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Abstract—Linear macromodeling techniques are well estab-
lished for compact dynamical modeling of complex signal and
power distribution networks. In this work, we extend applica-
bility of such reduced-order behavioral models to small-signal
descriptions of complex circuit blocks typically found in RF

or Analog and Mixed/Signal designs. In addition, we include
in the models the explicit dependence on one or more design
parameters, such as temperature, bias or gain, thus obtaining
a multivariate small-signal behavioral macromodeling approach.
The main outcome is a major reduction in the runtime required
for transient system-level verification, which can be performed
directly by simulating the surrogate macromodels rather than full
transistor-level circuits. We demonstrate this approach through
an Operarional Amplifier circuit block of a commercial 3G
transceiver design.

I. INTRODUCTION

The system-level verification of signal and power integrity

of integrated Radio Frequency (RF) and Analog-Mixed-Signal

(AMS) Systems on Chip (SoC) for compact portable electronic

applications such as smartphones and tablets is very chal-

lenging and time-consuming [1]–[3]. Due to miniaturization

and aggressive integration, complex nonlinear circuit blocks

coexist in close proximity. Although suitable countermeasures

can be taken for the isolation of sensitive analog blocks from

noisy digital parts, several parasitic local and global coupling

effects may affect the overall system, possibly leading to

interference and causing system malfunctioning. Therefore,

fast and accurate solutions for system-level simulation under

different operation conditions must be performed, in order to

qualify the system for signal and power integrity.

In recent years, the so-called “macromodeling” techniques

have gained a lot of popularity for fast modeling and sim-

ulation of signal and power distribution networks. Such in-

terconnects, being intrinsically linear, are first characterized

through their multiport scattering responses in the frequency

domain by full-wave electromagnetic solvers. Then, the scat-

tering responses are subjected to curve fitting schemes [4],

[5] with passivity constraints [6]–[9], which extract reduced-

order behavioral models of the interconnect network in state-

space form. The latter is readily synthesized in a SPICE netlist,

thus allowing global transient simulation. This process is now

standard in commercial tools and in industrial design flows.

The above procedure falls short when nonlinear circuit

blocks or devices are present. Due to their nonlinearity, such

elements must be removed from the overall interconnect struc-

ture, which is macromodeled separately. The nonlinear devices

are then reassembled to the reduced-order interconnect, re-

sulting in a still large nonlinear network, whose numerical

simulation remains challenging.

In this work, we consider a special class of nonlinear

circuit blocks, namely those subsystems that, although very

complex in their internal structure, are intentionally designed

to have an almost linear input-output response when suitably

biased around a prescribed DC operation point. Examples can

be Low Noise Amplifiers (LNA’s), Operational Amplifiers

(OPA’s), or programmable active filters in RF transceivers

for wireless applications. We show that reduced-complexity

small-signal linear macromodels are easily extracted for these

subsystems [10], [11], possibly including the effect of external

design parameters such as bias voltage, gain (for amplifiers),

temperature, etc. As a result, system-level signal and power

integrity verification can be achieved through parametric anal-

ysis in standard circuit solvers, with an overall runtime that

is orders of magnitude less than for the original transistor-

level description of the system. The proposed technique is

demonstrated on a complex OPerational Amplifier (OPA)

circuit block from a commercial design.

II. SMALL-SIGNAL MULTIVARIATE BLACK-BOX

MACROMODELING

We start with a general description of a large-scale P -port

nonlinear circuit described by finite-order state equations

ẋ(t;λ) = F (x(t;λ),u(t);λ) (1)

y(t;λ) = G(x(t;λ),u(t);λ) (2)

where u,y ∈ R
P collect input and output variables, respec-

tively, x ∈ R
N collects state variables, and F ,G are nonlinear

multivariate functions, and λ ∈ R
µ is a vector collecting µ

external parameters.

Assume that small-signal conditions apply, so that

u(t) = U0(λ) + ũ(t),

x(t;λ) = X0(λ) + x̃(t;λ),

y(t;λ) = Y 0(λ) + ỹ(t;λ),

(3)



where {U0(λ),X0(λ),Y 0(λ)} represent the constant (bias)

input, state and output vectors arising from nominal DC opera-

tion, and {ũ(t), x̃(t;λ), ỹ(t;λ)} denote small signal variations

of input, state, and output around the bias point. Inserting (3)

into (1)-(2) and computing a first-order Taylor expansion of

the nonlinear maps F ,G around the operation point, leads to

the following linearized state-space equations

˙̃x(t;λ) ≈ Ã(λ)x̃(t;λ) + B̃(λ)ũ(t) , (4)

ỹ(t;λ) ≈ C̃(λ)x̃(t;λ) + D̃(λ)ũ(t) , (5)

where the parameter-dependent state-space matrices Ã(λ) ∈
R

N×N , B̃(λ) ∈ R
N×P , C̃(λ) ∈ R

P×N , D̃(λ) ∈ R
P×P

collect the partial derivatives of F ,G with respect to states

and inputs, evaluated at the operation point. System (4)-(5)

represents a small-signal linear transfer function model, with

small-signal transfer function

H̃(s;λ) = C̃(λ)(sI − Ã(λ))−1B̃(λ) + D̃(λ) . (6)

The number N of states in (4)-(5) can be very large,

especially when the model includes the effects of all parasitics

due to capacitive, inductive or resistive/substrate couplings.

Therefore, some complexity reduction is highly desired before

using the model for system-level simulations aimed at func-

tional as well as signal/power integrity verification. In order

to obtain such reduced-order model, the full nonlinear circuit

block is run within the available CAD environment for a set

of discrete frequency/parameter grid points (ωk;λν). Then, the

resulting multiple sets of frequency- and parameter-dependent

scattering data H̃(jωk;λν) are processed by a parametric

rational fitting engine, in order to obtain a low-order rational

macromodel which takes the form

ẋq(t;λ) ≈ Ãq(λ)x̃q(t;λ) + B̃q(λ)ũ(t) , (7)

ỹ(t;λ) ≈ C̃q(λ)x̃q(t;λ) + D̃q(λ)ũ(t) , (8)

with a number of states q ≪ N , and such that

H̃(s;λ) ≈ H̃q(s;λ) = C̃q(λ)(sI−Ãq(λ))
−1B̃q(λ)+D̃q(λ)

(9)

for s = jω and each component λ(i) of the parameter

vector within user-defined fitting bandwidth [ωmin, ωmax] and

parameter range [λ
(i)
min, λ

(i)
max]. The macromodel is obtained by

a number of steps, itemized below.

1) Model structure and fitting: We consider the following

representation [12], [13] for the parameterized small-signal

macromodel

H̃q(s;λ) =
Nq(s, λ)

dq(s, λ)
=

∑q

m=0 Rm(λ)φm(s)
∑q

m=0 rm(λ)φm(s)
(10)

where the frequency-dependent basis functions are partial

fractions associated to a set of distinct prescribed poles am

φ0(s) = 1, φm(s) =
1

s− am
(11)

and where the parameter-dependent coefficients are expressed

as a superposition of multivariate basis functions ξℓ(λ) as

Rm(λ) =

L
∑

ℓ=1

Rm,ℓξℓ(λ), rm(λ) =

L
∑

ℓ=1

rm,ℓξℓ(λ) (12)

with constant and unknown coefficients Rm,ℓ and rm,ℓ. In

this work, we use entire-domain multivariate polynomials as

ξℓ(λ), which are sufficient due to the low order that is required

for our application. The coefficients in (10) are identified by

performing a weighted least-squares fit of the data H̃(jωk;λν)
within a Sanathanan-Koerner framework. More details about

this process are found in [12], [13], [17], where it is also

shown how to construct the state-space realization (9).

2) Parameterized DC correction: The above macromodel

is almost ready for system-level simulation. In fact, a brute-

force replacement of the nonlinear state equations (1)-(2)

with the macromodel (7)-(8) will not lead to correct results,

since the latter captures only small-signal variations and lacks

information on the operation point .This is readily seen by

computing the DC response of the macromodel under nominal

bias conditions,

Y q,0(λ) =
(

D̃q(λ)− C̃q(λ)Ã
−1

q (λ)B̃q(λ)
)

U0(λ) (13)

which in general is not equal to the correct DC output

Y 0(λ). A correct implementation is obtained by comple-

menting the macromodel realization with suitable constant

correction sources defined as

∆Y q,0(λ) = Y 0(λ) − Y q,0(λ) , (14)

to be connected at the interface ports of the macromodel [11].

The actual values of these sources are obtained by evaluat-

ing (14) for each value of the parameter grid points λν , and by

interpolating/fitting these values with a low order polynomials

using the basis functions ξℓ(λ) of (12). A SPICE implementa-

tion is straightforward through polynomial controlled sources,

a basic component that is available for practically all SPICE

engines.

3) Discussion: The proposed macromodel is equivalent to

standard small-signal analyses available in any circuit solver,

but with the added value of intrinsic model order reduction.

The full-size small-signal circuit with N states is replaced

by its macromodel having only q ≪ N states. The main

“order reduction” approach that we use is based on black-

box curve fitting with external parameters. This technique has

already been discussed in [12]–[16] for modeling of linear

structures only. This paper extends this technique proving its

applicability to biased nonlinear circuit blocks, provided that

proper care is taken in the enforcement of the (parameter-

dependent) DC macromodel behavior.

III. RESULTS

The proposed macromodeling procedure is illustrated on

a circuit block composed by a single OPerational Amplifier

whose voltage source is provided by a Low-DropOut (LDO)

voltage regulator, see Fig. 1. Both components were extracted
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Fig. 1. Subset of high-level circuit blocks inside a base-band receiver chain.
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Fig. 2. Top: comparison between parameterized macromodel (red dashed
lines) and small-signal S-parameter S2,3 responses of the OPA circuit block
for fixed supply voltage Vdd = 1.2 V and variable gain. Bottom, same
comparison but for S3,2 with fixed gain α = 2 and variable Vdd.

from a commercial 3G transceiver design. The OPA circuit

block is parameterized by a supply voltage Vdd ∈ [1.1, 1.3] V

with 20 mV steps and a gain α ∈ [1, 2] with steps 0.05, which

are ranges of practical interest. Linearity and closed-loop sta-

bility were verified in practice by means of Spice simulations.

The LDO model is parameterized by a Vd ∈ [1.2, 1.7] V using

a nominal voltage reference Vref = 0.6 V, see also [18].

Figures 2-3 compare the computed macromodel responses

to the original small-signal scattering responses for various
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Fig. 3. Illustration of the variability of a sample scattering response S3,2

(phase) of the parameterized OPA macromodel with respect to gain.
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Fig. 4. Bottom panel: detail of the transient analysis of the LDO transistor-
level circuit block (blue continuous line) and parameterized macromodel, with
(red dashed line) and without (black line) DC correction sources. The LDO
input affected by noise is depicted in the top panel. As expected, the output
from the LDO is always close to the nominal value of 1.13 V.

combinations of the parameters. The accuracy is excellent.

These figures show that the variability induced by supply

voltage variations is very small, whereas the sensitivity to a

gain variation is larger.

The same macromodeling process was also applied to the

LDO (not shown here). Then, the parameterized macromodels

of OPA and LDO were synthesized in SPICE, and a transient

analysis was performed to validate the macromodel vs the full

transistor level circuits. For illustration, we address a common

signal-integrity scenario: the output from a differential LNA

in a base-band receiver chain is amplified and filtered using

an OPA. Signal quality and noise rejection are of paramount

importance since the analog output from the OPA is then

processed by and A/D converter and provided to a Digital

Processing Block. Disturbances on the voltage input Vd, due

to cross-talk or external noise sources must be handled by the

LDO resulting in a stable Vdd for the OPA. Therefore a multi-

tone (1 GHz–567 MHz–40MHz) multi-amplitude distortion is

added to a 10 kHz square wave used as disturbance on the Vd

input of the LDO, while the input for the OPA is a 4 MHz
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Fig. 5. Bottom panel: detail of the transient analysis of the OPA transistor-
level circuit block (blue continuous line) and parameterized macromodel, with
(red dashed line) and without (black line) DC correction sources.
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square wave.

A small part of the input signal and the corresponding

outputs are depicted in Fig. 5 for the OPA and in Fig. 4 for

the LDO. A 200 µs transient simulation is required in order

to properly asses the effect of the disturbances on the LDO

input Vd. The transistor level simulation required 10 h. Such

large simulation time is quite common and basically due to:

the complexity of the transistor level models, involving 600

transistors, 100 diodes and 600 dynamical elements, and the

complexity of the multi-tone disturbance on the LDO. The

linear macromodel completed the simulation in only 8 minutes

leveraging on the synthesized low order model: order 11 for

the OPA and 16 for the LDO. As can be seen in Figures 4

and 5, such a tremendous speedup can be achieved with no

compromise on accuracy. The figures further demonstrates the

necessity of including DC correction sources, since the results

without such sources present a clear DC offset. Dealing with

two parameters, i.e. Vdd and α, the DC correction current

sources were modeled using two-dimensional polynomials;

results are depicted in Figure 6.

IV. CONCLUSIONS

In summary, we have presented a parameterized macromod-

eling procedure that is able to produce accurate and efficient

small-signal macromodels of nonlinear circuit blocks that are

designed to operate linearly under specific bias conditions.

The obtained macromodels provide an implicit model order

reduction, thus reducing transient simulation runtime. There-

fore, such macromodels can be used as elementary building

blocks, replacing the actual design schematics, and suitably

combined with signal and power distribution network reduced

models within a full system-level simulation, leading to a

drastic reduction in overall runtime.
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