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Abstract

We present a powerful experimental-computational technology for inferring network models that predict the response of
cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are
systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to
perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular
phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of
signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all
possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three
orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of
perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor
of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential
discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1,
which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular
biology.
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Introduction Data-driven models of cell biology
High throughput measurements on response profiles of living

Signaling in cancer cells cells to multiple perturbations such as drug combinations provide

Abnormal biomolecular information flow as a result of genetic
or epigenetic alterations may lead to tumorigenic transformation
and malignancy and is classically modeled as changes in
signaling pathways [1]. Targeted anti-cancer drugs, which bind
and inhibit specific components of aberrant signaling pathways,
are a promising alternative to conventional chemotherapy, with
recent successes in melanoma (RAF inhibitor) [2] and prostate
cancer (AR inhibitor) [3,4] following in the footsteps of the
pioneering BCR-ABL inhibitor Imatinib [5] and EGFR inhib-
itors Gefitinib and Erlotinib [6,7,8]. Combinations of targeted
anticancer drugs hold considerable promise because of the
emergence of resistance to initially successful single agents and
the highly robust nature of the signaling pathways with multiple
feedback mechanisms [9].
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a rich set of information to construct quantitative cell biology
models. In this paper, we construct context specific de novo
mathematical models of signaling pathways through the use of
systematic paired perturbation experiments and network inference
algorithms. Such network models provide insight into mechanistic
details of signaling pathways, predict the response of cellular
systems to multiple perturbations beyond those from which models
are derived, and guide the design of perturbations for a desired
response.

State of the art in network inference in cell biology
Previous mathematical models of molecular signaling in cells

have been effective in modeling pathways and enhancing drug
discovery [10,11,12,13,14,15,16,17,18,19]. Techniques for net-
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Author Summary

Drugs that target specific effects of signaling proteins are
promising agents for treating cancer. One of the many
obstacles facing optimal drug design is inadequate
quantitative understanding of the coordinated interactions
between signaling proteins. De novo model inference of
network or pathway models refers to the algorithmic
construction of mathematical predictive models from
experimental data without dependence on prior knowl-
edge. De novo inference is difficult because of the
prohibitively large number of possible sets of interactions
that may or may not be consistent with observations. Our
new method overcomes this difficulty by adapting a
method from statistical physics, called Belief Propagation,
which first calculates probabilistically the most likely
interactions in the vast space of all possible solutions,
then derives a set of individual, highly probable solutions
in the form of executable models. In this paper, we test
this method on artificial data and then apply it to model
signaling pathways in a BRAF-mutant melanoma cancer
cell line based on a large set of rich output measurements
from a systematic set of perturbation experiments using
drug combinations. Our results are in agreement with
established biological knowledge, predict novel interac-
tions, and predict efficacious drug targets that are specific
to the experimental cell line and potentially to related
tumors. The method has the potential, with sufficient
systematic perturbation data, to model, de novo and
quantitatively, the effects of hundreds of proteins on
cellular responses, on a scale that is currently unreachable
in diverse areas of cell biology. In a disease context, the
method is applicable to the computational design of novel
combination drug treatments.

work modeling of signaling pathways span a wide spectrum of
complexity. Detailed chemical kinetics and spatiotemporal
models [17,20,21] can provide mechanistic explanations of
observed behavior, but are often incompletely parameterized,
needing tens or hundreds of sensitive parameters for medium-
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sized systems. Moreover, such models may not be valid in
biological contexts that differ substantially from dilute solution
chemistry. On the other end of the spectrum, pattern matching or
machine learning models such as neural networks and correla-
tion-based models such as maximum entropy [22] can accurately
provide purely data-driven models of signaling. However, such
methods have limited power to explain mechanistic details and,
in most cases, are insufficient for quantitative predictions of
system behavior in conditions beyond those from which the
models are derived.

Data-driven and context-specific predictive models

We take a unique modeling approach to construct context
specific, de novo and predictive network models of signaling
pathways from drug perturbation data (Figure 1). Here, de novo
means that network inference is done without depending on
known molecular interactions extracted from literature or pathway
databases, which do not account for biological context. This
approach also emphasizes context specificity since it relies on rich
experimental data from a single biological context as its training
set. The models are constructed through parameterization of a
simple model equation, which has been used in other network
modeling approaches [13,23,24,25,26,27]. The model equations
contain parameters that are mechanistically descriptive of direct or
indirect interactions in the system. Finally, the models are
computationally predictive of cell-type specific response to new
drug perturbations and their combinations. We expect that this
conceptual framework and the technical advances in network
inference will empower the community to identify unique drug
targets and combinations that are particularly efficacious within
specific disease contexts.

Network modeling de novo or with prior information

De novo construction of signaling network models at scales
relevant to problems related to complex biological phenomena
such as cancer has long been a challenge in system biology. Thus,
quantitative models of protein signaling pathways are typically
constructed on the basis of existing prior knowledge from literature
searches [16,17] and interaction databases [19,28,29]. However,
different cancer contexts have unique genetic and proteomic
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Figure 1. Perturbation cell biology. Perturbing cancer cells with targeted drugs singly and in pairs (A) reveals context-specific response to
therapies and illuminates protein interactions. We construct dynamic mathematical models of the cells’ response to drugs that have both
quantitative parameters (B) and a qualitative network interpretation (C). We use an inference algorithm called Belief Propagation (BP) to construct a

set of good, i.e., predictive models (D).
doi:10.1371/journal.pcbi.1003290.g001
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alterations to normal protein signaling. For example, distinct
mutations in effector proteins of the PI3K pathway are oncogenic
In unique ways, 1., they lead to distinctly context dependent
functional consequences in different cancer types, subtypes and
patients [30]. The method we introduce here is capable of
inferring parameterized network models with prior knowledge, yet
the results in this study do not include prior knowledge. An
advantage of de novo inference is independence from prior
knowledge interactions that may be incorrect or incomplete in a
particular biological context.

Model inference from perturbation data for larger

systems is hard

The largest obstacle to de novo model construction is the
combinatorial explosion in the number of possible network
models, which defines the solution space [31]. Model inference
problems of this type are NP-hard [32]. The number of possible
configurations for a model with Vnodes, and K possible values for

each parameter grows super-cxponentially as KV . We have
previously described a method named CoPIA for de novo
construction of dynamic nonlinear network models from pertur-
bation data [33]. CoPIA is based on the combined use of a Monte
Carlo stochastic search algorithm, which is used to search the
network configurations and an efficient gradient descent algorithm
[34] for quantitative parameter optimization. However, without
algorithmic improvements, such Monte Carlo based methods are
limited to modeling fewer than approximately 15-20 biological
entities [33]. Increasing the scale of network (or pathway) models
of cellular signaling processes to levels sufficient to describe
complex biological problems in quantitative detail is therefore
extremely challenging and has been approached with a diversity of
methods [35].

A statistical physics approach can handle the complexity
for larger systems

An ingenious, two-step approach to deal with network
inference in larger systems is based on first calculating probability
distributions for each possible interaction in the model and then
computing distinct solutions by sampling these probability
distributions. For this purpose, we employ a probability model
of network configurations inspired from statistical physics
principles. Following a set of approximations to simplify the
probability model, we apply a custom adaptation of an iterative
algorithm called Belief Propagation (BP). BP involves local
optimization updates to probability distributions of individual
model parameters that converge to a stable set of probability
distributions, which collectively describe a set of good network
model solutions [36,37,38]. BP has been applied to various
complex inference problems, some of them NP-Hard such as K-
SAT [38] and graph coloring [39]. BP has garnered some
attention in biological network inference [40,41] and parameter
estimation [42,43]. Here, we tailor the BP algorithm to large-
scale perturbation data that is capable of increasing the scope of
the models to hundreds of nodes. The result of BP is a set of
probability distributions for each model parameter, often referred
to as marginal probability distributions, or ‘marginals’. Each
marginal describes the inferred distribution of a particular
parameter across a range of high probability solutions. Individual
models are created via sampling from these marginals [44].
Consequently, the time-complexity of the problem is strongly
reduced, the prohibitive cost from combinatorial complexity is
circumvented and, although the method provides only an
approximate solution, one obtains useful, non-trivial results.
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In practice: from systematic perturbation to response
profiling to network model inference

Our algorithmic network pharmacology approach involves four
major steps: () perturbation experiments with combinations of
targeted compounds; (ii) high-throughput quantitative measure-
ments of proteomic changes (e.g., reverse phase protein arrays or
mass spectrometry) and phenotypic changes (e.g., cell viability or
apoptosis); (ii1) inference of quantitative network models of protein
signaling that explain and link these changes; and (iv) use of the
network models to predict cellular and molecular responses to
diverse perturbations, beyond the conditions on which the network
models are derived.

Experimental and computational technology for network
model inference and application to drug effects on
melanoma cell lines

In this work, we adapt BP to construct quantitative network
models of signaling pathways from systematic perturbation
experiments. We evaluate the speed and accuracy of BP on toy
data generated from biologically inspired network structures. The
inference on this toy data reveals that BP offers a significant
improvement in computational efficiency compared to traditional
Monte Carlo simulations without a sacrifice in accuracy.
Furthermore, we construct network models of signaling in a
RAF inhibitor resistant melanoma cell line (SKMEL-133), which
has the BRAFV600E mutation [45,46]. The models are predictive
of both the proteomic and phenotypic response to drug
combinations. Model simulations successfully predict the pheno-
typic response profiles of SKMEL-133 cells to novel drug targets.
With the introduction of many novel targeted drugs and patient
specific genomic profiling, this network pharmacology approach
aims to provide an effective tool to develop individualized
combination therapies against multiple cancer forms.

Results

Theory

Mathematical framework of the network model. Key
decisions in modeling a biological cellular system include the
choice of variables and the mathematical framework for repre-
senting system dynamics. Here, we work with a fairly simple but
powerful ansatz or framework, in which the time behavior of the
cellular system {x;(2)} in a set of perturbation conditions {u; *} is
modeled as a series of coupled non-linear differential equations
(Equation 1) [33].

Equation 1: Non-linear network model for the time behavior of the cellular
system

dxl;l(t) al L I I
e & (Z wx) (1) +uf | —ouxi (1)

J#i

$(z)=tanh(z)

The system variables x represent quantities of particular
biological entities one wishes to measure and model. In this work,
quantities are restricted to relative changes in protein and
phospho-protein abundances and cell viability levels. The
variables are nodes in the network model. The model parameters
w in the matrix W formally quantify the interactions between
nodes and correspond to directed edges in the network model.
Equation 1 includes an independent time variable ¢ which denotes
that variables are functions of time. The term u represents an
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external force on a model variable, which models interventions
from targeted drug perturbations. A vector of u-values defines the
set of targeted perturbations; combinations are simple additions of
these vectors. In principle, « is time-dependent, but not in the
current implementation. The variable index : maps to a single
network node, and the experimental index (1) maps to a single
experimental perturbation condition. A biological system is
therefore modeled by a collection of coupled equations of the
form defined in Equation 1. Perturbations to any node propagate
in time through the network interactions producing trajectories
x(t), which present the behavior of the system over time.

Theoretically, the model variables can quantify any measure of
interest. While absolute protein concentrations are one option,
such data is difficult to acquire in high throughput assays. In this
study, we focus on logy-ratios of abundances in perturbed
conditions to abundances in the unperturbed condition. Conse-
quently, model variables can take both negative and positive
values, which denote decreased or increased quantities of the
corresponding biological entity. We choose to normalize all
measurement levels against unperturbed levels in order to focus
on signaling differences due directly to perturbation.

The rate of change of any variable, in this formulation, is
predominantly influenced by the additive linear combination of
upstream nodes {x;} weighted by their respective interaction
strength {w;;}. Only non-zero values of w;; are interactions in the
network model. We incorporate nonlinearity with a sigmoidal
function ¢(z) that limits both the maximum positive and negative
rates of change [24], controlled by the parameter &. The o
parameter models the rate of restoration at which a model variable
would return to its initial value before perturbation, in the absence
of interactions. This is analogous to the degradation rate in models
of positively valued protein concentrations. The parameters € and
o are not inferred with BP. For the remainder of this section they
are assumed to be 1, and are dropped from the equations. They
are reintroduced in the final stage of modeling, when individual
models are optimized with gradient descent.

The network models are parameterized by the square interac-
tion matrix W= {w;} of size N (IVF entries), where wjj represents a
directed interaction between nodes, quantifying the influence of x;
on the rate of change of x;. In chemical kinetics, the w;; is analogous
to rate constants in units of inverse time, although no explicit rates
are derived here. Equation 1 describes the dynamic behavior of
the system, given a constant interaction matrix W. In this work, we
explicitly forbid self-interactions, therefore the /V diagonal entries
of W are set to 0 and only the remaining N°-NV are subject to
fitting. These apparently simple models can represent biologically
realistic regulatory motifs, such as serial and parallel pathway
connectivity, positive and negative feedback loops and feed-
forward control. The models used here are dynamic in the sense
that they can be simulated as temporal trajectories that converge
to a steady state. In this work, the parameters are inferred based
solely on data assumed to represent the biological steady state.
Thus, only the endpoints of the simulated trajectories are
constrained. Despite not being used in this study, both the model
and the learning method can generalize to incorporate time-series
data.

The problem of model inference. The problem of deriving
useful models of a (biological) system is called ‘model inference’.
The objective of model inference, given a mathematical frame-
work like that described above, is to find a set of parameters such
that the model equations best reproduce a training set of
experimental data and have predictive power beyond the training
set. In the present modeling framework, we aim to find numerical
values for the N°—N free parameters in the interaction matrix W,

PLOS Computational Biology | www.ploscompbiol.org

Perturbation Cell Biology

such that descriptive and predictive power of the model is
optimized. Genuine predictive power, rather than just descriptive
power, requires both low error and low complexity of the model,
combined as low cost. We quantify the cost of W by an objective
cost function C(W) that penalizes: (i) discrepancies between
predicted x¥(#;) and experimentally measured x!*(#/) values of
the system observables at a set of time points {#} in condition y;
and (i1) the number of non-zero interactions in W. Lower cost
models tend to have more predictive power than higher cost
models.
Equation 2: Model configuration cost_function

L N M 2 N N
CW)=BY > 3 (e —x"w) +2) > dwy)  (2)
/ iz i

i e

(3(W,'/') =1
O(wy)=0

l_f WU' # 0

2.b
oo (2.0)

C(W) is thus the error-plus-complexity cost of a parameter
configuration W. The cost components are weighted by f# and 4,
respectively. The complexity cost term is an L0 penalty
[47,48,49,50,51] that penalizes non-zero entries in W and is
included to both avoid overfitting and reflect the empirical
observation that realistic biological networks such as gene
regulatory networks or protein-protein interaction networks are
sparse [52]. While L/ penalties are convex and therefore amenable
to efficient convex optimization methods, they are not used here
since they provide weaker constraint on the complexity of the
interaction matrix W [25,53,54,55]. We do not wish to include
direct self-interaction in the present version; thus, the sum in the
complexity term does not include the diagonal elements w;;. The
computational challenge of network inference is to translate the
information contained in a set of experimental observations into
an optimal set of models, as represented by a set of low cost
interaction matrices W. In this report, we work in the steady-state
approximation and thus ignore the time variable in the cost
function in Equation 2.

De novo network inference is a hard problem. In
principle, to infer optimal network configurations one has to
compute the cost of all possible network configurations. However,
explicit enumeration and cost calculation of all possible parameter
configurations W is a prohibitively complicated task for even
moderately sized systems. To estimate the complexity of this task,
assume that any wj can take on K discrete values out of a value
range 2, for example, Q={—1,0,41} for K=3, representing
inhibition, no interaction and activation, respectively. As the
number of model nodes NN increases, the number of possible
parameter configurations increases as KW "), Even for moderate
N, e.g., 20 nodes, the number of distinct configurations is of order
10", obviously a very large number, making explicit enumeration
prohibitive.

The solution space refers to the set of all possible model
configurations. A reasonably clever strategy to traverse this
enormous solution space is guided random exploration, e.g., by
a traditional Monte Carlo search, in which random moves in
multi-dimensional parameter space are kept or rejected based on
the cost of the resulting configuration, with a non-zero but small
probability of accepting higher cost configurations in order to
facilitate the escape from local minima. In an earlier study, we
successfully used a Monte Carlo search followed by a modified
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gradient descent method to derive a set of low cost models for a
relatively small system. This earlier algorithm achieved a
reasonable exploration of solution space for a system of 14
variables, as assessed by the recurrence of dominant interactions
across the set of a few hundred low-cost models and the agreement
of those interactions with well-established knowledge of signaling
pathways in cell biology. However, the KW 2)argument above and
explicit computational benchmarking indicate that such Monte
Carlo searches become prohibitively expensive for larger systems.

Fast inference via a probability model of network
configurations. In search of a more efficient algorithm, we
adopt an idea originally developed in statistical physics, and widely
used In solving complicated optimization problems in computer
science and other areas. Instead of sampling a prohibitively large,
unrestricted solution space by traversing a set of individual
configurations, the idea is to first calculate high probability regions
and then restrict exploration to this smaller solution space. In
particular, we describe high probability regions by calculating
probability distributions of individual model parameters over
possible value assignments. Then, we can generate distinct model
configurations by sampling from the calculated probability
distributions.

Models with a large error (or cost) have low probability, while
those with a low error have high probability. More precisely, the
probability of any particular model can be computed from its cost,
which depends on the parameters in the interaction matrix W and
the experimental data (Equation 2). In statistical physics, there is
an analogous relationship between the Hamiltonian for the states
of a system and its Boltzmann-Gibbs probability distribution over
all states. In terms of Bayesian inference, the equation below
relates the posterior distribution of the model on the left to the
likelihood function and prior distributions on the right.

Equation 3: The probability model of network configurations

N M N N
! PR DR WL
P(W)=§e’C<W)=Ee T e i=lj#i

The variable Z is the partition function, which ensures that the
sum of the probabilities over all model configurations is equal to
one. In the statistical physics analogy, the exponents contain
interaction energies and the parameter B is an inverse temperature
(1/7T), such that higher values of f assign higher probability to
lower cost configurations. The parameter A is the weight of the
complexity penalty. The choice of ff and 2 is non-trivial and is an
open area of research (see Methods). Given the probabilistic model
in Equation 3, the practical challenge is to identify configurations
of model parameters in W that represent maximally probable
models, given the data. The explicit computation of probabilities
for all possible sets of parameters is not feasible even for
moderately sized (N>15) systems. One therefore has to invent
practical algorithms for effectively exploring the total solution
space and approximately determining sets of good models.

Iterative optimization of the probability model. An
effective solution is to use an iterative algorithm to approximate
the probability distributions of the individual parameters by
themselves, often called marginal probability distributions, or
simply ‘marginals’. From these marginals, we can describe high
probability model configurations for the full system. This iterative
algorithm begins with a set of random marginals. In each iteration
step, one assumes approximate knowledge of all parameter
marginals (‘global information’) and then performs optimization
updates on an individual marginal (local update’). The local
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update takes immediate effect and becomes part of the ‘global
information’ for successive iterations as the algorithm traverses
over all marginals for individual updating. The iteration termi-
nates when it converges to a stable set of marginals. The nature of
any local update to a single parameter (e.g., a node-node
interaction parameter) is a calculation optimizing a balance of
fitness to experimental data and consistency with the global
information. The iterative application of this ‘global to local and
back’ optimization strategy results in marginals for all system
parameters given a probabilistic model. Such optimal marginals
are informative by themselves, but are also useful for constructing
a population of explicit individual high probability model
configurations, which are useful for model simulation studies.

This type of probabilistic method originates in statistical physics
and has been generalized to a number of hard optimization
problems in statistical physics and computer science. An early
application of such probabilistic inference was inverse parameter
inference for disordered diluted spin systems [56,57,58]. A well
known formulation in terms of Bayesian statistics led to the term
‘belief propagation’ [59] (BP).

The BP approach, also known as the Bethe-Peierls approxima-
tion or cavity method in statistical physics, provides an approximate
method for computing marginal probability distributions on a class
of probabilistic graphical models called factor graphs. In general, a
joint probability distribution over many variables may factorize into
a product of factors. A factor in a factor graph represents an
independent contribution to the joint probability distribution, and is
connected to the variables that depend on that factor. Typically, a
factor defines a constraint on a subset of variables. The BP method
is proven to be exact on tree-sh