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SUMMARY. Three-dimensional FEM modeling is a viable alternative to simpler approaches 
also in rotordynamic analysis. However, some difficulties are still present, and not all commercial 
codes are able to deal with this kind of modeling in an adequate way. In the day-to-day industrial 
practice there is some concern related to the use of 3-D modeling, even if it has the huge 
advantage of being better integrated into the Computer Aided Engineering (CAE) practices that 
lead to a decrease of the design and analysis costs and times. The present paper aims to shed some 
light on the improvements in the quality of the analysis results achievable through 3-D modeling 
in rotordynamics: since there is no chance of obtaining general results in this field, the task will be 
carried on by proceeding with numerical experiments related to hundreds of different cases, that 
are by necessity much simplified, but are emblematic of the actual rotor configurations. 

1 INTRODUCTION 

The traditional approach to rotordynamic analysis is based on modeling rotor shafts as beams 
and elements like discs, joints, gearwheels, etc. as concentrated masses, often provided with 
moments of inertia. This approach is usually referred to as one-dimensional (1-D) modeling. The 
models based on it may have different complexity, spanning from elementary 2 degrees of 
freedom models (the Jeffcott rotor), to models with 4 d.o.f. up to general multi d.o.f. models based 
either on the transfer matrices approach of the Finite Elements Method (FEM) [1-4]. 

The limitations of 1-D rotordynamics are mainly two: 
1. The first drawback is linked with the beam-like nature of the shafts. It is well known that the 

Euler-Bernoulli model can be used only for fairly slender beams and that even the 
Timoshenko beam cannot model correctly beams with a too low slenderness. Moreover, the 
rotors of many turbines include tubular shafts with large diameter and small thickness, and in 
this case the natural frequencies linked with bending in the circumferential direction, not 
obtained using beam models, may lay in the same range as those linked with bending in the 
axial direction. A similar effect is linked to some rotor configurations that can be assimilated 
more to drums than to shafts. 

2. The second limitation of 1-D rotordynamics is the impossibility of accounting for the 
flexibility of discs, that may, in some cases, affect the dynamic behavior of actual rotors. This 
can be corrected by resorting to the so-called 1 1/2-D approach, in which the discs are 
modeled using annular elements whose displacements are developed in Fourier series along 
the angle. The main drawback of this approach is that of being limited to thin discs having an 
overall axy-symmetrical shape. The advantage is that the model is only marginally more 
complicated than that obtained through the 1-D approach [5, 6]. 



Although it is possible to show that the modes in which the geometric centers of the cross 
sections don't displace laterally are uncoupled with the overall rotor modes, these local modes may 
be important in assessing the global dynamics of the rotor [5-7]. 

The only way to include all these effects in the analysis is to resort to full three-dimensional (3-
D) modeling of the rotor, a thing that is made possible by using the FEM. Even if the basic 
foundations of 3-D rotordynamics were defined since a long time [8], the application of 3-D 
modeling of rotors is not as easy as it could be expected, since not all commercial FEM codes are 
suitable for rotor modeling, and those which are, acquired this capability only recently. A problem 
that can be encountered in 3-D rotor modeling is linked with the symmetry classes of the rotor: the 
analysis should be performed with reference to an inertial frame if the rotor is axially symmetrical, 
while a rotor-fixed frame must be used if the rotor is not such, provided that the stator has axial 
symmetry. If both rotor and stator have no symmetry axis, an equation of motion with time-
dependent coefficients is obtained in any reference frame and no closed form solution can be 
obtained. 

Actually the axial symmetry of both stator and rotor are not strictly required, since it may be 
substituted by the simpler cyclic symmetry, but in this case a modal computation must be 
performed [9]. 

It must be expressly stated that the greatest advantage of 3-D rotordynamics is not so much in 
the results it allows to obtain but on its compatibility with the models that must be anyway built in 
the overall Computer Aided Engineering (CAE) process. A 3-D model of the rotor and often of the 
whole machine must anyway be made, while a beam model, like the one required for the simpler 
approaches to rotordynamics, has to be expressly built through specific, labor intensive, 
computations, since the conversion is not easily automated. The building of 1-D, and even more 1 
1/2-D, models requires more common sense and engineering knowledge than the application of 
algorithms, a thing that rules out a simple automatization of the procedure. 

This notwithstanding, industrial applications of 3-D rotordynamics are still less common than 
what could be thought, and ad hoc, 1-D, and even 1 1/2-D rotordynamic codes still find a 
widespread application. 

The aim of the present paper is to evaluate, through a number of examples, how accurate are 
the results of the simple 1-D and 1 1/2-D models when compared with complex 3-D models even 
in conditions that usually are considered beyond the applicability of the simplified models. This 
comparison is based on a simplified geometry, usually referred to as Stodola-Green rotor. 

2 THE STODOLA-GREEN ROTOR 

The Stodola-Green rotor is made of a rotating cantilever beam to which a rigid body is attached. 
In its simplest (Fig. 1a ) form the shaft is prismatic and homogeneous and the rigid body is a 
constant thickness axi-symmetric disc. By varying the characteristics of the beam it is possible to 
investigate on the adequateness of the beam model (point (1) above), while by varying the 
thickness of the disc it is possible to investigate on the effects of the disc flexibility (point (2) 
above). 

If the two parts are made with the same material, the geometry is defined by 5 parameters (lb, di, 
do, l and d) and the material properties by 3 parameters (E, ν and ρ). 

The simplest model allowing to take into account gyroscopic effects, i.e. the rotor with 4 
degrees of freedom (Fig. 1b), yields the following eigenproblem allowing to compute the 
Campbell diagram, i.e. the plot of the whirl frequencies as functions of the rotational speed: 
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The parameters included in Eq. (1) are 
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Using the Timoshenko beam model for the part AB of the beam in Fig. 1b and assuming that 
the length BG is rigid, the stiffness matrix is 
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and the shear factor χ takes a value of 10/9 in the case of circular or annular cross section. 
The case of the Euler-Bernoulli beam can be studied by simply assuming that φ = 0. 

 
 
 Figure 1: a): Sketch of a Stodola-Green rotor; b): model as a rotor with 4 d.o.f. 

 
The Stodola-Green rotor is studied using 10 different models: 

1. Model 4-DOF-EB: a simplified 4 degrees of freedom model, with an Euler Bernoulli beam 
(Eq. (1) to (3)); 

2. Model 4-DOF-T: a simplified 4 degrees of freedom model, with a Timoshenko beam; 
3. Model 1D-ML: a 1-D FEM model, built using the DYNROT code. The model is made by 4 

Timoshenko beam models for the shaft and 2 similar beam elements for the disc (equivalent 
to a rigid beam plus a mass element). The beam is massless; 

4. Model 1D-M: identical to Model 1D-ML, but with the mass of the beam accounted for; 



5. Model 1.5D-ML: a 1 1/2-D FEM model, built using the DYNROT code. The model is made 
by 6 Timoshenko beam for the shaft, 1 disc-shaft transistion model and 3 disc elements for 
the disc. The 4 elements modeling the beam are massless. 

6. Model 1.5D-M: identical to Model 1.5D-ML, but with the mass of the beam accounted for; 
7. Model 1D-A-ML: a 1-D FEM model built using ANSYS code. The same type and number of 

elements as for the DYNROT model. The mass of the beam is neglected; 
8. Model 1D-A-M: identical to Model 1D-A-ML, but the mass of the beam is accounted for. 
9. Model 3D-A-ML: a 3-D FEM model built using ANSYS code. This model is much more 

complex than the previous ones. It is made by a variable number of type 272, general 
axisymmetric 3-D solid models, with 4 nodes. The number of elements depends on the 
dimensions of the various parts, so that the elements are not too distorted. The beam is 
massless. 

10. Model 3D-A-M: identical to Model 3D-A-ML, but the mass of the beam is accounted for. 

3 EFFECT OF THE SLENDERNESS OF THE SOLID BEAM 

To study the effect of the slenderness of the beam, 4 geometrical parameters are fixed (lb, di, l 
and d), together with the properties of the material, while the outer diameter of the beam do is 
considered as a variable. 

Assume that lb = 500 mm, di = 0 , l = 100 mm, d = 500 mm, E = 210 GPa, ρ =7810 kg/m³,       
ν = 0.3 and that the outer diameter is varied between 20 mm (very slender beam) to 400 mm (very 
stub beam, practically not a beam but a solid). 

Since the problem here is linked only with the stiffness of the system, the beam is assumed to 
be massless, so that it is possible to compare the FEM results also with those obtained using the 4 
d.o.f. model. In this way a comparison between the Euler-Bernoully and the Timoshenko beam 
elements is also possible. The thickeness of the disc is large, and no effects of disc flexibility can 
be expected: the 1-D and the 1 1/2 D models are expected to give the same results. 

3.1 First critical speed 

The dynamic study is performed using models # 1 (4-DOF-EB), # 2 (4-DOF-T), #3 (1D-ML), 
#5 (Model 1.5D-ML), #7 (1D-A-ML) and #9 (3D-A-ML). The results, in terms of the first critical 
speed, are shown in Fig. 2, a to c.  

The critical speed is reported as a function of the beam diameter in Fig. 2a. The part for very 
small diameters is enlarged by a factor 10 to allow the results to be seen clearly. The results for 
stub beams are reported as functions of the slenderness in Fig. 2b. The Slenderness is defined as 
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In Fig. 2c the ratio between the critical speed Ωcrit computed with the current model and that 
resulting from the Euler-Bernoulli model Ω*

crit are reported as a function of the slenderness. 
The results are clear: the 1-D, 1 1/2-D and 3-D models yield very similar results. The largest 

difference between the 1-D and 3-D elements occurs at a slenderness of 5, where the relative error 
between the first two models and the latter one is of 1.5%, to reduce below 1% for a slenderness 
greater than 10. The Timoshenko beam model is successful in predicting the behavior of the beam 
even for a slenderness as small as 5. 

The value of the first critical speed (in rad/s) is reported for different values of the slenderness 
of the beam, computed with the various models in Tab. 1. 



 
Figure 2: a): Critical speed as a function of the beam diameter (The part on the left, for very small 
diamters, is enlarged by a factor 10); b): Critical speed as a function of the slenderness for very 
stub beams; c): ratio between the critical speed Ωcrit computed with the current model and that 
resulting from the Euler-Bernoulli model Ω*

crit as a function of the slenderness; d): Campbell 
diagram for the rotor with d0 = 400 mm (first bending and torsional modes). 

 
Tab. 1. First critical speed (in rad/s) for different values of the slenderness α of the beam, 
computed with the various models. 
 

α 5 10 20 40 100 
4 d.o.f. – Euler-Bernoulli 5,892 1,473 368.2 92.1 14.7 
4 d.o.f. – Timoshenko 5,134 1,417 364.6 91.8 14.7 
DYNROT 1-D 5,125 1,416 364.5 91.8 14.7 
DYNROT 1 1/2-D 5,078 1,410 364.0 91.8 14.7 
ANSYS 1D 5,077 1,414 364.4 91.8 14.7 
ANSYS 3D 5,114 1,428 366.8 92.2 14.7 

3.2 Campbell diagram 

The Campbell diagram for the rotor with d0 = 400 mm was computed using the same models as 
for the critical speed. The first bending and the first torsional modes are reported in Fig. 2d as 
functions of the speed.  

The results for the bending mode for models # 2 (4-DOF-T), #3 (1D-ML), #5 (Model 1.5D-
ML) are completely superimposed, while the Euler-Bernoulli beam (model # 1 (4-DOF-EB)) gives, 



as expected, slightly different results. Note that in the case of the torsional mode the 1 ½-D model 
yields a value of the frequency that is slightly lower than that of the 1-D model. This can be 
explained by the very high torsional stiffness of the beam, that is not much higher than that of the 
disc. 

4 EFFECT OF THE THICKNESS OF THE HOLLOW BEAM 

The shafts of many turbines are large diameter, thin walled tubes. In these conditions it is often 
said that beam models are inadequate, owing to the deformations in radial direction of the 
structure, that follow a multi-lobe pattern. Clearly they cannot take into account these modes, 
which however are usually local modes and do not affect the rotor as a whole. 

To study the effect of the wall thickness of the beam, 4 geometrical parameters are fixed (lb, d₀, 
l and d), together with the properties of the material, while the inner diameter of the beam di is 
considered as a variable. 

Assume that lb = 500 mm, do =400 mm, l =100 mm, d = 500 mm, E = 210 GPa, ρ =7810 kg/m³, 
ν  =0.3 and the inner diameter is varied between 300 mm (very thick wall beam) to 399 mm (very 
thin 0.5 mm wall). The slenderness is very low in all cases, so low that the applicability of beam 
models might be questionable. 

In the present case the beam is not assumed to be massless, since the local vibrations are 
strictly linked with the mass property of the beam and not those of the disc. However, to compare 
the results with those of the model with 4 d.o.f., also the massless case is considered. The dynamic 
behavior has been computed using all models, from # 1 to #10. 

4.1 First critical speed 

The results are reported in Fig. 3. 

 
Figure 3: a): Critical speed as a function of the inner diameter of the beam; b) Critical speed as 

a function of the slenderness. 
 
Owing to the low slenderness, the Euler Bernoulli beam gives results far higher than those due 

to the Timoshenko beam (owing to neglecting the shear compliance, the beam is way too stiff, 
relative error between 35% and and 45%). The mass of the beam affects the results to a lesser, 
although noticeable, extent. However, the difference between the results obtained for all wall 
thicknesses down to just 0.5 mm (thickeness/diameter ratio of 0.00125, slenderness of 3.54) is of 
about 1.5% between the DYNROT model and the ANSYS 3D model.  



4.2 Campbell diagram 

The Campbell diagram is computed only for the case with the minimum thickness, 0.5 mm 
(slenderness of 3.55). The results are shown in Fig. 4.  

 
Figure 4 Campbell diagram for the Stodola-Green rotor with a very thin walled beam. 

The natural frequencies at zero speed computed using the same models are reported in Tab. 1. 
 

Tab. 1. Natural frequencies (in Hz) at zero speed, computed with the various models. 
 Bending Axial Torsional   
Multiplicity 2 2 1 1 2 2 
4 d.o.f. – Euler-Bernoulli 83.51 561.66 208.65 146.22 - - 
4 d.o.f. – Timoshenko 69.92 345.66 208.65 146.22 - - 
DYNROT 1-D (massless) 63.41 310.04 208.65 146.21 - - 
DYNROT 1(1/2)-D (massl.) 63.41 309.82 208.61 146.15 - - 
DYNROT 1-D 63.28 308.31 208.97 145.72 - - 
DYNROT 1(1/2)-D 63.28 308.11 208.06 145.66 - - 
ANSYS 3D 62.66 304.88 208.30 145.62 314.31 317.36 

  
The results are quite close to each other. It is remarkable that the results obtained using the 

Timoshenko beam are so good (in case of the first mode) even with a slenderness of only 3.55. 
The worst results for the second mode can be ascribed to the fact that the mass of the beam has 
been neglected in the 4 d.o.f. model. The 2 higher modes obtained from the 3-D FEM model are 
due to multilobe deformations. 

5 EFFECT OF THE THICKNESS OF THE DISC 

To investigate on the effect of the disc thickness on the dynamics of the Stodola-Green rotor 
the 4 geometrical parameters that are fixed are lb, d₀, d₀, and d, together with the properties of the 
material, while the disc thickness is considered as a variable. 

Assume that lb = 500 mm, di = 0,  do = 50 mm, d = 500 mm, E = 210 GPa, ρ =7810 kg/m³, ν = 
0.3. The disc length is varied between 100 mm (very thick disc) to 0.5 mm (the disc is practically a 



membrane. The slenderness of the beam is high enough (α = 40) to expect that the Euler Bernoulli 
beam is adequate. 

5.1 First critical speed 

The first critical speed is thus computed using all models. The results are reported in Fig. 5. 
The results obtained from all models are very similar, except when the disc is very thin (less 

than 10 mm, i.e. l/d < 0.02) and the mass of the shaft becomes an important part of the total mass 
(therefore the massless models yield results much different from those of the models including the 
shaft mass). Centrifugal stiffening has a small effect and 1-D, 1 ½-D and 3-D models yields 
practically identical results since the frequency of the modes related to the disc deformations grow 
fast with the speed, remaining well above the ω = Ω line. They do not affect critical speeds. 

 
Figure 5. Critical speed as a function of the thickness of the disc. 

5.2. Campbell diagram 

The Campbell diagram was then computed for the case with l = 10 mm. The results are 
reported in Fig. 6. In Tab. 2 the natural frequencies are reported at standstill. 

From the plot and the table the following results can be drawn: 
• The 1-D FEM model with massless shaft gives results that are very close to those obtainable 

from the 4 d.o.f. model, with both Timoshenko and Euler Bernoully beams. The latter yield 6 
natural frequencies (at standstill two have a multiplicity of 2), while the former yields more 
of them, 6 close to those obtained through the 4 d.o.f. model, and the others much higher. 

• At zero speed all models give practically coincident results for the first bending mode 
(forward and backward) and the first torsional mode. In these modes the disc behaves like a 
rigid body vibrating on a massless shaft. 

• For all other modes the flexibility of the disc and the inertia of the shaft are important in 
determining the frequencies and the mode shapes. The 1-D models consequently are not 
usable, and the same holds for the 1(1/2)-D models with a massless shaft. 
 



 
Figure 6. Campbell diagram for the case with l = 10 mm. . 

 
Tab. 2. Natural frequencies (in rad/s) at zero speed, computed with the various models. In the case 
of ANSYS models also the cases in which the disc is modeled using shell elements are considered. 
The shaft is modeled either with beam or with solid elements. The first 4 lines refer to models in 
which the mass of the shaft has been neglected 

 Bending Torsional Axial 
Multiplicity 2 2 2 1 1 
4 d.o.f. (Euler-Bernoulli) 292.6 1,591.5 - 454.8 7,333.3 
4 d.o.f. (Timoshenko) 292.0 1,577.7 - 454.8 7,333.3 
DYNROT 1-D (massless) 292.0 1,577.5 - 454.8 7,333.3 
DYNROT 1(1/2)-D (massless) 289.7 812.2 6,355.3 451.1 1,058.2 
DYNROT 1-D 278.6 1,459.3 5,959.7 454.4 6,776.1 
DYNROT 1(1/2)-D 276.8 796.8 4,124.9 450.7 1,058.2 
ANSYS (beam+shell elements) 279.9 766.6 4,190.9 450.4 1,037.4 
ANSYS (beam+solid l elements) 274.2 657.8 4,068.0 437.0 969.1 
ANSYS (solid+shell l elements) 280.4 722.6 4,153.2 448.0 1.005.3 
ANSYS (solid+solid l elements) 281.2 757.9 4,159,6 450.4 1,023.8 

 
• The commercial 1-D FEM code yields results that are practically coincident with those of the 

DYNROT code, used to produce a 1-D model. 
• The results obtained from the ANSYS models (here a model with beam elements for the shaft 

and shell elements for the disc, ANSYS 1 1/2D, was considered together with the full 3D 
model, ANSYS 3D) diverge from those obtained using DYNROT at increasing speed. This 
behavior was unexpected and requires further study. It will be the subject of a future paper. 

To clarify the matter, other tests were performed by including only the gyroscopic terms but 
not centrifugal stiffening. In this case the DYNROT and ANSYS results were practically 
coincident. This allows to focus further studies on the way centrifugal stiffening is accounted for.  

Centrifugal stiffening has some effect even on the first mode; on the other modes these effects 
are much larger. This consideration is however likely to depend much on the rotor configuration 



and may be impossible to generalize it. 

6 CONCLUSIONS 

The simple Stodola-Green rotor here studied allows to draw some considerations about rotor 
modeling of different complexity, that can have some general applications. The main conclusions 
are: 
• The simplified 4-degrees of freedom models yield good results provided that the mass of the 

shaft is small when compared with that of the rotor (a fairly obvious conclusion). 
• The Euler Bernoully beam model works well if the slenderness of the beam is high. This may 

again appear obvious, but it is less obvious that this model is here shown to yield correct 
results for a slenderness α as low as 10. The Timoshenko beam model has here been shown 
to work very well for values of α as low as 5 and in some cases even 3.5. 

• The beam model is able to predict accurately the dynamic behavior of thin walled hollow 
beams. In this case even a beam with a slenderness of 3.55 and with a thickness/diameter 
ratio of 0.00125 can be modeled using the 1-D model. Such a thin walled beam has vibration 
modes that cannot be computed using the 1-D model; however, these modes are uncoupled 
with the dynamics of the rotor as a whole and can be dealt with as ‘local modes’. 

• In case the discs are thin, their dynamics cannot be neglected, even if the first bending and 
torsional modes may be exceptions from this viewpoint. The presence of thin discs makes 
centrifugal stiffening an important issue, that compels to use the 1 1/2 –D or the 3-D 
approach. However, the results obtained using the ANSYS code diverge from those obtained 
using the DYNROT code. This behavior, which apparently is due to the way centrifugal 
stiffening ia accounted for, needs to be clarified and further study is needed. It will be the 
subject of a future paper. 

The above conclusions were drawn from a much simplified model, the Stodola-Green rotor. 
Some of them can be generalized, but all generalization require care when are based on purely 
numerical computations. Further studies based on rotor configurations more close to those 
encountered in applications, and specifically on rotors provided with blades, are needed.  
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