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THE VIRTUAL ELEMENT METHOD FOR DISCRETE FRACTURE
NETWORK SIMULATIONS �

MAT �IAS FERNANDO BENEDETTO y , STEFANO BERRONE y , SANDRA PIERACCINI y ,

AND STEFANO SCIAL �Oy

February 11, 2014
Abstract. In this work, an optimization based approach presented in [5 , 6, 7] for Discrete Fracture
Network simulations is coupled with the Virtual Element Met hod (VEM) for the space discretization
of the underlying Darcy law. The great 
exibility of the VEM i n handling rather general polygonal
elements allows, in a natural way, for an e�ective descripti on of irregular solutions starting from an
arbitrary triangulation, which is built independently of t he mesh on other fractures. Only partial
conformity is in fact obtained with this approach. Numerica l results performed on several DFN
con�gurations con�rm the viability and e�ciency of the resu lting method.

Key words. VEM, Fracture 
ows, Darcy 
ows, discrete fracture networks , optimization methods
for elliptic problems

AMS subject classi�cations. 65N30, 65N15, 65N50, 65J15

1. Introduction. Subsurface 
uid 
ow has applications in a wide range of �elds,
including e.g. oil/gas recovery, gas storage, pollutant percolation,water resources
monitoring, etc. Underground 
uid 
ow is a complex heterogeneousmulti-scale phe-
nomenon that involves complicated geological con�gurations. Discrete Fracture Net-
works (DFNs) are complex sets of planar polygonal fractures used to model subsurface

uid 
ow in fractured (porous) rocks. Typically, a DFN is obtained st ochastically us-
ing probabilistic data to determine a distribution of orientation, dens ity, size, aspect
ratio, aperture and hydrological properties of the fractures [1,11, 12], and it is a vi-
able alternative to conventional continuum models in sparse fracture networks. DFN
simulations are very demanding from a computational point of view and due to the
uncertainty of the statistical data, a great number of numerical simulations is re-
quired. Furthermore, the resolution of each con�guration requires vast computational
e�ort, increasing greatly with problem size. In this work, we focus on the resolution
of the steady-state 
ow in large fracture networks. The quantity of interest is the
hydraulic head in the whole network, which is the sum of pressure andelevation and
is evaluated by means of the Darcy law. We consider impervious rock matrix and

uid can only 
ow through fractures and traces (intersections of fractures), but no
longitudinal 
ow along the traces is allowed. Matching conditions needto be added
in order to preserve continuity along traces and 
ux balance at fracture intersections.
The classical approach to DFN simulations consists in a �nite element discretization
of the network and in the resolution of the resulting algebraic linear system. With
this approach, a great numerical obstacle to overcome is the needto provide on each
fracture a good quality mesh conforming not only to the traces within the fracture,
but also conforming to the other meshes on fractures sharing a trace. If this kind
of conformity is required, the meshing process for each fractureis not independent
of the others, leading in practice to a demanding computational e�ort for the mesh
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generation. In large realistic systems, which can count thousands, or even millions, of
fractures, this mesh conformity constraints might lead to the introduction of a very
large number of elements, independently of the accuracy requiredon the solution and
possibly leading to over solving, if we consider the level of accuracy of the physical
model.

Strategies are proposed in literature to ease the process of meshgeneration and
resolution for DFNs of large size. Some authors, see e.g. [13, 17], propose a simpli-
�cation of DFN geometry to better handle the meshing procedure. In other cases,
dimensional reduction is explored as in [9] and [10], where a system of 1D pipes that
connect traces with fractures has been used to simplify the problem. Mortar meth-
ods are used to relax the conformity condition with fracture meshes, that are only
required to be aligned along the traces (see [15] and [16]).

In the recent paper [5] and follow up works [6] and [7], the problem of 
ow in a
DFN is retooled as a PDE constrained optimization problem. The approach proposed
in these works completely drops the need for any kind of mesh conformity, regard-
less of trace number and disposition; this goal is attained via the minimization of a
given quadratic functional, allowing to obtain the solution for any given mesh. In this
framework, any mesh independently generated on each fracturecan be used. Since
the solution may display a non-smooth behaviour along traces (namely, discontinuous
normal derivatives), FEM on meshes not conforming to traces would result in poor
solutions in a neighbourhood of the traces. In [5, 6, 7] the XFEM is used in order
to improve the solution near traces. In the present work the newlyconceived Virtual
Element Method is in charge for the space discretization on each fracture. Taking
advantage from the great 
exibility of VEM in allowing the use of rathe r general
polygonal mesh elements, several complexities related to XFEM enrichment functions
can be avoided. Indeed, a suitable mesh for representing the solution can be easily
obtained starting from an arbitrary triangular mesh independently built on each frac-
ture, and independent of the trace disposition. Then, whenever atrace crosses a mesh
element, this can be split in two sub-elements obtaining a partial conformity.

All the steps needed for the use of the VEM in conjunction with the optimization
approach for DFNs simulations are inherently fracture oriented, and can be executed
in parallel. Numerical tests show that this approach leads to an e�cient and reliable
method.

We remark that the polygonal mesh obtained for VEM discretization naturally
paves the way also for the use of a Mortar approach. This possibilityis currently un-
der investigation by the authors. Nevertheless, our main target here is to assess the
viability of the optimization approach in conjunction with the VEM. Fur thermore,
within the optimization method, mixing of di�erent discretization stra tegies (stan-
dard �nite elements on meshes not necessarily conforming to traces, extended �nite
elements and virtual elements of di�erent orders) remains possible, thus improving
the 
exibility to deal with any possible DFN con�gurations.

The present work is organized as follows: a description of the general problem is
provided in Section 2, followed by a brief introduction to the application of virtual
element method to the problem at hand in Section 3. Formulation and resolution of
the discrete problem are sketched in Section 4. Some technical issues concerning VEM
implementation in this context as well as numerical results are given inSection 5. We
end with some conclusions in Section 6.

2. Problem description. In this section we brie
y sketch the main ideas of
the PDE optimization method for discrete fracture network simulat ions introduced in
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[5, 6, 7].
Let us denote by 
 the DFN, composed by the union of planar open polygons

Fi , with i = 1 ; : : : ; I , resembling the fractures in the network. Let us denote by@Fi
the boundary of Fi and by @
 the set of all the fracture boundaries, @
 = [ I

i =1 @Fi .
We decompose@
 = � D [ � N with � D \ � N = ; , � D 6= ; being � D the Dirichlet
boundary and � N the Neumann boundary. The boundary of each fracture is divided
into a Dirichlet part � iD = � D \ @Fi and a Neumann part � iN = � N \ @Fi , hence
@Fi = � iD [ � iN , with � iD \ � iN = ; . An empty Dirichlet boundary, � iD = ; is allowed
on fractures such that @Fi \ � D = ; . Functions H D

i 2 H
1
2 (� iD ) and GN

i 2 H� 1
2 (� iN )

are given and prescribe Dirichlet and Neumann boundary conditions,respectively, on
the boundary @Fi of each fracture. Intersections between fractures are called traces
and are denoted bySm , m = 1 ; : : : ; M , while S denotes the set of all the traces of
the system, andSi , for i = 1 ; : : : ; I , denotes the subset ofS corresponding to theM i

traces belonging toFi . Each Sm uniquely identi�es two indices I Sm = f i; j g, such
that Sm � �Fi \ �Fj . Finally J i collects all the indicesf j g relative to the fractures Fj

intersected by Fi , i.e. j 2 J i () �Fj \ �Fi 6= ; .
The quantity of interest is the hydraulic head H that can be evaluated in 
 by

means of the Darcy law. This originates a system of equations on thefractures de�ned
as follows. Let us introduce for each fracture the following functional spaces:

Vi = H 1
0(Fi ) =

n
v 2 H1(Fi ) : vj � iD

= 0
o

;

and

V D
i = H 1

D (Fi ) =
n

v 2 H1(Fi ) : vj � iD
= H D

i

o
;

and let us denote byH i the restriction of H on Fi . Furthermore, let K i denote a sym-
metric and uniformly positive de�nite tensor representing the fracture transmissivity.
Without loss of generality and for the sake of simplicity, we assume that all traces
are disjoint; this is not a restricting assumption as noted in [5]. ThenH i satis�es, for
i = 1 ; : : : ; I , the following problem: �nd H i 2 V D

i such that 8v 2 Vi
Z

F i

K i r H i r vd
 =
Z

F i

qi vd
 + hGN
i ; vj S i

H � 1
2 (� iN ) ;H

1
2 (� iN )

+
X

S2 Si

h
��

@Hi

@̂� i
S

��

S

; vj S
i
H � 1

2 (S) ;H
1
2 (S)

; (2.1)

where qi 2 L2(Fi ) denotes a source term onFi and the symbol @Hi
@̂� i represents the

outward co-normal derivative of the hydraulic head:

@Hi

@̂� i = n̂T
i K i r H i ;

with n̂i outward normal to the boundary � iN , and
hh

@Hi
@̂� i

S

ii

S
denotes the jump of the

co-normal derivative along the unique normal n̂i
S �xed for the trace S on Fi , and

represents the 
ux incoming into the fracture Fi through the trace S. The equations
(2.1) for i = 1 ; :::; I are coupled with the following matching conditions, ensuring
hydraulic head continuity and 
ux balance across the traces:

H i j Sm � H j j Sm = 0 ; for i; j 2 I Sm ; 8m = 1 ; : : : ; M; (2.2)
""

@Hi

@̂� i
Sm

##

Sm

+

""
@Hj

@̂� j
Sm

##

Sm

= 0 ; for i; j 2 I Sm : (2.3)
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The simultaneous resolution of equations (2.1)-(2.3) might result infeasible for
practical applications, as previously discussed. In contrast, theapproach developed in
[5, 6, 7] only requires the resolution of local problems on each fracture independently,
resorting to an optimization approach to enforce matching at the intersections. In
order to describe this strategy, let us introduce for each trace ineach fracture the
control variables US

i 2 US = H � 1
2 (S), de�ned as US

i = �H i j S
+

hh
@Hi
@̂� i

S

ii

S
, where � is

a �xed positive parameter, and the quadratic functional

J (H; U ) =
MX

m =1

� 


 H i j S m

� H j j S m




 2

H
1
2 (S)

(2.4)

+





 USm

i + USm
j � �

�
H i j S m

+ H j j S m

� 






2

H � 1
2 (S)

�
:

Equations (2.1), prescribed on the fractures, are equivalently restated as:
Z

F i

K i r H i r vd
 + �
X

S2 Si

Z

S
H i j S vj S d� = (2.5)

Z

F i

qi vd
 + hGN
i ; vj S

i
H � 1

2 (� iN ) ;H
1
2 (� iN )

+
X

S2 Si

hUS
i ; vj S

i US ;US 0:

Let us de�ne USi = H � 1
2 ( Si ) and let R i denote an operator providing lifting

of the Dirichlet boundary conditions on � iD , if not empty. We then introduce the
following linear bounded operators:

A i 2 L (Vi ; V 0
i ); hA i w; vi V 0

i ;V i = ( K i r w; r v) + �
�

wj S i
; vj S i

�

Si

;

B S
i 2 L (US ; V 0

i ); hB S
i US

i ; vi V 0
i ;V i = hUS

i ; vj S i US ;US 0;

B i = �
S2 Si

B S
i 2 L(USi ; V 0

i ); hB i Ui ; vi V 0
i ;V i = hUi ; vj S i

i US i ;US i 0;

with w; v 2 Vi , and Ui 2 USi is the tuple of control variables US
i for S 2 Si . Anal-

ogously, U 2 US denotes the tuple of control variables Ui for i = 1 ; :::; I . The
dual operator of A i is denoted by A �

i and B �
i denotes the dual ofB i . The operator

B iN 2 L(H � 1
2 (� iN ); V 0

i ) imposing Neumann boundary conditions is de�ned such that

hB iN GN
i ; vi V 0

i ;V i = hGN
i ; vj � iN

i
H � 1

2 (� iN ) ;H
1
2 (� iN )

:

According to this functional setting and de�nitions, problems (2.5) are restated as:
8i = 1 ; :::; I , �nd H i 2 V D

i , with H i = H 0
i + R i H D

i and H 0
i 2 Vi , such that

A i H 0
i = qi + B i Ui + B iN GN

i � AD
i R i H D

i ; in Fi ; (2.6)

whereAD
i is an operator de�ned similarly to A i , but operating on elements in H1(Fi ).

We remark that, if � > 0, for a givenUi , the solution H i to (2.6) exists and is unique
for a non isolated fracture even if we set Neumann boundary conditions on the whole
@Fi .

Following the arguments proposed in [7], it can be shown that the unique min-
imum of functional (2.4) is obtained for values of H and of the control functions U
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that correspond to the ful�lment of conditions (2.2) and (2.3) on th e traces. In other
words, the solution of the problem

min J subject to (2.6) (2.7)

corresponds to the solution of the coupled system of equations (2.1)-(2.3).
As shown in previous works (see e.g. [7]) this optimization problem can be tackled

with a gradient based method. Even if di�erent approaches could also be employed,
gradient-based methods are particularly appealing since they allow to independently
solve problems on fractures and can be straightforwardly pluggedin a parallel reso-
lution process.

In the continuous setting, the gradient based method is formally devised on the
following considerations: the optimal U 2 U, solution to (2.7), satis�es the following
system of equations, corresponding to the Fr�echet derivativesof J with respect to the
control variables: 8i = 1 ; : : : ; I

B i
� Pi + � US i

�
Ui + �

S2 Si

US
j

�
� � �

S2 Si

�
CS

i H i (Ui ) + CS
j H j (Uj )

�
= 0 ; (2.8)

where the operatorsCS
i = B i

� are restriction operators on the traces, �US i : USi !
USi 0 is the Riesz isomorphism, and functionsPi 2 Vi are the solution to

A �
i Pi = Ci

� � � 1
US i

�
�

S2 Si

�
CS

i H i (Ui ) � CS
j H j (Uj )

�

+ � 2 �
S2 Si

�
CS

i H i (Ui ) + CS
j H j (Uj )

�
�

� �C i
�

�
Ui + �

S2 Si

US
j

�
; in Fi ; (2.9)

with homogeneous Neumann and Dirichlet boundary conditions. Then, we can set
8i = 1 ; : : : ; I

r J (Ui ) = B i
� Pi + � US i �

S2 Si

(US
i + US

j � � � � 1
US (CS

i H i (Ui ) + CS
j H j (Uj ))) ; (2.10)

and

r J (U) =
I

�
i =1

r J (Ui ): (2.11)

The gradient based algorithm for solving (2.7) is fully described in [7]. Here, we focus
on a �rst-discretize-then-optimize approach, and we move on by introducing, in the
next section, the space discretization.

3. The virtual element method. The Virtual Element Method [3, 4, 8, 2] is
a very recent technique for solving partial di�erential equations on meshes of fairly
general polygonal elements with an arbitrary number of sides. Thischaracteristic is
very attractive for the application considered herein. Indeed, oneach fracture we solve
equation (2.6), whose solution can have a discontinuous gradient across the traces. In
order to correctly reproduce this irregular behaviour, we can take advantage of the

exibility of virtual elements by transforming, on each fracture, a given triangulation
(non conforming to traces) in a more general mesh, conforming totraces, simply
obtained by splitting the triangles along traces into more general sub-polygons not
crossed by traces. We remark that we do not require conformity between the meshes
of the two fractures intersecting at a trace. As a consequence of the meshing process,
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� �

� �

Figure 3.1 . Example of the mesh for the VEM: elements shaded have been cut into polygons
to match the trace on the two fractures independently

a partial conformity (i.e. conformity to traces but no conformity b etween the meshes
of intersecting fractures) will result, but the meshing process is still independent on
each fracture and thus easy and reliable (see Figure 3.1).

Let us now describe the application of the VEM to the problem considered. For
the sake of simplicity, we consider in this section homogeneous conditions on the
Dirichlet boundary; furthermore, we consider in this work the caseof virtual elements
of order k = 1 and we assume that the fracture transmissivity K i is constant on each
fracture, but might vary from one fracture to another. We will fo cus on a generic
fracture Fi � 
, since the process is independent on each fracture. Letf Ti;� g� be a
family of meshes onFi , being � the mesh parameter (corresponding to the square root
of the largest element size). Each mesh is built as previously sketched: we start with a
given triangulation, and whenever a trace crosses an element, thelatter is split by the
trace itself in two sub-polygons. If the trace ends inside an element, it is prolonged
up to the boundary of the element. To note is that we obtain convexpolygons, thus
satisfying the assumptions in [3]. EachTi;� is therefore made of open polygonsf Eg
with an arbitrary number nE of edgese, and we call N i the total number of vertices.
We de�ne for each � a spaceVi;� � H1(Fi ) as follows. Following the notation in [3],
for a generic elementE of the mesh, let us introduce the space

B1(@E) =
�

v 2 C0(@E) : vj e 2 P1(e); 8e � @E
	

:

Let V E; 1 be the space of harmonic functions that are linear on the boundaries of
the element,

V E; 1 =
�

v 2 H1(E ) : vj@E 2 B1(@E); � vjE = 0
	

:

We �nally set

Vi;� =
�

v 2 H1
0(Fi ) : vjE 2 V E; 1; 8E 2 Ti;�

	
:

For each element, functions inV E; 1 are uniquely identi�ed by prescribing the poly-
nomial functions on @E, or, equivalently, specifying the values at thenE vertices of
the polygon. With this natural choice for the degrees of freedom,the C0 continuity
of functions in Vi;� is easily enforced. The dimension ofVi;� is N i , and we introduce
a Lagrange basisf � 1; : : : ; � N i g, de�ned by � j (xk ) = � jk , where xk is the k-th vertex

6



in the mesh. Functions f � j g are in general not explicitly known inside the elements,
but only on the boundaries of the elements, and this is a key point of VEM. Further
we observe that the space of polynomialsP1(E ) � Vi;� jE for each elementE in Ti;� .

On the spaceVi;� we de�ne a symmetric bilinear form ai;� : Vi;� � Vi;� 7! R as the
discrete counterpart of the bilinear form ai : Vi � Vi 7! R de�ned as

ai (H i ; v) = hA i H i ; vi V 0
i ;V i :

On each elementE we introduce the bilinear form aE
i;� (�; �) : Vi;� jE � Vi;� jE 7! R:

aE
i;� (�; ' ) = ( K i r PE �; r PE ' )E + �

�
� j S i \ @E

; ' j S i \ @E

�

Si \ @E
+ SE (�; ' ); (3.1)

and for any two functions �; ' 2 Vi;� we have

ai;� (�; ' ) =
X

E 2 Ti;�

aE
i;� (�; ' ): (3.2)

In (3.1), the projection operator PE : Vi;� jE 7! P1(E ) is de�ned for any function
� 2 Vi;� jE by

(
(K i r PE �; r p)E = ( K i r �; r p)E 8p 2 P1(E )
P n E

k=1 PE � (xk ) =
P n E

k=1 � (xk )
(3.3)

being f xk gk the coordinates of the vertices of elementE , and SE : Vi;� jE � Vi;� jE 7! R

is a properly designed functional that is non-zero only on the kernel of PE .
Remark 3.1. Let us observe that the de�nition (3.1) for the bilinear form and

(3.3) for the projection operator slightly di�er from the de�niti ons introduced in [3].
In our de�nition of the discrete bilinear form the projectio n operator does not a�ect
the portion of the operator de�ned on the traces, and consequently this term does not
appear in (3.3) or in the de�nition of the stability operator SE . According to [3], we
assume that there exist two positive constantsc0 and c1 independent from the mesh
element E and of element diameter, such that:

c0(K i r '; r ' )E � SE ('; ' ) � c1(K i r '; r ' )E ; 8' 2 Vi;� jE ; with PE ' = 0 :
(3.4)

On each elementE of the triangulation we have:

aE
i (�; ' ) = aE

i (PE �; PE ' ) + aE
i (� � PE �; ' � PE ' )

+ �
�
� � PE �; PE '

�
Si \ @E + �

�
' � PE '; PE �

�
Si \ @E (3.5)

that replaces equation (4.22) of [3].
It is possible to show that the given de�nition of the bilinear form is consistent

and stable. Consistency easily follows from de�nition(3.1) and from (3.3): for all
E 2 Ti;� , 8p 2 P1(E ); 8� 2 Vi;� jE we have:

aE
i;� (�; p ) =

�
K i r (� � PE � ); r p

�
E

+
�
K i r (PE � ); r p

�
E

+ � (�; p )Si \ @E

=
�
K i r (PE � ); r p

�
E + � (�; p )Si \ @E = aE

i (�; p );

7



being aE
i (�; �) the restriction to a mesh element of the continuous bilinearform. Sta-

bility can be proved similarly to [3], using (3.4) and (3.5).
Assuming basic quality properties for the triangulation, functional SE can be

chosen as in [3], thus satisfying conditions (3.4): for all�; ' 2 Vi;� jE we set

SE (�; ' ) =
n EX

k=1

K i (� (xk ) � (PE � )(xk ))( ' (xk ) � (PE ' )(xk )) : (3.6)

Concerning the treatment of the source termqi at right hand side of equation (2.6),
it is shown in [4] that convergence rates are preserved by approximating qi with a
piecewise constant function on each element of the mesh.

Given the previous results and de�nitions, it is possible to use the convergence
theorem in [3] to prove that the discrete problems on the fractures are well posed and
convergence rates are equal to those of standard �nite elements of the same order.

Even if functions in Vi;� are only known on the edges of mesh elements, the
knowledge of the degrees of freedom allows us to compute the discrete bilinear forms.
In fact, in order to compute PE � , for any � 2 Vi;� jE and p 2 P1(E ) we evaluate:

(K i r �; r p)E =
Z

E
K i r � r p dE =

Z

E
K i � p � dE +

Z

@E
K i

@p
@n@E

� d


=
Z

@E
K i

@p
@n@E

� d


where n@E is the outward unit normal vector to @E.

4. Formulation and resolution of the discrete problem. As shown in Sec-
tion 2, the problem has been reformulated as a PDE-constrained optimization problem
(see equation (2.7)) in which the quadratic functional J is to be minimized subject to
linear constraints. In this section, following a �rst-discretize-then-optimize approach,
we give some details about the discrete formulation of the problem and the numerical
approach for computing a solution to the problem. In the following, we will use lower
case letters for the �nite dimensional approximations of functions H and U.

4.1. Discrete formulation. As outlined in the previous section, we introduce
a �nite dimensional basis for each fractureFi , with a total number N F =

P I
i =1 N i

of DOFs on the fractures. Concerning the functional space on the traces, in order to
simplify the discussion, we consider the following di�erent numbering for the control
functions uS

i , induced by the trace numbering. BeingS = Sm a given trace, with
I Sm = f i; j g and assumingi < j , we denote byu�

m and by u+
m the control functions

related to the m-th trace and corresponding to fracturesFi and Fj , respectively. By
overloading the notation, we use the same symbol for the corresponding vector of
DOFs. Let us introduce basis functions �

m;k , k = 1 ; :::; N �
m and  +

m;k , k = 1 ; :::; N +
m

for the space of the control function u�
m and u+

m , respectively. Note that here we
allow to use di�erent spaces on the two \sides" of each trace. Thenwe have, for
m = 1 ; :::; M , ? = � ; +, u?

m =
P N ?

m
k=1 u?

m;k  ?
m;k . Setting N T =

P M
m =1 (N �

m + N +
m ), we

de�ne u 2 RN T
concatenating u�

1 ; u+
1 ; : : : ; u�

M ; u+
M .

Let us consider the functionalJ , whose expression is given in Section 2 by equation
(2.4), and let us write the discrete functional in terms of L2 norms instead of H� 1

2
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and H
1
2 norms on the traces: its discrete counterpart is

J =
1
2

IX

i =1

X

S2 Si

0

@
Z

S
(

N iX

k=1

hi;k ' i;k jS �
N jX

k=1

hj;k ' j;k jS)2 d
 + (4.1)

Z

S
(

N �
mX

k=1

u�
m;k  �

m;k +
N +

mX

k=1

u+
m;k  +

m;k � �
N iX

k=1

hi;k ' i;k jS � �
N jX

k=1

hj;k ' j;k jS )2 d


1

A :

Let us de�ne for all Sm 2 S, for p; q 2 I Sm (possibly p = q), the matrices

(CSm
p;q )k;` =

Z

Sm

' p;k j S m
' q;` j S m

d
; C p;q =
X

Sm 2S p

CSm
p;q :

Furthermore, for m = 1 ; :::; M and ? = � ; + de�ne C?
m 2 RN ?

m � N ?
m , C�

m 2 RN �
m � N +

m

and Cm as:

(C?
m )k` =

Z

Sm

 ?
m;k  ?

m;` d
; (C�
m )k` =

Z

Sm

 �
m;k  +

m;` d
; Cm =
�

C�
m C�

m
(C�

m )T C+
m

�
;

and B ?
i;m 2 RN i � N ?

m and B ?
j;m 2 RN j � N ?

m as

(B ?
i;m )k` =

Z

Sm

 ?
m;k ' i;` j S m

d
; (B ?
j;m )k` =

Z

Sm

 ?
m;k ' j;` j S m

d
:

The functional J in (4.1) is therefore written, in algebraic form, as

J (h; u) =
1
2

IX

i =1

X

S2 Si

(1 + � 2)hT
i CS

i;i hi + (1 + � 2)hT
j CS

j;j hj � 2(1 � � 2)hT
i CS

i;j hj

+( u�
m )T C�

m u�
m + ( u+

m )T C+
m u+

m + 2( u�
m )T C�

m u+
m � � (hT

i B +
i;m u+

m )

� � (hT
i B �

i;m u�
m ) � � (hT

j B �
j;m u�

m ) � � (hT
j B +

j;m u+
m ) � � ((u�

m )T (B �
i;m )T hi )

� � ((u+
m )T (B +

i;m )T hi ) � � ((u�
m )T (B �

j;m )T hj ) � � ((u+
m )T (B +

j;m )T hj ):

We now allow for a more compact form ofJ (h; u) by assembling previous matrices as
follows. We set

B i;m = ( B �
i;m B +

i;m ) 2 RN i � (N �
m + N +

m ) ; um = ( u�
m ; u+

m ):

For each �xed i = 1 ; :::; I , matrices B i;m , for m such that Sm 2 Si , are then grouped
row-wise to form the matrix B i 2 RN i � N S i , with NSi =

P
Sm 2 Si

(N �
m + N +

m ). Matrix
B i acts on a column vectorui obtained extracting blocks um , for Sm 2 Si , from u and
appending them in the same order used forB i;m , as the action of a suitable operator
Ri : RN T

7! RN S i such that ui = Ri u. Finally, let B 2 RN F � N T
be de�ned by

B =

0

B
@

B1R1
...

B I RI

1

C
A :

Let now Gh 2 RN F � N F
be de�ned blockwise as follows: fori = 1 ; :::; I we set

Gh
ii = (1 + � 2)Ci;i ; Gh

ij = ( � 2 � 1)CS
i;j if j 2 J i (0 elsewhere);

9



where, �xed Fi , J i collects the indicesj such that j �Fj \ �Fi j > 0. Since, obviously,
j 2 J i if and only if i 2 J j , and due to the straightforward property ( Gh

ij )T = Gh
ji , we

have that Gh is a symmetric matrix. Next, let us de�ne the matrix Gu 2 RN T � N T

blockwise asGu = diag( Cm ; m = 1 ; :::; M ). With these de�nitions at hand, the
functional J is rewritten

J (h; u) :=
1
2

�
hT Gh h � �h T Bu � �u T B T h + uT Gu u

�

being h 2 RN F
obtained appending vectorshi , i = 1 ; :::; I .

We �nally note that, setting

G =
�

Gh � �B
� �B T Gu

�

and w = ( h; u), J can be simply written as J = 1
2 wT Gw, with G straightforwardly

symmetric, due to previous considerations, and positive semide�nite by construction.
Constraints (2.6) are written as a unique linear system as follows: For all i =

1; :::; I de�ne the matrix A i 2 RN i � N i as

(A i )k` =
X

E 2 Ti;�

� Z

F i

K i r PE � i;k r PE � i;` dFi + SE (� i;k ; � i;` )
�

+ �
X

S2 Si

Z

S
� i;k j S

� i;` j S
d
; k; ` = 1 ; : : : ; N i

where the operatorsPE and SE are de�ned by (3.3) and (3.6), respectively.
For each fractureFi , we setN i

Si
=

P
Sm 2 Si

N ?
m as the number of DOFs on traces

of Fi on the Fi \side", and we de�ne matrices Bi 2 RN i � N i
S i grouping row-wise

matrices B ?
i;m , with m spanning traces in Si , and setting for each m either ? = +

or ? = � according to which one of the two \sides" of traceSm is on Fi . Matrices
Bi act on a column vector u0

i containing all the N i
Si

control DOFs corresponding to
the traces of Fi , obtained extracting blocks u?

m , for Sm 2 Si , from u and appending
them in the same order used in the de�nition of Bi . Again, this can be obtained as
the action of a suitable operator R0

i : RN T
7! RN i

S i such that u0
i = R0

i u. In practice,
R0

i extracts only sub-vectors u?
m from u corresponding to control functions on the

"correct side" of the trace.
The algebraic formulation of the primal equations (2.6) is then

A i hi = ~qi + Bi u0
i ; i = 1 ; :::; I; (4.2)

where ~qi accounts for the term qi in (2.6) and for the boundary conditions on the
fracture Fi .

We set A = diag( A i ; i = 1 ; :::; I ) 2 RN F � N F
and de�ne B 2 RN F � N T

as

B =

0

B
@

B1 R0
1

...
BI R0

I

1

C
A

Setting q = (~q1; : : : ; ~qI ) 2 RN F
, constraints (4.2) are then written Ah � B u = q.
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The problem under consideration is therefore reformulated as thefollowing equal-
ity constrained quadratic programming problem:

min J (h; u) =
1
2

�
hT Gh h � �h T Bu � �u T B T h + uT Gu u

�
(4.3)

s.t. Ah � B u = q: (4.4)

4.2. Solving the optimization problem. The �rst order optimality condi-
tions for problem (4.3)-(4.4) are the following:

0

@
Gh � �B A T

� �B T Gu � BT

A � B 0

1

A

0

@
h
u

� p

1

A =

0

@
0
0
q

1

A (4.5)

being p the vector of Lagrange multipliers.
The previous saddle point problem is, for real applications, a very large scale

problem, with highly sparse blocks, asA, Gu are block diagonal matrices,Gh , B and
B are block-sparse.

By (formally) using the linear constraint for eliminating the unknown h as

h = A � 1(B u + q); (4.6)

we obtain the following equivalent unconstrained problem :

min Ĵ (u) :=
1
2

uT (BT A � T Gh A � 1 B + Gu � � BT A � T B � �B T A � 1 B)u

+ qT A � T (Gh A � 1 B � �B )u:

For further convenience we rewriteĴ (u) = 1
2 uT Ĝu + q̂T u. A gradient-based method

for the minimization of the functional requires the computation of t he gradient of Ĵ :

r Ĵ (u) = ( BT A � T Gh A � 1 B + Gu � � (BT A � T B + B T A � 1 B))u +

(BT A � T Gh � �B T )A � 1q:

or, equivalently, r Ĵ (u) = Ĝu + q̂.
The gradient can be written in terms of some auxiliary variables as follows. Re-

arranging previous expression, we obtain

r Ĵ (u) = BT A � T Gh A � 1(B u + q) + Gu u � � BT A � T Bu � �B T A � 1(B u + q)

and recalling (4.6), one has

r Ĵ (u) = BT A � T Gh h + Gu u � � BT A � T Bu � �B T h:

Now set p := A � T (Gh h � �Bu ), i.e. given h and u, p solves

AT p = Gh h � �Bu: (4.7)

With these de�nitions, we may write

r Ĵ (u) = BT p + Gu u � �B T h: (4.8)

Note that setting to zero the previous expression for obtaining stationary points for
Ĵ (u), and collecting such equation together with (4.6) and (4.7), we obtain system
(4.5).

11



Concerning the numerical solution of the optimization problem, we mention here
two possible approaches. The �rst one consists in solving the linear system (4.5). An
iterative solver is clearly a recommended choice, andsymmlq[14] would be a suitable
choice; this approach has been used in [6]. Another approach consists in applying an
iterative solver to the minimization of Ĵ (u). We focus here on this second approach,
sketching the conjugate gradient method applied to the minimizationof Ĵ (u). In the
algorithm, let us denote by gk the gradient r Ĵ (uk ) at step k and by dk the descent
direction.

Conjugate gradient method

1. Choose an initial guessu0

2. Compute h0 and p0 solving (4.6) and (4.7) andg0 by (4.8)
3. Set d0 = � g0, k = 0
4. While gk 6= 0

4.1. Compute � k with a line search alongdk

4.2. Compute uk+1 = uk + � k dk

4.3. Update gk+1 = gk + � k Ĝdk

4.4. Compute � k+1 =
gT

k +1 gk +1

gT
k gk

4.5. Update dk+1 = � gk+1 + � k+1 dk

4.6. k = k + 1

Due to linearity, Step 4.3 is equivalent to computegk+1 = Ĝuk+1 + q̂. Indeed,

gk+1 = Ĝuk+1 + q̂ = Ĝ(uk + � k dk ) + q̂ = Ĝuk + q̂ + � k Ĝdk = gk + � k Ĝdk :

Nonetheless, we remark that this step is clearly performed withoutforming matrix Ĝ,
but rather computing vector yk = Ĝdk through the following steps:

1. SolveAt = B dk

2. SolveAT v = Gh t � �Bd k

3. Compute yk = BT v + Gu dk � �B T t
Furthermore, since Ĵ is quadratic, the stepsize� k in Step 4.1 can be computed

via an exact line search. Given a descent directiondk , we compute � k such that it
minimizes the function � (� ) := Ĵ (uk + �d k ). Straightforward computations show that
one has

� k = �
dT

k gk

dT
k Ĝdk

: (4.9)

The stepsize� k is therefore computed without much e�ort, as quantity Ĝdk is the
same needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of
the linear systems with coe�cient matrix A (which actually equalsAT ). Nevertheless,
we recall that matrix A is actually symmetric positive de�nite, block diagonal with
each block de�ned on a fracture. The systems are therefore decomposed in as many
small \local" systems as the number of fractures. Right-hand-sides of the local systems
gather information both from the current fracture, and from th e intersecting fractures,
which are typically small in number. Hence, these independent linear systems can be
e�ciently solved on parallel computers.

5. VEM implementation and numerical results. In this section we address
some implementation issues concerning the use of VEM in conjunctionwith the op-
timization approach described in Section 4. In addition, we present some numerical

12



results in order to show the viability of the VEM for the simulation of dis crete frac-
ture networks and to highlight the e�ectiveness of the overall method in this context.
Simpler test problems focused on particular implementation issues anticipate some
numerical results on more complex DFNs.

5.1. VEM for DFN. We start describing the procedure for obtaining the com-
puting mesh on the fracture network. Let us recall that each fracture in a DFN
is represented by a 2D polygonal domain and is intersected by otherfractures of
the network in a set of traces. As a �rst step, triangular meshes are generated on
each fracture independently, without taking into account trace positions or confor-
mity requirements of any kind. Next, we proceed independently on each fracture and
whenever a trace intersects one element edge, a new node is created. New nodes are
also created at trace tips. If the trace tip falls in the interior of an element, the trace
is prolonged up to the opposite mesh edge. Intersected elements are then split into
two new \sub-elements", which become elements in their own right, as shown in Fig-
ures 5.1 and 5.2 that represent the two phases of the process described above. In these
pictures, coloured elements are the new virtual elements, whereas blank elements are
the original triangular elements. Elements with up to 6 edges are introduced in these
examples. In the �gures, each color corresponds to a di�erent number of edges in the
element. The reader might refer to the PDF �le to zoom in the pictures for a more
detailed view.

The polygonal mesh obtained with the procedure described is possibly improved
through the displacement of some nodes. Namely, when a node falls very close to
a trace, it can be moved onto the trace itself, and therefore reducing the number
of element edges and total degrees of freedom. The mesh improvement process is
performed as detailed in the following. The distance of each node of intersected
elements from the nearest trace is compared to a given mesh dependent tolerance. If
the distance of the node to the closest trace is below the tolerance, then the node is
moved to its projection on the trace. Vertices of the fractures always remain �xed and
nodes in the border are only moved provided that they remain on thesame border
in order to avoid changing the shape of the fracture. This procedure is performed
independently for every fracture, and although not strictly necessary, it is advisable.
The e�ect of this additional mesh modi�cation is shown in Figure 5.3.

Since VEM basis functions are not known in the interior of mesh elements in
general, we resort to the following mesh-dependent L2 and H1 norms commonly used in
the context of mimetic �nite di�erences, and de�ned 8u 2 Vi;� and for all i = 1 ; : : : ; I ,
respectively as:

jjujj2
0;� =

X

E 2 Ti;�

 
jE j
@E

X

e� @E

jej
�

uh (vi ) + uh (ve)
2

� 2
!

;

jjujj2
1;� =

X

E 2 Ti;�

 

jE j
X

e� @E

�
uh (vi ) � uh (ve)

jej

� 2
!

;

where vi and ve are the initial and �nal point of the edge, respectively.

5.2. Test problems. We �rst propose two test problems aimed at evaluating
VEM approximation capabilities in the DFN context by means of applying them to
very simple con�gurations representative of common situations in DFN simulations.
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Figure 5.1 . Mesh example. Left: original triangulation. Right: mesh fo r VEM.
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Figure 5.2 . Left: detail of a mesh around a trace intersection. Right: de tail of a mesh around
a trace tip.

0 10 20 30 40 50 0 10 20 30 40 50

Figure 5.3 . Left: example of VEM mesh without modi�cation. Right: Same m esh after
modi�cations.
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In these test cases, a single problem of the form (2.1) is solved, i.e. asingle fracture F
is considered, assigningu on the traces. In the �rst case, two intersecting traces are
present in F , completely crossing the domain, while a single trace ending inside the
domain is studied in the second problem. The proposed numerical results show very
good approximation capabilities of virtual elements in dealing with these geometrical
con�gurations.

5.2.1. Problem 1. The �rst test problem, labeled P1, displays two traces in-
tersecting each other inside the domain. The domain is a single rectangular fracture
F � R2 with two traces S1 and S2 de�ned by:

F =
�

(x; y) 2 R2 : x 2 (0; 3); y 2 (0; 1)
	

;

S1 =
�

(x; y) 2 R2 : x � y � 1 = 0
	

; S2 =
�

(x; y) 2 R2 : 2 � x � y = 0
	

:

The domain is shown in Figure 5.4 with a coarse mesh with parameter� max = 0 :2
along with a detail of trace intersection. Here and in the sequel� max denotes the
square root of the maximum element area for the initial triangulation on each fracture.
For this mesh, the original triangular element containing trace intersection is split into
four new elements, two triangles and two quadrilaterals.

The problem is set as follows:

� � H = � � H ex 
 n S;

H = 0 on @F;

U1 = f S1 =
��

@Hex

@̂� S1

��

S
on S1;

U2 = f S2 =
��

@Hex

@̂� S2

��

S
on S2;

with

H ex (x; y) =

8
>><

>>:

xy(y � 1)(x � y � 1)(x + y � 2)=7 in A1;
(1 � y)(x � y � 1)(x + y � 2) in A2;
y(x � y � 1)(x + y � 2) in A3;
y(1 � y)(x � 3)(x � y � 1)(x + y � 2)=5 in A4;

whereA1, A2, A3 and A4 denote the four regions in whichF is divided by the traces,
as indicated in Figure 5.4. Values off S1 and f S2 are

f S1 (x; y) =

8
>><

>>:

1=(7
p

2)(2 � x � y) (7 � x(6 + x) + 20 y
+2 x(1 + x)y � 5xy2 + y3

�
x + y � 2 � 0

1=(5
p

2)(2 � x � y) ( � 8 + y(1 + y)(11 + y)
+ x2(� 1 + 2y) � x(1 + y(4 + 5 y))

�
x + y � 2 > 0;

and

f S2 (x; y) =

8
>><

>>:

1=(5
p

2)(� 1 + x � y) ( � 16� (� 10 + x)x + 38y
+2( � 7 + x)xy + 5( � 3 + x)y2 + y3

�
y � x + 1 � 0

1=(7
p

2)(� 1 + x � y)
�
� 28 + x2(� 1 + 2y)

+ y(23 + ( � 3 + y)y) + x(9 + y(� 8 + 5y))) y � x + 1 > 0:

In Figure 5.6, left, the numerical solution obtained on a �ne mesh with parameter
� max = 0 :05 is displayed. This problem has been solved using both the VEM and
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Figure 5.4 . Problem P1. Left: Domain with coarse grid � max = 0 :2. Right: a detail of trace
intersection.
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Figure 5.5 . Problem P1: approximate solution on a mesh with � max = 0 :05

the XFEM for the space discretization, as described in [5, 6, 7]. Figure 5.6, right,
reports, for both space discretizations, errors computed versus the number of DOFs.
We remark that, when applying the two approaches, we always start from the same
triangular mesh. The XFEM deals with irregularities in the solution along traces by
adding suitable enrichment functions (see [6, 7] and references therein), resulting the
two methods in a di�erent number of DOFs, when the same mesh parameter is used.
Computed convergence rates are close to the expected ones both in the L 2 and the
H1 mesh-dependent norms, and both for the VEM and for the XFEM: namely, L2

norm convergence rate is 1:03 for the VEM and 0:99 for the XFEM, whereas the H1

norm convergence rate is 0:49 both for the VEM and for the XFEM. The L 2 norm of
the error on the restriction of the solution to the traces is also reported (label 'L2H
on trace' in the legend), and displays a convergence rate of 1:0 for the VEM and 0:91
for the XFEM. As a whole, the two space discretizations yield a comparable level
of accuracy, and the intersection between traces is easily handledby the VEM on a
polygonal mesh with very good approximation properties.

5.2.2. Problem 2. Let us de�ne the domain F for the second test problemP2
as

F =
�

(x; y) 2 R3 : � 1 < x < 1; � 1 < y < 1; z = 0
	

;

with a single trace S =
�

(x; y) 2 R2 : y = 0 and � 1 � x � 0
	

ending in the interior
of F . This test problem has also been considered in [6]. Here we set out to show the
behaviour of virtual elements in handling the non-smooth behaviourof the solution
around trace tips. Let us introduce the function H ex (x; y) in F as:

H ex (x; y) = ( x2 � 1)(y2 � 1)(x2 + y2) cos
�

1
2

arctan2(x; y)
�
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Figure 5.6 . Problem P1: error behaviour

where arctan2(x; y) is the four-quadrant inverse tangent, giving the angle between
the positive x-axis and point (x; y), and di�ers from the usual one-argument inverse
tangent arctan(�) for placing the angle in the correct quadrant.

The problem is de�ned by the system:

� � H = � � H ex on 
 n S;

H = 0 on @F;

U = x � x3 on S;

where U is the prescribed value of the jump of 
uxes across the traceS.
Figure 5.7 shows the VEM mesh and the resulting elements near the tip. In

this implementation of the method, the tip becomes a new node of thetriangulation,
and three new four-sided elements are generated. Two of them are obtained from
the original triangle that contained the trace tip, while the third one appears when
the node given by the intersection between the prolonged trace and the opposite
mesh element is added to the corresponding neighbouring triangle that becomes a
quadrilateral.

The approximate solution is shown in Figure 5.8. In Figure 5.9 we reporterrors
computed both with the L 2 and with the H 1 mesh dependent norms, both for the
VEM and for the XFEM. Computed convergence rates are, also forthis test problem,
quite similar for the two space discretizations: 1:05 in the L2 norm, and 0:51 in the
H1 norm for the VEM; 1 :02 in the L2 norm, and 0:47 in the H1 norm for the XFEM.
The Figure also reports the errors on the restriction ofH to the trace S, computed
in the L 2 norm. Computed convergence rate are in this case 0:85 for the VEM and
0:96 for the XFEM. As for problem P1, the approximation properties of the two
space discretizations are therefore quite similar. As a whole, also this geometrical
con�guration including a trace tip is e�ectively handled by the VEM, th anks to the

exibility in using polygonal mesh, without a�ecting the approximation capabilities
if compared, e.g., with extend �nite elements.
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Figure 5.7 . Problem P2. Domain meshed with � max = 0 :1. Right: a detail of elements near
trace tip.

� 1
�

0.8
� 0.6

�
0.4

� 0.2
0

0.2
0.4

0.6
0.8

1

� 1
�

0.8
� 0.6

�
0.4

� 0.2
0

0.2
0.4

0.6
0.8

1
�

0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5.8 . Problem P2: approximate solution with VEM obtained with a me sh with � max = 0 :1
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Figure 5.9 . Problem P2: error behaviour
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Figure 5.10 . DFN2: spatial distribution of fractures and the obtained so lution for the hydraulic
head.

5.3. DFN problems. In this section we deal with networks of fractures, ad-
dressing both simple DFN problems and more complex and realistic problems. Com-
putations are perfomed using the PDE-constrained optimization approach described,
in conjunction with virtual element space discretization. The general DFN problem
is set as follows:

� � H = q 
 n S; (5.1)

H j � D = H D on � D ;

@H
@̂�

= GN on � N ;

with reference to the nomenclature introduced in Section 2.

5.3.1. DFN2. Here we analyze a very simple DNF consisting of two identical
fractures that intersect each other orthogonally, as can be seen in Figure 5.10 where
the domain 
 is depicted.

Fractures 1 and 2 and the traceS are de�ned as:

F1 =
�

(x; y; z) 2 R3 : z 2 (� 1; 1); y 2 (0; 1); x = 0
	

;

F2 =
�

(x; y; z) 2 R3 : x 2 (� 1; 1); y 2 (0; 1); z = 0
	

;

S =
�

(x; y; z) 2 R3 : x = 0 ; y 2 (0; 1); z = 0
	

:

Homogeneous Dirichlet boundary conditions are imposed on the edges correspond-
ing to z = 0 and z = 1 of F1 and to y = 0 and y = 1 of F2 . On the remaining edges
we set homogeneous Neumann conditions for fractureF1, and a non-constant Neu-
mann boundary condition for fracture F2 given by GN = 16y(1 � y)2on � N . With
this de�nition of the problem, the exact solutions for the hydraulic h eadH ex and the
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