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Abstract

The present paper considers the linear static analysis of composite shell structures with double-curvature
geometry by means of a shell finite element with variable through-the-thickness kinematic. The refined
models used are grouped in the Unified Formulation by Carrera (CUF) and they permit the distribution
of displacements and stresses along the thickness of the multilayered shell to be accurately described.
The shell element has nine nodes and the Mixed Interpolation of Tensorial Components (MITC) method
is used to contrast the membrane and shear locking phenomenon. The governing equations are derived
from the Principle of Virtual Displacement (PVD) and the Finite Element Method (FEM) is employed
to solve them. Cross-ply spherical shells with simply-supported edges and subjected to bi-sinusoidal
pressure are analyzed. Various laminations, thickness ratios and curvature ratios are considered. The
results, obtained with different theories contained in the CUF, are compared with both the elasticity so-
lutions given in literature and the analytical solutions obtained using the CUF and the Navier’s method.
From the analysis, one can conclude that the shell element based on the CUF is very efficient and its use
is mandatory with respect to the classical models in the study of composite structures. Finally, shells
with different lamination, boundary conditions and loads are also analyzed using high-order layer-wise
theories in order to provide FEM benchmark solutions.

1 Introduction

Shell structures have a predominant role in a variety of engineering applications thanks to their efficient
load-carrying capabilities. On the other hand, the continuous development of new structural materi-
als, such as composite layered materials, leads to increasingly complex structural designs that require
careful analysis.
Anisotropy, nonlinear analysis as well as complicating effects, such as the C0

z - Requirements (zig-zag ef-
fects in the displacements and interlaminar continuity for the stresses), the couplings between in-plane
and out-of-plane strains, make the analysis of layered composite structures complicated in practice.
Analytical, closed form solutions are available in very few cases. In most of the practical problems, the
solution demand applications of approximated computational methods.
Many computational techniques have been developed and applied to layered constructions. A full
mixed 3D finite difference technique was developed by Noor and Rarig [1]. More recently, a differential
quadrature technique has been proposed by Malik [2], Malik and Bert [3] and applied by Liew et al.
[4]. A boundary element formulation has been employed by Dav in [5]. In [6]-[8], Ferreira et al. adopt
a meshless collocation method based on the use of Radial Basis Functions (RBF) for the analysis of
laminated plates and shells. Exhaustive overviews on several computational techniques and their ap-
plications to laminated structures can be read in the review articles [9]-[11].
Among the computational techniques implemented for the analysis of layered structures, a predomi-
nant role has been played by Finite Element Method (FEM). The most of finite elements available in
literature are formulated on the bases of axiomatic-type theories, in which the unknown variables are
postulated along the thickness. According to MacNeal [12] the first FEM analysis was published in
1961. The majority of early FEM calculations were performed with the classical Kirchhoff-Love theory
and some examples are given in [13]-[17]. But, it was difficult to satisfy the requirements of com-
patibility in thin shell analysis because the rotations were derived from the transversal displacement.
For this reason, plate/shell elements based on the First-order Shear Deformation Theory (FSDT) were
developed by Pryor and Barker [18], Noor [19], Hughes [20], Panda and Natarayan [21], Parisch [22],
Ferreira [23] and many others. However, early FSDT type elements showed severe stiffening in thin
plate/shell limits. Such a numerical mechanism, known as shear or membrane locking, was first con-
trasted by implementation of numerical tricks, such as reduced/selective integration schemes [24]-[28].
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But, spurious zero energy modes are introduced by these sub-integration techniques. In [29] and [30],
Chinosi et al. developed a hierarchic finite element for thin Naghdi shell model [31] that was able to
contrast locking for the shell problem in its displacement formulation. However, in the case of very
small thickness and when the element is not of degree as high as needed, the numerical solution exhibits
a loss in the rate of convergence due to the locking. The so-called Mixed Interpolation of Tensorial
Components (MITC) was implemented to overcome both these problems. Many articles by Bathe and
others are available on that topic: examples are the papers [32]-[37]. Arnold and Brezzi [38] dealt
with a mixed formulation of the Nagdi model, giving a family of locking free elements and proving
the convergence of their numerical approach. Similarly, Ramm and Bischoff [39]-[43] developed a shell
finite element based on a 7-parameter theory, in which the extra strain term is incorporated via the
enhanced assumed strain concept proposed by Simo and Rafai [44].
Also a large variety of plate/shell finite element implementations of higher-order theories (HOT) have
been proposed in the last twenty years literature. HOT-based C0 finite elements (C0 means that the
continuity is required only for the unknown variables and not for their derivatives) were discussed by
Kant and co-authors [45],[46]. In [47]-[51], Polit et al. proposed a C1 six-nodes triangular finite ele-
ment in which the transverse shear strains are represented by cosine functions. This element is able to
ensure both the continuity conditions for displacements and transverse shear stresses at the interfaces
between layers of laminated structures. A comprehensive discussion of HOT-type theories and related
finite element suitability has been provided by Tessler [52]. Many other papers are available in which
HOTs have been implemented for plates and shells, details can be found in the books by Reddy [53]
and Palazotto and Dennis [54].
Dozens of finite elements have been proposed based on zig-zag theories [55],[56]. An application of
Reissner Mixed Variational Theorem (RMVT) [57] to develop standard finite elements was proposed
by Rao and Meyer-Piening [58]. A generalization of RMVT as a tool to develop approximate solutions
was given by Carrera [59]. The obtained finite elements represent the FE implementation of the Mu-
rakami theory [60] and were denoted by the acronym RMZC, (Reissner Mindlin Zigzag interlaminar
Continuity). Full extensions of RMZC to shell geometries have been done by Brank and Carrera [61].
Finally, finite element implementations of layer-wise theories in the framework of axiomatic-type theo-
ries have been proposed by many authors, among which Noor and Burton [62], Reddy [63], Mawenya
and Davies [64], Pinsky and Kim [65], Chaudhuri and Seide [66], Rammerstorfer et al. [67].
An improved doubly-curved shell finite element is here presented for the analysis of composite struc-
tures. It is based on the Carrera’s Unified Formulation (CUF), which was developed by Carrera for
multi-layered structures [68],[69]. Both Equivalent Single Layer (ESL) and Layer Wise (LW) theories
contained in the CUF have been implemented in the shell finite element. The Mixed Interpolation of
Tensorial Components (MITC) method [70]-[73] is used to contrast the membrane and shear locking.
The governing equations for the linear static analysis of composite structures are derived from the Prin-
ciple of Virtual Displacement (PVD), in order to apply the finite element method. Cross-ply spherical
shells with simply-supported edges and subjected to bi-sinusoidal load are analyzed. The results, ob-
tained with the different models contained in the CUF, are compared with the exact solution given in
literature. Also FEM benchmark solutions regarding doubly-curved shells with different laminations,
boundary conditions and loads are provided.

2 Unified Formulation

The main feature of the Unified Formulation by Carrera [59] (CUF) is the unified manner in which the
displacement variables are handled. In the framework of the CUF, the displacement field is written by
means of approximating functions in the thickness direction as follows:

δuk(α, β, z) = Fτ (z)δuk
τ (α, β); uk(α, β, z) = Fs(z)uk

s(α, β) τ, s = 0, 1, ..., N (1)
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where (α, β, z) is a curvilinear reference system, in which α and β are orthogonal and the curvature
radii Rα and Rβ are constant in each point of the domain Ω (see Fig. 1). The displacement vector
u = {u, v, w} has its components expressed in this system. δu indicates the virtual displacement
associated to the virtual work and k identifies the layer. Fτ and Fs are the so-called thickness functions
depending only on z. us are the unknown variables depending on the coordinates α and β. τ and s are
sum indexes and N is the order of expansion in the thickness direction assumed for the displacements.

In the case of Equivalent Single Layer (ESL) models, a Taylor expansion is employed as thickness
functions:

u = F0 u0 + F1 u1 + . . . + FN uN = Fs us, s = 0, 1, . . . , N. (2)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN . (3)

Classical models, such as those based on the First-order Shear Deformation Theory (FSDT) [31], can
be obtained from an ESL theory with N = 1, by imposing a constant transverse displacement through
the thickness via penalty techniques. Also a model based on the hypotheses of Classical Lamination
Theory (CLT) [74],[75] can be expressed by means of the CUF by applying a penalty technique to the
constitutive equations (see section 4). This permits to impose that the transverse shear strains are null
in the shell.

In the case of Layer-Wise (LW) models, the displacement is defined at k-layer level:

uk = Ft uk
t + Fb uk

b + Fr uk
r = Fs uk

s , s = t, b, r , r = 2, ..., N. (4)

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2. (5)

in which Pj = Pj(ζk) is the Legendre polynomial of j-order defined in the ζk-domain: −1 ≤ ζk ≤ 1.
The top (t) and bottom (b) values of the displacements are used as unknown variables and one can
impose the following compatibility conditions:

uk
t = uk+1

b , k = 1, Nl − 1. (6)

The LW models, in respect to the ESLs, allow the zig-zag form of the displacement distribution in
layered structures to be modelled. It is possible to reproduce the zig-zag effects also in the framework
of the ESL description by employing the Murakami theory. According to references [60], a zig-zag term
can be introduced into equation (2) as follows:

uk = F0 uk
0 + . . . + FN uk

N + (−1)kζku
k
Z . (7)

Subscript Z refers to the introduced term. Such theories are called zig-zag (ZZ) theories.

3 MITC9 shell element

In this section, the derivation of a shell finite element for the analysis of multilayered structures is
presented. The element is based on both the ESL, ZZ and LW theories contained in the Unified
Formulation. A nine-nodes element with doubly-curved geometry is considered. After an overview in
scientific literature about the methods that permit to withstand the membrane and shear locking, the
MITC technique has been adopted for this element.
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3.1 Geometrical relations

Shells are bi-dimensional structures in which one dimension (in general the thickness in z direction) is
negligible with respect to the other two in-plane dimensions. Geometry and the reference system are
indicated in Fig. 1. By considering multilayered structures, the square of an infinitesimal linear segment
in the layer, the associated infinitesimal area and volume are given by:

ds2
k = Hk

α
2

dα2
k + Hk

β
2

dβ2
k + Hk

z
2

dz2
k ,

dΩk = Hk
αHk

β dαk dβk ,

dV = Hk
α Hk

β Hk
z dαk dβk dzk ,

(8)

where the metric coefficients are:

Hk
α = Ak(1 + zk/Rk

α), Hk
β = Bk(1 + zk/Rk

β), Hk
z = 1 . (9)

k denotes the k-layer of the multilayered shell; Rk
α and Rk

β are the principal radii of the midsurface of
the layer k. Ak and Bk are the coefficients of the first fundamental form of Ωk (Γk is the Ωk boundary).
In this paper, the attention has been restricted to shells with constant radii of curvature (cylindrical,
spherical, toroidal geometries) for which Ak = Bk = 1. Details for shells are reported in [76].

Geometrical relations permit the in-plane εk
p and out-plane εk

n strains to be expressed in terms of
the displacement u. The following relations hold:

εk
p = [εk

αα, εk
ββ , εk

αβ ]T = (Dk
p + Ak

p) uk , εk
n = [εk

αz, ε
k
βz, ε

k
zz]

T = (Dk
nΩ + Dk

nz −Ak
n) uk . (10)

The explicit form of the introduced arrays is:

Dk
p =




∂α

Hk
α

0 0

0 ∂β

Hk
β

0
∂β

Hk
β

∂α

Hk
α

0


 , Dk

nΩ =



0 0 ∂α

Hk
α

0 0 ∂β

Hk
β

0 0 0


 , Dk

nz =



∂z 0 0
0 ∂z 0
0 0 ∂z


 , (11)

Ak
p =



0 0 1

Hk
αRk

α

0 0 1
Hk

βRk
β

0 0 0


 , Ak

n =




1
Hk

αRk
α

0 0
0 1

Hk
βRk

β

0

0 0 0


 . (12)

3.2 MITC method

Considering a 9-nodes finite element, the displacement components are interpolated on the nodes of
the element by means of the Lagrangian shape functions Ni:

δuτ = Niδuτi us = Njusj with i, j = 1, ..., 9 (13)

where usj and δuτi are the nodal displacements and their virtual variations. Substituting in the
geometrical relations (10) one has:

εp =Fτ (Dp + Ap)(NiI)uτi

εn =Fτ (DnΩ −An)(NiI)uτi + Fτ,z(NiI)uτi

(14)
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where I is the identity matrix.
Considering the local coordinate system (ξ, η), the MITC shell elements ([77]-[79]) are formulated by

using, instead of the strain components directly computed from the displacements, an interpolation of
these within each element using a specific interpolation strategy for each component. The corresponding
interpolation points, called tying points, are shown in Fig. 2 for a nine-nodes element. Note that the
transverse normal strain εzz is excluded from this procedure and it is directly calculated from the
displacements.
The interpolating functions are Lagrangian functions and are arranged in the following arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]
Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]
Nm3 = [NP , NQ, NR, NS ]

(15)

From this point on, the subscripts m1, m2 and m3 indicate quantities calculated in the points
(A1, B1, C1, D1, E1, F1), (A2, B2, C2, D2, E2, F2) and (P, Q, R, S), respectively. Therefore, the strain
components are interpolated as follows:

εp =




εαα

εββ

εαβ


 =




Nm1 0 0
0 Nm2 0
0 0 Nm3







εααm1

εββm2

εαβm3




εn =




εαz

εβz

εzz


 =




Nm1 0 0
0 Nm2 0
0 0 1







εαzm1

εβzm2

εzz




(16)

where the strains εααm1 , εββm2 , εαβm3 , εαzm1 , εβzm2 are expressed by means of eq.s (14) in which
the shape functions Ni and their derivatives are evaluated in the tying points. For example, one can
considers the strain component εαα that is calculated as follows:

εαα = NA1εααA1 + NB1εααB1 + NC1εααC1 + ND1εααD1 + NE1εααE1 + NF1εααF1 (17)

with:

εααA1 = N
(A1)
i,α

Fτuτi +
1

HαRα
N

(A1)
i Fτwτi (18)

The superscript (A1) indicates that the shape function and its derivative are evaluated in the point of

coordinates (− 1√
3
,−

√
3
5). Similar expressions can be written for εααB1 ,εααC1 ,εααD1 ,εααE1 ,εααF1 .

4 Constitutive equations

The second step towards the governing equations is the definition of the 3D constitutive equations that
permit to express the stresses by means of the strains. The generalized Hooke’s law is considered, by
employing a linear constitutive model for infinitesimal deformations. In a composite material, these
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equations are obtained in material coordinates (1, 2, 3) for each orthotropic layer k and then rotated in
the general curvilinear reference system (α, β, z).

Therefore, the stress-strain relations after the rotation are:

σk
p = Ck

pp εk
p + Ck

pn εk
n

σk
n = Ck

np εk
p + Ck

nn εk
n

(19)

where

Ck
pp =




Ck
11 Ck

12 Ck
16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66


 Ck

pn =




0 0 Ck
13

0 0 Ck
23

0 0 Ck
36




Ck
np =




0 0 0
0 0 0

Ck
13 Ck

23 Ck
36


 Ck

nn =




Ck
55 Ck

45 0
Ck

45 Ck
44 0

0 0 Ck
33




(20)

The material coefficients Cij depend on the Young’s moduli E1, E2, E3, the shear moduli G12, G13,
G23 and Poisson moduli ν12, ν13, ν23, ν21, ν31, ν32 that characterize the layer material.

5 Governing equations

This section presents the derivation of the governing finite element stiffness matrix based on the Prin-
ciple of Virtual Displacement (PVD) in the case of multi-layered doubly-curved shells subjected to
mechanical loads.

The PVD for a multilayered doubly-curved shell reads:
∫

Ωk

∫

Ak

{
δεk

p
T
σk

p + δεk
n

T
σk

n

}
Hk

αHk
β dΩkdz =

∫

Ωk

∫

Ak

δukpk Hk
αHk

β dΩkdz (21)

where Ωk and Ak are the integration domains in the plane and in the thickness direction, respectively.
The first member of the equation represents the variation of the internal work, while the second member
is the external work. pk = pk(α, β, z) is the mechanical load applied to the structure at layer level.

Substituting the constitutive equations (19), the geometrical relations written via the MITC method
(16) and applying the Unified Formulation (1) and the FEM approximation (13), one obtains the
following governing equations:

δqk
τi

: Kkτsijqk
sj

= P k
τi

(22)

where Kkτsij is a 3 × 3 matrix, called fundamental nucleus, and its explicit expression is given in
Appendix. This is the basic element from which the stiffness matrix of the whole structure is computed.
The fundamental nucleus is expanded on the indexes τ and s in order to obtain the stiffness matrix
of each layer. Then, the matrixes of each layer are assembled at multi-layer level depending on the
approach considered, ESL or LW. P k

τi is the fundamental nucleus for the external mechanical load. For
more details, the reader can refer to [68].

6 Acronyms

Several refined and advanced two-dimensional models are contained in the Unified Formulation. De-
pending on the variables description (LW, ESL or ZZ) and the order of expansion N of the displacements
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in ξ3, a large variety of kinematics shell theories can be obtained. A system of acronyms is given in order
to denote these models. The first letter indicates the multi-layer approach which can be Equivalent Sin-
gle Layer (E) or Layer Wise (L). The number N indicates the order of expansion used in the thickness
direction (from 1 to 4). In the case of LW approach, the same order of expansion is used for each layer.
In the case of ESL approach, a letter Z can be added if the zig-zag effects of displacements is considered
by means of Murakami’s zig-zag function. Summarizing, E1-E4 are ESL models. If Murakami zigzag
function is used, these equivalent single layer models are indicated as EZ1-EZ3. In the case of layer
wise approaches, the letter L is considered in place of E, so the acronyms are L1-L4. Classical theories
such as Classical Lamination Theory (CLT) and First order Shear Deformation Theory (FSDT), can
be obtained as particular cases of E1 theory simply imposing constant value of w through the thickness
direction. An appropriate application of penalty technique to shear moduli of the material leads to
CLT.

7 Numerical results

This section is composed of two parts. The first one is devoted to the assessment of the shell element
based on the Unified Formulation by the static analysis of simply supported spherical shells under
bi-sinusoidal load. Using the theory that provides the most accurate results, the second part presents
some benchmark solutions relative to spherical shells with particular lamination, boundary conditions
and load.

7.1 Assessment

In order to assess the robustness of the present shell element and show the efficiency of CUF in the
analysis of laminated composites, some numerical results for simply-supported cross-ply square shells
are presented. These are compared with the 3D solutions given in [80] and the solutions of the higher-
order shell theory (HSDT1) discussed in [81]. The analytical solution L4a is also provided as reference
solution. This is obtained using the L4 theory and the Navier’s method to solve the governing equations
in closed form. In [82], it was demonstrated that the L4a solutions can be considered quasi-3D.
Being a the length of the edge and R = Rα = Rβ the curvature radius, deep (R/a = 1, 2) and
shallow (R/a = 5) shells are examined. The lamination schemes (0◦, 90◦ . . .) are of symmetric and
anti-symmetric type with number of layers Nl = 3, 5 and Nl = 4, respectively. The shell is subjected
to a bi-sinusoidal pressure applied at the top surface p+

z = p̂+
z sin(πα/a)sin(πβ/a), where m,n are the

numbers of half-waves. The lamina material properties and the load parameters are given in Table 1.
The following nondimensionalized deflections and stresses are considered:

w̄ =w(a/2, a/2)
100E22 h3

a4 p̂+
z

; σ̄αα = σαα(a/2, a/2)
h2

a2 p̂+
z

σ̄αz = σαz(0, a/2)
h

a p̂+
z

; σ̄zz = σzz(a/2, a/2)
1
p̂+

z

(23)

For brevity reasons, the convergence study is here omitted, but it has been verified that a mesh (9× 9)
permits the convergence solution to be reached. All the results are calculated using this mesh.
Tables 2-4 present results in terms of transversal displacement w̄ for the three lamination cases. Different
thickness ratios a/h and curvature ratios R/a are considered and various theories contained in the
Unified Formulation are used. One can note that, in thin shells (a/h = 100), all the theories, comprising
CLT and FSDT, match the reference solutions (3D, HSDT1 and L4a). While, increasing the thickness,
higher-order models are required. In particular, higher-order zig-zag models work better than ESL ones
and LW better than zig-zag. The L4 theory is able to reproduce the reference solutions in all the cases
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considered. There are no differences in the behavior of the element between deep and shallow shells
because, in the formulation of the models, no assumptions have been made about the curvature. The
same considerations can be made considering both symmetric and anti-symmetric laminations.
In the symmetric case with Nl = 3, the normal stress σ̄αα is also evaluated (see Table 5). The behavior
of the element is the same. Higher-order models are necessary in the analysis of thick shells. The L4
theory doesn’t match perfectly the reference solutions but provides very good results. The shear stress
σ̄αz is reported in Table 6 for the different laminations and considering R/a = 2. Good results are
obtained also in this case using higher-order layer-wise theories, especially for thick shells. A slightly
higher error can be observed only in the case of antisymmetric lamination. Figures 3-6 and 7-10 show
the distributions along the thickness of the shear stress σ̄αz and the normal stress σ̄zz for different
combinations of R/a and a/h in the symmetric Nl = 3 and the antisymmetric Nl = 4 case. In all
the cases, one can note that only the layer-wise model is able to fulfill the continuity conditions of the
transverse stresses at the interface between layers.

7.2 FEM benchmark solutions

Similar spherical shells are analyzed, considering three new problems that have not reference analytical
solutions:

1. Shell with anti-symmetric lamination (45◦/− 45◦) under bi-sinusoidal load and simply-supported
boundary conditions.

2. Shell with clamped-free boundary conditions: edges parallel to β-direction clamped and those
parallel to α-direction free. The lamination is (0◦, 90◦, 0◦) and the load is bi-sinusoidal.

3. Shell subjected to a concentrated load (intensity P = a2), applied in the central point at the top
surface, with (0◦, 90◦, 0◦) lamination and simply-supported boundary conditions.

The material properties and load parameters are given in Table 1. The solutions are calculated using a
(9×9) mesh and the L4 model. In order to get more accurate results, two fictitious layers are considered
per each layer.
In Tables 7-9, the results are given in terms of w, σαα, σββ , σαβ , σαz, σβz and σzz for different thickness
ratios a/h and curvature ratios R/a. Depending on the problem analyzed, these quantities are evaluated
in different points. For problem 1, one has:

w → (a/2, a/2, 0)
σαα , σββ → (a/2, a/2,±h/2)

σαβ → (0, 0,±h/2)
σαz → (0, a/2,−h/12)
σβz → (a/2, 0, h/12)
σzz → (a/2, a/2, h/12)

(24)

for problem 2:

w → (a/2, a/2, 0)
σαα , σββ → (a/2, a/2,±h/2)

σαβ → (0, 0,±h/2)
σαz → (0, a/2,−h/4)
σβz → (a/2, 0, h/4)
σzz → (a/2, a/2, h/4)

(25)
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and for problem 3:

w → (a/2, a/2, 0)
σαα , σββ → (a/2, a/2,±h/2)

σαβ → (0, 0,±h/2)
σαz → (0, a/2,−h/4)
σβz → (a/2, 0, h/4)
σzz → (a/2, a/2, h/4)

(26)

Figures 11-14 and 15-18 show the distributions along the thickness of the shear stress σαz and the normal
stress σzz for different combinations of thickness ratio a/h and curvature ratio R/a for problem 1 and
2, respectively. For comparison purposes, also the EZ3 solution is represented. As in the assessment
analysis, the EZ3 model is not able to satisfy the continuity conditions of transverse stresses at the
interface between layers. In some cases, neither the L4 model is efficient in this sense. This fact suggests
the use of mixed models based on Reissner’s Mixed Variational Theorem, in which the trasverse stresses
are modelled a-priori (see the works [83],[84]) and future companion works can be devoted to this
subject. Finally, figures 19-22 show the distributions of the shear stress σαz and the normal stress σzz

by varying a/h for R/a = 2 and R/a for a/h = 10, in the case of concentrated load (problem 3).

8 Conclusions

This paper has dealt with the static analysis of composite doubly-curved shells by means of a shell
finite element based on the Unified Formulation by Carrera. An assessment of the element has been
performed by analyzing cross-ply spherical shells under bi-sinusoidal load and simply-supported bound-
ary conditions. The results have been presented in terms of both transversal displacement, in plane
stresses and transverse stresses, for various thickness ratios, curvature ratios and lamination schemes.
The performances of the shell element have been tested and the different theories (classical and refined)
contained in the CUF have been compared. The conclusions that can be drawn are the following:

1. the shell element is locking free, when the shell is very thin, and the results converge to the
reference solution by increasing the order of expansion of the displacements in the thickness
direction;

2. when the shell is very thick, the LW models work better than ZZ ones, and these work better
than ESL models;

3. the classical models, such as CLT and FSDT fail in the analysis of thick shells;

4. the use of LW models is mandatory for both thick and thin shells, if one needs to accurately
describe the distribution of transverse stresses in the thickness and to satisfy the interlaminar
continuity conditions;

5. the element provides good results for both deep and shallow shells and for both symmetric and
anti-symmetric lamination schemes.

Finally, some benchmark solutions have been calculated for spherical shells that have not analytical
reference solutions: lamination (45,−45), clamped-free boundary conditions and concentrated load have
been considered. Results have been presented in terms of transversal displacement, in plane stresses and
transverse stresses in the form of both tables and graphs. Future companion works could be devoted to
doubly-curved shell elements based on Reissner’s Mixed Variational Theorem for the a-priori modelling
of the transverse stresses.
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[39] Büchter, N., Ramm, E., “3d-extension of non-linear shell equations based on the enhanced assumed
strain concept,” Computational Methods in Applied Sciences, Hirsch C.(ed). Elsevier, 1992, pp. 55–
62.

[40] Bischoff, M., Ramm, E., “Shear-deformable shell elements for large strains and rotations,” Inter-
national Journal for Numerical Methods in Engineering, Vol. 40, 1997, pp. 4427–4449.

[41] Bischoff, M., Ramm, E., “On the physical significance of higher-order kinematic and static variables
in a three-dimensional shell formulation,” International Journal of Solids and Structures, Vol. 37,
2000, pp. 6933–6960.

[42] Bletzinger, K.U., Bischoff, M., Ramm, E., “A unified approach for shear-locking-free triangular
and rectangular shell finite elements,” Computers & Structures, Vol. 75, 2000, pp. 321–334.

[43] Braun, M., Bischoff, M., Ramm, E., “Non linear shell formulations for complete three-dimensional
constitutive laws including composites and laminates,” Computational Mechanics, Vol. 15, 1994,
pp. 1–18.

[44] Simo, J.C., Rafai, S., “A class of mixed assumed strain methods and the method of incompatible
modes,” International Journal for Numerical Methods in Engineering, Vol. 29, 1990, pp. 1595–
1638.

[45] Kant, T., Owen, D.R.J., Zienkiewicz, O.C., “Refined higher order C0 plate bending element,”
Computer & Structures, Vol. 15, 1982, pp. 177–183.

[46] Kant, T., Kommineni, J.R., “Large Amplitude Free Vibration Analysis of Cross-Ply Composite
and Sandwich Laminates with a Refined Theory and C0 Finite Elements,” Computer & Structures,
Vol. 50, 1989, pp. 123–134.

[47] Dau, F., Polit, O., Touratier, M., “C1 plate and shell finite elements for geometrically nonlinear
analysis of multilayered structures,” Computer & Structures, Vol. 84, 2006, pp. 1264–1274.

[48] Dau, F., Polit, O., Touratier, M., “An efficient C1 finite element with continuity requirements for
multilayered/sandwich shell structures,” Computer & Structures, Vol. 82, 2004, pp. 1889–1899.

[49] Polit, O., Touratier, M., “A multilayered/sandwich triangular finite element applied to linear and
non-linear analyses,” Composite Structures, Vol. 58, 2002, pp. 121–128.

13



[50] Polit, O., Touratier, M., “High-order triangular sandwich plate finite element for linear and non-
linear analyses,” Computational Methods in Applied Mechanics and Engineering, Vol. 185, 2000,
pp. 305–324.

[51] Polit, O., Touratier, M., “A new laminated triangular finite element assuring interface continuity
for displacements and stresses,” Composite Structures, Vol. 38, Issues 1-4, 1997, pp. 37–44.

[52] Tessler, A., “A Higher-order plate theory with ideal finite element suitability,” Computer Methods
in Applied Mechanics and Engineerings, Vol. 85, 1991, pp. 183–205.

[53] Reddy, J.N., “Mechanics of Laminated Composite Plates and Shells,” Theory and Analysis, CRC
Press, 1997.

[54] Palazotto, A.N., Dennis, S.T., “Nonlinear analysis of shell structures,” AIAA Series, 1992.

[55] Disciuva, M., Cicorello, A., Dalle Mura, E., “A class of multilayered anisotropic plate elements
including the effects of transverse shear deformabilty,” Proceedings of AIDAA Conference, Torino,
1985, pp. 877–892.

[56] Bekou, A., Touratier, M., “A Rectangular Finite Element for analysis composite multilayerd shal-
low shells in static, vibration and buckling,” International Journal for Numerical Methods in
Engineering, Vol. 36, 1993, pp. 627–653.

[57] Reissner, E., “On a certain mixed variational theorem and on laminated elastic shell theory,”
Proceedings of the Euromech-Colloquium, Vol. 219, 1986, pp. 17–27.

[58] Rao, K.M., Meyer-Piening, H.R., “Analysis of thick laminated anisotropic composites plates by
the finite element method,” Composite Structures, Vol. 15, 1990, pp. 185–213.

[59] Carrera, E., “A class of two-dimensional theories for anisotropic multilayered plates analysis,”
Accademia delle Scienze di Torino, Memorie Scienze Fisiche, 1995-1996, pp. 19–20, 1995, pp.
1–39.

[60] Murakami, H., “Laminated composite plate theory with improved in-plane responses,” Journal of
Applied Mechanics, Vol. 53, 1986, pp. 661–666.

[61] Brank, B., Carrera, E., “Multilayered Shell Finite Element with Interlaminar Continuous Shear
Stresses: A Refinement of the Reissner-Mindlin Formulation,” International Journal for Numerical
Methods in Engineering, Vol. 48, 2000, pp. 843–874.

[62] Noor, A.K., Burton, W.S., “Assessment of computational models for multi-layered composite
shells,” Applied Mechanics Review, Vol. 43, 1990, pp. 67–97.

[63] Reddy, J.N., “An evaluation of equivalent single layer and layer-wise theories of composite lami-
nates,” Composite Structures, Vol. 25, 1993, pp. 21–35.

[64] Mawenya, A.S., Davies, J.D., “Finite element bending analysis of multilayer plates,” International
Journal for Numerical Methods in Engineering, Vol. 8, 1974, pp. 215–225.

[65] Pinsky, P.M., Kim, K.O., “A multi-director formulation for nonlinear elastic-viscoelastic layered
shells,” Computers & Structures, Vol. 24, 1986, pp. 901–913.

[66] Chaudhuri, R.A., Seide, P., “An approximate method for prediction of transverse shear stresses in
a laminated shell,” International Journal of Solids and Structures, Vol. 23, 1987, pp. 1145–1161.

14



[67] Rammerstorfer, F.G., Dorninger, K., Starlinger, A., “Composite and sandwich shells,” in [388],
1992, pp. 131–194.

[68] Carrera, E., “Theories and finite elements for multilayered anisotropic composite plates and shells,”
Archives of Computational Methods in Engineering, Vol. 9, 2002, pp. 87–140.

[69] Carrera, E., “Theories and finite elements for multilayered plates and shells: a unified compact
formulation with numerical assessment and benchmarking,” Archives of Computational Methods
in Engineering, Vol. 10, No. 3, 2003, pp. 215–296.

[70] Bathe, K.J., Lee, P.S., Hiller, J.F., “Towards improving the MITC9 shell element,” Computers
and Structures, Vol. 81, 2003, pp. 477–489.

[71] Chinosi, C., Della Croce, L., “Mixed-interpolated elements for thin shell,”, Communications in
Numerical Methods in Engineering, Vol. 14, 1998, pp. 1155–1170.

[72] Huang, N.C., “Membrane locking and assumed strain shell elements,” Compunters and Structures,
Vol. 27, No. 5, 1987, pp. 671–677.

[73] Panasz, P., Wisniewski, K., “Nine-node shell elements with 6 dofs/node based on two-level ap-
proximations. Part I Theory and linear tests,” Finite Elements in Analysis and Design, Vol. 44,
2008, pp. 784–796.

[74] Koiter, W.T., “On the foundations of the linear theory of thin elastic shell,” Proc. Kon. Nederl.
Akad. Wetensch., Vol. 73, 1970, pp. 169–195.

[75] Ciarlet, P.G., Gratie, L., “Another approach to linear shell theory and a new proof of Korn’s
inequality on a surface,”, C. R. Acad. Sci. Paris, Ser. I, Vol. 340, 2005, pp. 471-478.

[76] N.N. Rogacheva, “The theory of piezoelectric Shells and Plates”, CRC Press, Boca Raton, Florida
(USA), 1994.

[77] Chapelle, D., Bathe, K.J., “The finite element analysis of shells.-Fundamentals,”, Springer, Berlin,
2003.

[78] Bathe, K.-J., Dvorkin, E., “A formulation of general shell elements - the use of mixed interpolation
of tensorial components,” International Journal for Numerical Methods in Engineering, Vol. 22,
1986, pp. 697–722.

[79] Bucalem, M.L., Bathe, K.-J., “Higher-order MITC general shell elements,” International Journal
for Numerical Methods in Engineering, Vol. 36, 1993, pp. 3729–3754.

[80] Huang, N.N., “Influence of shear correction factors in the higher-order shear deformation laminated
shell theory,” International Journal of Solids and Structures, Vol. 31, 1994, pp. 1263–1277.

[81] Shu, X.-P., “A refined theory of laminated shells with higher-order transverse shear deformation,”
International Journal of Solids and Structures, Vol. 34, No. 6, 1997, pp. 673–683.

[82] Giunta, G., Biscani, F., Belouettar, S., Carrera, E., “Hierarchical modelling of doubly curved lami-
nated composite shells under distributed and localised loadings,” Composites Part B: Engineering,
Vol. 42, No. 4, 2011, pp. 682–691.

[83] Carrera, E., “Multilayered shell theories accounting for layerwise mixed description, Part 1: gov-
erning equations,” AIAA Journal, Vol. 37, No. 9, 1999, pp. 1107–1116.

[84] Carrera, E., “Multilayered shell theories accounting for layerwise mixed description, Part 2: nu-
merical evaluations,” AIAA Journal, Vol. 37, No. 9, 1999, pp. 1117–1124.

15



Appendix

In order to write the fundamental nucleus Kkτsij in compact form, the following integrals in the domain
Ωk are defined:

(
W k

m1 n1 ; W k
m1 n2 ; W k

m2 n1 ; W k
m2 n2

)
=

∫

Ωk

(Nm1Nn1 ; Nm1Nn2 ; Nm2Nn1 ; Nm2Nn2) dαkdβk (27)
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W k

m1 n3 ; W k
m3 n1 ; W k

m3 n3 ; W k
m2 n3 ; W k

m3 n2

)
=

∫

Ωk

(Nm1Nn3 ; Nm3Nn1 ; Nm3Nn3 ; Nm2Nn3 ; Nm3Nn2) dαkdβk

(28)
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W k

m1 j ; W k
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m3 j

)
=
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W k

i n1 ; W k
i n2 ; W k

i n3 ; W k
i j

)
=

∫

Ωk

(NiNn1 ; NiNn2 ; NiNn3 ; NiNj) dαkdβk (30)
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m1 j,β
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)
=
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(
W k

i,α n1 ; W k
i,β n1 ; W k

i,α n2 ; W k
i,β n2

)
=

∫

Ωk

(
∂Ni

∂α
Nn1 ;

∂Ni

∂β
Nn1 ;

∂Ni

∂α
Nn2 ;

∂Ni

∂β
Nn2
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dαkdβk (32)

Moreover, the integrals on the domain Ak, in the thickness direction, are written as:
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β
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dz (33)

(
Jkτzs, Jkτzs

α , Jkτzs
β , Jkτzs

α
β

, Jkτzs
β
α

, Jkτzs
αβ

)
=

∫

Ak

∂Fτ

∂z
Fs

(
1,Hk

α, Hk
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The fundamental nucleus Kkτsij is a (3× 3) matrix and the explicit expression of its components is:
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Table 1: Elastic and Geometrical properties
Spherical panel

E11/E22 25
G12/E22 = G13/E22 0.5
G23/E22 0.2
ν12 = ν13 = ν23 0.25
p̂+

z 1
m,n 1,1

Table 2: Transversal displacement w̄(z = 0). Symmetric lamination (0◦, 90◦, 0◦).
R / a = 1 R / a = 2 R /a = 5

3D [80] − − − 1.482 0.6087 − 1.549 0.7325 −
HSDT1 [81] 1.208 0.3761 − 1.482 0.6090 − 1.546 0.7340 −

L4a 1.2081 0.3766 0.0054 1.4824 0.6087 0.0208 1.5494 0.7325 0.1036

a/h 5 10 100 5 10 100 5 10 100

L4 1.2081 0.3767 0.0054 1.4824 0.6087 0.0208 1.5494 0.7325 0.1036
L1 1.1839 0.3732 0.0054 1.4413 0.5990 0.0208 1.5019 0.7179 0.1036

EZ3 1.2015 0.3760 0.0054 1.4772 0.6081 0.0208 1.5452 0.7322 0.1036

E4 1.1656 0.3693 0.0054 1.4038 0.5858 0.0208 1.4564 0.6974 0.1036
E2 1.0342 0.3504 0.0054 1.1776 0.5315 0.0208 1.1961 0.6174 0.1036

FSDT 1.0491 0.3507 0.0054 1.1968 0.5326 0.0208 1.2129 0.6191 0.1036
CLT 0.5148 0.2947 0.0054 0.4748 0.3934 0.0208 0.4487 0.4295 0.1034

Table 3: Transversal displacement w̄(z = 0). Antisymmetric lamination (0◦, 90◦, 0◦, 90◦).
R / a = 1 R / a = 2 R /a = 5

3D [80] − − − 1.434 0.6128 − 1.495 0.7408 −
HSDT1 [81] 1.179 0.3748 − 1.433 0.6085 − 1.488 0.7345 −

L4a 1.1768 0.3763 0.0054 1.4344 0.6128 0.0208 1.4951 0.7408 0.1067

a/h 5 10 100 5 10 100 5 10 100

L4 1.1769 0.3763 0.0054 1.4343 0.6128 0.0208 1.4951 0.7408 0.1067

EZ3 1.1650 0.3746 0.0054 1.4152 0.6079 0.0208 1.4733 0.7333 0.1067

E4 1.1190 0.3689 0.0054 1.3295 0.5899 0.0208 1.3719 0.7054 0.1067

FSDT 0.9943 0.3543 0.0054 1.1096 0.5452 0.0208 1.1154 0.6383 0.1067
CLT 0.5823 0.3173 0.0054 0.5522 0.4478 0.0208 0.5261 0.5016 0.1066
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Table 4: Transversal displacement w̄(z = 0). Symmetric lamination (0◦, 90◦, 0◦, 90◦, 0◦).
R / a = 1 R / a = 2 R /a = 5

3D [80] − − − 1.376 0.5671 − 1.417 0.6707 −
HSDT1 [81] 1.151 0.3615 − 1.379 0.5670 − 1.425 0.6708 −

L4a 1.1397 0.3617 0.0054 1.3674 0.5671 0.0207 1.4165 0.6707 0.1032

a/h 5 10 100 5 10 100 5 10 100

L4 1.1397 0.3617 0.0054 1.3674 0.5671 0.0207 1.4165 0.6706 0.1032

EZ3 1.1315 0.3608 0.0054 1.3543 0.5647 0.0207 1.4017 0.6672 0.1032

E4 1.0476 0.3504 0.0054 1.2052 0.5341 0.0207 1.2286 0.6219 0.1032

FSDT 0.9794 0.3413 0.0054 1.0873 0.5090 0.0207 1.0910 0.5862 0.1032
CLT 0.5133 0.2937 0.0054 0.4744 0.3929 0.0207 0.4486 0.4294 0.1031

Table 5: In-plane stress σ̄αα(z = −h/2). Symmetric lamination (0◦, 90◦, 0◦).
R / a = 1 R / a = 2 R / a = 5

HSDT1 [81] -0.4699 − − -0.6706 − − -0.7399 − −
L4a -0.5080 -0.2362 0.0012 -0.6740 -0.4433 -0.0112 -0.7128 -0.5616 -0.1003

a/h 5 10 100 5 10 100 5 10 100

L4 -0.5055 -0.2351 0.0012 -0.6706 -0.4411 -0.0112 -0.7092 -0.5588 -0.0999
L1 -0.4579 -0.2300 0.0012 -0.6079 -0.4291 -0.0112 -0.6432 -0.5415 -0.1001

EZ3 -0.5042 -0.2355 0.0012 -0.6692 -0.4415 -0.0112 -0.7080 -0.5593 -0.0999

E4 -0.5144 -0.2418 0.0012 -0.6661 -0.4433 -0.0112 -0.6972 -0.5543 -0.0999
E2 -0.3464 -0.2306 0.0012 -0.4446 -0.4048 -0.0112 -0.4644 -0.4938 -0.1000

FSDT -0.3592 -0.2293 0.0012 -0.4569 -0.4037 -0.0112 -0.4769 -0.4941 -0.1000
CLT -0.6317 -0.3149 0.0012 -0.6031 -0.4681 -0.0114 -0.5659 -0.5281 -0.1005
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Table 6: Shear stress σ̄αz evaluated in (z = 0) for Nl = 3, 5 and (z = −h/8) for Nl = 4. Curvature
ratio R/a = 2.

Nl = 3 Nl = 4 Nl = 5

L4a 0.2744 0.2821 0.0184 0.2380 0.2090 0.0077 0.2654 0.2378 0.0145

a/h 5 10 100 5 10 100 5 10 100

L4 0.2771 0.2849 0.0186 0.2168 0.1663 0.0112 0.2681 0.2401 0.0146
L1 0.2791 0.2863 0.0186 0.1972 0.1557 0.0107 0.2590 0.2351 0.0143

EZ3 0.2787 0.2881 0.0188 0.2005 0.1587 0.0113 0.2729 0.2487 0.0153

E4 0.2175 0.2114 0.0132 0.2508 0.2040 0.0146 0.4335 0.4570 0.1176
E2 0.1266 0.1145 0.0067 0.2211 0.1826 0.0138 0.2740 0.2509 0.0148

FSDT 0.1270 0.1141 0.0067 0.2363 0.1977 0.0141 0.2752 0.2502 0.0147

Table 7: Antisymmetric lamination (45◦/ − 45◦) with simply-supported boundary conditions and bi-
sinusoidal load. Theory L4.

R / a = 1 R / a = 2 R / a = 5

a/h 5 10 100 5 10 100 5 10 100

w 0.4476 0.1115 0.0009 0.8614 0.3017 0.0036 1.1633 0.5738 0.0236

σαα
0.1917 0.0819 0.0051 0.2881 0.1693 0.0101 0.3256 0.2547 0.0308
0.0025 0.0238 0.0047 -0.1040 -0.0260 0.0086 -0.2190 -0.1443 0.0164

σββ
0.1917 0.0819 0.0051 0.2881 0.1693 0.0101 0.3256 0.2547 0.0308
0.0025 0.0238 0.0047 -0.1040 -0.0260 0.0086 -0.2190 -0.1443 0.0164

σαβ
-0.0154 -0.0120 -0.0017 -0.0473 -0.0415 -0.0115 -0.0722 -0.0723 -0.0476
1.0585 0.5024 0.0308 1.3171 0.7804 0.0726 1.1315 0.8170 0.2007

σαz 0.1074 0.0766 0.0081 0.1761 0.1628 0.0207 0.2220 0.2727 0.0780

σβz 0.0967 0.0641 0.0019 0.1651 0.1427 0.0052 0.2168 0.2563 0.0290

σzz 0.5515 0.5720 0.6319 0.5061 0.4884 0.7049 0.5296 0.4886 0.9962
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Table 8: Symmetric lamination (0◦/90◦/0◦) with clamped-free boundary conditions and bi-sinusoidal
load. Theory L4.

R /a = 1 R / a = 2 R / a = 5

a/h 5 10 100 5 10 100 5 10 100

w 0.3119 0.0819 0.0013 0.6495 0.1936 0.0042 1.0508 0.3618 0.0190

σαα
0.3731 0.1748 0.0166 0.5077 0.2787 0.0359 0.5627 0.3530 0.0929
0.0531 0.0326 0.0069 -0.0206 -0.0032 0.0099 -0.2283 -0.1378 0.0058

σββ
0.0252 0.0082 0.0004 0.0353 0.0138 0.0008 0.0434 0.0206 0.0022
-0.0084 -0.0024 0.0002 -0.0192 -0.0077 0.0001 -0.0296 -0.0155 -0.0006

σαβ
0.0020 0.0006 -0.0003 0.0007 0.0007 0.0000 -0.0049 -0.0021 0.0006
0.0090 0.0029 -0.0002 0.0155 0.0065 0.0002 0.0170 0.0085 0.0009

σαz -0.0015 -0.0188 -0.0618 0.1363 0.1078 -0.0681 0.2923 0.2986 -0.0126

σβz -0.0009 -0.0025 -0.0020 0.0011 -0.0008 -0.0019 0.0033 0.0014 -0.0016

σzz 0.6672 0.6347 0.6140 0.6986 0.6565 0.5755 0.7532 0.7381 0.5398

Table 9: Symmetric lamination (90◦/0◦/90◦) with simply-supported boundary conditions and concen-
trated load. Theory L4.

R / a = 1 R / a = 2 R / a = 5

a/h 5 10 100 5 10 100 5 10 100

w 35.5844 3.2329 0.0012 43.3005 4.5602 0.0027 46.4546 5.3029 0.0083

σαα
24.6050 1.9587 0.0016 26.7568 2.1125 0.0023 28.0121 2.1866 0.0034
-2.8433 -0.5929 -0.0012 -3.4302 -0.7221 -0.0018 -3.6722 -0.7921 -0.0029

σββ
129.4768 11.3214 0.0186 138.6554 12.4595 0.0243 143.2570 12.9911 0.0334
-22.2940 -4.5605 -0.0108 -26.8411 -5.8998 -0.0153 -28.5773 -6.6941 -0.0239

σαβ
0.2677 0.0688 0.0001 -0.0895 0.0261 0.0002 -0.4274 -0.0471 0.0005
1.1584 0.1536 0.0001 1.0927 0.1823 0.0003 0.8786 0.1542 0.0007

σαz 0.8085 0.0831 0.0003 0.7397 0.0770 0.0004 0.5528 0.0449 0.0004

σβz 1.9680 0.2951 -0.0013 3.2534 0.7891 -0.0037 3.7429 1.0684 -0.0017

σzz 4.7550 2.0643 0.0255 4.9643 2.1359 0.0262 5.1002 2.1881 0.0268
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Figure 1: Multilayered doubly-curved shell: notation and geometry.
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Figure 2: Tying points for the MITC9 shell element.
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Figure 3: Shear stress σ̄αz, R/a = 1 and
a/h = 5. Symmetric lamination with Nl = 3.
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Figure 4: Normal stress σ̄zz. R/a = 1 and
a/h = 5. Symmetric lamination with Nl = 3.
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Figure 5: Shear stress σ̄αz. R/a = 5 and
a/h = 100. Symmetric lamination with Nl =
3.
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Figure 6: Normal stress σ̄zz. R/a = 5 and
a/h = 100. Symmetric lamination with Nl =
3.
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Figure 7: Shear stress σ̄αz. R/a = 1 and
a/h = 5. Anti-symmetric lamination with
Nl = 4.
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Figure 8: Normal stress σ̄zz. R/a = 1 and
a/h = 5. Anti-symmetric lamination with
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Figure 9: Shear stress σ̄αz. R/a = 5 and
a/h = 100. Anti-symmetric lamination with
Nl = 4.
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Figure 10: Normal stress σ̄zz. R/a = 5 and
a/h = 100. Anti-symmetric lamination with
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Figure 12: Shear stress σ̄αz. R/a = 1 and
a/h = 100. Lamination (45◦,−45◦).
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a/h = 5. Lamination (45◦,−45◦).
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Figure 14: Normal stress σ̄zz. R/a = 5 and
a/h = 100. Lamination (45◦,−45◦).
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Figure 15: Shear stress σ̄αz. R/a = 1 and
a/h = 5. Clamped-free boundary conditions.
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Figure 16: Shear stress σ̄αz. R/a = 1 and
a/h = 100. Clamped-free boundary condi-
tions.
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Figure 17: Normal stress σ̄zz. R/a = 5 and
a/h = 5. Clamped-free boundary conditions.
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Figure 18: Normal stress σ̄zz. R/a = 5 and
a/h = 100. Clamped-free boundary condi-
tions.
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Figure 19: Shear stress σ̄αz by varying a/h for
R/a = 2. Concentrated load.
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Figure 20: Shear stress σ̄αz by varying R/a
for a/h = 10. Concentrated load.
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Figure 21: Normal stress σ̄zz by varying a/h
for R/a = 2. Concentrated load.
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Figure 22: Normal stress σ̄zz by varying R/a
for a/h = 10. Concentrated load.
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