
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SeLeCT: Self-Learning Classifier
for Internet Traffic / Grimaudo, Luigi; Mellia, Marco; Baralis, ELENA MARIA; Ram, Keralapura. - In: IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - (2014), pp. 144-
157. [10.1109/TNSM.2014.011714.130505]

Original

SeLeCT: Self-Learning Classifier
for Internet Traffic

Publisher:

Published
DOI:10.1109/TNSM.2014.011714.130505

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2524903 since:

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

1

SeLeCT: Self-Learning Classifier
for Internet Traffic

Luigi Grimaudo, Marco Mellia, Elena Baralis and Ram Keralapura

Abstract—Network visibility is a critical part of traffic engi-
neering, network management, and security. The most popular
current solutions - Deep Packet Inspection (DPI) and statistical
classification, deeply rely on the availability of a training set.
Besides the cumbersome need to regularly update the signatures,
their visibility is limited to classes the classifier has been trained
for. Unsupervised algorithms have been envisioned as a viable
alternative to automatically identify classes of traffic. However,
the accuracy achieved so far does not allow to use them for traffic
classification in practical scenario.

To address the above issues, we propose SeLeCT, a Self-
Learning Classifier for Internet Traffic. It uses unsupervised algo-
rithms along with an adaptive seeding approach to automatically
let classes of traffic emerge, being identified and labeled. Unlike
traditional classifiers, it requires neither a-priori knowledge of
signatures nor a training set to extract the signatures. Instead,
SeLeCT automatically groups flows into pure (or homogeneous)
clusters using simple statistical features. SeLeCT simplifies label
assignment (which is still based on some manual intervention) so
that proper class labels can be easily discovered. Furthermore,
SeLeCT uses an iterative seeding approach to boost its ability to
cope with new protocols and applications.

We evaluate the performance of SeLeCT using traffic traces
collected in different years from various ISPs located in 3
different continents. Our experiments show that SeLeCT achieves
excellent precision and recall, with overall accuracy close to 98%.
Unlike state-of-art classifiers, the biggest advantage of SeLeCT
is its ability to discover new protocols and applications in an
almost automated fashion.

Index Terms—Traffic classification, clustering, self-seeding,
unsupervised machine learning

I. INTRODUCTION AND MOTIVATION

A critical part of network management and traffic engi-
neering is the ability to identify applications and protocols
originating traffic flows. To provide network visibility, in the
last years several classification techniques have been proposed
(see [1], [2] and references therein). Until a decade ago, port-
based approaches were very popular. The effectiveness of
pure port-based approach has diminished even if it has been
shown that port numbers carry valuable information about
the application and/or protocol [2]. Over the last few years
deep packet inspection (DPI) has become popular [1], and

Manuscript received June 10, 2013; revised December 20, 2013; handled
by associate editor Dr. Philippe Owezarski.

The research leading to these results has been partly funded by the
European Union under the FP7 Grant Agreement n. 318627 (Integrated Project
”mPlane”) and by Narus Inc.

Luigi Grimaudo, Marco Mellia, and Elena Baralis are with Politecnico di
Torino, Italy - email: firstname.lastname@polito.it

Ram Keralapura is with Narus Inc, Sunnyvale, California. E-mail: rkerala-
pura@Narus.com.

behavioral techniques have been investigated since the seminal
work of [3].

Both DPI and behavioral classifiers share some limitations.
First, to achieve a high classification accuracy, either a cum-
bersome protocol reverse engineering to identify the signatures
in DPI, or a tedious process to generate an accurate training
set for behavioral classifiers is required. In other words, both
approaches require training. Second, and most critical, the
classifiers can identify only the specific applications they
have been trained for. All other traffic is aggregated either
in a generic class labeled as “unknown”, or, even worse,
it is mislabeled as one of the known applications. In other
words, these classifiers cannot identify the introduction of a
new application, or changes in the applications’ protocol or
behavior, unless a re-training phase is entered. Designing a
classification engine capable of automatically identifying new
emerging protocols is still an open and challenging research
topic.

In this paper, we propose SeLeCT, a novel algorithm that
overcomes the limitations highlighted above. Our goal is to
provide a deeper network visibility for operators. In other
words, we intend to offer the ability to semi-automatically
identify prominent classes of traffic, targeting network man-
agement and traffic engineering operations1. SeLeCT proves
to be able to expose classes of traffic which are very specific
and possibly are not already known to the operator. For
example, SeLeCT has been able to separate Google Mail
traffic from other mail services. It thus automatically allows
to discover new classes of traffic, allowing arbitrary definition
of labels.

In SeLeCT, we leverage unsupervised data mining algo-
rithms to automatically split traffic into homogeneous subsets
or clusters. We consider flows as the target of the classification.
Each flow is characterized by using simple layer-4 metrics,
like segment size and inter-arrival time. These features are
known to carry valuable information about the protocol and/or
application that generated the flow [2]. However, they perform
not as good in the context of unsupervised (i.e. clustering)
algorithms. Hence we have to adopt some ingenuity in order
to improve cluster homogeneity. To overcome the limitation
of off-the-shelf algorithms, we design an iterative clustering
procedure in which a filtering phase follows each clustering
phase to eliminate possible outliers. Filtering is based on the
still valuable information provided by port numbers. Note that
port number information is not embedded in a metric space,

1SeLeCT is not intended for security purposes where every single bit,
packet, and/or flow must be carefully examined.

2

e.g., the distance between port 79 and 80 is not different
from the one between port 80 and 8080. As such, it is hard
to integrate port number as a simple feature into classical
clustering algorithms.

Using traffic traces collected in different years from various
ISPs located in 3 different continents, we show that the
iterative clustering process leads to clusters with excellent
properties. First, SeLeCT generated only a few cluster in each
of these traces (typically less than 150). Second, clusters are
very pure, i.e., the overall homogeneity of the clusters is close
to 100%. This allows to easily inspect and label each cluster,
thus assigning a proper label to all flows belonging to the same
cluster.

As soon as some labels are assigned to flows, SeLeCT
will automatically inherit them for classification of flows
that arrive in the future. We refer to this as adaptive or
progressive seeding since flows labeled in the past are used to
seed the subsequent datasets. Notably, this will minimize the
bootstrapping effort required to label applications, and manual
intervention is mainly required for the initial label assignment.
This mechanism allows to naturally grow the intelligence of
the system such that it is able to automatically adapt to the
evolution of protocols and applications, as well as to discover
new applications.

The idea of leveraging semi-supervised learning has been
initially proposed in [4], where the authors leverage the
standard k-means to construct clusters. Part of the flows to
be clustered are assumed to be already labeled, and a simple
voting scheme is used to extend the dominant label to the
whole cluster.

SeLeCT follows similar principles, extending the idea with
i) iterative port filtering and ii) multi-batch seeding which, as
we will see in Sec. VI, allow to significantly boost overall
performance achieving 98% accuracy in practical cases. The
iterative clustering algorithm and self-seeding approach pro-
vide several advantages: the number of clusters is reduced
to less than 150, while at the same time homogeneity is
significantly increased. This simplifies the labeling process so
that manual inspection becomes almost trivial. Furthermore,
the SeLeCT self-seeding process is more robust and results
obtained from actual traffic traces show how SeLeCT helps in
automatically identifying fine grained classes of traffic (e.g,
IMAP vs POP3, XMPP vs Messenger), and even unveiling
the presence of unknown/undesired classes (e.g., Apple push
notification, Bot/Trojan, or Skype authentication traffic). In
identifying standard protocols SeLeCT proves to be even more
robust than professional DPI based tools which were fooled
by non-English customizations of protocol error messages.

A preliminary version of this paper appeared in [5]. This
version improves description of the algorithms and a complete
performance evaluation of SeLeCT including a thorough sen-
sitivity analysis, and more detailed set of results.

A. Key features of SeLeCT

Some of the key features of SeLeCT are:
• Adaptive classification model. A semi-supervised learning

approach allows SeLeCT to learn information from unlabeled

data with simplified manual intervention. Once some labels are
provided, SeLeCT automatically adapts the model to changes
in the traffic.

• Simple iterative approach. SeLeCT is based on k-means,
a simple yet effective clustering algorithm. It uses k-means as
a building block in an iterative clustering refinement process,
which allows leveraging specific Internet traffic features such
as the server port that cannot be integrated into classical clus-
tering algorithms in a straightforward fashion. This approach
yields strongly cohesive clusters and provides an almost com-
plete coverage of the considered flows.

• Leverages layer-4 features. SeLeCT relies on the avail-
ability of flow level features that can be easily acquired at
the beginning of the flow, and it does not assume to see both
directions of traffic.

• Limited complexity. SeLeCT can run in real time by
constantly monitoring the incoming traffic, creating batches
of flows, and processing these batches before the next batch
accumulates.

After describing related works in Sec. II, we introduce the
classification problem in Sec. III and provide a description of
the datasets used for the experiments in Sec. IV. SeLeCT al-
gorithms are detailed in Sec. V, while performance evaluation
is provided in Sec. VI. Interesting findings are highlighted in
Sec. VII, while Sec. VIII discusses the self-seeding process.
Sec IX discusses parameter setting and provides a thorough
sensitivity analysis. Finally, Sec. X summarizes the key find-
ings.

II. RELATED WORK

A. Clustering Algorithms

Data mining techniques may be grouped in two fami-
lies: supervised and unsupervised techniques [6]. Supervised
algorithms assume the availability of a training dataset in
which each object is labeled, i.e., it is a-priori associated
to a particular class. This information is used to create a
suitable model describing groups of objects with the same
label. Then, unlabeled objects can be classified, i.e., associated
to a previously defined class, according to their features.
For unsupervised algorithms, instead, grouping is performed
without any a-priori knowledge of labels. Groups of objects
are clustered based on a notion of distance evaluated among
samples, so that objects with similar features are part of the
same cluster.

Supervised algorithms achieve high classification accuracy,
provided that the training set is representative of the objects.
However, labeled data may be difficult, or time-consuming
to obtain. Semi-supervised classification addresses this issue
by exploiting the information available in unlabeled data to
improve classifier performance. Many semi-supervised learn-
ing methods have been proposed [7], unfortunately, no single
method fits all problems.

The semi-supervised learning approaches closest to our
proposal are [8] and [9]. Both labeled and unlabeled data
are clustered by means of (variations of) known clustering
algorithms (k-means in [8] and SOM in [9]). Next, labeled data
in each cluster is exploited to assign labels to unlabeled data.

3

Finally a new classifier is trained on the entire labeled dataset.
While we exploit a different, iterative clustering approach to
group data, our labeling process is similar to [8]. Due to its
iterative refinement process, the approach adopted in SeLeCT
is also particularly suited to model traffic flow changes,
because it allows a seamless adaptation of the obtained traffic
classes to traffic pattern evolution.

B. Applications to traffic classification
The application of unsupervised techniques is not new in

the traffic classification field. [10] is one of the preliminary
works and shows that clustering techniques are useful to obtain
insights about the traffic. In [11] supervised and unsupervised
techniques are compared, demonstrating that unsupervised
algorithms can achieve performance similar to the supervised
algorithms. Other works compare the accuracy of different and
standard unsupervised algorithms [12], [13], [14]. In general,
the techniques presented in these works achieve a moderate ac-
curacy and they typically identify several hundreds of clusters,
therefore questioning the applicability of this methodology in
practice.

Recently, [4], [15], [16], [17], [18] have introduced the semi-
supervised methodology in the context of traffic classification.
[4] is among the first works that proposes also a simple
labeling algorithm. It uses the off-the-shelf k-means algorithm
and present a performance evaluation considering a trace
collected from a Campus and a small residential network.
Limited ground truth is available and only coarse classes are
considered (e.g., P2P, HTTP, EMAIL, CHAT, etc.). Results
show that to achieve good accuracy, a still large number of
clusters must be used (k ≥ 400) and the labeled dataset must
be large (more than 15% of flows must be already labeled).
We explicitly compare the performance of SeLeCT against the
solution proposed in [4] in Sec. VI.

In [15] the authors propose a simple clustering algorithm
based on information entropy to group flows. Clusters are
then labeled using some ad-hoc engineered algorithm that
can coarsely identify classes like P2P or Client/Server traffic.
Limited performance evaluation is provided considering traffic
generated by 20 hosts only. Neither learning nor seeding is
proposed. In [16], the authors proposed advanced unsupervised
and semi-supervised machine learning algorithms to cluster
flows. 22 (bi-directional) flow level features are used, which
include packet size and inter-arrival time. Performance evalu-
ation considers two small datasets of 4,000 flows each. Accu-
racy reaches 85%. [17] proposes a semi-supervised method
which extends [4]. As features, the destination IP address,
server port and transport protocol are considered. k-means is
used as basic building block. Accuracy, evaluated considering
two traffic traces, tops 90%. In [18], the authors propose an
unsupervised traffic classification that uses both flow features
and packet payload. Using a bag-of-words approach and latent
semantic analysis, some clusters are identified. Performance is
evaluated using a single trace and reaches 90% of accuracy.

In all cases, SeLeCT achieves better results in terms of
classification performance, provides finer grained visibility
on traffic, and offers a simple self-seeding mechanism that
naturally allows the system to increase its knowledge..

III. PROBLEM STATEMENT

We consider directed traffic flows as the objects to clas-
sify. A directed flow, or flow for short, is defined as the
group of packets that have the same five tuple F =
{srcIP, dstIP, srcPort, dstPort, protocol}. Note that pack-
ets going in opposite directions belong to two directed flows.
For instance, in a traditional TCP connection, packets sent by
the client belong to a directed flow, and packets sent by the
server belong to a different flow. Considering directed flows
allows the classifier to work even in presence of asymmetric
routing (backbone networks for instance).

We assume all packets traversing a link are exposed to the
classifier which keeps track of per-flow state. A flow F is
identified when the first packet is observed; the flow ends when
no packets have been seen for a given time ∆T . TCP signaling
segments may be used to detect appropriate flow start and
end. As suggested in [19], we consider a conservative value
of ∆T = 5min.

For each flow F , a set of features A(F) =

{a(F)
1 , a

(F)
2 , . . . , a

(F)
n } is collected. These features are used

by SeLeCT to characterize flows and take the classification
decision. The goal of SeLeCT is to assign a proper application
to each flow F based on the sole knowledge of the flow
feature set A(F).

In this work, we choose behavioral features that are well
known to carry useful information about the application and
protocol used at the application layer [1], [2]. In particular,
we select: (i) The server port srvPrt, (ii) the length of the
first n segments with payload, and (iii) their corresponding
inter-arrival-time. Note that only flows that have more than n
segments can be classified. The impact of the choice of n is
discussed in IV.

Formally, let L(iF) be the length of the i-th segment of
flow F , and let t(iF) be its arrival time. The i-th inter-arrival
time ∆t(iF) is ∆t(iF) = t(iF)− t(iF − 1), iF > 1. Then

A(F) = {srvPrt, L(iF), ∆t(iF) ∀iF ≤ n ∧ L(iF) > 0}

The choice of which features to consider is a matter of
optimization and several works in the literature have proposed
and investigated possible alternatives. Our choice stems from
the following intuitions: (i) keep the feature set limited, (ii)
include generic layer-4 features that can be easily computed,
and (iii) use features that can be collected during the begin-
ning of a flow so that we can classify flows in real-time (i.e.,
minimize the time required for identification). It is out of the
scope of this paper to compare and choose which are the most
suitable features to use. We will consider this as a part of our
future work. However, given the high accuracy of SeLeCT, we
believe that it may be difficult to improve it by considering a
wider/different set of features.

IV. DATASETS TO EVALUATE SELECT

In this section, we briefly describe the datasets that we
collected and used to evaluate SeLeCT. We provide more
details in Section VI. Table I summarizes the main charac-
teristics of the datasets. We collected four different traces

4

name DateTime Place Type IP Flow
Dataset-1 Aug05 1pm S.America backbone 108k 527k
Dataset-2 Sep10 10am Asia backbone 111k 1.8M
Dataset-3 Aug11 2am Europe access 111k 885k
Dataset-4 Aug11 5pm Europe access 190k 2.3M

TABLE I
DATASETS USED IN THE PAPER FOR PERFORMANCE EVALUATION. THE
TABLE INCLUDES FLOWS FOR WHICH FEATURES CAN BE COMPUTED.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 101 102

C
D

F
 -

 F
ra

ct
io

n
of

 p
ac

ke
ts

Flow Length [pkts]

Dataset-3C
Dataset-4C
Dataset-3S
Dataset-4S

10-3

10-2

10-1

100

100 101 102 103 104 105

C
D

F
 -

 F
ra

ct
io

n
of

 b
yt

es

Flow Length [pkts]

Fig. 1. CDF of the flow length in packets (on the left), and bytes (on the
right). The vertical line is in correspondence of 6 data packets.

from access and backbone networks of large ISPs2. Each
dataset is a 1-hour long complete packet trace including the
packet payloads. We selected these traces to create a very
heterogeneous benchmarking set. They include backbone and
access scenarios, day and night time periods, different years,
and users from three different continents.

In this work, we focus on TCP traffic only as most appli-
cations today rely on TCP. The extension of SeLeCT to UDP
traffic is straightforward and is not further investigated in this
paper.

For each trace, we generate two separate datasets - the set
of flows originated by clients (i.e., hosts actively opening the
TCP connection) and the set of flows originated by servers
(i.e., hosts that replied to the connection request). A letter
’C’ (client-to-server) or ’S’ (server-to-client) is appended at
the dataset name when needed. Overall, the oldest trace -
Dataset-1 - was collected in 2005 from a major ISP in
South America; it contains more than half million TCP flows
involving more than 100, 000 hosts. Dataset-2 was collected
from the peering link of an ISP in Asia in September 2010.
Finally, Dataset-3 and Dataset-4 were collected at different
times of the day from the same vantage point in Europe during
August 2011. Dataset-3 was collected at 2am in the night,
while Dataset-4 was collected at 5pm. The latter contains about
2.3 million flows directed to more than 190, 000 hosts. We will
primarily use the last two datasets for deeper investigation in
the rest of the paper.

Only flows that have at least n data packets can be consid-
ered by SeLeCT. So the first question to answer is how much

2Due to NdA with ISPs we are not allowed to share the original traffic
traces.

1: Main()
2: Output: set C of labeled clusters
3: S = ∅
4: while (newbatch B) do
5: ProcessBatch(B, U , S, C, NS)
6: S = NS
7: end while
8:
9: ProcessBatch(B, U , S, C, NS):

10: Input: Set B of new flows, set S of seeds
11: Output: set C of labeled clusters, set NS of new seeds
12: B′ = B ∪ S ∪ U /* Merge new flow, seeding set,
13: and past outliers */
14: C′ = doIterativeClustering(B′);
15: C = doLabeling(C′);
16: NS = extractSeeds(C);

Algorithm 1: SeLeCT Main loop.

traffic can be classified by SeLeCT for different values of n.
Fig. 1 reports the Cumulative Distribution Function (CDF) of
the number of packets (on the left) and bytes (on the right)
carried by flows of different length. For the sake of simplicity,
let us focus on Dataset-3 and Dataset-4, which are the two
most recent datasets. The CDF of the fraction of packets (on
the left plot) shows that the large majority of the flows are
“mice”, i.e., flows with few packets. For instance, 90% of
client flows have no more than 6 data packets (highlighted by
the vertical bar). However, by looking at the CDF of bytes
(reported on right plot), we observe that the mice account for
no more than 1% of the volume of traffic (notice the log scale
on y-axis). Thus, by considering flows that have at least 6
data packets: (i) we allow a richer description of each flow
characteristics (ii) we are discarding the large majority of
mice flows and (iii) we are looking at more than 99% of
traffic volume. Based on these observations, in the rest of the
paper we use n = 6. Thus, as any statistical classifier, SeLeCT
targets long-lived flows.

V. THE SELECT ALGORITHM

We consider a scenario in which traffic is sniffed in real
time and new flows enter the system continuously. Flows are
processed in batches. A new batch B is formed as soon as a
given number of valid flows is observed. The probe monitors
packets and rebuilds flows. For a given flow, as soon as 6
data packets are observed the flow identifier and features are
dispatched to a buffer where the batch is being formed. When
the batch reaches the target number of flows, it is dispatched
to the classification algorithm, and a new batch starts.

SeLeCT analyzes each batch of newly collected flows
via the ProcessBatch() function shown in the pseudo-code
reported in Alg. 1. This function takes in input

• B, the batch of new flows;
• U , the set of previous outliers that were not assigned to

any class when processing the previous batch;
• S, the set of seeding flows, i.e., flows already analysed

in past batches for which SeLeCT was able to provide a

5

label;
As output, it produces

• C, the set of clusters;
• NS , the set of new seeds that are extracted from each

cluster;
• U , which contains the set of new outliers;
Its main steps (see Alg. 1) are (i) clustering batch data to get

homogeneous subsets of flows (function doIterativeCluster-
ing()), (ii) flow label assignment (function doLabeling()), and
(iii) extraction of a new set of seeds (function extractSeeds()).
Note that flows that are not assigned to any cluster are returned
in the U set. Those flows are then aggregated in the next batch,
so that they can eventually be aggregated to some cluster3. In
the following we detail each step of the batch processing.

A. Iterative clustering

Clustering algorithms group objects with similar character-
istics [6]. Objects are described by means of features which
map each object to a specific position in a hyperspace. The
similarity between two objects is based on their distance. The
closer the two objects are, the more likely they are similar and
thus should to be grouped in the same cluster. Typically, the
Euclidean distance is used.

Iterative clustering is the core of SeLeCT. It exploits the k-
means clustering algorithm [6] to group flows into subsets or
clusters which are possibly generated by the same applications.
We selected the k-means algorithm since it is well understood
and it has been previously used in previous works. We tested
also other clustering algorithms like DBSCAN [6]. Results
(not reported here due to lack of space) are similar or worse,
with a trickier sensitivity to parameter settings.

In this context, it is natural to consider two flows with
similar packet lengths and inter-arrival times to be close (i.e.,
to be likely generated by the same application). However, the
same property does not hold for the srvPort feature. For
instance, two flows directed to port 25 and to port 80 are not
more likely to be similar than two flows directed to port 80 and
to port 62000. The srvPort feature is a nominal feature [6],
thus it cannot be included in Euclidean distance computations.

Still, the srvPort is an important feature for traffic clas-
sification [2]. Two cases can be distinguished: protocols and
applications i) running on one (or more) specific srvPort on
servers, or ii) running on a random srvPort selected by each
server. We denote them as dominatedPort and randomPort
protocols respectively. In both cases, the srvPort carries
valuable information if applied as a filter.

In the past, several researchers have applied clustering
algorithms to traffic analysis [4], [12]. However, to the best
of our knowledge, none of the previous works exploited the
specific characteristic of the srvPort feature in a clustering
process. This is mainly related to the fact that port numbers
are not embedded in a metric space. Thus ingenuity is required
to smartly include them. In our work we engineer an iterative
procedure to identify clusters of flows in which the srvPort

3It would be possible to limit the number of batches some flows may be
still in the U set and output them in a “unclassifiable” set to avoid delaying
classification process.

information is used to filter elements in each cluster. As
reported in Alg. 3, we devise an iterative process, in which
clustering phases and filtering phases alternate. We use a set-
based notation. Names of the sets are defined in the pseudo
code.

1: doFiltering(I, C, U , DP , portFraction,
DominatingPhase)

2: Input: cluster I of flows to be filtered,
DominatingPhase flag to select the filtering

3: Output: set C of clusters, set U of outliers, set DP
of dominant ports

4: DP = ∅
5: if ||I|| < minPoints then
6: U = U ∪ I; return
7: end if
8: if DominatingPhase == TRUE then
9: /* Processing dominatedPort cluster */

10: if (topPortFreq(I) > portFraction) then
11: C′ = getFlows(I,DP)
12: C = C ∪ C′ /* Add the filtered cluster to C /*
13: R = I \ C′

14: U = U ∪R /* Put discarded flows in U */
15: dp = dominantPort(I)
16: DP = DP ∪ {dp} /* Record dominant port */
17: else
18: U = U ∪ I /* I flows must be reclustered */
19: end if
20: else
21: C = C ∪ I /* I is a good cluster at last */
22: end if

Algorithm 2: Filtering of clusters.

1) The filtering procedure: The filtering procedure is re-
ported in Alg. 2. Filtering is performed on the cluster I
provided as input. First, doFiltering() discards clusters which
have less than minPoints flows to avoid dealing with exces-
sively small clusters. Discarded flows are returned in set U ,
the set of unclustered flows that will undergo a subsequent
clustering phase (lines 5-7).

DominatingPhase is a flag that is used to select the type
of filtering: when it is TRUE, the filtering processes only
dominatedPort clusters. To this aim, the srvPort distribution
is checked. If the fraction of flows with the most frequent
srvPort in I exceeds the threshold portFraction, the cluster
is a dominatedPort cluster. The flows involving the dominant
srvPort are clustered together and added to the set C of
final clusters (line 11-12), while flows not involving the
dominant srvPort are removed and put in U (lines 13-14).
The dominant port dp is included in the set DP of dominant
ports (lines 15-16). If there is no dominant port, all flows from
I are put in U (lines 17-18).

When DominatingPhase is FALSE, randomPort clusters
are handled. In this case, cluster I (with all its flows) is simply
added to the set of final clusters (line 21).

2) The iterative clustering procedure: The iterative clus-
tering procedure is reported in Alg. 3 which receives as input

6

1: doIterativeClustering(B)
2: Input: Set B of flows to be clustered
3: Output: set of clusters C, set of outliers U
4: U = B, DP = ∅
5: for (step=1; step ≤ itermax; step++) do
6: C′ = k-means(U)
7: U = ∅
8: for I in C′ do
9: /* look for dominatedPort clusters first */

10: doFiltering(I,C,U ,DP ,portFraction,true)
11: end for
12: end for
13: /* Last step: process random port clusters */
14: for dp in DP do
15: delFlows(U ,dp) /* Discard flows still to DP */
16: end for
17: C′ = k-means(U)
18: for I in C′ do
19: /* look for randomPort clusters now */
20: doFiltering(I,C,U ,DP ,0,false)
21: end for
22: return C, U

Algorithm 3: Iterative Clustering

the current batch B of flows. It iteratively generates dominated
port clusters alternating clustering and filtering phases. At last,
it generates random port clusters. More specifically, the set of
flows B to be clustered is processed for itermax iterations.
At each iteration the set U of flows that are not yet assigned
to any cluster is processed (lines 5-12). k clusters are formed
using the well-known k-means algorithm that returns the set
C′ of k clusters. Each cluster in C′ undergoes a filtering phase
(lines 8-11), which is looking for dominatedPort clusters at this
stage. The doFiltering() procedure returns in U flows that did
not pass the filter and must be processed at the next iteration.

After itermax iterations, randomPort clusters are handled.
In this case, the information carried by the dominant port
has been already exploited in previous phases. The set DP
of dominant ports contains the srvPort that appeared as
dominant in the past. Intuitively, if a srvPort emerged as
dominant port, then flows that have not been already put into
srvPort dominated clusters should be considered outliers. As
such, we first remove from the set U of flows to be clustered
all those flows directed to any dominating port that has been
found in the previous iterations (lines 14-16). Then, the final
clustering is completed (line 17-21).

B. Labeling

Once flows have been clustered, the doLabeling(C′) pro-
cedure (see Alg. 1 - line 15) assigns a label to each cluster.
For each cluster I in C′, flows are checked. If I contains
some seeding flows, i.e., flows (extracted from S) that already
have a label, a simple majority voting scheme is adopted: the
seeding flow label with the largest frequency will be extended
to all flows in I, possibly over-ruling a previous label for
other seeding flows. More complicated voting schemes may be

adopted (e.g., by requiring that the most frequent label wins
by 50% or more). However, performance evaluation shows
that the homogeneity of clusters produced by the iterative
clustering procedure is so high that simple schemes work very
nicely in practice as shown in Sec. VIII.

1) Bootstrapping the labeling process: If no seeding flows
are present, I is labeled as “unknown” and passed to the
system administrator that should manually label the cluster.
This will clearly happen during the bootstrapping of SeLeCT,
when no labeled flows are present.

To address this issue, several solutions can be envisioned.
For example, labels can be manually assigned by using the
domain knowledge of the system administrator, supported by
all the available information on the flows in the cluster (e.g.,
port number, server IP addresses or even the flow payload, if
available). We show how easily this can be done in Sec. VIII.
A second option is to use a bootstrapping flow set from some
active experiments in which traffic of a targeted application
is generated. Similarly, a set of bootstrapping flows can be
generated by providing labels obtained by some other available
traffic classification tools, (as in [4]).

In all cases, the complexity of the labeling process is
reduced to the analysis of few clusters, instead of hundred of
thousands of flows. This mechanism can be also automated as
suggested by [20], but this is outside the scope of this paper.

C. Self-seeding

Once some clusters have been labeled, SeLeCT is able to
automatically reuse this information to process next batches.
This is simply achieved by extracting some seeding flows from
labeled clusters by means of the extractSeeds(C) procedure
(see Alg. 1 - line 16). It implements a stratified sampling
technique, i.e., from each cluster, the number of extracted
seeds is proportional to the cluster size. Stratified sampling
ensures that at least one observation is picked from each of
the cluster, even if probability of it being selected is far less
than 1. Thus, it guarantees that in the seeding set there are rep-
resentatives of each cluster and avoids the bias due to classes
having much more flows than others. Let numSeeds be the
target number of seeding flows, i.e., numSeeds = ||NS||.
For each labeled cluster I, a number NSI of labeled flows
proportional to the cluster size is extracted at random. That
is NSI = 1 +

(
||I||

numSeeds

)
flows are randomly selected

from each cluster I. This mechanism enforces a self training
process that allows the system to grow the set of labeled data
and thus augment the coverage of the classification process.
Sec. VIII provides some evidence to support this statement.

VI. EXPERIMENTAL RESULTS

A. Experimental dataset

We performed several experiments to assess the perfor-
mance of SeLeCT using the datasets described in Sec. IV.
All traces have been processed to generate directed flow
level logs. Recall that we only consider TCP flows in this
work. We use two separate advanced DPI classifiers to label
flows and use these labels as our ground truth. The first one

7

is provided by the NarusInsight4 professional tool, and the
second one is implemented in Tstat [21], the Open Source
traffic monitoring developed at Politecnico di Torino. A total
of 23 different protocols are identified including web (HTTP/S,
RTSP, TLS), mail (SMTP/S, POP3/S, IMAP/S), chat (XMPP,
MSN, YAHOOIM), peer-to-peer (BitTorrent, eMule, Gnutella,
Fasttrack, Ares) and other protocols (SMB, FTP, Telnet, IRC).
To be conservative, we label as “unknown” those flows that
do not match any of the DPI rules, or for which DPIs’ labels
are different. Each dataset has a different share of application
labels, with a typical bias toward most popular protocols like
HTTP and/or P2P that dominate the datasets; we do not report
these details for the sake of brevity.

B. Performance metrics

We consider two metrics to characterize the output of the
iterative clustering algorithm: number of clusters and clustered
flows percentage (i.e., the ratio of flows ||C′|| clustered by
doIterativeClustering(B′) to the total number of flows ||B′||
provided as input expressed in percentage).

In order to evaluate classification performance, we use the
confusion matrix. The confusion matrix is a matrix in which
each row represents the instances in a predicted class (i.e.,
the decision of SeLeCT), while each column represents the
instances in an actual class (i.e., the ground truth). The name
stems from the fact that it highlights cases in which the system
is confusing two classes (i.e., it is mislabeling one as another).
To evaluate the classification performance of SeLeCT, we use
three metrics: overall accuracy, recall, and precision.
• Accuracy is the ratio of the sum of elements in the main
diagonal (i.e., the total true positives) of the confusion matrix
to the sum of all elements (i.e., the total samples). Accuracy
does not distinguish among classes and is biased towards
dominant classes in the dataset. For instance, consider a
scenario where 90% of flows are HTTP flows. A classifier that
always returns the “HTTP” label will have accuracy of 90%,
despite completely missing all the other classes. Although
accuracy is an important metric, it does not capture all the
characteristics of the classifier.
• Recall for the i-th class, is the ratio of the element (i, i) (i.e.,
the true positives) in the confusion matrix to the sum of all
elements in the i-th column (i.e., the total samples belonging
to the i-th class). It measures the ability of a classifier to select
instances of class i from a data set. In the same example as
before, always returning “HTTP” would have a recall of 0%
for all classes except for “HTTP”.
• Precision, for the i-th class, is the ratio of the element (i, i)
in the confusion matrix to the sum of all the elements in the
i-th row (i.e., the true positives plus the false positives). It
measures the ability of the classifier in assigning only correct
samples to class i. In the example above, always returning
“HTTP” would have a precision of 90% for the HTTP class
and of 0% for the other classes.

In the rest of this section, we consider the following
parameter settings: Batch size ||B|| = 10, 000, number of flows
used for seeding numSeeds = 8, 000, minPoints = 20,

4http://www.narus.com/

itermax = 3, portFraction = 0.5 for step < itermax,
and portFraction = 0.2 for step itermax. Extensive param-
eter sensitivity is carried over in Sec. IX. For the k-means
algorithm, we set k = 100, number of iterations smaller than
1, 000, 000 and, to avoid the initial centroid placement bias,
we execute 10 independent runs and select the result with the
best Sum of Squared Errors (SSE) [6].

C. Iterative clustering performance

We first evaluate the benefits of the iterative clustering
procedure in SeLeCT. We compare the accuracy against i)
simple port-based classifier and ii) classic k-means as proposed
in [4]. The simple port-based classifiers uses the srvPort
to label flows. It considers well-known ports for the most
common protocols, and port 4662 for eMule. Experiments
here consider, for each dataset, the first batch of 10,000
flows only. For both algorithms, labeling is performed by the
doLabeling() procedure. The labeling process adopts a simple
majority voting scheme: given a cluster, the most frequent
label among seeding flows in the cluster is extracted, and
used to label all flows (mimicking [4]). The assigned label
is then compared to the original label that the DPI assigned to
each flow. Fig. 2 reports results for all datasets. Flow-wise
and byte-wise accuracy are reported in top and bottom plot,
respectively. The former is computed as the percentage of the
correctly classified flows, while the latter is computed as the
percentage of the bytes carried by correctly classified flows.
Results highlight the benefit of the iterative clustering process
for which the accuracy is about 97.5% on average, with a worst
case of 94.2% for Dataset-3C considering flow-wise accuracy.

The simple k-means adopted in [4] results in no more
than 85% flow-wise accuracy, which is in line to the findings
in [4], [12]. The port-based classifier performs poorly in some
scenarios where protocols not using a well-known port. This
is the case for Dataset-1C where the presence of P2P traffic
is predominant.

SeLeCT is the only classifier that offers excellent results
for all datasets, and considering both flow-wise and byte-wise
accuracy. Given the marginal differences of the two metrics,
in the following we consider only flow-wise performance
indexes.

An interesting observation in Fig. 2 is that the Server
datasets show better accuracy than the Client datasets. The
reason is that layer-4 features carry more valuable information
to differentiate between classes when considering packets sent
by servers rather than by clients, e.g., the typical lengths
of packets sent by HTTP and SMTP servers are different,
while the client queries could be more similar. The intuition
is that server responses have more peculiar lengths than client
queries.

Table II shows the confusion matrix for Dataset-2S, which
represents the best case for the k-means based classifier. The
bold font highlights true positives. First, notice that the HTTP,
SMTP, and Unknown classes are clearly predominant, possibly
causing a “capture effect” so that other classes vanish. In
fact, most of the flows of other classes are misclassified as
one of these three predominant classes, impairing recall and

8

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

1C 2C 3C 4C 1S 2S 3S 4S

A
cc

ur
ac

y
[%

]

Dataset

k-means SELECT Port-based

 30
 40
 50
 60
 70
 80
 90

 100

1C 2C 3C 4C 1S 2S 3S 4S

A
cc

ur
ac

y
[%

]

Dataset

k-means SELECT Port-based

Fig. 2. Accuracy of the clusters for simple port-based classifier, classic
k-means and SeLeCT. Accuracy computed per flows on the top, per byte on
the bottom. Results reported for all datasets.

B
T

H
T

T
P

H
T

T
PS

M
SN

PO
P3

PO
P3

S

SM
B

SM
T

P

SS
H

Te
ln

et

U
N

K

X
M

PP

BT 34 9 2 0 0 0 0 1 0 0 11 0
HTTP 18 5829 175 10 1 2 0 27 0 0 118 1

HTTPS 3 18 345 5 0 0 0 18 0 0 65 0
MSN 0 0 0 0 0 0 0 0 0 0 0 0
POP3 3 6 1 0 16 2 0 3 0 0 14 0

POP3S 0 0 0 0 0 0 0 0 0 0 0 0
SMB 0 0 0 0 0 0 0 0 0 0 0 0

SMTP 21 18 85 14 45 53 18 2247 0 43 276 5
SSH 0 0 0 0 0 0 0 0 0 0 0 0

Telnet 0 0 0 0 0 0 0 0 0 0 0 0
UNK 21 35 35 6 0 1 0 29 9 0 214 0

XMPP 0 0 0 0 0 0 0 0 0 0 0 0

TABLE II
CONFUSION MATRIX OF A CLASSIFIER BASED ON THE SIMPLE K-MEANS
AS IN [4] CLUSTERING FOR DATASET-2S. COLUMNS GIVE THE GROUND

TRUTH.

precision, even if the accuracy is still high (90% in this case -
see Fig. 2). For example, POP3S and Telnet have 0% for both
recall and precision. For the HTTPS flows - which are a non
negligible fraction of samples - precision is 74% and recall
is as low as 54%, i.e., about half of the HTTPS flows are
misclassified. Finally, the predominant class performance is
impaired as well. For example, SMTP precision drops to 78%
because of the high number of false positives. In summary,
the standard k-means clustering exhibits poor performance for
not dominant classes.

SeLeCT significantly boosts performance as depicted in Ta-
ble III5. The overall accuracy tops to 98.82% and the confusion
matrix exhibits almost perfect results. Interestingly, only flows
in the Unknown class have been (possibly) misclassified. For
example, 102 flows that the DPI labeled as Unknown are
instead labeled as SMTP by SeLeCT. We manually cross-
checked these flows, and found that 97 out of 102 flows are
indeed SMTP flows which the DPI was not able to correctly

5Totals are different than in Table II since SeLeCT adopts a conservative
approach by deferring the clustering of “noise” flows to next batches.

B
T

H
T

T
P

H
T

T
PS

M
SN

PO
P3

PO
P3

S

SM
B

SM
T

P

SS
H

Te
ln

et

U
N

K

X
M

PP

BT 3 0 0 0 0 0 0 0 0 0 3 0
HTTP 0 5769 0 0 0 0 0 0 0 0 30 0

HTTPS 0 0 530 0 0 0 0 0 0 0 0 0
MSN 0 0 0 7 0 0 0 0 0 0 1 0
POP3 0 0 0 0 42 0 0 0 0 0 0 0

POP3S 0 0 0 0 0 46 0 0 0 0 0 0
SMB 0 0 0 0 0 0 8 0 0 0 0 0

SMTP 0 0 0 0 0 0 0 2217 0 0 102 0
SSH 0 0 0 0 0 0 0 0 9 0 0 0

Telnet 0 0 0 0 0 0 0 0 0 43 0 0
UNK 4 0 0 2 0 0 0 0 0 0 83 0

XMPP 0 0 0 0 0 0 0 0 0 0 0 5

TABLE III
CONFUSION MATRIX OF THE SELECT CLASSIFIER FOR DATASET-2S.

COLUMNS GIVE THE GROUND TRUTH.

 70
 72
 74
 76
 78
 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 100

Step 1 Step 2 Step 3 Step 4
A

cc
ur

ac
y

[%
]

k-means
MinPoints-filter

port-filter

Fig. 3. Accuracy before and after the different filtering steps for Dataset-4S.

classify because the SMTP banner sent by the server was not
the usual one, and its pattern was not included in the DPI
engine signature set. Double checking unknown flows that
SeLeCT classified as HTTP, we also verified that the DPI was
fooled by some HTTP messages which included non-English
text (recall this dataset was collected from an ISP in the far
east). This shows that SeLeCT is able to automatically adapt
classes to small variations of features.

SeLeCT is more robust than the DPI-based classifier be-
cause layer-4 features are less sensitive to small feature
changes than the DPI pattern matching rules. The latter can
be fooled by a simple character change.

Fig. 3 gives more insights about the benefits of the filtering
steps in the iterative clustering process. It reports the overall
accuracy after (i) running the k-means only (line 6 of Alg. 3),
(ii) after all clusters with less than minPoints samples have
been discarded (lines 4-6 of Alg. 2), and (iii) after the final
port based filtering is performed (lines 7-18 of Alg. 2). Ac-
curacy is evaluated at each of the four steps independently of
the others, i.e., the results are not cumulative. The first 10,000
flows in the first batch of the Dataset-4S trace are considered.
In this case, flows are labelled by the original DPI label; flows
in a cluster are then re-assigned the majority label, and the
original and the new label are then compared. . Results show
that discarding clusters with less than minPoints provides
small improvements, while the port-based filtering is the key
to boost accuracy to 98% when dominatedPort clusters are
selected. Only at the last step, when randomPort clusters are

9

considered and the port-based filtering is disabled, accuracy
lowers to 82%. In this case, discarding the clusters smaller
than minPoints helps improving recall and precision for all
classes (see Table III). This last step is important since it
allows to properly look for Peer-to-Peer (P2P) protocols that
typically do not run on standard server ports.

These results show the benefits of the iterative clustering
approach. In particular, they highlight the befits of the filtering
mechanisms that allows exploiting the information carried by
the srvPort, which was not leveraged by previous clustering
approaches.

VII. INTERESTING FINDINGS ENABLED BY SELECT

One of the interesting possibilities offered by SeLeCT is its
ability to automatically group flows in homogeneous clusters.
It is thus interesting to verify if the clusters offer more fine-
grained classification than traditional protocol classification.
We first investigate dominatedPort clusters whose DPI inher-
ited label is “Unknown” for all datasets. We found:
• srvPort = 5223 - the Apple push notification server over
TLS is identified in Dataset-3 and Dataset-4;
• srvPort = 5152 - Backdoor.Laphex.Client traffic is
identified in Dataset-1;
• srvPort = 12350 - the Skype proprietary authentication
protocol is identified in Dataset-3 and Dataset-4;

SeLeCT automatically unveils clusters of traffic generated
by services that appear as real unknown to the network
administrator. This is the case of the Apple Push Notification
system for iOS devices and iCloud enabled devices, which is
based on the SSL/TLS protocol, but running on a non standard
srvPort = 5223. All flows in this cluster are labeled by the
DPI as SSL/TLS protocol. To find the correct label, a whois
lookup for the srvIP addresses reveals that the servers are all
registered to Apple Inc. By running an active experiment, it
is possible to confirm that all flows in this cluster are related
to Apple Push Notification and iCloud services.

A second cluster of unknown flows aggregates traffic gen-
erated by the malware Backdoor.Laphex.Client Bot/Trojan.
Manual inspection of flows payload confirms this assumption.
Similarly the cluster of flows directed to srvPort = 12350
turns out to unveil Skype Authentication protocol traffic. Also
in this case, the srvIP of all flows reveals strong clues about
the application. All flows are directed to srvIP in the subnet
213.146.189.0/24, registered to Skype Inc.

We then analyze clusters labeled as HTTP traffic. There are
several tens of them in each dataset, and some share some
clear threat. As proposed in [22], the srvIP feature reveals
interesting information. For instance, srcIP addresses in some
clusters clearly belong to the same subnet. By means of a
simple whois query, it is possible to identify clusters containing
only Google, Dailymotion or Amazon services, respectively.
Similarly, a POP3S cluster refers to mail.google.com servers
scattered in 4 different subnets in Dataset-4, while a second
POP3S cluster aggregates together all flows of other mail
providers.

These examples confirm the ability of SeLeCT to auto-
matically reveal new classes of traffic that would be hard to

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
[%

]

Batch

Dataset-1C
Dataset-1S
Dataset-2C
Dataset-2S
Dataset-3C
Dataset-3S
Dataset-4C
Dataset-4S

Fig. 4. Accuracy over different batches.

highlight by means of any supervised technique. Once SeLeCT
is augmented with this knowledge by injecting these labels,
flows are correctly classified in all subsequent batches thanks
to the seeding mechanism.

Overall, we were able to find labels for about 90% of
unknown clusters. The remaining 10% of clusters contains
flows that appear to be encrypted, and for which the IP
addresses refer to end-user addresses assigned by ISPs to
modems. We suspect those could be Skype flows, but we are
not able to confirm this assumption.

VIII. EXPLORING THE SEEDING PROCESS

So far we have analyzed the performance of SeLeCT
considering a single batch provided as input. We are interested
now in analyzing the performance of the seeding process. To
accomplish this, we run SeLeCT on ten successive batches
of flows. As previously done, the bootstrapping at batch 1 is
done using the DPI labels. Then, for the subsequent batches,
extractSeeds() is used to seed the labeling process from batch
n to batch n + 1. Each batch performance is evaluated by
comparing the DPI labels in the ground truth with the labels
provided by SeLeCT.

A. Self-seeding

Fig. 4 shows the results for all datasets. First, notice that the
accuracy of SeLeCT is extremely high and stable over time
for all server datasets. As we already mentioned before, this
is due to the better representativeness of the layer-4 features
for server flows. Other metrics (i.e., the number of clusters
and the percentage of clustered flows) remain unchanged over
different batches and hence we do not report these results.

For client Dataset-3C and Dataset-4C, the accuracy slightly
decreases over time. For instance, in Dataset-3C it decreases
to about 90% during the first 7 batches, then it stabilizes.
Investigating further, we notice that both recall and precision
of SeLeCT are higher than 98% for all classes of traffic except
for BitTorrent and eMule protocols which tend to be confused
with each other. This is detailed by the confusion matrix
of the 10-th batch in Table IV. Note that the total number
of flows exceeds the batch size, since at step 10 SeLeCT
processes also seeding flows. The relative higher fraction of
P2P traffic in the Dataset-3C (collected at 2am) results in a

10

B
T

eM
ul

e

H
T

T
P

H
T

T
PS

IM
A

PS

PO
P3

PO
P3

S

U
N

K

BT 157 105 0 0 0 0 0 8
eMule 122 3556 0 0 0 0 4 24
HTTP 0 0 10815 0 0 0 0 5

HTTPS 0 0 1 1291 0 0 0 14
IMAPS 0 0 0 0 53 0 0 0

POP3 0 0 0 0 0 145 0 3
POP3S 0 0 0 0 0 0 25 0

UNKNOWN 0 0 18 0 0 0 0 196

TABLE IV
CONFUSION MATRIX AT BATCH 10 FOR DATASET-3C.

SrvPort 25 80 88 110 443 995 1935 4662 5223 12350
cluster 1 46 1 3 30 2 1 51 1 1

Label SM
T

P

H
T

T
P

H
T

T
P

PO
P3

H
T

T
PS

PO
P3

S

R
T

M
P

eM
ul

e

A
pp

le

Sk
yp

e

TABLE V
dominatedPort CLUSTERS AT BATCH 1. BOLD FONT HIGHLIGHTS

CLUSTERS ON NON-STANDARD PORTS.

global decrease in the overall accuracy. Similar considerations
hold for the Dataset-4C which refers to peak time. However,
in this case the fraction of P2P flows is smaller than during
the night and thus it has less impact on the overall accuracy.
An important and desirable property is that confusion actually
happens among P2P protocols only. The lack of dominating
port for P2P protocols makes it more challenging for SeLeCT
to clearly distinguish the traffic.

Based on the results of our experiments, we believe that
SeLeCT shows very good performance in terms of accuracy,
precision, and recall. For most protocols, SeLeCT correctly
classifies flows for which labels have been provided with no
confusion.

B. Bootstrapping

As we noted before, SeLeCT requires manual intervention
to provide labels to clusters. When a label for a few flows
is introduced, SeLeCT will carry on these labels for future
classification. In the previous experiments we used the labels
provided by a DPI to bootstrap the classification and seeding
process. We now investigate how difficult it can be to manually
bootstrap the system. We assume that a network operator is
offered clusters of flows, and s/he has to use her/his domain
knowledge to provide labels.

We consider the Dataset-4S trace and ignore all the DPI
labels. In other words, no labels are provided to SeLeCT.
At the end of the first batch, the operator has to analyze the
clusters that have been formed to label them.

1) dominatedPort Clusters: To assign a label, the infor-
mation provided by the srvPort for dominatedPort clusters
proves to be very valuable. Table V reports the srvPort and
the number of corresponding dominatedPort clusters on the
first and second row, respectively, while the third row reports
the class label that we assigned. Overall, protocols running
on well-known ports are straightforward to identify. Notice
that SeLeCT can identify several clusters that refer to the
same protocol (e.g., 46 clusters of HTTP flows). In general,
the number of clusters is proportional to i) the number of

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l [

%
]

Batch

S=1
S=2
S=3

Fig. 5. eMule recall when only S labeled clusters are used as bootstrap at
batch 1 for Dataset-4S.

flows, and ii) the variability of the services offered on a given
protocol.

It is interesting that SeLeCT naturally created some clusters
whose protocol was not known to the DPI. These clusters
are highlighted using bold fonts. By simply searching the
web, protocols are easily identified: Port 1935 is used by the
Macromedia flash server to stream videos using the RTMP
protocol; port 4662 is the default eMule port. At last, port 5223
is used by Apple push notification service for iOS devices
running over TLS, and port 12350 cluster contains flows going
to Skype Inc. managed servers (see above). Following this
approach, 136 clusters can be immediately labeled. Only one
cluster dominated by srvPort = 88 remains ambiguous.
Looking at the closest cluster, it reveals that flows in this
cluster are very likely to be HTTP flows, since the 6 closest
clusters are HTTP clusters. A simple packet inspection on
some flows confirms this hypothesis. This process can be
possibly automated in the future.

Once SeLeCT is augmented with the knowledge of these
labels, flows are correctly classified in all subsequent batches
thanks to the seeding mechanism. From Fig. 7, we can
see that more than 80% of flows are typically clustered in
dominatedPort clusters at the end of step 3. In other words,
more than 80% of flows can be easily labeled using simple
information obtained from the dominating srvPort, whose
accuracy is close to 100% (refer to Fig. 3).

2) randomPort clusters: At the last iteration, SeLeCT dis-
ables the port filters in doClustering() and the remaining
10-20% of flows are clustered in randomPort clusters. The
analysis of those clusters is expected to be more complicated
since the srvPort information is, by construction, providing
limited information. First of all, it is easy to see whether a
cluster is grouping some P2P protocol or traditional client-
server protocols by looking at the srcIP, dstIP of flows, as
proposed in [3], [23].

Interestingly, srvPort analysis still provides vital clues
about the protocol when analyzing the port number frequency
distribution by considering all flows in a cluster together.
For instance, consider a P2P protocol in which the user can
manually change the port used by the application. It is very
likely that the port the user would choose is “similar” to the
default number offered by the application, therefore biasing
the port frequency distribution. Consider a cluster in which the
topmost ports are 4664, 4661, 8499, 7662, 6662, 5662, 4663,
64722, . . . The intuition suggests to label flows in that cluster

11

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
[%

]

Batch

DS-4S

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on
 [%

]

Batch

HTTPS
POP3

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l [

%
]

Batch

HTTPS
POP3

Fig. 6. New protocols suddenly appear: HTTPS traffic is added at batch 3,
and POP3 traffic is added at batch 6 in Dataset-4S.

as eMule whose default port is 4662 (which turns out to be the
correct label). On the contrary, clusters in which port numbers
are uniformly distributed clearly suggest that the application
itself is enforcing a random port selection, as done, e.g., by
most popular BitTorrent applications.

At last, packet inspection can been considered as another
option to label randomPort clusters. Unlike traditional per-
flow analysis, the inspection of clustered flows simplifies the
identification of signatures since a set of flows is exposed and
can be analyzed in parallel to identify common headers. Once
a label has been found, SeLeCT extend it to all the flows in
the same cluster.

C. Seeding evolution

To show the ability of SeLeCT to increase its knowledge
over time, we perform the following experiment. Consider
Dataset-4S and focus on the eMule flows not having the de-
fault 4662 srvPort (which are clustered as dominatedPorts
clusters). At the end of batch 1 processing, only the largest S
randomPort clusters are manually labeled as eMule (e.g., by
checking the port number distribution as above). Labeled flows
are then used to bootstrap the seeding process. Fig. 5 reports
the recall evolution over the different batches for different
values of S. For S = 3, corresponding to only 28% flows
selected as bootstrap at the end of batch 1, SeLeCT already
achieves 98% of recall at batch 10. Worst case precision is
98.6%. These results show that SeLeCT seeding process is
successfully bootstrapped even if only S = 1 cluster is used
as initial seed.

We now perform another experiment in which we simulate
the sudden appearance of a new class of traffic. We consider
the Dataset-4S trace, from which we removed all POP3 and
HTTPS flows. Then, during the third and sixth batch, HTTPS

 50

 60

 70

 80

 90

 100

Step 1 Step 2 Step 3 Step 4

C
lu

st
er

ed
 fl

ow
s

[%
]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Fig. 7. Fraction of clustered flows at each step.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100
D

om
in

at
in

g
F

lo
w

 [%
]

Cluster ID

Step 1
Step 2
Step 3

Fig. 8. Fraction of flows directed to the dominating srvPort in each cluster
for different steps for Dataset-4S.

and POP3 traffic is injected to simulate the sudden birth of
new protocols. We run SeLeCT over all 10 batches. Results
are reported in Fig. 6. The top plot reports the overall accuracy,
while middle and bottom plots report precision and recall, re-
spectively. Notice how SeLeCT rapidly detects the presence of
new traffic classes. In particular, at batch 3, accuracy severely
drops since HTTPS flows are labeled as “Unknown”. We then
bootstrap the HTTPS seeding as before, i.e., by labeling the
largest Unknown traffic cluster as HTTPS. Bootstrapping in
this case is much faster then for eMule thanks to the purity of
HTTPS clusters. Indeed, at batch 4, accuracy returns to 97.5%,
and HTTPS precision and recall approach 100%.

At batch 6, the same transient is observed when POP3
flows are injected. Being their number small, the impairment
on accuracy is less evident. Then, from batch 7 on, the
bootstrapping of the POP3 protocol is completed so that
accuracy, recall and precision get back to excellent values.

These examples show that SeLeCT allows an easy identi-
fication of protocols that, in our example, were not detected
by the DPI because no signature was present. This enhances
the operator’s network visibility by providing homogeneous
clusters of flows whose analysis is much easier, due to the
aggregated information provided by the flows in the cluster.

IX. PARAMETER SENSITIVITY ANALYSIS

In this section we present an extended set of experiments to
evaluate the impact of the parameter choices on SeLeCT. In
general, SeLeCT is very robust to various parameter settings

12

and its behavior is stable in different scenarios. In this section,
we report some of the most interesting findings.

A. Setting filtering parameters

Fig. 7 reports the percentage of clustered flows during
different iterations of the iterative clustering. Only Server
datasets are considered for the sake of simplicity. As we
can see, SeLeCT clusters most of the flows during step 1,
when there are many dominatedPort clusters (i.e., clusters in
which most of the flows involve the same port). Small clusters
and outlier flows are discarded and passed to step 2. At this
point, an additional fraction of dominatedPort clusters are
identified, allowing to add about 10-15% more flows. This
filtering is repeated one more time at step 3 when another 5-
10% of flows is clustered. As a last step, SeLeCT looks for
randomPort clusters and an additional fraction of flows gets
properly clustered (e.g., P2P protocols). As the curves suggest,
the benefit of adding more dominatedPort filtering phases is
limited, and little improvement is achieved by setting itermax
larger than 3.

To confirm this intuition, Fig. 8 reports, for each step,
the fraction of flows directed to the dominating port in each
cluster with more than minPoints flows. Clusters are sorted
in decreasing fraction for ease of visualization. The number of
dominatedPort clusters is large during step 1, with 70 clusters
having more than 50% of flows that are directed to the same
srvPort. Given portFraction = 0.5, SeLeCT picks flows in
these clusters. In step 2, the number of dominatedPort clusters
decreases, and only 17 clusters pass the portFraction = 0.5
filter. In step 3, very few dominatedPort clusters are present.
This confirms the intuition that it is useless to add more than
3 steps because the information carried by the srvPort has
already been exploited. In addition, the intuition suggests to
relax the portFraction threshold during the last step, thus we
set portFraction = 0.2.

B. Sensitivity to portFraction

To complete the sensitivity analysis, Fig. 9 shows how the
choice of portFraction impacts performance. More specifi-
cally, the left plot, which reports the overall accuracy, shows
that the impact on accuracy is limited, and only values
larger than 80% exhibit some severe degradation on accu-
racy (note the y-range). The middle plot, which shows the
fraction of clustered points, suggests to select smaller values
for portFraction, since this results in a larger fraction of
clustered flows. However, a trade-off is shown in the right plot,
because the number of clusters notably increases for small
values of portFraction. Small values cause the algorithm
to accept a lot of clusters in the first filtering steps (refer to
Fig. 8), causing the total number of clusters to increase rapidly.
Values of 0.3 < portFraction < 0.8 offer a good trade-off.

C. Sensitivity to k and minPoints

Finally, we show the sensitivity of k and minPoints in
Fig. 10 and Fig. 11, respectively. Plots report the overall
accuracy, number of clusters, and the fraction of clustered

flows from left to right, the Client and Server flows on the top
and bottom plots, respectively. Fig. 10 shows that accuracy
is typically higher than 90% except for very small values
of k. Larger values of k improve accuracy, since SeLeCT is
allowed to form more clusters. This is confirmed by the total
number of clusters which increases almost linearly with k up
to a saturation point. However, fragmenting flows into many
clusters causes cluster size to be small. Hence, the parameter
setting, minPoints = 20, filters a larger fraction of flows,
causing the percentage of clustered flows to decrease. Finally,
notice that Dataset-3C and Dataset-4C are the two most critical
scenarios due to the mix of protocols that is present in this
network and the relatively weaker descriptiveness of the layer-
4 features for client flows.

A similar reasoning applies when varying minPoints. It
has limited impact on the overall accuracy as already noticed
in Fig. 3, while the number of clusters and the fraction of
clustered flows exhibit an inverse dependence on minPoints:
small values cause both of these metrics to grow quickly, while
minPoints higher than 15-20 starts showing a saturation.
This is true especially for the Server datasets.

Overall, the choice of k and minPoints is not critical;
choosing k = 100 and minPoints = 20 allows a good trade-
off between high accuracy, limited number of clusters, and
large fraction of clustered flows.

D. Complexity

The complexity of SeLeCT is mainly driven by the com-
plexity of the k-means algorithm. To find the optimal solution
considering n objects, k clusters, and a d dimensional space,
the problem can be optimally solved in O(ndk+1 log n), which
would turn out to be definitively too much for real time appli-
cations. However, by considering the centroids computation
and re-clustering steps for a fixed number of iterations, the
computational time is deterministic. In our case, we choose
the number of iteration to be smaller than 1,000,000, and
we repeat the k-means 10 times to avoid possible bias do
to bad initial centroid choice. Considering these settings, for
Dataset-4S, the scenario with the highest flow arrival rate,
SeLeCT was able to complete the processing of batch n before
the collection of flows of batch n + 1 was complete, thus
enabling real-time operation even if the current prototype is
not optimised. Notice that only flows that have at least 6
data packets are passed to SeLeCT, i.e., 70-90% of flows are
actually not considered in practice, see Fig. 1. As a final note,
several functions of SeLeCT can also be run in parallel.

X. CONCLUSIONS

In this paper we presented SeLeCT, a semi-automated
Internet flow traffic classifier which leverages unsupervised
clustering algorithms to automatically groups flows into clus-
ters. Given that using unsupervised clustering algorithms does
not result in high accuracy, we showed that adding a filtering
phase after clustering significantly improves the performance
and coverage. Moreover, alternating the clustering and filtering
phases further results in very homogeneous clusters, while
providing very high coverage.

13

 80

 85

 90

 95

 100

 0 20 40 60 80 100

A
cc

ur
ac

y
[%

]

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100

F
ra

ct
io

n
of

 c
lu

st
er

ed
 p

oi
nt

s
[%

]

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

N
um

be
r

of
 c

lu
st

er
s

PortFraction [%]

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Fig. 9. Sensitivity analysis to portFraction: accuracy, fraction of clustered flows and number of clusters in left, middle and right plot.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 40 60 80 100 120 140

A
cc

ur
ac

y
[%

]

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20 40 60 80 100 120 140

N
um

be
r

of
 c

lu
st

er
s

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 40 60 80 100 120 140

C
lu

st
er

ed
 fl

ow
s

[%
]

K

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 40 60 80 100 120 140

A
cc

ur
ac

y
[%

]

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20 40 60 80 100 120 140

N
um

be
r

of
 c

lu
st

er
s

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 40 60 80 100 120 140

C
lu

st
er

ed
 fl

ow
s

[%
]

K

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Fig. 10. Sensitivity to k.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

A
cc

ur
ac

y
[%

]

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 100

 120

 140

 160

 180

 200

 220

 240

 0 5 10 15 20 25 30

N
um

be
r

of
 c

lu
st

er
s

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

C
lu

st
er

ed
 fl

ow
s

[%
]

MinPoints

Dataset-1C
Dataset-2C
Dataset-3C
Dataset-4C

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

A
cc

ur
ac

y
[%

]

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 100

 120

 140

 160

 180

 200

 220

 240

 0 5 10 15 20 25 30

N
um

be
r

of
 c

lu
st

er
s

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

C
lu

st
er

ed
 fl

ow
s

[%
]

MinPoints

Dataset-1S
Dataset-2S
Dataset-3S
Dataset-4S

Fig. 11. Sensitivity to MinPoints.

Labels for different clusters in SeLeCT can be bootstrapped using several different approaches (DPI, behavioral techniques,

14

or human-in-the-middle). Once labels for some flows are
provided, SeLeCT inherits previously labeled flows to auto-
matically label new clusters. Furthermore, it adapts the model
to traffic changes, and is able to automatically increase its
knowledge.

Extensive experiments showed that SeLeCT simplifies the
manual bootstrapping of labels that, once provided to the
system, lead to excellent performance: Accuracy is close
to 98% in most datasets, with worst case still higher than
90%. Furthermore, SeLeCT was able to automatically identify
classes of traffic that an advanced DPI-based classifier was
ignoring like, e.g., the Apple iOS push notification protocol,
or some Bot/Trojan traffic.

REFERENCES

[1] T. Nguyen, G. Armitage. A Survey of Techniques for Internet Traffic
Classification using Machine Learning. IEEE Communications Surveys
and Tutorials, vol. 10, no. 4, 2008.

[2] H.Kim, KC.Claffy, M.Fomenkov, D.Barman, M.Faloutsos, K.Lee. In-
ternet traffic classification demystified: myths, caveats, and the best
practices. ACM CoNEXT, Madrid, SP, December 2009.

[3] T. Karagiannis, D. Papagiannaki, M. Faloutsos. Blinc: Multilevel traffic
classification in the dark. ACM SIGCOMM, Philadelphia, PA, August
2005.

[4] J.Erman, A.Mahanti, M.Arlitt, I.Cohen, C.Williamson. Offline/realtime
traffic classification using semi-supervised learning. Perform. Eval., v.64,
n.9-12, pp.1194-1213, October 2007.

[5] L.Grimaudo, M.Mellia, E.Baralis, R.Keralapura, “Self-Learning Classi-
fier for Internet Traffic”, The 5th IEEE International Traffic Monitoring
and Analysis Workshop (TMA 2013), Turin, IT, April 19th 2013.

[6] P.N. Tan, M. Steinbach, V. Kumar, others. Introduction to data mining.
Pearson Addison Wesley Boston, 2006.

[7] X. Zhu. Semi-Supervised Learning Literature Survey. Computer Sci-
ences, University of Wisconsin-Madison, TR 1530, 2005.

[8] A. Demiriz, K. Bennett, M. Embrechts. Semi-supervised clustering using
genetic algorithms. ANNIE 99, St. Louis, MO, November 1999.

[9] R. Dara, S.C. Kremer, D.A. Stacey. Clustering unlabeled data with
SOMs improves classification of labeled real-world data. IEEE IJCNN,
Honolulu, HA, v.3, pp.2237-2242, May 2002.

[10] A. McGregor, M. Hall, P. Lorier, J. Brunskill. Flow clustering using
machine learning techniques. PAM 2004, Antibes Juan-les-Pins, FR,
April 2004.

[11] J. Erman, A. Mahanti, M. Arlitt. Internet traffic identification using
machine learning. IEEE GLOBECOM, San Francisco, CA, December
2006.

[12] J. Erman, M. Arlitt, A. Mahanti. Traffic classification using clustering
algorithms. ACM SIGCOMM, Pisa, IT, September 2006.

[13] L. Bernaille, R. Teixeira, K. Salamatian. Early application identification.
ACM CoNEXT, Lisboa, PT, December 2006.

[14] Y. Wang, Y. Xiang, S. Yu. An automatic application signature con-
struction system for unknown traffic. Concurrency and Computation:
Practice and Experience 2010, vol.22, pp.1927-1944, 2010.

[15] J. Yuan, Z. Li, R. Yuan. Information entropy based clustering method
for unsupervised internet traffic classification. IEEE ICC, Beijing, CN,
May 2008.

[16] P. Casas, J. Mazel, P. Owezarski, MINETRAC: Mining flows for unsu-
pervised analysis & semi-supervised classification, Teletraffic Congress
(ITC), 23rd International, San Francisco, CA, September 2011.

[17] J. Zhang, C Chen, Y. Xiang, W. Zhou, A.V. Vasilakos, An Effective
Network Traffic Classification Method with Unknown Flow Detection,
Network and Service Management, IEEE Transactions on, v.10, n.2,
pp.133-147, June 2013.

[18] J. Zhang, Y. Xiang, W. Zhou, Y. Wang, Unsupervised traffic classifica-
tion using flow statistical properties and IP packet payload, Journal of
Computer and System Sciences, Volume 79, Issue 5, pp.573-585, August
2013.

[19] G.Iannaccone, C.Diot, I.Graham, N.McKeown, Monitoring very high
speed links. st ACM SIGCOMM Workshop on Internet Measurement
(IMW ’01). New York, NY, USA.

[20] I.Trestian, S.Ranjan, A.Kuzmanovic, A.Nucci, Googling the Internet:
Profiling Internet Endpoints via the World Wide Web. IEEE/ACM
Transactions on Networking, v.18, n.2, pp.666-679, April 2010.

[21] A.Finamore, M.Mellia, M.Meo, M.Munafo, D.Rossi, ”Experiences of
Internet traffic monitoring with tstat,” Network, IEEE, vol.25, no.3, pp.8-
14, May-June 2011.

[22] P. Casas, P. Fiadino, A. Bar, IP Mining: Extracting Knowledge from the
Dynamics of the Internet Addressing Space, Teletraffic Congress (ITC),
25th International, Shanghai, CN, September 2013.

[23] M.Iliofotou, M. Faloutsos, M. Mitzenmacher. Exploiting Dynamicity
in Graph-based Traffic Analysis: Techniques and Applications. ACM
CoNEXT, Rome, IT, December 2009.

Luigi Grimaudo received the B.S. Degree in Com-
puter Engineering from the Università Degli Studi
Di Palermo, Italy, in 2008 and the M.S. Degree
in Computer Engineering from the Politecnico di
Torino, Italy, in 2010. He is currently pursuing a
Ph.D. Degree in Information and System Engineer-
ing at Politecnico di Torino, Italy. Since 2011 he
is collaborating with Narus, Inc. working on traffic
classification problems and on-line social networks
analysis. His research interests cover the areas of in-
ternet traffic classification, recommendation system,

social network analysis and big data.

Marco Mellia graduated from the Politecnico di
Torino with Ph.D. in Electronic and Telecommunica-
tion Engineering in 2001. He has co-authored over
200 papers published in international journals and
presented in leading international conferences, all
of them in the area of telecommunication networks.
He participated in the program committees of sev-
eral conferences including ACM SIGCOMM, ACM
CoNEXT, IEEE Infocom, IEEE Globecom and IEEE
ICC, and he is Area Editor of ACM CCR. His
research interest are in the design of energy efficient

networks (green networks) and in traffic monitoring and analysis.

Elena Baralis has been a full professor at the
Dipartimento di Automatica e Informatica of the
Politecnico di Torino since January 2005. She holds
a Master degree in Electrical Engineering and a
Ph.D. in Computer Engineering, both from Politec-
nico di Torino. Her current research interests are in
the field of database systems and data mining, more
specifically on mining algorithms for very large
databases and sensor/stream data analysis. She has
published over 80 papers in international journals
and conference proceedings. She has served on the

program committees or as area chair of several international conferences and
workshops, among which VLDB, IEEE ICDM, ACM SAC, DaWak, ACM
CIKM, PKDD.

Ram Keralapura is currently a Principal Data
Scientist at Netskope. He got his BE from Banga-
lore University and his MS/PhD from University of
California, Davis. His dissertation broadly focused
on Network Management in ISP networks and in
particular dealt with modeling routing dynamics in
IGP and BGP protocols. Prior to Netkkope, Ram
worked at Narus as a Principal Member of Technical
Staff where he led several innovative projects in the
Office of CTO. He has published over 30 confer-
ence/journal articles and also has over 20 patent

applications. His research interests are in cloud apps, distributed networks,
Internet routing, traffic engineering and security.

