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THE VIRTUAL ELEMENT METHOD FOR DISCRETE FRACTURE
NETWORK SIMULATIONS

MAT IAS FERNANDO BENEDETTO Y, STEFANO BERRONE Y, SANDRA PIERACCINI Y,
AND STEFANO SCIAL O

February 11, 2014

Abstract.  In this work, an optimization based approach presented in [5 , 6, 7] for Discrete Fracture
Network simulations is coupled with the Virtual Element Met ~ hod (VEM) for the space discretization
of the underlying Darcy law. The great exibility of the VEM i n handling rather general polygonal
elements allows, in a natural way, for an e ective descripti on of irregular solutions starting from an
arbitrary triangulation, which is built independently of t he mesh on other fractures. Only partial

conformity is in fact obtained with this approach. Numerica | results performed on several DFN
con gurations con rm the viability and e ciency of the resu Iting method.
Key words.  VEM, Fracture ows, Darcy ows, discrete fracture networks , optimization methods

for elliptic problems

AMS subject classi cations. 65N30, 65N15, 65N50, 65J15

1. Introduction.  Subsurface uid ow has applications in a wide range of elds,
including e.g. oil/gas recovery, gas storage, pollutant percolation,water resources
monitoring, etc. Underground uid ow is a complex heterogeneousmulti-scale phe-
nomenon that involves complicated geological con gurations. Discete Fracture Net-
works (DFNs) are complex sets of planar polygonal fractures uskto model subsurface
uid ow in fractured (porous) rocks. Typically, a DFN is obtained st ochastically us-
ing probabilistic data to determine a distribution of orientation, density, size, aspect
ratio, aperture and hydrological properties of the fractures [1,11, 12], and it is a vi-
able alternative to conventional continuum models in sparse fractue networks. DFN
simulations are very demanding from a computational point of view am due to the
uncertainty of the statistical data, a great number of numerical simulations is re-
quired. Furthermore, the resolution of each con guration requires vast computational
e ort, increasing greatly with problem size. In this work, we focus on the resolution
of the steady-state ow in large fracture networks. The quantity of interest is the
hydraulic head in the whole network, which is the sum of pressure anelevation and
is evaluated by means of the Darcy law. We consider impervious rock atrix and
uid can only ow through fractures and traces (intersections of fractures), but no
longitudinal ow along the traces is allowed. Matching conditions needto be added
in order to preserve continuity along traces and ux balance at fracture intersections.
The classical approach to DFN simulations consists in a nite element dscretization
of the network and in the resolution of the resulting algebraic linear gstem. With
this approach, a great numerical obstacle to overcome is the neet provide on each
fracture a good quality mesh conforming not only to the traces withn the fracture,
but also conforming to the other meshes on fractures sharing a &ce. If this kind
of conformity is required, the meshing process for each fracturés not independent
of the others, leading in practice to a demanding computational e at for the mesh
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generation. In large realistic systems, which can count thousandsr even millions, of
fractures, this mesh conformity constraints might lead to the introduction of a very
large number of elements, independently of the accuracy requiredn the solution and
possibly leading to over solving, if we consider the level of accuracyfdhe physical
model.

Strategies are proposed in literature to ease the process of mesgfeneration and
resolution for DFNs of large size. Some authors, see e.g. [13, 17],0pose a simpli-
cation of DFN geometry to better handle the meshing procedure. In other cases,
dimensional reduction is explored as in [9] and [10], where a system oDlpipes that
connect traces with fractures has been used to simplify the problm. Mortar meth-
ods are used to relax the conformity condition with fracture meshs, that are only
required to be aligned along the traces (see [15] and [16]).

In the recent paper [5] and follow up works [6] and [7], the problem of ow in a
DFN is retooled as a PDE constrained optimization problem. The appra@ch proposed
in these works completely drops the need for any kind of mesh confimity, regard-
less of trace number and disposition; this goal is attained via the mininzation of a
given quadratic functional, allowing to obtain the solution for any given mesh. In this
framework, any mesh independently generated on each fracturean be used. Since
the solution may display a non-smooth behaviour along traces (nanig, discontinuous
normal derivatives), FEM on meshes not conforming to traces wold result in poor
solutions in a neighbourhood of the traces. In [5, 6, 7] the XFEM is usd in order
to improve the solution near traces. In the present work the newlyconceived Virtual
Element Method is in charge for the space discretization on each fidure. Taking
advantage from the great exibility of VEM in allowing the use of rathe r general
polygonal mesh elements, several complexities related to XFEM eighment functions
can be avoided. Indeed, a suitable mesh for representing the soloh can be easily
obtained starting from an arbitrary triangular mesh independently built on each frac-
ture, and independent of the trace disposition. Then, whenever drace crosses a mesh
element, this can be split in two sub-elements obtaining a partial conbrmity.

All the steps needed for the use of the VEM in conjunction with the gtimization
approach for DFNs simulations are inherently fracture oriented, aad can be executed
in parallel. Numerical tests show that this approach leads to an e cient and reliable
method.

We remark that the polygonal mesh obtained for VEM discretization naturally
paves the way also for the use of a Mortar approach. This possibilitys currently un-
der investigation by the authors. Nevertheless, our main target fere is to assess the
viability of the optimization approach in conjunction with the VEM. Fur thermore,
within the optimization method, mixing of di erent discretization stra tegies (stan-
dard nite elements on meshes not necessarily conforming to trace extended nite
elements and virtual elements of di erent orders) remains possiblethus improving
the exibility to deal with any possible DFN con gurations.

The present work is organized as follows: a description of the genalrproblem is
provided in Section 2, followed by a brief introduction to the application of virtual
element method to the problem at hand in Section 3. Formulation and esolution of
the discrete problem are sketched in Section 4. Some technical isssiconcerning VEM
implementation in this context as well as numerical results are given inSection 5. We
end with some conclusions in Section 6.

2. Problem description. In this section we briey sketch the main ideas of
the PDE optimization method for discrete fracture network simulations introduced in
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[5, 6, 7].
Let us denote by the DFN, composed by the union of planar open pdygons

Fi, with i =1;:::;1, resembling the fractures in the network. Let us denote by@F
the boundary of F. and by @ the set of all the fracture boundaries, @ = ,: 1 @F.
We decompose@ = o[ ~NwWwth p\ §n =3, p 6 ; being p the Dirichlet
boundary and N the Neumann boundary. The boundary of each fracture is divided
into a Dirichlet part ip = p\ @Fand a Neumann part vy = N\ @F, hence
@F= ip[ in,with p\ i = ;. Anempty Dirichletboundary, ip = ; isallowed
on fractures such that @F\ p = ;. Functions HP? 2 Hz( jp)and GN 2 H z( i)

are given and prescribe Dirichlet and Neumann boundary conditionsrespectively, on
the boundary @F of each fracture. Intersections between fractures are calledraces
and are denoted byS,,, m = 1;:::;M, while S denotes the set of all the traces of
the system, ands;, fori=1;:: :; , denotes the subset ofs corresponding to the M;
traces belonging toF;. Each Sm uniquely identi es two indices Is, = fi;j g, such
that S, Fi\ Fj. Finally J; collects all the indicesf| g relative to the fractures F;
intersected by Fi, i.e. j 2 J; () Fi\ Fi6;

The quantity of interest is the hydraulic head H that can be evaluated in by
means of the Darcy law. This originates a system of equations on thfgactures de ned

as follows. Let us introduce for each fracture the following functimal spaces:
n 0

Vi =HG(Fi)= v2HYF):yy =0 ;
and
n 0
VP =H§(F)= v2H'(F):v  =HP ;

and let us denote byH; the restriction of H on F;. Furthermore, let K; denote a sym-
metric and uniformly positive de nite tensor representing the fracture transmissivity.

Without loss of generality and for the sake of simplicity, we assume tht all traces
are dlSjOInt this is not a restrlctmg assumpt|on as noted in [5]. ThenH; satis es, for

FiKir Hir vd = Fqud + hGN Vigl HoECw)HEC )
X H
+ g ;VJSIH Z(S)HZ(S) (2.1)
S2 Si S S
where g 2 L%(F;) denotes a source term onF; and the symbol € , represents the
outward co-normal derivative of the hydraulic head:
H
%\I /hT K r HI1
i
with f; outward normal to the boundary i , and %H < denotes the jump of the
S

co-normal derivative along the unique normalrf§ xed for the trace S on Fi, and
represents the ux incoming into the fracture F; through the trace S. The equations
(2.1) for i = 1;::;1 are coupled with the following matching conditions, ensuring
hydraulic head continuity and ux balance across the traces:

Hij'sm H;’-#Sm =0; fori;j 21s,; 8m=1;:::;M; (2.2)
@4 . @
@;, @L, .

=0; fori;j 2 1s,: (2.3)
Sm



The simultaneous resolution of equations (2.1)-(2.3) might result inéasible for
practical applications, as previously discussed. In contrast, thepproach developed in
[5, 6, 7] only requires the resolution of local problems on each fraagte independently,
resorting to an optimization approach to enforce matching at the irtersections. In
order to describe this strategy, let us introduce for each tracegineagh fracture the

control variables US 2 US =H z(S), de ned as US = H i+ %ﬂ— , Where is
s S

a xed positive parameter, and the quadratic functional

X 2
J(H;U) = H

iism  Hilsm n(s) (2.4)
m=1
S S 2
ouTm U Hiiso * Hilsn 1 3
Equations (2.1), prescribed on the fractures, are equivalently retated as:
Z x £
Kir Hir vd + Hijs v d = (2.5)
Fi s3s S
? N ; X S i
Fi Gvd + mi 'VjSIH %( iN );H%( iN ) " HJi Vislus;us®
i S2S;

Let us dene US = H z(s) and let R; denote an operator providing lifting
of the Dirichlet boundary conditions on 5, if not empty. We then introduce the
following linear bounded operators:

Ai2 L(Vis VD) PAIW; Viey, = (Kir wir v+ w3V L

B2 L(U%VY); MBEUS viyoey, = NUS v iys.yso
Bi= ,¢ BY2L(US;VY; MU vivey, = MUy Tysiys: o)

with w;v 2 V;, and U; 2 USi is the tuple of control variables US for S 2 S;. Anal-

ogously, U 2 US denotes the tuple of control variablesU; for i = 1;::;1. The

dual operator of A; is denoted by A; and B; denotes the dual ofB;. The operator

Bin 2 L(H %( in ); /9 imposing Neumann boundary conditions is de ned such that
) N .\ _ N .\, ; .

Bin GI"vivey, = MGy | "R B
According to this functional setting and de nitions, problems (2.5) are restated as:
8 =1;:51, nd Hi 2 VP, with Hi = H?+ R{HP and H? 2 Vj, such that

AH? =g +BiUi+ BN G APR{HP; inF; (2.6)

where AP is an operator de ned similarly to A;, but operating on elements in H(F;).
We remark that, if > 0, for a givenU;, the solution H; to (2.6) exists and is unique
for a non isolated fracture even if we set Neumann boundary condibns on the whole
@F.

Following the arguments proposed in [7], it can be shown that the unige min-
imum of functional (2.4) is obtained for values ofH and of the control functions U
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that correspond to the ful Iment of conditions (2.2) and (2.3) on th e traces. In other
words, the solution of the problem

minJ subject to (2.6) (2.7)

corresponds to the solution of the coupled system of equations (2)-(2.3).

As shown in previous works (see e.g. [7]) this optimization problem canédtackled
with a gradient based method. Even if di erent approaches could ale be employed,
gradient-based methods are particularly appealing since they allowd independently
solve problems on fractures and can be straightforwardly pluggedn a parallel reso-
lution process.

In the continuous setting, the gradient based method is formally deised on the
following considerations: the optimal U 2 U, solution to (2.7), satis es the following
system of equations, corresponding to the Fechet derivativef J with respect to the

Bi Pi+ ysi U+ Ujs
S2S; S25S;

CPHi(U) + CPH;j(Y;) =0; (2.8)
where the operatorsC® = B; are restriction operators on the traces, s, : US !
usi %is the Riesz isomorphism, and functionsP; 2 V; are the solution to

AiPi=C ¢ sre C°Hi(U) CPH;(up)

+ 282& CPHi(Ui)+ C°H; (Y)) Ci U+ os U ;  inFi;(29)

with homogeneous Neumann and Dirichlet boundary conditions. Thenwe can set

rJ(U)= B Pi+ s SZSi(uis +U° Le(CEHi(U) + CPH;(U));  (2.10)

and

|
r J(U) = T J(Up): (2.12)

The gradient based algorithm for solving (2.7) is fully described in [7]. Hee, we focus
on a rst-discretize-then-optimize approach, and we move on by itroducing, in the
next section, the space discretization.

3. The virtual element method. The Virtual Element Method [3, 4, 8, 2] is
a very recent technique for solving partial di erential equations on meshes of fairly
general polygonal elements with an arbitrary number of sides. Thischaracteristic is
very attractive for the application considered herein. Indeed, oreach fracture we solve
equation (2.6), whose solution can have a discontinuous gradient agss the traces. In
order to correctly reproduce this irregular behaviour, we can talke advantage of the
exibility of virtual elements by transforming, on each fracture, a given triangulation
(non conforming to traces) in a more general mesh, conforming tdraces, simply
obtained by splitting the triangles along traces into more general sb-polygons not
crossed by traces. We remark that we do not require conformity letween the meshes
of the two fractures intersecting at a trace. As a consequencefdhe meshing process,
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Figure 3.1 . Example of the mesh for the VEM: elements shaded have been cut into polygons
to match the trace on the two fractures independently

a partial conformity (i.e. conformity to traces but no conformity b etween the meshes
of intersecting fractures) will result, but the meshing process is 8ll independent on
each fracture and thus easy and reliable (see Figure 3.1).

Let us now describe the application of the VEM to the problem consideed. For
the sake of simplicity, we consider in this section homogeneous conéins on the
Dirichlet boundary; furthermore, we consider in this work the caseof virtual elements
of order k =1 and we assume that the fracture transmissivity K ; is constant on each
fracture, but might vary from one fracture to another. We will fo cus on a generic
fracture F; , Since the process is independent on each fracture. Lef T g be a
family of meshes onF;, being the mesh parameter (corresponding to the square root
of the largest element size). Each mesh is built as previously sketcte we start with a
given triangulation, and whenever a trace crosses an element, thatter is split by the
trace itself in two sub-polygons. If the trace ends inside an elementit is prolonged
up to the boundary of the element. To note is that we obtain convexpolygons, thus
satisfying the assumptions in [3]. EachT;. is therefore made of open polygon$Eg
with an arbitrary number ng of edgese, and we callN; the total number of vertices.
We de ne for each a spaceV: H(F;) as follows. Following the notation in [3],
for a generic elementE of the mesh, let us introduce the space

Bi(@5= v2C’@B:Vie2Pi(e); 8¢ @E:

Let VE 1 be the space of harmonic functions that are linear on the boundarig of
the element,

VEL= v2 HY(E): Vige2 B1(@B; Vie =0
We nally set
Vi = v2 Hé(F,) T Vie 2 VE;l; BE2T;

For each element, functions inVE' are uniquely identi ed by prescribing the poly-
nomial functions on @E or, equivalently, specifying the values at theng vertices of
the polygon. With this natural choice for the degrees of freedomthe C° continuity
of functions in V;. is easily enforced. The dimension o¥;. is N;, and we introduce
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in the mesh. Functionsf ;g are in general not explicitly known inside the elements,
but only on the boundaries of the elements, and this is a key point of \EM. Further
we observe that the space of polynomial®1(E) Vi iE for each elementE in T. .

On the spaceVi. we de ne a symmetric bilinear form a;. : Vi Vi 7! R as the
discrete counterpart of the bilinear forma; : V; V; 7! R de ned as

ai(Hi;V) = MiHi;ViViO;Vi:

On each elementE we introduce the bilinear formaf (;):V; e Ve "R

aF (;' )=(Kir PE;r pE)e+ isiveer s\ eE sv\@E+ SE(;' ) (31
and for any two functions ; ' 2 Vi we have
X E
a; (;' )= a: (3 ) (3.2)
E2Ti;

In (3.1), the projection operator PE : V; iE 7! P1(E) is de ned for any function
2V e by

ir PErpe =(Kir ;rpe 8p2PyE)
i E g(nuE E 1

Ezl PE (Xk) - el (Xk) (3.3)

being f xx g« the coordinates of the vertices of elemenE, and SE : Vi e Vi g "R

is a properly designed functional that is non-zero only on the kerneof pE .

Remark 3.1. Let us observe that the de nition (3.1) for the bilinear form and
(3.3) for the projection operator slightly di er from the de niti ons introduced in [3].
In our de nition of the discrete bilinear form the projectio n operator does not a ect
the portion of the operator de ned on the traces, and conseantly this term does not
appear in (3.3) or in the de nition of the stability operator SE. According to [3], we
assume that there exist two positive constantsy and c¢; independent from the mesh
elementE and of element diameter, such that:

co(Kir's r')e SE(" ) alKir’r')e; 8 2V g; with pF' =0:

(3.4)
On each elementE of the triangulation we have:
a-(;')=af(P®;PE)+at( PE PR
+ PESPE" (lget ' PELPE g (39

that replaces equation (4.22) of [3].

It is possible to show that the given de nition of the bilinea form is consistent
and stable. Consistency easily follows from de nition(3.1) and from (3.3): for all
E2T. ,8p2Pi(E); 8 2 V; e we have:

ar (;p)= Kir( PE )rpg+ Kir(P® )irpa+t (5P)g\ ee

Kir P )irpc+ (iP)gr@e=a (iP);
7



being aF ( ; ) the restriction to a mesh element of the continuous bilineaform. Sta-
bility can be proved similarly to [3], using (3.4) and (3.5).

Assuming basic quality properties for the triangulation, functional S can be
chosen as in [3], thus satisfying conditions (3.4): for all;' 2 V; e We set

Xe
SEGr )= KiC () (PR (k) (PE 7 )(xk)): (3.6)

k=1

Concerning the treatment of the source termg at right hand side of equation (2.6),
it is shown in [4] that convergence rates are preserved by approxiating ¢ with a
piecewise constant function on each element of the mesh.

Given the previous results and de nitions, it is possible to use the cowergence
theorem in [3] to prove that the discrete problems on the fractures are well posed and
convergence rates are equal to those of standard nite elemesgtof the same order.

Even if functions in Vi. are only known on the edges of mesh elements, the
knowledge of the degrees of freedom allows us to compute the diste bilinear forms.
In fact, in order to compute PE |, forany 2 V; i and p 2 P1(E) we evaluate:

z z @
(Kir ;rpe-= Kir rpdE= Ki p dE+ P
ZE E @I@E
@'@E
where nge is the outward unit normal vector to @E
4. Formulation and resolution of the discrete problem. As shown in Sec-

tion 2, the problem has been reformulated as a PDE-constrained djpmization problem
(see equation (2.7)) in which the quadratic functional J is to be minimized subject to
linear constraints. In this section, following a rst-discretize-the n-optimize approach,
we give some details about the discrete formulation of the problem aththe numerical
approach for computing a solution to the problem. In the following, we will use lower
case letters for the nite dimensional approximations of functionsH and U.

4.1. Discrete formulation. As outlined in the previous section, we |,5troduce
a nite dimensional basis for each fractureF;, with a total number NF = = [_| N;
of DOFs on the fractures. Concerning the functional space on th traces, in order to
simplify the discussion, we consider the following di erent numbering br the control
functions u®, induced by the trace numbering. BeingS = S, a given trace, with
Is, = fi;j gand assumingi <j , we denote byu,, and by u;, the control functions
related to the m-th trace and corresponding to fracturesF; and F;, respectively. By
overloading the notation, we use the same symbol for the corregmding vector of
DOFs. Let us introduce basis functions .\, k=1;:5N, and [, k=1;:5Ng
for the space of the control function u,, and uy,, respectively. Note that here we
allow to use dierent spaces Bn the two \S|des of each traE)e Thenwe have, for
m=1;:5M,?2= ;+, u? Elumk 2k SetingNT = W_ (N, + NJ), we
dene u?2 RN concatenatingu, ; Uy ;:::;Uy ;Uy -

Let us consider the functionalJ, whose expression is given in Section 2 by equation
(2.4), and let us write the discrete functional in terms of L?> norms instead of H z
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and HZ norms on the traces: its discrete counterpart is

0 Z
1 )Q X X'i %j 2
J=Z= @ ( hi;kI i;kjs hj;kl Jik jS) d+
i=1 s2s; S k=1 k=t
Z ., ¥o X
( Unk mk T mk  m;k ik tkis
S o1 k=1 k=1

(4.1)
1
X i
hix " jx j5) d A
k=1

Let us de ne for all Sy, 2 S, for p;q2 Is, (possibly p= @), the matrices
z
(CPSE e = I p;kjsml G d: Cpa =
Sm Sm 2S,

Sm -
Cp;q :

Furthermore, for m = 1;:;M and ?=  ;+dene G, 2 RV» Na, G, 2 RV» Nn

and G, as:
z Z C. C.
2 ? ? +
e = Tk ome ds = . ~d; = .
(Qn)k s, mk m; (Cm)k S, mk m; Gn (G’n )T Gn
and BY,, 2 RV Na and Bim 2 RN Nn as
z z
(Bi?m )k‘ = S l?n;kI i ism d,; (Bj?m )k‘ = S l?n;kl i ism
The functional J in (4.1) is therefore written, in algebraic form, as
1 X
J(hiu)= 3 1+ PhfCihi+(@+ *hICSh 21 ?)h[CSh
i=1 s25
+ T + +\T ~+ , + +2 T + hT B_+ +
(Un)" GnUm +(Un) Gy Um +2(Up)" GoUm (N By Up)
(W' Bimun) (N[ Bynun) (W[ Biyup)  ((uy)T(Biy ) hi)

(Um) B h)  ((Un)T By )Th)  ((um)" (B )T hy):

We now allow for a more compact form ofJ (h; u) by assembling previous matrices as
follows. We set

Bim = (Bym Bim) 2 RNi (N # N Um = (UpiUp):

For each xed i =1;::;1, matrices Bi.,, , for m such thqg, Sm 2 Sj, are then grouped
row-wise to form the matrix B; 2 RN Nsi, with Ng = g ,5 (N, + N,). Matrix

B; acts on a column vectoru; obtained extracting blocksup,, for Sy, 2 S;, from u and
appending them in the same order used foB;n , as the action of a suitable operator

Ri : RN" 70 RNsi such that u; = Ryu. Finally, let B 2 RN" N' be de ned by

0 1
B1R1
B=l
B| R,
Let now G" 2 RN N7 be de ned blockwise as follows: fori = 1;::1 we set
Gl =1+ ?)Cy; Gl =( 2 1)C ifj 2 J; (0 elsewhere);

9



where, xed F;, J; collects the indicesj such that jF; \ Fij > 0. Since, obviously,
j 2 J; ifand only if i 2 J;, and due to the straightforward property (G )" = G , we
have that G" is a symmetric matrix. Next, let us de ne the matrix GY 2 RN N’
blockwise asG" = diag(Gn;m = 1;::;M). With these de nitions at hand, the
functional J is rewritten

J(h;u):= = h"G"h hT™Bu u™BTh+u'G'u

NI =

beingh 2 RN " obtained appending vectorsh;, i = 1;::;1.
We nally note that, setting

and w = (h;u), J can be simply written asJ = %WT Gw, with G straightforwardly
symmetric, due to previous considerations, and positive semide ni¢ by construction.
Constraints (2.6) are written as a unique linear system as follows: Foall i =

1;::::1 de ne the matrix A; 2 RNi Ni as
X Z
(A = Kir PE ixr PE i dFi+ SE( i i)
E2T: Fi
X Z

ikjs ijo d7 KT =150
s2g S
where the operatorsPE and SE are dqgned by (3.3) and (3.6), respectively.

For each fractureFi, we setN¢ = g ,5 N as the number of DOFs on traces
of Fi on the F; \side", and we de ne matrices B;j 2 RN Ns grouping row-wise
matrices Bi?m , With m spanning traces inS;, and setting for eachm either ? = +
or ? = according to which one of the two \sides" of trace S, is on F;. Matrices
Bi act on a column vector uf containing all the Nii control DOFs corresponding to
the traces of F;, obtained extracting blocks u?,, for Sy, 2 S;, from u and appending
them in the same order used in the de nition of B;. Again, this can be obtained as
the action of a suitable operatorR?: RN 71 RVsi such that u’= R%. In practice,
R? extracts only sub-vectorsu?, from u corresponding to control functions on the
"correct side" of the trace.

The algebraic formulation of the primal equations (2.6) is then
Aihi=g+Bu’  i=1;u0; (4.2)

where ¢ accounts for the term g in (2.6) and for the boundary conditions on the
fracture F;. o oo
We setA =diag(A;;i=1;:31)2RV N anddeneB2 RN N as
0 1

B = :
B R}

Setting q=(ep;:::;6) 2 RN ", constraints (4.2) are then written Ah  Bu = g.
10



The problem under consideration is therefore reformulated as théollowing equal-
ity constrained quadratic programming problem:

min J(h;u) = % h"G"h h™Bu uTBTh+u'G'u (4.3)
st. Ah Bu=qQ: (4.4)
4.2. Solving the optimization problem. The rst order optimality condi-
tions for problem (4.3)-(4.4) are the following:
0 10 1 0 1
Gh B AT h 0
@ BT @ BT A@ u A=@0pA (4.5)
A B 0 p q

being p the vector of Lagrange multipliers.

The previous saddle point problem is, for real applications, a very lage scale
problem, with highly sparse blocks, asA, GY are block diagonal matrices,G", B and
B are block-sparse.

By (formally) using the linear constraint for eliminating the unknown h as

h=A YBu+ 0); (4.6)
we obtain the following equivalent unconstrained problem :
. 1
min J(u) := éuT(BTA Tcha 'B+GY B"A B B TA !B)u
+q’A T(G"A B B)u:

For further convenience we rewriteJ(u) = %uT Gu + 4" u. A gradient-based method
for the minimization of the functional requires the computation of the gradient of "
rfuy=(BTA TG"A 'B+G* (B"A "B+BTA !B)u+

B"A TG" B A g

or, equivalently, r J(u) = Gu + 4.
The gradient can be written in terms of some auxiliary variables as follovs. Re-
arranging previous expression, we obtain

rfuy=B"A TG"A Y(Bu+ g+ G'u B"A TBu B TA Bu+q)
and recalling (4.6), one has
rfuy=B"A "G"h+G'u B"TA TBu B "h:
Now setp:= A T(G"h Bu ), i.e. givenh and u, p solves
ATp= G'h Bu: (4.7
With these de nitions, we may write
r fuy=B"p+G'u B Th: (4.8)

Note that setting to zero the previous expression for obtaining sationary points for
J(u), and collecting such equation together with (4.6) and (4.7), we obain system
(4.5).
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Concerning the numerical solution of the optimization problem, we mation here
two possible approaches. The rst one consists in solving the linearystem (4.5). An
iterative solver is clearly a recommended choice, andymmiq[14] would be a suitable
choice; this approach has been used in [6]. Another approach contsisn applying an
iterative solver to the minimization of J\(u). We focus here on this second approach,
sketching the conjugate gradient method applied to the minimizationof J'(u). In the
algorithm, let us denote by g the gradient r J(uy) at step k and by dy the descent
direction.

Conjugate gradient method

1. Choose an initial guesau®
2. Compute hg and pg solving (4.6) and (4.7) and gy by (4.8)
3. Setd(): Jo, k=0
4. While gx 60
4.1. Compute  with a line search alongdy
4.2. Compute U+ = Uk + Kk
4.3. Update ge+1 = gk + «Gdk

T
Ok +1 Gk +1

4.4. Compute k41 = ol o«

45. Update dy+1 =  Ok+1 + k1 Ok
46.k=k+1

Due to linearity, Step 4.3 is equivalent to computegcss = Guys1 + 4. Indeed,
Ok+1 = GUk+1 +7= G(Uk + k) + Y= éuk + 4+ kédk = okt kédki

Nonetheless, we remark that this step is clearly performed withouforming matrix G,
but rather computing vector y, = Gd through the following steps:

1. SolveAt = B dk

2. SolveATv=G"t Bd

3. Computeyy = B"v+ G'Yd¢ B Tt

Furthermore, since J' is quadratic, the stepsize , in Step 4.1 can be computed

via an exact line search. Given a descent directiorty, we compute  such that it
minimizes the function ( ):= J(ux+ d ). Straightforward computations show that
one has

dy O :
dl Gdi

(4.9)

The stepsize | is therefore computed without much e ort, as quantity Gdy is the
same needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of
the linear systems with coe cient matrix A (which actually equalsAT). Nevertheless,
we recall that matrix A is actually symmetric positive de nite, block diagonal with
each block de ned on a fracture. The systems are therefore demposed in as many
small\local" systems as the number of fractures. Right-hand-sies of the local systems
gather information both from the current fracture, and from th e intersecting fractures,
which are typically small in number. Hence, these independent linearystems can be
e ciently solved on parallel computers.

5. VEM implementation and numerical results. In this section we address
some implementation issues concerning the use of VEM in conjunctiomwith the op-
timization approach described in Section 4. In addition, we present ame numerical
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results in order to show the viability of the VEM for the simulation of dis crete frac-
ture networks and to highlight the e ectiveness of the overall method in this context.
Simpler test problems focused on particular implementation issues ditipate some
numerical results on more complex DFNs.

5.1. VEM for DFN. We start describing the procedure for obtaining the com-
puting mesh on the fracture network. Let us recall that each fracture in a DFN
is represented by a 2D polygonal domain and is intersected by othefractures of
the network in a set of traces. As a rst step, triangular meshes ae generated on
each fracture independently, without taking into account trace positions or confor-
mity requirements of any kind. Next, we proceed independently on ach fracture and
whenever a trace intersects one element edge, a new node is cesét New nodes are
also created at trace tips. If the trace tip falls in the interior of an element, the trace
is prolonged up to the opposite mesh edge. Intersected elementseathen split into
two new \sub-elements", which become elements in their own right, & shown in Fig-
ures 5.1 and 5.2 that represent the two phases of the process a@eibed above. In these
pictures, coloured elements are the new virtual elements, wherazblank elements are
the original triangular elements. Elements with up to 6 edges are intoduced in these
examples. In the gures, each color corresponds to a di erent nmber of edges in the
element. The reader might refer to the PDF le to zoom in the pictures for a more
detailed view.

The polygonal mesh obtained with the procedure described is posdipimproved
through the displacement of some nodes. Namely, when a node fallery close to
a trace, it can be moved onto the trace itself, and therefore redaing the number
of element edges and total degrees of freedom. The mesh impronent process is
performed as detailed in the following. The distance of each node of iersected
elements from the nearest trace is compared to a given mesh depdent tolerance. If
the distance of the node to the closest trace is below the toleranceéhen the node is
moved to its projection on the trace. Vertices of the fractures &ways remain xed and
nodes in the border are only moved provided that they remain on thesame border
in order to avoid changing the shape of the fracture. This procedte is performed
independently for every fracture, and although not strictly necessary, it is advisable.
The e ect of this additional mesh modi cation is shown in Figure 5.3.

Since VEM basis functions are not known in the interior of mesh elemets in
general, we resort to the following mesh-dependentiand H! norms commonly used in
the context of mimetic nite di erences, and dened 8u2 V. andforalli=1;:::;I,
respectively as:

X iEj X un(vi)+ un(v
jjuiig, = oE Un) % tnlve) =
E2T; e @E
!
. X . X Uh (Vi Un (V
juiid, = JE] Unv) _th (ve) ').e. nlve) ©
E2T: e @F 1€

wherev; and ve are the initial and nal point of the edge, respectively.

5.2. Test problems. We rst propose two test problems aimed at evaluating
VEM approximation capabilities in the DFN context by means of applying them to
very simple con gurations representative of common situations in OFN simulations.
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Figure 5.1 . Mesh example. Left: original triangulation. Right: mesh fo r VEM.

Figure 5.2 . Left: detail of a mesh around a trace intersection. Right: de tail of a mesh around
a trace tip.

L |
10 20 30 40 50 10 20 30 40 50

Figure 5.3 . Left: example of VEM mesh without modication. Right: Same m esh after
modi cations.
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In these test cases, a single problem of the form (2.1) is solved, i.e.single fracture F

is considered, assigningi on the traces. In the rst case, two intersecting traces are
present in F, completely crossing the domain, while a single trace ending inside the
domain is studied in the second problem. The proposed numerical refis show very
good approximation capabilities of virtual elements in dealing with these geometrical
con gurations.

5.2.1. Problem 1. The rst test problem, labeled P1, displays two traces in-
tersecting each other inside the domain. The domain is a single rectayular fracture
F  R? with two traces S; and S, de ned by:

F= (xy)2R?:x2(0;3)y2(0;1) ;
S1= (Xy)2R%:x y 1=0 ; S;= (xy)2R?:2 x y=0

The domain is shown in Figure 5.4 with a coarse mesh with parameter,x = 0:2
along with a detail of trace intersection. Here and in the sequel nax denotes the
square root of the maximum element area for the initial triangulation on each fracture.
For this mesh, the original triangular element containing trace intersection is split into
four new elements, two triangles and two quadrilaterals.

The problem is set as follows:

H = H & ns;
H=0 on @F;
@H
Uy =fg, = on Sy;
1 S @s, < 1
@H"
U, = fg, = on Sy;
2 S, @s, . 2
with
8
3 (G Dx y Lx+y 2)=7 in Ag;
Heyy= & W0y Dix+y 2) in Ag;
’ 2 y(x Yy Dx+y 2) in As;

y@ y)(x 3x y x+y 2)=5 inAg;

where A1, Az, Az and A, denote the four regions in whichF is divided by the traces,
as indicated in Figure 5.4. Values offs, and fs, are

§1:(7p§)(2 X y)(7 x(6+ x)+20y

fs. (Xy) = +2x(L+ x)y 5xy?+y® X+y 2 0
VYT 5 155 2)2 x y)( 8+y(L+y)IL+y)
: +x2( 1+2y) x(1+ y@4+5y)) X+y 2>0;

and

; 1:(5p§)( 1+x y)( 16 ( 10+ x)x +38y
f e (xv) = R0 70y +5( 3+ x)y*+y° y x+1 0
U= 5 120" 14x y) 28453 142y)
' +y(23+( 3+y)y)+ x(9+y( 8+5y)) y x+1>0

In Figure 5.6, left, the numerical solution obtained on a ne mesh with parameter
max = 0:05 is displayed. This problem has been solved using both the VEM and
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Figure 5.4 . Problem P1. Left: Domain with coarse grid max = 0:2. Right: a detalil of trace
intersection.

Figure 5.5 . Problem P1: approximate solution on a mesh with  max =0:05

the XFEM for the space discretization, as described in [5, 6, 7]. Figw 5.6, right,
reports, for both space discretizations, errors computed verss the number of DOFs.
We remark that, when applying the two approaches, we always starfrom the same
triangular mesh. The XFEM deals with irregularities in the solution along traces by
adding suitable enrichment functions (see [6, 7] and references ¢hein), resulting the
two methods in a di erent number of DOFs, when the same mesh pareeter is used.
Computed convergence rates are close to the expected ones bdh the L? and the
H! mesh-dependent norms, and both for the VEM and for the XFEM: ramely, L2
norm convergence rate is 03 for the VEM and 0:99 for the XFEM, whereas the H
norm convergence rate is 89 both for the VEM and for the XFEM. The L 2 norm of
the error on the restriction of the solution to the traces is also remrted (label 'L2H
on trace' in the legend), and displays a convergence rate of.Q for the VEM and 0:91
for the XFEM. As a whole, the two space discretizations yield a compeable level
of accuracy, and the intersection between traces is easily handleby the VEM on a
polygonal mesh with very good approximation properties.

5.2.2. Problem 2. Let us de ne the domain F for the second test problemP 2
as

F= (xy)2R®: 1<x< 1, 1<y< 1;,z=0 ;

with a single trace S= (x;y)2R?:y=0and 1 x 0 ending in the interior
of F. This test problem has also been considered in [6]. Here we set out tthaw the
behaviour of virtual elements in handling the non-smooth behaviourof the solution
around trace tips. Let us introduce the function H®*(x;y) in F as:

He(xy) = (x? 1)(y?> 1)(x*+ y?) cos %arctanZ(x;y)
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Error

10 10 10

Figure 5.6 . Problem P1: error behaviour

where arctan2f;y) is the four-quadrant inverse tangent, giving the angle between
the positive x-axis and point (x;y), and di ers from the usual one-argument inverse
tangent arctan( ) for placing the angle in the correct quadrant.

The problem is de ned by the system:

H = H® on nS;
H=0 on @F;
U=x x° onS;

where U is the prescribed value of the jump of uxes across the traces.

Figure 5.7 shows the VEM mesh and the resulting elements near the tip In
this implementation of the method, the tip becomes a new node of thdriangulation,
and three new four-sided elements are generated. Two of them arobtained from
the original triangle that contained the trace tip, while the third one appears when
the node given by the intersection between the prolonged trace ahthe opposite
mesh element is added to the corresponding neighbouring triangle #t becomes a
quadrilateral.

The approximate solution is shown in Figure 5.8. In Figure 5.9 we reporterrors
computed both with the L? and with the H! mesh dependent norms, both for the
VEM and for the XFEM. Computed convergence rates are, also fothis test problem,
quite similar for the two space discretizations: 105 in the L? norm, and 0:51 in the
H® norm for the VEM:; 1:02 in the L2 norm, and 0:47 in the H! norm for the XFEM.
The Figure also reports the errors on the restriction ofH to the trace S, computed
in the L? norm. Computed convergence rate are in this case:85 for the VEM and
0:96 for the XFEM. As for problem P1, the approximation properties of the two
space discretizations are therefore quite similar. As a whole, also th geometrical
con guration including a trace tip is e ectively handled by the VEM, th anks to the
exibility in using polygonal mesh, without a ecting the approximation capabilities
if compared, e.g., with extend nite elements.
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Figure 5.7 . Pro
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Figure 5.8 . Problem P2:
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Figure 5.9 . Problem P2: error behaviour
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Figure 5.10 . DFN2: spatial distribution of fractures and the obtained so lution for the hydraulic
head.

5.3. DFEN problems. In this section we deal with networks of fractures, ad-
dressing both simple DFN problems and more complex and realistic prdems. Com-
putations are perfomed using the PDE-constrained optimization aproach described,
in conjunction with virtual element space discretization. The geneilal DFN problem
is set as follows:

H=q ns; (5.1)
H; , =H® on p;

@H

@: GN on n;

with reference to the nomenclature introduced in Section 2.

5.3.1. DFN2. Here we analyze a very simple DNF consisting of two identical
fractures that intersect each other orthogonally, as can be seein Figure 5.10 where
the domain is depicted.

Fractures 1 and 2 and the traceS are de ned as:

Fi= (xy;2)2R*:z2( L1);y2(0;1);x=0 ;
Fo= (xy;2)2R*:x2( 1;1);y2(0;1);z=0 ;
S= (xy;z)2R3:x=0;y2(0;1);z=0

Homogeneous Dirichlet boundary conditions are imposed on the edgeorrespond-
ingtoz=0and z=1of F; andtoy=0and y =1 of F, . On the remaining edges
we set homogeneous Neumann conditions for fractur€;, and a non-constant Neu-
mann boundary condition for fracture F, given by GN = 16y(1 y)2on . With
this de nition of the problem, the exact solutions for the hydraulic h eadH € and the
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