POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic Analysis Of Rotors: Comparison Between the Simplified One-Dimensional Results and Those
Obtained Through 3-D Modeling

Original

Dynamic Analysis Of Rotors: Comparison Between the Simplified One-Dimensional Results and Those Obtained
Through 3-D Modeling / Genta, Giancarlo; Silvagni, Mario; C., Qingwen. - STAMPA. - (2013). (Intervento presentato al
convegno XXI Congresso nazionale AIMETA tenutosi a Torino nel September 2013).

Availability:
This version is available at: 11583/2526352 since:

Publisher:

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

28 July 2024



Dynamic analysis of rotors: comparison betweensihgplified one-
dimensional results and those obtained throughn3eDeling

Giancarlo Genta Mario Silvagnt, Cui Qingwen

'Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
E-mail: giancarlo.gent@polito.it,mario.silvagni @polito.it

Keywords: RotordynamicsiFEM, solid modeling.

SUMMARY. Three-dimensional FEM modeling is a vialalkkernative to simpler approaches
also in rotordynamic analysis. However, some diffies are still present, and not all commercial
codes are able to deal with this kind of modelim@n adequate way. In the day-to-day industrial
practice there is some concern related to the @is8-@ modeling, even if it has the huge
advantage of being better integrated into the Cderpfiided Engineering (CAE) practices that
lead to a decrease of the design and analysis aodtimes. The present paper aims to shed some
light on the improvements in the quality of the Iges results achievable through 3-D modeling
in rotordynamics: since there is no chance of olbtgi general results in this field, the task wil b
carried on by proceeding with numerical experimeptated to hundreds of different cases, that
are by necessity much simplified, but are emblesratihe actual rotor configurations.

1 INTRODUCTION

The traditional approach to rotordynamic analysi®ased on modeling rotor shafts as beams
and elements like discs, joints, gearwheels, edccancentrated masses, often provided with
moments of inertia. This approach is usually refério as one-dimensional (1-D) modeling. The
models based on it may have different complexifyarsing from elementary 2 degrees of
freedom models (the Jeffcott rotor), to models wiitth.o.f. up to general multi d.o.f. models based
either on the transfer matrices approach of théd-EFlements Method (FEM) [1-4].

The limitations of 1-D rotordynamics are mainly two

1. The first drawback is linked with the beam-like urat of the shafts. It is well known that the
Euler-Bernoulli model can be used only for fairllersler beams and that even the
Timoshenko beam cannot model correctly beams wtthodow slenderness. Moreover, the
rotors of many turbines include tubular shafts Vdttye diameter and small thickness, and in
this case the natural frequencies linked with beagdn the circumferential direction, not
obtained using beam models, may lay in the samgeras those linked with bending in the
axial direction. A similar effect is linked to som&tor configurations that can be assimilated
more to drums than to shafts.

2. The second limitation of 1-D rotordynamics is thmapbssibility of accounting for the
flexibility of discs, that may, in some cases, effftne dynamic behavior of actual rotors. This
can be corrected by resorting to the so-called 2tDl/approach, in which the discs are
modeled using annular elements whose displacenaeatdeveloped in Fourier series along
the angle. The main drawback of this approachasahbeing limited to thin discs having an
overall axy-symmetrical shape. The advantage i$ tth@ model is only marginally more
complicated than that obtained through the 1-D aggqh [5, 6].



Although it is possible to show that the modes imoh the geometric centers of the cross
sections don't displace laterally are uncoupledh tie overall rotor modes, these local modes may
be important in assessing the global dynamicsefdkor [5-7].

The only way to include all these effects in thalgsis is to resort to full three-dimensional (3-
D) modeling of the rotor, a thing that is made jjdssby using the FEM. Even if the basic
foundations of 3-D rotordynamics were defined siacéong time [8], the application of 3-D
modeling of rotors is not as easy as it could meeted, since not all commercial FEM codes are
suitable for rotor modeling, and those which aogugred this capability only recently. A problem
that can be encountered in 3-D rotor modelingnikdd with the symmetry classes of the rotor: the
analysis should be performed with reference tartial frame if the rotor is axially symmetrical,
while a rotor-fixed frame must be used if the ra®not such, provided that the stator has axial
symmetry. If both rotor and stator have no symmeixis, an equation of motion with time-
dependent coefficients is obtained in any refereineme and no closed form solution can be
obtained.

Actually the axial symmetry of both stator and roéme not strictly required, since it may be
substituted by the simpler cyclic symmetry, buttiis case a modal computation must be
performed [9].

It must be expressly stated that the greatest aalgarof 3-D rotordynamics is not so much in
the results it allows to obtain but on its compititipbwith the models that must be anyway built in
the overall Computer Aided Engineering (CAE) praces 3-D model of the rotor and often of the
whole machine must anyway be made, while a beanembkke the one required for the simpler
approaches to rotordynamics, has to be expresslif thwough specific, labor intensive,
computations, since the conversion is not easitgraated. The building of 1-D, and even more 1
1/2-D, models requires more common sense and esrgigeknowledge than the application of
algorithms, a thing that rules out a simple autérasibn of the procedure.

This notwithstanding, industrial applications oD3rotordynamics are still less common than
what could be thought, and ad hoc, 1-D, and evely2iD rotordynamic codes still find a
widespread application.

The aim of the present paper is to evaluate, thragumber of examples, how accurate are
the results of the simple 1-D and 1 1/2-D modelenvbompared with complex 3-D models even
in conditions that usually are considered beyoredapplicability of the simplified models. This
comparison is based on a simplified geometry, Wgvelerred to astodola-Green rotor.

2 THE STODOLA-GREEN ROTOR

The Stodola-Green rotor is made of a rotating targr beam to which a rigid body is attached.
In its simplest (Fig. 1a ) form the shaft is prisimeand homogeneous and the rigid body is a
constant thickness axi-symmetric disc. By varying tharacteristics of the beam it is possible to
investigate on the adequateness of the beam meodeéit ((1) above), while by varying the
thickness of the disc it is possible to investigatethe effects of the disc flexibility (point (2)
above).

If the two parts are made with the same matehal geometry is defined by 5 parametéy,sd,
do, | andd) and the material properties by 3 parametérs/@ndp).

The simplest model allowing to take into accountoggopic effects, i.e. the rotor with 4
degrees of freedom (Fig. 1b), yields the followieggenproblem allowing to compute the
Campbell diagram, i.e. the plot of the whirl frequies as functions of the rotational speed:



det -o 0 ‘]t + wQ OJp +K |=0

The parameters included in Eq. (1) are
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Using the Timoshenko beam model for the part ABhef beam in Fig. 1b and assuming that

the length BG is rigid, the stiffness matrix is
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and the shear factgrtakes a value of 10/9 in the case of circularrorudar cross section.
The case of the Euler-Bernoulli beam can be stuloyesimply assuming thae= 0.
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Figure 1: a): Sketch of a Stodola-Green rotornimdel as a rotor with 4 d.o.f.

The Stodola-Green rotor is studied using 10 differaodels:

®3)

(4)

1. Model 4-DOF-EB: a simplified 4 degrees of freedorad®l, with an Euler Bernoulli beam

(Ea. (1) to (3));

2. Model 4-DOF-T: a simplified 4 degrees of freedomdeip with a Timoshenko beam;

3. Model 1D-ML: a 1-D FEM model, built using the DYNRQcode. The model is made by 4
Timoshenko beam models for the shaft and 2 sirbigsam elements for the disc (equivalent

to a rigid beam plus a mass element). The beanassless;

4. Model 1D-M: identical to Model 1D-ML, but with theass of the beam accounted for;



5. Model 1.5D-ML: a 1 1/2-D FEM model, built using tBeYNROT code. The model is made
by 6 Timoshenko beam for the shaft, 1 disc-shafidistion model and 3 disc elements for
the disc. The 4 elements modeling the beam arelesass

6. Model 1.5D-M: identical to Model 1.5D-ML, but withhe mass of the beam accounted for;

7. Model 1D-A-ML: a 1-D FEM model built using ANSYS de. The same type and number of
elements as for the DYNROT model. The mass of danbis neglected;

8. Model 1D-A-M: identical to Model 1D-A-ML, but the ass of the beam is accounted for.

9. Model 3D-A-ML: a 3-D FEM model built using ANSYS de. This model is much more
complex than the previous ones. It is made by aablr number of type 272, general
axisymmetric 3-D solid models, with 4 nodes. Thember of elements depends on the
dimensions of the various parts, so that the elésnare not too distorted. The beam is
massless.

10. Model 3D-A-M: identical to Model 3D-A-ML, but the ass of the beam is accounted for.

3 EFFECT OF THE SLENDERNESS OF THE SOLID BEAM

To study the effect of the slenderness of the be&lageometrical parameters are fixég @, |
and d), together with the properties of the material,levthe outer diameter of the beaipis
considered as a variable.

Assume that, = 500 mm,d; = 0,1 = 100 mm,d = 500 mm,E = 210 GPap =7810 kg/ms,

v = 0.3 and that the outer diameter is varied batv&emm (very slender beam) to 400 mm (very
stub beam, practically not a beam but a solid).

Since the problem here is linked only with thefséés of the system, the beam is assumed to
be massless, so that it is possible to compar&HEhé results also with those obtained using the 4
d.o.f. model. In this way a comparison betweenEléer-Bernoully and the Timoshenko beam
elements is also possible. The thickeness of theidilarge, and no effects of disc flexibility can
be expected: the 1-D and the 1 1/2 D models areateg to give the same results.

3.1First critical speed

The dynamic study is performed using models # DQF-EB), # 2 (4-DOF-T), #3 (1D-ML),
#5 (Model 1.5D-ML), #7 (1D-A-ML) and #9 (3D-A-ML)The results, in terms of the first critical
speed, are shown in Fig. 2, ato c.

The critical speed is reported as a function ofttkam diameter in Fig. 2a. The part for very
small diameters is enlarged by a factor 10 to allbe/results to be seen clearly. The results for
stub beams are reported as functions of the sleadsiin Fig. 2b. The Slenderness is defined as
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In Fig. 2c the ratio between the critical sp&eg; computed with the current model and that
resulting from the Euler-Bernoulli modé ., are reported as a function of the slenderness.

The results are clear: the 1-D, 1 1/2-D and 3-D elegield very similar results. The largest
difference between the 1-D and 3-D elements ocauesslenderness of 5, where the relative error
between the first two models and the latter onaf i$.5%, to reduce below 1% for a slenderness
greater than 10. The Timoshenko beam model is safidan predicting the behavior of the beam
even for a slenderness as small as 5.

The value of the first critical speed (in rad/syaported for different values of the slenderness
of the beam, computed with the various models in. Ta
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Figure 2: a): Critical speed as a function of tkarn diameter (The part on the left, for very small

diamters, is enlarged by a factor 10); b): Critispked as a function of the slenderness for very
stub beams; c): ratio between the critical sp@gd computed with the current model and that

resulting from the Euler-Bernoulli modé)’.; as a function of the slenderness; d): Campbell
diagram for the rotor witkdy = 400 mm (first bending and torsional modes).

Tab. 1. First critical speed (in rad/s) for diffetevalues of the slenderness of the beam,
computed with the various models.

a 5 10 20 40 100

4 d.o.f. — Euler-Bernoulli 5,892 1,473 368.7 92.1 14.7
4 d.o.f. — Timoshenko 5,134 1,417 364.4 91.8 14.7
DYNROT 1-D 5,125 1,416 | 364.5 91.8 14.7
DYNROT 1 1/2-D 5,078 1,410 | 364.Q 91.8 14.7
ANSYS 1D 5,077 1,414 | 364.4 91.8 14.7
ANSYS 3D 5,114 1,428 | 366.9 92.2 14.7

3.2Campbell diagram

The Campbell diagram for the rotor widh= 400 mm was computed using the same models as
for the critical speed. The first bending and thet ftorsional modes are reported in Fig. 2d as
functions of the speed.

The results for the bending mode for models # DQF-T), #3 (1D-ML), #5 (Model 1.5D-
ML) are completely superimposed, while the Eulers®eilli beam (model # 1 (4-DOF-EB)) gives,



as expected, slightly different results. Note thahe case of the torsional mode the 1 ¥2-D model
yields a value of the frequency that is slightlyér than that of the 1-D model. This can be
explained by the very high torsional stiffnessta beam, that is not much higher than that of the
disc.

4 EFFECT OF THE THICKNESS OF THE HOLLOW BEAM

The shafts of many turbines are large diametenm,whilled tubes. In these conditions it is often
said that beam models are inadequate, owing tod#fermations in radial direction of the
structure, that follow a multi-lobe pattern. Clgathey cannot take into account these modes,
which however are usually local modes and do rfetathe rotor as a whole.

To study the effect of the wall thickness of thaime 4 geometrical parameters are fixigdd,,
| andd), together with the properties of the material,lev/the inner diameter of the beadnis
considered as a variable.

Assume that, = 500 mm, =400 mm,J =100 mm,d = 500 mm,E = 210 GPap =7810 kg/m3,

v =0.3 and the inner diameter is varied betweenr860(very thick wall beam) to 399 mm (very
thin 0.5 mm wall). The slenderness is very lowlincases, so low that the applicability of beam
models might be questionable.

In the present case the beam is not assumed toalselass, since the local vibrations are
strictly linked with the mass property of the beand not those of the disc. However, to compare
the results with those of the model with 4 d.@fsp the massless case is considered. The dynamic
behavior has been computed using all models, frdnia##10.

4. 1First critical speed
The results are reported in Fig. 3.
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Figure 3: a): Critical speed as a function of tmeeir diameter of the beam; b) Critical speed as
a function of the slenderness.

Owing to the low slenderness, the Euler Bernowhin gives results far higher than those due
to the Timoshenko beam (owing to neglecting theaslwempliance, the beam is way too stiff,
relative error between 35% and and 45%). The masiseobeam affects the results to a lesser,
although noticeable, extent. However, the diffeeehetween the results obtained for all wall
thicknesses down to just 0.5 mm (thickeness/diamate® of 0.00125, slenderness of 3.54) is of
about 1.5% between the DYNROT model and the ANSPSriddel.



4.2Campbell diagram

The Campbell diagram is computed only for the cagth the minimum thickness, 0.5 mm
(slenderness of 3.55). The results are shown in4rig
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Tab. 1. Natural frequencies (in Hz) at zero speethputed with the various models.

1000
Figure 4 Campbell diagram for the Stodola-Greearrofith a very thin walled beam.
The natural frequencies at zero speed computed tlsnsame models are reported in Tab. 1.
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Bending Axial Torsional
Multiplicity 2 2 1 1 2 2
4 d.o.f. — Euler-Bernoulli 83.51 561.66 208.64 126.2 - -
4 d.o.f. — Timoshenko 69.92 345.66 208.6% 146.22 - -
DYNROT 1-D (massless) 63.41 310.04 208.65 146.21 -
DYNROT 1(1/2)-D (massl.) 63.41 309.82 208.61 146.105 - -
DYNROT 1-D 63.28 308.31 208.97 145.72 - -
DYNROT 1(1/2)-D 63.28 308.11 208.06 145.66 - -
ANSYS 3D 62.66 304.88 208.30 145.62 314.31 317

36

The results are quite close to each other. It msar&able that the results obtained using the
Timoshenko beam are so good (in case of the fisdeneven with a slenderness of only 3.55.
The worst results for the second mode can be &sttib the fact that the mass of the beam has
been neglected in the 4 d.o.f. model. The 2 highedes obtained from the 3-D FEM model are
due to multilobe deformations.

5 EFFECT OF THE THICKNESS OF THE DISC

To investigate on the effect of the disc thicknessthe dynamics of the Stodola-Green rotor
the 4 geometrical parameters that are fixedady, d,, andd, together with the properties of the
material, while the disc thickness is considered gariable.

Assume that, = 500 mmgd; = 0, d, = 50 mm,d = 500 mmE = 210 GPap =7810 kg/m3,v =
0.3. The disc length is varied between 100 mm (t#eigk disc) to 0.5 mm (the disc is practically a



membrane. The slenderness of the beam is high ar(aug 40) to expect that the Euler Bernoulli
beam is adequate.

5.1First critical speed

The first critical speed is thus computed usingradels. The results are reported in Fig. 5.

The results obtained from all models are very simiéxcept when the disc is very thin (less
than 10 mm, i.el/d < 0.02) and the mass of the shaft becomes an tangquart of the total mass
(therefore the massless models yield results miftdreht from those of the models including the
shaft mass). Centrifugal stiffening has a smaléetffand 1-D, 1 %-D and 3-D models yields
practically identical results since the frequentyhe modes related to the disc deformations grow
fast with the speed, remaining well above ¢he Q line. They do not affect critical speeds.
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Figure 5. Critical speed as a function of the thiess of the disc.

5.2. Campbell diagram

The Campbell diagram was then computed for the gade!l = 10 mm. The results are
reported in Fig. 6. In Tab. 2 the natural frequesdre reported at standstill.
From the plot and the table the following resudis be drawn:

e The 1-D FEM model with massless shaft gives resblis are very close to those obtainable
from the 4 d.o.f. model, with both Timoshenko ande Bernoully beams. The latter yield 6
natural frequencies (at standstill two have a mplidiity of 2), while the former yields more
of them, 6 close to those obtained through theo4.dnodel, and the others much higher.

* At zero speed all models give practically coincideasults for the first bending mode
(forward and backward) and the first torsional mddethese modes the disc behaves like a
rigid body vibrating on a massless shaft.

« For all other modes the flexibility of the disc atite inertia of the shaft are important in
determining the frequencies and the mode shapes.1fd models consequently are not
usable, and the same holds for the 1(1/2)-D madighsa massless shaft.
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Tab. 2. Natural frequencies (in rad/s) at zero dpeemputed with the various models. In the case
of ANSYS models also the cases in which the disndgeled using shell elements are considered.
The shaft is modeled either with beam or with selements. The first 4 lines refer to models in

which the mass of the shaft has been neglected

Bending Torsional Axial
Multiplicity 2 2 2 1 1
4 d.o.f. (Euler-Bernoulli) 292.6 1,591 - 454.8 333.3
4 d.o.f. (Timoshenko) 292.0 1,577\7 - 454.8 7,333.3
DYNROT 1-D (massless) 2920 11,5775 - 454.8 7,333.3
DYNROT 1(1/2)-D (massless) 289/7 812p 6,355.3 #51.| 1,058.2
DYNROT 1-D 278.6| 1,459.3 5,959 454.4 6,776,1
DYNROT 1(1/2)-D 276.8| 796.8| 4,1249 450.7 1,058.2
ANSYS (beam+shell elements) 2799 766/6 4,190.9 .450 1,037.4
ANSYS (beam+solid | elements) 27412 657/8 4,068.0 37.@ 969.1
ANSYS (solid+shell | elements) 280/4 722 4,158.2 448.0 1.005.3
ANSYS (solid+solid | elements) 281p 7579 4,159,6 450.4 1,023.8

The commercial 1-D FEM code vyields results thatmeetically coincident with those of the

DYNROT code, used to produce a 1-D model.

The results obtained from the ANSYS models (hemodel with beam elements for the shaft

and shell elements for the disc, ANSYS 1 1/2D, wassidered together with the full 3D

model, ANSYS 3D) diverge from those obtained udNROT at increasing speed. This

behavior was unexpected and requires further stueiyll be the subject of a future paper.
To clarify the matter, other tests were performgdrzluding only the gyroscopic terms but
not centrifugal stiffening. In this case the DYNRQIhd ANSYS results were practically
coincident. This allows to focus further studiestioa way centrifugal stiffening is accounted for.

Centrifugal stiffening has some effect even onfitst mode; on the other modes these effects

are much larger. This consideration is howevenyilte depend much on the rotor configuration



and may be impossible to generalize it.

6 CONCLUSIONS

The simple Stodola-Green rotor here studied allawdraw some considerations about rotor
modeling of different complexity, that can have gogeneral applications. The main conclusions
are:

* The simplified 4-degrees of freedom models yielddjoesults provided that the mass of the
shaft is small when compared with that of the rd¢ofairly obvious conclusion).

e The Euler Bernoully beam model works well if therglerness of the beam is high. This may
again appear obvious, but it is less obvious thit model is here shown to yield correct
results for a slendernessas low as 10. The Timoshenko beam model has feme shown
to work very well for values ofr as low as 5 and in some cases even 3.5.

« The beam model is able to predict accurately theadhyc behavior of thin walled hollow
beams. In this case even a beam with a slendenie3$5 and with a thickness/diameter
ratio of 0.00125 can be modeled using the 1-D mdsieth a thin walled beam has vibration
modes that cannot be computed using the 1-D mbd&lever, these modes are uncoupled
with the dynamics of the rotor as a whole and caddxrlt with as ‘local modes'.

* In case the discs are thin, their dynamics caneotdglected, even if the first bending and
torsional modes may be exceptions from this viewpoihe presence of thin discs makes
centrifugal stiffening an important issue, that gats to use the 1 1/2 -D or the 3-D
approach. However, the results obtained using tNE¥AS code diverge from those obtained
using the DYNROT code. This behavior, which apptyeis due to the way centrifugal
stiffening ia accounted for, needs to be clarifeed! further study is needed. It will be the
subject of a future paper.

The above conclusions were drawn from a much sfieglimodel, the Stodola-Green rotor.
Some of them can be generalized, but all genetmlizaequire care when are based on purely
numerical computations. Further studies based dar roonfigurations more close to those
encountered in applications, and specifically dom®provided with blades, are needed.
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