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Summary

Process and operating condition variability creates a huge problem for current and
future digital integrated circuits, because it forces them to operate at a speed, volt-
age and hence power and energy consumption which is very far from the optimum.
System on Chip (SoC) architectures are born to meet some of the microelectronic
trends. A single integrated chip contains an entire system with one or more cen-
tral processors, several other chip-set, memories, and interfaces. The bottleneck of
this approach are the interconnections between the various components. A global
asynchronous communication is particularly suitable for this purpose because it
removes most of the variable delays of the synchronous operation. At the same
time, there is always the need to optimize the speed or power consumption of the
computation and the Razor approach has been built for this purpose (trying to go
below the synchronous safe operation).

So the goal of my work was to implement a new Globally-Asynchronous Locally-
Synchronous (GALS) architecture that combines Safe Razor modules connected by
flexible asynchronous communication channels (see Figure 1). In such architecture,
both computation and communication are executed without the margins required
by the synchronous worst-case methodology achieving better performance.

The thesis makes two contributions to the state of the art:

1. Safe-Razor: a metastability-robust adaptive clocking inside each synchronous
GALS module.

2. M-of-N PID code: an efficient Delay-Insensitive (DI) protocol for the asyn-
chronous communication between the GALS modules.

The Safe Razor is built on an earlier synchronous Razor architecture which can-
not avoid potentially unrecoverable errors due to metastability. The synchronous
Razor also requires an expensive restoring procedure available only on micropro-
cessors or complex systems. The proposed Safe Razor confines both metastability
and errors within a single module, without requiring any pipeline checkpointing
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Figure 1. GALS architecture.

logic for restarting the system; it also ensure that both metastability and errors
are always detected and corrected.

There is increasing interest in using m-of-n delay insensitive codes for robust
asynchronous global communication, to support the design of coding-efficient and
low-power channels. However, a fundamental obstacle in using these codes has
been complex and expensive hardware support. This thesis addresses this issue,
introducing the PID code which is a new delay insensitive (DI) data encoding
protocol for better coding efficiency and simple hardware implementation.
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Chapter 1

Introduction

1.1 Statement of the problem
In the last years, in microelectronics field, we have seen a continuous increment in
the complexity of integrated circuits. More and more functionality is implemented
in a single chip due to continual scaling of transistors and increasing the size of
integrated circuits. In addition to the complexity, there is also an increment in the
performance of digital integrated circuits. Not only the continuous increment of the
clock frequency (now above the Giga Hertz), but also the presence of independent
computing nodes within the same chip allow to obtain higher performance.

Figure 1.1. Synchronous margins for safe operation.

Figure 1.2. Cycle period in asynchronous designs.
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1 – Introduction

In synchronous circuits, the clock period is chosen according to both the typical
delays of logic gates and connections (the blue component to the left in Figure 1.1),
and other variables that may alter the propagation times of the signals (such as the
production process , temperature, supply voltage, and others). In asynchronous
circuits (Figure 1.2), the time required by the logic gates increases since we need to
add logic for encoding and decoding the channel, but this saves a lot on the variable
components because while in synchronous circuits they are over-estimated, in the
asynchronous circuits, the delays are the real ones.

1.2 Asynchronous design benefits
Synchronous Systems use a global clock as a centralized control signal which forces
all components in the circuit to operate at fixed-rate. On the other hand, asyn-
chronous circuits do not have a global clock and all components can operate at
varying rate.

Asynchronous Designs have three potential main advantages:

1. Lower power. Since no global clock is required, components consume power
only on-demand. Moreover, avoiding the global clock distribution, we also
avoid that clock inherently consumes power continuously.

2. Robustness and Scalability. Components can operate at different speeds and
the all design style becomes object-oriented with reusable components, flexi-
ble interfacing and scalable design. All of these features speed up the time-
to-market.

3. Higher Performance. Because of the systems mismatching with central fixed-
rate clock, they are not limited to worst-case clock rate. Moreover, the
components interfaces provide instantaneous wake-up from standby mode.

Therefore, one promising recent direction is to design entirely asynchronous
systems, or to combine synchronous cores with flexible asynchronous channels to
form a global-asynchronous locally-synchronous (GALS) style system [23]. Both
systems promise flexible and timing-robust communication, with low-power and
ease-of-assembly.

1.2.1 Asynchronous design in communication
Coding theory is an approach to various science disciplines which adds features in
data transmission methods. One concern of coding theory is designing codes that
help synchronization. Considering two mechanism that require mutual synchro-
nization, asynchronous circuits must explicitly generate sequence control signals

2



1.3 – Description of the remaining chapters

and they must encode/decode data to carrying information over self-timed on-
chip interconnect links. Data encoding can add redundancy in the channel link
and it adds the costs of encoding/decoding. In synchronous circuits much of this
synchronization is implicit in the common clock signal.

To design robust asynchronous channels, delay-insensitive (DI) codes [24] are
commonly used, where delays in receiving a data item, or even inter-bit timing
skews, can be tolerated. However, one of the bottlenecks of commonly-used DI
codes (i.e. dual-rail, 1-of-4) is that several have poor coding efficiency and high
transition power. Alternatively, dense DI codes can be targeted, which are have
high coding efficiency and low power (i.e. m-of-n). However, these codes typically
have significant overheads in their supporting hardware, which often make their
use infeasible.

1.2.2 Asynchronous design in computation
In order to optimize the speed or power consumption of the computation, the
Razor systems (discussed in section 2.1) go below the safe operation (Figure 1.1).
This obviously can lead to some errors which are detected and corrected by special
circuits. When an error is detected, the operation is re-computed at a nominal safe
mode. If errors do not occur so often, the system can achieve better performance.
Razor has two drawbacks:

1. Razor is practical only with processors, because they already have the check-
pointing and restarting logic required to re-start the system in case of errors.

2. Razor may have false positive error events in case of metastability.

An asynchronous approach can solve both the above issues.

1.3 Description of the remaining chapters
This thesis focuses on two different main aspects of a GALS architecture: the
computation and the communication. Therefore the remaining chapters are divided
accordingly:

Chapter 2: Safe Razor for computation This chapter starts with a background
on the previous Razor architecture (Section 2.1) along with the motivation
on why metastability can cause issues in the error detection (Section 2.1.1
for RazorI and Section 2.1.2 for RazorII). Safe Razor design is explained
in detail in (Section 2.2) showing how it can be used to make the Razor
idea works in case of metastability while improving its performance. Section
presents a timing analysis of the Safe Razor GALS module. At the end, some
experimental results are presented in (Section 2.5).

3



1 – Introduction

Chapter 3: PID protocol for communication A new class of Delay-Insinsitive
code, M-of-N Partial Invertion Data (PID) code, is presented in this chap-
ter. Section 3.1 gives an introduction on asynchronous data protocols and
presents some of the most used DI codes. Section 3.3 presents the PID pro-
tocol, analyzes the codeword and the encoding/decoding process. Hardware
implementations of a generic M-of-N Completion Detection (CD) is discussed
in Section 3.4. Experimental results are presented in (Section 3.5).

Chapter 4: Conclusions and future work Conclusions (Section 4.1) and Fu-
ture Works (Section 4.2) are presented in this chapter.

4



Chapter 2

Safe Razor for computation

2.1 Metastability in Razor

In this section we provide evidence and simulations that show the vulnerability
of the original Razor approaches to metastability failures. Razor is often used to
denominate the concept and several di�erent derivatives of the main principle have
been developed. Table2.1 summarizes some of the publications related to Razor
designs. In [11] the Razor concept is was presented and it is usually denoted as
Razor I. A modi�ed version was later presented in [21] and is usually denoted as
Razor II. Most of the other publications on razor circuits are derivation of either
Razor I or Razor II. We follow by analyzing the metastability properties of both
frameworks.

Figure 2.1. Razor publications.
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Chapter 4

Conclusions and future
works

4.1 Conclusions
This thesis presents techniques for developing a robust and efficient Globally-
Asynchronous Locally-Synchronous (GALS) digital design. The work is organized
in two main areas: the computation and the communication parts. Asynchronous
design techniques are used in both areas.

A new Safe Razor architecture is built on the previous Razor design for the
computation within a GALS module. It removes the need for expensive check-
pointing logic so allows one to implement the nearly-critical clocking approach
proposed by the Razor architecture to any logic block, not just to microprocessors
with a restartable pipeline. It totally eliminates metastability failures, which still
affect the classical Razor approach if the metastability detection logic itself (which
in that case was synchronous, while in our case it is asynchronous) goes metastable.

A new Delay-Insensitive M-of-N protocol (where only M wires flip for each data
transaction), called Partial Inversion Data (PID), is proposed for the communica-
tion channels between the GALS modules. It is a NRZ code, having significant
power and throughput benefits with respect to Return-to-Zero (RZ) codes. It is
Level-encoded, meaning that the decoding process simply uses the values of the
codeword and it has a generic encoding algorithm and decoder implementation
(that works for any M-of-N PID code). As hardware component, a M-of-N CD
linearly scales in size based on the number of its inputs N and number of transi-
tions M. It does not require external phase conversion circuits, nor does it require
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4 – Conclusions and future works

a separate serialized reset phase. It does the job for any M-of-N code (not just
PID).

4.2 Future works
Figure 4.1 shows the final goal of my research activities. A complete GALS Net-
work on Chip (NoC) with heterogeneous Safe Razor modules (i.e. microprocessors,
hardware accelerators, peripheral interfaces and so on) connected through channels
using PID protocol.

Figure 4.1. Network on Chip architecture with Safe Razor modules
connected by PID channels.

This architecture should run faster than a classical synchronous NoC since it
does not require to add margins for the computation and communication. Ro-
bustness is guaranteed in the computation by the asynchronous design of the Safe
Razor which safely deals with metastability in the flip-flops; while in the commu-
nication the Delay-Insensitive characteristic of the PID protocol allows arbitrary
delays and skew between bits in the channels.
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