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Protein Alignment Systolic Array

Throughput Optimization
Giovanni Causapruno, Gianvito Urgese, Marco Vacca, Mariagrazia Graziano, Member, and Maurizio Zamboni

Abstract—Protein comparison is gaining importance year after
year since it has been demonstrated that biologists can find cor-
relation between different species, or genetic mutations that can
lead to cancer and genetic diseases. Protein sequence alignment is
the most computational intensive task when performing protein
comparison. In order to speed-up alignment, dedicated processors
that can perform different computations in parallel have been
designed. Among them, the best performance have been achieved
using Systolic Arrays. However, when the Processing Elements
of the Systolic Array have an internal loop, performance could
be highly reduced.
In this work we present an architectural strategy to address this
problem applying pipeline interleaving; this strategy is applied
to a Systolic Array for Smith Waterman algorithm that we
designed. Results encourage the adoption of pipeline interleaving
for parallel circuits with loop based Processing Elements. We
demonstrate that important benefits in terms of higher operating
frequency can be derived without so relevant costs as increased
complexity, area and power required.

Index Terms—Systolic arrays, Protein Alignment, Smith Wa-
terman, Interleaving, CMOS.

I. INTRODUCTION

A
PPROACHING the boundary limit for CMOS techno-

logical scaling [1] will not permit designers to rely any

more on this scaling to increase the performance of computing

systems [2]. For this reason, parallel architectures are gaining

importance in these years as a solution to increase the through-

put without the need to rely on technological improvements.

Among them, Sysotlic Arrays (SAs) are a particular kind of

parallel processing architectures that can guarantee the best

performance for applications called “embarrassingly parallel”

[3]. There are several applications that belong to this class

and biosequence alignment is among them: for example SAs

for protein alignment have been designed to achieve better

performance with respect to CPUs and GPUs [4]. However,

when the derived SA requires Processing Elements (PEs) with

internal loops, throughput could be highly affected: in fact in

a loop-based sequential circuit the result of a logic operation

depends on the previous operations. As a consequence in

sequential circuits it is not possible to execute a logic operation

at each clock cycle, because inputs must wait many cycles to

synchronize with incoming feedback signals. Throughput is

therefore reduced of N times, where N is the length in clock

cycles of the longest loop in the circuit [5].

In this paper we show how it is possible to apply a technique

Authors are with the Department of Electronics and Telecommu-
nications, Politecnico di Torino, TO, I10129 Italy e-mail: maria-
grazia.graziano@polito.it.

called pipeline interleaving to increase the throughput of loop-

based SAs. Pipeline interleaving has been explored especially

in the case of digital filters; here we introduce this method for

Systolic Arrays, which has never been proposed before. This

requires an analysis and re-design procedure of each PE, but

also a careful retiming of inputs to guarantee synchronization

between neighboring PEs. The SA that implements a protein

alignment algorithm, presented in [6], is used as case study

to show benefits in terms of increased frequency and dynamic

power saved.

We introduce a systematic 3-step mechanism to adapt a SA to

support pipeline interleaving. By inserting additional registers

and interleaving input data it is possible to reduce the critical

path and in this way increase the operating frequency of

the circuit. Results achieved for the biosequence alignment

SA strongly encourage the adoption of pipeline interleaving,

because important benefits can be derived without relevant

costs in terms of complexity and increased area. We introduce

also some parameters that can be evaluated to understand what

is the best area-frequency and power-frequency tradeoff and

in this way choose the best level of interleaving.

The paper is organized in this way: section II gives an

introduction to Systolic Arrays; section III describes briefly

the problem of protein sequence alignment and the Smith

Waterman algorithm; the concept of interleaving is explained

in section IV. Section V describes the architecture of the

Smith Waterman SA, while its optimization adopting pipeline

interleaving is described in section VI. Results, obtained in

ASIC with a 45nm low-power library and in FPGA, are

compared and summarized in section VII.

II. SYSTOLIC ARRAYS

To increase the performance of a computing system, a

common solution is to employ parallelism, using a large

array of small processors. Systolic Arrays (SAs) were first

introduced by Kung and Leiserson in 1978, who stated: “a

systolic system is a network of processors which rhythmically

compute and pass data through the system” [3]. Systolic

Arrays are composed of Processing Elements (PEs), also called

“cells”, locally interconnected. Each PE receives data from

neighbor cells or from outside and outputs result to the outside

or to near PEs. Two are the main concepts that characterize

SAs: local transmission of data (i.e. there are not global signals

except from the clock) and parallel computation (i.e. all PEs

work in the same way on different data).

SAs can have different shapes: for example PEs can be

arranged in a bi-dimensional matrix-like shape, as is shown
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in Fig. 1(a), they can be linear, as in Fig. 1(b), or even have

strange shapes as hexagonal or as in Fig. 1(c), with signals

flowing in three different directions.
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Fig. 1. (a) Matrix Systolic Array; (b) Linear Systolic Array; (c) Special
Systolic Array.

In general an array processor is designed, as explained in

[7], starting from the algorithm description of the problem

and executing three steps: 1) Dependence Graph (DG) design,

which consists in obtaining a graphical representation of an

algorithm, where nodes represent computations and edges

represent data dependencies. 2) Signal Flow Graph (SFG)

derivation, which consists in shrinking the DG along one

axis. Subsequently an SFG has a dimension less than the

correspondent DG; this is due to the fact that in a DG each

node represents one simple computation, while in the SFG a

node is a processing unit, that should be reused in successive

time steps, and for this reason nodes of a line in a DG can

be mapped to a single node in the SFG. 3) Array Processor

Design, that consists in designing the internal structure of each

PE.

SAs have been exploited for image processing [8] [9] [10],

signal processing [11] [12] [13] and video algorithms (such as

those for MPEG compression). For example, in [14] and [15]

a SA for logarithmic search motion estimation is presented:

by exploiting a bi-dimensional systolic architecture the algo-

rithm can be run 256 times faster than with a conventional

linear array. Recently, automatic tools concerned to translate

algorithms to SAs for FPGAs have been explored [16]. Also,

reconfigurable arrays, that are not application-specific, have

been introduced in [17].

As said before, SAs can be used also for biological sequence

comparison [18] [19]: in [20] an overview of the different

hardware solutions for biosequence analysis is carried out, and

a NanoASIC implementation is presented to show the benefits

that can be achieved in SAs adopting nanotechnologies.

III. PROTEIN SEQUENCE ALIGNMENT

Protein comparison is a fundamental operation that allows

biologists to find phylogenetic or functional correlations be-

tween different species, or genetic mutations that can lead

to cancers and genetic diseases. Protein sequence alignment

is the most computational intensive task when performing

sequence comparison; it consists in evaluating a number,

called alignment score, that represents the grade of similarity

between the studied protein called Query (Qry) and the protein

coming from the Database called Subject (Sbj). The alignment

procedure is performed taking into account that the proteins

are represented by long sequences of Amino Acids (AAs)

identified with alphabet letters. For each couple of AAs four

biological events can occur, shown in Fig. 2: a match, when the

two AAs correspond, a substitution, when the AA of the Qry

is mutated in the Sbj, a deletion or insertion if the Sbj lacks or

has an additional AA in a given position, respectively. If there

is a match or a substitution the value of the scoring must be

updated using the value coming from a substitutional matrix:

given the two AAs Qry(i) and Sbj(j), this matrix returns a

value s (Qry(i), Sbj(j)) that represents the probability that an

AA is substituted with another during evolution [21].

(Qry)

(Sbj)

ACDEFG

ACDEFG

ACDEFG

ACLEFG

ACDEFG

AC--EFG

AC--EFG

ACDEFG

match substitution deletion insertion

Fig. 2. Alignment with match, substitution, insertion and deletion.

When a deletion or an insertion occurs, the alignment score

must be updated using instead a gap penalty. The most used

penalty is the “affine” one (γaff ) in which two different

values, called gap open d and gap extension e, are used in

order to encourage one large gap rather than many small ones,

since the former condition is more likely. In equation (1), g
represents the length of the gap [22].

γaff = −d− (g − 1) · e (1)

The Smith-Waterman algorithm (S-W) is the most famous

and widely used alignment algorithm to locally align two

proteins [23]. S-W is a dynamic programming algorithm

that works with a score matrix F (i, j), that stores values of

correlation in any point, shown in the bottom part of Fig. 3. A

detailed description of the S-W algorithm is out of the scope

of this article. Here we describe briefly its architecture and

in order to do so we introduce its working mechanism at

a glance. It is important to highlight that adopting the gap

affine model, each cell is required to evaluate three different

values [23]. Recently this algorithm has been optimized for

the Systolic Array implementation in [6], allowing faster and

lighter computations. The main idea of this optimization is to

use a sel signal that can be either 0 or 1 to choose on-the-fly

between gap open and gap extension and for this reason it is

called Dynamic Gap Selector (DGS): this substitutes the usage

of two gap matrices that are provided by the original algorithm,

that required a higher computation effort and an increased

complexity. S-W algorithm is divided into three steps:

1) Initialization: first row and first column of the matrix,

respectively F (i, 0) and F (0, j), are initialized to 0.

2) Score Matrix filling: each cell is filled with a value of

F (i, j); in the case of DGS S-W, this value is evaluated

according to equations (2 - 3):
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F (i, j) = max































0 ⇒ sel(i, j) = 0

F (i− 1, j − 1) + s (Qry(i), Sbj(j))

⇒ sel(i, j) = 0

F (i− 1, j)− g ⇒ sel(i, j) = 1

F (i, j − 1)− g ⇒ sel(i, j) = 1
(2)

g =

{

d if (sel(i− 1, j) or sel(i, j − 1)) = 0

e if (sel(i− 1, j) or sel(i, j − 1)) = 1
(3)

where d stands for gap open and e stands for

gap extension.

3) Traceback: the maximum score represents the starting

point for the best local alignment, that is found tracing

back till the first 0 is found.

Fig. 3 shows the derived array for the problem. Each cell of

the matrix is represented as a cube with two faces, to indicate

that the value of the matrix F and the value of signal sel

must be evaluated. The number inside these cells represents the

step in which that cell is evaluated. Moreover it is shown the

derivation of the linear SA, where each Qry AA is associated

to a PE, while Sbj AAs are provided sequentially to the SA.
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Fig. 3. Correspondence between the S-W systolic array and the S-W matrices
for the DGS S-W algorithm. The two faces of the cube represent the cells
of the score matrix and the gap selection signal needed for the computation.
The groups of cells are associated with the PE that executes their calculation.
Each Qry AA is associated to a PE. The Sbj AAs are provided in sequential
way to the Systolic array input. The numbers in the cells identify the step in
which that cell is computed.

The DGS S-W Systolic Array works in this way:

• in a first phase the matrix is initialized: each cell is

associated to an AA of the Qry. This means that one

column of the Substitutional Matrix is uploaded inside

the cell and will be used as Look Up Table (LUT) during

computation phase; moreover, values of gap extension

and gap open are uploaded in dedicated registers;

+ + +

A

A A

B

+ + +

A

A A

D

D

+

A+B

+

B

A+BD

E

(a) No interleave: A+B+C

(b) Interleave 2: A+B+C and D+E+F

t=0 t=1 t=3 t=4

Fig. 4. Interleave example: an accumulator that contains in its internal
feedback three registers. (a) the circuit without exploiting interleave requires
to provide one input every 3 cycles, thus having an addition every 3 cycles.
(b) the circuit with interleave 2: input values are interleaved and in this way
the throughput can be simply doubled because it is possible to execute second
addition D + E immediately after A+B.

• during computation, the AAs of the Sbj are passed to

the SA from the boundary leftmost cell. Computation is

executed inside the cell and in the meanwhile the AA is

passed to the neighboring PE. As said before, the AA of

the Sbj that arrives inside a cell is used to address one

element of the LUT and extract the correspondent value

of the Substitutional Matrix. The maximum alignment

score flows in the same direction (from left to right)

and is outputted from the rightmost cell. In every PE

the maximum is updated according to formula (2);

• the trace-back procedure is not implemented in this

architecture because the focus here is on the most com-

putational intensive task that is the evaluation of the

maximum alignment score. What results from the usage

of the SA is a list of couples (Sbj, result); each couple

associates a maximum alignment score to each Sbj to be

aligned.

IV. INTERLEAVING

Aim of this paper is to show the benefits of data interleaving

in Systolic Arrays through the case study of the DGS S-W.

This can provide a faster circuit, increasing the throughput.

Interleaving is in general a way to arrange data in a non-

contiguous way. Consider the simple circuit shown in Fig. 4:

this is an accumulator based on an adder and a feedback

loop with three registers. Fig. 4(a) shows the execution of

A+B+C; there is a delay of three clock cycles between one

input and the successive one, which means that one addition

can be executed every three clock cycles. This is due to the

fact that there is a data dependency between each addition

and the successive one, which means that each addition can

be executed only when the previous one has been completed

and the result is ready at the input of the adder. Fig. 4(b)

shows the same circuit applying interleaving: in this case it

is required to have at least another operation to execute, for

example D + E + F ; interleaving means providing inputs

in a non-continuous manner, i.e. A, D, B, E, C, F in the

example, and exploiting registers to store results belonging
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to different operations. This can be applied in general to

any loop-based circuit. Data interleaving can be applied when

there is no data-dependency between successive steps; D+E

for example can be executed immediately after A+B. It could

be possible to interleave also another operation to maximize

the throughput, since the pipe would be in this case always

full. In the example, there is no architectural reason to design

an adder with 3 registers in the loop; however, it is possible

to think that through a retiming procedure, these registers are

inserted in the middle of the adder to reduce its critical path

and increase the operating frequency. This would still mean

that three clock cycles are required to execute addition and

feedback of the signal and for this reason it would be possible

to apply pipeline interleaving as explained.

The benefits of interleaving (often referred as pipeline inter-

leaving) have been analyzed in literature, especially in the case

of digital filters [24] [25]: internal feedbacks in digital filters

negate the most obvious ways of improving performance, that

is pipelining. In fact, recursive systems cannot be pipelined

at an arbitrary level by simply inserting latches. The problem

is solved by changing the internal structure of the algorithm

to create additional logic delay operators inside the recursive

loop, which can then be used for pipelining.

Interleaving in Systolic Arrays

In our study we want to apply the concept of interleaving

to SAs, that has been never proposed. To do so, we first

introduce a taxonomy of SAs and we explain how interleaving

is provided at PE-level and how the concept can be extended

to the whole SA.

Systolic Arrays can be divided into two main classes: those

With cells that have an Internal Loop (WIL), and those

WithOut Internal Loop (WOIL); the former can be further

split in systolic arrays that Store results in the cells (WIL-S)

and systolic arrays where the partial result is Passed Through

the cells to obtain the final value (WIL-PT). The DGS S-W

Systolic Array belongs to this last class.

T0

entry

(d1) (dJ)

(dJ+1) (dK-1) (dK)

(dK+1)(dN-1)

(dN)

input data

from 
previous
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D + T0

to next 
cell

feedback

forward

PE PE PE

PE PE PE

PE PE PE

Input b

In
p
u
t 
a

O
u
tp

u
t 
a

Fig. 5. WIL cell: this PE is part of an array as shown in the top-left corner.
The PE is made of 4 parts: an entry section, the forward and feedback parts
of the loop, and the output section. Data coming from previous PE can enter
at any stage of the cell.

A cell with internal loop is shown in Fig. 5. It is made of

4 parts: an entry section, made of blocks numbered from 1 to

J ; the forward part of the loop, made of blocks from J +1 to

K, the feedback part of the loop, made of blocks from K+1
to N − 1; the output block, called N . Each of these blocks

is associated to a delay di, i = 1, 2, . . . , N , and cannot be

pipelined internally. Let us call Te the total delay of the entry

block, defined in equation (4), Tfo the delay of the forward

side of the loop, eq. (5), Tfb the delay of the feedback in the

loop, eq. (6) and To the output delay, eq. (7):

Te =
J
∑

i=1

di (4) Tfo =
K
∑

i=J+1

di (5)

Tfb =
N−1
∑

i=K+1

di (6) To = dN (7)

Input data coming from outside enter in the first block,

while data coming from the neighbor processing element

enter in the first block of the loop J + 1.

In order to match timing of inputs with delay of the feedback,

it can be demonstrated that inputs must be given every

Tloop = Tfo + Tfb cycles, that is the total time of the

feedback loop. However, given the intrinsic pipelined nature

of the structure, we can improve performance and usage

of the PE providing inputs every K = max{di}. A new

operation can be started after K cycles, and in this way N
different operations can be interleaved, being N = ⌊Tloop/K⌋
(integer division). When Tloop is not a perfect multiple of K,

the remainder of the division, called R, must be taken into

account: after N operations have been started, the following

one must start with a delay of K + R with respect to the

previous, so to have synchronization with the result coming

from the loop. R represents a number of “stalls” that must be

inserted between the one set of N inputs and the following

set. Consider the following example: Te = 3, Tfo = 3,

Tfb = 10; it is possible to interleave Tloop/K = 13/3 = 4
operations, inserting a stall (R = 1) after each set of 4 inputs.

V. DGS S-W ARCHITECTURE

The structure of each PE in the SA is shown in Fig. 6(a).

Each PE is made of two sub-blocks, PE CONFIG and

PE CALC: the first is used only during configuration phase,

that consists in uploading in each PE the values of the column

of the Substitutional matrix of the correspondent Qry AA

inside the LUT and values of gap open and gap extension

in registers, while PE CALC is used during both phases. One

register is also present to store the identification number of the

incoming Sbj that must be aligned. Each AA is represented

with a number from 1 to 23; this number is identified as

aa code (5-bit bus).

Two main blocks are present inside PE CALC: one is the

LUT that stores the column of the Substitutional Matrix

corresponding to the AA of the Qry assigned to each PE, that is

called AA SUB MAT REG. The other block is called GAP REG

and contains two registers, storing the values of gap open

and gap extension. The choice between these two values is
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(a) No interleave (b) Interleave 2

Fig. 6. (a) The structure of the Systolic Array: each PE is made of a configuration part, PE CONFIG, and a calculation one PE CALC; the latter includes
the LUT to store columns of the Substitutional matrix and the maximum evaluation blocks to find the best alignment score. (b) The structure of the Systolic
Array supporting pipeline interleaving with level 2 of data interleave: notice the additional registers that split the critical path and can store two different
values inside the loops. The additional registers must not be reset during computation phase, so they are represented without a rst control.

then executed through the multiplexers that are allocated after

the GAP REG block. Notice that while one multiplexer is

controlled by the signal coming from outside sel gap 1, the

other is locally controlled through the signal out sel gap that

is in turn transmitted to next PE.

This structure presents also three adders: two of them are

named ADD NORM while another is called ADD SAT; the first

two must execute F (i, j − 1) + (−g) and F (i− 1, j) + (−g);
since the gap values to add are negative, no overflow can occur,

so these are normal Ripple Carry Adders (RCA). ADD SAT

must instead execute F (i−1, j−1)+s(Qry(i), Sbj(j)); this

addition could cause overflow and for this reason it is used

an adder that in case of overflow saturates, i.e., every time

MSBs cause a carry, the result is the maximum that can be

represented with the given number of bits.

The maximum evaluation is computed in two different blocks:

the first is the MAX 3 SIMPLE, that computes the maximum

between the stored maximum, the maximum coming from

previous PE and the F (i, j) evaluated in previous cell. This

is the maximum alignment score that can be obtained with a

given Sbj; since F (i, j) of cell N is taken into account in cell

N + 1 by this architecture, there is the need for a further

maximum checking after the last PE that is performed in

another block allocated at the output, called PE TERMINATOR.

This block will consist in the bottom part of PE CALC only,

i.e. MAX 3 SIMPLE with the associated register.

The second maximum evaluation is the local result

F (i, j), according to equation (2). This is done using the

MAX 4 GAP EX block: this block evaluates the maximum

between the three inputs, or returns 0 in case the maximum

is negative; moreover, it dynamically selects between the

gap open and gap extension.

PE CALC comprises also the registers that store the value

of F (i, j), and the value of the gap that must be used in

following cycle, and a register that stores the F (i, j − 1)
coming from previous cell in order to obtain F (i− 1, j − 1).
Finally, one register is used to store the AA code (aa code)

that in following clock cycle is transmitted to neighbor PE.

VI. SYSTOLIC ARRAYS INTERLEAVING OPTIMIZATION

In this section the optimization procedure that should be fol-

lowed in order to enhance SAs with interleaving is presented.

We first describe the steps of the procedure that can be in

general applied to any SA and then exploit this mechanism in

order to improve the DGS S-W performance.

The following three steps must be performed to introduce

interleaving to a general WIL SA:

1) Insert registers in the loops: this step consists in iden-

tifying all the loops present inside each PE, finding

the Critical Path (CP) inside each loop and inserting

registers to split the CP. It is important to split all the

loops with the same number of registers. This number

will identify the level of interleave that should be applied

to the circuit to guarantee maximum performance; in the

following it will be referred as N .

2) Synchronization of other signals: it is common to have

other registers that store partial results outside loop

structures. These registers must be replicated in order
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to guarantee synchronization of all signals. N registers

must be inserted in place of each original one outside

any loop structure. It is useful to check correctness

of the derived circuit through simulation, by providing

the same inputs of the original no-interleave structure,

but with a higher delay between successive inputs: in

particular, if input i + 1 was provided k cycles after

input i, to check this circuit it must be provided after

k ·N cycles (a procedure referred as skewing in normal

pipelining procedures).

3) Data Interleaving: this last step allows to increase the

throughput. It consists in providing inputs in an inter-

leaved manner, considering N different operations; the

new order of inputs will be: input 1 of op.1, input 1

of op.2, . . . input 1 of op.N, input 2 of op.1 and so

on. This guarantees the maximum throughput for the

given architecture. The rules to evaluate the delays of

successive inputs were described in section IV.

In order to follow this description, one should a priori decide

the level of interleave. However, this choice for the best level

of interleave depends on a number of factors; in general one

could try to predict the possible increase in frequency derived

by the reduction of the CP and the increased area due to the

additional area and try to understand what is the optimum;

otherwise, since this optimization mechanism is extremely

simple and linear, one could adapt its circuit for different

levels of pipeline and then analyze what is the best option

to choose. This is what we did in our case study and results

of this analysis are summarized in following section.

Interleaving of DGS S-W Systolic Array

DGS S-W is a WIL-PT Systolic Array. The optimization

procedure described before consists of three different

phases: the first is the reduction of the critical path by

introducing latches in each PE (pipelining); the second is

the synchronization of other signals by inserting additional

registers, and the third definition of the way to provide inputs

in a non-contiguous manner (interleaving), so that there is

not a reduction of throughput.

In order to pipeline the PE, it is necessary to insert registers

and flip-flops, increasing the latency but without affecting

the behavior of the circuit. In order to find the maximum,

MAX 4 GAP EX block has three subtractors in parallel; these

subtractors are built as RCA with an inverted input and initial

carry c0 = 1. For this reason the critical path crosses the

ADD SAT and the MAX 4 GAP EX; the startpoint of the

critical path is instead in PE CONFIG, exactly in a flip flop

that stores the value of aa or gap reg. In fact, there is a full

combinational path between this register and the one at the

output of MAX 4 GAP EX.

In order to split the critical path, a register must be inserted

between ADD SAT and MAX 4 GAP EX block. To guarantee

synchronization (step 2 of the procedure), registers must be

inserted also at the outputs of the other two adders. Consider

the signal f 1: this is used inside one ADD NORM but also

stored inside a register, in order to be used in following cycle

in ADD SAT. When moving from no-interleave to interleave

2, it is clear that the storing register must be duplicated,

because it will be used after two cycles. For the same reason,

it is needed to add one register in the maximum evaluation

loop. Finally, one more register is inserted in the aa code

chain to adapt to interleave 2. This however must be used

during computation phase only, while during configuration

phase, when aa code is used to send AA codes of the Qry,

the chain must be made by one register only. This can be

achieved using a multiplexer.

The processing element adapted for interleave 2 is shown

in Fig. 6(b). Further levels of interleave can be achieved by

inserting registers to split the critical path and additional

registers to guarantee synchronization. For each additional

level of interleave, the registers to guarantee synchronization

are: one more register for aa code, one to store f 1, and

another inside the maximum evaluation loop shown at the

bottom of Fig. 6(b). Moreover, one register must be added in

PE block, to store the subject id. In order to split the critical

path, interleave 3 can be achieved by inserting registers in

the middle of ADD NORM and ADD SAT, thus splitting the

carry propagation critical path, as in Fig. 7(b). The same can

be done for interleave 4 acting on the maximum evaluation

blocks, i.e. MAX 4 GAP EXT and MAX 3 SIMPLE, as in

Fig. 7(c). Finally, we have achieved interleave 5 by inserting

a register at the input of ADD SAT, since the critical path

propagates at this point from PE CONFIG till the register

in the middle of ADD SAT, as in Fig. 7(d). To guarantee

synchronization, registers have been inserted at the output

of the two ADD NORM blocks. Further levels of interleave

would have not split the CP significantly, and for this reason

we stopped at level 5. Results in next paragraph show that

our choice was correct since the best results are achieved with

interleave 2 and 3. Further improvements could be obtained

with a change og perspective in the maximum calculation [26].

In order to have the Systolic Array working at its best, it is

also necessary to interleave input data. This can be done acting

on the test-bench at simulation level. The database is stored in

a file in the following way: each line represents a sequence,

that starts with an identification number (subject id), followed

by the length of the sequence, i.e. the number of AAs,

and then the sequence starts (in the sequence each number

corresponds to an AA). The test-bench must then be able to

read N sequences at the same time, where N is the level of

pipeline. Moreover, when a sequence finishes, it must restart

computation for that “slot” only, and start inputting the first

sequence not yet initialized. Values belonging to different

evaluations coexist inside each PE. For example, as explained

before, to achieve interleave 2 it is required to double the

register that stores f 1; with interleaving the added register is

filled with the value of f 1 of the other independent operation.

As said, after one sequence has finished, it is necessary to

clean the memory in registers storing the values evaluated with

this sequence, in order to start then the new computations.

This is done through a reset signal; this signal must affect

only this sequence and not the others that are still under

computation, and this is done resetting only some registers, as

shown in Fig. 6(b). The other registers are reset only during
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Fig. 7. A simplified structure of PE CALC with “interleave cuts”: each
cut represents additional registers that must be placed to achieve a deeper
level of interleave. (a) Original PE CALC highlighting the place where to cut
for interleave 2. (b) PE CALC for interleave 2, achieved inserting additional
registers highlighted in grey. The cut for interleave 3 is shown as well.
(c) PE CALC for interleave 3, achieved with one additional register and
pipelined adders ADD D in place of the original ones. The cut for interleave
4 is shown as well. (d) PE CALC adapted for interleave 4, using an additional
register, in grey, and a pipelined maximum evaluation block MAX D in place
of the original one MAX. Cuts to achieve interleave 5 are shown as well.

TABLE I
RESULTS OF THE SYNTHESIS OF AN SA WITH 30 PES IN ASIC, USING A

45nm LOW-POWER LIBRARY.

Clock Total Area Total Power

Frequency Area per Sbj Power per Sbj

(MHz) (104µm2) (104µm2) (mW ) (mW )

NO PCO NO PCO NO PCO NO PCO NO PCO

no-int. 207.0 383.1 9.0 11.4 9.0 11.4 8.4 21.7 8.4 21.7

int. 2 349.6 625.0 10.7 13.0 5.4 6.5 10.4 35.8 5.2 17.9

int. 3 406.5 724.6 12.6 14.8 4.2 4.9 13.6 46.3 4.5 15.4

int. 4 465.1 892.8 16.9 18.8 4.2 4.7 20.7 104.5 5.2 26.1

int. 5 534.7 1190.5 18.8 22.2 3.8 4.4 23.8 241.1 4.8 48.2

configuration phase, in order to clean their content for the

initialization.

VII. RESULTS

In this section the results that can be achieved adopting

pipeline interleaving for the DSG S-W Systolic Array case

study are resumed and analyzed. Results have been carried

out in CMOS technology both in FPGA and ASIC.

As target FPGA for our design we have used Xilinx Virtex-5

XC5VLX330T, which comprises 51840 slices, each containing

4 LUTs and 4 flip-flops.

In ASIC, we have synthesized the SA with a 45nm low-

power library. We have two series of results: one achieved

without setting constraints to the synthesizer (NO - No Op-

timization), and the other fixing stringent constraints on the

maximum clock period but at the same time trying to reduce

the dissipated power (PCO - Power Clock Optimization). The

results are summarized in TABLE I.

We can notice an important trend in speed improvement

with interleaving: moving from the case of no interleave to

interleave 5 it is possible to achieve an improvement in fre-

quency of 158%. If the designer has to increase the operating

frequency of the circuit, he can decide to: optimize using

synthesizer techniques (no interleaving with Power Clock

Optimization), or adopt pipeline interleaving (n-interleaving

with No Optimization). If we compare these two situations

(no interleaving PCO and interleaving 5 NO) in TABLE I we

notice that required power is similar, while with interleaving

we can achieve an higher operating frequency. In TABLE I

we report also the Power per Sbj consumed by the circuit; this

is the dynamic power normalized by the number of parallel

operations (interleaved) that are executed. It can be noticed

that in NO the no interleave case is the worst one. The same

consideration can be done also for the Area per Sbj as reported

in TABLE I.

In general PCO, with respect to NO, requires an enormous

increase of power, in fact the power trend in the PCO case

with interleaving is exponential.

We want to highlight here the reasons that lead to an exponen-

tial trend in the increase of dynamic power. It is possible to

estimate the dynamic power dissipated by a digital circuit as

the sum of the powers of all the gates, which can be evaluated

using equation Pdyn = ESW CL VDD
2 fclk [27], where ESW

is the switching activity, i.e. the probability that the gate output

switches from 0 to 1 or from 1 to 0, CL is the load capacitance

associated to a node, VDD is the supply voltage and fclk is

the operating frequency.

Given this relation, we have noticed that frequency increases

with a linear trend and this reflects in Pdyn equation as a

linear increase of the dynamic power of each gate. Moreover,

area increases as well with a linear trend, due to the increased

number of registers present in each level of pipeline, so, the

number of gates increases and this reflects in the total dynamic

power. Finally, synthesizer tries to optimize the speed of the

circuit adopting big computational blocks that have high load

capacitance CL. It is then clear that the effect on power is

exponential due to different and unrelated linear increases, in

frequency, required area and load capacitance.

We want to stress the importance of pipeline interleaving,

referring to TABLE I. If we compare the dynamic power dissi-

pated by the optimized (PCO) no-interleave case, this is almost

equal to that dissipated interleave 4 without optimization;

however, the achieved clock frequency in interleave 4 is 20%

higher than that of PCO no-interleave. We can thus highlight

that pipeline interleaving allows increasing frequency without

being affected by the exponential increase of power that occurs

when achieving faster circuits using synthesizer optimization.

This is further highlighted in Fig. 8. The relation between

frequency and chip area increase is instead shown in Fig. 9.

A. CUPS evaluation

We want to evaluate the Cells Updates Per Second (CUPS),

that is a very common performance indicator for systolic

arrays architectures, as a measure of how many PEs are

updated in a second. For a systolic array devoted to protein
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Fig. 8. Frequency - Power relation: for each level of interleave it is
shown the maximum frequency and the dynamic power required in cases
NO (labels “frequency” and “power”) and PCO (labels “max frequency” and
“max power”).

Fig. 9. Frequency - Area relation: the size of each bubble represents the
area of the chip in 103 mm2.

alignment, the peak CUPS that can be obtained are given by

equation (8):

CUPS = fclk ×#PEs (8)

where #PEs represents the maximum number of PEs that

can be inserted in a given area. This area is well defined

for FPGAs, because it represents the number of slices in the

specific FPGA used. It is instead not defined for ASIC, and we

must find an equivalent area that gives us comparable results.

We assume for both ASIC and FPGA a linear relation between

area and number of PEs, i.e. Atot = #PEs × APE , where

Atot is the total area and APE is the area occupied by the

single PE. As reference area for the ASIC we have chosen the

one that is able to contain as many PEs as can be contained

by the target FPGA in the case of no-interleave.

For the FPGA we have synthesized an SA with 100 cells,

and we have evaluated the average area occupied by each

cell assuming a linear relation as said before. Results are

summarized in TABLE II, where GCUPS represents the Giga

CUPS.

We can notice that the value of GCUPS increases with

the increased level of interleave. This is not respected in

TABLE II
RESULTS ACHIEVED IMPLEMENTING THE DSG S-W IN THE TARGET

FPGA.

Clock Frequency Slices
max #PEs GCUPS

(MHz) (100 PEs)

no-int. 137.51 18474 (35.6 %) 280 38.50
int. 2 185.71 20958 (40.4 %) 247 45.87
int. 3 206.02 21162 (40.8 %) 244 50.27
int. 4 206.02 31624 (62.9 %) 163 33.58
int. 5 324.10 29745 (57.4 %) 174 56.39

interleave 4 for two reasons: first, it was not possible to

achieve an improvement in clock frequency with respect to

interleave 3, but there was an increase in required area due

to increased number of registers, causing a reduction of the

number of PEs that can be placed in the FPGA; second, the

area estimation might be incorrect, in fact it was expected a

value between those of interleave 3 and 5. This again causes

less PEs to be placed in the FPGA, thus reducing the GCUPS.

It is possible to map 280 cells in the target FPGA without

interleaving; this means that the target area for the ASIC is the

one that can allocate 280 cells in the case no-interleave without

optimization (NO). Results are summarized in TABLE III. As

we can notice, in FPGA the best GCUPS performance in the

case without optimization can be achieved with interleave 2.If

we exploit instead the clock and power optimization achievable

with the synthesizer, the performance increase with interleave,

except for the case interleave 4.

TABLE III
ASIC EVALUATION OF GCUPS USING A 45nm LOW-POWER LIBRARY.

THE NUMBER OF PES IS OBTAINED CONSIDERING AN EQUIVALENT CHIP

AREA TO MAP 280 PES IN THE NO INTERLEAVE NO CASE.

No Optimization (NO) With Optimization (PCO)

fclk #PEs GCUPS
fclk #PEs GCUPS

(MHz) (MHz)

no int. 207.0 280 57.971 383.1 220 84.291
int. 2 349.6 236 82.517 625.0 193 120.625
int. 3 406.5 199 80.894 724.6 170 123.188
int. 4 465.1 149 69.302 892.8 133 118.750
int. 5 534.7 134 71.658 1190.5 113 134.524

B. Total time evaluation

Increasing interleave level leads to a reduction of the

number of PEs that can be placed in an FPGA. If the Qry

length is greater than the number of PEs, two or more passes

of the database sequences through the array are required. This

means having a second initialization phase, that however can

be interleaved with previous evaluation phase and thus requires

only 1 cycle for each AA of the query to be loaded. During

the second evaluation phase, results of first pass are loaded

again into the Array for a second pass. Call i the interleave

level, Lk(i) the length of the query loaded at step k, n the

number of Sbj to be scanned, of length Ls. Lk(i) is equal

to the number of PEs if a new pass of is required at step k,

otherwise it is 0. The total time to scan the whole database is
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then given by equation (9):

T (i) = Tclk(i)
∑

k

[Lk(i)(1 + i) + nLs] (9)

For each step k, three elements are added to evaluate the total

time of the step: Lk(i)×1 is the total time required to initialize

the array; Lk(i) × i is the time required by each input to

produce a result at the output of the array; Ls×n is the delay

to provide last input to the array.

Of course the clock period is also dependent on interleave

level. As an example, using values from TABLE II, with a

Qry length of 260 AAs, a database of 300 proteins of 1000

AAs each to scan, we obtain a total time of T (1) = 2185µs
for the Array without interleaving, while T (5) = 1857µs for

the Array with interleave 5. Notice that using the array without

interleaving there is not the need of a second pass, that it is

required in the other cases. Yet, the total time is lower in

interleave 5 case because of the higher operating frequency.

Depending on the parameters of equation (9), other levels of

interleave may be advantageous over the original case.

C. Global System Considerations

The encouraging performance improvement we have

achieved through our pipeline interleaving technique must be

sustained by the other elements of the global architecture.

Usually a Systolic Array is used as an attached processor

connected to the Host through a bus; the host provides data and

control signals to the SA. The array processor is composed of

an array controller and an interface unit: this is usually done

as a chain of buffers. A memory system is connected to the

bus as well, as shown in Fig. 10. In case of more complex

structures with multiple processing units, also hierarchical

shared memory organization could be taken into consideration

[28].

In order to compare speed of components, we can introduce

a new unit of measurement called Amino Acids per second

[AA/s] that represents how many AAs can be processed in one

second. In the DGS S-W an AA is represented with 5 bits, and

other 3 bits must be sent for control purposes to the SA. This

means that 1AA/s = 8 b/s. If we design our architecture with

a PCI Express 3.0 x8 (8-bit parallelism) we are able to sustain

speeds up to 8GAA/s, since the speed of a line is 8Gbit/s.

Fast RAM can provide 3.2GB/s, that in our case correspond

to 3.2GAA/s. FPGAs then can have a PCI Express Interface

block integrated, as in the case of Xilinx Virtex 7, that can

guarantee the maximum speed communication. A full analysis

of the global system is out of the scope of this article, but

these few considerations show that it is possible to design it

supporting an SA executing up to 3.2GAA/s. In case it is

required to have a faster SA, then design techniques such as

parallel buffering can be used.

D. Speed-Power product evaluation

One common indicator of the performance of a digital IC

is the speed power product, also referred as figure of merit of

a digital IC [29]. It is defined as the product of propagation

delay (in nano seconds) and power dissipation (in mW) and

Host 

CPU

RAM 

Bus - PCI Express 3.0 x 8 

PE PE PE

PE PE PE

PE PE PE

Systolic Array

Interface Unit
(Buffers)

Array 
Controller

FPGA

SSD 

Bus 

Controller
Bus Interface

Fig. 10. Global system architecture: a bus connects the host processor with
the systolic array and the memory. The Systolic Array is connected to the bus
with an interface unit and controlled by an array controller.

is measured in pico joules. TABLE IV summarizes results

for the ASIC; the best result (lowest value) is obtained with

interleave 2 without optimization, and the second best with

interleave 3; this is coherent to the results achieved for the

GCUPS evaluation.

TABLE IV
SPEED-POWER PRODUCT EVALUATION FOR THE ASIC. AMONG THE NO

OPTIMIZATION (NO) CASES, INTERLEAVE 2 GUARANTEES THE BEST

TRADEOFF BETWEEN OPERATING FREQUENCY AND POWER DISSIPATION.

(pJ) no int. int. 2 int. 3 int. 4 int. 5

NO 40.40 29.90 33.53 44.43 55.71
PCO 56.70 57.27 63.79 117.01 202.52

VIII. CONCLUSIONS

CMOS scaling limit will not guarantee in next years a direct

increase in operating frequency; for this reason Systolic Arrays

are back in the limelight to increase the performance of a

computing system. In particular, they reveal to be the best

choice to implement Protein Sequence Alignment algorithms,

such as the Smith-Waterman. In this article we demonstrate

how it is possible to increase the performance of a Systolic

Array using a technique called pipeline interleaving: this

technique requires loop pipelining inserting additional registers

and data interleaving. In this way it is possible to reduce the

critical path and thus increase the frequency, without having

a reduction of throughput.

The Smith-Waterman SA with Dynamic Gap Selector is first

introduced and then optimized to support up to interleave 5.

Results, achieved both in FPGA and ASIC with a 45nm
low power library, show how this technique permitted us to

obtain a circuit that is 2.5 times faster than the original one

without having the relevant increase of power dissipation that

results when using synthesizer optimization mechanisms. It

turns out that pipeline interleaving should be always applied

when possible because it guarantees higher frequencies at a

reasonable area and power dissipation cost.

Pipeline Interleaving in SAs should be also exploited with new

technologies, such as Quantum-dot Cellular Automata (QCA)
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because of their intrinsic pipelined nature; our future efforts

will concentrate in designing a DGS S-W SA in QCA and

optimize it using pipeline interleaving to explore benefits of

this technique with other technologies.
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