
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NanoMagnet Logic: an Architectural Level Overview / Vacca, Marco; Graziano, Mariagrazia; Wang, JUAN CHI; Cairo,
Fabrizio; Causapruno, Giovanni; Urgese, Gianvito; Biroli, ANDREA DARIO GIANCARLO; Zamboni, Maurizio (LECTURE
NOTES IN COMPUTER SCIENCE). - In: Field Coupled NanocomputingSTAMPA. - Berlin : Springer, 2014. - ISBN 978-
3-662-43722-3. - pp. 223-256 [10.1007/978-3-662-43722-3 10]

Original

NanoMagnet Logic: an Architectural Level Overview

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-3-662-43722-3 10

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in Field Coupled Nanocomputing. The final
authenticated version is available online at: http://dx.doi.org/10.1007/978-3-662-43722-3 10

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2525155 since: 2020-10-24T19:26:26Z

Springer

NanoMagnet Logic: an Architectural Level

Overview

Marco Vacca1, Mariagrazia Graziano1, Juanchi Wang1, Fabrizio Cairo1,
Giovanni Causapruno1, Gianvito Urgese2, Andrea Biroli1, and Maurizio

Zamboni1

1 Dipartimento di elettronica e telecomunicazioni, Politecnico di Torino, Italy,
2 Dipartimento di Ingegneria informatica e dei sistemi, Politecnico di Torino, Italy

Abstract. In recent years Field-Coupled devices, like Quantum dot Cel-
lular Automata, are gaining an ever increasing attention from the scien-
tific community. The computational paradigm beyond this device topol-
ogy is based on the interaction among neighbor cells to propagate in-
formation through circuits. Among the various implementations of this
theoretical principle, NanoMagnet Logic (NML) is one the most studied,
due to some interesting features, like the possibility to combine memory
and logic in the same device and the possible low power consumption.
Since the working principle of Field-Coupled devices is completely dif-
ferent from CMOS technology, it is important to understand all the im-
plications that this new computational paradigm has on complex circuit
architectures.
In this chapter we deeply analyze the major issues encountered in the
design of complex circuits using Field-Coupled devices. Problems are
analyzed and techniques to solve them and to improve performance are
presented. Finally, a realistic analysis of the applications best suited for
this technology is presented. While the analysis is performed using Nano-
Magnet Logic as target, the results can be applied to all Field-Coupled
devices. This chapter therefore supplies researchers and designers with
the essential guidelines necessary to design complex circuits using Nano-
Magnet Logic and, more in general, Field-Coupled devices.

1 Introduction

With the conception of Quantum dot Cellular Automata (QCA) [1] technology,
a completely new computational principle to process and propagate information
was presented to the scientific community. Signals were no more represented
by voltage or current levels, but by charge configurations. Circuits are made
by many identical cells and information processing is driven by electrostatic in-
teraction among neighbor cells [2]. Different practical implementations of this
principle were proposed, the two most promising are Molecular QCA [3] and
Magnetic QCA also called NanoMagnet Logic [4]. Molecular QCA [5][6][7][8] use
complex molecules as basic cells. The main interest for this QCA implementa-
tion resides in the amazing clock speed (1THz) that can be theoretically reached

[9], however, the experimental fabrication is extremely challenging with current
technological processes. NanoMagnet Logic uses instead single domain nanomag-
nets (Figure 1.A) as basic cells [10]. Due to magnetic properties, like shape or
magnetocrystalline anisotropy, magnets can have only two stable states that are
used to represent logic values ’0’ and ’1’. The main interest around this technol-
ogy lies in its magnetic nature, that allows to potentially mix logic and memory
in the same device. For the same reason circuits built with this technology have
an high resistance to radiations and heat and, potentially a power consumption
lower than that of state-of-the-art CMOS circuits [11].

'0'

'1'

Reset
A) B)

Fig. 1. A) Single domain nanomagnets are used as basic cell in NML technology. Only
two stable states are possible and are therefore used to represent digital values ’0’ and
’1’. A third intermediate state is possible but it is unstable and can therefore be forced
only by external means. B) To switch magnets from one state to the other a RESET
mechanism is required. Magnets are driven in the RESET state with an external mean,
a magnetic field in the most classical implementation. When the magnetic field is
removed, magnets realign following the input element.

Information propagation depends on the magnetostatic interaction among
neighbor magnets. Nonetheless, the magnetic field generated by one magnet is
not strong enough to switch a neighbor element from one stable state to the
other. As a consequence a mechanism called clock must be used to help magnets
switching, forcing them in an intermediate unstable state (RESET in Figure
1.A). An external mean (a magnetic field in the most classical implementation
[12][13]) must be used to force magnets in the RESET state (Figure 1.B). When
the magnetic field is removed magnets realign following the input element, prop-
agating therefore the information through the circuit.

Signals propagate therefore with a Domino-like effect, where magnets switch
one by one in a sort of chain reaction. Unfortunately the number of magnets
that switch correctly in a chain is limited by the intrinsic instability of the
RESET state. The RESET state is unstable, so external stimuli (like thermal
noise [14]) can generate unwanted switches, leading therefore to errors during
signals propagation. To solve this problem a multiphase clock system must be
used [15][16]. Circuits are divided in small areas called clock zones. Every clock
zone is made by a limited number (less than 5 in the ideal case [14]) of cascaded
elements. A different clock signal is applied to every clock zone. Different clock

Fig. 2. 3-phase overlapped clock system. A) Clock signal waveforms. 3 clock signals
with a phase difference of 120◦, partially overlapped, are used to assure a correct signals
propagation. B) Detailed signal propagation through a simple NML wire. 6 different
time step can be identified thanks to this clock system. When magnets of a clock zone
are switching (SWITCH) magnets on their left are in the HOLD state and act as an
input, while magnets on their right are in the RESET state so they have no influence.

schemes can be used. One of the most simple uses three overlapped clock signals
[17], with a phase difference of 120◦ (Figure 2.A). Figure 2.B shows an example
of NML wire and how its state changes according to the clock signals applied.
Three different states can be identified: HOLD when no clock signal is applied,
RESET when the clock signal is applied and SWITCH, when the clock signal is
slowly removed. When magnets of a clock zone are switching (SWITCH state),
they see on their left magnets that are in the HOLD state and therefore act as
an input, while magnets on the right are in the RESET state and they have no
influence on the signals propagation. To obtain an errorless signal propagation
magnets of a clock zone must be forced in the RESET state before neighbor
magnets start to switch (see Figure 2.B). This is obtained overlapping the clock
waveforms as described in detail in [17].

1.1 Designing Circuits With Clock Zones Constraints

The clock mechanism is central to the entire NML (and QCA) technology and it
is the source of the main problems encountered at architectural level. Particularly
in case of NML implementation four possible clock mechanism can be identified,
as shown in Figure 3. The first mechanism uses a magnetic field generated by
a current flowing through a wire placed under magnets plane [13], as shown in
Figure 3.A. This clock system was experimentally demonstrated in [18]. The
second mechanism uses Spin-Torque coupling with a current flowing through
the magnets themselves [19][20][21], as can be seen from Figure 3.B. In this
case the basic element is no more a simple magnet but it is a Magneto-Tunnel
Junction (MTJ). The third clock mechanism, shown in Figure 3.C, uses the
mechanical stress induced by the strain of a piezoelectric layer to force magnets
in the RESET state [22][23]. In this case the clock mechanism is no more based
on a current but on a voltage. Finally a 4th clock topology is available as shown
in Figure 3.D. In this case magnets are made by Cobalt/Platinum multilayered

structures where the magnetization lies out of plane [24][25][26]. In this case the
clock is an oscillating magnetic field applied perpendicular to the plane. No clock
zones are used because the magnetic field is applied globally to the circuit.

I

H

Copper

MagnetsFerrite
Yoke

Wire

I I I I

(Bit and Source lines)
Copper Wires

Electric Field

Strain

V

(PZT)
Piezoelectric Layer

Electrodes

t

H

H

A) B)

C) D)

I I I I

Fig. 3. NML main clock systems. A) Magnetic field clock. A magnetic field is generated
by a current flowing through a wire placed under the magnets plane. B) STT clock.
Spin-Torque coupling due to a current flowing through the magnets, which in this
case are MTJ junctions. C) Magnetoelastic clock. The mechanical stress induced by
the strain of a piezoelectric layer at which a voltage is applied forces magnets in the
RESET state. D) Out-of-plane NML clock. In this particular implementation of NML,
the magnetization of each dots points out-of-plane. In this case the clock is an oscillating
magnetic field applied perpendicularly to the plane. No clock zones are present because
clock field is applied uniformly to the entire circuit.

The clock generation system is important from the circuits architecture point
of view because it has a strong impact on the layout of the clock zones. Particu-
larly, to drive the currents and the voltages required by different clock systems,
wires must be properly routed through the circuit. Thanks to the size of these
wires and the limitations of the technological processes available, not every clock
zones layout is possible. Different clock systems have different constraints. For
example, relatively to the magnetic field clock we have developed the “snake-
clock” system [15][17]. The clock zones layout is outlined in Figure 4.A. Clock
zones are made by parallel strips that represent the physical wires used to gen-
erate the magnetic field. To propagate correctly, signals must be routed through
a precise sequence of clock zones, from zone 1 to zone 2 and finally to zone
3. As can be seen from Figure 4.A, with this clock zone layout magnets can
propagate in only one direction, from left to right. Moreover, signals cannot
propagate vertically in the same clock zone because the number of magnets that

can be cascaded is quite limited [14][27]. As a consequence vertical signals fol-
low a stair-like propagation (see Figure 4.A). This clock system is called “snake
clock” because the vertical signals propagation recalls the movement of a snake.
To propagate signals in the opposite direction, from right to left it is instead
necessary to switch the order of phase 2 and 3. This is possible locally twisting
the correspondent wires as shown in Figure 4.B. Wires are physically located on
different planes [13] so they can be twisted freely without interferences. Magnets
cannot be placed in the area correspondent to the clock wires crossing. We have
demonstrated in [28][29] that this clock system is immune to possible crosstalk
between neighbor clock wires.

Fig. 4. Snake clock system. A) Clock zones are made by parallel strips that correspond
to the clock wires used to generate the magnetic field. B) To allows signals propagation
wires are twisted when signals need to propagate in different directions. The wire
twisting is possible because wires are alternatively placed over and under magnets
plane.

Other clock solutions are possible, for example in [30] a more simple 2-phases
clock was presented. Moreover other clock systems will have different clock con-
straints. However two important things must be understood: First, the clock
zones layout must be chosen carefully, according to the technological processes
used to fabricate the clock generation network and to the requirements of the
NML signals propagation. The second important fact to be considered are the
constraints and limitations generated by the chosen clock system, that must be
carefully taken into account in the circuits design. More in general this is true
also for other QCA implementations.

1.2 Problems and Solutions

While the clock mechanism influences the circuits layout differently, depending
on the particular system chosen, it has a second more important consequence
that is shared by all kind of NML and QCA implementations. Considering a
N-phase clock system, every group of N consecutive clock zones has a delay of
exactly one clock cycles and it is therefore equivalent to a CMOS register. A

QCA wire can therefore be seen as a shift register [17][31], leading therefore to
an intrinsic pipelined behavior. Pipelining is a common feature also in CMOS
technology but in this case there are two important differences: in CMOS the
level of pipelining is generally small and moreover it is a parameter chosen by
the designer, while in this case the level of pipelining is extremely high and it is
not a parameter chosen by the designer but it depends on the circuit layout [32].
This is valid for all the clock implementations, also in case of the Out-of-plane
NML clock (Figure 3.D). While with this clock system no clock zones exists, in
a wire signals needs exactly one clock cycle to propagate through two magnets
[26]. As a consequence a block of two magnets in a wire has a delay of one clock
cycles.

SWITCH SWITCHRESET RESETHOLD HOLDSWITCH RESET HOLD

G
E
R

G
E
R

G
E
R

DELAY = 2 CLOCK CYCLESDELAY = 1 CLOCK CYCLE

Fig. 5. NML intrinsic pipelining. Every group of 3 consecutive clock zones has a delay
of 1 clock cycle and is therefore equivalent to a CMOS register.

In Field-Coupled technologies, like QCA and NML, three important problems
can be identified at the architectural level. Some of then are already known. Here
we assess them and we discuss thoroughly several alternative solutions, some of
them previously mentioned and some newly proposed here.

– LAYOUT=TIMING. This is the first problem that arises thanks to the in-
trinsic circuits pipelining. The propagation delay of a signal in terms of
clock cycles depends on the length of its correspondent wire in terms of
clock zones. As a consequence mismatches in the wires length generates er-
rors in the logic operations performed by the circuit. This problem is detailed
analyzed in Section 2.

– LOOPS. This is the second problem due to the intrinsic pipelining. If a loop
with a length of N clock cycles is present inside the circuit, the throughput
is reduced of N times. Moreover serious synchronization problems arise. This
problem is thoroughly studied in Section 3.

– INTERCONNECTIONS. This further issue is connected to both the Field-
Coupling principle that represents the base of this technology, and to its
intrinsic pipelining. In complex circuits a lot of area is wasted for intercon-
nections, moreover long interconnections generates a long delay in signals
propagation. This problem is described in Section 4.

It is important to further underline that while the results here presented are ob-
tained using as a target technology NanoMagnet Logic, they apply with different
extent to all Field-Coupled devices. This chapter shows therefore the guidelines
that a designer should follow to effectively develop circuits with this technology.

2 Layout=Timing

The first important problem that a designer must face during the development of
any NML circuit is called “layout=timing” [32]. Thanks to the multiphase clock
system, every group of N consecutive clock zones has a delay of exactly one clock
cycle. The main consequence is that the propagation delay is no more a designer
choice but it depends on the circuit layout. However, synchronization issues can
arise due to mismatch in the wires length and therefore in the propagation delay
of signals. The situation is explained in Figure 6. Two input wires are connected
to a NML AND gate. AND/OR gates can be obtained changing the shape of
one magnets as shown in [30], and altogether with the majority voters [33][29]
and inverter they represents the logic gates set available with this technology. In
Figure 6.A input wires have a different length in terms of clock zones, therefore
the two input signals arrive at the gate inputs with the difference of one clock
cycle and the output of the gate is consequently wrong. To solve this problem
the wires length must equalized, as shown in Figure 6.B. Signals are therefore
perfectly synchronized and the gate output is correct.

B)A)

Fig. 6. Layout=Timing problem. Since the propagation delay of a signals depends
on the wires length, if inputs wires of one gate have different lengths, their signals
will arrive with different delays and the results will be wrong. Wires length must be
equalized to synchronize signals and obtain the correct result.

Nonetheless, considering a complex circuit based on hundreds of thousands
or millions of gates, the equalization of the length of every signal in it can be a
nearly impossible task. In the following we discuss two different solutions, one
at logic level and one at layout level. The first solution, described in Section 2.1,
is based on the use of delay insensitive asynchronous logic to obtain automatic
signals synchronization. The second solution, described in Section 2.2, is based on
the introduction of constraints on the clock zones layout making it very regular,
automatically equalizing the length of every wire in the circuit.

2.1 Asynchronous Logic

The first solution that can be adopted to solve the “layout=timing” problem is
to use a different kind of logic, particularly a specific type of asynchronous logic
called Null Convention Logic (NCL). In this logic [34][35] signals are coded using
two bits (Figure 7.A). The logic ’0’ correspond to the coding ’01’ while logic ’1’
correspond to the coding ’10’. ’00’ correspond to a particular state called NULL,
while ’11’ is a not allowed state. Figure 7.B shows an example of NCL gate,
called TH22, and its logic equation. The particularity of this kind of logic is that
it is completely delay insensitive. The circuit behavior is depicted in Figure 7.C.
Circuits switch periodically from DATA to NULL and from NULL to DATA,
however the transition happens only when all inputs switch. That means that
circuit will switch from NULL to DATA only when all inputs switch from NULL
to DATA. Circuits will remain in the DATA state until at least one of the inputs
is in the DATA state. The transition from DATA to NULL will happen only
if and when all inputs will switch from DATA to NULL. Then the cycle will
restart. As a consequence a complete delay insensitivity is reached, because it
does not matter if there is a difference in the propagation delay of signals, the
transition from one state to the other will occur only when the last signal arrives
at the circuit inputs.

DATA NULL DATA NULL DATA
01 or 10 01 or 10 01 or 1000 00

2
A

B
F

F=A*B+F(A+B)

TH22
00

DATA 0
NULL

10
01

DATA 1
11 NOT ALLOWED

A) B)

C)

Fig. 7. Null Convention Logic (NCL). A) Signals are coded using two bits. B) Example
of NCL gate and its logic equation. C) NCL circuits switch periodically from DATA to
NULL state and then from NULL to DATA.

The delay insensitivity of NCL logic apparently make it perfect for NML
circuits, and indeed this solution works correctly as demonstrated in [31][36].
However, it greatly reduces circuits performance. This happens also if CMOS
technology is used as a target, because the high robustness of this logic comes
at the price of a big area overhead. In particular, in case of NML circuits the
price that must be paid to achieve complete delay independence is much higher.
There are two reasons behind this fact: The signal coding and the communication
protocol. With this logic signals are coded using two bits, that means that circuit
area is at least two times higher with respect to a not-coded circuit, but in NML
more area means more delay. NCL logic is also an asynchronous logic and as a

consequence it uses a communication protocol, which plays an important role
in the overall performance losses. Figure 8 shows the communication protocol
used. Circuits can be generically represented by a block of combinational logic
embraced by two asynchronous registers which implement the communication
protocol. The communication protocol works following the step explained in
Figure 8. First a new DATA is sent to the circuit (Figure 8.A). When the DATA
reaches the second register, an acknowledgment signal is sent back to the first
register (Figure 8.B) which then sends a NULL to the circuit (Figure 8.C).
When the NULL is received by the second register, an acknowledgment is sent
back to the first register (Figure 8.D) and a new cycle can start. While this
communication protocol works very well, it requires a signal to traverse the
circuit four times. As a consequence every DATA cycle requires a time equal to
four times the signal propagation delay of the circuit, and this explains the high
losses of performance due to the use of NCL logic.

Fig. 8. NCL asynchronous protocol. A) A DATA is sent to the circuit. B) An acknowl-
edgment that states the reception of the DATA is sent back. C) A NULL is sent to the
circuit. D) An acknowledgment that states the reception of the NULL is sent back.

Other types of asynchronous logic with a simplified communication protocol
can be studied and possibly adopted to improve performance. However, asyn-
chronous logic is based by definition on a communication protocol which uses
messages between units to assure signals synchronization. The problem is that in
this kind of technology the delay penalty along interconnections is very high. As
a consequence in [36] we have developed a new mixed synchronous-asynchronous
protocol to exploit the maximum potential from this technology. The protocol is
described in Figure 9. It is based on simple boolean logic gates with no signals
encoding, thus greatly reducing the area overhead. Asynchronous registers are
substituted by a synchronization block shown in Figure 9, which is simply a mul-
tiplexer with the output connected to one of its inputs. Normally the Selection

bit (Sel in Figure 9) is at logic ’0’, that means that the multiplexer is in memory
state and its output is constant. Every N clock cycles a new data is sent to the
multiplexer input followed by an enable signal which is connected to the Sel pin
of the multiplexer. As a consequence the multiplexer samples the new data and
after it returns in the memory state. The consequence is that a new data is sent
to the circuit every N clock cycles and in the middle the output value of the
multiplexer is kept constant. The value of N is chosen according to the longest
propagation delay in the combinational path (in case of Figure 9 it is equal to 2
clock cycles) in this way all signals have time to propagate through the circuit,
granting a correct operation of the circuit.

Fig. 9. New asynchronous protocol. No signals coding is used and asynchronous reg-
isters are substituted by a multiplexer with the output connected to one of its inputs.
The output of the multiplexer is kept constant and only every N clock cycles a new
data is sampled. The value of N is chosen according to the maximum propagation de-
lay in the combinational path, in order to grant that all signals had time to propagate
correctly through the circuit.

To evaluate the performance of different logic solutions a simple but complete
microprocessor was developed in [31] and [36]. The microprocessor is schemat-
ically reported in Figure 10.A. The architecture is based on four main compo-
nents, a program counter to run programs, two memories, one for instructions
and one for data, and an arithmetic-logic unit to execute the selected instruction.
Asynchronous registers are exploited to implement the communication protocol.
The microprocessor architecture is simple but it allows to execute all kind of
instructions commonly found in the instruction set of commercially available
microprocessors, thus it represents a good test to evaluate the performance of
different logic solutions applied to NML logic. The microprocessor is described
using a RTL model of NML technology written using VHDL language. The
model is reported in Figure 10.B. The basic idea behind the high level modeling
of NML technology is to exploit its intrinsic pipelining. Figure 10.B shows an
example of NML circuit and its equivalent RTL model. Registers are used to

emulate the signals propagation delay while ideal logic gates without delay are
used to model the circuit logic behavior. The result is a circuit that behaves
exactly like its NML counterpart, but the advantage is that this circuit can be
described and simulated using powerful design tool already available for CMOS
technology, like Modelsim [37]. In this way complex NML circuits can be easily
described and simulated. More information on the model itself can be found in
[28].

(B)

(A)

Fig. 10. NML microprocessor. A) The microprocessor architecture is made by a pro-
gram counter, to execute programs, two memories, one for data and one for instructions
and an ALU to execute the instructions. The architecture is simple but it allows the
execution of all common microprocessors instructions. B) NML equivalent RTL model
used to describe and simulate the microprocessor.

Detailed simulations of the microprocessor are not reported here, and can
be found together with a thorough description in [31] and [36]. The most im-
portant result obtained from simulations is indeed the time needed to execute
one instruction. Using NCL logic one instruction takes 5.35 µs to be executed,
while with the improved asynchronous protocol only 0.546 µs are required. As a
consequence a speed up of 10 times can be observed. This result demonstrates
the validity of the logic solution here proposed, which allows to solve the lay-
out=timing problem without speed penalties. The clock frequency used in the
simulation is about 100 MHz, that means a clock period of about 10 ns. The
execution of one instruction with the improved logic requires therefore 53 clock

cycles. This slowdown, however, is not due to the use of asynchronous logic
but to the presence of a long feedback signals inside the circuit. This aspect is
described in detail in Section 3.

2.2 Clock Zones Layout for Automatic Signals Synchronization

In order to synchronize signals in a complex circuit it is however possible to work
on the clock zones layout instead that on the logic type. The idea is to exploit
the potential of circuit layout shown in Figure 4.A. A circuit detailed example
is reported in Figure 11. Clock zones are made by parallel strips and inputs
arrive from the left side, all of them starting from the first clock zone. Output
signals are generated at the circuit right side. With these constraints perfect
signals synchronization is achieved. At any point inside the circuits all signals
are perfectly synchronous. This result is obtained without the need of using
asynchronous logic keeping the circuit as simple as possible, minimizing the area
overhead and maximizing performance. Moreover this solution allows to gain
two further advantages: First, signals synchronization is automatically achieved
independently of circuit complexity, second, this approach can be successfully
applied for hierarchical circuit descriptions.

Fig. 11. Regular clock zones layout to obtain automatic signals synchronization. Clock
zones are made by parallel strips, input comes from left direction while outputs are
generated at the circuit right side.

While the clock zones layout of Figure 11 was built upon the constraints
of NML circuits based on magnetic field clock, it allows to achieve additional
remarkably results, like automatic signals synchronization and easy circuits de-

scription. As a consequence this same layout can be exploited also for other clock
systems. Its regularity also greatly helps the fabrication processes.

3 Loops

If the pipelined nature of these technologies causes troubles to achieve signals
synchronization in combinational circuits, the situation worsens when loops are
present inside the circuit. Loops are required to build any complex circuit. An
example of such a system is reported in Figure 12, where the detailed layout of a
2 bits multiply and accumulate unit (MAC) is shown. In the detail of Figure 12
the simplified circuit schematic is reported. Two incoming signals are multiplied
and then the result is added to the result of the previous operation. MAC units
are a fundamental block in digital signals processors (DSP).

MULTIPLIER ADDER

LOOP

z

R
E
G

Loop = 52
clock cycles

F

A

B

*

+

MAC
F = (A*B)+F’

F’

IN1

IN2

Fig. 12. NML 2 bits Multiply and accumulate unit layout. A) Detailed circuit layout.
The loop length is 52 clock cycles. In the upper detail

The first and most important problem due to the presence of loops is the loss
of performance. While in pure combinational circuits thanks to the pipelining
a new data can be sent to the circuit every clock cycle, if a loop of length N
clock cycles is present, a new input can be sent only every N clock cycles, thus
reducing the throughput of N times. To demonstrate this fact the MAC unit
was described using the VHDL model outlined in Section 2.1. Simulation results
are reported in Figure 13. The loop length is 52 clock cycles, so if inputs are
fed to the circuit one every 52 clock cycles the MAC output is correct (Figure
13.A). If the delay between subsequent data is lower, for example 50 clock cycles
like in Figure 13.B, errors are generated. This behavior can be easily explained
by the fact that once the multiplication output is generated it needs 52 clock
cycles to travel back and to reach the adder inputs. Therefore to synchronize
signals the next output of the multiplier must be generated exactly with a delay
of 52 clock cycles, in this way it will reach the adder input together with the
previously generated multiplier output. This is a common problem also in CMOS
technology, for example in superscalar microprocessors, however in this case the
level of pipelining is much deeper, it depends on the circuit layout and it is not
a pure designers choice. Solutions to improve performance in circuits with loops
are presented in Section 3.1.

Fig. 13. MAC simulations, with inputs sent one every 52 clock cycles (A) and every 50
clock cycles (B). If the delay between new inputs is lower than the loop length errors
are generated.

The second problem encountered with loops in intrinsically pipelined circuits,
is related to signals synchronization if more loops are present inside the circuit.
Synchronization problems and related solutions are presented in Section 3.2.

3.1 Throughput Maximization

To maximize performance two possible approaches can be used. It is possible to
work at algorithmic level, rearranging data avoiding data dependencies, or it is
possible to work on the circuit architecture with the aim of reducing the loops
length. In the following both solutions are presented.

Interleaving. As seen above, if a loop is present, two consecutive data operands
can only be sent to the system after a number of clock cycles equal to the loop
length, degrading therefore system performance. The reason of this problem lies
in the fact that there is data dependencies between two consecutive data, i.e.
one data depends on the previously sent data. It is however possible to work at
algorithmic level rearranging data to avoid data dependencies. To do so, some
techniques that are commonly adopted in CMOS technology can also be applied
here, like dynamic data dependency rearrangements and predictive techniques
used in superscalar microprocessors. These solutions may potentially improve
performance but they aggravate the system with additional calculations, and
require careful effectiveness analysis from application to application. A more
simple technique, called “interleaving”, can be adopted. It does not require sig-
nificant modifications to the original algorithm. The basic concept of interleaving
is to parallelize relatively independent operations by interleaving data sequence
at the inputs. As an example two independent sequences of data A, B and C, D
are fed to the circuit. Data from different sequences are completely independent.
The aim is to calculate (equations 1 and 2)

3∑

i=0

A ∗B (1)

3∑

i=0

C ∗D (2)

Multiplier
ADD

c1
d1

N1

O1

O1

S1

O0
Multiplier

ADD
a1
b1

M1
S1

S1

S0

O0

Multiplier
ADD

?

?

M0
S0

S0

a0
b0

Multiplier
ADD

c0
d0

N0

O0

O0

S0

?

C) T = 52 ck

A) T=0 B) T = 26 ck

D) T = 78 ck

Fig. 14. Example of interleaving applied to a MAC unit. Two input sequences are sent
to the circuit, both send one value every 52 clock cycles, with 26 clock cycles between
data of different sequences. The left column shows the calculation of sequence A, B,
while the right one represents the calculation of sequence C,D. As can be observed, the
two sequences are executed in parallel but they do not interfere with each other. A)
a0 and b0 are sent to the circuit. B) After 26 clock cycles c0 and d0 are sent to the
circuit. C) At a time correspondent to 52 clock cycles a1 and b1 are sent to the circuit
and they reach the adder input exactly with S0, the result of the previous operation.
D) At 78 clock cycles c1 and d1 are sent to the circuit.

At the beginning a0 and b0, the first two data of the first sequence are
sent to the circuit (Figure 14.A). Just for this example, to better clarify the
interleaving principle, the multiplier is considered ideal without delay, so data
propagate directly from the general MAC inputs to the adder inputs. After a
time equal to half the loop length (26 clock cycles in this case), c0 and d0 are
sent to the inputs (Figure 14.B). This operation is correct because there is no
data dependency between them and a0, b0. At the 52nd clock cycle, a1 and b1
are then sent to the circuit and they arrive at the adder inputs together with S0
(Figure 14.C), the results of the previous operation. After other 26 clock cycles
c1 and d1 are sent to the circuit. They arrive at the adder inputs together with
O1 (Figure 14.D). Data from the same sequence are always sent every 52 clock
cycles granting perfect signals synchronization, but two sequences are executed
in the same time required to execute one sequence alone, effectively doubling the
throughput.

Figure 15 shows a MAC simulation with and without interleaving. The se-
quences, originally executed serially as A, B and then C, D (Figure 15.A), are
parallelized and interleaved (Figure 15.B). The original time interval between
two consecutive input values (52 clock cycles) is halved. Therefore, the total
execution time of these two independent operations is halved, and the through-

Fig. 15. Simulation comparison between the original circuit behavior (A) and the cir-
cuit with data interleaving (B). The only modification done is mixing input sequence
1 and input sequence 2. As can be observed, the calculation results are the same, only
are also mixed, but the total simulation time is significantly reduced.

put has been doubled. This principle can be expanded executing 52 operations in
parallel, sending therefore effectively one data every clock cycle. The throughput
is therefore maximized as in a pure combinational circuit. This clearly demon-
strate that interleaving is the perfect technique to be adopted in case of NML
(and QCA) circuits. However, in order to fully exploit the potential of this tech-
nology, it requires a large number of independent data sequences to process in
parallel. Only applications where a large number of data to process is available
are therefore best adapted to this technology.

Architecture Redesign for Loops Length Reduction. Besides to algo-
rithm rearrangement techniques like interleaving, it is also possible to modify
architectures with the aim of reducing the loops length. Since loops are the ma-
jor sources of performance degrading in this technology, the shorter the loop is,
the better the performance are. With a better analysis of the circuit layout, the
MAC circuit can be modified as shown in Figure 16, so the original 52 clock cy-
cle long loop has become only 10 clock cycle long, without changing the system
algorithm. The delay is also independent from the MAC bit number, and overall
the area is smaller. Without interleaving the delay between one data and the
next is therefore of only 10 clock cycles.

z

MULTIPLIER ADDER

LOOP

LOOP

LOOP

LOOPLOOP

MULTIPLIER ADDER

A)

B)

LOOP = 52 Clock Cycles

LOOP = 10 Clock Cycles

Fig. 16. Redesign of MAC to reduce the loop length. With this new design the loop
length is only 10 clock cycles, moreover it is independent from the bit number.

Fig. 17. Simulation comparison between the original architecture (A) and the re-
designed architecture (B).

Figure 17 shows a simulation comparison (without interleaving) of the orig-
inal architecture (Figure 17.A) and the optimized one (Figure 17.B). The exe-
cution time, and therefore the throughput, is improved of 5 times. While this
technique shows good results, it can be only used as a complementary tech-
nique, because it does not allow to completely eliminate the loop. Interleaving
is still necessary, however the number of operations required to reach maximum
performance is lower.

3.2 Signals Synchronization

While the loss of performance is probably the more relevant problem due to the
presence of loops, some important issues arise also for the signals synchroniza-
tion. Particularly, when more loops are present inside the circuit, they must be
carefully designed to achieve perfect signals synchronization. Another issue is
instead related to the necessity of adding a specific delay on a particular signal.
This is a common requirement in many circuits, where the algorithm mapping
implies the necessity of delaying some signals of a specific amount of clock cy-
cles. In case of NML and all the intrinsic pipelined technologies particular rules
must be followed to add delays on specific signals. Both problems and the related
solutions are described in the following.

Nested Loops. Generally, it is quite common to find multiple loops in a rel-
atively complex system, and they can be independent from each other or they
can be nested. In this second case, signal synchronization problems arise. A cir-
cuit example with two nested loops is represented in Figure 18. The algorithm
is simply SUB OUT = SUM OUT − SUB IN = A + ADD IN − SUB IN .
Figure 19 shows instead the circuit simulation. Since ADD IN = SUB IN , the
result is simply the value of A.

L1 L2 L1 L2
A

ADD_IN

SUM_OUT

SUB_IN

SUB_OUT

A) B)

A
SUM_OUT

SUB_OUT

SUB_IN

ADD_IN

L2 L2

L1L1

ADD
(+)

SUB
(−)

ADD
(+)

SUB
(−)

5 ck

5 ck

5 ck

5 ck

REG0

REG1

REG0

REG1

Fig. 18. Circuit representation with two nested loops (A). Originally, the two loops L1
and L2 do not have the same length (B). For signal synconizzation, loop L2 is extended
to the same length as loop L1.

If the loops length is different (Figure 18.A) signals are not perfectly syn-
chronized and the output result is wrong as can be observed from Figure 19.A.
If instead the loops length is equal (Figure 18.B) the circuit output is correct,
as the simulation of Figure 19.B clearly demonstrate.

The consequence is simple: If there are more loops inside the circuit and these
loops are nested inside each other, they must have the same length to obtain
perfect signals synchronization.

Additional Delay Loops. The presence of loops introduces another problem
related to signals synchronization. Sometimes mapping an algorithm to an elec-

Fig. 19. Simulation comparison with nested loops that have different (A) and equal
length (B). As can be observed, synchronization error will appear if the two nested
loop lengths are not equal.

tronic circuits requires the insertion of a delay on specific signals. An example
is shown in Figure 20.A. An adder calculates the sum between a signal A, the
same signal delayed of an additional clock cycle A(t-1) and the output of the
previous operation SUM(t-1). Trying to map the same circuit on NML (or QCA)
technology one important problem arises. In the CMOS implementation the loop
has a delay of exactly 1 clock cycle, a new input A is sent every clock cycle, so
all signals arrive at the adder input with perfect synchronization, respecting the
algorithm.

However in NML (and QCA) loops normally have a delay of N clock cycles,
so the result of the previous operation arrives at the adder input after N clock
cycles. As explained in Section 3 a new data must be sent every N clock cycles.
This is true also in case of interleaving, because N operations are interleaved,
but the delay between one data and the subsequent data of the same operation
is always N clock cycles. Therefore to map the same algorithm it is not sufficient
to delay the input A of 1 clock cycle but it must be delayed of N clock cycles
(Figure 20.B). Considering an example, an input (a0) is sent to the first adder
input. The output is calculated and after N clock cycles it reaches the adder
inputs. After N clock cycles a new data (a1) is sent to first adder input, but at
the same time the previous input (a0) reaches the second adder input because it
is delayed of exactly N clock cycles. As a general rule, for each additional delay
of one clock cycle in the original circuit, an additional delay of N clock cycles
must be added to the correspondent wire in the NML implementation.

Figure 21 shows the circuit simulation. In Figure 21.A the CMOS implemen-
tation is depicted, while in Figure 21.B the NML simulation, with the use of the
additional synchronization delay, is shown. The time scale is different because in
the CMOS implementation, one data is sent every clock cycle while in the NML

REG

REG REG

REG

SUM

A
SUM

A

IN3

ADDER

IN1

IN2

IN3

ADDER
IN2

IN1

A(t)

A(t−1)

SUM(t−1)

A(t)

B)

A)

A(t−N)

SUM(t−N)

Delay loop = N clock cycles

Fig. 20. Circuit example. The algorithm is SUM(t) = A(t) +A(t− 1) + SUM(t− 1).
A) CMOS implementation. B) NML implementation. An additional delay, under the
form of a wire loop, is used to map the additional delay on signal A.

implementation one data is sent every N clock cycles, but the behavior is the
same. If the signal A is not correctly delayed the result is wrong, as can be seen
from Figure 21.C.

4 Interconnections

The final problem encountered in the design of complex circuits with Field-
Coupled technologies, is the strong impact of interconnections both on the prop-
agation delay and on the circuit area. Figure 22 shows the detailed layout of a
NML 8 bits comparator, that is part of an LDPC decoder for wireless signals
[38][39][40]. The circuit schematic is reported in the detail of Figure 22, while
the decoder description is not reported here because it is not relevant for this
discussion, however details on the architecture itself can be found in [38]. What
it is important to understand is that most of the area (up to 99%) is occupied
by interconnection area. This layout is based on the technological constraints

Fig. 21. Simulation comparison between the orignal circuit (A), the correct NML cir-
cuit with additional loop (B), and the NML circuit without additional loop (C), which
gave the wrong result.

described in Section 1.1, so in other types of NML or QCA the impact of inter-
connections can be different, but probably interconnections will ever represent
an important part of the circuit area. It is worth to underline again that in Field-
Coupled devices more area means more delay and more power consumption.

The reason of this problem comes from the nature of the technology itself,
which favors local interactions over neighbor elements, penalizing long inter-
connection wires. A possible solutions is to use particular architectures, called
systolic arrays, that can greatly reduce the interconnections overhead. Systolic
arrays are briefly described in Section 4.1 alongside with some techniques to
optimize the design and to improve performance.

4.1 Systolic Arrays

A Systolic Array (SA) is a network of Processing Elements (PEs), also called
“Cells”, that are locally interconnected and can work in parallel. SAs were first
introduced by Kung and Leiserson in 1978, who stated: “a systolic system is a
network of processors which rhythmically compute and pass data through the
system” [41]. Each PE receives data from neighboring cells or from outside and

Fig. 22. Example of interconnection impact in complex NML circuits. The circuit,
reported schematically in the detail, is a 8 bit comparator used inside a wireless decoder.

outputs result to the outside or to near PEs. Two are the main concepts at the
basis of SAs: parallel computation (i.e. all PE work in the same way on different
data) and local transmission of data (i.e. there are not global signals). In Figure
23 three examples of SAs arrangements are shown: a bi-dimensional matrix-like
shape SA (a), a linear SA (b), and an SA with signals flowing in three different
directions (c). The shape is determined by a three step design process: starting
from the algorithm description, the Dependence Graph (DG) is derived; this is
shrunk along one axis to obtain the Signal Flow Graph (SFG) which represents
the real shape of the SA. Finally, PE internal structure is derived.

In last decades, increasing operating frequency has been enough to sustain
the request of higher computational efficiency of digital circuits, reducing the
need of parallel architectures; for this reason SAs have not represented an at-
tractive solution. However, approaching the boundary limit for CMOS scaling
[42], and thus for frequency increase, parallel solutions are being exploited and
SAs are back in the limelight. They have been designed for image processing
[43] [44] [45], signal processing [46] [47] [48] and video algorithms (such as those
for MPEG compression). Recently, automatic tools concerned to translate algo-
rithms to SAs for FPGAs have been explored [49]. Also, reconfigurable arrays,
that are not application-specific, have been introduced in [50]. SAs are a good
architectural solution for new technologies (beyond-CMOS), where benefits in
terms of speed and required area can be achieved only avoiding global intercon-
nections, and SAs verify intrinsically this requirement. SA paradigm allows to
design local small circuits (the PEs) and replicate them to organize the whole
array structure. In particular, in QCA several circuits have been designed and
simulated; as an example, in [51] and [52] SAs for matrix multiplication and
Galois field multiplication have been proposed. Also, NML implementations for
convolution filters have been proposed in [53].

Fig. 23. Three examples of Systolic Arrays. a) Matrix-like SA. b) Linear SA. c) SA
with signals flowing in three different directions.

While SAs help to solve the interconnection problem of this technology, they
still suffer from a loss of performance in presence of loops. Interleaving must
therefore be used in conjunction with SAs to maximize performance [54]. As far
as optimization with pipeline interleaving is concerned, SAs can be distinguished
between those that have PEs WithOut Internal Loops (WOIL), and those with
PEs With Internal Loops. The latter can then be further divided in SAs that
Store result in cells (WIL-S) and SAs that evaluate the final results passing
partial results through lines (WIL-PT). WOIL SAs are composed of PEs without
loops; for this reason, pipelining is enough to achieve the required performance
increase. Pipeline interleaving for this reason is applied to WIL SAs only.

The generic PE of a WIL SA is shown in Figure 24. It is composed of 4 parts:
an entry section, made of blocks numbered from 1 to i; the forward part of the
loop, made of blocks from i + 1 to j, the feedback part of the loop, made of
blocks from j + 1 to k − 1; the output block, called k. Each of these blocks has
a delay dn, n = 1, 2, . . . , k and cannot be internally pipelined. Call Ze the total
delay of the entry block, Zfo the delay of the forward side of the loop, Zfb the
delay of the feedback in the loop and Zo the output delay:

Ze =

i∑

n=1

dn (3) Zfo =

j∑

n=i+1

dn (4)

Zfb =

k−1∑

n=j+1

dn (5) Zo = dk (6)

Input data coming from outside enter in the first block, while data coming
from the neighbor processing element can enter at any stage of the cell. Inputs
must be provided every Zloop = Zfo + Zfb cycles, that is the total time of the

Fig. 24. WIL Systolic Array generic processing element structure.

feedback loop, in order to match them with data coming from the feedback. To
apply interleaving the intrinsic pipelined nature of the structure can be exploited.
Thus we can improve performance and usage of the cell giving inputs every
J = max{dn}. Every J cycles a new operation can be started, and in this way
M different operations can be interleaved, M = Zloop/J (integer division). After
Zloop cycles, the second set of inputs is fed. When Zloop is not a perfect multiple
of J , the remainder of the division, called R, must be taken into account: after
M successive inputs have been fed, the following one must provided with a delay
of J + R, so to have synchronization with the value coming from the loop. R
represents a number of “stalls” that must be inserted between the one set of M
inputs and the following set.

Applying pipeline interleaving it is possible to evaluateM different operations
in parallel, having an increase in performance ofM . If the number of stalls is high,
it would be favorable to increase the delay of the feedback loop in order to achieve
a deeper level of interleave. For example, consider Zfo = 20, Zfb = 6, J = 9; in
this case M = 2 and R = 8. If it is possible to increase of 1 cycle the delay of
the feedback, then 3 operations can be interleaved and no stalls will be present.
As far as the global array is concerned, in WIL-S SAs processing elements work
independently each from the others, and the only connections are the wires
to pass inputs from one cell to another. Being S the delay in clock cycles of
connection wires, inputs must be given with the same rule for all cells (number
of interleaved operations and stall cycles), but starting at cycle Sn = mn×S; mn

is the Manhattan distance between cell n and the top-left one (if we consider data
moving from top to bottom and left to right); this delay must then be reported to
the actual inputs of the array at boundary cells. In WIL-PT SAs instead, results
of a cell are re-used in the same cell but also passed to the neighboring cell; in
this case the order of inputs is given by the mismatch between the feedback loop
delay and the one to transmit data to next cell.

In order to evaluate the benefits of pipeline interleaving the Cell Updates Per
Second (CUPS) parameter can be computed. Consider a square SA as the one
in Figure 23.(a): the top-left PE is the one that starts operating first, while the
bottom-right one is the last. Given a finite number of inputs, the bottom-right
PE is also the one that finishes later computation; hence, total time will be given
by the time at which this PE will finish to compute the last result. Total time,
Zend, is given by the time for last inputs to reach last PE, plus the time to
execute the operation inside the PE itself, called Zcell. S was previously defined
as the number of cycles needed for an input to pass through a cell, that is the
number of registers of the shift chain. It is possible to assume that this value
is equal to transmit one value from top input to bottom output of the PE, or
from left input to right output. First inputs will be available at last cell after
2(M − 1)S, where 2(M − 1) is the Manhattan distance between first cell and

last one in an array of M ×M PEs. Call Z
(m)
end the time at which computation of

m-th result is available. Then: Z
(1)
end = 2(M − 1)S+Zcell. J is the delay between

one input and the following one; if l successive inputs are fed into the array, then
we obtain equation 7:

Zend = Z
(l)
end = 2(M − 1)S + (l − 1)J + Zcell (7)

Formula (7) expresses the total time needed for executing operations on a
M × M SA that receives l successive data from each input path. During this
period of time each cell will execute l operation (one every time a new input is
received). The total cell updates are lM2, and CUPS can be evaluated as:

CUPS = fclk
lM2

2(M − 1)S + (l − 1)J + Zcell

(8)

This formula must be adapted in two cases: when the array is used without inter-
leaving operations, and when interleaving is exploited to achieve an improvement
in performance. In case of no-interleaving formula (8) can be adapted consider-
ing l = M . In case of n-interleaving instead, each cell will update n times more
than the previous case, hence l = nM ; this increase reflects also at the denomi-
nator of formula (8) as an increase in total time. Moreover, Zcell and J must be
re-evaluated considering interleaving. SAs performance are often evaluated com-
puting peak CUPS max(CUPS) = fclk ×#PEs where #PEs is the number of
PEs in the array. Equation 8 is more precise and takes into account the effects
of interconnections and delays inside PEs. This equation is upper bounded by
max(CUPS).

In order to demonstrate the effectiveness of the proposed mechanism of
pipeline interleaving to increase performance, we report here the evaluation of
CUPS according to equation 8 for different levels of interleave in a practical case.
Hereinafter values are given in number of clock cycles. Imagine to have a WIL-S
SA with Ze = 8, Zfo = 7, Zfb = 5, with Ze and Zfo that cannot be further
pipelined, while the feedback can be represented as a shift register. Without

interleaving Zcell = Ze + Zfo = 15 and J = Zloop = 12. Moreover, let consider
S = 10 whatever is the level of interleave, since this value is not influenced by
interleaving. In this case equation 8 reduces to: CUPS = M3/(32M − 17). It
is possible to achieve interleave 2 considering that J = max{Ze, Zfo} = 8 so
it is required to design the feedback loop to have a delay of 12 clock cycles. In
this case equation 8 must be adapted considering J = 8 and P = 2M . Figure 25
shows the trend of CUPS in function of M for different levels of interleave. It can
be immediately noticed that applying interleaving results in significant benefits
in terms of CUPS. Moreover, it is evident that benefits of applying interleaving
saturate with deeper levels of interleave.

Fig. 25. The effect of pipeline interleaving on CUPS: given an array of M ×M cells,
increasing the level of interleaving CUPS increase as well.

5 Analysis of Applications Suited for NML Technology

Since the nature of Field-Coupled devices is quite different from traditional
CMOS circuits, it is important to identify in which kind of applications the true
potential of this technology can be fully exploited. The architectural overview
presented in this chapter represents therefore the ideal starting point for such
analysis. In the following the most important features of Field-Coupled devices
are summarized.

1. Parallelism. To maximize performance parallel computation is required. As
seen in Section 3 the interleaving of a big number of operations is required to

maximize throughput. As a consequence all applications that are intrinsically
parallel, or where it is necessary to process a huge amount of data are the
ideal target of these devices.

2. Locality. A huge delay penalty is acquired by signals traveling over long
interconnection wires. The consequence is simple: Only local interconnections
should be used (see Section 4). Therefore all algorithms that require only a
local exchange of data are favored in this technology.

Along with these two features that are common to all Field-Coupled devices,
NML circuits, due to their magnetic nature, have some more specific advantage.

3. Logic-in-memory. Magnets are intrinsically memory devices. They are
used here for logic computation but they maintain their status also with-
out external power supply, providing therefore a natural memory ability.
This possibility can be exploited to build logic-in-memory devices, where
memory and logic functions are combined together.

4. No stand-by power consumption. Since magnets maintain their state
also without power external supply, when circuits are in stand-by mode there
is no power consumption at all. This fact can be exploited to reduce power
consumption, activating the circuit only when it is necessary and shutting it
down in the meantime.

5. Radiation Hard. NML circuits are extremely resistant to radiations. Cir-
cuits still work correctly in after taken a considerable amount of high energy
radiations.

6. Low dynamic power consumption. The dynamic power consumption
can be very low, depending on the clock system used.

Every application that can benefit from one of more of these characteristics
can therefore be an ideal target for this technology. Clearly the more features
are exploited, the more benefit it is possible to gain from this technology. In the
following a short (but necessary not complete list) of possible field of applications
for NML technology is presented.

Aerospace and Military. The near-immunity to radiations is a property
that gives to NML technology and undeniable advantage over CMOS circuits.
Aerospace and military applications are therefore the ideal target for NML tech-
nology. In these fields there is an always increasing demand for radiation hard,
heat resistant processing units that must work in hostile environments. With
the CMOS technology is very difficult to match all aforementioned characteris-
tic, because circuits can be damaged by radiations. NML devices are the perfect
solution to match these fields necessities. Moreover, the NML logic-in-memory
ability paves the way for “on the flight” circuits reconfigurability that could en-
hances space and military applications with re-programmable hardware and at
run-time adaptive functionality. This feature enables the possibility to change
the function or to repair part of the system if something went wrong.

Embedded Sensors in Remote Zones. One of the main characteristics of-
fered by NML technology, the zero stand-by power consumption, can be exploited
to built intelligent sensor stations in remote zones. In this kind of systems it is
quite common to have circuits that need to operate for a limited period of time,
then they have to spent the rest of the time in stand-by mode. These kind of
systems are actually used in many applications; one of these is the environmental
monitoring in remote zones such mountains peaks or buoys placed in the ocean,
which detect the rate of seas pollution. The use of NML technology can give a
great advantage compared to the devices actually used, mainly thanks to the
zero stand-by power consumption, but also thanks to its resistance to extreme
environmental conditions.

Automotive. The resistance to extreme environment can be useful also in
automotive applications. It is well know that electronic components that must
be placed near the mechanical parts of a car, like the engine, are exposed to
a great deal of stress. This stress comes under many forms, heat, vibrations,
voltage spikes, straining the resistance of CMOS circuits to their limits. Clearly
the use of NML logic can represent a substantial improvement to the reliability
of electronic circuits applied to the automotive field.

Integration with other magnetic systems. While here magnets are used
to build logic circuits, magnetic devices are commonly employed in many field
as sensors and actuators, not to mention as memory devices. Hard-disks are the
leading devices for mass data storage and in recent years Magnetic RAM were
also developed and are gaining an increasing interest for their prominent features
[55][56], like radiations resistance, high speed, non-volatile nature, heat resistance
and nearly-unlimited endurance. Since all these devices share the same magnetic
nature it is possible to think to merge logic devices and MRAM together. This
is particularly interesting because memory performance is fast becoming the
key bottleneck that limits system performance, and critical applications are be-
coming more data-dependent, and less compute-dependent. Instant-on will be a
requirement for a lot of applications. Merging NML circuits and MRAM can be a
solution to this problem, a further way to exploit the logic-in-memory principle.

Nonetheless it is also good to consider that many embedded applications im-
plicate the acquisition of signals from sensors, the processing of acquired signal,
the storage of the elaborated data, the command of actuators and the commu-
nication with other system. A lot of sensors, actuators and memory devices are
based on magnetism. This consideration can be exploited to obtain a deeper
level of embedding. If for example magnetic sensors are constructed on the same
chip as NML devices using the same fabrication processes a new scenario will be
opened. Indeed the result of these devices combination originates a system on a
chip with potential advantages in therms of both performance and power.

Dynamic circuit reconfigurability. The ability to mix logic and memory
in the same device can be used to enhance the concept of reconfigurable logic

circuit. For example it is possible to think to computational algorithms that
dynamically manage the logic and the memory according to the necessaries re-
sources. As an example it is possible to consider an algorithm that works in two
phases: the first one needs a big amount of computational power and a little
memory; instead the second phase requires less computations but an increased
quantity of memory. A dynamic reconfigurability coupled with the fact that both
logic and memory are available in the same device can revolutionize the way to
think an design the algorithms and their implementations on the hardware ar-
chitectures. Another possibility is to build logic devices that can be reconfigured
run-time, leading to a totally new class of “smart” circuit, obtaining considerable
advantages in terms of circuit area, power consumption and speed.

Image processing. The possible applications presented since now are particu-
larly suited for NML logic. However every application wherever a huge amount
of data to process is available is the ideal target for all QCA technologies, not
only for the magnetic version. An example is the image processing field where
digital images, made by a big matrix of pixel, must be elaborated. The amount of
data to process is very high, secondly the algorithms involved in the elaboration
of an image are often applied to a pixel and its neighbors. Image processing is
therefore an application particularly suited for QCA technology because it can
exploit both the principle of Parallelism and the principle of Locality. Among all
QCA implementations, NML logic is favored due to its low power consumption.
It is possible to think, for example, to a dedicated co-processor coupled with
the sensor of a mobile camera. In this case NML logic presents therefore a huge
advantage over CMOS technology.

Informatics for biotechnology. Similarly to image processing also the biotech-
nology field can gain a huge advantage from the use of QCA technology. The
massive parallelism offered by QCA could be successfully exploited to develop
hardware accelerators or specialized co-processors to execute specific heavy-
computation tasks. One of these task that recently has obtained great interest
is the modeling of molecular dynamics in the cellular membrane. This kind of
simulation is useful for the investigation of cellular effects of molecular alter-
ations due to pathological conditions or to extend the characterization of other
sub-cellular structures [57]. Recently a highly parallel implementation of molec-
ular dynamics simulation was developed for general purpose GPUs in order to
exploit the massive parallelism offered by such devices [58]. As shown in this
GPU implementation, the massive parallelism is one of the major feature that
can improve the computation in the biotechnology field.

Another biotechnology task that recently has obtained an increasing interest
from many interdisciplinary research groups is the study of biological sequences
and the relative development of tools. Biologists study the similarities between
proteins to reconstruct phylogenetic trees and to assess the presence of mutations
that lead to genetic diseases or tumors. Since proteins consist of long sequences
of amino acids, the fastest way to performs a first analysis is to align the stud-

ied protein with the protein coming from huge databases searching for regions
of similarity. After that, the short list of proteins that share a sufficient level
of similarity are deep investigated. There are many alignment algorithms that
are chosen according to the type of analysis that the biologist wants to per-
form. One of the most used is the method developed by Smith and Waterman
that performs, in dynamic programming, the exaustive local alignment between
two sequences [59]. We have designed a systolic architecture that accelerate the
Smith-Waterman algorithm execution [60][61] mapping it to NML technology
[62][63] demonstrating how much gain can be obtained from the use of NML
technology.

6 Conclusions

In this chapter we have presented a thorough analysis of the main problems
that arise at architectural level in Field-Coupled devices. The analysis is mainly
based on NML logic but most of the results here presented are valid for all QCA
implementations. For every problem presented a solution is proposed. The solu-
tions described in this chapter are designed around both logic and technological
constraints. Finally, a brief overview of the field of applications that allows to
fully exploit the true potential of this technology is presented. Overall this chap-
ter gives to researchers and designers most of the guidelines necessary to design
complex circuits with this technology and the directions that they should follow
in the future development of this technology.

Now it is important to continue the architectural analysis focusing on the
system level integration and all related problems. Important problems must be
investigated, like the interfaces with the outside world and the generation of
clock signals. Particularly, in case of NML logic it is important to investigate
how to reduce the necessity of CMOS transistors in the support circuits, like
the input/output interfaces and clock waveforms generators. The necessity to
use CMOS transistors in the external circuits represents a weakness because it
reduces one of the most important advantages of this technology, the immunity
to radiations.

We will therefore continue to investigate NML (and QCA) architectures fol-
lowing these guidelines, always keeping an eye at the technological constraints
in order to get the most realistic results.

References

1. Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata.
Nanotechnology 4 (1993) 49–57

2. Csurgay, A., Porod, W., Lent, C.: Signal processing with near-neighborcoupled
time-varying quantum-dot arrays. IEEE Transaction On Circuits and Systems
47(8) (2000) 1212–1223

3. Lu, U., Lent, C.: Theoretical Study of Molecular Quantum-Dot Cellular Automata.
Journal of Computational Electronics - Springer 4 (2005) 115–118

4. Imre, A., Ji, L., Csaba, G., A.O. Orlov, Bernstein, G., Porod, W.: Magnetic Logic
Devices Based on Field-Coupled Nanomagnets. 2005 International Semiconductor
Device Research Symposium (December 2005) 25

5. Pulimeno, A., Graziano, M., Abrardi, C., Demarchi, D., Piccinini, G.: A write-in
system based on electric fields for Molecular QCA. In: 2011 IEEE International
NanoElectronics Conference (INEC), Tao-Yuan, Taiwan, IEEE (2011) 1–2

6. Pulimeno, A., Graziano, M., Piccinini, G.: Molecule Interaction for QCA Compu-
tation. IEEE International Conference on Nanotechnology (2012)

7. Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular
QCA wire: simulation of write-in and read-out systems. Solid State Electronics 77
(2012) 101–107

8. Pulimeno, A., Graziano, M., Saginario, A., Cauda, V., Demarchi, D., Piccinini, G.:
Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault
tolerance. IEEE Transaction on Nanotechnology (2013)

9. Lent, C., Isaksen, B.: Clocked Molecular Quantum-Dot Cellular Automata. IEEE
Transactions on Electron Devices 50(9) (September 2003) 1890–1896

10. Porod, W.: Magnetic Logic Devices Based on Field-Coupled Nanomagnets. Nano
& Giga (2007)

11. Pulimeno, A., Graziano, M., Piccinini, G.: UDSM Trends Comparison: From Tech-
nology Roadmap to UltraSparc Niagara2. IEEE Transactions on VLSI systems
20(7) (July 2012)

12. Niemier, M., Hu, X., Alam, M., Bernstein, G., W. Porod, M.P., DeAngelis, J.:
Clocking Structures and Power Analysis for nanomagnet-Based Logic Devices. In:
International Symposium on Low Power Electronics and Design, Portland-Oregon,
USA, IEEE (2007) 26–31

13. Niemier, M., al.: Nanomagnet logic: progress toward system-level integration. J.
Phys.: Condens. Matter 23 (November 2011) 34

14. Csaba, G., Porod, W.: Behavior of Nanomagnet Logic in the Presence of Thermal
Noise. In: International Workshop on Computational Electronics, Pisa, Italy, IEEE
(2010) 1–4

15. Graziano, M., Chiolerio, A., Zamboni, M.: A Technology Aware Magnetic QCA
NCL-HDL Architecture, Genova, Italy, IEEE (2009) 763–766

16. Graziano, M., Vacca, M., Zamboni, M.: Magnetic QCA Design: Modeling, Simula-
tion and Circuits. Cellular Automata - Innovative Modelling for Science and En-
gineering, InTech, http://www.intechopen.com/articles/show/title/magnetic-qca-
design-modeling-simulation-and-circuits (2011)

17. Graziano, M., Vacca, M., Chiolerio, A., Zamboni, M.: A NCL-HDL Snake-Clock
Based Magnetic QCA Architecture. IEEE Transaction on Nanotechnology 10(5)
(September 2011) 1141–1149

18. Alam, M., Siddiq, M., Bernstein, G., Niemier, M., Porod, W., Hu, X.: On-chip
Clocking for Nanomagnet Logic Devices. IEEE Transaction on Nanotechnology
(2009)

19. Das, J., Alam, S., Bhanja, S.: Low Power Magnetic Quantum Cellular Automata
Realization Using Magnetic Multi-Layer Structures. J. on Emerging and Selected
Topics in Circuits and Systems 1(3) (September 267-276)

20. Das, J., Alam, S., Bhanja, S.: Ultra-Low Power Hybrid CMOS-Magnetic Logic
Architecture . Trans. on Computer And Systems (2011)

21. Karunaratne, D., Bhanja, S.: Study of single layer and multilayer nano-magnetic
logic architectures . Journal Of Applied Physics (111) (2012)

22. Vacca, M., Crescenzo, L., Graziano, M., Zamboni, M., Chiolerio, A., Lamberti, A.,
Enrico, E., Celegato, F., Tiberto, P., Boarino, L.: Electric clock for NanoMagnet
Logic Circuits . Field Couple Computing Workshop (FCN) (2013)

23. Fashami, M.S., Atulasimha, J., Bandyopadhyay, S.: Magnetization Dynamics,
Throughput and Energy Dissipation in a Universal Multiferroic Nanomagnetic
Logic Gate with Fan-in and Fan-out. Nanotechnology 23(10) (February 2012)

24. Rizos, N., Omar, M., Lugli, P., Csaba, G., Becherer, M., Schmitt-Landsiedel, D.:
Clocking Schemes for Field Coupled Devices from Magnetic Multilayers. In: In-
ternational Workshop on Computational Electronics, Beijin, China, IEEE (2009)
1–4

25. Becherer, M., Kiermaier, J., Csaba, G., Rezgani, J., Yilmaz, C., Osswald, P., Lugli,
P., Schmitt-Landsiedel, D.: Characterizing magnetic field-coupled computing de-
vices by the Extraordinary Hall-effect. In: Proceedings European Solid State Device
Research Conference, Athens, Greece, IEEE (2009) 105–108

26. Ju, X., Niemier, M., Becherer, M., W. Porod, M.P., Lugli, P., Csaba, G.: Systolic
Pattern Matching Hardware With Out-of-Plane Nanomagnet Logic Devices. IEEE
T. on Nanotechnology 12(3) (May 2013)

27. Ercan, I., Anderson, N.: Heat Dissipation Bounds for Nanocomputing: Theory and
Application to QCA. (2011)

28. Vacca, M., Graziano, M., Zamboni, M.: Nanomagnetic Logic Microprocessor: Hi-
erarchical Power Model. IEEE Transactions on VLSI Systems (August 2012)

29. Vacca, M., Graziano, M., Zamboni, M.: Majority Voter Full Characterization for
Nanomagnet Logic Circuits. IEEE T. on Nanotechnology 11(5) (September 2012)
940–947

30. Niemier, M., Varga, E., Bernstein, G., Porod, W., Alam, M., Dingler, A., Orlov,
A., Hu, X.: Shape Engineering for Controlled Switching With Nanomagnet Logic.
IEEE Transactions on Nanotechnology 11(2) (March 2012) 220–230

31. Graziano, M., Vacca, M., Blua, D., Zamboni, M.: Asynchrony in Quantum-Dot
Cellular Automata Nanocomputation: Elixir or Poison? IEEE Design & Test of
Computers (September 2011) 72–83

32. Niemier, M., Kogge, P.: Problems in designing with QCAs: Layout = Timing. Int.
J. Circ. Theor. Appl (2001)

33. Vacca, M., Vighetti, D., Mascarino, M., Amaru, L., Graziano, M., Zamboni, M.:
Magnetic QCA Majority Voter Feasibility Analysis . 2011 7th Conference on Ph.D.
Research in Microelectronics and Electronics (PRIME) (2011) 229–232

34. Fant, K., Brandt., S.: NULL Convention LogicTM , A Complete and Consistent
Logic for Asynchronous Digital Circuit Synthesis. In: International Conference on
Application Specific Systems, Chicago-Illinois, USA, IEEE (1996) 261–273

35. Choi, M., Patitz, Z., Jin, B., Tao, F., Park, N.: Designing layout-timing indepen-
dent quantum-dot cellular automata (QCA) circuits by global asynchrony. Journal
of System Architecture, Elsevier 53 (2007) 551–567

36. Vacca, M., Graziano, M., Zamboni, M.: Asynchronous Solutions for Nano-Magnetic
Logic Circuits. ACM J. on Emerging Tech. in Comp. Systems 7(4) (December
2011)

37. : Mentor Graphics http://www.modelsim.com.
38. Awais, M., Vacca, M., Graziano, M., Masera, G.: Quantum dot Cellular Automata

Check Node Implementation for LDPC Decoders . IEEE Transaction on Nanotech-
nology (2013) 368–377

39. Awais, M., Vacca, M., Graziano, M., Masera, G.: FFT Implementation using QCA
. 2012 19th IEEE International Conference on Electronics, Circuits and Systems
(ICECS) (2012) 741–744

40. Martina, M., Masera, G.: Turbo NOC: A framework for the design of network-on-
chip-based turbo decoder architectures. IEEE Trans. on Circuits and Systems I
57(10) (2010) 2776–2789

41. Kung, H., Leiserson, C., Science, C.M.U.D.o.C.: Systolic Arrays for (VLSI). CMU-
CS. Carnegie-Mellon University, Department of Computer Science (1978)

42. Haron, N., Hamdioui, S.: Why is CMOS scaling coming to an END? In: Design
and Test Workshop, 2008. IDT 2008. 3rd International. (dec. 2008) 98–103

43. Pan, S.B., Park, R.H.: Unified systolic arrays for computation of the
DCT/DST/DHT. Circuits and Systems for Video Technology, IEEE Transactions
on 7(2) (apr 1997) 413–419

44. Panchanathan, S., Goldberg, M.: A systolic array architecture for image coding
using adaptive vector quantization. Circuits and Systems for Video Technology,
IEEE Transactions on 1(2) (jun 1991) 222–229

45. Iyengar, G., Panchanathan, S.: Systolic array architecture for Gabor decomposi-
tion. Circuits and Systems for Video Technology, IEEE Transactions on 5(4) (aug
1995) 355–359

46. Lim, H., Swartzlander, E.J.: Multidimensional systolic arrays for the implementa-
tion of discrete Fourier transforms. Signal Processing, IEEE Transactions on 47(5)
(may 1999) 1359–1370

47. Herzberg, H., Haimi-Cohen, R.: A systolic array realization of an LMS adaptive
filter and the effects of delayed adaptation. Signal Processing, IEEE Transactions
on 40(11) (nov 1992) 2799–2803

48. Chang, L.W., Wu, M.C.: A unified systolic array for discrete cosine and sine
transforms. Signal Processing, IEEE Transactions on 39(1) (jan 1991) 192–194

49. Buyukkurt, B., Najj, W.: Compiler generated systolic arrays for wavefront algo-
rithm acceleration on FPGAs. In: Field Programmable Logic and Applications,
2008. FPL 2008. International Conference on. (sept. 2008) 655–658

50. Jin, W., Zhang, C., Li, H.: Mapping multiple algorithms into a reconfigurable sys-
tolic array. In: Electrical and Computer Engineering, 2008. CCECE 2008. Canadian
Conference on. (may 2008) 001187–001192

51. Lu, L., Liu, W., O’Neill, M., Swartzlander, E.: QCA Systolic Matrix Multiplier.
In: VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on. (july
2010) 149–154

52. Lu, L., Liu, W., O’Neill, M., Swartzlander, J.E.: QCA Systolic Array Design.
Computers, IEEE Transactions on 62(3) (2013) 548–560

53. Crocker, M., Hu, X., Niemier, M.: Design and Comparison of NML Systolic Ar-
chitectures . Nanoarch (2010)

54. Causapruno, G.: Analysis and Optimization of Parallel Processing Architectures
for Nanotechnologies . Master’s thesis, Politecnico di Torino (November 2012)

55. Rajaram, S., Karunaratne, D., Sarkar, S., Bhanja, S.: Study of Dipolar Neighbor
Interaction on Magnetization States of Nano-Magnetic Disks. IEEE Trans. on
Magnetics (2013)

56. Panchumarthy, R., Karunaratne, D., Sarkar, S., Bhanja, S.: Magnetic State Esti-
mator to Characterize the Magnetic States of Nano-Magnetic Disks. IEEE Trans.
on Magnetics (2013)

57. Deriu, M.A., Shkurti, A., Paciello, G., Bidone, T.C., Morbiducci, U., Ficarra, E.,
Audenino, A., Acquaviva, A.: Multiscale modeling of cellular actin filaments: From
atomistic molecular to coarse-grained dynamics. Proteins: Structure, Function, and
Bioinformatics 80(6) (2012) 1598–1609

58. Shkurti, A., Orsi, M., Macii, E., Ficarra, E., Acquaviva, A.: Acceleration of coarse
grain molecular dynamics on GPU architectures. Journal of computational chem-
istry 34(10) (2013) 803–818

59. Smith, T., Waterman, M.: Identification of Common Molecular Subsequences.
Molecular Biology 147 (1981) 195–197

60. Urgese, G.: Analysis and Design of an Optimized HW Accelerator for Protein
Alignment . Master’s thesis, Politecnico di Torino (September 2012)

61. Urgese, G., Graziano, M., Vacca, M., Awais, M., Frache, S., Zamboni, M.: Pro-
tein Alignment HW/SW Optimizations . The IEEE International Conference on
Electronics, Circuits, and Systems (ICECS) (2012)

62. Wang, J.: Emerging Technologies For Biosequence Analysis . Master’s thesis,
Politecnico di Torino (November 2012)

63. Wang, J., Vacca, M., Graziano, M., Zamboni, M.: Biosequences analysis on Nano-
Magnet Logic . International Conference on IC Design and Technology (May 2013)

