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Abstract

The research activities described in this thesis have basically an experimental profile, and

were realized in the Quantum Optics Laboratories of the Optic Division in the Istituto

Nazionale di Ricerca Metrologica (I.N.Ri.M.).

The experiments presented here are oriented to the characterization of single- and

few-photon detectors calibration, exploiting quantum properties.

The first chapter has an introductory character, oriented to the study of nonlinear

optics phenomena and focused in the spontaneous parametric down conversion (PDC)

process. After the quantization of the free electromagnetic field, we recall the quantum

theory of PDC.

In the second chapter the Klyshko’s two-photon calibration technique is presented

and applied to an Avalanche Photo Diode (APD) based single photon counting module.

Chapter three is an introduction to quantum measurements and quantum opera-

tion theories where the concept of positive-operator valued measurement (POVM) is

presented.

In chapter four, the quantum characterization of a true photon-number resolving

detector (PNRD) based on a transition edge sensor (TES) is presented. In this experi-

ment, the POVM of the TES is reconstructed by realizing a tomography of the detection

process’s quantum operation, using as a probe a set of known coherent states.

In the fifth and last chapter, the POVM of a tree type PNRD is reconstructed
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exploiting strong quantum correlations of PDC twin beams.
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Introduction

In the last decades, quantum optics experiments based on intensity light measurements

have been realized mainly with intense (macroscopic) fields or at single-photon level,

while photon counting with few-photon light (up to 100 photons) is a rather unexplored

measurement regime. Despite this fact there are several applications that may benefit

from the transition from single-photon to few photon measurement regime, such as e.g.

bioluminescence detection [1], single molecule spectroscopy [2], fluorescence life time

measurements [3,4], medical applications using optical tomography [5], investigation on

quantum optics foundations [6], quantum communication [7–9], computation [10,11] and

metrology [12,13].

Although single-photon detectors and, most recently, few-photon detectors, are rather

diffused, a huge development in single photon technologies [14] is mandatory, as well as

a proper metrological framework ensuring their standardization, to bring quantum ap-

plications in citizens life.

In this frame, quantum radiometry (a quite new branch of radiometry) is growing

within the metrology community not only to be ready to provide high level technological

solutions to the actual and future problems faced in the fields of applications, but also

to improve their own methodologies, carrying out an innovative approach to optical

radiation measurements in terms of number of photons [15–17].

In particular, quantum radiometry concerns the absolute measurement of photon

quantities based on fundamental physical phenomena, and refers to the quantum theory

of light by definition of a single quantum of radiation as a photon: at very low radiant
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powers, radiant or luminous quantities can be replaced usefully by quantities related to

the number of photons. In fact when the light level approaches picowatt and femtowatt

(104 - 107 photons/s) photon counting techniques are employed.

We underline that one of the biggest challenge of the European Metrology Research

Programme (EMRP) is the redefinition of the SI base unit of luminous intensity, the

candela, in terms of photon number, the so-called quantum candela, expressed by the qu-

Candela project under the IMERA programme [18]. The qu-Candela project forms the

backbone of the EMRP roadmap “Towards quantum photon-based standards for optical

radiation”, and identifies for its realization some fundamental steps, as obtaining an

absolute technique for the measurement of quantum efficiency of single-photon detectors,

and producing reliable sources of single photons with predictable parameters, both at

visible and telecommunication wavelengths.

An ideal single-photon detector is considerer to be one for which: the detection effi-

ciency (the probability that a photon incident upon the detector is successfully detected)

is 100%, the dark-count rate (rate of detector output pulses in the absence of any incident

photons) is zero, the dead time (time after a photon-detection event during which the

detector is incapable of detecting a photon) is zero, and the timing jitter (variation from

event to event in the delay between the input of the optical signal and the output of the

electrical signal) is zero. Additionally, an ideal single-photon detector would have the

ability to distinguish the number of photons in an incident pulse (referred to as “photon-

number resolution” (PNR)); many single-photon detectors (e.g., single-photon avalanche

photodiodes, photomultiplier tubes, superconducting nanowire single-photon detectors)

typically used are not photon-number resolving and can only distinguish between zero

photons and more than zero photons. Deviations from these ideals negatively impact

experiments in varying ways depending on the detector characteristic and measurement

involved [19].

Almost all single-photon detectors involve the conversion of a photon into an electrical

signal of some sort. It is the job of the detector electronics to ensure that each photo-

generated electrical signal is detected with high efficiency. Additional electronics is often
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required after detection to return the detector as quickly as possible back to a state that

allows it to detect another photon. The electronics is often as important as the detector

itself in achieving the ideal characteristics outlined above.

The most commonly used single-photon detectors are non-photon-number-resolving

detectors. While detecting a single photon is a difficult task, discriminating the number

of incident photons is even more difficult. Because the energy of a single photon is so

small (≈ 10−19J), its detection requires very high gain and low noise. In many detectors

this is achieved by converting the incoming photon into a charge carrier and then using

a high voltage avalanche process to convert that single charge into a macroscopic current

pulse. In particular, the single photon avalanche detectors (SPADs) are typically run

in what is referred to as “Geiger-mode”, where a bias voltage greater than the diode’s

breakdown voltage is applied. Thus when a charge is generated by an incoming photon,

the charge multiplication (or avalanche) proceeds until it saturates at a current typically

limited by an external circuit. The saturated avalanche current must be stopped by

lowering the bias voltage below the breakdown voltage before the SPAD can respond to

a subsequent incoming optical pulse. As a result, the SPAD dead time range from tens

of nanoseconds to 10 µs.

Concerning PNR detectors it is important to discuss what “photon-number-resolution”

means, and to lay out the degrees of photon-number-resolution that a detector can have.

First let highlight that detectors classified as photon-number-resolving do not tell the

true number of incident photons unless their efficiency is 100%, the measured number

is at best just a lower estimate, and in the presence of dark counts it is not even that.

In addition we attempt to categorize the degree of PNR capability into three groups

defined as (a) “no PNR capability” for devices that are typically operated as a photon

or no-photon device (for example SPAD), (b) “some PNR capability” for devices made

of multiple detectors that individually have no PNR capability and thus are limited in

the maximum photon number that can be resolved to the number of individual detec-

tors, and (c) “full PNR capability” for devices whose output is inherently proportional

to the number of photons, even if their detection efficiency is low and their proportional
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response ultimately saturates at high input photons levels. As an example, we con-

sider a PNR detector based on a superconducting transition edge sensor (TES). This

detector operates as a bolometer: that is electromagnetic radiation is absorbed and,

via the heating of a material with a temperature-dependent electrical resistance, the

energy of incident radiation is obtained. To achieve the extreme sensitivity required to

detect the energy of a single photon, the heat capacity of the absorber must be made

extremely small and the thermal sensor must exhibit a large response to a small tem-

perature change. As a thermal device which measures energy absorbed, its output is

proportional to the number of photons absorbed, thus it can provide photon-number

resolution. The extreme temperature sensitivity is achieved by constructing the thermal

sensor from a thin layer of superconducting material (deposited on an insulating sub-

strate) made to operate at a temperature in its transition between superconducting and

normal resistance, so a slight change in temperature yields a large change in resistance.

This thesis is focused in study the behaviour of three kinds of single-photon detectors.

With this aim different experiments where performed in the Optic Laboratory of the

Istituto Nazionale di Ricerca Metrologica (INRIM) at Turin, Italy. The research work

of this thesis is based in this three experiments, presenting in each particular case, a

different approach to the detector characterization.

In the following we present our research activity.

We begin the thesis with an introduction of the nonlinear optics phenomena focused

in the spontaneous parametric down conversion (PDC) process. In a first approach, the

phenomena is analysed classically and, in the last section of the chapter, quantum theory

of radiation is introduced and PDC process is analysed in therms of the interaction of

quantized fields.

In the second chapter of this thesis an experiment focused on the detection quantum

efficiency, η, defined as the overall probability of observing the presence of a single photon

impinging on the detector is presented. An absolute measurement technique (named

Klyshko two-photon technique) based on correlated photons obtained from parametric
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down conversion, is applied to calibrate a single-photon avalanche detector.

The third chapter introduces the theories of quantum measurements and quantum

operation as well as the concept of positive operator values measure (POVM).

In the fourth chapter we address the quantum characterization of a photon counter

based on a TES. Here the detection process is considered as a quantum operation, thus

the technique consists in realizing the tomography of the quantum operation using as

a probe a known set of coherent states of different amplitudes. This experiment is the

first experimental tomography of the POVM of a TES.

In the last chapter of this thesis, the first experimental POVM reconstruction that

takes explicit advantage of a quantum resource, i.e. nonclassical correlations with an

ancillary state, is presented. A POVM of a tree type photon-number-resolving detector

is reconstructed by using strong quantum correlations of twin beams generated by para-

metric down-conversion. Our reconstruction method is more statistically robust than

POVM reconstruction methods that use classical input states.

This thesis work gave way to two publications, that are presented at the end of this

thesis. A third paper is submitted to a Quantum Matter journal and is under evaluation

at the moment of this thesis presentation. This article is although included at the end

of the thesis.
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Chapter 1

Nonlinear optics and photon source

generation

The propagation of electromagnetic waves through nonlinear media gives rise to “vibra-

tions” at harmonics of the fundamental frequency, at sum and difference frequencies,

and so on. Similar effects are observed in the optical frequency range when light waves

propagates through a weakly non linear optical dielectric (for example, a nonlinear crys-

tal).

The wavelength range of a laser source passing through a non linear optical dielectric

can be considerably increased: the radiation frequency ω0 of the laser may be both

transformed to high harmonics of the original frequency (2ω0, 3ω0, etc.) [20], or can cause

a simultaneous generation of radiations ω1 and ω2 where ω0 = ω1 + ω2. In the latter

effect, known as parametric down conversion (PDC) process, one photon of the laser

beam is converted into two new, strongly correlated in time of emission and wavelength

due to constraints of energy and momenta conservation.

1.1 Nonlinear optics

The discover of the second harmonic generation effect in 1961 by Franken et al. [21] is

often referred as the birth of nonlinear optics. Since its beginning, interest in the field
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of nonlinear optics has grown continuously, with an increasing research over a wide type

of materials presenting this phenomena [22–25]. Nowadays, the interest in non linear

optics ranges from fundamental studies of the interaction of light with matter [26,27], to

several applications such as implementation of quantum information protocols [28, 29],

quantum metrology techniques [16,30], etc.

In nonlinear optical effects, the response of a material system to an applied optical

field depends in a nonlinear way on the strength of the optical field. Conversion of a

light-wave frequency (multiplication, division, mixing) is possible in nonlinear optical

crystals for which the refractive index n is a function of the electric field strength vector

E of the light wave

n(E) = n0 + n1(E) + n2E
2 + ... (1.1)

where n0 is the refractive index in the absence of the electric field, and n1, n2 and so on

are the coefficients of the series expansion of n(E).

To be more specific about nonlinearity definition, let us consider how the dielectric

polarization vector P of a material (dipole moment of unite volume of the media) depends

on the strength E of an applied optical field. In the case of linear optics the induced

dielectric polarization goes linearly with the electric field strength obeying the equation

[31]

P(E) = χ(1)E (1.2)

where the constant of proportionality χ(1) is the linear dielectric susceptibility. In nonlin-

ear optics, the optical response can be described by generalizing Eq. (1.2) by expressing

the dielectric polarization P as a power series in E

P(E) = χ(1)E + χ(2)EE + χ(3)EEE + ....

≡ P(1) + P(2) + P(3) + ...
(1.3)

the quantities χ(2), χ(3) and so on are known as the non linear suceptibility coefficients
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(square, cubic and so on, respectively) [32]. P(2) and P(3) are known as the second and

the third-order nonlinear polarization, respectively. The following equations hold

χ(1) = 1
4π (ε0 − 1) = 1

4π (n2
0 − 1);

χ(2) ∼= 1
2πn0n1; χ(3) ∼= 1

2πn0n2;
(1.4)

where ε0 is the dielectric constant in absence of the electric field. In the general case

of anisotropic crystals, the quantities ε0, n, and χ are tensors of the corresponding

ranks. Physical processes that occur as a result of the second-order dielectric polar-

ization P(2) tend to be distinct from those that occur as a result of the third-order

dielectric polarization P(3). Second-order nonlinear optical interactions can occur only

in noncentrosymmetric crystals, that is, in crystals that do not have inversion symme-

try. Since liquids, gases, and many crystals exhibit inversion symmetry, χ(2) vanishes

for such media, and consequently in such materials second-order nonlinear optical inter-

actions are not produced. On the other hand, third-order nonlinear optical interactions

(i.e., those described by a χ(3) susceptibility) can occur for both centrosymmetric and

noncentrosymmetric media [31].

In general, the nonlinear susceptibilities have a rather small magnitude. This means

that when the electric field amplitude is small, the non linear terms are negligible and

we have a linear relation between P and E as it is assumed in linear optics. When the

electric field is large, the non linear terms in Eq. (1.3) cannot be neglected and we enter

in the domain of nonlinear optics. This thesis will be restricted to the study of three

fields interactions occurring in crystals with square nonlinearity (χ(2) 6= 0).

For anisotropic media the coefficients χ(1), χ(2) in Eq. (1.3) are, in the general case,

tensors of the second and third ranks, respectively. For uniaxial crystals in crystallo-

physical coordinates X, Y, Z, where Z is the optic axis, the tensor χ(1) is diagonal [20].

In practice the tensor dijk is used instead of the second-order susceptibility tensor

χ
(2)
ijk, being both interrelated by the equation

χ
(2)
ijk = 2dijk (1.5)

13



where the indices ijk refer to the Cartesian components of the fields.

The expression (1.3) can be rewritten in a reduced form (with respect to the com-

ponents):

Pi = χ
(1)
ij Ej + 2dijrEjEr + ... (1.6)

where the summation on repeated indices is understood.

Since any linearly polarized wave in a uniaxial crystal can be represented as a su-

perposition of two waves with “ordinary” and “extraordinary” polarizations, we provide

the components of a unit vector p given in polar coordinates θ and ϕ along the crystal-

lophysical axis X, Y, Z where Z is the optic axis and |p| = 1 :

po = (−sinϕ, cosϕ, 0),

pe = (cosθcosϕ, cosθsinϕ,−sinθ).
(1.7)

The equations for calculating the conversion efficiency use the effective nonlinearity

coefficients, which comprise all summation operations along the polarization directions

of the interacting waves:

deff = dpppspi = dpspppi = dpipspp. (1.8)

Depending on the type of interaction, the vector components p are calculated by

Eq. (1.7), and the product (1.8) is found by the known rules of vector algebra. The

calculation of deff for biaxial crystals by the above procedure is valid only when radiation

propagates in the principal planes.

1.2 Second-order nonlinear phenomena

The second order nonlinear polarization is given by the second term of Eq. (1.3). If the

medium is excited by cosinusoidal waves with angular frequencies ω1 and ω2 and with

amplitudes E1 and E2 respectively, then the nonlinear polarization will be
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P(2) = χ(2) × E1cos(ω1t)× E2cos(ω2t)

= χ(2)E1E2 1
2 [cos(ω1t+ ω2t)cos(ω1t− ω2t)]

(1.9)

from Eq. (1.9) we can see that the second order nonlinear response generates an oscillat-

ing polarization at the sum and difference frequencies of the input fields, ωsum = (ω1+ω2)

and ωdiff = (ω1 − ω2). The generation of these new frequencies by non linear optical

processes are known as sum frequency mixing and difference frequency mixing. In the

particular case that ω1 = ω2 = ω, then ωsum = 2ω and the effect is called frequency

doubling or second harmonic generation.

The non linear process can also work backward, splitting a beam of frequency ω into

two beams of frequency ω1 and ω2, where ω = ω1 + ω2, this process is the known PDC

process [33]. Because the experiments involved in this thesis exploits the latter process,

we will focus our study in it.

1.3 Spontaneous parametric down conversion process

Spontaneous parametric down conversion process, also known as parametric fluorescence,

is a process in which a photon of frequency ωp interacts with a nonlinear crystal with

χ(2) 6= 0 and spontaneously decay in two correlated photons (twin photons) with lower

energy. This two new photons are known as signal (s) and idler (i) for historical reasons,

and have frequencies ωs and ωi respectively [34]. The three interacting fields obeys the

energy and momentum conservation law (phase matching conditions):

ωp = ωs + ωi

kp = ks + ki
(1.10)

where kj are the wave vectors corresponding to the waves with frequencies ωj (j = p, s, i)

|kj | = kj =
ωjn(ωj)

c
=

ωj
v(ωj)

=
2πnj
λj

= 2πnjνj (1.11)
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where the quantities v(ωj), nj = n(ωj), λj and νj are the phase velocity, refractive index,

wavelength, and wave number at frequency ωj respectively. The relative location of wave

vectors under phase matching conditions can be either collinear (scalar phase matching),

with the down-converted photons emitted along the same path in the central wave mode

direction, or non-collinear (vector phase matching), when there is an angle between the

two emitted photons directions (Figure 1.1). The phase matching conditions are fulfilled

only in anisotropic crystals with interaction of differently polarized waves. In addition,

PDC can be degenerate, where the down-converted photons have the same frequency,

while if their frequencies are different we call such configuration as non-degenerate [20].

ωp

ωi

ωs kp

ki ks

Energy conservation Momentum conservation

Figure 1.1: Phase matching conditions for a generic non collinear and non degenerate case of
PDC process.

In uniaxial crystals a special direction exists called the optical axis (Z axis). The

plane containing the Z axis and the wave vector k of the pump light waves is named

principal plane. The light beam whose polarization (i.e., direction of the vector E oscil-

lations) is normal to the principal plane is called ordinary beam (or o-beam). The beam

polarized in the principal plane is known as extraordinary beam or e-beam [34,35]. The

refractive index of the o-beam does not depend on the propagation direction, whereas

for the e-beam it does.

The difference between the refractive indices of the ordinary and extraordinary beams

is known as birefringence ∆n. The value of ∆n is zero along the optic axis Z and

maximum in the direction normal to this axis. The refractive indices of the ordinary

and extraordinary beams in the plane normal to the Z axis are termed the principal values

and are denoted by no and ne, respectively. The refractive index of the extraordinary
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waves is, in general, a function of the polar angle θ between the Z axis and the vector

k, and it is determined by the equation

ne(θ) = no

√
1 + tan2θ

1 + (no/ne)2tanθ
. (1.12)

If no > ne, the crystal is negative; if no < ne, it is positive. The graph of the refractive

indices is a sphere with radius no for an ordinary beam and an ellipsoid of rotation with

semi-axis no and ne for an extraordinary beam (the axis of the ellipsoid of rotation is

the Z axis). In the Z-axis direction the sphere and ellipsoid are in contact with each

other. In a negative crystal the ellipsoid is inscribed in the sphere, whereas in a positive

crystal the sphere is inscribed in the ellipsoid [20].

When a plane light wave propagates in uniaxial crystal, the direction of propagation

of the wave phase (vector k) generally does not coincide with that of the wave energy.

The direction of wave energy can be defined as the normal to the tangent drawn at the

point of intersection of vector k with the n(θ) curve. For an ordinary wave the n(θ)

dependence is a sphere with radius no. Therefore, the normal to the tangent coincides

with the wave vector k. For an extraordinary wave the normal to the tangent (with the

exception of the case θ = 0◦ and θ = 90◦) does not coincide with the wave vector k but

is rotated from it by the birefringence angle

ρ(θ) = ±arctan[(no/ne)
2tanθ]∓ θ (1.13)

where the upper signs refer to a negative crystal and the lower signs to a positive one.

The correlation between ρ and θ may serve as the basis for a simple way to orient

uniaxial single crystal. Let a laser beam with an arbitrary linear polarization fall on

the input face of a crystal of thickness L. After passing through the crystal, the beam

is divided into two orthogonally polarized beams that, at the output face of the crystal,

are separated by

δ = L tanρ (1.14)
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To fulfil the phase-matching condition in three-frequency interaction, differently po-

larized waves should be considered. The phase-matching configurations, are usually

classified by type, if the signal and idler beams have identical polarizations is referred

to as type-I phase-matching, while in type-II phasematching the signal and idler po-

larizations are orthogonal. In parametric down conversion, for the case of type-I phase

matching in negative crystals,

ke
p = ko

s + ko
i (1.15)

(this is called ooe phase matching). In the positive crystals

ko
p = ke

s + ke
i (1.16)

(eeo phase matching).

In the case of type-II phase matching in negative crystals, the pump field is an

extraordinary wave and signal and idler have different polarizations

kep = kos + kei

kep = kes + koi

(1.17)

(oee and eoe phase matching respectively) while in positive crystals is an ordinary wave

kop = kos + kei

kop = kes + koi

(1.18)

(oeo and eoo phase matching respectively).

The photon pairs generated by parametric down conversion are strongly correlated

in time and space due to the conservation rules, Eq. (1.10). The energy and momentum

conservation between the pump and the down-converted photons generates a correla-

tion between the emission direction and the frequencies of the two “daughter” photons,

although the momentum and the frequency of each photon is undetermined. The net

result is that the down-converted photons typically exit the crystal collinearly or at small
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angles with respect to the pump beam, and photons of the same pair propagate along

two different directions of emission, (Figure 1.2). Because various geometries satisfy the

phase-matching constraints, a broad spectrum of down-converted light can be obtained,

i.e. the wavelengths of the down-converted photons can range from the wavelength of

the incoming one to the limit of crystal transparency.

Figure 1.2: Spontaneous parametric down conversion process.

1.4 Quantum theory of radiation

With the goal of quantizing the electromagnetic field in free space, it is convenient

to begin with the classical description of the field based on Maxwell’s equations. In

vacuum, with no charge or current, these equations relate the vectors of electric field E

and magnetic field H, together with the displacement vector D and inductive vector B,

as follow:

∇×H =
∂D

∂t
(1.19)

∇×E = −∂B
∂t

(1.20)

∇ ·B = 0 (1.21)

∇ ·D = 0 (1.22)
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with the constitutive relations

B = µ0H (1.23)

D = ε0E. (1.24)

Here µ0 is the magnetic permeability of free space and ε0 is the electric permittivity of

free space, and µ0ε0 = c−2 with c the speed of light in vacuum.

It follows, on taking the curl of Eq. (1.20) and using Eqs. (1.19),(1.22), (1.23), (1.24)

and the relation ∇× (∇×E) = ∇(∇·E)−∇2E, that E(r, t) satisfies the wave equation

∇2E− 1

c2

∂2E

∂t2
= 0. (1.25)

We first consider the electric field with a spatial dependence suited for a cavity

resonator of length L. We take the electric field to be linearly polarized in the x-direction

and expand in the normal modes of the cavity

Ex(z, t) =
∑
j

Ajqj(t) sin(kjz) (1.26)

where qj is the normal mode amplitude with length dimension, kj = jπ/L, with j =

1, 2, 3, ..., and

Aj =

(
2ω2

jmj

V ε0

)(1/2)

, (1.27)

with ωj = jπc/L being the cavity eigenfrequency, V = LA (with A the transverse area

of the optical resonator) is the volume of the resonator and mj is a constant with mass

dimension. The constant mj has been included only to establish the analogy between

the dynamical problem of a single mode of the electromagnetic field and that of the

simple harmonic oscillator. The equivalent mechanical oscillator will have a mass mj ,

and a Cartesian coordinate qj . The nonvanishing component of the magnetic field Hy in
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the cavity is obtained from Eq. (1.26):

Hy =
∑
j

Aj

(
q̇jε0

kj

)
cos(kjz). (1.28)

The classical Hamiltonian for the field is

H =
1

2

∫
V
d3x

(
ε0E

2
x + µ0H

2
y

)
(1.29)

where the integration is over the volume of the cavity. Substituting Ex and Hy of Eq.

(1.29), by Eqs. (1.28) and (1.26), respectively, it follows that

H =
1

2

∑
j

(
mjω

2
j q

2
j +mj q̇

2
j

)
=

1

2

∑
j

(
mjω

2
j q

2
j +

p2
j

mj

)
(1.30)

where pj = mj q̇j is the canonical momentum of the j − th mode. Equation (1.30) ex-

presses the Hamiltonian of the radiation field as a sum of independent oscillator energies.

Each mode of the field is therefore dynamically equivalent to a mechanical harmonic os-

cillator.

1.4.1 Quantization of the electromagnetic field

The present dynamical problem can be quantized by identifying qj and pj as operators

which obey the commutation relations

[
q̂j , p̂j′

]
= i~δjj′ (1.31)[

q̂j , q̂j′
]

=
[
p̂j , p̂j′

]
= 0. (1.32)

It is convenient to make a canonical transformation to operators âj and â†j :
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âje
−iωjt =

1√
2mj~ωj

(mjωj q̂j + ip̂j) (1.33)

â†je
iωjt =

1√
2mj~ωj

(mjωj q̂j − ip̂j) . (1.34)

In terms of âj and â†j , the Hamiltonian (Eq. (1.30)) becomes

Ĥ = ~
∑
j

ωj

(
âj â
†
j +

1

2

)
. (1.35)

The commutation relations between âj and â†j follow from those between qj and pj :

[
âj , â

†
j′

]
= δjj′ (1.36)[

âj , âj′
]

=
[
â†j , â

†
j′

]
= 0. (1.37)

The operators âj and â†j referred to as the annihilation and the creation operators,

respectively. In terms of âj and â†j , the electric and magnetic fields (Eqs. (1.28) and

(1.26) respectively) take the form:

Êx(z, t) =
∑
j

Ej
(
âje
−iωjt + â†je

iωjt
)

sin(kjz) (1.38)

Ĥy(z, t) = −iε0

∑
j

Ej
(
âje
−iωjt − â†je

iωjt
)

cos(kjz) (1.39)

where the quantity Ej has the dimensions of an electric field:

Ej =

(
~ωj
ε0V

)1/2

. (1.40)

Until here, we have considered the quantization of the radiation field in a finite one-

dimensional cavity. We can now quantize the field in unbounded free space as follows.

We consider the field in a large but finite cubic cavity of side L. Here we regard
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the cavity merely as a region of space with no specific boundaries. We consider the

running-wave solutions instead of the standing-wave solutions considered above and im-

pose periodic boundary conditions.

The classical electric and magnetic fields can be expanded in terms of the plane waves

E(r, t) =
∑
k,s

εk,sEkαk,se
−iωkt+ik·r + c.c. (1.41)

H(r, t) =
1

µ0

∑
k,s

k× εk,s
ωk

Ekαk,se
−iωkt+ik·r + c.c. (1.42)

where the summation is taken over an infinite discrete set of values of the wave vector

k ≡ (kx, ky, kz), εk,s is a unit polarization vector, αk,s is a dimensionless amplitude and

Ek =

(
~ωk

2ε0V

)1/2

. (1.43)

In Eqs. (1.41) and (1.42) c.c. stands for complex conjugate. The periodic boundary

conditions require that:

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

(1.44)

where nx, ny, nz are integers (0,±1,±2, ...). A set of numbers (nx, ny, nz) defines a

mode of the electromagnetic field. Equation 1.22 requires that:

k · εk,s = 0 (1.45)

i.e., the fields are purely transverse. There are, therefore, two independent polarization

directions of εk,s for each k.

The change from a discrete distribution of modes to a continuous distribution can
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be made by replacing the sum in Eqs. (1.41) and (1.42) by an integral:

∑
K

→ 2

(
L

2π

)3 ∫
d3k (1.46)

where the factor 2 accounts for two possible states of polarization.

As before, the radiation field is quantized by identifying αk,s and α∗k,s with the

harmonic oscillator operators âk,s and â†k,s, respectively, which satisfy the commutation

relation
[
âk,s, â

†
k,s

]
= 1.

The quantized electric and magnetic fields, including explicitly the two states of

polarization denoted by the symbol s, become Hilbert space operators:

Ê(r, t) =
∑
k,s

εk,sEkâk,se−iωkt+ik·r +H.c. (1.47)

Ĥ(r, t) =
1

µ0

∑
k,s

k× εk,s
ωk

Ekâk,se−iωkt+ik·r +H.c. (1.48)

where H.c. stands for Hermitian conjugate. Usually the field operators can be decom-

posed into its positive-frequency and negative-frequency parts. For example, the electric

field operator Ê(r, t) is written as:

Ê(r, t) = Ê
(+)

(r, t) + Ê
(−)

(r, t) (1.49)

where Ê
(+)

(r, t) contains only the annihilation operators and its adjoint Ê
(−)

(r, t) con-

tains only the creation operators.

An important consequence of imposing the quantum conditions of Eqs. (1.36) and

(1.37) is that, as the electric and magnetic field strengths do not commute, they are thus

not measurable simultaneously.

The corresponding commutation relations between the operators âk,s and â†k,s are:

[
âk,s, âk′,s′

]
=
[
â†k,s, â

†
k′,s′

]
= 0 (1.50)[

âk,s, â
†
k′,s′

]
= δkk′δss′ . (1.51)
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It follows that the equal time commutators relations between the field components

are given by [36]:

[
Êj(r, t), Ĥj(r

′, t)
]

= 0 (j = x, y, z), (1.52)[
Êj(r, t), Ĥk(r

′, t)
]

= −i~c2 ∂

∂l
δ(3)(r− r′) (1.53)

where j, k, and l form a cyclic permutation of x, y, and z.

We, therefore, conclude that the parallel components of Ê and Ĥ may be measured

simultaneously whereas the perpendicular components cannot.

1.4.2 Fock number states

In this section we first restrict ourselves to a single mode of the field of frequency ω

having creation and annihilation operators â and â†, respectively. Let |n〉 be the energy

eigenstate corresponding to the energy eigenvalue En:

H|n〉 = ~ω
(
â†â+

1

2

)
|n〉 = En|n〉. (1.54)

If we apply the operator â from the left, we obtain after using the commutation relation[
â, â†

]
= 1 and some rearrangement

H|n− 1〉 = Hâ|n〉 = (En − ~ω) â|n〉. (1.55)

This means that the state |n − 1〉 ∝ â|n〉, is also an energy eigenstate but with the

reduced eigenvalue, En−1 = En − ~ω.

If we repeat this procedure n times we move down the energy ladder in steps of ~ω

until we obtain Hâ|0〉 = (E0 − ~ω) â|0〉. Here E0 is the ground state energy such that

(E0 − ~ω) would correspond to an energy eigenvalue smaller than E0. Since we do not

allow energies lower than E0 for the oscillator, we must conclude that â|0〉 = 0.

The state |0〉 is referred to as the vacuum state and the value of the zero point of
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energy is:

E0 =
1

2
~ω. (1.56)

It then follows that:

En =

(
n+

1

2

)
~ω. (1.57)

From Eq. 1.54, we obtain â†â|n〉 = n̂|n〉, i.e. the energy eigenstate |n〉 is also eigenstate

of the ‘number’ operator n̂ = â†â.

Now, we can easily obtain the fundamental equations [36]

â|n〉 =
√
n|n− 1〉, (1.58)

â†|n〉 =
√
n+ 1|n+ 1〉. (1.59)

It is useful to interpret the energy eigenvalues (Eq. (1.57)) as corresponding to the

presence of n photons of energy ~ω. The eigenstates |n〉 are called Fock states or photon

number states. They form a complete set of states, i.e.,

∞∑
n=0

|n〉〈n| = 1. (1.60)

The energy eigenvalues are discrete, in contrast to classical electromagnetic theory

where energy can have any value. The energy expectation value can however take on any

value, for the state vector is, in general, an arbitrary superposition of energy eigenstates,

i.e.,

|ψ〉 =
∑
n

cn|n〉 (1.61)

where cn are complex coefficients.

An important property of the number state |n〉 is that the corresponding expectation

value of the single-mode linearly polarized field operator

Ê(r, t) = E âe−iωkt+ik·r +H.c. (1.62)
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vanishes, i.e.

〈n|Ê|n〉 = 0 (1.63)

However, the expectation value of the intensity operator Ê
2

is given by

〈n|Ê2|n〉 = 2|E|
(
n+

1

2

)
(1.64)

i.e., there are fluctuations in the field about its zero ensemble average. It is interesting

to note that there are nonzero fluctuations even for a vacuum state |0〉. These vacuum

fluctuations are responsible for many interesting phenomena in quantum optics, for

example it may be considered that they stimulate the spontaneous decay of a photon

pump field in photon pairs in the process of PDC.

The operators â and â† annihilate and create photons respectively, as seen in Eqs.

(1.58) and (1.59) they change a state with n photons into one with n − 1 or n + 1

photons. The operators â and â† are therefore referred to as annihilation (or destruction)

and creation operators, respectively. These operators are not themselves Hermitian

(â 6= â†) and do not represent observable quantities such as the electric and magnetic

field amplitudes. However, some combinations of the operators are Hermitian such as

quadrature operators X̂ = (â+ â†)/2, Ŷ = (â− â†)/2i.

So far we have considered a single-mode field and have found that, in general, the

wave function can be written as a linear superposition of photon number states . This

formalism can be easily extended to multi-mode fields.

1.4.3 Two-photon wave function

A theoretical study of the process of parametric down-conversion is presented in this

section. We use a simple Hamiltonian model to describe the coupling of the incident

pump field to the down-converted signal and idler fields over a region that coincides with

the volume of the nonlinear medium. The down-converted fields are decomposed into an

infinite set of modes, which is eventually treated as a continuum. According to Section

1.1, in a nonlinear dielectric medium an incident field E will create a polarization P
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presenting contributions that are at least bilinear in E. The lowest order non-linearity

is the bilinear supsceptibility 2dijl. This makes a contribution to the energy of the

electromagnetic field of the form

HI(t) = 2ε0

∫
V

2dijlEi(r, t)Ej(r, t)El(r, t)d
3x (1.65)

(1.66)

where the interaction extends over the volume V of the nonlinear medium, and Em

are the components of the vector E for the three interacting fields. The two quantized

down-converted fields are described as:

Ê(r, t) =
∑
s

∫
εsEkâk,sei(k·r−ωt)d4k +H.c. (1.67)

where the d4k = d3k dω, and the relation between k and ω is ω
|k| = c

n . In the next, it

is assumed that the incident field is so intense that it can be treated classically. This is

an approximation, but one that is usually acceptable for the laser beam, as long as the

beam is only weakly attenuated in passing through the non linear medium. Then, the

expression for the pump radiation, that is a monochromatic field in the z direction and

with a defined polarization, is:

Ep(r, t) = ~εspEkpαkp,spe
i(kp·z−ωpt) + c.c.. (1.68)

According with Eqs. (1.67) and (1.68), the Hamiltonian (1.65) becomes [37]

HI(t) = 2ε0

∫
V
χ

(2)
ijl

∑
s′s′′

∫ ∫
(εsp)i(εs′)j(εs′′)lEkpEk′Ek′′αkp,sp â

†
k′,s′

â†
k′′,s′′

ei(kp−k
′
z−k′′z )ze−i(~q

′+~q ′′)·~ρe−i(ωp−ω
′−ω′′)t dω′ dω′′ d2q′ d2q′′ dz d2ρ+H.C.

(1.69)

where k′ = k′z êz + ~q ′, k′′ = k′′z êz + ~q ′′, r = zêz + ~ρ and kz and ω are related by

kz =
√(

ω
c n(ω)

)2 − |~q|2.

The parametric down conversion two-photon state in the interaction picture is given
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by [38–40]:

|ψ〉 = exp

[
1

i}

∫ +∞

−∞
HI(t′)dt′

]
|0〉 =

[
1− 1

i}

∫ ∞
−∞
HI(t′)dt′

]
|0〉 (1.70)

By introducing Eq. (1.69) in Eq. (1.70) and solving the time integral a Dirac delta

function is obtained δ(−ωp + ω
′

+ ω
′′
) and the frequency phase matching condition

ωp = ω
′
+ ω

′′
is recovered.

When the integral over the volume V of the crystal is performed, we have to distin-

guish between the integral in the pump propagation direction z and the integral in the

transverse direction ρ. When considering the crystal infinite in the transversal direction,

the integral over the area A of the intersection of the beam cross section and the crystal

gives

∫
A
ei(~q

′−~q ′′)·~ρ d2ρ = δ(~q ′ + ~q ′′) (1.71)

In this approximation, the modes are correlated in pairs. Each signal photon with

k′ = ~q ′ + k′z êz is correlated with an idler photon with k′′ = −~q ′ + k′′z êz.

Considering L the length of the crystal, the space integral in the z direction is

∫ L/2

−L/2
ei(kp−k

′
z−k′′z )·ẑdz = sinc

(
(kp − k′z − k′′z )L/2

)
(1.72)

Finally, the expression for the biphoton-field state can be rewritten as:

|ψ〉 = |0〉 − 2ε0

i~

{∑
s′s′′

∫
χ

(2)
ijl (εsp)i(εs′)j(εs′′)lEkpE(q′,ω′)E(-q′,ωp−ω′)

sinc
[(
kp − k′z − k′′z

)
L/2

]
αkp,sp â

†
(q′,ω′,s′)â

†
(-q′,ωp−ω′,s′′)dω

′ d2q′ +H.C.
}
|0〉

(1.73)

where k′z =

√(
ω′

c n(ω′)
)2 − |~q ′|2 and k′′z =

√(
ωp−ω′

c n(ωp − ω′)
)2
− |~q ′|2.
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1.4.4 Multi-photon wave function

In this section the expression for the multi-photon wave function in the PDC process

will be found, starting from the expression of the state vector of Eq. (1.70). In this case,

this equation will be solved completely, without using a perturbative approximation.

Initially, the temporal integral of Eq. (1.70) is solved and, as in the two-photon

case, a Dirac delta δ(−ωp + ω′ + ω′′) is obtained. The spatial integral in the transverse

direction to the pump propagation is calculated, achieving the same result of Eq. (1.71).

For the space integral in the pump propagation direction, the length of the crystal is

considered very large and approximately infinite, then the integral over z becomes:

∫ +∞

−∞
ei(kp−k

′
z−k′′z )·ẑdz = 2π δ(kp − k′z − k′′z ) (1.74)

from which the momentum phase matching condition is recovered. Introducing this

results in the main equation ( Eq. (1.70)), the multi-photon wave function becomes:

|ψ〉 = exp

[
−i
~

∫ +∞

−∞
HIdt

]
|0〉

= exp

[∑
s′s′′

∫
ζ(q′, ω′, s′, s′′)â†(q′,ω′,s′)â

†
(−q′,ωp−ω′,s′′)dω

′d2q′ −H.C.

]
|0〉

(1.75)

with

ζ(q′, ω′, s′, s′′) =
−i4πε0

~
χ

(2)
ijl (εsp)i(εs′)j(εs′′)lEkpE(q′,ω′)E(-q′,ωp−ω′)αkp,sp . (1.76)

rewriting this integrals on q′ and ω′ as summation over the corresponding (discretized)

variables Q′ and Ω′ we obtain:

|ψ〉 = exp

 ∑
s′s′′Ω′Q′

ζ(Q′,Ω′, s′, s′′)â†
(Q′,Ω′,s′)

â†
(−Q′,Ωp−Ω′,s′′)

−H.C.

 (1.77)

By using the Campbell-Baker-Hausdorff theorem [41], that claims that for two com-
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muting operators Â and B̂ holds:

ex(Â+B̂) = exÂexB̂ (1.78)

and observing that the commutator

[
ζ(Q′0,Ω

′
0, s
′, s′′)â†

(Q′
0,Ω

′
0,s

′)
â†

(−Q′
0,Ωp−Ω′

0,s
′′)
−H.C. ;

ζ(Q′,Ω′, s′, s′′)â†
(Q′,Ω′,s′)

â†
(−Q′,Ωp−Ω′,s′′)

−H.C.
]

= 0
(1.79)

for all Q′0 6= Q′ and Ω′0 6= Ω′, (see Eq. (1.50)), we can rewrite Eq. (1.77) as:

|ψ〉 =
⊗

s′s′′Ω′Q′

exp
[
ζ(Q′,Ω′, s′, s′′)â†

(Q′,Ω′,s′)
â†

(−Q′,Ωp−Ω′,s′′)
−H.C.

]
|0〉 =

⊗
q

|ψ〉q (1.80)

It is possible to write |ψ〉q in terms of the average number of generated photons per

mode µ:

|ψ〉q =
∑
n

cn |n〉qA |n〉qB (1.81)

where

cn =
1√

1 + µ

√ µeiθ

1 + µ

n

(1.82)

and µ = senh2(r), where r = |ζ| and ζ = reiθ.
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Chapter 2

Single photon detector calibration

2.1 Absolute calibration exploiting parametric down conversion corre-

lations

The PDC process is used to create the correlated pair of photons that allow the absolute

determination of detector quantum efficiency to be made. In PDC process (see section

1.3) there is a small probability that a pump photon impinging in a χ(2) nonlinear

crystal to decay into a pair of lower frequency photons. This decay is constrained by

conservation of energy and momentum (phase matching conditions)

ωp = ωs + ωi; kp = ks + ki (2.1)

were ωp, ωs and ωi are pump, signal and idler frequencies and kp, ks and ki are pump,

signal and idler wave vectors respectively. Because of the constraints of simultaneous

creation of a pair of photons, the knowledge of the pump beam and one of the output

photons provides information about its mate. Specifically it announces not only the

existence of the second photon, but although the emission time, wavelength, direction of

propagation and polarization of one of them tell all about the other. The non detection

of the announced photon is due to the non ideal quantum efficiency of the detector under

calibration, which can be measured in this way. The simultaneous creation of the two
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Figure 2.1: Scheme for absolute calibration of a photon detector. PDC photons are generated
in a non-linear crystal pumped by a laser. Detector A and detector B (with efficiency ηA and
ηB) collects the photons of correlated channels. The number of signal and ideler counts (NA and
NB) and the number of photons arriving in coincidence to both detectors (NC) are obtained by
using counters and coincidence electronics.

photons allows an absolute measurement of the detection efficiency without the support

of an external calibrated radiometric standard [42–45].

If the phase matching conditions are applied to a particular crystal, it is possible

to generate non collinear signal and idler photons pairs, that allows an easy optical

discrimination and makes these photon pairs useful for measure the quantum efficiency

of photodetectors operating in the photon counting regime.

The calibration of single photon detectors described in this thesis is based in the

Klyshko method [42]. In Fig 2.1 a scheme of the Klyshko’s calibration technique is

shown. A pump laser impinges on a non linear crystal, generating PDC photons. Two

correlated channels of emission corresponding to a signal and idler photon propagation

direction are selected and directed to photo counters A and B (with efficiencies ηA and

ηB) respectively.

If one photon of the pair is detected, the presence of the second photon along the

correlated direction is ensured. Considering a given time interval, let us nominate the

total number of pairs emitted by the crystal as N , the average count rate recorded

by detectors A and B during the same time interval NA and NB respectively, and the
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coincidences (i.e. the events corresponding to simultaneous counts from both detectors,

due to the detection of PDC photon pair) count rate as NC , then we have the relations:

NA = ηA(λA)N

NB = ηB(λB)N
(2.2)

where ηA(λA) and ηB(λB) are the detection efficiencies of photodetectors A and B at

specific wavelength λA and λB. The statistical independence of the detectors, allow us

to express the number of coincidences as:

NC = ηA(λA)ηB(λB)N (2.3)

then, the detection efficiency can be obtained as:

ηA(λA) = NC
NB

ηB(λB) = NC
NA

(2.4)

This simple relation is the basis for the scheme of absolute calibration of single photon

detectors by means of PDC.

Nevertheless, in practice it is not easy to assure that both detectors see only correlated

photons thus, in order to measure the coincidences, it is necessary to broke the symmetry

and associate each channel with a different role: one detector act as a trigger, while the

other is the device under test (DUT). The trigger announces the existence of a photon

of the pair in the DUT channel, with certain probability of being detected by the DUT.

Then, for every detection in the trigger we look to see if there is, in coincidence, a photon

detected at DUT. Note, that the determination of the DUT quantum efficiency (ηDUT )

is independent of the trigger efficiency. Some photons arriving to the trigger will not be

detected, since the trigger has not efficiency equal to one, i.e. the trigger is not perfect,

but this does not affect the DUT calibration.

Although there are some subtleties that will be discussed in the next sections, this

technique is intrinsically absolute in the sense that no reference standards are needed.
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The technique exploits only the spatial and temporal correlation between twin photons

generated by PDC.

2.2 Experimental setup

In the next subsections a complete description of the experimental apparatus is intro-

duced. In the first part a description of the optical setup that is used in the detector

quantum efficiency measurement is presented. In the second part a detailed explanation

of the electronic that is used to count photons and coincidences is given.

2.2.1 Optical setup

The arrangement for the quantum efficiency calibration is shown in Figure 2.2. A con-

tinuous wave linearly polarized argon laser, working at 351 nm wavelength, is used to

pump a 10 mm long β-barium borate (BBO) crystal cut for Type I SPDC phase match-

ing (signal and idler are emitted with the same polarization and in concentric cones of

different wavelengths). The crystal has a cutting angle of 33.4 ◦ and a coating AR/AR

351/351. To avoid back reflections, the crystal is placed such that the pump has no nor-

mal incidence and the effective cutting angle is 33.9 ◦. After the crystal, the remaining

UV radiation not converted is stopped. A first half-waveplate (λ/2) and a polarizer are

used to control the pump power. A second half-waveplate is placed between the po-

larizer and the crystal to allow the rotation of the pump beam polarization, giving the

possibility to turn on and off the PDC process (because the phase matching conditions

permits only one pump polarization to be down converted). By suppressing the PDC

process the dark counts rate are measured.

The trigger and the DUT detectors are Avalanche Photo Diode (APD) based single

photon counting modules (SPCM-AQR-15, serial number 4916-1 and 4915-1 respec-

tively) with an active area of 175 µm diameter. To properly position the detectors, the

output angles and angular dispersion of the working wavelength are estimated, using the

NIST Phasematch program, to be 3.7 ◦ and 0.01 ◦ nm for radiation at 761 nm and 3.15 ◦
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Figure 2.2: Experimental setup for absolute quantum efficiency measurement using type I PDC
at 761 nm (DUT) and 651 nm (trigger) generated in a BBO crystal. The first half wave plate
(λ/2) and polarizer are used for pump attenuation, while the second half wave plate is used
to suppress the PDC generation. Both trigger and DUT are single photon counting modules
SPCM-AQR-15. The DUT efficiency is considered as the efficiency of the DUT detector and its
optics as a unit. An aperture (Ap) is used to limit the collection area of each detector, while
Ftrig is a 3 nm FWHM interference filter centered at 651 nm and the FDUT is a 20 nm FWHM
interference filter at 761 nm. A lens (L) is used to focus the light in each detector active area.

and 0.005 ◦ nm for radiation at 651 nm. The trigger and DUT detectors are positioned

at a distance of 122 cm and 65 cm respectively from the centre of the crystal.

A device specially designed in the lab to mount in front of each detector is used to

house three components: a lens, an interference filter and an aperture. The mounting

allow the movement of the lens axially, changing the focus position, in order align it.

Before the lens an interference filter with maximum transmittance at 651 nm (69.3 %)

and bandwidth 3 nm FWHM is used to select the proper wavelength of parametric

fluorescence emission on the trigger channel. On DUT arm an interference filter with

transmittance of about 65 % at 761 nm and bandwidth 20 nm FWHM is used. The

aperture, an iris with variable diameter from 2 mm to 12 mm, is mounted to control the

collection area of the detectors. Note that, due to the divergence of the PDC light, the

aperture makes a spatial selection of the light wavelength, in addition to the spectral

selection made by the interference filters.
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Figure 2.3: Electronics setup. The output signal pulses of the detectors are inverted and
properly delayed and sent to the TAC. The TAC outputs are sent to a MCA and to a SCA. TAC
valid start output (V.S.), coincidence counts and DUT raw counts are measured by the counter.
The whole measurement system is controlled by a PC.

2.2.2 Electronics

A complete scheme of the electronics of this experiment can be seen in Figure 2.3. To

perform coincidence measurements the Time to Amplitude Converter / Single Channel

Analyzer module (TAC/SCA) is commonly used. The TAC circuit converts time inter-

vals between a start and a stop signal in electrical pulses with an amplitude proportional

to the time separation between pulses at its start and stop inputs.

The start input signal of the TAC is provided by the output signal of the trigger

detector, while the stop signal is given by the DUT detector output delayed (6.5 ns).

The TAC output is sent simultaneously to a multichannel analyzer (MCA) and to a

single-channel analyzer (SCA). The MCA records histograms of inter-arrival times of

the DUT and trigger events. Correlated photon pairs are seen in the histogram as a

peak whose width is due to the combined time jitter of the detectors and the electronics

as shown in Figure 2.4. The SCA circuit gives a logic signal for each arriving pulse in an

operator selected time interval ( in this experiment, the SCA window is set in 7.7 ns).

The SCA output is addressed to a counter in order to measure coincidence counts.

Correlated photon pairs are seen in the histogram as a peak on top of a flat back-
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Figure 2.4: Histogram recorded by the MCA showing the inter arrival time of the trigger and
DUT events. Uncorrelated counts are seen as a flat background, while the correlated photon
pairs are observed as a peak.

ground resulting from uncorrelated output pulses from the two detectors. True coinci-

dences are found by counting the events within a fixed time window around this peak

and subtracting the flat background level within the same time window (referred to as

accidental coincidences). The coincidence window must be set wide enough to contain

all the true coincidences: to achieve uncertainties well much below 1%, it must be set

many times the FWHM of the coincidence peak [46], due to long tails of the peak. Ac-

cidental coincidence counts can be measured by an insertion of a further 24 ns delay in

DUT channel, much greater than the coincidence circuits resolving time.

For the quantum efficiency measurements here presented we use a TAC-SCA Can-

berra Model 2145 equipped with a “valid start output” providing valid trigger events

(photons arriving to the detector within the electronic’s dead time are not count as a

valid start signal), whose single counts are measured by an EG&G Ortec Quad Counter-

Timer Model 974. The automatic measurement system is fully PC controlled by GPIB

interface card. The positive pulses generated by the photon counters are inverted in

order to be processed by the above described NIM electronics.
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2.3 Measurement procedure

To account for the presence of unwanted counts the simple formula 2.4 given in section

2.1 has to be modified. In addition to the correlated photons, each detector suffers of

background counts, due to unwanted external light (e.g. stray light or unheralded PDC

light), and spurious counts due to thermal fluctuation inside the detector or trapped

carriers (dark counts and after pulses). Thus, because of the finite duration of the

coincidence window, spurious coincidence counts are superimposed on the correlated

pairs, leading to the above mentioned background counts and accidental coincidences.

To correct for the unwanted detected light, the measured quantum efficiency, ηmeasDUT , is

estimated from [44,47,48]

ηmeasDUT = 〈mc〉−〈A〉
〈mvs〉−〈mB〉

(2.5)

where the “ 〈 〉 ” represent the average over a fixed time of: the coincidence counts

measured by TAC/SCA (mc), the valid start counts (mvs), the background counts on

the valid start (mB) and the accidental coincidence counts (A).

Concerning this last correction one has to detail a little more about the evaluation

of the dark counts or accidental coincidences 〈A〉. The TAC valid start output provides

only the true trigger events, i.e. counts arriving when the detector is ”alive”, not during

its dead time. Only this true trigger events are considered for conversion and give

contribution to coincidences. Thus the TAC dead time effect can be neglected thanks to

the valid start output. We should also note that the number of valid start counts able

to produce an accidental coincidence drastically changes if the peak of coincidences is

in the SCA windows or not. Because the accidental counts are evaluated by adding a

delay to the DUT output, in order to move the peak out of the measurement window, a

correction for 〈A〉 should be added accounting to this valid start mismatch. A reasonable

first order correction is given by

〈A′〉 ∼= 〈A〉 〈m
in
vs〉

〈moutvs 〉
(2.6)
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where
〈
min
vs

〉
is the average of the valid start counts when the coincidence peak is in the

SCA window and
〈
mout
vs

〉
is valid start average when the coincidence peak is not in the

SCA windows.

The measured quantum efficiency accounting this correction is then

ηmeas
′

DUT =
〈mc〉 − 〈A〉

〈minvs〉
〈moutvs 〉

〈min
vs〉 − 〈mB〉

(2.7)

If we take into account a correction due to optical losses, we obtain the quantum

efficiency of just the detector under calibration

ηDUT = 1
τDUT

ηmeas
′

DUT
(2.8)

where τDUT is the total transmittance of the DUT channel.

The number of DUT counts, mmeas
DUT , measured over a time interval T, is less than the

effective number of counts mDUT , because of the dead time, tD, of the DUT detector. If

we assume a non-extended dead time for DUT, as it is the case of Perkin Elmer detector,

the effective mean counts are approximately [15]

〈mDUT 〉 ∼=
〈mmeasDUT 〉

(1−〈mmeasDUT 〉 tDT )
(2.9)

and the model for quantum efficiency with the dead time correction is then

ηo ∼= ηDUT
(1−〈mmeasDUT 〉 tDT )

(2.10)

Thus the formula for the quantum efficiency estimation with all the above mention

correction accounted for is

ηo ∼= 1

(1−〈mmeasDUT 〉 tDT )

1
τDUT

〈mc〉−〈A〉
〈minvs〉
〈moutvs 〉

〈minvs〉−〈mB〉
(2.11)
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2.3.1 PDC light focusing

A lens is mounted in front of each detector to focus the PDC light into the sensitive

surface of the SPCM. The mounting allow the movement of the lens axially to change the

focus position. A 633 nm laser is attenuated using neutral filters to reduce the power

down to the single photon regime. With the attenuated laser the lens of the trigger

arm is moved to maximize the trigger detector counts, focusing the light in the detector

active area. With a similar procedure a 789 nm is used to align the DUT lens. The

wavelengths that are used to the lens alignment are the closer ones to the idler and

signal desired photons available in the labs. This difference in the wavelength do not

affect the procedure and the collimation position is verified before the measurements

once the PDC light is found.

2.3.2 Detector alignment

In practice, it is not easy to select exactly the same number of correlated photons in

both channels. Different tricks are used to make both spatial and spectral selection of

the PDC light at the desired wavelength, and ensure a total collection of the photon

pairs.

Taking advantage of the divergence of the PDC light, and because both detectors

have the same detection area, a first spatial selection is made by placing the DUT and

trigger detector at different distances from the PDC source, see Figure 2.5. Thus, the

DUT is placed near from the source than the trigger detector, facilitating the complete

collection of the corresponding twin photons in the DUT arm. In our configuration the

trigger detector is placed at 122 cm from the crystal and DUT at 65 cm.

In addition, in each channel, a spectral selection is obtained using interference filters,

and a second spatial selection is made using a adjustable iris. For the trigger channel

a short range of wavelength, defined by a narrower bandwidth interference filter 3 nm

and an iris are used to properly select the fluorescence, while for the DUT channel the

spectral bandpass and collection iris are larger, ensuring that all the photons correlated

to those arriving to the trigger fall on DUT.
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Figure 2.5: Due to the divergence of the PDC light and because both detectors have the same
collection area (black circles), the trigger detector is placed farther from the source, making a
spatial selection and facilitating the complete collection of the corresponding twin photons in the
DUT channel. In the figure the yellow area corresponds to the correlated photons between the
two detectors.

To properly align the detector it is necessary to estimate first the output angles of

the desired PDC radiation. As mention in section 2.2.1, the Phase Match program of

NIST [49] is used to estimate the emission direction. For the conditions of this experiment

the estimation gives an output angle of 3.5 ◦ for radiation at 651 nm (trigger) and 3.7 ◦

for radiation at 761 nm (DUT).

In the alignment procedure the trigger detector is first positioned where the 651 nm

radiation is expected to be seen. Because the detector package includes a collection lens

it is necessary to do an iterative optimization of its translational position and its angular

orientation in order to maximize the single photon counts. This centres the detector in

the central wavelength of the spectral filter.

The DUT must then be centred radially and tangentially along down-converted light

cone on the light correlated to the trigger. The procedure to centre the DUT on the

correlated beam involves iterative optimization of its translational position and its angu-

lar orientation maximizing the coincidences counts. This procedure consists of stopping

down the collection lens iris before translational maximization of the correlated signal.

Then the detector/lens package is tilted about the lens position allowing the detector to

be positioned at the focused spot of light. These two steps are repeated until no further

gains are seen.
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Figure 2.6: The quantum efficiency of the DUT (star) and its single count rate (square) are
shown as the DUT collection iris is varied with the trigger detector collection angle of 3,7 mrad.
Quantum efficiency is not corrected for crystal losses.

A check of the alignment of the DUT and trigger is obtained by scanning both

detectors versus the collection angle to optimize the correlated signal. The collection

angle is varied just by opening or closing the aperture mounted in front of each detector.

In Figure 2.6 a scan of quantum efficiency versus collection angle is presented. The

quantum efficiency level out at a collection angle of about 6 mrad for a trigger collection

angle of 3.7 mrad. The fact that the quantum efficiency reach the plateau before the

DUT counts, evidence that the DUT detector collection angle include all the coincidence

area. On the other hand, the DUT although reach a plateau, indicating that the cut

off in the collected wavelengths is given by the interference filters and not by the spatial

selection (iris).
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2.3.3 True trigger rate determination

Since the method depends on trigger counts, indicating the existence of a correlated pho-

ton in the DUT channel, we must be able to accurately determine and remove spurious

trigger count (not due to the PDC photons needed for our calibration scheme.)

While the evaluation of accidental coincidences is obtained by the measurement tech-

nique described in section 2.3, the average background counts 〈mB〉 presented in equation

2.11 should be experimentally measured, because each detector is individually affected

by background counts, resulting from stray light unrelated to the down-conversion pairs

and electronic noise (dark counts and after pulses). The measurement of both dark

counts and stray light together is performed using half-wave plate on the pump beam

(see Figure 2.2). Such wave plate is used to rotate the polarization of the pump beam by

90 ◦, which effectively turns off the creation of photon pairs, because the phase-matching

constraints allow only one polarization orientation of the pump beam to produce down-

converted light. The advantage of this scheme is that, while the production of photon

pairs is stopped, all other contributions remain the same, allowing an excellent determi-

nation of the unwanted trigger counts.

2.3.4 Losses estimation

In order to obtain the efficiency of the DUT detector, the losses associated to the different

optical components are measured. The transmittance of the interference filters and of

the BBO crystal are measured with the Cary 5000 spectrophotometer facility (with 5

nm bandwith).

The interference filter on the trigger channel is centred around 651 nm, and full

width at half maximum (FWHM) bandwidth of 3 nm and a maximum transmittance of

approximately 69%. The interference filter on the DUT channel is centred around 763

nm with a FWHM bandwidth of 20 nm and a transmittance of approximately 65% at

761 nm.

The transmittance measurement of the BBO crystal is more tricky because polarized

probe beam and sample tilting are required. A specially designed sample holder for the
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spectrometer facility is used to hold a Glan-Taylor Calcite polarizer cube and a small

goniometer, where the BBO crystal sits. The transmittance measurement of the BBO

crystal is (81.50 ± 0.16) % at 761 nm. If the center of the crystal is considered as the

mean point of down-conversion source, then the loss for the signal photon, to the exit

of the crystal, is given by the square root of the crystal transmittance. As a result, the

BBO’s transmittance for PDC light generated at 761 nm is τDUT = (0.9028± 0.0016).

2.4 Experimental results

The quantum efficiency measurements are performed at five different count rates, by

attenuating the pump laser, ranging from 4 × 105 counts/s to a maximum of 4 × 106

counts/s. A large range of the safe working count rate of the SPAD (< 107 counts/s) is

covered with this measurements. For each count rate, three consecutive measurements

are performed: In the first the average coincidence counts 〈mc〉, the mean valid start

counts
〈
min
vs

〉
and mean DUT counts 〈mmeas

DUT 〉 are registered. In the subsequent measure-

ment, the coincidence peak is moved out of the coincidence windows by adding a delay

in the DUT channel, and the valid start counts
〈
mout
vs

〉
and the accidental coincidences

〈A〉 are collected. In the final step the half-wave plate is rotated to turn off the PDC

light and the average background counts on valid start 〈mB〉 are obtained. In each step

and for each count rate, 96 measurements of 10 seconds each are recorded in order to

have some statistics. The quantum efficiency ηDUT is calculated by means of Eq. (2.8)

for each count rate.

By applying the uncertainty propagation law [50] to the model of Eq. (2.8), the

statistical uncertainty associated with this two-photon measurement technique is de-

duced [44,47,48]:

u2(ηDUT ) = c2
1u

2(mc) + c2
2u

2(A) + c2
3u

2(min
vs) + c2

4u
2(mout

vs ) + c2
5u

2(mB)+

+c2
6u

2(τDUT ) + 2ρ1,3c1c3

√
u2(mc)u2(min

vs) + 2ρ2,4c2c4

√
u2(A)u2(mout

vs )
(2.12)
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were u2(x) =
〈
x2
〉
− 〈x〉2 is the variance of a generic variable x. Sensitivity co-

efficients ci are deduced by standard uncertainty propagation rules and the correla-

tion coefficient ρi,j are evaluated from repeated experimental data as ρi,j = (〈xixj〉 −

〈xi〉 〈xj〉)/
√
u2(xi)u2(xj).

As an example, the uncertainty budget for the quantum efficiency measurement at

a DUT count rate of about 2 million counts/s is reported in Table 2.1. The standard

uncertainty ui is calculated as the square root of the variance, a cover factor K =

1 is used. The biggest source of uncertainty is given by the crystal’s optical losses

measurement, it is reasonable due to the difficult in the accuracy of tilting the crystal

and polarizing the light.

The ηDUT is obtained for the five different count rates. On figure 2.7 it is shown the

graph of ηDUT vs the DUT count rate where a lineal dependence can be observed. It

is useful to observe the dependence of the DUT dead time with the amount of counts

arriving to this detector: as higher the count rate, higher the dead time, and lower the

quantum efficiency.

A regression analysis of the data is made using the least squares method y = a+ bx

obtaining coefficients a = (0, 43555± 6, 5× 10−4) and b = (−2, 05× 10−8 ± 2× 10−10),

with a correlation coefficient of R2 = 0, 9994.

According with equation 2.10 the intercept a = ηo, is the efficiency of the detector

in an ideal case of zero dead time. From the slope, the detector dead time is obtained

as tD = −bT/η0, then tD = (47.1± 0.5)ns.
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Table 2.1: Uncertainty budget for DUT calibration by two photon technique. The data corre-
sponds to a set of 96 measurement of 10 seconds. 〈mmeas

DUT 〉 = 20832830 counts/s. The standard
uncertainty is calculated with K = 1. G correspond to a Gaussian distribution while S corre-
spond to a square one. The biggest contribution to the uncertainty is given by the optical losses
in the crystal. The Quantum efficiency final uncertainty is about 0.1 %.
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Valid start
counts with
the peak

〈
min
vs

〉
1992093 141 G 96 2.1× 10−7 3.0× 10−5

Valid start
counts without
the peak

〈
mout
vs

〉
2083865 167 G 96 9.2× 10−9 1.5× 10−6

Coincidence
counts

〈mc〉 725735 90 G 96 5.6× 10−7 5.1× 10−5

Background
counts

〈mB〉 39935 20 G 96 2.0× 10−7 4.0× 10−6

Accidental
coincidences

〈A〉 35544 19 G 96 5.4× 10−7 1.0× 10−5

Crystal optical
losses

τDUT 0.9028 0.0016 S ∞ 0.189 9.1× 10−4

Quantum
efficiency

ηDUT 0.3925 0.0007
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Figure 2.7: Graph of ηDUT vs the DUT count rate mmeas
DUT for five different count rate. Regres-

sion line (red) y = a+ bx with a = (0, 43555± 6, 5× 10−4) and b = (−2, 05× 10−8 ± 2× 10−10).
95 % confidence bands are shown in blue.
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2.5 Conventional substitution calibration

The main reason for single photon detector calibration using conventional calibration

technique is to link the optical power level of 100 µW, typical of classical radiometry,

down to few photon counting level, in order to hook single photon regime to SI (Interna-

tional System of Units). This calibration does not exploits quantum properties of twins

correlated photons and was out of the goals of my PhD works; it is here summarized only

for completeness. A successful linkage will also be a significant step in demonstrating

the viability of redefining the candela in terms of a countable number of photons. This

will provide the metrology techniques and validation across a broad spectrum of photon

detection applications.

The conventional method is based on substitution calibration and the procedure is

a direct comparison between the Single Photon Avalanche Detector (the DUT) and a

Trap Transfer Detector (TTD) measuring the same laser beam. The measurement setup

is schematically described in Figure 2.8. A TTD is a special geometrical arrangement

of Silicon photodiodes, optically in series and electrically in parallel in order to add

their currents [51], that is directly linked to an absolute standard, a cryogenic electri-

cal substitution radiometer. To operate the DUT within its maximum safe count rate

(107 counts/s) it is necessary to perform the comparison at very low power level, namely

few picowatt. For the TTD, the measurement at such low power level, with an uncer-

tainty comparable with the state of the art [52], is an highly demanding task requiring

trap detectors with low dark-current, very sensitive current measurement electronics,

and a stabilized and strongly attenuated laser source that preserves beam shape and

long-term stability.

The readout of the two detectors, placed alternatively into the same laser beam of

power flux Φ are given by the following equations

V = ηTTD e Φ
hν R

C = ηDUT
Φ
hν

(2.13)
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Figure 2.8: Scheme of the setup used in the substitutional calibration method. The source was
a distributed feedback laser (DFB) diode power stabilized with a feedback system. The high
power delivered from the source system is attenuated by means of a ten element trap detector
retaining the quality of the incoming beam [53]. The Trap transfer standard and the DUT are
mounted on a linear translation stage allowing their alternate alignment on the beam at the
output of the attenuator. The faint photocurrent output from the Trap transfer standard is
converted into a voltage by means of a low-noise Switching Integrating Amplifier (SIA).

where V is the output voltage from the Switched Integrator Amplifier (SIA) of the Trap

transfer standard, R is the gain of the SIA, C is the mean count rate of the DUT, ηTTD

is the quantum efficiency of the trap transfer standard detector, ηDUT is the quantum

efficiency of the DUT, e is the electron charge, h is the Planck constant and ν is the

laser frequency. The quantum efficiency of DUT is hence

ηDUT = ηTTD e R
C − Co
V − Vo

(2.14)

were Co and Vo are the background readouts (without laser light) of the trap transfer

standard (after SIA) and of the DUT, respectively.

With the aim to have an independent measurement, the DUT detector was sent to

the Physikalisch-Technische Bundesanstalt laboratories (PTB) in Germany in order to

carry out the classical calibration. Measurements were performed at relatively large

count rate for SPAD, at about 4 million counts/s and 1 million counts/s (i.e. an optical

power flux of about 2 pW and 380 fW, respectively).
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Chapter 3

Quantum measurements

3.1 Quantum operations

The quantum operations formalism is a general tool for describing the evolution of

quantum systems in a wide variety of circumstances. A quantum system can be described

through its density operator (or density matrix) ρ, defined as:

ρ ≡
∑
i

pi |ψi〉 〈ψi| (3.1)

with pi ≥ 0 and
∑

i Pi = 1. For a single stage process, the output state ρ′ is related to

the input state ρ by the equation

ρ′ = E(ρ). (3.2)

The map E in this equation is a quantum operation, describing the dynamic change to

a state which occurs as the result of some physical process. By applying an unitary

evolution operator U as a quantum operation, we may write ρ→ E(ρ) ≡ UρU †.

The dynamics of a closed quantum system are described by unitary transformations.

A natural way to describe the dynamics of an open quantum system is to regard it

as arising from an interaction between the system of interest, which we shall call the

principal system, and the environment, which together form a closed quantum system.
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In other words, suppose we have a system in state ρ, which is sent into a box which

is coupled to an environment. In general the final state of the system, E(ρ), may not

be related by a unitary transformation to the initial state ρ. We assume (for now)

that the system-environment input state is a product state, ρ ⊗ ρenv. After the box’s

transformation U the system no longer interacts with the environment, and thus we

perform a partial trace over the environment to obtain the reduced state of the system

alone:

E(ρ) = trenv

[
U (ρ⊗ ρenv)U †

]
. (3.3)

Quantum operations can be represented in an elegant form known as the operator-

sum representation. Let |en〉 be an orthonormal basis for the (finite dimensional) state

space of the environment, and let ρenv = |e0〉 〈e0| be the initial state of the environment.

There is no loss of generality in assuming that the environment starts in a pure state

[54]. Although this extra system is ‘fictitious’, it makes no difference to the dynamics

experienced by the principal system. Then, for a system in a initial state ρ, the final

state can be written as:

E(ρ) =
∑
n

〈en|U [ρ⊗ |e0〉 〈e0|]U † |en〉 (3.4)

=
∑
n

K(n)ρK
†
(n) (3.5)

where K(n) ≡ 〈en|U |e0〉 is an operator on the state space of the principal system.

Equation (3.5) is known as the operator-sum representation of E . The operators {K(n)}

are known as operation elements for the quantum operation E .

The operation elements satisfy an important constraint known as the completeness

relation. In the classical case, the completeness relation arose from the requirement that

probability distributions be normalized to one. In the quantum case the completeness
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relation arises from the analogous requirement that the trace of E(ρ) be equal to one,

1 = tr (E(ρ)) (3.6)

= tr

(∑
n

K(n)ρK
†
(n)

)
(3.7)

= tr

(∑
n

K†(n)K(n)ρ

)
(3.8)

Since this relationship is true for all ρ it follows that we must have

∑
n

K†(n)K(n) = I (3.9)

This equation is satisfied by quantum operations which are trace-preserving.

For non-trace-preserving quantum operations, for which
∑

nK
†
(n)K(n) ≤ I, the trans-

formation (3.5) occurs with generally non-unit probability tr[E(ρ)] ≤ 1 [55]. The par-

ticular case of unitary transformations corresponds to having only one term K(n) = U

in the sum (3.5), with U unitary. However, we can consider also nonunitary operations

with only one term, i.e.,

E(ρ) = AρA†, (3.10)

being A a contraction, i.e., ‖ A ‖≤ 1: this last operations are called pure, since they

leave pure states ρ as pure. Indeed, for ρ = |ϕ〉 〈ϕ| we can write the transformation

ρ→ E(ρ)
tr(E(ρ)) as:

|ϕ〉 → A |ϕ〉
‖ A |ϕ〉 ‖

. (3.11)

There is a nice interpretation that can be given to the operator-sum representation.

Imagine that a measurement of the environment is performed in the basis |e0〉 after the

unitary transformation U has been applied. Applying the principle of implicit measure-

ment [54], we see that such a measurement affects only the state of the environment, and

does not change the state of the principal system. Let ρn be the state of the principal
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system given that outcome n occurs,

ρn ∝ trE(|en〉 〈en|U(ρ⊗ |e0〉 〈e0|)U † |en〉 〈en|) = 〈en|U(ρ⊗ |e0〉 〈e0|)U † |en〉(3.12)

= K(n)ρK
†
(n). (3.13)

Normalizing ρn

ρn =
K(n)ρK

†
(n)

tr(K(n)ρK
†
(n))

(3.14)

we find the probability of outcome k is given by

p(n) = tr (|en〉) 〈en|U(ρ⊗ |e0〉 〈e0|)U † |en〉 〈en| (3.15)

= tr(K(n)ρK
†
(n)). (3.16)

Thus

E(ρ) =
∑
n

K(n)ρK
†
(n) =

∑
n

p(n)ρn. (3.17)

This gives us a beautiful physical interpretation of what is going on in a quantum

operation with operation elements {K(n)}. The action of the quantum operation is

equivalent to taking the state ρ and randomly replacing it by K(n)ρK
†
(n)/tr(K(n)ρK

†
(n)),

with probability tr(K(n)ρK
†
(n)). In this sense, it is very similar to the concept of noisy

communication channels used in classical information theory.

3.2 Matrix elements of an arbitrary quantum operation

In this section, we will focus in the formalism to determine experimentally an unknown

quantum operation E . The method analysed exploits the quantum parallelism of entan-

glement [56] to run all possible input states in parallel using only a single entangled state

as the input in a tomographic reconstruction. This is a general method for experimentally

determining the quantum operation matrix, using any available quantum-tomographic
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scheme for the system in consideration, and a single fixed entangled state at the input.

Let us consider, for simplicity, a pure quantum operation in the form (3.11). We

want to determine experimentally the matrix A = {Aij}, with Aij = 〈i|A |j〉, given an

orthonormal basis {|j〉} corresponding to some physical observable. Instead of acting

with the contraction A on an “isolated” system, we perform the map on a system which

is entangled in the state |ψ〉〉 =
∑

mn ψmn|m〉A ⊗ |n〉B. By applying the operator Â =∑
ik Aik|i〉〈k| to the state |ψ〉〉, we obtain

(Â⊗ I)|ψ〉〉 =
∑
ikj

Aik|i〉A〈k|A ⊗ |j〉B〈j|B
∑
mn

ψmn|m〉A ⊗ |n〉B (3.18)

=
∑
ikj

Aikψkj |i〉A ⊗ |j〉B (3.19)

and

||Aψ||2 = ((Â⊗ I)|ψ〉〉)†((Â⊗ I)|ψ〉〉) (3.20)

=
∑
ikj

∑
mnp

AikψkjA
∗
mnψ

∗
np〈m|i〉A〈p|j〉B (3.21)

=
∑
ikjn

AikψkjA
∗
inψ
∗
nj (3.22)

Then, the transformation is:

|ψ〉〉 → |φ〉〉 =
(Â⊗ I)|ψ〉〉
||Aψ||

(3.23)

=
∑
ij

φij |i〉A ⊗ |j〉B (3.24)

with

φij =
Aikψkj
||Aψ||

(3.25)

then, the elements of the quantum operator matrix, in terms of the input and output
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state matrices is written as:

||Aψ||φijψ−1
jl = Aik

��
�
��*
δkl

ψkjψ
−1
jl = Ail (3.26)

where the entanglement state is assumed to have invertible matrix ψ.

In this formalism, the matrix φ corresponding to the output state can be written in

terms of measurable ensemble averages as follows

φij = 〈〈i, j|φ〉〉 = eiθ
〈|i0, j0〉〉〈〈i, j|〉√
〈|i0, j0〉〉〈〈i0, j0|〉

= eiθ
φ∗i0j0φij√
|φi0j0 |2

(3.27)

where the ensemble at the output is denoted by 〈...〉 ≡ 〈〈φ|...|φ〉〉, |i, j〉〉 ≡ |i〉⊗ |j〉, i0, j0

are suitable fixed integers, and eiθ is an irrelevant overall phase factor corresponding to

θ = arg(〈〈i, j|φ〉〉). To rewrite the matrix Aij in terms of the output ensemble averages,

we define the operator

Eij(ψ) = |i0〉〈i| ⊗ |j0〉〈(ψ−1)∗(j)| (3.28)

where

〈(ψ−1)∗(j)| =
∑
l

(ψ−1
lj )∗〈l|. (3.29)

The matrix elements Aij in terms of the introduced operator can be written as

Aij = k〈Eij(ψ)〉 (3.30)

with

k = eiθ

√
||Aψ||2
|φi0j0 |2

(3.31)

It is easy to prove that expression (3.30) is equivalent to (3.26).
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|ψ >>
ε Ο (k)

Ο (l)
PC

Figure 3.1: General scheme for the experiment for the tomographic estimation of a quantum
operation. |ψ〉〉 is an entangled state prepared with two identical quantum systems. In one of
the systems the quantum operation E is applied, while the other system is left undisturbed.
At the output, quantum tomographic estimations are made by measuring jointly two random
observables from a quorum {O(l)}.

Written as (3.30), Aij can be estimated using quantum tomography [54,57]: a method

to estimate the ensemble average 〈H〉 of any arbitrary operator H by using only mea-

surement outcomes of a quorum of observables {O(l)} [58], with orthonormal resolution,

sufficient to give a complete quantum information of the system. The operator H can

be expanded as H =
∑

l tr
[
Q†(l)H

]
O(l), where Q(l) and O(l) form a bi-orthogonal set

such that tr
[
Q†(i)O(j)

]
= δij . Therefore, the tomographic estimation of the ensemble

average 〈H〉 is obtained as the double average (over the ensemble and the quorum), of

the unbiased estimator tr
[
Q†(l)H

]
O(l) with a random l. For multipartite quantum sys-

tems, the quorum can be the tensor product of single system quorums [59]: this means,

that is just necessary to make two local quorum measurement jointly on the two systems

and analyze data with tensor product estimators.

A general scheme for the experiment of the tomographic estimation of a quantum

operation matrix applying this method, is shown in Figure 3.1.

The method described above can be easily generalized to the case of arbitrary non-

pure quantum operations. The output state in this case is the density matrix

|ψ〉〉〈〈ψ| → R(ψ) = E ⊗ I(|ψ〉〉〈〈ψ|) (3.32)

Using |ψ〉〉 =
∑

lm ψlm|l〉 ⊗ |m〉 and the quantum operation E(ρ) =
∑

(n) K̂(n)ρK̂
†
(n) in

Eq. (3.32), where K̂(n) =
∑

ijK(n)ij |i〉〈j|, it is possible to rewrite the final state R(ψ)
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as

R(ψ) =
∑
(n)

K(n) ⊗ I|ψ〉〉〈〈ψ|K
†
(n) ⊗ I (3.33)

=
∑
(n)

∑
kiji′j′k′

K(n)ijψjkK
∗
(n)i′j′ψ

∗
j′k′ |i〉〈i′| ⊗ |k〉〈k′| (3.34)

The quantum operation can be written in terms of the density matrix R(ψ), for ψ equal

to the identity matrix I, as

E(ρ) = tr2

[
I ⊗ ρTR(I)

]
(3.35)

where tr2 is the partial trace on the second Hilbert space. In the follow it will be shown

the validity of Eq. (3.35). The expansion of the left side of the equation is

E(ρ) =
∑
(n)

K̂(n)ρK̂
†
(n) (3.36)

=
∑
(n)

∑
iji′j′

∑
mp

K(n)ijρmpK
∗
(n)i′j′ |i〉��

��*
δjm

〈j|m〉��
��*
δpj′

〈p|j′〉〈i′| (3.37)

=
∑
(n)

∑
iji′j′

K(n)ijρjj′K
∗
(n)i′j′ |i〉〈i

′| (3.38)

Then, for the right term of Eq. (3.35), we have

(
I ⊗ ρ̂T

)
R(I) =

∑
lpm

ρpm|l〉〈l| ⊗ |m〉〈p|

 ∑
(n)iji′j′

k(n)ijk
∗
(n)i′j′ |i〉〈i

′| ⊗ |j〉〈j′|(3.39)

=
∑
m(n)

∑
iji′j′

k(n)ijρjmk
∗
(n)i′j′ |i〉〈i

′| ⊗ |m〉〈j′| (3.40)

applying the trace in the second system of Eq. (3.40) it is easy to arrive to Eq. (3.38),

and in this way the validity of Eq. (3.35) is shown.

For invertible ψ the two matrices R(I) and R(ψ) are connected by

R(I) = (I ⊗ (ψ−1)T )R(ψ)(I ⊗ (ψ−1)∗). (3.41)
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Therefore, it is possible to obtain the matrix R in Eq. (3.35), which is in one-to-one

correspondence with the quantum operation E , by estimating via quantum tomography,

the output ensemble averages:

〈〈i, j |R(I)| l, k〉〉 = 〈Elk(ψ)Ei,j(ψ)〉 (3.42)

=
〈
|l〉 〈i| ⊗

∣∣(ψ−1)∗(k)
〉 〈

(ψ−1)∗(j)
∣∣〉 . (3.43)

3.3 Positive operator valued measure

For some applications, the post-measurement state of the system is of little interest,

with respect to the measurement outcomes. In such cases there is a mathematical tool

known as Positive Operator-Valued Measure (POVM) which is especially well adapted

to the analysis of the measurements [54].

Suppose a measurement (described by measurement operators Mn) is performed to

a quantum system in the state |ψ〉: the probability of outcome n is given by p(n) =

〈ψ|M †nMn |ψ〉. Suppose we define

Πn ≡M †nMn (3.44)

Πn is a positive operator such that
∑
n

Πn = I and p(n) = 〈ψ|Πn |ψ〉. Thus the set of

operators Πn are sufficient to determine the probabilities of the different measurement

outcomes. The operators Πn are known as the POVM elements associated with the

measurement. The complete set {Πn} is known as a POVM.

Projective measurements described by projectors Pn, such that PnP
′
n = δn,n′Pn and∑

n Pn = I, are an interesting example of POVM. In this case, all the POVM elements

are the same as the measurement operators themselves, since Πn ≡ P †nPn = Pn.

In the following, it will be shown that if {Πn} is some arbitrary set of positive

operators such that
∑
n

Πn = I, there exists a set of measurement operators Mn defining

the measurement described by the POVM {Πn}.

Defining Mn ≡
√

Πn we see that
∑

nM
†
nMn =

∑
n Πn = I, and therefore the set
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{Mn} describes a measurement with POVM {Πn}.

It is convenient to define a POVM to be any set of operators {Πn} such that: (a)

each operator Πn is positive; and (b) the completeness relation
∑
n

Πn = I is satisfied,

expressing the fact that probabilities sum to one. We note again that, given a POVM

{Πn}, the probability of outcome n when a quantum system in the state |ψ〉 is measured,

is given by p(n) = 〈ψ|Πn |ψ〉.

In the density matrix formalism, given an input state ρ, the probability p(n) of

obtaining output n is given by [60]

p(n, ρ) = tr[ρΠn]. (3.45)
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Chapter 4

Quantum characterization of

superconducting photon counters

The possibility of discriminating the number of impinging photons on a detector is a

fundamental tool in many different fields of optical science and technology. At the

moment, the most promising genuine PNR detectors are visible light photon counters

[61] and transition edge sensors (TESs) [62–64], i.e. micro calorimeters based on a

superconducting thin film working as a very sensitive thermometer. For the practical

application of these detectors, it is crucial to achieve their precise characterization [65].

In particular, it is generally assumed that TESs are linear photon counters, with a

detection process corresponding to a binomial convolution. It is also expected that dark

counts are not present in TESs. A tomography of the POVM elements of the TES

provides the full characterization of the detector at the quantum level. In this chapter

we present a full tomography of the TES POVM, exploiting an effective and statistically

reliable technique based on recording the detector response for an ensemble of coherent

signals providing a sample of the Q-function of the POVM [64].
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4.1 Tomography of quantum detectors

To fully characterize a quantum detector, data obtained from measuring input states

from a well-known source is needed.

From the measured statistics p(n, j) (where p(n, j) is the probability of obtaining an

output n given an input state ρj ), all the POVM elements {Πn} can be recovered if probe

states or input states are chosen to form a set {ρj} that is tomographically complete:

the span of the operators {ρj} (which are not necessarily linearly independent) must

cover the entire Hilbert space to which the POVM elements belong [60].

Coherent states |α〉 are ideal candidates in the case of PNR detectors, since a laser

can generate them directly and we can create a tomographically complete set of probe

states {|α〉 〈α|} by transforming their amplitude |α| and their phase arg(α).

Notably, a full representation of the detector is given by the measured statistics,

when coherent states are used as probes. If we consider a set of K coherent states of

different amplitudes |αj〉 , j = 1, . . . , K, it is possible to reconstruct the Q-function

of the detector, which is simply proportional to the measured statistics [60],

p(n, j) =
1

π2
〈αj |Πn |αj〉 =

1

π
Qn(j) (4.1)

Since Qn(j) of each POVM contains the same information as the element Πn itself,

predictions of the detection probabilities for arbitrary input states can then be calculated

directly from the Q-function.

The POVM elements of a phase insensitive PNR detector are diagonal operators in

the Fock basis, i.e. Πn =
∑

m Πnm |m〉 〈m|, with completeness relation
∑

n Πn = I.

The matrix elements Πnm = 〈m|Πn |m〉 describe the detector response to m incoming

photons, i.e. the probability of detecting n photons with m photons at the input. Using

coherent states the probability of detecting n photons (of obtaining the outcome n), with

the jth state as input is given by:
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p(n, j) = tr [|αj〉 〈αj |Πn] =
∑
m

Πnmqmj (4.2)

where

qmj = e−µj
µmj
m!

(4.3)

is the ideal photon statistics of the coherent state |αj〉, and µj = |α|2 is its average

number of photons [41]. For a perfect photon-number-resolving detector that can dis-

criminate up to eight photons, the outcome probability distributions would be the one

shown in Figure 4.1.

a

Figure 4.1: Outcome probability distributions for a nine-outcome detector. Each curve rep-
resents the probability of that outcome (0 clicks, 1 click, ...., 9 clicks) happening versus the
value of the intensity of the coherent state arriving at the detector. This graph was taken from
reference [60].

The probabilities p(n, j) are sampled and the statistical model composed by the set

of Eq. (4.2) is inverted in order to reconstruct the POVM matrix elements, Πnm. Since

the Fock space is infinite dimensional, this estimation problem contains, in principle, an

infinite number of unknowns. However, given the set of probing coherent states, we can

find a Fock number M for which we have a small number of data for the entries with m >

M and we cannot investigate the performances of the detector above the corresponding
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energy regimes. In consequence, a suitable truncation at a certain dimension M should

be performed, with the constraint that the probability of having m > M photons in the

states |αj〉 is small enough. The constrain ensures that the truncation of the Hilbert

space does not cause any loss of information. The above argument also makes clear

that a little extra care should be taken for the entries just below this regime, i.e. Πnm

with m just below M . In fact, for this entries, the estimation problem is generally ill-

conditioned, i.e. small fluctuation in the measured p(n, j) may lead to large fluctuations

in the reconstruction. Note that, according with Eq. (4.2), the Πnm with m close to M

have small weights qmj and therefore the p(n, j) are almost insensitive to their values.

As mentioned before, a sample of the Q-functions of the POVM elements are pro-

vided by the distributions p(n, j) in Eq. (4.2). Any reconstruction scheme for the Πnm

basically amounts to recovering the Fock representation of the Πn’s from their phase

space Q-representation. In general, this cannot be done exactly due to singularity of the

antinormal ordering of the Fock number projectors |n〉 〈n| [66]. On the other hand, upon

exploiting the truncation described above, we deal with POVM elements expressed as a

finite mixture of Fock states, which are amenable to reconstruction [67, 68]. Maximum

likelihood (ML) methods or a suitable approximation of ML should be used to solve

the statistical model in Eq. (4.2). We found that reliable results are obtained already

with a least-squares fit, i.e. we have effectively estimated Πnm by the minimization of a

regularized version of the square difference

∑
n,j

(
M−1∑
m=0

qmjΠnm − p(n, j)

)2

(4.4)

where the physical constraint of smoothness is implemented by exploiting a convex,

quadratic and device-independent function [69]. The normalization constrain is also

used,
∑N−1

n=0 Πnm = 1, ∀m, where the last POVM element is defined as ΠN−1 = 1 −∑N−2
n=0 Πn.
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4.2 POVM reconstruction of a transition edge sensor

In this section, an experiment to reconstruct the POVM elements of TES is presented.

An article based on this experiment was published in the New Journal of Physics, refer-

ence [64]

4.2.1 Experimental setup

The experimental setup used in this experiment is shown in Figure 4.2. A power stabi-

lized fiber-coupled pulsed laser at 1570 nm with a pulse width of 37 ns and repetition

rate of 9 kHz is used to illuminate the TES. The laser pulse is also used to trigger the

data acquisition for a temporal window of 100 ns. A calibrated power meter is used to

measure the laser pulse energy (365±2) pJ. Two fiber-coupled calibrated attenuators in

cascade are used to attenuate the laser to the photon-counting regime. A single-mode

optical fiber is used to send the attenuated laser pulses to the TES. The set of coherent

states needed to perform the POVM reconstruction has been generated by lowering the

primary laser pulse energy from an initial attenuation of 63,5 dB to 76,5 dB (correspond-

ing to an average of 130 and 6,5 photon per pulse respectively), to obtain 20 different

states |αj〉 =
∣∣√τjα〉, with j = 1, ..., 20 and where τj is the channel transmissivity.

The TES characterized in this experiment is composed of a ∼90 nm thick Ti/Au

film [70,71], fabricated by e-beam deposition on silicon nitride substrates. The effective

sensitive area, obtained by lithography and chemical etching, is 20×20 µm2. The super-

conducting wirings of Al, with thicknesses between 100 and 150 nm, have been defined

by a lift-off technique combined with radiofrequency sputtering of the superconducting

films. Upon varying the top Ti film thickness, the critical temperatures of these TESs

can range between 90 and 130 mK, showing a sharp transition (1–2 mK).

The characterization of TES has been carried out in a dilution refrigerator with a

base temperature of 30 mK. Furthermore, the detector is voltage biased, in order to take

advantage of the negative electro-thermal feedback, providing the possibility of obtaining

a self-regulation of the bias point without a fine temperature control and reducing the
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Figure 4.2: Experimental setup for the reconstruction of the POVM elements of a TES detector.
A fiber coupled calibrated attenuator is used to attenuate a frequency stabilized pulsed laser at
1570 nm and generate 20 different states. The attenuated pulses are sent to the TES detection
system using a single-mode optical fiber. The read-out operations are performed with a DC-
SQUID current sensor, using electronics at room temperature. The SQUID output is addressed
to an oscilloscope triggered by the laser. Data acquisition, first elaboration and storage are
performed by the oscilloscope.

detector response time.

A DC-SQUID current sensor [72] is used for read-out operations on our TES, associ-

ated with room-temperature SQUID electronics. Finally, the SQUID output is addressed

to a LeCroy 400 MHz oscilloscope, performing the data acquisition, first elaboration and

storage.

4.2.2 Results

In the experiment, a fixed wavelength λ = 1570 nm is used thus, in ideal conditions, a

discrete energy distribution with outcomes separated by a minimum energy gap ∆E =

hc/λ is expected. Experimentally, a distribution with several peaks is observed, whose

FWHM is determined by the energetic resolution of the whole TES detection device.

In a first calibration run, the experimental data is fitted with a sum of independent
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Gaussian functions. The fit for nine data sets corresponding to nine different coherent

states |αj〉 are shown in the left plots of Figures 4.3, 4.4 and 4.5. In these graphs,

each point corresponds to a binning of an amplitude interval of 1,3 mV. An excellent

agreement between data and the functions is observed. The ‘0-peak’, corresponding to

no photon detection, is the first peak on the left. The local minima of the fits, allow

us to fix the amplitude thresholds corresponding to n detected photons. The counts

in the intervals identified by these thresholds are summed and the histogram of counts

is obtained. To evaluate the distributions p(n, j) the histogram bars are normalized to

the total number of events for the given state |αj〉. Some bias or fluctuations may be

introduced by this threshold-based counts binning, since the tails of the nth Gaussian

peak fall out of the n counts interval. On the other hand, the effects in neighboring peaks

compensate for each other and, overall, do not affect the tomographic reconstruction.

In the histograms on the right of Figures 4.3, 4.4 and 4.5, the experimental probability

distributions p(n, j) are compared with the corresponding Poisson distributions of mean

value ηµ (with η = 6, 70%), for each of the nine states shown. As evident from the plots,

the experimental results are in remarkable agreement with the theoretical predictions,

showing a fidelity above of 99, 5%, as reported in Figure 4.6.

The POVM reconstruction of our TES detection system has been performed up to

M = 140 incoming photons and considering N = 12 POVM elements Πn, n = 0, ..., 11.

The probability operator of detecting more than 10 photons is given by Π11 = 1 −∑10
n=0 Πn.

The matrix elements Πnm of the POVM operators for 0 ≤ m ≤ 100 incoming photons,

are shown in Figure 4.7. The reconstructed Πnm are represented by bars, while the solid

lines denote the matrix elements of a linear detector. In fact, the POVM of a linear

photon counter takes the form of a binomial distribution

Πn =
∞∑
m=n

Bnm|m〉〈m| (4.5)
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Figure 4.3: In the graphs on the left, dots represent TES counts for three different values
of |αj〉, after a binning on the oscilloscope channels. Solid lines are the Gaussian fits on the
experimental data, while the dotted vertical lines are the thresholds. In the graphs on the
right, the experimental probability distribution (black bars) obtained for measurements binned
according to the threshold is compared with the corresponding Poisson distribution of mean value
ηµ (with η = 6, 70%) (red bars). Graphs (a), (b) and (c) are obtained with a coherent state
characterized by a mean photon number per pulse µ = 7, µ = 22 and µ = 36 respectively. As
evident from the plots, the experimental results are in remarkable agreement with the theoretical
predictions, showing a fidelity higher than 99, 99% in the three cases.
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Figure 4.4: In the graphs on the left, dots represent TES counts for three different values
of |αj〉. Solid lines are the Gaussian fits on the experimental data, while the dotted vertical
lines are the thresholds. In the graphs of the right, the experimental probability distribution
(black bars) obtained for measurements binned according to the threshold is compared with the
corresponding Poisson distribution of mean value ηµ (with η = 6, 70%) (red bars). Graphs (a),
(b) and (c) are obtained with a coherent state characterized by a mean photon number per pulse
µ = 43, µ = 58 and µ = 72 respectively. The experimental results are in remarkable agreement
with the theoretical predictions, showing a fidelity higher of 99, 99% in cases (a) and (b) and a
fidelity of 99, 97% in case (c).
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