
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ing. Elettronica e delle Communicazioni – XXVI ciclo

Tesi di Dottorato

3D Graphics Reconstruction,
Compression and Animation

Akhlaque AHMAD

Tutore Coordinatore del corso di dottorato
Prof. Gabriella OLMO Prof. Ivo Montrosset

Febbraio 2014

Acknowledgements

I wish to express my gratitudes to people at STMicroelectronics for supporting this
work, and specially to Massimiliano Barrone whose endless help and unbounded sup-
port, made me able to write this dissertation. His supervision, guidance and broad
vision always kept me on the right track. I also pay my sincere gratitudes to Prof.
Gabriella OLMO, Tea ANSELMO, Daniele ALFONSO and Emanuele QUACCHIO
who always motivated me to explore the new dimensions in the work.

This work has been supported by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no. ICT-2011-7-287723
(REVERIE project).

Summary

This work covers entire pipeline of a 3D immersive system, comprising acquistion
and reconstruction of 3D objects, transforming the 3D objects into popular 3D
format, compression of data with MPEG-4 compliant encoders and acquisition of
animation motion data.

For the acquisition part we created 3D human face object with the help of depth-
field camera, in particular we used Microsoft Kinect. We process the raw data given
by Kinect and transform it into a mesh, and texture it with photometric data.
The reconstructed objects are quiet large in size and need to be compressed for an
efficient network transmission. We encoded the objects using MPEG-4 encoder, and
measured the performance of scalable mesh encoding techniques.

For an interactive immersive application, motion data of player must be cap-
tured, which is transmitted to remote client for playing the animation on the virtual
character of player. For this purpose MPEG-4 standard defines a Bone Based An-
imation to acquire and compress the motion data. We acquired the motion data
of a player using a novel algorithm which is compliant to bone based animation.
Our proposed approach of extracting motion data is computationally efficient. We
tested it with 3D graphics player developed at STMicroelectronics.

iii

Contents

Acknowledgements ii

Summary iii

1 Introduction 1

2 3D Graphics Acquisition 4
2.1 Teleimmersive Environments . 4
2.2 Silhouette Based Reconstruction . 5

2.2.1 Synchronization . 6
2.2.2 Calibration . 6
2.2.3 Background Subtraction . 7
2.2.4 3D Modeling . 7
2.2.5 Visual Hull . 7

2.3 Image Based Reconstruction . 8
2.3.1 Image Model . 10
2.3.2 Disparity Calculation . 10

2.4 Hybrid Camera Based Systems . 11
2.4.1 Relative Camera Calibration 12
2.4.2 Depth Calibration . 12
2.4.3 3D Depth Warping . 12
2.4.4 Outer Bounary Matching . 13
2.4.5 Optical Noise Minimization 15
2.4.6 Recovery of Lost Depth Data 15
2.4.7 Temporal Consistency . 16

2.5 Proposed Reconstruction System . 16
2.5.1 Micrsoft Kinect . 17
2.5.2 Color Video Data . 17
2.5.3 Depth Data . 18
2.5.4 Data Acquisition and Pre-processing 18
2.5.5 Greedy Projection Triangulation 19
2.5.6 Texture Mapping . 21

iv

3 Graphics Compression 22
3.1 Geometry Compression . 23
3.2 Connectivity Compression . 24
3.3 Deering’s Geometric Compression . 24
3.4 Topological Surgery . 25
3.5 EdgeBreaker . 26
3.6 FaceFixer . 27
3.7 Geometric Progressive Compression 27
3.8 MPEG-4 Graphics Compression . 28
3.9 Scalable Complexity 3D Mesh Coding 29

3.9.1 Triangle Fan-based Compression 29
3.9.2 Shared Vertex Analysis . 31
3.9.3 Quantization Based Compact Representation 32

3.10 Graphics Compression Test . 33
3.10.1 MPEG Graphics Encoder . 33
3.10.2 Results . 34
3.10.3 Encoding Gain . 34
3.10.4 Encoding Complexity . 34
3.10.5 Surface Distortion . 34

4 Animation and Skeleton Extraction 40
4.1 Bone Based Animation . 40
4.2 Proposed Skeleton Extraction Method 42
4.3 Motion Data . 45
4.4 3D Graphics Player . 48

5 Conclusions 52

Bibliography 53

v

Chapter 1

Introduction

Computer graphics are being used in many applications, such as computer aided
design, 3D games, immersive environments, virtualization of medical, cultural her-
itage and other 3D environments. Photorealistic 3D contents creation became much
simple with the availability of depth field sensors. We can reconstruct a 3D object
while processing the data given by depth sensors e.g. Microsoft Kinect. There is
an increasing demand for network-based distribution of 3D graphics coming from
online media sharing services and distributed applications. The amount of 3D data
in such applications are usually very large, and processing is too complex, that lead
to development of many authoring tools specialised in their particular tasks. The in-
teroperability of 3D graphics contents in these authoring tools leads to development
of exchange formats such that eXtensible 3D (X3D) [4] and COLLaborative Design
Activity (COLLADA) [3]. These tools represent the data in eXtensibile Markup
Language (XML) [14] format, in which the redundancy and verbosity imposes the
need of compression to reduce the time required to transmit 3D models over digital
communication channels. Generic XML compression techniques reduce the size of
data by order of 10 by exploiting only the data structure redundancy [6]. Applying
a lossy compression by exploiting spatial and temporal correlation can reduce the
data size by the order of 40 [15]. In this work we applied compression techniques
standardized by MPEG, and we achieved compression efficiency more than 80 %.

For an interactive immersive application, motion data of player must be cap-
tured, which is transmitted to remote client for playing the animation on the virtual

1

1 – Introduction

character of player. For this purpose MPEG-4 standard defines a Bone Based Ani-
mation to acquire and compress the motion data of player.

Figure 1.1. A big picture of system

A potential fully developed system is depicted in Fig. 1.1, where a user interacts
with the system capable of capturing 3D data. This data is processed and depending
upon the target application a 3D content is created, that is transmitted to the
network or stored in a database. This content is compressed, and sent to the network,
where on a remote location it is decompressed and processed further for required
task. The applications of this work can be in gaming, medical, training and other
commercial activities. For example the users can participate in a virtual meeting
room with their avatar presentation, or they can play mutually a virtual reality
based game. In medical field, such applications can be targeted where patients
require training for their recommended exercises while sitting in their home.

This work covers entire pipeline of a 3D immersive system, comprising acquistion
and reconstruction of 3D objects, transforming the objects into popular 3D format,
compression of data with MPEG-4 compliant encoders and acquisition of animation
motion data.

The organization of this thesis is as follows: Chapter 2 explains some state of
art acqusition systems, comprising silhoutte based, image based and hybrid camera
based reconstruction systems. Then we propoed our strategy for the reconstruction
of human face, as it is desired by video conferencing applications with synthetic
avatars.

2

1 – Introduction

Chapter 3 explains various techniques for mesh compressions. We explained
the geomtry and connectivity compression methods. In particular MPEG-4 activi-
ties on graphics compression are discussed. The compression technique adopted in
MPEG-4 part 25, scalable complexity mesh coding, is used to experiment graphics
comperssion of large data set of scanned human body, and encoding efficiency are
reported.

In Chapter 4, we discussed the bone based animation method of MPEG-4 for
animation of avatars. We report our skeleton extraction method that is compliant
with bone based animation. Then we explained motion data representation format
and how we configured motion data with a grphics player. Chapter 5 concludes the
work and proposes some possible future extension for this work.

3

Chapter 2

3D Graphics Acquisition

Most existing video conferencing systems make some attempt to humanize remote
interaction, but few are able to provide the desired immersive component of actual
face-to-face communication. These systems, which rely on two dimensional video
streams between remote users, lack to provide the desired immersive component for
a number of reasons, e.g., not allowing users to establish eye contact, not placing
all users inside the same environment, or not allowing users to jointly interact with
synthetic objects. Few attempts [1, 2] have been made to create a more immersive
experience using large displays, eye contact through multi-camera capturing systems,
and matching environments (e.g., tables, chairs) between the remote locations that
create the illusion of continuity of the physical space into the screen.

In contrast to such systems, an immersive experience is one that generates a
full body real-time 3D reconstruction that realistically represents a user’s life sized
appearance. It completely models the dynamics of movement such as facial ex-
pressions, gesture, postures, and provides the mechanism so that remote users can
jointly interact with synthetic objects.

2.1 Teleimmersive Environments

Teleimmersive environments are setup to capture the 3D scene. Such environments
could be a dedicated room with multiple cameras surrounding the entire room or a
PC with specific capturing apparatus that is capable to acquire 3D scene. Several
attempts have been made to develop systems for 3D reconstruction of human body

4

2 – 3D Graphics Acquisition

to present in a virtual environment. Acquisition of 3D objects are performed with
different reconstruction methods, which are given as below.

Existing teleimmersive systems achieve various levels of presence, depending on
the number and layout of cameras and the 3D modeling algorithm used. Some
systems offer a free viewpoint on the observed user [22] , enabling the visual presence
of the user. Other systems compute a partial 3D model based on a depth map
[33, 21]. Since they capture the scene from a specific direction only, they provide a
partial visual and geometrical presence, for instance free viewpoint can’t be achieved
or thickness of modeled objects is unknown.

In the past decade, several attempts have been made to develop 3D reconstruc-
tion systems for marker-less capture of the human body for telepresence in a virtual
environment. Most real-time approaches fall into one of three categories depending
upon their computational approach:

• Silhouette Based Reconstruction: Objects are captured with multiple
cameras surrounding the complete environment

• Image Based Reconstruction: Stereoscopic images are processed to model
the objects

• Hybrid Camera Based Systems: Uses Time-of-Flight cameras to compute
the depth values of objects

3D model of objects are reconstructed using any of the above methods, which is
then transmitted to remote locations through TCP/IP or any other preferred way in
realtime. The objects are recovered on the remote locations and placed in a virtual
shared environment among all the users of the system. The movements of objects
are rendered in the virtual environment so that feel of presence could be achieved.
In the following sections each of reconstruction methods are explained outlining an
implemented system based on that technique.

2.2 Silhouette Based Reconstruction
To improve the sense of presence and realism, models with both photometric and
geometric information are considered. They yield more realistic representations that

5

2 – 3D Graphics Acquisition

include user appearances, motions and even sometimes facial expressions. In addi-
tion to appearance, through photometric information, they can provide a hierarchy
of geometric representations from 2D to 3D, including 2D and depth representation,
multiple views, and full 3D geometry. 2D and depth representations are viewpoint
dependent and though they enable 3D visualization and, to some extent, freeview-
point visualization.

Multiple view representations, that is, views from several viewpoints, overcome
some of the limitations of 2D and depth representations. In particular, they increase
the freeviewpoint capability when used with view interpolation techniques. However,
interpolated view quality rapidly decreases when new viewpoints distant from the
original viewpoints are considered. And similarly to 2D and depth representations,
only limited interactions can be expected. In contrast, full 3D geometry descriptions
allow unconstrained free viewpoints and interactions as they carry more information.

A system developed at INRIA [23] is based on this technique where multiple
cameras are set to surround the scene which constructs a visual hull of the objects
of the interest. The visual hull is textured with the photometric data obtained from
the cameras to fully model a 3D representation. The number of cameras depends on
the size of scene and the visual quality we want to acquire. The location of cameras
can be chosen as the required preference to emphasize any particular side of the
scene.

2.2.1 Synchronization

All the cameras used in the setup need to be synchronized so that all images com-
ing from different cameras are coherent. Synchronization can be achieved directly
from silhouettes using inconsistency over several viewpoints. But a better hardware
solution is implemented in this project.

2.2.2 Calibration

Spatial organization of cameras need to be determined when dealing with multi-
ple cameras in order to perform geometric computations. In practice we need to
determine the position and orientation of each camera in the scene as well as its
intrinsic characteristics such as the focal length. This is done through a calibration

6

2 – 3D Graphics Acquisition

process that computes the function giving the relationship between real 3D points
and 2D-image points for each camera.

2.2.3 Background Subtraction

Regions/Objects of interest are to be extracted from the scene by eliminating the
background. High quality of background subtraction is achieved by using a dedicated
priory known background.

2.2.4 3D Modeling

To model a 3D object shape from silhouette method is implemented that builds a
visual hull of the objects. This visual hull is then textured with the photometric
data to form a complete 3D object which can be represented in virtual environment.

Figure 2.1. A visual hull of a person with 4 views

2.2.5 Visual Hull

The visual hull is a well-studied geometric shape which is obtained from scene ob-
ject’s silhouettes observed in n views. Geometrically, the visual hull is the inter-
section of the viewing cones, the generalized cones whose apices are the cameras’
projective centers and whose cross sections coincide with the scene silhouettes as

7

2 – 3D Graphics Acquisition

show in the Fig. 2.1. Although visual hull can’t model concavities in the object but
it can give a good approximation of the object shape.

Figure 2.2. The three main steps of visual hull construction, (a) viewing edge
computation, (b) mesh connectivity, and (c) face generation.

Three steps are performed to create a visual hull of the object. First, a partic-
ular subset of the polyhedron edges is computed, the viewing edges, which is the
projection on a viewing line from all other views. Second, all other edges of the
polyhedron mesh are recovered by a recursive series of geometric deductions. The
positions of vertices not yet computed are gradually inferred from those already
obtained, using the viewing edges as an initial set. Third, the mesh is consistently
traversed to identify the faces of the polyhedron. The steps are shown in Fig. 2.2

2.3 Image Based Reconstruction
Depth map can be calculated by stereoscopic processing of two images taken few
distance apart. A stereo video signal captured by two input cameras is first prepro-
cessed. This includes possible image rectification for row-wise left and right view
alignment, as well as color and contrast correction due to possible differences be-
tween the input cameras. The 3D format is called Conventional Stereo Video (CSV)
for left and right view. This format is encoded by multiview coding methods, such
as specified in the stereo high profile of H.264/AVC, where temporal dependencies

8

2 – 3D Graphics Acquisition

in each view, as well as interview dependencies between both views are exploited for
efficient compression. Given a stereoscopic pair of left and right images (IL, IR),
the disparity function d(x, y) is defined as:

IR(x, y) = IL(x+ d(x, y), y) (2.1)

Traditional methods to determine disparity d(x, y) either employ a local approach
like normalized cross correlation or global optimization techniques. The normalized
cross correlation techniques match a fixed sized window assuming that all pixels
inside that window have same depth, which is quiet unreasonable, although this
assumption so much reduces the processing time. Global optimization techniques
begin by associating a cost to each pixel’s disparity that depends not only on how
well it matches to a pixel in the other image, but also how well this disparity matches
to neighboring pixels’ disparity. This cost function is then minimized in order to
determine the disparity of each pixel. Though these optimization techniques produce
more accurate results than the entirely local approaches, they are computationally
expensive.

Considering the limitations of both local and global optimization techniques, a
hybrid technique is applied [32] to find the disparity map using an image pair. A
mesh of triangles is formed, where each triangle dictates the level of depth of each
pixel in the triangle, i.e. each pixel in a triangle have approximately same depth.
A coarse mesh of triangles is formed at level 1, and then each triangle is bisected if
the amount of variation of depth among the pixels exceeds a user defined threshold.
So as a result the regions with more varying disparities are represented with small
triangles while the regions with small variations are represented with large triangles.

Figure 2.3. Triangle Bisections

9

2 – 3D Graphics Acquisition

Figure 2.4. Representation of triangular mesh

2.3.1 Image Model

Before generating the triangular mesh of the image domain, a coarse mesh of right
isosceles triangles is generated at level n = 1 as illustrated in Fig. 2.3. This coarse
mesh is then refined by bisecting each triangle. The refinement procedure in a
particular region is halted when the variation in each triangle is less than a user
specified threshold τ . The goal is to mimic the effects of a global optimization
procedure by refining initial local disparity estimates via anisotropic diffusion. To
define anisotropic diffusion, the mesh must be able to share information between
neighboring nodes which requires that the mesh have no nodes that are on the
middle of another triangle’s edge. A mesh satisfying such a property is referred to
as a conforming mesh. A conforming triangular mesh is constructed by following
Algorithm 1.

The procedure of bisecting the triangles is shown in Fig. 2.3. A graphical
representation, of the image is then constructed by letting each triangle in the mesh
correspond to a vertex and letting edges in the graph correspond to triangles that
share an edge. Fig. 2.4 illustrates the construction of such a graph.

2.3.2 Disparity Calculation

To calculate disparity map, left and right images are matched. The matching score
is defined as the average normalized cross correlation between the reference window
centered at each of the corners of i in the right image and a window centered
at the same coordinate as each of the corners of i in the left image after some
horizontal translation by r. Importantly the size of the neighborhoods used during
the normalized cross correlation step are dictated by the level of the triangle i. Initial

10

2 – 3D Graphics Acquisition

disparity is assumed as the point that gives the highest cross correlation. This initial
disparity is further improved by post processing techniques.

Figure 2.5. Stereo algorithm for 3D mesh generation

2.4 Hybrid Camera Based Systems

Recently, fusion methods that combine video cameras and a time-of-flight (TOF)
depth camera have been introduced. Depth can also be obtained directly from a
camera if special light, called Near Infrared (NIR), is used. This depth information
when integrated with a photometric data produces the complete model of 3D video
representation.

NIR light has a series of advantages over normal light or structured light methods.
First, it is insensitive to lighting conditions, and thus the image processing part of the
3D object reconstruction might be more stable than in normal daylight or in spaces
with artificial light. Second, when reflected by the object, it is possible to detect
the depth directly via the intensity of every pixel. This is because the reflected NIR
light intensity, if correctly captured by the image sensor, can be made proportional
to the distance. While it provides very poor pixels resolution, which are up-sampled
to map them with photometric data resulting in unrealistic depth information of,
in particular, boundaries and edges of the objects. [17] proposed a system that uses

11

2 – 3D Graphics Acquisition

hybrid camera system, the features of this system is outlined below.

2.4.1 Relative Camera Calibration

Since two different types of cameras are being used, so relative camera calibration
information are essential to find. For this purpose, the projection matrices of all
cameras are obtained and compared to each other on the basis of intrinsic charac-
teristics, rotation matrices and translation vectors.

2.4.2 Depth Calibration

Depth information of the depth camera is very sensitive to color and motion. Even
if the distance from the depth camera to the object is constant, depth information
from depth camera is different depending on the environment. Usually, the depth
camera system has its own depth calibration tool, but it is very poorly calibrated.
A mapping curve is determined by placing the objects at different positions of the
scene and checking the depth of objects from depth camera. This mapping is then
used to compensate the difference between actual depths and measured depths.

2.4.3 3D Depth Warping

Depth information obtained from the depth cameras are projected to real world
coordinates by depth warping. This is achieved by multiplying the depth information
with intrinsic characteristics matrix of the depth camera. Each pixel is represented
as ps(psx, psy, Ds), where psx, psy are (x, y) position and Ds is the disparity at this
point. The position in real 3D world Ps(psx, psy, psz) is:

Ps = K−1
s .ps (2.2)

Where Ks is the matrix of intrinsic characteristics of depth camera. A frame of
video and its depth image is shown in Fig. 2.6.

Depth Data Enhancement

The depth data from this TOF depth sensor cannot directly be used due to some
inherent problems. In order to use the depth data properly, spatial and temporal

12

2 – 3D Graphics Acquisition

Figure 2.6. Stereo algorithm for 3D mesh generation

problems existing in the raw depth images needed to be resolved [16], such as:

• Optical noise

• Unmatched boundaries between a depth image and its corresponding color
image

• Lost depth data on shiny and dark surface

• Temporal depth flickering artifacts on stationary objects

Optical noise, as shown in Fig. 2.7(a), usually occurs inside of objects in a
scene as a result of differences in reflectivity of an infrared sensor according to
color variation. Moreover, as shown in Fig. 2.7(b), the depth information is also
not registered well with its corresponding color information such as the region of
shoulder of a person in Fig. 2.6. The problem of unmatched boundaries arises
because the TOF depth sensor exhibits inaccurate behavior at very close and very
far target distances. In addition, as shown in Fig. 2.7(c), the TOF depth sensor does
not capture depth data well on shiny and dark surfaces such as a black hair region,
because reflected lights from these surfaces are very weak or scattered. Especially,
as shown in Fig. 2.7(d), these spatial problems cause to generate depth flickering
artifacts on a stationary object in the temporal domain. To combat these problems
several techniques have been implemented in [16].

2.4.4 Outer Bounary Matching

For the outer boundary selection, they create a trimap of binary depth image and
exact outer boundaries which are measured by applying alpha matting on color

13

2 – 3D Graphics Acquisition

(a) Optical Noise (b) Unmatched Boundary (c) Lost Depth Data

(d) Temporal Flickering

Figure 2.7. Inherent problems of TOF sensors

images. Alpha map is used to compensate depth information with extracted values
of depth image by this equation:

Di(x, y) =
Ai(x, y)

255
∗Di(x− n, y −m) (2.3)

(a) Original (b) Boundary matching

Figure 2.8. Outer boundary matching

where Di(x, y) is the intensity of pixel position (x, y) on the ith depth image, and
14

2 – 3D Graphics Acquisition

Ai(x, y) is the alpha value on the ith alpha map. The term of Di(x − n, y −m) is
the nearest intensity of Di(x, y) that is found by a spiral search method. Result of
boundary matching is shown in Fig. 2.8.

2.4.5 Optical Noise Minimization

A general bilateral filter reduces noise in an image while preserving important sharp
edges. For reducing optical noise inside of objects in depth images, joint bilateral
filtering in which edges from both color and depth images are used. In joint bilateral
filtering, the assumption is that regions of depth discontinuity in a depth image
usually correspond to the edges in its color image.

2.4.6 Recovery of Lost Depth Data

The depth recovery algorithm consists of three steps: detection of the lost depth
data region, recovery of the boundary, and estimation of the lost depth data. A re-
gion growing algorithm with multiple seeds is applied to detect the lost depth data
regions. Then, it recovers the boundary from the detected regions using boundary
tracing. Finally, the lost depth data region is filled with depth information interpo-
lated by a quadratic Bézier curve with neighboring depth data on the depth image.
Fig. 2.9(b) shows a depth image recovered by the quadratic Bézier curve method
from the depth image in Fig. 2.9(a).

(a) Original (b) Depth recovered

Figure 2.9. Depth recovery

15

2 – 3D Graphics Acquisition

2.4.7 Temporal Consistency

Temporal consistency reduces temporal depth flickering artifacts on stationary ob-
jects in a scene. For temporal consistency, stationary regions are detected. Block
matching is used to estimate the stationary regions of the tth frame color image
Ct to the t-1th frame color image Ct−1. Block matching predicts the movement of
objects in a scene by estimating similarity between blocks in the temporal domain.
After measuring motion vectors Mt(x, y), which is one if block is stationary and zero
if block is moving, stationary region is calculated as:

St(x, y) = Dt(x, y)&Mt(x, y) (2.4)

2.5 Proposed Reconstruction System
The reconstruction system that we want to develop, is an easy to setup system
destined for a remote collaboration of virtual avatars. The avatars bodies are pre-
built, while the faces of avatars need to be photorealistic as of participating human
players. The features of our proposed system are outlined:

• Minimum setup apparatus should be required, may be a webcam with embed-
ded depth camera, which can be easily installed at personal computer.

• A good refresh rate should be achieved, while gestures and postures are ren-
dered in real-time so that sense of presence is achieved.

• Not necessarily entire user appearance need to be captured, rather only front
side of conferee can be captured while avatars can be used to approximate the
full body.

• Processing and bandwidth requirements should be limited to common available
processor/network capacity.

To achieve these goals, we used Microsoft Kinect for acquisition of data as this
device is a very commonly available. We reconstruct only the face of a player, so
that it can be attached to a virtual avatar participating in the immersive conference.
We transform this face object to common 3D format, compress it and send to a

16

2 – 3D Graphics Acquisition

remote client. Reconstructed face object need to be transmitted once in a session,
while in rest of time only animation data is needed. In this section we only focus
on reconstrunction aspect of the overall system, while the other components are
discuessed in subsequent chapters.

Figure 2.10. Microsoft Kinect Structure

2.5.1 Micrsoft Kinect

The Microsoft Kinect module provides an interface to the Microsoft Kinect XBOX
360 sensor. Based around a webcam-style add-on peripheral, it enables users to
control and interact with the Xbox 360 without the need to touch a game controller,
through a natural user interface using gestures and spoken commands. The Kinect
sensor is a horizontal bar connected to a small base with a motorized pivot as
shown in Fig. 2.10 and is designed to be positioned lengthwise above or below
the video display. The device features an RGB camera, depth sensor and multi-
array microphone running proprietary software, which provide full-body 3D motion
capture, facial recognition and voice recognition capabilities.

2.5.2 Color Video Data

Color image data can be accessed in RGB or YUV formats and at different resolu-
tion. RGB is presented with 32bit XRGB formatted color bitmaps, while YUV is
presented with 16-bit gamma corrected linear UYUV-formatted bitmaps. At reg-
ular quality, the Bayer color image data that the sensor returns at 1280x960 is

17

2 – 3D Graphics Acquisition

compressed and converted to RGB before transmission to the runtime. The run-
time then decompresses the data before it passes the data to application. The use
of compression makes it possible to return color data at frame rates as high as 30
FPS, but the algorithm that is used leads to some loss of image fidelity. At high
quality, color image data is not compressed in the sensor; it is transmitted to the
runtime as originally captured by the sensor. Because the data is not compressed,
more data must be transmitted per frame and the maximum frame rate is no more
than 15 FPS.

2.5.3 Depth Data

The depth data stream provides frames in which each pixel indicates the distance,
in millimeters, to the nearest object at that particular x and y coordinate in the
depth sensor’s field of view. Depth data streams are available in 640*480, 320*240,
80*60 pixels frame size. The object range should be from 4 to 11 feet away from
sensor. If the objects are too close to sensor, depth information will be either empty
or filled with noisy values.

2.5.4 Data Acquisition and Pre-processing

We are using Point Cloud Library (PCL) for getting data from Kinect and processing
it. PCL is a standalone, large scale, open project for 2D/3D image and point cloud
processing. A pointcloud is a frame of 3D points, where each point is represented
in 3D real-world projected coordinated. The origin of these 3D points is the camera
sensor.

The raw data taken from Kinect is noisy, and many points are missing from the
scene. We filter the data to remove noisy scattered points, while we use multiple
frame for temporal smoothing of raw data. In particular five consecutive frames are
captured to make a pointcloud more suitable to be processed for a better reconstruc-
tion results. We detect the face position of the player, and right now we assume
there is only one player in front of the camera. Since we are interested only with the
reconstruction of face of participating player, so we discard rest of scene, except the
face area in both image and depth streams. This small piece of pointcloud is our
input to reconstruction algorithm, which generates a mesh from it. The generated

18

2 – 3D Graphics Acquisition

mesh have only geometry and connectivity information, so it is mapped to RGB
data that we acquired from the face area.

2.5.5 Greedy Projection Triangulation

The Greedy Projection algorithm works by maintaining a list of points, called ’fringe’
points, from which the mesh can be grown based on incremental surface growing
principle. The algorithm starts from a starting triangle and keeps on adding new
triangles until all the possible points are connected [20]. Triangulation is performed
locally, by projecting the local neighborhood of a point along the point’s normal
and connecting unconnected points. Given an unorganized 3D pointcloud, greedy
projection algorithm reconstructs the underlying surface’s geometrical properties
using data resampling and a robust triangulation algorithm in near realtime. A
breif flow of greedy projection algorithm is given as:

• Nearest neighbor search: For each point p in the pointcloud, select k neighbors.

- Nearest neighbors are searched using kd-tree (k dimensional tree). With a
reference point p, k neighbors are searched which lie in a sphere of radius r.

• The points in pointcloud are labeled with different states based on their inter-
action with algorithm:

- Initially all the points are in free state.

- A point is labeled as completed, if all the incident triangles are found.

- The points that have not yet been chosen as a reference point, are called
fringe points

• Find normal vectors of each point

• Neighbors are projected on a plane that is approximately tangential to the
surface formed by the neighborhood and ordered around p.

• The points are pruned by distance criterion:

- Candidate adjacent points are searched in the spatial proximity of current
reference point using kd-tree. The points which lie outside the sphere of in-
fluence centered at reference point are rejected, while the other points are
referred to as the candidate points.

19

2 – 3D Graphics Acquisition

(a) (b) (c)

Figure 2.11. Different views of reconstructedmesh

• Projection plane: the candidate set of points obtained after applying the dis-
tance criterion are projected on the the approximate tangent plane.

• Angle ordering: A local coordinate system is defined with the reference point
as the origin and the plane projection of the previous step serves as the xy-
plane. All the points in the candidate set are projected this plane. Ordering
around the reference point is based on the angle θ between the x-axis of the
local coordinate system and the vector from origin to the projected candidate
point.

• Visibility: the points which potentially can form a self-intersecting mesh are
discarded. The algorithm defines two edge types for checking this condition:
i. Boundary Edge: an edge with only one triangle incident on it. These
edges connect fringe and/or boundary points. ii. Internal Edge: connect the
completed points with any other points. The plane is projected using the
reference point, candidate set of points and the boundary edges. In case, the
line of sight from the reference point to a candidate vertex is obstructed by an
edge, the point is occluded.

Using the greedy projection algorithm we reconstruct a 3D object of the face.
This model is entirely reconstructed from the data given by Kinect, and no further
priory information is used while processing, such as face models used in other state-
of-art solutions. Reconstructed model’s geometry is almost identical to the player as

20

2 – 3D Graphics Acquisition

(a) (b) (c)

Figure 2.12. Different views of reconstructedmesh

can be seen in Fig. 2.11. In some experiments we found few holes due to occulusion
from the sensor. The perfect solution to fill these holes is to use array of Kinect so
that they can capture the scene from different views. But since our required setup
needs to be very simple, we have avoided the use of such array of Kinect devices,
rather we have interpolated such missing regions to fill up as much holes as possible.

2.5.6 Texture Mapping

The result of greedy projection is a mesh with 3D geometry and connectivity, there
is still no color information associated with it. In section 2.5.4 we get RGB data
related to face area. We project the triangles produced by greedy projection, and
associated the RGB coordinates with each vertex position of the triangle. The
resulting texture-mapped mesh can be seen in Fig. 2.12

21

Chapter 3

Graphics Compression

Interactive 3D graphics plays an important role in many different fields like manufac-
turing, architecture, entertainment, training, engineering analysis and simulation.
It promises to revolutionize many aspects of human-computer interaction. For many
of these applications, 3D data sets are increasingly accessed through Internet. The
size and complexity of these 3D models is growing rapidly, due to improved design
and model acquisition tools, to the widespread acceptance of this technology, and
to the need for higher accuracy.

Although many representations [26] have been proposed for exchanging and view-
ing 3D data sets, but polygonal mesh gained much attention. While the popular
graphics libraries e.g. OpenGL, VRML supported the mesh representation for ren-
dering of 3D contents. A mesh can be defined as set of vertices, edges, faces together
with their incidence relationships. Meshes are used to represent static or dynamic
3D objects, where the surface of object is approximated by a set of polygons. Ap-
proximation error can be high unless number of polygons are sufficiently large as
shown in Fig. 3.1. While, on the other hand, large number of polygons are ex-
pensive in terms of storage and transmission. Techniques for mesh compression are
important in order to make storage and transmission more feasible, in particular
when the data is to be streamed in real-time.

Static 3D meshes consist of two types of data: connectivity, which describes the
incidence relationship of mesh vertices-faces-edges, and geometry, which assigns 3D
locations to vertices. Dynamic 3D meshes are in their generic form represented as

22

3 – Graphics Compression

a sequence of static meshes with a common connectivity called frames. They re-
quire even several times more storage than a single static mesh, unless frames are
compressed. Static as well as dynamic meshes show topological as well as geomet-
rical dependencies in spatial and spatio-temporal domain, respectively, which are
exploited for compression. Most mesh compression techniques handle connectivity
and geometry compression separately.

Figure 3.1. A polygonal mesh representation of 3D object

3.1 Geometry Compression
Mesh geometry refers to the set of vertex positions of the graph. The earliest and
still most popular method involves a two-stage process of quantization and predictive
encoding. Quantization reduces the range of the data. In the context of geometry
compression, quantization takes the three components, (x, y, z), of each vertex and
stores them in a fixed number of bits (typically 10-14 is sufficient). The quantized
mesh at 10-14 bits is visually indistinguishable from the original.

The Parallelogram Predictor was first presented by Touma and Gotsman [31].
It is the most commonly applied predictor in the literature for Single Resolution
Compression of vertex locations. It is based on the observation that adjacent tri-
angles tend to form parallelograms, therefore it predicts the next vertex to form
a parallelogram with the previous three vertices. Fig. 3.2 illustrates this scheme.
To encode the vertex V4, the authors consider the triangle V1, V2, V3 already coded,
and suppose that the polygon V1, V2, V3, V4 defines a parallelogram, thus they build
the vertex V ′

4 . Then the vertex V4 is encoded only by its difference vector d with
V ′
4 . [11] generalized this technique, initially adapted for triangular meshes, for ar-

bitrary polygonal meshes. The drawback of these methods is that they cannot be
23

3 – Graphics Compression

Figure 3.2. Parallelogram Predictor

optimal since the order of enumeration of the vertices is dictated by the coding of
the connectivity.

3.2 Connectivity Compression

Connectivity encoding techniques attempt to reduce the redundancy inherent in
many popular representations of polyhedral or triangular meshes in 3D. Consider a
triangular mesh of V vertices and T triangles, where each triangle is represented by 3
vertex references. The connectivity of each triangle will require storing 3 addresses
per triangle (approximately 6 addresses per vertex). So, this scheme will require
approximately 60bits per vertex for even a small set of vertices(less than 1024).

3.3 Deering’s Geometric Compression

Triangle strips provide a way to represent vertices in fewer bits, where a triangle
is formed by combining a new vertex description with the descriptions of the two
previously sent vertices, which are temporarily stored in two buffers. Triangle strips
only pay off if long strips are build. Deering [8] proposed a triangular strips scheme
where a stack buffer of last 16 vertices are used rather than using random access to
all the vertices of model. Deering allowed temporarily use of current vertex on stack

24

3 – Graphics Compression

and reuse of any vertex of last 16 vertices of stack buffer. Deering work reduces the
cost to approximately 11 bits per vertex.

3.4 Topological Surgery
Taubin and Rossignac [29] proposed the method Topological Surgery (TS), which
was the first method for lossless compression of mesh connectivity and compression
of locations of mesh vertices with controllable loss. They decomposed connectivity
in vertex and triangle spanning trees, which were encoded. Because proximity in
vertex spanning tree often implies geometric proximity of the corresponding vertices,
Taubin used ancestors in the tree to predict vertex positions, and thus only need to
encode the difference between predicted and actual vertex positions. When vertex
coordinates are quantized i.e., truncated to the nearest number in a fixed-point
representation scheme, these corrective vectors have on average smaller magnitude
than absolute positions and can therefore be encoded with fewer bits.

Linear predictive coding was employed for compression of vertex locations. They
were predicted in an order guided by connectivity using already encoded locations.
To encode the connectivity, the mesh is first cut through a subset of its edges, called
the cut edges. This subset includes all the edges of the vertex spanning tree. The
branching nodes and the leaf nodes of the vertex spanning tree are interconnected
by vertex runs (i.e., by nodes that have a single child). They compress the repre-
sentation of the vertex spanning tree by encoding for each vertex run: its length
plus two bits of information, which collectively capture the topology of the spanning
tree. To increase the compression ratio, they try to build vertex spanning trees with
the least number of runs. TS provides the compression to approximately 4bits/ver-
tex. Taubin et al. further extended the TS approach in order to obtain a Levels of
Detail representation of a compressed static mesh, providing progressive decoding
from low to high resolution. They introduced the Progressive Forest Split (PFS)
[28] scheme using a forest, i.e., a set of trees, in order to describe connectivity in
different resolution levels.

25

3 – Graphics Compression

Figure 3.3. EdgeBreaker compression

3.5 EdgeBreaker

EdgeBreaker [25] is a more sophisticated connectivity compression algorithm. Edge-
Breaker is a face-based compression scheme which traverses the faces (triangles) of
the mesh generating a spanning tree. It uses a finite state machine to compactly
describe mesh connectivity. The algorithm encodes one of five symbols at each face
to keep the history so that the process can be reversed during decoding. The five
symbols form the CLERS string and are defined as follows. A C is encoded when
the vertex has not been visited. An L is encoded when the left triangle has been
visited, an R is encoded when the right triangle has been visited, an E is encoded
when both left and right triangles have been visited and an S is encoded when
neither left or right triangles have been visited, as can be seen in Fig. 3.3 In the
S case, EdgeBreaker recurses on the right subtree and then the left. EdgeBreaker
can compress the connectivity of the mesh to near optimal rates, normally around
3 bits/vertex.

Although EdgeBreaker is a simple, efficient method for compressing the connec-
tivity of a mesh, it has some limitations. First it is limited to triangle meshes. In

26

3 – Graphics Compression

practice, as many meshes are triangulated, this may not seem a large problem, but
nevertheless it limits the areas in which it can be applied. Second, EdgeBreaker
requires random access to the vertices. This is inconvenient for gigantic meshes for
out-of-core processing.

3.6 FaceFixer

Since EdgeBreaker works only with triangular meshes, FaceFixer [12] is the improve-
ment of EdgeBreaker to work with generalized polygonal mesh. The connectivity of
the polygon mesh is encoded as a sequence of labels Fn, R, L, S,E,Hn, and Mi,k,l.
The total number of labels equals the number of mesh edges. The sequence of labels
represents an interwoven description of a polygon spanning tree and its complemen-
tary vertex spanning tree. For every face of n sides there is a label Fn and for every
hole of size n there is a label Hn. Together they label the edges of the polygon
spanning tree. For every handle there is a label Mi,k,l that has three integer values
associated. These specify the two edges of the polygon spanning tree that need to be
‘fixed’ together to re-create the handle. The remaining labels R,L, S, and E label
the edges of the corresponding vertex spanning tree and describe how to ‘fix’ faces
and holes together. Subsequently an entropy coder compresses the label sequence
into a bit-stream.

3.7 Geometric Progressive Compression

While in all approaches so far mesh compression is mainly guided by mesh con-
nectivity, [9] proposed a progressive compression algorithm mainly driven by the
geometry. They recursively subdivided the bounding box of the object into smaller
and smaller cells, until they contain, at most, one vertex. At each subdivision
level, they transmit only occurrences of points (the authors demonstrated that it is
enough to reconstruct a point set). Concerning connectivity, they encoded vertex
splits which occur at each subdivision step. The authors have later on generalized
this approach, which gives excellent results, to arbitrary non-manifold meshes.

27

3 – Graphics Compression

3.8 MPEG-4 Graphics Compression
The MPEG committee had a continuous activity on compressing 3D graphics assets
and scenes since the first version of MPEG-4 was published. MPEG-4 offers many
tools that can be classified with respect to data type. Binary Format for Scene
Description (BIFS) is one of these tools that allows compressing a scene graph. A
scene graph is composed of many different type of nodes, so a tool to compress a
scene graph is made generic. Due to its generic nature, BIFS can not completely
exploit the redundancy of specific data such as meshes or animation curves. Lately,
MPEG-4 defined specific tools for compressing each type of data independetly. The
tools for mesh compression comprises 3D Mesh Coding (3DMC) and Wavelet Sub-
division Surface (WSS), for animation Coordinate Interpolator, Orientation Inter-
polator and Position Interpolator (CI, OI, PI), Bone-Based Animation (BBA) and
Frame-based Animated Mesh Compression (FAMC) and for appearance MPEG-4
natively supports PNG, JPEG and JPEG2000. Here we will explain only 3DMC and
its extension Scalable 3DMC (SC3DMC), which deal with compression of meshes.

Figure 3.4. Layers of 3D graphics compression model

While XML-based reprsentation of 3D data is appropriate for data exchange
in the production phase, the verbosity and redundancy of XML make it highly in-
appropriate for distribution to end users. Considering this limitation, the MPEG
committee initiated an activity with the goal of applying 3D graphics compression
on XML-based scene representation. The activity led to the publication of a new

28

3 – Graphics Compression

part of the MPEG-4 standard, Part 25 [14]. The standarad specifies an architectural
model, which works with a third party XML description of the scene graph with (po-
tential) binarization tools and with MPEG-4 3D graphics compression tools. The
advantages of this approach is the use of powerful compression tools for graphics
and the generality of graphic primitives representation. MP4 formatted bitstreams
are obtained using the proposed architectural model. Advanced compression fea-
tures such as progressive decompression and support for streaming, provided by the
specific compression tools, are preserved with the new model, since it decouples the
decoding of the scene graph from the decoding of the object graph. Typically, when
consuming content compliant with MPEG-4 Part 25, a player builds first the scene
graph based on XML description, connects the decoders of the elementary streams
and renders the results based on the time stamps of the elementary stream. There
is no need to rebuild the original XML file before rendering. As illustrated in Fig.
3.4, MPEG-4 Part 25 defines an architectural model that have three layers: textual
data representation, binarization and compression.

3.9 Scalable Complexity 3D Mesh Coding
MEPG introduced 3D Mesh Coding (3DMC), which is based on Topological Surgery
(TS) representation [30], it works with the meshes which are defined by indexed list
of polygons, and consists of geometry, topology and other properties of vertices. In
this scheme the connectivity of the mesh is encoded with no loss of information, and
the vertex positions and properties are quantified and hence encoded with variable
loss of information. 3DMC Extension (3DMCe) was published in MPEG-4 Part
16 [13], which added support for efficient texture coordinate compression and mesh
animation. Later on as an amendment, the Scalable Complexity 3D Mesh Compres-
sion (SC3DMC) [15] tool set was added which provided three encoding methods for
mesh compression. as briefly discussed in following sections. Fig. 3.5 shows a block
diagram of SC3DMC.

3.9.1 Triangle Fan-based Compression

Triangle Fan-based compression (TFAN) [19] deals with 3D meshes of arbitrary
topologies, while offering a linear computational complexity (with respect to the

29

3 – Graphics Compression

Figure 3.5. Block diagram of SC3DMC

number of mesh vertices) for both encoding and decoding algorithms. In addition,
the TFAN compressed representation is optimized for real-time decoding applica-
tions.

Figure 3.6. Encoding Vertices with TFAN

The TFAN encoder traverses the meshes from neighbor to neighbor. In the
beginning all the vertices are labelled as non-visited, then starting from a vertex
each successive vertex is traveresed. At each stage a traingle fan is created which
is incident to current vertex and have minimum number of neighbor trainalges.
Triangle fans are made for all possible vertices intially labelled as non-visited, and
at each stage the visited vertex is marked so that not to repeat in the next stage.
When all of the vertices are traveresed and tiangle fans are made, the vertices are

30

3 – Graphics Compression

encoded with the triangle fan’s order, hence the vertices which are shared inside
trinagle fan are saved to encode as shown in Fig. 3.6.

TFAN outperforms about 20 % when compared to previous techniques in 3DMC.
But as compared to [31] it reduces to compression efficiency by 10 %, this is the price
to pay the generality of the TFAN representation, which is specifically designed for
dealing with generic, both manifold and non-manifold meshes.

The TFAN decoder reconstructs the mesh connectivity by successively decoding
the set of triangle fans transmitted. The list of triangle fans are traversed and mesh
connectivity is generated by the incident relationship of triangle fans.

3.9.2 Shared Vertex Analysis

Share Vertex Analysis (SVA) [27] encodes the connectivity information by exploiting
the shared nature of a vertex. Since a vertex may be used by several faces, therefore,
it is very likely that the vertices used in the previous face can also be used in the
current face. Therefore, using SVA encoding mode, the connectivity between the
current face and the previously encoded face is checked by counting the number of
shared vertices. SVA presents a fast 3D mesh compression method that compresses
the redundant shared vertex information using simple first-order differential coding
followed by fast entropy coding with a fixed length prefix.

The connectivity between the current face and the previously encoded face is
checked by counting the number of shared vertices. The number of shared vertices
varies from zero to three, if an input 3D mesh is triangular. Therefore, SVA defines
four different modes to represent vertices for the current face as shown in Fig. 3.7.
For a triangular face the three modes depend on the shared vertices with previous
face:

• Mode 0 the vertices in the previous face are not shared in the current face.

• Mode 1 one vertex in the previous face is shared in the current face.

• Mode 2 two vertices in the previous face are shared in the current face.

• Mode 3 all vertices in the previous face are shared in the current face.
31

3 – Graphics Compression

Figure 3.7. Encoding Vertices with SVA

Indices of new vertices in modes 0, 1, and 2 are subject to differential encoding
by computing the difference in the vertex index, which is calculated by comparing
the current vertex index and the previous vertex index.

3.9.3 Quantization Based Compact Representation

Quantization-Based Compact Representation (QBCR) [18] is computational effi-
cient encoding method that encodes the geometry and photometry by applying only
quantization without any prediction. After quantization, binarization is applied
directly on the quantized values without any entropy coding. The connectivity in-
formation are encoded without quantization because lossless compression is required
to preserve the toplogy of model.

32

3 – Graphics Compression

3.10 Graphics Compression Test

We tested graphics sequence of large size, that really needed to be compressed in
order to efficiently transmit them over network. We used a machine with Intel(R)
Pentium(R) 4 CPU 3.00GHz, and a RAM of 4GB. The test sequences are full human
body scanned 3D meshes, that have some million of vertices (2 millions), and each
test sequence have the size more than 30MB. In the results we will show compression
efficiency and complexity of only two testcases: Testcase1 of 40 MB, and Testcase2
of 36MB.

3.10.1 MPEG Graphics Encoder

We worked with MyMultimediaWorld (MMW) graphics encoder, which is an op-
timized open-source implementation of MPEG-4 Part 25 [14]. It implements the
encoder and decoder of popular XML-based scene graph formats (COLLADA, X3D
and XMT), and the elementary supported techniques for scene graphs compres-
sion is SC3DMC, while for animation stream it provides Bone Based Animation
(BBA) compression. The encoder takes XML like format as input, for each format
it has a parser that parses all of the components (geometry, connectivity, texture
etc...). Then each component is compressed using graphics encoder, and finally
all compressed streams are combined together to generate a single MP4 bitstream.
SC3DMC supports popular techniques for mesh compression i.e. TFAN, SVA and
QBCR as been described in Section 3.9. Different options can be choosen as per
requirement are given below:

• EncodingMode: QBCR, SVA, TFAN

• BinarizationMode: FL, BPC, 4C, AC, AC/EGC

• QuantizationParameter: 0 31

• PredictionMode: No Prediction, Differential, XOR, Adaptive, Circular,
Fast Parallelogram

33

3 – Graphics Compression

3.10.2 Results

We tested the performance of encoder in terms of encoding gain, encoding complexity
and surface distortion. We varied the bits/componect (b/c) values, which is the
number of bits to be assigned to represent each component. We selected the range
of b/c as 6-15, because lower than 6, the surface is too distorted to mimic with the
original. On the other hand, when we go higher than this range we don’t achieve
any better surface but we loose the compression efficiency.

3.10.3 Encoding Gain

Encoding gain of two test cases are given in Fig. 3.8. In all the compression
methods, efficiency is always more than 80%, but we can observe that TFAN gives
us the highest compression gain, even with the maximum value of b/c it gives 85%
of gain. SVA gives the worst efficiency, while QBCR is always between SVA and
TFAN.

3.10.4 Encoding Complexity

Encoding complexity of our two testcases are given in Fig. 3.9, we can observe that
QBCR is lowest in complexity, this is because its encoding process is very simple.
On the other hand TFAN is the most complex algorithm to compress. So this is
a trade-off between efficiency and complexity, and exact choice to choose between
depends on the application.

3.10.5 Surface Distortion

We decoded the encoded objects, and measured the surface distortion between the
original and the decoded one. For this measurement we used the MESH tool [5],
that computes the Hausdorff distance between two meshes. Hausdorff distance is
the maximum distance of a set to the nearest point in the other set, so for polygonal
it computes the maximum distance of polygons which describes how much a surface
is differed to the other surface. The result of this measurements are given in Fig.
3.10, where we provided the RMs error between the two surfaces for the case of
TFAN.

34

3 – Graphics Compression

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 6 7 8 9 10 11 12 13 14

[%
]

b/c

TFAN
SVA

QBCR

(a) Testcase1

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 6 7 8 9 10 11 12 13 14

[%
]

b/c

TFAN
SVA

QBCR

(b) Testcase2

Figure 3.8. Encoding gains

It can be observed that decoded surface faces some distortion when b/c is less
than 10, and at each point it goes towards zero, while for all values higher than
10, the distortion RMS is about zero. Hence b/c higher than 10 always gives the
identical decoded surface. The same can be observed in inspecting the decoded

35

3 – Graphics Compression

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 6 7 8 9 10 11 12 13 14

Ti
m

e
[s

ec
]

b/c

Encoding Time

TFAN
SVA

QBCR

(a) Testcase1

 3

 4

 5

 6

 7

 8

 9

 10

 11

 6 7 8 9 10 11 12 13 14

Ti
m

e
[s

ec
]

b/c

Encoding Time

TFAN
SVA

QBCR

(b) Testcase2

Figure 3.9. Encoding complexity

surfaces visually in Fig. 3.11 and Fig. 3.12.

36

3 – Graphics Compression

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6 7 8 9 10 11 12 13 14

RM
S

b/c

Test Sequence 1
Test Sequence 2

Figure 3.10. Hausdorff distance between decoded and original surfaces

37

3 – Graphics Compression

(a) Original

(b) b/c = 6 (c) b/c = 7 (d) b/c = 8

(e) b/c = 9 (f) b/c = 10 (g) b/c = 11

(h) b/c = 12 (i) b/c = 13 (j) b/c = 14

Figure 3.11. Visual inspection of decoded surfaces of Testcase1
38

3 – Graphics Compression

(a) Original

(b) b/c = 6 (c) b/c = 7 (d) b/c = 8

(e) b/c = 9 (f) b/c = 10 (g) b/c = 11

(h) b/c = 12 (i) b/c = 13 (j) b/c = 14

Figure 3.12. Visual inspection of decoded surfaces of Testcase2

39

Chapter 4

Animation and Skeleton
Extraction

Human like avatars are being used in many virtual reality applications, and it is very
much desired to control the avatar in natural interaction. Such natural interaction
movements must be captured from the participating player in the application, and
transmitted to avatars which is going to be animated. In the past, MPEG-4 ad-
dressed the animation of human avatars by introducing Face and Body Animation
(FBA), which described the avatar modelling representation and the animation pa-
rameter representation and its compression. The latest activities of MPEG-4 lead to
adoption of Bone Based Animation (BBA) that defined a framework to realistically
animate a generic articulated avatar. In this chapter, we will first discuss details
about BBA framework, then we will present our proposed method to obtain motion
data for BBA.

4.1 Bone Based Animation

The goal of MPEG-4 BBA is to define an interchange format where a generic Virtual
Character (VC) animation and modeling can be specified. It does not specify any
animation method, rather it only defines a low level representation format for ar-
ticulated generic virtual character. Moving a VC requires to define the deformation
behavior, and the minimal set of animation parameters for moving it. BBA natively
support the VC geometry in form of polygonal meshes, but in general it can support

40

4 – Animation and Skeleton Extraction

Figure 4.1. SBSkinned node

any kind of geometrical representation, provided that it is able to associate skeleton
with geometry.

VC geometry is deformed while applying an animation to it. In literature, there
exists many approaches that deal with such deformations, but in scope of BBA
here only Skeleton based deformation is discussed. In the framework of BBA, VC
is modeled in three layers [24]: Skeleton, Muscle and Skin. The animation data
is associated with skeleton, while for each joint on the skeleton there are defined
weighted transformations over the skin, so that skin is transformed in coherence to
the skeleton. The muscle layer relies on a NURBS-based representation and induces
local skin deformations. The animation parameters of skeleton are expressed in
individual component of rotation, normally formed by joints. The deformations
on these joints are elementary rotation, which can be roto-translation matrices or
quaternions.

The Binary Format for Scene (BIFS) defines a structure of nodes where het-
erogenious type of objects can co-exist, and maintain their temporal and spatial
relationships. Each object is represented as a standardized node or a set of nodes.
A dedicated node for defining BBA in BIFS is designed, which is called SBSkinned-
Model, a block diagram of its heirarchy is shown in Fig. 4.1.

The skeleton is a hierarchical structure made of bones. A bone is represented
41

4 – Animation and Skeleton Extraction

in the scene graph as SBBone node, and it has a unique parent in the hierarchy
and can have one or more children. The Children of a bone can be another bone
(SBBone), muscle (SBMuscle), specific relative 3D location (SBSite) and 3D object
grouping nodes (SBSegment).

Three types of information are associated with SBBone: the effect of bone de-
formation on skin, the relative generic geometric transform of the bone with respect
to its parent, and data related to inverse kinematics. Each bone has an influence on
the skin surface. By changing the bone position or orientation, some vertices of the
model skin will be affected by a translation component. The SBMuscle node adds
local deformation for simulating muscle action on skin.

Skeleton motion is defined by means of individual bone. The bone motion is
always specified by a geometric transform with respect to the initial registration
of the VC’s static position, it can be represented in any form rotation matrix or a
quaternion. A bone can be rotated with respect to any axis, can be translated in
any direction and can also be scaled to attain required deformation.

4.2 Proposed Skeleton Extraction Method

There are many methods for sekeleton extraction in state of the art, some of them are
supervised where many priory known information are required to build the skeleton,
e.g. [10] . Others are unsupervised, but they process pointcloud iteratively until
skeleton is formed, e.g. [7], hence become very complex.

Our proposed method is very simple and computationally efficient. We use both
data provided by Kinect i.e. depthmap as well as RGB data. To start with, we
process the location of player, by detecting the face of human player from RGB
stream. From this position, we got many other information all associated with
it, e.g. approximate size of player, approximate regions to search for other body
parts, because all of the body parts are always in coherence with generally assumed
human body. Starting from face loaction in the depth map (as they are at the same
locations), we find the human contour from depth map as shown in Fig. 4.2. The
midlines of this contour is a rough 2D skeleton of player. At this point we segment
different body parts as shown in Fig. 4.3, and hence we locate the joints. Then
we calculate average depth around joint position and assign the third dimension to

42

4 – Animation and Skeleton Extraction

already obtained 2D skeleton.
From each frame, we calculate the delta of joint movements, and we write a

motion data file that contains the motion information of each joint for every frame.
The motion data file is explained in section 4.3.

Figure 4.2. Contour Midlines

43

4 – Animation and Skeleton Extraction

Figure 4.3. Segmentation of body parts

(a) Initial pose (b) First frame motion

Figure 4.4. BVH skeleton pose

44

4 – Animation and Skeleton Extraction

4.3 Motion Data

We used BioVision Heirarchical (BVH) format for storing motion data, which is a
hierarchical data structure, that can represent the bones of the skeleton. The BVH
file consists of two sections: Header and Data. Header section describes heirarchy
and initial pose of skeleton, while data section describes the channel data for each
frame. Illustrations of the base position and the first frame of an animation are
given in Fig. 4.4, while a segment of bvh file is listed in Fig. 4.5.

Figure 4.5. A short segment of BVH file

The hierarchical section of the file starts with the keyword HIERARCHY, which
is followed on the next line by the keyword ROOT and the name of the bone that is

45

4 – Animation and Skeleton Extraction

the root of the skeletal hierarchy. The ROOT keyword indicates the start of a new
skeletal hierarchical structure and although the BVH file is capable of containing
many skeletons, it is usual to have only a single skeleton defined per file. The
remaining structure of the skeleton is defined in a recursive nature where each bone’s
definition, including any children, is encapsulated in curly braces, which is delimited
on the previous line with the keyword JOINT (or ROOT in the case of the root bone)
followed by the name of the bone.Within the definition of each bone, the first line,
delimited by the keyword OFFSET, details the translation of the origin of the bone
with respect to its parent’s origin (or globally in the case of the root bone) along
the x, y and z-axis respectively. The offset serves a further purpose of implicitly
defining the length and direction of the parent’s bone.

Processing all the header file we can define the skeleton heirarchy. Once the
skeletal hierarchy is defined, the second section of a BVH file, which is denoted
with the keyword MOTION, contains the number of frames in the animation, frame
rate and the channel data. The line containing the number of frames starts with
the keyword ‘Frames:’ which is followed by the number of frames. The frame rate
is on a line starting with ‘Frame Time:’ which is followed by a positive float that
represent the duration of a single frame. To convert this into a frames per second
format you simply need to divide 1 by the frame time. Once the number of frames
and frame time has been defined, the rest of the file contains that channel data for
each bone in the order they were seen in the hierarchy definition, where each line of
float values represents an animation frame.

The construction of the rotation matrix, R, can be easily done by multiplying
together the rotation matrices for each of the different channel axes in the order they
appeared in the hierarchy section of the file. For example, consider the following
channel description for a bone:

CHANNELS 3 Zrotation Xrotation Yrotation

This mean that the compound rotation matrix, R, is calculated as:

R = Rz ∗Rx ∗Ry (4.1)

Once the composite rotation matrix is calculated, using a homogeneous coor-
dinate system, the translation components are simply the first 3 cells of the last

46

4 – Animation and Skeleton Extraction

column (whereas the rotational components take up the top left 3x3 cells), as il-
lustrated in Equation 4.2. Normally, the root is the only bone that has per-frame
translation data, however each bone has a base offset that needs to be added to the
local matrix stack. Therefore, Tx, Ty and Tz represent the summation of a bone’s
base position and frame translation data.

M =

R00 R01 R02 Tx

R10 R11 R12 Ty

R20 R21 R22 Tz

0 0 0 1

 (4.2)

The local transformation of a bone describes its orientation within in its local coor-
dinate system, which in turn is subject to its parent’s local orientations. To obtain
a global matrix transform for a given bone, the local transformion needs to be pre-
multiplied by its parent’s global transform, which itself is derived by multiplying its
local transform with its parent’s global transform and so on. Equation 4.3 describes
this combination sequence, where n is the current bone whose parent bone is n− 1

and n = 0 is the bone at the root of the hierarchy.

Mn
global =

n∏
i=0

M i
local (4.3)

47

4 – Animation and Skeleton Extraction

Figure 4.6. 3D graphics player showing a troll object

4.4 3D Graphics Player

To visualize the motion captured, we need a system that can run this motion on
an avatar. In a fully implemented system, this visualization is required on a remote
machine with a player interacting in a game or in virtual meeting. For our purpose,
we used a 3D graphics player which is developed inside STMicroelectronics. This
player is used to run compressed MPEG-4 objects, so it has builtin decoder for
decompressing an mp4 object produced by MPEG-4 encoder. We have a set of
avatars that can be given input to the player, a snapshot of player is given in Fig.
4.6.

So, our task is to develope support with graphics player so that it can run the
motion data captured by our system. The graphics player works with the absolute
animation roto-translation matrices. At each frame it reads the roto-translation data
related to each bone, and displays it on its rendering engine, although interpolation
are performed for intermediate frames to smooth down the motion of avatar.

48

4 – Animation and Skeleton Extraction

In our skeleton extraction process, we get the motion data associated with 16
joints of body, with the heirarchy given as:

• Pelvis

– LeftHip

∗ LeftKnee
· LeftFoot

– RightHip

∗ RightKnee
· RightFoot

– UpperBack

∗ LeftUpperArm
· LeftElbow
· LeftHand

∗ RightUpperArm
· RightElbow
· RightHand

∗ Neck
· Head

In the graphics player we are using avatar of a Troll object as can be seen in
Fig. 4.6. This troll object has many bones, and its bone formation are given in Fig.
4.7. To properly animate any object, we have to assicate the bones from originating
source to destination avatar object if both of the objects are not the same genre, like
if the case of human avatar, such assocation can be pre-understood. So, to properly
animate the troll object, we found the bones association as given in Table 4.1.

The transformation data generated by us is convereted from heirachical repre-
sentation to absolute rotation matrices as described in section 4.3. We run graphics
player with the generated rotation data, and we received exact animation as being
produced by the player.

49

4 – Animation and Skeleton Extraction

Figure 4.7. Bones of troll object

50

4 – Animation and Skeleton Extraction

Table 4.1. Bone mapping between troll and human body

Joint Name Bone Number
Pelvis 3
LeftHip 43
LeftKnee 44
LeftFoot 45
RightHip 38
RightKnee 39
RightFoot 40
UpperBack 4

LeftUpperArm 23
LeftElbow 26, 24
LeftHand 27

RightUpperArm 8
RightElbow 11, 9
RightHand 12

Neck 5
Head 6

51

Chapter 5

Conclusions

In this work we covered entire pipeline of a 3D immersive system. We implemented
an acquisition system that reconstructs a human face. Our target application is
a small setup based 3D capturing system that can be deployed easily in a client
machine. So, we used Microsoft Kinect to capture 3D data and processed this data
to form a mesh of human face.

A performance analysis of MPEG-4 part 25 encoder is presented for user gener-
ated human body models, which are huge in size and need to be compressed. We
found TFAN the best compression method. With a bits per component value more
than 10, compression efficiency is higher than 80% without significant visual loss in
quality.

We worked with motion acquisition of a player, we extracted skeleton for 16
joints of human body. The motion data is tested with a 3D graphics player, and we
found it to be coherent with actual motion of player.

The extension of the work can be reconstruction of full human body, may be
with a model base approach to avoid the complexity of system. From the animation
part the work may be extended to encode and render the animation using other
MPEG-4 compression tools for animation i.e. BBA or face and body animation.

52

Bibliography

[1] 3d presence project. http://www.3dpresence.eu.
[2] Cisco telepresence. http://www.cisco.com/en/US/products/ps7060/index.

html.
[3] Collada - digital asset schema release 1.5.0 specification. Technical report,

Khronos group, 2008.
[4] Iso/iec 19775-1:2008, x3d (extensible 3d), part 1, architecture and base com-

ponents, edition 2. Technical report, Web3D Consortium and ISO/IEC
JTC1/SC24, 2008.

[5] N. Aspert, D. Santa-Cruz, and T. Ebrahimi. Mesh: Measuring errors between
surfaces using the hausdorff distance. In Proceedings of the IEEE Interna-
tional Conference on Multimedia and Expo, volume I, pages 705 – 708, 2002.
http://mesh.epfl.ch.

[6] Christopher J. Augeri, Dursun A. Bulutoglu, Barry E. Mullins, Rusty O. Bald-
win, and Leemon C. Baird, III. An analysis of xml compression efficiency. In
Proceedings of the 2007 workshop on Experimental computer science, ExpCS
’07, New York, NY, USA, 2007. ACM.

[7] Junjie Cao, A. Tagliasacchi, M. Olson, Hao Zhang, and Zhixun Su. Point cloud
skeletons via laplacian based contraction. In Shape Modeling International
Conference (SMI), 2010, pages 187–197, 2010.

[8] Michael Deering. Geometry compression. In Proceedings of the 22Nd Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95,
pages 13–20, New York, NY, USA, 1995. ACM.

[9] O. Devillers and P.-M. Gandoin. Geometric compression for interactive trans-
mission. In Visualization 2000. Proceedings, pages 319–326, 2000.

[10] Faming Gong and Cui Kang. 3d mesh skeleton extraction based on feature
53

http://www.3dpresence.eu
http://www.cisco.com/en/US/products/ps7060/index.html
http://www.cisco.com/en/US/products/ps7060/index.html

Bibliography

points. In Computer Engineering and Technology, 2009. ICCET ’09. Interna-
tional Conference on, volume 1, pages 326–329, 2009.

[11] M. Isenburg and P. Alliez. Compressing polygon mesh geometry with paral-
lelogram prediction. In Visualization, 2002. VIS 2002. IEEE, pages 141–146,
2002.

[12] Martin Isenburg and Jack Snoeyink Y. Face fixer: Compressing polygon meshes
with properties. In In SIGGRAPH’00 Conference Proceedings, pages 263–270,
2000.

[13] ISO/IEC. Iso/iec 14496-16:2011, information technology – coding of audio-
visual objects – part 16: Animation framework extension (afx). Technical re-
port, ISO, Feb. 2011.

[14] ISO/IEC. Iso/iec 14496-25:2011, information technology – coding of audio-
visual objects – part 25: 3d graphics compression model, edition 2. Technical
report, ISO, May 2011.

[15] Blagica Jovanova, Marius Preda, and Françoise Preteux. Mpeg-4 part 25: A
graphics compression framework for xml-based scene graph formats. Signal
Processing: Image Communication, 24(1–2):101 – 114, 2009. Special issue on
advances in three-dimensional television and video.

[16] Sung-Yeol Kim, J.-H. Cho, A. Koschan, and M.A. Abidi. 3d video genera-
tion and service based on a tof depth sensor in mpeg-4 multimedia framework.
Consumer Electronics, IEEE Transactions on, 56(3):1730–1738, 2010.

[17] Eun-Kyung Lee, Yun-Suk Kang, Yo-Sung Ho, and Young-Kee Jung. 3d video
generation using hybrid camera system. In Proceedings of the 2Nd Interna-
tional Conference on Immersive Telecommunications, IMMERSCOM ’09, pages
5:1–5:6, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[18] Seungwook Lee, Bonki Koo, Howon Kim, Changwoo Chu, Byoungjun Kim,
Daiyong Kim, KyoungSoo Son, Kiho Choi, Eun-Young Chang, and Euee S.
Jang. Quantization-based compact representation of 3d mesh. Technical re-
port, ISO/IEC, 2008.

[19] Khaled Mamou, Titus Zaharia, and Françoise Prêteux. Tfan: A low complex-
ity 3d mesh compression algorithm. Comput. Animat. Virtual Worlds, 20(2-
3):343–354, June 2009.

54

Bibliography

[20] Zoltan Csaba Marton, Radu Bogdan Rusu, and Michael Beetz. On Fast Surface
Reconstruction Methods for Large and Noisy Datasets. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), Kobe,
Japan, May 12-17 2009.

[21] J. Mulligan and K. Daniilidis. Real time trinocular stereo for tele-immersion.
In Image Processing, 2001. Proceedings. 2001 International Conference on,
volume 3, pages 959–962 vol.3, 2001.

[22] Benjamin Petit, Joeffrey Legaux, Jean sébastien Franco, Thomas Dupeux,
Bruno Raffin, Ingo Assenmacher, Benoit Bossavit, Emmanuel Melin, and Ed-
mond Boyer. A 3d data intensive tele-immersive grid.

[23] Benjamin Petit, Jean-Denis Lesage, Clément Menier, Jérémie Allard, Jean-
Sébastien Franco, Bruno Raffin, Edmond Boyer, and François Faure. Multi-
camera real-time 3d modeling for telepresence and remote collaboration. IN-
TERNATIONAL JOURNAL OF DIGITAL MULTIMEDIA BROADCAST-
ING, 2010:247108–12, 2009.

[24] M. Preda and F. Preteux. Advanced animation framework for virtual character
within the mpeg-4 standard. In Image Processing. 2002. Proceedings. 2002
International Conference on, volume 3, pages 509–512 vol.3, 2002.

[25] Jarek Rossignac. Edgebreaker: Connectivity compression for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics, 5(1):47–61, Jan-
uary 1999.

[26] JarekR. Rossignac. Through the cracks of the solid modeling milestone. In
Sabine Coquillart, Wolfgang Straßer, and Peter Stucki, editors, From Object
Modelling to Advanced Visual Communication, Focus on Computer Graphics,
pages 1–75. Springer Berlin Heidelberg, 1994.

[27] Giseok Son, Byeongwook Min, Daiyong Kim, Hyungyu Kim, and E.S. Jang.
Simple and fast compression of 3d meshes. In Convergence Information Tech-
nology, 2007. International Conference on, pages 2175 –2180, nov. 2007.

[28] Gabriel Taubin, André Guéziec, William Horn, and Francis Lazarus. Progres-
sive forest split compression. In Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pages
123–132, New York, NY, USA, 1998. ACM.

55

[29] Gabriel Taubin and Jarek Rossignac. Geometric compression through topolog-
ical surgery. ACM Trans. Graph., 17(2):84–115, April 1998.

[30] Gabriel Taubin and Jarek Rossignac. Geometric compression through topolog-
ical surgery. ACM Trans. Graph., 17(2):84–115, April 1998.

[31] C. Touma and C. Gotsman. Triangle mesh compression. In In Graphics Inter-
face ’98 Conference Proceedings, pages 26–34, 1998.

[32] R. Vasudevan, G. Kurillo, E. Lobaton, T. Bernardin, O. Kreylos, R. Bajcsy,
and K. Nahrstedt. High-quality visualization for geographically distributed 3-d
teleimmersive applications. Multimedia, IEEE Transactions on, 13(3):573–584,
2011.

[33] Wanmin Wu, Raoul Rivas, Md. Ahsan Arefin, Shu Shi, Renata M. Shep-
pard, Bach D. Bui, and Klara Nahrstedt. In Wen Gao, Yong Rui, Alan Han-
jalic, Changsheng Xu, Eckehard G. Steinbach, Abdulmotaleb El-Saddik, and
Michelle X. Zhou, editors, ACM Multimedia, pages 877–880. ACM.

56

	Acknowledgements
	Summary
	Introduction
	3D Graphics Acquisition
	Teleimmersive Environments
	Silhouette Based Reconstruction
	Synchronization
	Calibration
	Background Subtraction
	3D Modeling
	Visual Hull

	Image Based Reconstruction
	Image Model
	Disparity Calculation

	Hybrid Camera Based Systems
	Relative Camera Calibration
	Depth Calibration
	3D Depth Warping
	Outer Bounary Matching
	Optical Noise Minimization
	Recovery of Lost Depth Data
	Temporal Consistency

	Proposed Reconstruction System
	Micrsoft Kinect
	Color Video Data
	Depth Data
	Data Acquisition and Pre-processing
	Greedy Projection Triangulation
	Texture Mapping

	Graphics Compression
	Geometry Compression
	Connectivity Compression
	Deering's Geometric Compression
	Topological Surgery
	EdgeBreaker
	FaceFixer
	Geometric Progressive Compression
	MPEG-4 Graphics Compression
	Scalable Complexity 3D Mesh Coding
	Triangle Fan-based Compression
	Shared Vertex Analysis
	Quantization Based Compact Representation

	Graphics Compression Test
	MPEG Graphics Encoder
	Results
	Encoding Gain
	Encoding Complexity
	Surface Distortion

	Animation and Skeleton Extraction
	Bone Based Animation
	Proposed Skeleton Extraction Method
	Motion Data
	3D Graphics Player

	Conclusions
	Bibliography

