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Abstract—In this article, we present the work-in-progress &  for example, is capable to communicate through 3@ a
the EU FP7 PHARAON project, started in September 201.  WIF| connections. It integrates phone services withh
The first objective of the project is the developmet of new  performance graphics and sophisticated softwardicapp
techniques and tools capable to assist the desigrierthe devel-  +5ns such as real-time video and audio. To supihdstap-
opment of parallel embedded systems, from executabbpecifi- plication load, new devices make use of recentlighrar-

cations to target-specific implementation and debugjng on a . : .
multicore platform. This tool chain will offer and implement ~ Chitectures capable to deliver enough processimgpdut

several parallelization strategies, reflecting théunctional and ~ these changes have two negative effects. Firstiekelop-
non-functional constraints of the system, and drivig the de- ~ment of parallel software, capable of exploiting limie
signer into incremental parallelization and adaptaion steps.  processor cores, is much more complex and therefore
The second objective of the project is to develop anitoring expensive than traditional sequential software, ctvhin-
and control techniques in the middleware of the syem capa-  creases the product cost. Second, the increasdifycpia
requirements and therefore reduce power consumptiotrans- reduction of autonomy. The newest smart phonesrean
parently. for at most about three days in standby mode whilmer
Keywords-component; UML; parallelisation; OpenMP; low- simple phones did qot negd a recharge for an eWﬂJek
power; ressource management; profiling; multiprocessor The PHARAON project will develop new techniques and
tools that will offer the possibility to reduce tlseftware
development cost (25% targeted in the project)ianckase

. . .. . the autonomy of embedded systems by nearly 20%.
The PHARAON project is a European collaborative ini

tiative between universities, research labs andistnihl B. Consortium

companies. It is sponsored by the European Comwnissi  pPHARAON is coordinated by a large company Thales
which supports part of the costs and assists parinethe  comunications & Security. Tedesys and Vector Fabaie
project management. The first section provides me@® yo SMEs completing the industrial partners. Acaitem
presentation of the project. Section 2 describesuie cases partners are made of Politecnico di Torino, Ecoterhile
driving the project. Section 3 surveys our propodedign g, harieure and University of Cantabria. Finallye the-

flow. Detailing this flow, the fourth section pregs the High i ; . .
Level System component approach (UML/MARTE) as WeIIfsearch institute Interuniversitair Micro-Electrami€entrum

as its associated code generator, and the fiftiosede- is completing the consortium.
scribes the parallelisation and performance amalysdls. C. Technical approach
Section 6 presents the runtime power managemertochet
ology and tools. Finally the conclusion highligktie project
perspectives.

l. INTRODUCTION

The PHARAON project targets the development of two
different sets of techniques and tools, both aimabhdest
exploiting the low-power capabilities of modern tivgbre
A. Context and objectives processors, tackling both the programming and mmti

The latest and greatest embedded systems integratePOWer management challenges mentioned previouslg. T
wide range of very complex functionalities. A smaione,  first set will directly impact the design of thepdipation.



The objective is to assist the designer in findihg most
adequate software architecture taking into acchandware
constraints.

To do so, tools will be capable to evaluate thealbelr
structure of an application and propose improvesieAt
tool will also be capable to handle communicatibasveen
different processors and generate the multi-pracesm-
bedded code. The second set of techniques and woibls
impact the runtime behavior of the application. Tiec-
tive is to adapt the performance of the platforfrequency
& voltage for example) in order to consume only tiee
quired energy. A reconfiguration system and a laower
scheduler will be integrated with other run-timengmnents
on top of the platform.

1. USE CASES

The efficiency of the techniques and tools devedojre
this project is showcased on three example apitsat
from two different domains: software defined radiad im-
age processing.

A. Radio applications

(police, fire brigades, medical services), by imjng the
autonomy and quality of radio communications.

User Plan !

Control Plan

Figure 2. Radio use case #2

Despite the dataflow pipeline appearance of thidiea-
tion at high-level, it is essentially control-flodependent,
with potential cross-layer optimizations and dagpehd-
ences. Our objective is to provide implementatiohthese
applications for heterogeneous multicore platfoand op-
timize power consumption based on monitoring date
key problem lies in optimizing the distribution applica-

Two complementary radio applications are studidie T tions across processing units while respectingdithieg and

first application consists of the implementatioragbhysical
layer (PHY) with real-time reconfiguration and nikgdtream
capabilities. The platform architecture for the lempenta-
tion of PHY is shown in Fig.0. It contains digital front-end
DIFFS connected to antennas,

Error Correcting (FEC) blocks. The data is exchanbe-
tween blocks in a flexible and programmable waytigh

consumption constraints defined in the applicasi@pecifi-
cation. The design flow developed in the PHARAON-pr
ject, and presented in section 3, will help theteysengi-
neers to analyze the applications and to find amap in-

a baseband procesdegration for a targeted platform.
ADRES and an outer modem OMD containing Forward

B. Maintaining the Integrity of the Specifications
Our third example is an advanced 3D stereoscopili-ap

the 256-bit wide AMBA AHB buses and the intercorinec cation (Fig.3), with real-time and high definitieonstraints,

controllers (ICC). All these platform blocks comtairoprie-
tary domain-specific processors which can be prograd
by the ARM processor in the Control plane. Usinig trer-
satile feature, the platform is capable of handimgitiple
and/or concurrent data streams. For example, orglegis
receiver platform can switch from receiving a WLANN
packet to receiving a LTE Cat 4 packet iniddy reconfig-
uring all of the components’ firmwares.
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Figure 1. IMEC COBRA Software Defined Radio platform

The second application (Fig.2) concentrates onirtiie
plementation of the upper protocol layers. It hasdIP
packets, relies on TDMA (Time Divion Multiple Ac®s
and targets an ad hoc network. The use of the PHAIRA
workbench will help to improve civil protection sees

used in automotive domain for humans/obstacle tletec

Figure 3. Stereovision use case

The application infers the 3D scene geometry from t
images provided by two twin cameras under a knoam ¢
figuration. Several steps are required in ordezaimpensate
the distortion introduced by the physical charasties of
the sensors, to align the images and find the deagh with
enough accuracy to be used in safety critical envirents.
The application of the design flow described intisec3 will
allow finding the optimal architectural solution be imple-
mented on a multicore platform. This use case shoul
demonstrate the impact of our system design flowritical
aspects of embedded systems design.

.  PHARAON SYSTEM DESIGN FLOW

The targeted design flow in PHARAON drives the gasi
from UML specifications to implementation of cross-



compiled code onto the platform. As depicted in.4ighe
proposed flow starts designing the application veithigh

level

description

component based

(UML/MARTE) with properties structured via XML fike

During this step, different deployment strategias be test-
ed and a coarse grained parallelisation (betweenpoe

nents) can be done.

For each component, the associated business cd@a+«C
files) has to be developed accordingly the targatadware
resource. Then, a code generator is developedttonati-

cally generate the wrapper codes required to akoead

run the SW component in the HW platform and intarect

the business code. It also produces the execufitddethat

are used as inputs in the four different stagetheftool-

chain.

In a first stage, the C code to be parallelizedxsacted
from the UML model and sent to a performance sitoula
This simulator then generates a timing and powaiyais
of the bloc to be used in the next stage.

In the second stage, the parallelisation tool otisthe
internal code of each component. Basing its analgsithe
C code entry and performance information, the pelizé-

tion tool

generates a

parallel code

OpenMP/Openstream directives.

In a third stage, the optimized code is simulatacdtte
performance evaluation tool to obtain the informatire-
quired for run-time optimization. Alternatively,gftode can
be implemented and measured onto the physicabphatf

Finally, different runtime managers (Reconfiguratio
manager & low-power scheduler) are deployed inpimgsi-
cal platform in order to reduce power consumptidmlev
ensuring required application performance. Herafope
mance and power traces collected by the performsinue-
lator help to refine the power management strategy.

Inputs

C/C++ files

Performance
simulator

Performance]
metrics
Parallelization ) | Parallelized

tool C/C++ files

® e 6 0

V.

Simulation
Files

simulator

Performance
metrics

Physical platform
Figure 4. PHARAON design flow
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HIGH LEVEL SYSTEM METHODOLOGY

A. UML/MARTE modeling

In order to support all the different stages of filogv, a
powerful high-level modeling methodology has beex d
fined. Based on UML, it follows a component-basgd a
proach, applying the Model-Driven Architecture (MDA
principles to the development of HW/SW embedded sys
tems. Additionally, we chose the standard MARTEfipgo
to handle all the specific characteristics relatedmbedded

integratingdiﬁ

systems. Moreover, the proposed methodology isvaoé-
centric since it considers application-specific Huvily

approactwhen speed or power constraints coming from theggdes

supplied mapping of software components to apptinat

processors are not met.

Following the proposed methodology, designers can
completely describe the system, enabling autongeitera-
tion of input data and code required by the diffiéteols of
the design flow. For such purpose, designers mestribe
in different views the system functionality (Fig.®)e target

platform and the resource allocation.
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Figure 5. Excerpt of the stereovision application structure

erent tools, we have to extend

However, since the methodology has to support quite
the previous

UML/MARTE approaches in several ways. The mainéssu
the flow has to cover are heterogeneity, parabélin, sup-
port for different /O schemes and run-time managem
Thus, specific improvements are being proposedafioof

these points.

In order to support adequate mappings to heteragene
systems, three major issues have been detecte, iFiis
required to generate different executables with dbmpo-
nents mapped to each resource. Second, it is eshjtdr
ensure the correct access to shared informatiomtamsing
the memory architecture of the original source coited
third, the model must handle multiple files for thkame
component, each one optimized for each possiblepathp

resource, including files for host simulation.

In order to solve the first two points, the syste@pping
(Fig.6) is performed in two steps: first componeat®
mapped to memory spaces and then these memorysspace
are mapped to resources. As a result, differentigables
are generated for the system, one for each menpages
More details can be found i@. Additionally, to support
different files for the same component, differetttilbutes

have been added to the “file” stereotype.
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Figure 6. Platform mapping example



Moreover, the information described in the UML mlode

also enables the automatic generation of ad-hocruorita-

tions infrastructures. To optimize it, differentacimel seman-
tics has been added to MARTE proflle This allows de-
signer to optimize the system concurrent architecin a
coarse grain, by modifying the relationships betwdee

system components. Finally, different efforts hdween
started to enable automatic I/O integration and-time

power management support.

B. Code generator

From the information included in the UML/MARTE
graphical model, the inputs for the different toolshe flow
are created. This generation process is performetivo
steps. First, an Eclipse plugin has been develogagiable
of transforming the graphical model into a set dIXfiles.

From these files, the generator produces a setfié€
that includes the code initializing all the compotse
mapped on each memory space, the C wrappers thhteen
the communication among the application componehts,
different agents handling incoming requests andctimapi-
lation scripts.

The interface wrappers use the facilities provitigda
communication library developed to implement theafi

V. PARALLELISATION TOOLCHAIN AND PERFORMANCE

ANALYSIS

A. PAREON performance simulator

Within the PHARAON project the performance analysis
of C applications on the target hardware platfoerpér-
formed by the Pareon tool, which also estimatesggneon-
sumption. The estimates are fed into the paradigbn tool
to parallelize performance and memory bottlenedk¢he
program, while tracking effects on power consummptieur-
thermore, the energy estimates are used by theptomer
scheduler that can select the most power-efficipetrating
mode of the system. The modelled target hardwaranis
ARM Cortex A9 and Intel Core 5 multicore processors

The Pareon tool is a collection of command linerint
face (CLI) tools and a GUI. Within the PHARAON peof
the CLI tools are used in the automated PHARAON-too
chain, while the GUI enables human inspection efrtiod-
elling results. The input to the tools is the seuwrode of a C
or C++ program. The input program should complyhwite
ANSI C99 or ANSI C++98 standards and may contain
lected POSIX function calls. The vfrcc compilerrstates
the input source code into a generic executablarointer-

se

communication mechanisms. These wrappers are |mp|éned|ate instruction set arChiteCtUre, which is .pﬂhljent of

mented in a three layer structure, in order to hawveugh
flexibility to support multiple communication sentis and
mappings. One layer implements communication seggnt
Characteristics such as synchronous or asynchrocellss
fifos, data joining or splitting and synchronizedpsiorized
accesses from different clients are implementetthigstep.
Then, argument are adapted to be transferred deyeod
the communication type (within the memory spacedifn
ferent spaces of the same OS, in different OSeswurce
types,...). Finally, the infrastructure obtains frohe com-
munication library the generic transfer functions the re-
quired communication types required on each case.
This infrastructure has been applied to the stésemv
use case, enabling the exploration of differentfpiens,
and supporting the generation of optimized codetlfiis
platforms. Some results can be seen in the neld.tab

TABLE I. EXECUTION TIMES OF THE STEREOVISION USE CASE
HW platform Original code (sec Optimized code (sec
1/O type Tes-benct Cameri | Tes-bencl | Camer:
PC simulation 16.3 - 25.2 -
Beagle: no Neon d
compilation flags 305.2 313.9 199.7 202.9
Beagle-Panda: no
Neon comp. flags 278.7 286.8 164.8 165.4
Beagle: Neon compj-
lation flags 84.7 85.2 68.8 74.8
Beagle-Panda: Negn
comp. flags 235 26.6 31.3 32.40
SPEAr-600 262.6 265.8

the target processor. Then the generic executabten in
the Pareon simulator in the provided executionremvnent,
including necessary test data, input files, envitent varia-
bles, etc. During the execution various statissogh as
instruction counts and memory behaviour are calg:cEi-
nally, the pareon report command converts thedeststa
into estimates for a particular hardware targetf@ien and
generates an XML output file with performance asver
estimates of the input program.

The internal Pareon toolflow for performance anialys
shown below in Fig.7and an extensive documentation of
the Pareon functionality is available onlineéat

test

binary ‘
data

timefenergy
‘ libraries ‘

esfimates
for piatform 1_|
input \_»-" = i ey e timefenergy
ciCH+ “UF compller, g | execution s estmates
m‘k VF simulator /.»| BEREEE s rapc?ft_,—bv

Tor platform N

Figure 7. Pareon performance analysis toolflow

In contrast to gate-level back-annotated timing power
modelling tools in the EDA industry, the performaranal-
ysis in Pareon is much faster. It delivers the ughput of
only few hundred times slower than real-time execut
compared to EDA tools, which are orders of magmtud
slower. Furthermore, in contrast to state-of-thegawofile-
based optimizing compilers, the Pareon can mode- no
existing chip configurations, for example, with rgroces-
sor cores than what's available on the market today
Another important feature of the tools for desigace ex-
plorations is that the modelling of different ptaths or



operating conditions can be done with a single Kitan
step. Based on this simulation step the necessatigtics
are gathered of the program execution and afteérttieaac-
tual estimates are quickly computed using propemiethe
target hardware.

B. Parallelisation toolset

The toolset supports the parallelization of seqaéni
software that can include significant control dexis, and
pointer and dynamic memory operations. It can lkép
cover both task and data parallelization opporiesijtfor
any parallelization technique.

Sequential C

oo <— Code::Blocks IDE

0 +
Automatic
i i~ Annotation
i Execution
Trace Library <= Tracing - Input Data
. l
Trace Data
0. ; Visualization, -
ZGR Viewer <» Analysis < Code::Blocks IDE
Manual
Parallelization
v. s

Parallel C

Shliice ~—» Code::Blocks IDE

Figure 8. Parallelization toolset flow

The toolset flow shown in Fig. 8 is divided in faatages:
(1) source instrumentation, (Il) run-time colleatiand com-
paction of execution data, (lll) execution data pipiaal
visualization and analysis, and (IV) source codelpeliza-
tion. It is controlled from the Code::Blocks C/CH3E that
supports also cross-referencing the execution wate vis-
ualized in stage Il with the sequential C projsatirce.

The sequential source annotation in stage | support-
time data dependency collection by means of a apéei
brary. Then these data are saved and used bydphigal
visualization and analysis interface.

This interface compactly displays in a graph fatimoth
the execution profile and the data dependenciéacititate
the search for parallelization opportunities. Tiwles are
data-processing program elements like statemeatgs)
function calls, while the edges are the data depecids
between them. The call stacks are also represemedthe
nodes can fold an entire execution rooted on tHike,for
loops and function calls.

Fig. 9 shows an analysis view for the Stereo Maighi
application presented in Section 2.2. The rect@mqodes
are folds of loops, the elliptic are function dallds.

Two of the loop folds, with stronger colourizatioim-
clude 53% and 18% of program execution.
them significant candidates for parallelization exsally
since they have no strong data dependency between t

This makes

©.19%)

Loop Fold (0%)
st 0

comp 27
a 3]

Function Fold (0.02%)
srefied_sm.c:413
removeRedundantSupportPoints().35
[x7.z)

€130
computeTriangulation(). 39
[fwx.13]

Function Fold (0255%)
srhed_sm.c:148
compucPlanes()307
flovu.5]

Figure 9. Analysis of the Stereo Matching application

Function Fold (0.26%)
srefted_sm.c:173
createGrid) 317

kw8

C. OpenMP extension for data-flow and stream
parallelism

OpenStream htp://www.di.ens.fr/OpenStregmis a
stream programming language, designed as an inotame
extension to the OpenMP parallel programming lagg@a
It allows to express arbitrary task-level data fldepend-
ence patterns. Programmers expose task paralleismn
provide data-flow information to the compiler thghucom-
piler annotations (pragmas), used to generate tiuatedy-
namically builds a streaming program.

The language supports nested task creation, modular
composition, variable and unbounded sets of produc-
ers/consumers, and first-class streams. Theserésatena-
bled by our original GCC-based compilation flowlowal
translating high-level parallel programming patserimto
efficient data-flow code.

Data-flow execution is essential to reduce enermgy-c
sumption, one of the primary focuses of the PHARAON
project, by reducing the severity of the memorylwdalhis
is achieved in two complementary ways: (1) threac:l
data flow naturally hides latency; and (2) decodpteoduc-
er-consumer pipelines favor on-chip communicatibg;
passing global memory. Key to the efficient exaoutof
OpenStream programs is our optimized runtime system
providing low-overhead synchronization and worlatitey
scheduling.

Block size 128x128. OpenStream (solid) - StarSs (dashed)

254

= vy Ny
=) @ o

Speedup vs. sequential

o

o

256 1024 4096 65536

Number of blocks

Figure 10.Speed-up comparison OpenStream and StarSs

Work stealing is a central component of the Opezedir
run-time library, allowing for efficient lock-freecheduling



of lightweight tasks. The dynamic scheduler hasested

to the x86 and ARM architectures, with a focus orrect-

ness and performance. Improving on Chase and lcevis

current doubly-ended queue, OpenStream includdste-s
of-the-art work stealing implementation. The ARMsien

of the algorithm is specifically optimized for itweak

memory model. Moreover, based on recent progreslsen
formalization of memory consistency, we establishiee

first proof of the relaxed double-ended queue fachsa

processoD.

communicates with a faster one at the rate of ke pro-
cess. Parallel execution is clearly possible, fitbmm obser-
vation of the dependence graph, but the effectigérilu-
tion mandates decoupling processes executing eretift
rates. Usual synchronous compilation leads to mpeofor-
mance with the fast process waiting for the conighebf
the slower one, as seen on the first figure. ™eriege all
the advantages of Heptagon while allowing for galalode
generation, we extend it with futures. At the seuoode
level, futures may be seen as simple annotatiansrg the

Our experiments show that the optimized ARM code, ofunctional semantics of the program unchanged.

which two versions have been written in C11 andveat
inline assembly, generally outperforms the origisedjuen-
tially consistent Chase-Lev in a variety of benchkaain-
cluding a selection of standard fine-grained tazfajbel
computations (Fig.11). These results provide thad@ation
for a robust parallel library, and pave the way fiorther
research into correct lock-free algorithms for tume sup-
port.

13

seqest [
cll  m—
native N

1.25 |

Seq-Cst

Speedup vs

Fibonacci FFT-1D

Matmul Strassen Knapsack Seidel

Figure 11.Speed-up Vs Seq-Cst on various benchmarks

OpenStream originated from the TERAFLUX FP7 praoject

In PHARAON, it is being ported to embedded ARM rirult
core platforms and extended to support

D. Data-flow synchronous programming of parallel
embedded systems

During the compilation phase, they are key to emabl
asynchronous calls while preserving memory bounegsin
As seen in the second figure, our example can fizegitly
compiled to parallel code by adding lightweightnsetics-
preserving future annotations.

ig: true ‘false ‘false true |false |false true

Figure 12.slow_fast async flow

ig: true false | false | true false | false
ys: ( slow slow

m: 314 | | 628 | |
¥: 0 g 2 T34 414|517
yi: fas

Figure 13.slow_fast sync flow

Operations on arrays are frequent in embedded appli
tions, as example applications studied in the PHARA
project show. It is thus very important when designa
dedicated programming language to offer high-lewglport
together with efficient compilation techniques. practice,

The PHARAON project also investigates longer-termyis means reducing the number of array copies. Héga-

research directions, such as the design and impltien
of safety-critical embedded software running onapear
multicore processors. Heptagon is a data-flow syorabus
language devoted to the design and implementati@ne
bedded software. Its ancestors Lustre and Scaderhav a
large success in the field of safety-critical réale systems,
offering a clean semantics, with a robust, effitiesnd
traceable compilaton flow, while enforcing boundest
source and bounded reaction-time guarantees.
compilation schemes for such languages lead to g8y
cient, but sequential code. Various distributiod garallel-
ization approaches can be applied a posteriotieaprice of
performing a non-modular and hardly scalable statialy-
sis of the generated code to guarantee efficiemcly cor-
rectness. We provide a clean alternative to thppeoaches,
giving the designer explicit control on the desymctization
and on the distribution of the program (or mo@el)
Classical issues are summed up in the classioal st
example sketched in Fig.12 and Fig.13. A slow pssce

gon compiler implements original techniques to tais,
based on a programmer-guided, modular inter-prae¢du
memory allocation procedufe

Finally, we are now studying the marriage of théada
flow synchronous paradigm with computational models
dedicated to high-performance regular algorithmghsas
SDF/CSDF graphs, with the intuition that the resuilt be
more than the sum of its parts. We believe thasicaning

HBWeV communication rates as a first class citizen cdrggliage's

semantics is key to next generation tools for erdbddlat-
forms, reconciling programmer productivity, effiosteand
predictable compilers and analyzers, and paradiel\are.

VI. RUNTIME POWER MANAGEMENT TOOLYRTPM)

Global run-time management methodology used in the
context of PHARAON project consists of two phases:
Phase 1. A full design space is explored for eggiia
cation at design time to derive set of optimal gesi
points. This phase is out of scope of this paper.



- Phase 2: Critical decisions about all active apilins
are taken at run time. This run-time phase is exgldn
PHARAON project.

RTPM approach

During the application run, there are various ofyrof
ties which can be exploited by global run-time ngerato
optimise application and hardware platform perfamea
As depicted by Fig. 14, we propose run-time densidur-
ing the lifetime of applications to be organizetbitwo lay-
ers: coarse grained level L1 decisions triggerediynamic
events and fine grained level L2 decisions to inaprappli-
cation performance.
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Figure 14.RTPM architecture

L1 decisions include optimal selection of applicati
configurations and then mapping one or more taskbase
configurations on the platform resources. Thesdsuats
are more costly to perform and usually involve rdigura-
tion of platform hardware. They are triggered byawic
events generated due to change in the environmgntiger
moves from roaming with LTE network into a WiFlI
hotspot. On the other hand, L2 decisions correspoffitie-
tuning application performance. The control knobailable
with the platform (e.g. DVFS) and with the applioat
specific parameters (e.g. changing frames per secon-
straint in MPEG4 encoder to trade-off quality wikrfor-
mance) are tuned iteratively to optimize applicatiand
platform performance.

B. Decision making at run-time

During application run, there are various oppotiasito
optimise application and hardware platform perfamea

platform and application parameters at run-timesxploit
these opportunities. GRM needs to do this decisiaking

in a systematic way by using coarse-grained aneé- fin
grained decisions Following is a high-level algumitfor the
runtime decision making which will typically run ae
controller of the hardware platform. In PHARAON,ish
run-time decision-making flow is enabled by using-p
posed RTPM architecture (Fig.14).

Inputs:

a) Hardware platform information e.g. available resoes —
both computation and communication, different knohs
those resources that can be tuned

b) Application information e.g. constraints — both daand
soft, multiple optimal operating points and theiorie-
sponding resource usage, Quality of Service (QdSjpe

plication runs

External inputs regarding environment changes same
additional sensors to indicate such changes orstesors
could be built-in on the hardware platform

c)

1. Decide platform resource allocation to applications

N

Select the optimum operating configuration for eagh
plication using allocated resources

3. Decide for each application, how the platform resms
will be allocated for each task of the application

4. Perform (partial or full) dynamic reconfigurationf ashe
platform to place application code on those chosen
sources

5. Start executing the application

6. Monitor observable performance parameters bothafor
plication and platform

7. Perform fine-tuning of platform DVFS modes depegdin
on actual application slack time

8. In case of environment change or a dynamic eveimasr
bility to achieve expected performance, g&tiep 1

9. Go toStep 6.

C. Low-Power scheduler

The low-power scheduler is part of layer 2, as eme=d
in section 6.1. It takes as input the selectediegibn mode
defined by the reconfiguration manager (see se®@i@),
and accounts for the predefined SW and HW configurs.
The SW configuration includes the application maakso-
ciated deadline, and segment timing tables, whik HW
settings consist of the active core count, voltagd fre-
guency mode, as well as task affinity to specifices.

The low-power scheduler developed as part of PHARAO
combines a classical Earliest Deadline First (EP8licy
with Dynamic Voltage and Frequency Scaling (DVFS)
mechanisms.

Global Run-time Manager (GRM) can decide to change



As depicted in Fig.15, the power management pokcy making the approach transparently compatible witture
lies on the notion of Actual Execution Time (AET)he  HMP platforms with big.LITTLE architectures.
application AET is monitored and compared to thers¥/o As part of the PHARAON project, applications defiria
Case Execution Times (WCET). In order to reduce ggow section 2 are currently being manually instrumeniéth
consumption while complying with the applicatioradéne, the timing APIs. Simultaneously, more ongoing wdok
the scheduler attempts to minimize application fatees by  cuses on: (1) automatically generating these tatsed on
spreading tasks over as many active cores as posgthin  the code generator presented in section 4.2; (fhatsng
the SMP, as it lowers voltage and/or frequency. the application segment WCET via the Pareon t@®ljrte-

The results in terms of energy savings depend @endfe  grating the APIs in the OpenStream runtime.
ten idle times occur, as well as their durationghich may
be large if the WCET differs widely from the AEThchare VII. - CONCLUSION
thus very application-specific. For example, ou6é2Zodec Various tools, techniques and runtime to help apfibn
sample, running on an ARM Cortex A8, shows improve-mapping on multiprocessors platforms have beerepted.
ments ranging from 20% to 80% depending on theregsi Results should benefit to reduce development tineease
QoS. performance and reduce power consumption. To dase t
usage of this methodology, information relateddolg are
integrated in the UML models in order to generatmiaati-

[ Standard scheduing whhout DVFS wsage | [ schenuler with DVFS and stack time recuperation |
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o _’ : l W%‘w‘% W{ «‘ l e cally relevant data used by tools and runtime.
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