogOnt, including the device type,
functionalities and possible states (see Figure 8 for an example).

16

Figure 8: Sample device (dimmer lamp) description through instances of DogOnt classes.
Squares represent concept instances, which are specifically connected to the sample dimmer
lamp.

4.3.3. Basic run-time ontology merging

The core device modeling provided by DogOnt and exploited by Dog can be
extended to include aspects pertaining different, related domains, e.g., energy,
context modeling, etc. While the main house description (core ontology classes
and instances) is managed by a dedicated bundle, the SemanticHouseModel,
additional modeling concerns can be “plugged” at run-time by other bundles,
through run-time ontology merging. For example, in the energy domain, a dedi-
cated Dog bundle (PowerModel) provides support to consumption estimation by
merging the DogOnt environment model and the device class power consump-
tion information, at run-time. The latter, in particular, is modeled by means
of a light-weight ontology (DogPower) designed to model power consumption of
electrical devices and appliances in (automated) homes (see Figure 9). A min-
imal modeling approach is adopted, reducing primitives (classes and relations)
to those strictly needed to support power consumption modeling. Relations to
described devices and appliances are left “open,” i.e., their descriptions shall be
completely formalized depending on the ontology-based home/device model to
which the DogPower ontology is connected.

This “openness” is exploited to attach power descriptions to DogOnt in-
stances (Figure 10), at runtime. While the environment configuration (dis-
cussed in the previous section) is loaded by Dog at start-up, the power model
of available devices is loaded lately by the PowerModel bundle. Then such
a model is merged to the configuration model (by the SemanticHouseModel
bundle, see Figure 4) to associate power consumption information to managed
devices. Whenever a device gets activated (either by the final user or by some in-
ternal process) the corresponding consumption information is retrieved (through
SPARQL) and combined with any runtime information coming from real meters,
to provide the best possible estimation of the device power absorption.

17

Figure 9: The DogPower ontology

4.3.4. Automatic generation of inter-operation rules

Inter-operation between domotic devices, either connected to the same or
to different domotic plants (or networks), is modeled in DogOnt by associat-
ing notifications of “controller” devices (dogont:Control) with commands of
“controlled” ones. This association is formally represented by two relationships
instantiated at the device level (dogont:controlledObject) and at the func-
tionality level (dogont:generatesCommand), respectively.

At the device level, inter-operation is modeled with a very light master-slave
approach: every device can control or can be controlled by another device, and
may also change its role in time due to home configuration changes. As an
example, an Hi-Fi amplifier usually acts as controller for the Hi-Fi components,
e.g., the CDPlayer and the MP3Player. Nevertheless, it can also assume the
role of controlled device, e.g., if it is remotely controlled by a PC. In general,
while some devices (e.g., thermostats, Hi-Fi systems, etc.) can play both as
controller and controlled device, other, simpler, domotic devices can only behave
as “controlled” devices, e.g., Lamps.

To enable automatic inference on device-to-device inter-operation, e.g., to
automatically generate inter-operation rules, a finer grained relationship is de-
fined between dogont:Notification and dogont:Command instances: dogont:-
generatesCommand. This relation allows defining specific command(s) gener-
ated by specific notification(s) associated to functionalities of a specific dog-

ont:Control device. For example it permits to associate the dogont:OnNoti-

fication of a simple dogont:Switch to the dogont:OffCommand of a Home
Entertainment System.

Example 1 - Controlling a Dimmer Lamp. Figure 11 shows how we can model
in DogOnt a dimmer lamp controlled by a 2-way switch (dogont:OnOffSwitch).
Two-way switches always have an dogont:OnOffFunctionality instance, de-
scribing their ability of being switched on or off. The dogont:OnOffFunctio-

nality instance is in turn associated to two dogont:Notification instances: a
dogont:OnNotification and a dogont:OffNotification, respectively. If the
Dimmer Lamp shall be lit at 50% when the switch is in the on position and

18

P
ow

er
C

on
su

m
pt

io
n E

le
ct

ric
 P

ow
er

C
on

su
m

pt
io

n

do
go

nt
:C

on
tr

ol
la

bl
e do

go
nt

:S
ta

te
V

al
ue

G
en

er
ic

 O
ff

P
ow

er
C

on
su

m
pt

io
n

m
uo

:Q
ua

lit
y

V
al

ue

P
ow

er
C

on
su

m
pt

io
n

V
al

ue

m
uo

:U
ni

t
of

M
ea

su
re

m
u
o
:W
at
t

co
ns

um
pt

io
nO

f w
he

nI
n

is
A

is
A

is
A

ty
pi

ca
lV

al
ue

 =
1

no
m

in
al

V
al

ue
 <

=
1

ac
tu

al
V

al
ue

 <
=

1

ty
pi

ca
lV

al
ue

muo
:me

asu
redI

n

va
lu

e

su
bP

ro
pe

rt
yO

f

Z
er

o
V

al
ue

do
go

nt
:S

hu
tte

rA
ct

ua
to

r

do
go

nt
:S

hu
tte

rS
ta

te

m
uo

:m
ea

su
re

dI
n

do
go

nt
:L

ow
er

in
g

S
ta

te
V

al
ue

do
go

nt
:R

es
t

S
ta

te
V

al
ue

do
go

nt
:D

ow
n

S
ta

te
V

al
ue

do
go

nt
:U

p
S

ta
te

V
al

ue

do
go

nt
:R

ai
si

ng
S

ta
te

V
al

ue

S
hu

tte
rA

ct
ua

to
r

Lo
w

er
in

gC
on

su
m

pt
io

n

S
hu

tte
rA

ct
ua

to
r

R
ai

si
ng

C
on

su
m

pt
io

n

L
o
w
er
in
g

V
al
u
e

typ
ica
lVa
lue

S
h
u
tt
er
1

R
is
in
g
P
o
w
er

C
o
n
su
m
p
ti
o
n

R
ai
si
n
g

V
al
u
e

ty
p
ic
al
V
al
u
e

mu
o:
me
as
ur
ed
In

S
h
u
tt
er
1

R
ai
si
n
g
S
ta
te

V
al
u
e

h
as
S
ta
te

h
as
S
ta
te
V
al
u
e

h
as
S
ta
te
V
al
u
e

S
h
u
tt
er
1

L
o
w
er
in
g
P
o
w
er

C
o
n
su
m
p
ti
o
n

S
h
u
tt
er
1

L
o
w
er
in
g
S
ta
te

V
al
u
e

S
h
u
tt
er

A
ct
u
ta
to
r1

S
ta
te

S
h
u
tt
er

A
ct
u
at
o
r1

ty
pi

ca
lV

al
ue

D
og

O
nt

D
og

P
ow

er

D
og

O
nt

+
D

og
P

ow
er

is
A

ha
sS

ta
te

ha
sS

ta
te

V
al

ue

hasS
tateValue

hasStateValue

hasS
tateValue

ha
sS

ta
te

V
al

ue

is
A

is
A

co
ns

um
pt

io
nO

f

co
ns

um
pt

io
nO

f

w
he

nI
n

w
he

nI
n

ty
pi

ca
lV

al
ue

Figure 10: Integration between a DogOnt device model and the corresponding DogPower
consumption description. The dark, thick, line draws the separation between DogOnt-defined
classes and DogPower consumption descriptions, whereas rectangles identify instances used to
represent a shutter actuator consumption. Arrows with solid, tiny, lines identify relationships
while dashed lines identify the rdf:type of each represented instance.

19

shall be switched off when the switch is off, then the dogont:OnNotification

of the switch shall be connected to the dogont:SetCommand(50%) of the Dim-
merLamp. Accordingly, the dogont:OffNotification of the 2-way switch shall
be connected to the dogont:OffCommand of the dimmer lamp.

Figure 11: Inter-communication between a 2-way switch and a dimmer lamp (thick, dashed
lines represent relationships allowing to mine the information needed to generate suitable
interoperation rules).

Dog achieves automatic inter-operation through rule-based reasoning (as in
[42], where the Drools 6 engine is exploited to execute rules at runtime), and
leverages suitable communication primitives, included in the rule language, to
listen for real device notifications and to send commands. Figure 12 shows a pro-
totypical rule (using the Drools rule syntax), where the when clause represents
the rule antecedent and the then clause the rule consequent. It is important to
notice that the rule structure is completely independent from the device type
and technology.

when

device :?x

receivedNotification (?x, ?v)

then

device: ?y

sendCommand (?y, ?cn, [?cv])

Figure 12: An sample interoperation rule, values in brackets are optional.

To enable automatic interoperation the ?x,?v, ?y, ?cn and ?cv variables

6http://www.jboss.org/drools/, last visited on September 09, 2013

20

are automatically extracted from DogOnt device, notification and command in-
stances. This requires to first compute the transitive closure of the DogOnt
model instantiation (environment model, Section 4.3.2) to derive all direct and
inherited information involving declared device instances, e.g. to infer that an
OnOffSwitch instance is also an instance of Switch, ElectricComponent, Con-
trollable, etc. Secondly, SPARQL querying is exploited to extract, for each
controller device ?x, the list of controlled devices ?y and to further retrieve
the controller device notifications ?v and the commands accepted by the con-
trolled device ?cn (and their values ?cv, when available). Figure 13 shows the
query for devices accepting DiscreteCommands, a similar query is defined for
ContinuousCommands, also retrieving the command values.

SELECT DISTINCT ?x ?n ?v ?c ?d ?class ?cn WHERE

{

?x a dogont:Controllable .

?y a dogont:Controllable .

?x dogont:controlledObject ?y .

?x dogont:hasFunctionality ?f .

?f dogont:hasNotification ?n .

?n dogont:notificationValue ?v .

?n dogont:generateCommand ?c .

?d dogont:hasFunctionality ?f2 .

?f2 dogont:hasCommand ?c .

?c rdf:type ?class .

?class rdfs:subClassOf dogont:DiscreteCommand .

?class rdfs:subClassOf [rdf:type

owl:Restriction; owl:onProperty

dogont:realCommandName;

owl:hasValue ?cn]

}

Figure 13: A sample SPARQL query for extracting inter-operation data.

4.4. Generation of emulation drivers

In Dog, the operational knowledge needed to simulate the behavior of a real
device is automatically associated to DogOnt device instances by means of on-
tology querying and by customizing a library of state diagram templates. Device
interconnections, modeled in DogOnt as semantic relations, are translated into
event-remapping machines exploiting the event messaging framework defined by
the state chart formalism [58]. Simulation of device behavior is supported at
runtime through the DogSim API [59], which embeds a state machine execu-
tion engine based on the Apache Commons SCXML library7, and by providing
event-driven interaction with the IDE model.

This integration allows exploiting the simulation abilities of DogSim in a
mixed environment where state machine events can both be synthetic (as in
the DogSim approach) or can stem from real device interactions thanks to the
Dog messaging framework. During emulation, the control and intelligence parts
of Dog deal uniformly with real and simulated devices, and which devices are
actually simulated is unknown to the upper layers of Dog. In fact, emulated

7http://commons.apache.org/proper/commons-scxml

21

devices are handled by a special “network driver” (EmuDog) that, from the
point of view of the gateway, is indistinguishable from other network drivers
used to control real plants.

Deployment of emulated devices involves two distinct phases: a first initial-
ization in which emulator machines are created and a second phase of run-time
operation where emulators are executed. In the initialization phase (Figure 14),
the DogSemanticHouseModel loads the DogOnt ontology and the corresponding
instances and performs the transitive closure of the ontology. Then, the EmuDog
driver discovers devices needing emulation, i.e., devices for which no network
driver has been found or devices that explicitly require emulation through a
special property dogont:emulateThis being set.

House Model Executor Dispatcher

Transitive
closure

(to)

EmuDog

?device to emulate

device instances
Generate

state machines

Load the
DogSim engine

Figure 14: The EmuDog initialization sequence diagram.

For each found device, EmuDog builds the corresponding state machine,
exploiting the DogOnt2SCXML module. Generated state machines are loaded
in the DogSim Engine integrated in EmuDog and the bundle becomes ready.

At runtime, the EmuDog works as any other Network Driver in Dog: it
receives messages requesting device actions (e.g., to switch a lamp on) and
injects them as new events in the DogSim Engine. Running machines possibly
change their states as a consequence of the injected event and detected state
changes are then packed into one or more messages and sent back to the rest of
the platform.

4.5. Structural properties checking

Structural environment properties encompass features related to design, us-
ability and normative issues. They can be asserted on the sole basis of the
environment structure, e.g., the layout of walls or the location of specific de-
vices, and they are usually checked off-line.

Structural properties are typically extracted from Building Information Mod-
eling (BIM) data, defined at design time, and are particularly useful for vali-
dating choices taken by architects and domotic engineers against architectural,
operational and configuration constraints. Examples are reported in Table 1.

Representing devices and environment features through ontology concepts
(as in DogOnt) enables effective and automatic checking of these properties,
thus improving the overall design of smart environments [47]. As shown by

22

Table 1: Examples of Structural properties
Domain Name Description
Architectural,
normative

accessibleControls In Italy a law (DPR n.503 24/07/1996) imposes
that every button, switch or control available in
a home shall be accessible to people on a wheel
chair, i.e., that every control must be positioned
at a height between 40 and 120 cm from the
floor.

Operational usableLamp All the lamps in a given Room must be control-
lable at least by a switch either located in the
same Room or in an adjacent Room.

Architectural reachability Every Room shall be reachable from any other
Room in a finite number of room traversals.

the following example, semantic technologies, and in particular rule-based on-
tology inference (based on production rules handled by the Apache Jena rule
reasoner 8 or on SWRL), enable, in fact, programmatic verification of confor-
mance between the actual design being carried and the normative references
(expressed as structural properties), and supports early detection and correc-
tion of any discrepancy or violation.

Example. The usableLamp property is a direct structural property that aims at
checking the correct configuration of Lamps and Controls inside an IDE. It is
formalized by the logic predicate shown in Figure 15, labeling a Lamp as usable
if and only if the Lamp is controlled by a Control located in the same Room in
which the Lamp is located, or by a Control located in a Room directly adjacent
to the Room containing the Lamp.

Lamp(x) ∧ Control(y) ∧ Room(r) ∧ Room(r1) ∧
hasControl(x,y) ∧ ((isIn(x,r) ∧ isIn(y,r)) ∨
(isIn(x,r) ∧ isIn(y,r1) ∧ adjacentTo(r,r1)))
⇒ usableLamp(x)

Figure 15: The Usable Lamp formalization, x,y,r,r1 are instances of DogOnt classes defined
for a specific environment.The Lamp(x) notation in Figure 15 matches an instance of either
the DogOnt class Lamp or of one of its subclasses, e.g., DimmerLamp. The same principle
holds for Control(y) and Room(r).

4.6. State properties checking

State properties estimate the current, or the possible, value(s) of specific
environment characteristics, given the environment structure and the current
state of the installed devices, in a time-independent manner. Differently from
structural properties, state properties are usually checked on-line supporting the
detection of relevant/critical configurations, possibly related to comfort, energy
saving or safety policies (Table 2).

Example. The validEscape property (Figure 16) is a complex rule identifying
safe paths towards house exits, in case of smoke and/or fire. It is a state property
based on the results of another property evaluation (smokeFree). It is formalized

8More flexible with respect to SWRL due to currently available libraries, i.e., Apache Jena
vs Jess.

23

Table 2: Examples of State properties
Domain Name Description
Operational roomIllumination A Room is illuminated if at least a Lamp located

inside the same Room is lit or if there is an
active lamp in an adjacent Room.

Comfort mosquitoFree Given the current State of Doors and Win-
dows, label all Rooms that can be reached by
mosquitoes as not-mosquito-free and all the re-
maining rooms as mosquito-free.

Safety smokeFree Given the current State of SmokeSensors,
Doors and Windows, evaluate where smoke can
propagate (supposing an infinite speed of propa-
gation), and label Rooms reachable by smoke as
not-smoke-free and rooms isolated from smoke
as smoke-free.

Safety validEscape Given the labeling provided by the Smoke Free
find all the Rooms located on a safe exit path,
i.e. find all smoke-free Rooms that possess
a Window, an ExternalDoor or that are con-
nected to a valid Room by means of an open
Door.

as follows: first, the smokeFree property of Rooms is evaluated, labeling Rooms
with smoke inside, or reachable by smoke through open doors, as ¬smokeFree.
Secondly, after labeling all remaining Rooms as smokeFree, it evaluates Room
features to discover connections to the house exteriors either through Windows
or Doors. SmokeFree Rooms with Windows (or Doors) and smokeFree Rooms
connected to them by an open Door are labeled as belonging to a validEscape
path. On the converse, isolated smokeFree Rooms and ¬smokeFree Rooms are
labeled as ¬validEscapes.

5. Semantic Technologies in Smart Grids

As introduced in Section 2, the smart grid conceptual model is easily ex-
pressed through ontologies. Nevertheless the role of semantic technologies in
such a knowledge domain, also covers other requirements as pointed out by
Wagner et al. [60]. In this section, the general roles previously identified (see
Section 3) are mapped to the smart grid domain and a real case study is de-
scribed, where a prototype for a smart grid management infrastructure was
developed using Semantic Web technologies.

The smart grid domain, as stated before, is characterized by a strong demand
for interoperability and standardization (role 3.1.3, Interoperability). Through
the use of standard Semantic Web languages (RDF, OWL) and Linked Data
principles, this demand can be satisfied. Moreover, since the smart grid is an
interdisciplinary concept, ontology reuse is significantly encouraged: an holistic
smart grid ontology should be able to represent both the high-level, management
aspects (the new market scenario created by smart grids [61], efficiently depicted
in Figure 17) and the low-level aspects (Building Automation concepts, energy
trasmission networks, energy generation).

Semantic technologies also address another very common issue in smart grid
development: the integration of different data sources. A typical example occurs
when forecasting the energy production of Renewable Energy Sources (RES):
several parameters must be taken into account, such as climate conditions,
source plant location, plant type and technology. A plethora of sensors, of-
ten organized in Wireless Networks, takes care of data acquisition. However, to

24

Structural part - stage 1
Room(x) ∧ Room(y) ∧ Door(d) ∧ Wall(w) ∧
hasWallOpening(w,d) ∧ isOpen(d) ∧
hasWall(x,w) ∧ hasWall(y,w)
⇒ adjacentTo(x,y)
Room(x) ∧ Door(d) ∧ Wall(w) ∧
hasWallOpening(w,d) ∧ isOpen(d) ∧
hasWall(x,w)
⇒ ¬doorClosed(x)
Room(x) ∧ Window(wnd) ∧ Wall(w) ∧
hasWallOpening(w,wnd)
⇒ hasWindow(x)
Room(x) ∧ ExternalDoor(wnd) ∧ Wall(w) ∧
hasWallOpening(w,wnd)
⇒ hasWindow(x)

Structural part - stage 2
Room(x) ∧ notAssigned(doorClosed, x)
⇒ doorClosed(x)
Room(x) ∧ notAssigned(hasWindow, x)
⇒ ¬hasWindow(x)

Smoke Free - stage 1
Room(x) ∧ hasSmoke(x)
⇒ ¬smokeFree(x)
Room(x) ∧ Room(y) ∧
adjacentTo(x,y) ∧ ¬ smokeFree(y)
⇒ ¬smokeFree(x)

Smoke Free - stage 2
Room(x) ∧ notAssigned(x,smokeFree)
⇒ smokeFree(x)

Valid Escape - stage 1
Room(x) ∧ ¬smokeFree(x) ∧ notAssigned(validEscape,x)
⇒ ¬validEscape(x)
Room(x) ∧ smokeFree(x) ∧
notAssigned(validEscape,x) ∧ hasWindow(x)
⇒ validEscape(x)
Room(x) ∧ validEscape(x) ∧
Room(y) ∧ smokeFree(y) ∧ adjacentTo(x,y) ∧
notAssigned(validEscape,y)
⇒ validEscape(y)
Room(x) ∧ smokeFree(x) ∧ notAssigned(validEscape,y)
¬hasWindow(x) ∧ doorClosed(x)
⇒ ¬validEscape(x)

Valid Escape - stage 2
Room(x) ∧ notAssigned(validEscape,x)
⇒ ¬validEscape(x)

Figure 16: The validEscape formalization.

25

Wholesale
market

Energy
Supplier - Trader

Distributed
Generation
Operator

Consumer
Transmission

System
Operator (TSO)

Large Power
Producer

Distribution
System

Operator

Commodity
Subsystem

Physical
Subsystem

Figure 17: Overview of transactions within the electricity market.

take informed decisions and to react to unexpected events, the management sys-
tem must have not only the bare values, but also a structured knowledge of the
quantities involved (roles 3.1.1 and 3.1.2, Context and Environment modeling).
This is where semantic technologies come in handy.

Ontology-powered smart grid systems should be able to handle complex op-
eration scenarios, where events must be inferred from large amounts of hetero-
geneous information. For example, real-time pricing of energy can be achieved
through forecasting of energy production from RES and energy market simu-
lations, using concepts from different ontologies. Another example may be to
determine whether a portion of the smart grid network (a so-called microgrid)
is autonomous in terms of energy generation and consumption, in order to min-
imize exchanges of energy with the whole grid (roles 3.1.4 and 3.1.6, Off-line
and On-line reasoning).

5.1. Leaf Islands, an industrial case study

In order to experiment all the previously described synergies, a prototype
software solution for microgrids management was developed and called Leaf
Islands. The Leaf Islands project was carried out in partnership with Loccioni
Group, an Italian mid-sized company, with the aim of developing an energy
management software system for a pioneering project called ”Leaf Community”,
a sustainable community encompassing houses, offices and renewable energy
power plants. The prototype is powered by the Leaf Ontology (in OWL), which
comprises both smart grid reference models and Building Automation concepts.
The goal of this solution is to assess the energetic independence of a microgrid
and eventually acting on the appropriate devices to enforce it, thus minimizing
energy exchanges with the bulk energy supply. This system allows to design
high-level strategies for energy efficiency, starting from the available metering
information, and to enforce those strategies through the control devices available
in the network, regardless of their particular technology and communication
protocols.

26

5.2. Leaf Ontology engineering process

The Leaf Ontology is the final outcome of an ontology-engineering process
strongly based on reuse. We combined the Building Automation concepts pro-
vided by the DogOnt ontology (see Section 4) with the GridPedia ontology [62].

GridPedia is a collaborative effort, started and maintained by the Karlsruhe
Institute of Technology, to develop an ontology for the smart grid domain.
Its main sources of information are the NIST Framework and Roadmap for
smart grid Interoperability [26] and the Common Information Model [28] [27].
Through the GridPedia classes and relationships, we are able to express the
complex relationships among smart grid stakeholders and actors in technical,
economical and organizational terms. Various usage examples of this ontology
are directly available from its website9.

GridPedia has been integrated with DogOnt by linking the concepts in a
common ad meaningful hierarchy: for example, the BuildingEnvironment class
in DogOnt has been declared as a subclass of the Actor of GridPedia, and all the
Controllable devices of DogOnt have been declared as subclasses of the Device
class of GridPedia.

The final result of the integration process is the Leaf Ontology, which is
summarized in Figure 5.2.

Thing

Domain Energy

Operation

Actor

ActorRole

State

RelationApplication

Data

Network

StateValue

CommandType

Figure 18: Leaf Ontology: main classes and concepts.

For a better understanding of how the ontology integration works, consider
this simple usage scenario involving two Actors of a smart grid: a house and
a photovoltaic roof, respectively. These two actors have different roles: the
house is an energy consumer, while the roof is an energy provider. Both actors
are linked through a bidirectional power flow. The semantic definition of this
scenario is provided in Figure 19.

9http://gridpedia.org/wiki/Help:Ontology_Usage, last visited February 11, 2013.

27

:LeafCommunity a gridpedia:Smart_Grid .

:LeafHouse a dogont:Building .

:LeafRoof a dogont:Building .

:LeafHouse gridpedia:actorNetwork :LeafCommunity .

:LeafRoof gridpedia:actorNetwork :LeafCommunity .

:LeafHouse gridpedia:role :DefaultEnergyConsumer .

:LeafRoof gridpedia:role :DefaultEnergyProvider .

:LeafRoofPowerPlant a gridpedia:SolarPowerPlant .

:LeafRoof dogont:contains :LeafRoofPowerPlant .

:LeafRoof gridpedia:powerFlow :LeafHouse .

Figure 19: The OWL representation of a usage scenario for the Leaf Ontology.

5.3. Prototype description

The prototype was developed as a distributed Java application. The appli-
cation runs at two different levels: a node level, where we identify a node as
a physical building connected to our power grid, and a grid level. Both levels
refer to the same ontology as concepts (T-Box) but differ in terms of individuals
and assertions (A-Box).

Our definition of node resembles the definition of substation given in the IEC
61850 standard [31]. More appropriately, we identify each node with a Buildin-
gEnvironment, thus an Actor of our smart grid system containing a certain
number of Devices. Each local version of our prototype has a complete knowl-
edge of the devices present in the node itself, expressed through the Building
Automation concepts of DogOnt. Moreover, it is able to interact with, and to
control, the devices, regardless of their technology and communication protocols,
via an appropriate lower-level framework (developed by Loccioni). This enables
every node in the network to enact local strategies, according to its knowledge
of the network. An example of local strategy for a residential building might be
the optimization of appliance usage through appropriate scheduling based on
variable energy tariffs.

The grid level of our application, instead, is able to aggregate information
from different nodes, in order to enact network-level strategies. This component
is supported by a persistent version of the ontology, containing brief, aggregated
description of the nodes in the network, useful to determine relevant informa-
tion for the decision making process. Example of network-level decisions may
include logic topology modifications, with the creation of islands composed by
one or more nodes, or predictive RES production management through external
applications.

5.4. Communication between nodes

Each node in the network exchanges semantic information with the other
nodes, by means of REST-based Web Services. These Web Services provide a
mapping of the following services, as described in the IEC 61850 [31]: peer-
to-peer data exchange, self-description, and online configuration. The REST
mapping was inspired by the work of Pedersen et al. [63] and the actual mapping
is described in Table 3.

Through this simple communication schema, the nodes exchange semantic
information and accordingly modify their inner state. Moreover, at the grid

28

Table 3: Mapping of IEC 61850 to RESTful services
HTTP Method Corresponding Function IEC 61850 Reference
GET The node returns its self-description in

RDF/XML format.
Self-description

POST The node inserts the resource contained
in the request body inside its ontology
A-Box

Peer-to-peer data ex-
change

GET The node modifies its configuration
with the data contained in the request
body.

Online configuration

level, a more advanced component is able to query the description of the nodes
and take more informed decisions, specifying different constraints for the local
control logic of the single nodes.

5.5. Control logic

The control logic of the prototype is implemented in the Java language. The
Java classes representing the concepts expressed in the Leaf Ontology are auto-
matically generated from the ontology itself into a single Java package. When
accessing those classes, it is possible to reason with high-level, real-world ele-
ments such as buildings, devices, energy quantities and power flows. This allows
to express very complex rules through very simple and natural Java instruc-
tions. The translation of these instructions into low-level commands to enact
the corresponding control actions is delegated to the underlying framework.
This approach enables programmers to immediately translate and implement
the specifications provided by the energy managers. A simple example of en-
ergy strategy is given in Figure 20, stating that the leafHouse node should
connect to every energy provider available in the network.

for (actor:leafCommunity.listActors ())

{

if(actor.is(EnergyProvider))

leafHouse.addPowerFlow(actor);

}

Figure 20: The Java code for implementing a simple high-level strategy.

6. Discussion

The adoption of semantic technologies in the smart environment and smart
grid domains is fostering relevant changes in modeling and programming tech-
niques typically adopted in these fields. New roles and new solutions based
on such techniques are emerging on a daily basis and an increasing interest in
their application is pervasively emerging from the current literature. The dis-
cussed case studies, whose results are summarized in Table 4, provided an hint
on how wide could be the impact of semantic solutions in such domain and on
which issues can be addressed by exploiting semantics and related technologies
along the whole design and implementation work-flow of smart environments
and grids. Covered issues range from support to modeling activities, to develop-
ment automation, coherence enforcement and inter-operation between different
solutions/technologies.

29

Table 4: Summary of roles played by semantic technologies, and obtained advantages / solved
issues in the 2 presented use cases.
Role Smart Environment Use Case Smart Grid Use Case
Context
modeling

• Not covered. • Grid-level modeling to
support decision-making
through aggregation of
local information

Environment
modeling

• Technology-independent reference
model for smart environments;

• High-level, common API for interact-
ing with smart environment devices
(responds to the application layer ab-
straction needs);

• Technology-independent
reference model for smart
environments;

• Interaction with a lower-
level framework controlling
devices and appliances, to
enact local strategies for
each node in the grid

Interoperability

• Technology-independent reference
model for smart environments (ad-
dresses a currently open problem as
witnessed by current standardization
efforts);

• Automatic interoperation by means of
off-line reasoning and rule-generation
(solves low-level interoperation issues,
abstracting from technology details)

• Interoperability between currently
isolated technologies (solves a still
open issue affecting most commercial
systems)

• Conceptual model referenc-
ing most of the efforts done
to ensure Smart Grid inter-
operability [26] [28] [27];

• Standard-based commu-
nication services between
nodes;

• Usage of RESTful technolo-
gies

Off-line
reasoning

• Design-time validation of architec-
tural constraints (currently done
manually, at least partially);

• Design-time validation of norms and
regulations (e.g., safe exits) (cur-
rently done manually);

• Design time validation of the smart
environment behavior through simu-
lation (seldom addressable with cur-
rent commercial solutions);

• Design-time planning of
loads and energy distribu-
tion (currently simulated);

• Explicit modeling of
legal/economical aspects
(energy supply contracts,
energy tariffs, etc.) al-
lowing market analyses
and customer profiling
operations

Code gen-
eration

• Coherence between the semantic en-
vironment model and gateway imple-
mentation (hard to keep with tradi-
tional manual development);

• Improvements in the development
process both in required time (sec-
onds v.s. days) and code quality.

• Allows domain experts and
energy managers to be
involved during develop-
ment of complex strategies,
through the usage of high-
level languages

On-line
reasoning

• Integration/ Merge of different mod-
els, allowing to tackle several aspects
of the smart environment operation /
management.

• Aggregation of local nodes
with grid-level models;

• Encapsulation of local node
details with respect to grid-
level decision-making

30

Recent initiatives promoted by the European Commission (EC)10, ETSI,
CENELEC, and the main stakeholders involved in energy-related businesses,
confirm this vision. The European Commission, in particular, is promoting
interoperability between energy using and producing devices (EUPD) in the
home domain11 and is supporting (through the Adapt4EE project) the definition
of standard vocabularies (ontologies) for Building Information Models.

More specifically, the European Commission is coordinating workshops be-
tween main market stakeholders with the aim of defining a shared, semantic,
interoperability layer for energy using and producing devices enabling a min-
imum core of inter-operation between smart appliances, energy management
systems and the smart grid. This effort builds upon current standardization ac-
tivities carried in the context of the EU mandate M490 by CENELEC (TC205
WG18, TC57 WG17), and is strictly connected to current ETSI initiatives with
the intent of promoting real interoperability without hampering current stan-
dardization efforts and avoiding proliferation of conflicting standards and guide-
lines. At the same time, the EC is working on a European-level labeling scheme
(integrated with the energy labeling effort) aimed at providing a normative ref-
erence to smart appliance interoperability, with a focus on energy information.
A preparatory study is currently being carried to: (a) define essential features of
smart appliances, (b) make sure that smart appliances have access to necessary
information (smart metering and pricing information), (c) support interoper-
ability, (d) make sure that ”smartness” does not bring unreasonable energy
consumption (concerns smart meters + smart appliances), (e) create the basis
for incentives for smartness and/or interoperability through the Energy Label.
Also in this case, semantic technologies are considered crucial to define a shared,
formal and sound support to interoperability between smart appliances.

Parallel to the current EC efforts on semantics-based interoperability, the
Adapt4EE european project is building the foundations for a European-level
semantic model of building-related informations. According to the project sum-
mary, Adapt4EE aims to develop and validate an holistic energy performance
evaluation framework that incorporates architectural metadata (BIM), critical
business processes (BPM) and consequent occupant behavior patterns, enter-
prise assets and respective operations as well as overall environmental condi-
tions. The proposed approach is strongly exploiting semantics, as highlighted
in the project deployment statement: “Adapt4EE will develop an enhanced
semantic enterprise model that treats, learns and manages the enterprise envi-
ronment as an intelligent agent, perceives environmental state using multi-type
sensors and information modalities.”

Thanks to the organization of so-called vocabulary camps (VoCamp), the
project is systematically tackling the representation of building information
through semantics including: Energy Efficiency in Buildings (1st VoCamp),
Building Information Models (BIM, 2nd VoCamp), Energy using and produc-
ing devices (3rd VoCamp, held in June 2013), etc. This will likely provide a new
driving force to semantics adoption and to semantics-based programming tech-

10http://ec.europa.eu/information_society/activities/sustainable_growth/index\

_en.htm, last visited March 31, 2013
11as in the 2nd WORKSHOP OF M2M SEMANTICS FOR SMART EEAPPLIANCES,

Bruxelles, 2013

31

niques in the context of smart environments and grids, both at the European
and at the global level.

7. Conclusions

Semantic technologies are currently fostering new programming paradigms
and new design methodologies in almost all domains. Thanks to their pecu-
liar features they are currently seen as reliable and consistent means to address
several design challenges, from modeling issues to run-time operation. In this
paper we provided an overview of typical application cases in the smart environ-
ments and smart grids domain. While providing a top-down characterization of
roles covered by these technologies, we provided a strong application-oriented
view of the advantages and issues that can be effectively tackled through se-
mantics. Several research challenges are still open, including: (a) efficiency at
run-time in terms of complexity and response times; (b) application of Linked
Open Data solutions to smart environments, e.g., for tackling interoperability
problems and data sharing; (c) validation and verification of achieved behav-
iors with respect to modeling, and design, assumptions, exploiting semantics
(e.g., by using reasoning and/or SPARQL querying). Nevertheless, application
of semantic technologies in both smart environment and smart grid domains
is increasingly playing a pivotal role as shown by European and international
initiatives involving these themes.

We believe that semantics-based solutions will drive the change in smart
environments and smart grids in the next years, and we envision an even more
pervasive adoption if complexity issues traditionally involved in semantics han-
dling could be overcome.

Rather than providing a final remark, we’d like to conclude the discussion
with an open “call to arms” for the semantic community: the technology is now
mature enough to support complex domains and to solve remarkable issues,
however current issues on performance, quantitative reasoning, effective query-
ing and inference need to be successfully tackled to move to the next generation
semantic-based systems.

Acknowledgements

The authors of this contribution would like to thank Loccioni Group and in
particular the MyLeaf R&D team for their support during the development of
the prototype described in Section 5.

References

[1] C. Grimm, D. Bonino, Towards standardization of m2m communication in
smart appliances, in: ICT for Sustainable Places, 2013, p. 9.

[2] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific Amer-
ican 284 (5) (2001) 34–43.

[3] H. Chen, T. Finin, A. Joshi, An ontology for context-aware pervasive com-
puting environments, Knowl. Eng. Rev. 18 (3) (2003) 197–207.

32

[4] A. Ranganathan, R. E. McGrath, R. H. Campbell, M. D. Mickunas, Use of
ontologies in a pervasive computing environment, Knowl. Eng. Rev. 18 (3)
(2003) 209–220.

[5] D. Preuveneers, J. V. den Bergh, D. Wagelaar, A. Georges, P. Rigole,
T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, K. D. Bosschere, Towards
an extensible context ontology for Ambient Intelligence, in: Second Euro-
pean Symposium on Ambient Intelligence, Vol. 3295 of LNCS, Springer,
Eindhoven, The Netherlands, 2004, pp. 148 –159.

[6] T. Gu, H. Pung, D. Zhang, Toward an OSGi-based infrastructure for
context-aware applications, Pervasive Computing, IEEE 3 (4) (2004) 66–74.

[7] H. Chen, T. Finin, A. Joshi, The SOUPA Ontology for Pervasive Comput-
ing, in: V. Tamma, S. Cranefield, T. Finin, S. Willmott (Eds.), Ontologies
for Agents: Theory and Experiences, Whitestein Series in Software Agent
Technologies, Birkhauser Basel, 2005, pp. 233–258.

[8] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, L. A. Stein, M. Dean, G. Schreiber, OWL Web
Ontology Language Reference, W3C Recommendation (2004).

[9] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell,
K. Nahrstedt, Gaia: a middleware platform for active spaces, SIGMOBILE
Mob. Comput. Commun. Rev. 6 (4) (2002) 65–67.

[10] D. J. Cook, J. C. Augusto, V. R. Jakkula, Review: Ambient intelligence:
Technologies, applications, and opportunities, Pervasive Mob. Comput.
5 (4) (2009) 277–298.

[11] L. Chen, C. Nugent, M. Mulvenna, D. Finlay, X. Hong, Semantic Smart
Homes: Towards Knowledge Rich Assisted Living Environments, in: S. Mc-
Clean, P. Millard, E. El-Darzi, C. Nugent (Eds.), Intelligent Patient Man-
agement, Vol. 189 of Studies in Computational Intelligence, Springer Berlin
Heidelberg, 2009, pp. 279–296.

[12] L. Sommaruga, A. Perri, F. Furfari, DomoML-env: an ontology for Human
Home Interaction, in: Proceedings of SWAP 2005, the 2nd Italian Semantic
Web Workshop, Trento, Italy, December 14-16, 2005, CEUR Workshop
Proceedings, 2005.

[13] F. Furfari, L. Sommaruga, C. Soria, R. Fresco, DomoML: the definition of a
standard markup for interoperability of human home interactions, in: EU-
SAI ’04: Proceedings of the 2nd European Union symposium on Ambient
intelligence, ACM, New York, NY, USA, 2004, pp. 41–44.

[14] D. Bonino, F. Corno, DogOnt - Ontology Modeling for Intelligent Domotic
Environments, in: A. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard,
T. Finin, K. Thirunarayan (Eds.), International Semantic Web Conference,
no. 5318 in LNCS, Springer-Verlag, 2008, pp. 790–803.

[15] M. Compton, P. Barnaghi, L. Bermudez, R. Garćıa-Castro, O. Corcho,
S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang,
K. Janowicz, W. D. Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri,

33

H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, K. Taylor, The
{SSN} ontology of the {W3C} semantic sensor network incubator group,
Web Semantics: Science, Services and Agents on the World Wide Web
17 (0) (2012) 25 – 32.

[16] J. Ye, G. Stevenson, S. Dobson, A top-level ontology for smart environ-
ments, Pervasive and Mobile Computing 7 (3) (2011) 359–378.

[17] V. Miori, L. Tarrini, M. Manca, G. Tolomei, An Open Standard Solution
for Domotic Interoperability, IEEE Transactions on Consumer Electronics
52 (2006) 97–103.

[18] D. Bonino, E. Castellina, F. Corno, The DOG Gateway: Enabling
Ontology-based Intelligent Domotic Environments, IEEE TRANSAC-
TIONS ON CONSUMER ELECTRONICS 54/4 (2008) 1656–1664.

[19] G. Stevenson, S. Dobson, Sapphire: Generating Java Runtime Artefacts
from OWL Ontologies, in: C. Salinesi, O. Pastor (Eds.), Advanced Informa-
tion Systems Engineering Workshops, Vol. 83 of Lecture Notes in Business
Information Processing, Springer Berlin Heidelberg, 2011, pp. 425–436.

[20] S. Tomic, A. Fensel, M. Schwanzer, M. K. Veljovic, M. Stefanovic, Seman-
tics for Energy Efficiency in Smart Home Environments, Applied Semantic
Technologies: Using Semantics in Intelligent Information Processing, Tay-
lor and Francis (2011) 429–455.

[21] J. J. Vinagre, M. Wilby, A. B. R. G. Munoz, A.oz, J. Garcia, EEOnt:
an ontological model for a unified representation of energy efficiency in
buildings, Energy and Buildings (2013) In press.

[22] D. Bonino, F. Corno, DoMAIns: Domain-based modeling for Ambient In-
telligence, Pervasive and Mobile Computing 8 (4) (2012) 614–628.

[23] P. Moreaux, F. Sartor, F. Vernier, An Effective Approach for Home Ser-
vices Management, in: Parallel, Distributed and Network-Based Processing
(PDP), 2012 20th Euromicro International Conference on, 2012, pp. 47–51.

[24] J. Xu, Y.-H. Lee, W.-T. Tsai, W. Li, Y.-S. Son, J.-H. Park, K.-D. Moon,
Ontology-Based Smart Home Solution and Service Composition, in: Em-
bedded Software and Systems, 2009. ICESS ’09. International Conference
on, 2009, pp. 297–304.

[25] A. Katasonov, M. Palviainen, Towards ontology-driven development of ap-
plications for smart environments, in: Pervasive Computing and Commu-
nications Workshops (PERCOM Workshops), 2010 8th IEEE International
Conference on, 2010, pp. 696–701.

[26] National Institute of Standards and Technology, NIST Framework and
Roadmap for Smart Grid interoperability standards, U.S. Dept. of Com-
merce, National Institute of Standards and Technology, Office of the Na-
tional Coordinator for Smart Grid Interoperability, Gaithersburg, MD,
2010.

34

[27] International Electrotechnical Commission, IEC 61970: Energy man-
agement system application program interface (EMS-API) — Part 301:
Common information model (CIM) base, International Electrotechnical
Commission, Geneva, Switzerland, 2009.
URL http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/

42807

[28] International Electrotechnical Commission, IEC 61968: Application
integration at electric utilities - System interfaces for distribution man-
agement — Part 13: CIM RDF Model exchange format for distribution,
International Electrotechnical Commission, Geneva, Switzerland, 2008.
URL http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/

41598

[29] T. Kostic, O. Preiss, C. Frei, Towards the formal integration of two up-
coming standards: IEC 61970 and IEC 61850, in: Power Engineering, 2003
Large Engineering Systems Conference on, 2003, pp. 24–29.

[30] J. Hughes, Harmonization of IEC 61970, 61968, and 61850 models, Tech.
rep., EPRI (2006).

[31] International Electrotechnical Commission, IEC 61850: Communication
networks and systems in substations — Part 5: Communication require-
ments for functions and device models, International Electrotechnical
Commission, Geneva, Switzerland, 2003.
URL http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/

30929

[32] R. Santodomingo, J. Rodriguez-Mondejar, M. Sanz-Bobi, Ontology Match-
ing Approach to the Harmonization of CIM and IEC 61850 Standards, in:
Smart Grid Communications (SmartGridComm), 2010 First IEEE Inter-
national Conference on, 2010, pp. 55–60.

[33] R. Santodomingo, J. Rodriguez-Mondejar, M. Sanz-Bobi, S. Rohjans,
M. Uslar, Towards the automatic alignment of CIM and SCL ontologies, in:
Smart Grid Communications (SmartGridComm), 2011 IEEE International
Conference on, 2011, pp. 422–427.

[34] M. Grassi, M. Nucci, F. Piazza, Towards an ontology framework for intelli-
gent smart home management and energy saving, in: Industrial Electronics
(ISIE), 2011 IEEE International Symposium on, 2011, pp. 1753–1758.

[35] A. Pena, Y. Penya, Distributed semantic repositories in smart grids, in:
Industrial Informatics (INDIN), 2011 9th IEEE International Conference
on, 2011, pp. 721–726.

[36] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, P. Steggles,
Towards a Better Understanding of Context and Context-Awareness, in:
Proceedings of the 1st international symposium on Handheld and Ubiqui-
tous Computing, HUC ’99, Springer-Verlag, London, UK, UK, 1999, pp.
304–307.

35

[37] T. Strang, C. Linnhoff-Popien, A Context Modeling Survey, in: In: Work-
shop on Advanced Context Modelling, Reasoning and Management, Ubi-
Comp 2004 - The Sixth International Conference on Ubiquitous Comput-
ing, Nottingham/England, 2004.

[38] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, D. Riboni, A survey of context modelling and reasoning tech-
niques, Pervasive Mob. Comput. 6 (2) (2010) 161–180.

[39] X. Wang, D. Zhang, T. Gu, H. Pung, Ontology based context modeling
and reasoning using OWL, in: Pervasive Computing and Communications
Workshops, 2004. Proceedings of the Second IEEE Annual Conference on,
2004, pp. 18–22.

[40] D. A. Randell, Z. Cui, A. G. Cohn, A Spatial Logic based on Regions and
Connection, in: Proceedings 3rd International Conference On Knowledge
Representation And Reasoning, 1992.

[41] A. Agostini, C. Bettini, D. Riboni, Hybrid reasoning in the CARE middle-
ware for context awareness, International Journal of Web Engineering and
Technology 5 (1) (2009) 3–23, cited By (since 1996) 15.

[42] D. Bonino, E. Castellina, F. Corno, Automatic domotic device interopera-
tion, Consumer Electronics, IEEE Transactions on 55 (2) (2009) 499–506.

[43] G. Niezen, Ontologies for interaction : enabling serendipitous interoperabil-
ity in smart environments, Ph.D. thesis, Technische Universiteit Eindhoven
(September 2012).

[44] A. D’Elia, L. Roffia, G. Zamagni, F. Vergari, A. Toninelli, P. Bellavista,
Smart applications for the maintenance of large buildings: How to achieve
ontology-based interoperability at the information level, in: Computers and
Communications (ISCC), 2010 IEEE Symposium on, 2010, pp. 1–6.

[45] M. Bhatt, F. Dylla, J. Hois, Spatio-terminological Inference for the De-
sign of Ambient Environments, in: K. Hornsby, C. Claramunt, M. Denis,
G. Ligozat (Eds.), Spatial Information Theory, Vol. 5756 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2009, pp. 371–391.

[46] J. Hois, M. Bhatt, O. Kutz, Modular Ontologies for Architectural Design,
in: Proceedings of the 2009 conference on Formal Ontologies Meet Industry,
IOS Press, Amsterdam, The Netherlands, The Netherlands, 2009, pp. 66–
77.

[47] D. Bonino, F. Corno, Rule-based intelligence for domotic environments,
Automation in Construction 19 (2) (2010) 183–196.

[48] A. Soylu, P. De Causmaecker, Merging model driven and ontology driven
system development approaches pervasive computing perspective, in: Com-
puter and Information Sciences, 2009. ISCIS 2009. 24th International Sym-
posium on, 2009, pp. 730–735.

36

[49] Y.-H. Lee, W. Li, W.-T. Tsai, Y.-S. Son, K.-D. Moon, A code generation
and execution environment for service-oriented smart home solutions, in:
Service-Oriented Computing and Applications (SOCA), 2009 IEEE Inter-
national Conference on, 2009, pp. 1–8.

[50] N. Rodriguez, A Framework for Context-Aware Applications for Smart
Spaces, in: Applications and the Internet (SAINT), 2011 IEEE/IPSJ 11th
International Symposium on, 2011, pp. 218–221.

[51] S. M. Mohsin, D. R. Natalia, S. Espen, L. Johan, P. Ivan, Ontology Driven
Smart Space Application Development, River Publishers, 2012, Ch. 5, pp.
1–25.

[52] Y. Gavshin, J. Shumik, Runtime generation of robot control code from
ontology file, in: Proceedings of the Second international conference on
Adaptive and intelligent systems, ICAIS’11, Springer-Verlag, Berlin, Hei-
delberg, 2011, pp. 157–167.

[53] G. Bin, D. Zhang, M. Imai, Handbook of Research on Ambient Intelligence
and Smart Environments: Trends and Perspectives., IGI Global, 2011, Ch.
An Ontology-Based Context-Aware Infrastructure for Smart Homes, pp.
272–299.

[54] A. Munoz, J. A. Botea, J. C. Augusto, Using Argumentation to Understand
Ambiguous Situations in Intelligent Environments, Ambient Intelligence
and Smart Environments 5 (2009) 35–42.

[55] W. Zhang, K. Hansen, Semantic Web Based Self-Management for a Per-
vasive Service Middleware, in: Self-Adaptive and Self-Organizing Systems,
2008. SASO ’08. Second IEEE International Conference on, 2008, pp. 245–
254.

[56] P. Pellegrino, D. Bonino, F. Corno, Domotic house gateway, in: Proceed-
ings of the 2006 ACM symposium on Applied computing, SAC ’06, ACM,
New York, NY, USA, 2006, pp. 1915–1920. doi:10.1145/1141277.1141730.
URL http://doi.acm.org/10.1145/1141277.1141730

[57] T. H. A. P. T. Group, ZigBee Home Automation Profile Specification,
ZigBee Alliance - public specification (Oct 2007).

[58] D. Harel, Statecharts: A visual formalism for complex systems, Science of
Computer Programming 8(3) (1987) 231–274.

[59] D. Bonino, F. Corno, Dogsim: A state chart simulator for domotic envi-
ronments, in: Eighth Annual IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), 2010,
pp. 61–66.

[60] A. Wagner, S. Speiser, A. Harth, Semantic Web Technologies for a Smart
Energy Grid: Requirements and Challenges., in: A. Polleres, H. Chen
(Eds.), ISWC Posters Demos, Vol. 658 of CEUR Workshop Proceedings,
CEUR-WS.org, 2010.

37

[61] C. Warmer, K. Kok, S. Karnouskos, A. Weidlich, D. Nestle, P. Selzam,
et al., Web services for integration of smart houses in the smart grid, in:
Grid-Interop - The road to an interoperable grid, Denver, Colorado, USA,
2009.

[62] A. Wagner, GridPedia, an RDF ontology for the Smart Grid (Jul. 2012).
URL http://www.gridpedia.org

[63] A. Pedersen, E. Hauksson, P. Andersen, B. Poulsen, C. Træholt, D. Gan-
tenbein, Facilitating a Generic Communication Interface to Distributed
Energy Resources: Mapping IEC 61850 to RESTful Services, in: Smart
Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on, 2010, pp. 61–66.

38

