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Abstract

A new approximation of the cluster variational method is introduced for the three-dimensional Ising
model on the simple cubic lattice. The maximal cluster is, as far as we know, the largest ever used in this
method. A message-passing algorithm, generalized belief propagation, is used to minimize the variational
free energy. Convergence properties and performance of the algorithm are investigated.

The approximation is used to compute the spontaneous magnetization, which is then compared to previ-
ous results. Using the present results as the last step in a sequence of three cluster variational approxima-
tions, an extrapolation is obtained which captures the leading critical behavior with a good accuracy.
© 2014 The Author. Published by Elsevier B.V. All rights reserved.
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1. Introduction

A major approximate tool in the equilibrium statistical physics of lattice models is the mean-
field theory, together with its many generalizations. These techniques are known to give quite
often reliable qualitative results, which makes them very useful in understanding properties of
a model like its phase diagram. Due to the limited quantitative accuracy of simple mean-field
theory, many generalizations were developed. Since mean-field neglects correlations, typically
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the idea is to include local, but progressively longer range correlations in the treatment, for ex-
ample by means of cluster expansions where clusters of increasing size can be included.

This line of research started with the Bethe–Peierls approximation [1,2], where nearest-
neighbour correlations are taken into account, and the Kramers–Wannier approximation [3,4],
including correlations up to a square plaquette. Many generalizations were then proposed, and a
particularly successful one was the cluster variational method (CVM), introduced by Kikuchi in
1951 [5] and applied to the Ising model. The largest clusters considered by Kikuchi in this work
were a cube of 8 sites for the simple cubic lattice and a tetrahedron of 4 sites for the face centered
cubic lattice.

Larger clusters were later considered: in 1967 Kikuchi and Brush [9] introduced the B2L se-
quence of approximations for the two-dimensional square lattice, whose convergence properties
were later studied [10] using maximal clusters up to 13 sites. Kikuchi and Brush also suggested
that a similar approach could in principle be carried out in three dimensions, although the compu-
tational costs would have been prohibitively large at that time. Their intuition was put on a firmer
ground by Schlijper [6–8], who showed that, for translation-invariant models in the thermody-
namical limit, there exist sequences of CVM approximations whose free energy converges to the
exact one. For a d-dimensional model, the largest clusters to consider grow in d − 1 dimensions
only, as in a transfer matrix approach. In 3 dimensions this idea was used by the present author
to develop a CVM approximation for the Ising model on the simple cubic lattice based on an
18-site (3 × 3 × 2) cluster [11].

The main difficulty encountered in trying to enlarge the basic clusters is the computational
cost, which grows exponentially with the cluster size. More precisely the problem can be written
as the minimization of a free energy whose number of independent variables increases exponen-
tially with the cluster size. A significant amount of work was then devoted to develop efficient
algorithms. The original iterative algorithm proposed by Kikuchi [12–14], the so-called natural
iteration method, is not particularly efficient, but in certain cases it is provably convergent [15]
to a (maybe local) minimum of the free energy. Faster, provably convergent algorithms were
developed more recently [16,17].

A very important step in the direction of speeding up algorithms for the minimization of the
CVM free energy has been made in 2001, when it was shown [18] that Belief Propagation (BP)
[19], a message-passing algorithm widely used for approximate inference in probabilistic graph-
ical models, is strictly related to the Bethe–Peierls approximation. In particular, it was shown
[18] that fixed points of the BP algorithms correspond to stationary points of the Bethe–Peierls
variational free energy. This result was later extended by showing that stable fixed points of BP
are (possibly local) minima of the Bethe–Peierls variational free energy, though the converse is
not necessarily true. This provides us with the fastest, but not always convergent, algorithm for
the minimization of the Bethe–Peierls free energy. When convergent, BP outperforms the other
algorithms by orders of magnitude (see [10] for a detailed comparison). BP was also extended
to an algorithm, named Generalized Belief Propagation (GBP) [18,20], whose fixed points are
stationary points of the CVM free energy for any choice of basic clusters. Like BP, GBP is ex-
tremely fast but not always convergent.

The purpose of the work described here is twofold: we aim both to test how GBP performs in
minimizing a CVM free energy with a very large (32 sites) basic cluster, and to make one more
step in the hierarchy of CVM approximations for three-dimensional lattice models. Working on
the Ising model on the simple cubic lattice as a paradigmatic example, we follow Schlijper’s ideas
and enlarge the basic cluster for our CVM approximation in 2 dimensions only, thus choosing a
4 × 4 × 2 cluster (as far as we know, the largest cluster ever considered in CVM). We then use a
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GBP algorithm to minimize the corresponding free energy in a wide range of temperatures and
discuss the accuracy of the result, focusing in particular on the spontaneous magnetization, in
comparison with state-of-the-art results.

The paper is organized as follows: in Section 2 we describe our CVM approximation and the
GBP algorithm we use to minimize it, in Section 3 we analyze the performance of the algorithm
and the accuracy of the results for the magnetization, and conclusions are drawn in Section 4.

2. Methodology

The CVM is based on the minimization of an approximate variational free energy, which is
obtained from a truncation of a cumulant expansion of the entropy [6,10,21–23]. A particular
CVM approximation is specified by the set R of clusters one wants to keep in the expansion:
the typical choice involves a set of maximal clusters and all their subclusters. Introducing the
Möbius numbers {aα,α ∈ R}, defined by

∑

β⊆α∈R

aα = 1, ∀β ∈ R, (1)

the variational free energy takes the form

F
({pα,α ∈ R}) =

∑

α∈R

aαFα(pα). (2)

Here pα is the probability distribution for cluster α and

Fα(pα) =
∑

sα

[
pα(sα)Hα(sα) + Tpα(sα) lnpα(sα)

]
, (3)

where sα = {si , i ∈ α} is the configuration of cluster α, Hα its contribution to the Hamiltonian
and, as customary, T is the absolute temperature (Boltzmann’s constant kB has been set to 1). If
H is the Hamiltonian of the model under consideration, then the condition

H =
∑

α∈R

aαHα(sα) (4)

must be satisfied. In the following we shall consider the nearest-neighbour Ising model in zero
field, so our Hamiltonian will be

H = −
∑

〈ij〉
sisj , si = ±1 (5)

(the coupling constant J has also been set to 1, hence the temperature will be expressed in units
of J/kB ). The splitting of H into contributions Hα from the various clusters appearing in the
expansion is not unique, several (equivalent) choices are possible. In the following we distribute
H evenly among the maximal clusters only, so that no Hamiltonian terms appear in the subcluster
free energies.

Our choice for the largest clusters in R is based on Schlijper’s result [6–8] that for a
d-dimensional model one can improve accuracy by increasing the maximal clusters in d − 1
dimensions only. On the simple cubic lattice, the elementary cubic cell of 2 × 2 × 2 sites has
been already considered by Kikuchi [5] and a 3 × 3 × 2 basic cluster made of 4 elementary cu-
bic cells has been used in [11]. The next step in this sequence is then a 4 × 4 × 2 basic cluster
(32 sites, 9 elementary cubic cells). As far as we know, this is the largest maximal cluster ever
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Table 1
Parent–child pairs for messages in the
parent-to-child GBP algorithm for our
CVM approximation.

Parent Child

431 331
441 431
432 332
442 432
332 331
432 431
442 441

used in a CVM approximation. The number of possible Ising configurations of such a cluster
is 232 � 4 · 109, which is also the number of independent variables in our variational problem.
More precisely, exploiting lattice symmetries, this number can be reduced by a factor close to
16, leaving us with � 228 � 2.5 · 108 independent variables. In order to deal with such a large
number of variables, we shall use the parent-to-child GBP algorithm [20] to find stationary points
of the variational free energy. This will also provide a test of convergence and performance of
the algorithm in a very large scale problem.

The parent-to-child GBP algorithm is a message-passing algorithm, based on iterative equa-
tions written in terms of quantities called messages, which are exchanged between clusters. We
shall use the notation mα→β(sβ) for a message going from cluster α to cluster β , which is a
function of the configuration sβ of the latter. Only clusters α ∈ R with Möbius number aα 	= 0
are involved in the message-passing scheme. Exploiting the lattice translational invariance in the
thermodynamic limit, we shall identify a cluster by the symbol lx ly lz, where lx , ly and lz are the
lengths of the cluster in the three spatial directions, in terms of lattice sites. For instance, a clus-
ter made of a single site will be denoted by 111, nearest-neighbour pairs in the three directions
by 211, 121 and 112 respectively, the elementary cubic cell by 222, and our maximal cluster
by 442. With this notation, it is easy to check that, according to Eq. (1), if R includes 442 and all
its subclusters, the only clusters with non-vanishing Möbius numbers are the following:

a442 = 1, a432 = a342 = −1, a332 = 1,

a441 = −1, a431 = a341 = 1, a331 = −1. (6)

Thanks to lattice isotropy, when lx 	= ly , the clusters lx ly lz and ly lx lz are equivalent, so we need
to consider only six different clusters, that is six probability distributions, related to each other
by marginalization conditions. In the parent-to-child GBP algorithm [20], messages go from a
(parent) cluster α to a direct subcluster (child) β ⊂ α, where direct means that there exist no other
cluster γ with aγ 	= 0 such that β ⊂ γ ⊂ α. Hence, in the present CVM approximation, we will
have to introduce only the messages corresponding to the parent–child pairs listed in Table 1.

In the parent-to-child GBP algorithm [20], cluster probability distributions at a stationary
point of the CVM variational free energy are written in terms of messages (up to a normalization
constant) as

pγ (sγ ) ∝ exp
[−Hγ (sγ )

] ∏ α�γ∏
mα→β(sβ), (7)
β⊆γ β⊂α∈R
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where sβ denotes the restriction of sγ to subcluster β . In the above products β is any subcluster
of γ (including γ itself) with aβ 	= 0, while α is any parent of β not contained in γ .

Messages are computed by iterating equations derived from the marginalization conditions
which must be fulfilled by the probability distributions of a parent cluster α and one of its children
clusters β:

pβ(sβ) =
∑

sα\β
pα(sα), (8)

where sα\β = {si, i ∈ α \ β}. In the resulting set of equations, messages at (iteration) time t

enter the right-hand side and new messages at time t + 1 are obtained on the left-hand side.
Writing down the above equations for all parent–child pairs one realizes that two cases can be
distinguished.

As a first example, consider β = 331 and α = 332 and write the corresponding probability
distributions using Eq. (7). It can be easily checked that all messages appearing in the left-hand
side, except mα→β(sβ), will appear also in the right-hand side, canceling each other. The result-
ing equation will then give (up to a normalization constant) directly mα→β(sβ) as a function of
other messages and can be included in an iterative scheme where messages at step t enter the
right-hand side and a new value for mα→β(sβ) at time t + 1 is obtained.

As a second example, consider now β = 431 and α = 432. In this case, after cancellations,
the left-hand side will contain the product of mα→β(sβ) and two more messages, specifically
those which go from the 332 subclusters of α to the corresponding 331 subclusters of β . As a
consequence, in order to evaluate new 432 → 431 messages at time t + 1, one must have already
computed the new 332 → 331 messages at time t + 1 from the corresponding equations. By
working out the details for all messages a partial order emerges among the various computations.
At time t + 1 one has to compute:

1. first 431 → 331 messages;
2. then 441 → 431 and 432 → 332 (no definite order between them);
3. then 442 → 432 messages;

and, independent of the above:

1. first 332 → 331 messages;
2. then 432 → 431 messages;
3. then 442 → 441 messages.

We shall close this section with a few technical details about the implementation of the above
scheme.

In the GBP algorithm, messages are defined up to a normalization constant. More precisely,
for a given α → β parent–child pair, the messages mα→β(sβ), ∀sβ , can be rescaled by a common
constant. As a consequence, in order to check convergence of the iterative scheme, we need to
normalize messages properly. Several (equivalent) choices are possible, we normalize them at
each iteration by requiring that

∑

sβ

mα→β(sβ) = 1 (9)

for all α → β parent–child pairs.
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Fig. 1. Squared distance Δ as a function of the number of iterations, for K = 0.223.

Iteration proceeds until the condition

Δ =
∑

sβ

[
m

(new)
α→β (sβ) − m

(old)
α→β(sβ)

]2
< ε (10)

is met, where new and old denote messages at times t + 1 and t respectively. The actual value of
ε will be specified in the next section, where we discuss the performance of the algorithm.

Finally, as it often occurs with message-passing algorithms, in order to achieve convergence
it is necessary to damp the iteration. There is not a unique recipe, and a reasonable tradeoff
between convergence and speed must be looked for in any given problem. Here we found that
convergence was always achieved by replacing, after each iteration, the new messages with the
geometric mean of old and new messages.

3. Results

The parent-to-child GBP algorithm described in the previous section was applied to the simple
cubic Ising model in the low-temperature phase. The inverse temperature K = T −1 was varied
in the range 0.223 to 0.436, with a step δK = 0.001.

A broken-symmetry initialization was used for the messages:

mα→β(sβ) =
∏

i∈β

1 + m0si

2
, (11)

with m0 = 0.1. The equations for the messages were then iterated until the convergence condition
Eq. (10), with α = 442, β = 441 and ε = 10−12, was met. With this choice of α and β the squared
distance Δ in Eq. (10) contains 216 terms, so the average rms variation of individual messages
at convergence is not larger than 10−6/28 � 4 · 10−9. Of course, any other choice of the α → β

parent–child pair (or a combination of all possible parent–child pairs), with a suitable rescaling
of ε, produces similar results. The convergence criterion is rather strict: as an example, increasing
ε to 10−9 at K = 0.24 affects the spontaneous magnetization in the 7th decimal place. After a
short transient, the squared distance Δ decreases exponentially with the number of iterations, as
illustrated in Fig. 1.

The algorithm converges in a number of iterations N(K) which stays practically constant
at 47–48 for K � 0.29 and exhibits a critical slowing down as the critical temperature is ap-
proached. In Fig. 2 we report the number of iterations as a function of K − Kc , where we have
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Fig. 2. Number of iterations N(K) to reach convergence, as a function of K −Kc . The solid line is a fit with the function
N0(K − Kc)

−z .

used the estimate Kc � 0.22165 [24–28]. It can be clearly seen that N(K) is very well fitted
by the function N0(K − Kc)

−z, with z � 0.564. In the slowest case, K = 0.223, the algorithm
took 354 iterations to converge. The number of messages to be updated at any iteration is mainly
determined by the number of 442 → 432 messages, that is 224. Exploiting lattice symmetries
this number reduces to �222 ∼ 4 · 106. For each message, a sum of 28 terms must be evaluated.
The time taken by our code to execute a single iteration on a 2.66 GHz, 64 bits single processor
is �28 min, so the algorithm converges in a time which ranges from approximately 1 day for
K > 0.29 to approximately 1 week at K = 0.223.

For each K , after convergence, we evaluate the probability distribution of the 331 cluster
using Eq. (7), check translational invariance, and compute the spontaneous magnetization m.
Any correlation function involving a group of sites contained in the 442 cluster can be computed.

In order to assess the accuracy of the method, we have compared our results for the magne-
tization with the formula by Talapov and Blöte [28], determined on the basis of high precision
simulations and finite size scaling. For comparison, we have also considered two lower-order
CVM approximation, the cube (2 × 2 × 2) one [5] and the 18-site (3 × 3 × 2) one [11]. In the
following we shall denote by mTB(K) the Talapov–Blöte result and by mL(K) the CVM result
from the approximation with the L × L × 2 maximal cluster, with L going from 2 (the cube
approximation) to 4 (the present approximation).

A simple plot of the 4 functions in the critical regions is shown in Fig. 3. The largest deviations
occur of course close to the critical point. In particular, at K = 0.223, the present approximation
m4 is larger than the Talapov–Blöte estimate mTB by �0.018. Corresponding figures for m3 and
m2 are 0.035 and 0.077 respectively.

The above result is better appreciated by plotting the deviations mL(K) − mTB(K) from the
Talapov–Blöte estimate, reported in Fig. 4. In this figure we also report the deviation m∞(K) −
mTB(K) for an extrapolation m∞. In principle, based on Schlijper’s results [6–8], for any K >

Kc one would like to define m∞(K) = limL→∞ mL(K), which should be equal to the exact
result. The terms of this sequence for L > 4 are not available, so we need a finite-size ansatz
to extrapolate m∞ from the results for L = 2, 3 and 4. Since for K > Kc the model has a
characteristic length ξ(K), the correlation length, a natural assumption is that

mL(K) = m∞(K) + δm(K) exp
[−L/ξ(K)

]
, (12)
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Fig. 3. Various estimates of the spontaneous magnetization: Talapov–Blöte mTB (solid line) and mL with L = 4 (present
approximation, filled circles), 3 (dashed line) and 2 (dotted line).

Fig. 4. Deviations mL(K) − mTB(K) from Talapov–Blöte estimate, for L = 4 (present approximation, filled circles), 3
(dashed line), 2 (dotted line) and ∞ (extrapolation, solid line).

at least asymptotically. Assuming equality for L = 2, 3 and 4 one finds

m∞ = m2m4 − m2
3

m2 − 2m3 + m4
, (13)

ξ = [
log(m2 − m3) − log(m3 − m4)

]−1
. (14)

Notice that m∞ and ξ are independent of an offset which might be added to (or subtracted
from) L. For example, one could measure the size of the maximal clusters in terms of lattice
spacings and obtain L′ = 1, 2 and 3 for the cube, 18-site and the present approximation, but this
would affect only the value of the prefactor δm. It is also important here to stress that without m4
this extrapolation would not have been possible.

The correlation length ξ from Eq. (14) is strongly affected by numerical uncertainties, due
to the small differences between m2, m3 and m4. Indeed, it oscillates, and then becomes not
defined, for K > 0.26. On the other hand, the extrapolated spontaneous magnetization m∞ does
not suffer from these numerical problems and it is remarkably accurate. At K = 0.223, it is larger
than mTB by 0.05 only, less than 1/3 the corresponding deviation of m4. Since m∞(K) is our
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best estimate for the spontaneous magnetization, it is worth investigating its critical behavior. We
have fitted our dataset to the function [28]

m(t) = tβ
(
a0 − a1t

θ − a2t
)
, (15)

where t = 1 − Kc/K denotes reduced temperature, with 6 fitting parameters: Kc, β , a0, a1, a2,
θ (from now on β denotes the critical exponent of the spontaneous magnetization), obtaining:

Kc = 0.221510(4),

β = 0.332(1),

a0 = 1.70(1),

a1 = 0.73(7),

a2 = 0.03(8),

θ = 0.72(4).

Given the small value of a2 we also made a similar fit imposing a2 = 0, with the results

Kc = 0.221512(2),

β = 0.3315(3),

a0 = 1.694(2),

a1 = 0.752(2),

θ = 0.738(2).

For a comparison we recall that Talapov and Blöte best estimate [28], obtained with Kc =
0.2216544, was

β = 0.3269(3),

a0 = 1.692(4),

a1 = 0.344(6),

a2 = 0.426(11),

θ = 0.508(15).

We see that the leading term is captured reasonable well by our approximation, with a slightly
smaller Kc , a slightly larger exponent β and a compatible prefactor a0, while the same is not true
for the correction to scaling terms.

4. Discussion

The present paper discusses the application of the CVM approximation with a 4 × 4 × 2
maximal cluster to the three-dimensional Ising model on the simple cubic lattice. The maximal
cluster is, as far as we know, the largest ever considered (32 sites) and the approximation can be
viewed as the third step of a sequence of L × L × 2 approximations, where L = 2 is the original
cube approximation [5] and L = 3 was considered in [11].

Due to the large size of the maximal cluster, it is necessary to resort to an instance of the
GBP algorithm for the minimization of the variational free energy. As a consequence, this work
also tests the GBP algorithm with a very large maximal cluster, showing that convergence can be
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achieved in reasonable times even with 222 messages. The accuracy of the results is assessed by
evaluating the spontaneous magnetization and comparing it with previous approximations and
with a recent best estimate.

In addition to the expected improvement with respect to L = 2 and 3, we observe that the
availability of results for three L values allows an extrapolation, with the only assumption that
the approach to the exact value is exponential in L. This assumption is much weaker than those
underlying other techniques used to attempt to extrapolate non-classical critical behavior from
generalized mean field theories, like the Cluster Variational–Padé Approximant Method [30,31]
or the Coherent Anomaly Method [32].

The extrapolation gives a good estimate of the leading term of the critical behavior, although
it cannot reach the accuracy of the recent best estimates (see e.g. [29] for a review).

It does not seem feasible, at least at the moment, to investigate the next approximation in the
sequence, corresponding to L = 5. This would mean to use a 50-site maximal cluster, making
the number of variables increase by a factor 218 with respect to the present study.

It would instead be interesting to consider so-called improved Ising models [33,34], where
third-neighbour interactions are included in order to minimize subleading corrections to scaling.

Finally, it is worth mentioning that while the above analysis was carried out by considering
the zero-field magnetization, thus leading to an estimate for the critical exponent β , it could be
extended to several other quantities. The magnetization itself could be computed in the presence
of an external field, yielding estimates for the critical isotherm and its exponent δ. Moreover, any
correlation function involving a group of sites contained in our largest cluster can be computed,
in particular short-range correlation functions, and hence the internal energy, even in the above-
mentioned improved Ising models with third-neighbour interactions. From the magnetization in
non-zero field and the internal energy, taking numerical derivatives, response functions like spe-
cific heat and susceptibilities can be obtained, and the respective exponents α and γ could be
estimated.
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