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A Novel Rate Control Algorithm for Onboard

Predictive Coding of Multispectral and

Hyperspectral Images
Diego Valsesia, Enrico Magli

Abstract—Predictive coding is attractive for compression on-
board of spacecrafts thanks to its low computational complexity,
modest memory requirements and the ability to accurately
control quality on a pixel-by-pixel basis. Traditionally, predictive
compression focused on the lossless and near-lossless modes
of operation where the maximum error can be bounded but
the rate of the compressed image is variable. Rate control is
considered a challenging problem for predictive encoders due
to the dependencies between quantization and prediction in the
feedback loop, and the lack of a signal representation that
packs the signal’s energy into few coefficients. In this paper,
we show that it is possible to design a rate control scheme
intended for onboard implementation. In particular, we propose
a general framework to select quantizers in each spatial and
spectral region of an image so as to achieve the desired target
rate while minimizing distortion. The rate control algorithm
allows to achieve lossy, near-lossless compression, and any in-
between type of compression, e.g., lossy compression with a near-
lossless constraint. While this framework is independent of the
specific predictor used, in order to show its performance, in
this paper we tailor it to the predictor adopted by the CCSDS-
123 lossless compression standard, obtaining an extension that
allows to perform lossless, near-lossless and lossy compression
in a single package. We show that the rate controller has
excellent performance in terms of accuracy in the output rate,
rate-distortion characteristics and is extremely competitive with
respect to state-of-the-art transform coding.

I. INTRODUCTION

Image spectrometers collect vast amounts of data which can

be used for a variety of tasks. Possible applications include

geological research, terrain analysis, material identification,

military surveillance and many others. Fine spectral resolution

can be a desired featured when it comes to detecting finger-

prints in the spectral response of a scene. Such applications

are enabled by the richness of data captured by multispec-

tral and hyperspectral sensors. A problem of handling such

wealth of information naturally arises and calls for the use of

compression methods.

Algorithms to compress hyperspectral and multispectral

images have been studied for a long time and are still an active

subject of research. Onboard compression enables spacecrafts

to save transmission time, allowing more images to be sent to

the ground stations. The design of compression algorithms for

onboard applications must carefully meet the limited resources

in terms of computational power and memory available on the
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spacecrafts. Two main compression techniques are available in

this scenario: transform coding and predictive coding.

Transform coding relies on computing a linear transform

of the data to achieve energy compaction and hence transmit

few carefully chosen transform coefficients. One of the most

popular approaches is JPEG2000 [1] and its multidimen-

sional extension [2]. A wavelet-based 2D lossless and lossy

compression algorithm has also been standardized for space

applications [3]. Spectral transforms to eliminate the inter-

band redundancy have been subject of intense research. There

exists an optimal transform for Gaussian sources, i.e., the

Karhunen-Loève transform (KLT) but its complexity does

not match the computational resources typically available for

onboard compression. Hence, low-complexity approximations

to the KLT have been derived, such as the Pairwise Orthogonal

Transform (POT) [4], the fast approximate KLT (AKLT) [5]

and the AKLT2 [6]. Transform coding allows to perform

lossless and lossy compression and to accurately control the

rate in a simple manner thanks to the simple relation between

rate and quantized transform coefficients [1] [7]. On the other

hand, per-pixel quality control as in near-lossless compression

is hard to obtain. A near-lossless layer can be added to a

transform coder, e.g., as in [8], but this requires to also

implement a decoder onboard. Transform coding also typically

suffers from the problem of dynamic range expansion, which

is a direct consequence of energy compaction. While it is

difficult to generalize due to the availability of many different

transforms and predictors, a transform generally uses many

(past and future) pixels of the image to represent a given pixel,

while a predictor generally employs few pixels in a causal

neighborhood, thus making it less prone to performance loss

when the prediction is reset over different image areas, e.g.,

in order to achieve error resilience.

Predictive coding uses a mathematical model to predict

pixel values and encode only the prediction error. Adaptive

linear prediction is often used [9]–[14] (e.g., the predictor

considered in Sec.VII relies on the LMS filter [15], with the

sign algorithm [16] for weight update), but other methods

have been devised as well, e.g., based on edge detection

[17] or vector quantization [18]. In lossless compression, the

prediction residuals are written in the compressed file after

entropy coding. Lossy compression instead quantizes them

before entropy coding. The quantization step size determines

the amount of compression and hence information losses with

respect to the original image. Near-lossless compression is

readily implemented by setting a maximum quantization step
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size, so that the quantization error never exceeds half of it. On

the other hand, rate control in a predictive coder is challenging

because: i) no simple mathematical relationship between the

rate and the quantized prediction residual exists, ii) the quality

of the prediction, hence the magnitude of the residuals, and

ultimately the rate depend on how coarse the quantization is; as

an example, the analysis of quantizer error propagation in the

feedback loop is considered in [19] for the case of Laplacian

pyramids. These aspects are further discussed in Sec. II.

In this paper we propose an innovative design of a rate

controller for a predictive encoder. We show that the proposed

method can achieve accurate control, while having complexity

suitable for onboard implementation. In particular, the algo-

rithm is designed to work in line-based acquisition mode, as

this is the most typical setup of spectral imaging systems.

We first describe the proposed algorithm in general terms,

as it can be applied to any predictive coder. Next, we focus

our attention on using it with the LMS predictor used in the

CCSDS-123 standard for lossless compression [20], which is

an improved version of the Fast Lossless algorithm [21]. The

resulting system can be seen as an extension of the standard

featuring lossless, near-lossless and rate-controlled lossy com-

pression. The rate controller provides lossy reconstructions

with increasingly better quality, up to lossless encoding, as the

target rate approaches that of lossless compression. Finally, the

controller can also work in a hybrid rate-controlled and near-

lossless mode by specifying the maximum quantization step

size that the controller is allowed to use.

The paper is organized as follows: in section II we review

the literature on rate control methods; in section III we outline

the main idea and the basic steps involved in the algorithm;

in section IV we describe the specific steps of the algorithm;

in section V we introduce a second version of the algorithm,

achieving a more accurate control by introducing a slice-by-

slice feedback mechanism exploiting the measured rate of the

previously encoded slice; section VI shows how the proposed

rate controller can actually achieve control of both the rate

and the maximum distortion, enabling a hybrid near-lossless

rate control mode; section VII proposes an extension of the

CCSDS-123 standard to near-lossless and rate-controlled lossy

compression; finally, in section VIII we show the performance

of the rate-control algorithm on some test images and compare

the proposed extension of CCSDS-123 with state-of-the-art

transform coding techniques.

II. BACKGROUND

Rate control is a relatively well studied problem in the field

of image and video coding, where it fits the framework of

rate-distortion (RD) theory. The main task of rate-distortion

optimization methods is to minimize the distortion of an

encoded source (e.g., an image or a video sequence) subject to

a constraint on the rate. This problem of carefully allocating

the available resources is typically tackled by means of two

techniques: Lagrangian optimization and dynamic program-

ming. A more comprehensive review of such methods is

covered by [22].

The classical method of Lagrangian optimization was intro-

duced by Everett [23], and relies on defining a cost function

using a Lagrange multiplier to trade off rate and distortion.

In particular, assume we have a budget-constrained allocation

problem, such as our rate control problem:

minimize
x(i)

N∑

i=1

Di,x(i) subject to

N∑

i=1

Ri,x(i) ≤ Rtarget (1)

where x(i) is the coding option for unit i. The Lagrangian

formulation consists in the unconstrained minimization of

Ji = Di + λRi, which can be shown [23] [24] to yield the

same solution of (1) for a suitable λ = λ∗. Furthermore, if the

coding units are independent, the minimization can be carried

out independently for each unit i. One of the main issues of

this method is to find the appropriate value of λ needed to find

the optimal distortion, while satisfying the rate constraint. By

noticing that λ = λ(R) is a monotonic function of the rate,

an iterative search strategy, such as dychotomic search, can be

used to find the correct value of λ.

It is often the case that the coding units exhibit some form

of dependency among each other, so that the coding decisions

taken for one unit may have some impact on the other units.

This is notably true for prediction-based systems [25], where

quantization of residuals introduces noise in the prediction

loop and may degrade the quality of future predictions. The in-

terdependency of the coding choices makes this problem more

difficult to tackle and classical solutions, based on dynamic

programming, typically model the dependencies using a tree

or a trellis [26] [27] and find the optimal path by using the

Dijkstra’s shortest path algorithm [28] or the Viterbi algorithm

[29]. The rate constraint can be handled by a suitable pruning

of the tree.

In this paper we are studying a problem of rate control in the

context of predictive coding on board of spacecrafts, posing

significant constraints on the complexity of algorithms that can

be used. The previously cited methods all exhibit a complexity

that is unsuitable for the scenario we are considering or are

largely inefficient (e.g., the standard Lagrangian approach with

i.i.d. assumptions only). Onboard rate control is performed

very easily in the case of systems adopting transform coding

[30], e.g., wavelet-based methods. This is due to the possibility

to use an i.i.d. assumption among different coding units,

allowing to establish simple relationships between rate and

quantized transform coefficients [1] [7]. However, such models

do not hold in the case of predictive compression, making

our task harder. Our approach uses models and independence

assumptions to simplify the problem but we are forced to

introduce corrections to the output of the models due to

the inevitable dependencies introduced by the propagation of

errors in the feedback loop. While the proposed procedure

does not generally yield the optimal solution, it is a practical

algorithm that can be used in low-complexity scenarios, such

as onboard compression; moreover, it indeed achieves almost

optimal performance, as will be shown in Sec.VIII-C.

III. RATE CONTROL ALGORITHM

This section outlines the framework and the basic operations

performed by the proposed rate control algorithm.
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The main idea behind the algorithm is to adopt a model to

predict the rate and the distortion of the quantized prediction

residuals. In order to achieve a flexible scheme allowing an

effective control of the rate for various kinds of images,

ranging from hyperspectral images (lots of bands, but typically

small spatial resolution) to multispectral images (large spatial

resolution, but few bands), the algorithm partitions the image

into blocks of size BSx × BSy , where BSx and BSy are

tunable parameters. Partitioning into blocks allows to deal

with the non-stationary behaviour of the image. In fact, the

prediction mechanism is indeed able to eliminate slowly

varying features but sudden variations in the image content

(e.g. discontinuities) are hardly predicted by the encoder, and

consequently imply non-stationary prediction residuals.

The task of the rate control algorithm is then to assign a

quantization step to each block of residuals in a given spectral

channel, according to the specified target rate. At the same

time, this assignment affects the overall distortion introduced

by the encoder and, hence, it should be chosen to keep the

distortion as low as possible. In this scenario, computational

complexity plays a major role in many ways. First of all,

typical memory capabilities of systems for onboard image

compression allow the storage of a limited number of lines

of the image with all their spectral channels. To match this

limitation, the rate control algorithm operates one slice at a

time, where we denote as slice a structure composed of one

row of blocks with all their spectral channels. Moreover, as

will be explained in section III-A, the algorithm does not even

need to store all the lines in the slice but just a few of them,

thus requiring very little memory.

The main steps involved in the algorithm are:

1) the estimation of the variance of the unquantized pre-

diction residuals by running the lossless predictor for a

small number of lines (Sec. III-A);

2) the l1 projection algorithm to get an initial allocation of

the quantization steps (Sec. III-B);

3) the Selective Diet algorithm for rate and distortion

refinement (Sec. III-C).

A. Rate and distortion models

We now introduce the model used to describe the prediction

residuals in each block. This model allows to obtain closed-

form expressions for the rate and the distortion of the quan-

tized residuals in the block. It is commonly observed that ac-

curate predictors tend to yield residuals with leptokurtic (high

kurtosis) distribution, hence similar to the Laplace probability

density function, which we use to model the distribution of

prediction residuals:

fr(x) =
Λ

2
e−Λ|x|, (2)

where Λ is related to the variance σ2 of the distribution by

Λ =
√

2
σ2 .

We assume that the residuals in each block and the blocks

themselves are independent of each other. This is a simplifying

assumption in two ways. First, the prediction mechanism

may fail to remove all the correlation among the residuals.

However, this does not pose a significant problem as we

expect that most of the correlation is removed, hence making

our independence assumption very close to reality; the same

assumption is made in rate allocation for transform coding,

where transform coefficients are often assumed to be inde-

pendent. Second and more important, the quantization of the

residuals introduces noise that propagates in the prediction

loop. This leads to dependencies among the residuals and

among blocks. Optimizing the allocation of the quantization

step sizes taking into account these dependencies can lead to

improvements as the model becomes more accurate. However,

one must resort to dynamic programming methods (e.g., the

Viterbi algorithm) that would be far too complex for our

scenario. Consequently, we have explored a simplified way

of including the effect of quantization noise in our model,

i.e., augmenting the variance of the block by an estimate of

the noise variance, which corresponds to assuming that the

residuals and the quantization noise are independent:

σ̃2 = σ2 +
Q2

12
, (3)

where Q is the quantization step used in the same block in

previous slice. We do this because the quantization step size

of the current slice is not known when we need to use this

model, as it is indeed the output of the rate control process. It

can be noticed that Q2

12 is the mean square error produced by

uniform scalar quantization of step size Q under the high-rate

approximation.

The rate (expressed in bits-per-pixel) is derived as the en-

tropy of an i.i.d. continuous source with Laplace distribution,

after quantization by means of a uniform scalar quantizer with

step size Q:

R = −p0 log2 p0 − 2

∞∑

i=1

pi log2 pi , (4)

so we need the probability p0 that the residual is quantized to

the zero value and the probability pi of being mapped to the

(positive) integer i. For the uniform scalar quantizer we can

write:

p0 =

∫ Q
2

−Q
2

Λ

2
e−Λ|x|dx = 1− e−ΛQ

2 (5)

pi =

∫ iQ+Q
2

iQ−Q
2

Λ

2
e−Λ|x|dx =

1

2

(

e−Λ(iQ−Q
2 ) − e−Λ(iQ+Q

2 )
)

(6)

Inserting (5) and (6) into (4), it is possible to derive (7).

We use mean squared error (MSE) as distortion metric,

which can be computed as

D(Λ, Q) =

∫ Q
2

−Q
2

x2Λ

2
e−Λ|x|dx

+ 2

∞∑

i=1

∫ iQ+Q
2

iQ−Q
2

(x− iQ)
2 Λ

2
e−Λ|x|dx,

thus obtaining (8).
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R(Λ, Q) =−
(

1− e−ΛQ
2

)

log2

(

1− e−ΛQ
2

)

−
e−ΛQ

2

log(2)

[

log

(
1− e−ΛQ

2

)

+
ΛQ

2
−

ΛQ

(1− e−ΛQ)

]

(7)

D(Λ, Q) =
2− 1

4e
−ΛQ

2

(
Λ2Q2 + 4ΛQ+ 8

)

Λ2
+
−ΛQ (ΛQ+ 4) + eΛQ [ΛQ (ΛQ− 4) + 8]− 8

4Λ2

e−
3

2
ΛQ

1− e−ΛQ
(8)

Fig. 1. The rate point corresponding to the lossless allocation of Q’s is
projected onto the simplex defined by the rate constraint

We can notice that both the rate and the distortion are

functions of the variance σ2 of the unquantized residuals in

the block and of the quantization step size Q, whose value

is yet unknown. Each block in the slice has its own variance

parameter and quantizations step size. The variance must be

estimated, while obtaining the quantization step size is really

the ultimate goal of the rate control algorithm. The variance

can be estimated by running the predictor without quantizing

the prediction residuals for a certain number of lines. A small

fraction of the total lines in the block are sufficient to get

good estimates of the variance of the residuals. In a software

implementation, this is one of the main factors impacting

on final complexity because it requires to run the predictor

essentially twice: the first time on a small subset of the lines,

without quantization, to estimate variances and then, once

the quantization steps have been calculated, to perform the

actual encoding pass, quantizing the residuals. The previous

rate and distortion models are used by the algorithms presented

in the following subsections to find the right value of Q for

each block to match the target rate globally and have a low

distortion.

B. Projection onto the positive l1 ball

The goal of the algorithm described in the following is

to provide an initial solution to the allocation problem. This

solution, albeit inaccurate, is a good starting point to initialize

the following algorithm (Selective Diet, explained in section

III-C). Suppose that the encoder is given a target rate for the

encoded image equal to T bits-per-pixel (bpp), and suppose

that there are NB blocks in the current slice (NB is the product

of the number of blocks in one band times the number of

bands). We define the quantity Rtarget = T ·NB as the product

of the target rate in bpp and the number of blocks in the slice

(note that this quantity does not represent the actual number of

bits at our disposal since we are multiplying times the number

of blocks and not the number of pixels). Ideally we would like

to satisfy the rate constraint exactly, hence have

NB∑

i=1

R(Λi, Qi) = Rtarget (9)

where Qi is the quantization step size selected for the i-th
block. Notice that since the rate of each block is a positive

quantity, (9) defines a simplex in NB dimensions. We can

consider an initial solution having Qi = 1 ∀i (lossless

encoding), with corresponding rates R(Λi, 1). Geometrically

(see Fig. 1), we have a vector in an NB-dimensional space

whose entries are the rates R(Λi, 1) and we can project it onto

the simplex defined by (9). In other words, we seek to solve

the following optimization problem, where we slightly abuse

notation using boldface to indicate NB-dimensional vectors

and making the R function operate component-wise:

R̂ = argmin
R
‖R−R(Λ,1)‖2 subject to ‖R‖1 = Rtarget

(10)

Problem (10) is a continuous problem, whereas quantization

step sizes are odd-integer-valued 1. After solving (10) we need

to search the value of Q̂i such that R(Λi, Q̂i) is closest to R̂i.

Any search method such as linear search or binary search can

be used for this purpose.

Projection onto a simplex is a special case of projection onto

the l1 ball, since the simplex is the positive part of the l1 ball.

l1 projections algorithms have been subject of great interest

in recent years due to surge in research on sparse methods.

The field of compressed sensing [32] has spawned from the

discovery that l1 penalized regressors can reconstruct a sparse

signal exactly from a small number of random measurements,

hence many reconstruction algorithms [33] include steps in-

volving projections on the l1 ball. We refer to the algorithm

proposed in [34] to address the specific problem of projections

onto the simplex. The algorithm has been shown to have

O(NB logNB) complexity. Being a continuous approximation

to an integer-valued problem, the allocation returned by the

projection algorithm can only provide a rough approximation

to the desired rate. Nevertheless, it is expected to be close to

a good solution, hence it is possible to improve it by making

local modifications. This is the task performed by the Selective

Diet algorithm.
1Using odd-valued quantization step sizes is known to provide lower

distortion for the same maximum error [31].
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Algorithm 1 Projection algorithm to solve (10)

Sort R(Λ,Q) into µ in descending order

Find ρ = max
{

j : µj −
1
j

(
∑NB

i=1 µi −Rtarget

)

> 0
}

Define θ = 1
ρ

(
∑NB

i=1 µi −Rtarget

)

Find w such that wi = max {R(Λi, Qi)− θ, 0}
Find Q̂ = R−1(Λ,w)

C. Selective Diet

Selective Diet tries to solve an integer optimization problem

consisting in lowering the distortion of the encoded slice while

satisfying the constraint on its final rate. The algorithm is

a local search method, similar in flavour to other discrete

optimization methods such as hill climbing [35] or meta-

heuristics like tabu search [36]. At a high level it is possible

to say that the algorithm is primarily concerned with finding a

solution that meets the specification on the rate as closely as

possible, while promoting solutions having low distortion. It

does so by making local adjustments to the solution provided

by the l1 projector, hence the need for a good initialization

point. A graphic visualization of a single iteration is shown in

Fig. 2.

In this section, for convenience of explanation, we shall

represent the blocks in the current slice as nodes in a chain. It

is possible to modify the chain by making adjustments to the

nodes, namely changing the quantization step size assigned to

that node. Only local adjustments are allowed: the quantization

step of each node can only be increased by 2 or decreased by 2.

We shall call +2 level an assignment of Qi+2 where Qi is the

current value of the quantization step, called default level, and

-2 level an assignment equal to Qi−2. A chain can be formed

by choosing one of those three levels for each and every node.

Consistently with the notation, we will call +2/default/-2 chain

a chain made only of nodes in the +2/default/-2 level. The

ultimate goal of Selective Diet is creating a chain that meets

the rate constraint and has low distortion. Let us now introduce

a lemma at the basis of the local adjustments made to the

default chain.

Lemma III.1. Suppose that the default chain satisfies
∑NB

i=1 R(Λi, Qi) = Rtarget, then if there exists a new chain

satisfying
∑NB

j=1 R(Λj , Qj) = Rtarget, it must contain nodes

from both the +2 and −2 levels.

Proof: By contradiction, suppose that a chain meeting

the rate constraint exists and is composed of nodes from

the +2 and default levels only. However, R(Λi, Q
(+2)
i ) <

R(Λi, Q
(def)
i ), so it must be that

∑NB

i=1 R(Λi, Q
(ch)
i ) <

Rtarget. Hence the rate is not met and such a chain does not

exist. Similarly, suppose that a chain meeting the rate exists

and is composed of nodes from the −2 and default levels only.

However, R(Λi, Q
(−2)
i ) > R(Λi, Q

(def)
i ), so it must be that

∑NB

i=1 R(Λi, Q
(ch)
i ) > Rtarget. Hence the rate is not met and

such a chain does not exist. Therefore, a chain meeting the

target can exist only if it uses nodes from both the +2 and

−2 levels.

Relying on this lemma, even when the rate is exact the

algorithm must try to move some nodes to the -2 and +2 levels

in order to optimize the distortion. The starting point is to

consider the -2 chain as the new candidate output chain, since

it has the lowest distortion. Obviously, selecting the -2 chain

causes an increase in the rate, which must be compensated

to meet the target. In order to reduce the rate moving back

towards the target, some nodes are assigned to the +2 level.

Each node is associated a cost function that considers the

trade-off between the gain in rate reduction and the loss

in quality due to switching from the -2 to the +2 level.

The following cost function modelling the trade-off with a

Lagrange multiplier is used:

Ji =
[

D(Λi, Q
(−2)
i )−D(Λi, Q

(+2)
i )

]

+ λ
[

R(Λi, Q
(−2)
i )−R(Λi, Q

(+2)
i )

]

i ∈ [1, NB] (11)

The nodes are sorted by decreasing value of this cost function

and this is the order in which the nodes are selected to be

assigned to the +2 level. Specifically, one node at a time is

added to the +2 level until the rate reaches Rtarget. The new

chain is then formed by the nodes that remained at the -2

level and the nodes that were demoted to the +2 level. This

chain is taken as the new default chain for a new iteration

of the algorithm in order to try to further improve distortion.

Notice that even if in a single iteration the algorithm selects

nodes from the +2 and -2 levels only, it is possible to reach

any value of Q using successive iterations, thus considering

all possible odd values of the quantization step as possible

choices for any block. The algorithm is run in a greedy manner,

stopping when the distortion is not improving further. We have

experimentally observed that the algorithm requires very few

iterations (typically less than 10).

It should be noted that the l1 projector may occasionally

provide an initial solution that is not close enough to the

target rate. We address this issue in the following way: if
∑NB

i=1 R(Λi, Q̂i) ≤ 0.99Rtarget, it means that the solution of

the l1 projector is underutilizing the available rate, so lemma

III.1 does not hold and we run an iteration of Selective Diet

with only the default and -2 chains. Instead, when the rate

exceeds the target, running Selective Diet in the standard

fashion already allows to reduce it back to the target, so

no modification is made. Finally, the value of λ controls the

tradeoff between the reduction in rate and increase in distortion

when adding a node to the +2 level. The optimal value of λ
would let us choose those nodes that allow a maximization of

the gain in rate and a minimization of the increase in distortion.

However, finding the optimal value would be computationally

very demanding, so we resort to initializing λ to an empirically

determined value (λ = 50) that we observed to be performing

nicely over the whole test image set. This value is adjusted

dynamically by the algorithm, halving it every time an increase

in the overall distortion is observed in place of a decrease

and rerunning the optimization with the new value. It is also

possible to devise a lower complexity solution that does not

adjust λ and does not repeat the optimization procedure, at a

price of lower performance.

The complete algorithm is summarized in Algorithm 2.
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Fig. 2. One iteration of Selective Diet tries to reduce the quantization step
size by 2, but due to the increase in rate, the step size is actually increased by
2 for some blocks chosen as the best tradeoff between increase in distortion
and gain in rate. Note that blocks of the default chain have different steps
sizes, although the chain is depicted as a straight line for convenience.

Algorithm 2 Selective Diet

Require: Qg, λ = 50, Niter

for iter = 1→ Niter do

Set default = Qg , Q(+2) = Q+2, Q(−2) = Q-2

Set output chain Qg = Q(−2)

Compute Rdiff =
∑

R(Qg) − Rtarget, i.e., the rate

you need to lose to reach the target

Sort the nodes in Q(+2) by decreasing value of Ji =(

D
(−2)
i −D

(+2)
i

)

+ λ
(

R
(−2)
i −R

(+2)
i

)

i = 1
while

∑
R(Qg)−Rtarget < Rdiff do

Replace the corresponding node in Qg with the i-th

node in the sorted Q(+2)

i = i+ 1
end while

if iter 6= 1 then

if Distortion did not lower AND inner iterations not

exceeded then

Set λ← λ/2 and repeat current iteration

else

Proceed to next iteration

end if

end if

end for

IV. BLOCK CLASSIFICATION

The previous section outlined the basic operations of the

rate control algorithm. We have discussed how models can be

used to predict the rate and distortion of quantized blocks of

prediction residuals. We have also introduced the l1 projector

and the Selective Diet algorithm that exploit the models to

solve the problem of allocating quantization step sizes to the

blocks to achieve the desired rate with low distortion. How-

ever, some improvements can be made in order to introduce

additional features and solve problems not accounted for by

the models; in this section we describe how blocks can be

classified into three distinct classes to address those issues.

In particular, each block can be of one out of three types,

labelled as: NORMAL, INFTY, SKIP. The NORMAL type

is for regular blocks not falling in any of the other categories,

whose behaviour in the algorithm is just as described so far.

The INFTY type is for blocks that are estimated to have a

very low variance of the prediction residuals (e.g., σ2 < 0.1).

This happens for blocks in which the original image is very

uniform so that most of the residuals are zero or close to zero.

The rate spent for these blocks is mostly determined by quanti-

zation noise in prediction loop, but this is not detected during

variance estimation because it is run in a lossless fashion,

thus not producing any quantization noise. This means that the

simplifying assumption of (3) does not hold. Underestimating

the variance will result in very inaccurate estimates of the rate

of those blocks and improper allocation of the quantization

steps, potentially affecting other blocks due to the propagation

of quantization errors. Therefore, in the algorithm we exclude

INFTY blocks from the projection and Selective Diet steps

in order to avoid feeding those algorithms with misleading

information. INFTY blocks are then treated separately. After

the projector returns its initial solution, whenever an INFTY
block is encountered in the slice, the same Q as the closest

NORMAL block in the same band is assigned to it. If no

NORMAL block has been encountered yet and it is not

the first slice then the same Q of the block in the same

position in the previous slice is used. Otherwise, if it is the

first slice, Q = 1 is used. If the last encountered block is

not a NORMAL block but a SKIP block, then the current

INFTY block becomes a SKIP block. Except when the block

becomes SKIP, the target rate is updated for the Selective Diet

algorithm. It is assumed that the INFTY block is driven by

quantization noise so the target rate is updated as

Rtarget ← Rtarget −R

(√
24

Q2
, Q

)

(12)

Optionally, SKIP blocks can be generated as a way to

perform a further rate-distortion optimization by deciding to

“skip” a block, i.e., set to zero the prediction residual for all

samples in the block and signal it using a 1-bit flag, if the

predicted increase in distortion is low compared to the rate

saving obtained by not encoding the block at all. However,

skipping may introduce significant noise in the prediction loop,

so the amount of skipped blocks must be controlled. Block

skipping is useful only at low rates, therefore SKIP blocks

can be generated only when the target rate is below 1 bpp,

and a fixed percentage of blocks is skipped, as function of

the target rate. This percentage increases as the target rate

decreases according to the following rule:

ps =

{

(1 − T )3 if T ≤ 1

0 otherwise
(13)

In order to choose which blocks must be skipped, the blocks

in the current slice are sorted by decreasing value of Λ and

the first blocks in the sorted order will be skipped.
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V. FEEDBACK-BASED MODE

The rate control algorithm outlined so far is completely

model-based, meaning that no information about the real rate

of the encoded slices is available. We shall refer to this method

as MODE A of the algorithm. A more accurate control can

be achieved by adding a feedback mechanism that modifies

the target rate for future slices based on the actual rate used

to encode the previous slices. In particular, MODE B of the

algorithm measures how many bits have been used to encode

previous slices and adjusts the input target rate for the next

slices so to achieve the global target rate. Note that we do not

want to increase the complexity of the system, hence we are

not performing a multi-pass encoding of the same slice but

rather correcting the target for future slices. Although MODE

B does not increase the complexity and can achieve more

accurate control, it might lower the rate-distortion performance

of the encoded image. To see this, let us consider a toy case

in which the image is made of two slices, having the same

rate-distortion function. The global rate-distortion curve for

the whole image is convex, but, by adjusting the rate on a

slice-by-slice basis, we operate on two distinct points of the

curve and the final rate-distortion point lies on a straight line

joining the two operating points, certainly above the convex

curve. Hence, per-slice oscillations in the target rate introduce

some suboptimality, which is more severe the farther apart the

operating points of each slice lie in the rate-distortion plane.

MODE B adopts a Least-Mean-Square tracking approach to

determine the target rate for the next slice, after measuring the

rate produced by the encoding of the current slice. The target

update formula is derived to take into account two issues. First,

the inaccuracies in the rate controller make the actual output

rate different from the target, thus we want to estimate the

input-output relationship of the controller and track it in case

of nonstationary behaviour. Second, we would like to count

how many bits were used up to the current slice, and modify

the target rate depending on the amount of bits that we saved,

and we would like to spend on the next slices or, viceversa,

the number of bits that we spent but we should have not. The

goal is to try to assign all, but not more than the budget bits

at our disposal, by spending them on or saving them from the

remaining slices. The final rate update formula, to be motivated

hereafter, is:

Tnew[n+ 1] = η[n+ 1] +
c[n+ 1]

τ
·

1

w̄[n]
(14)

with

c[n+ 1] =

n∑

k=0

(T − y[k]) = c[n] + T − y[n] (15)

η[n+ 1] = η[n] + w̄[n]

[

T − y[n] +
c[n]

τ

]

(16)

w̄[n] =
1

|I|

∑

k∈I

w[k] (17)

where y[n] is the actual rate produced encoding slice n,

Tnew[n+1] is the target rate specified to the (n+1)-th slice,

which is the next slice to be coded, and T is the original

target rate for the whole image (and the initial condition for

Tnew). c[n], which we call “residual budget”, stores how much

deviation in rate from T has been accumulated up to slice n.

The τ factor used in the formulas plays the role of a time

constant, ideally distributing the residual budget over τ future

slices. It can be noticed that equation (21) reduces to just a

tracking term, when τ = +∞. Also notice that, for τ = 2,

the residual budget term in (21) is exactly (c[n + 1])2. w̄[n]
is the ratio between output and input rate, averaged over the

|I| previous slices identified by set I, and |I| denotes the

cardinality of the set. As we shall see, different choices of

I are possible and yield different results. As special cases,

we notice that, when I = {n}, the algorithm does not

average on previous slices, hence it is most suited for highly

non-stationary scenarios, while, when I = {0, 1, . . . , n}, the

algorithm uses all the history for averaging, yielding the best

performance for stationary scenarios. The following theorems

prove the rate control performance in such special cases. The

wide sense stationarity (WSS) assumption that we make in

the proofs has been verified to be a rather good model, since

it basically means that the non-ideal behaviour of the rate

controller, that we are trying to correct, has certain regularity

properties. We remark that experimental results showed that

when w[n] is WSS, the output rate of the memory-1 method

converges to T but the residual budget converges to a non-

zero value proportional to the variance of w[n]. This is why

we advocate that the long-memory method is better when we

expect a stationary behaviour. However, the memory-1 method

(or a method with a limited memory) is better for tracking

non-stationarities thanks to Theorem V.3. In the proofs we

will denote
c[n+1]

τ · 1
w̄[n] = ξ for brevity.

Proposition V.1 (Convergence of long-memory method).

Let the rate controller obey the input-output relation-

ship y[n] = w[n]Tnew [n], being w[n] a wide sense sta-

tionary random process with mean E [w[n]] = µ and

E [(w[n+ l]− w) (w[n]− w)] = 0, ∀l 6= 0. Let Tnew be

updated as in (14) with I = {0, 1, . . . , n}. Then,

lim
n→+∞

E [y[n]] = T (Convergence to target)

lim
n→+∞

E [c[n]] = 0 (Convergence to zero residual budget)

Proof: We will not give a formal proof of this result,

rather just a sketch. We notice that the sequence of averages

over n samples w̄[n] has a limit limn→∞ w̄[n] = E [w[n]] = µ
thanks to the ergodicity of w[n]. We suppose that it reaches

this limit value fast and thus we approximate w̄[n] ≈ µ for

all n > n0. Using this fact and performing some algebraic

manipulations on (16) and (14), similar to those done in the

proof of Theorem V.2, we obtain the following recursion

Tnew[n+ 1] =
µ

τ
T +

(

2− µw[n]−
w[n]

µτ

)

Tnew[n]

−

(

1− µw[n] −
w[n]

µτ
+

µ2

τ

)

Tnew[n− 1]
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Hence

E [y[n+ 1]] = µ

(

2− µ2 −
1

τ

)

E [Tnew[n]]

− µ

(

1− µ2 −
1

τ
+

µ2

τ

)

E [Tnew[n]] +
µ2

τ
T

We take the limit on both sides to get

y∗ =

(

2− µ2 −
1

τ
− 1 + µ2 +

1

τ
−

µ2

τ

)

y∗ +
µ2

τ
T

y∗ = lim
n→+∞

E [y[n]] = T.

Similarly, the residual budget term can be shown to follow

c[n] =
1

µ
τ + 1

µτ −
1
µτ

·

[

Tnew[n]−

(

1− µw[n− 1]−
w[n− 1]

µτ

)

Tnew[n− 1]

−

(

µ+
1

wτ

)

T
]

+ T − w[n− 1]Tnew[n− 1]

Hence,

lim
n→+∞

E [c[n]] =
1

µ
τ + 1

µτ −
1
µτ

·

[
T

µ
−

(

1− µ2 −
1

τ

)
T

µ
−

(

µ+
1

µτ

)

T

]

+ T − µ
T

µ
= 0

Theorem V.2 (Convergence of memory-1 method). Let the

rate controller obey the input-output relationship y[n] = w ·
Tnew[n], with w2 ≤ 2 and let Tnew be updated as in (14) with

I = {n}. Then,

lim
n→+∞

y[n] = T (Convergence to target)

lim
n→+∞

c[n] = 0 (Convergence to zero residual budget)

Proof:

y[n] = w

(

η[n] +
c[n]

τw

)

=

(

1− w2 −
1

τ

)

y[n− 1] + w2T +
T

τ
+ w2 c[n− 1]

τ
(18)

However, from the definition of c[n]:

c[n] = c[n− 1] + T − y[n− 1] (19)

We can solve (18) for c[n− 1] and insert it in (19).

c[n] =
τ

w2

(

y[n]−

(

1− w2 −
1

τ

)

y[n− 1]− w2T −
T

τ

)

+ T − y[n− 1] (20)

We can recall that

y[n+ 1] =

(

1− w2 −
1

τ

)

y[n] + w2T +
T

τ
+ w2 c[n]

τ

=

(

2− w2 −
1

τ

)

y[n]

−

(

1 +
1− τ

τ
w2 −

1

τ

)

y[n− 1] +
w2

τ
T

The general solution to that difference equation, considering

the initial conditions y[0] = wT and y[1] = wT + w2T −
w3T + T−wT

τ , is

y[n] =
T (1− w)

τw2 − 1

(

1−
1

τ

)n

+

[

Tw − T − T
1− w

τw2 − 1

]
(
1− w2

)n
+ T

It is easy to check the limit:

lim
n→∞

y[n] = T,

provided that w2 ≤ 2. Moreover we can take the limit of (20)

to check budget convergence:

lim
n→∞

c[n] =
τ

w2

(

T −

(

1− w2 −
1

τ

)

T − w2T −
T

τ

)

= 0

Theorem V.3 (Cost minimization of memory-1 method).

Let the rate controller obey the input-output relationship

y[n] = w[n]Tnew [n], and let Tnew be updated as in (14) with

I = {n}. Then, update (16) is a gradient descent step towards

the minimization of

J =

(

T − y[n]

)2

︸ ︷︷ ︸

TRACKING

+

(

T − y[n] +
2c[n]

τ

)2

︸ ︷︷ ︸

BUDGET

(21)

Proof:

J = T 2 + y2[n]− 2Ty[n] + 4
c2[n]

τ2
+ T 2 + y2[n]

− 4
c[n]

τ
y[n] + 4

c[n]

τ
T − 2Ty[n]

= 2T 2 + 2w2[n]ξ2 − 2Tw[n]ξ + 4
c2[n]

τ2
− 4

c[n]

τ
w[n]ξ

+ 4
c[n]

τ
T − 2Tξw[n] + 2w2[n]η2[n] + 4w2[n]η[n]ξ

− 2Tw[n]η[n]4
c[n]

τ
w[n]η[n]− 2Tη[n]w[n]

dJ

d(η[n])
= 4w2[n]η[n] + 4ξw2[n]

− 2Tw[n]− 4
c[n]

τ
w[n]− 2Tw[n]

The gradient descent update equation is

η[n+ 1] = η[n]− α
dJ

d(η[n])

= η[n]− 4αw[n]

(

y[n]− T −
c[n]

τ

)

Thus, setting α = 1
4 we obtain (16).
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(c) CLIP = 11

Fig. 3. AVIRIS sc0 raw. (a) rate= 3.0052 bpp, MAD=30, SNR=62.25 dB; (b) rate= 3.0046 bpp, MAD=10, SNR=62.85 dB; (c) rate= 2.9968 bpp,
MAD=5, SNR=63.39 dB

VI. HYBRID NEAR-LOSSLESS RATE CONTROL

The proposed rate control algorithm opens the way for

an interesting hybrid operating mode in which one can si-

multaneously constrain target rate and maximum distortion.

This significantly differs from traditional operating modes in

which one can either specify the rate but has no control

over the per-pixel maximum error (as it typically happens in

rate-controlled transform coding approaches) or in which one

specifies the maximum error but has no control over the rate

(as it is easily done in near-lossless predictive schemes). The

implementation of such hybrid mode is trivial by using the

proposed rate controller because it is sufficient to limit the

maximum quantization step size allowed in the l1 projector

and in Selective Diet. If such specification is compatible with

finding an allocation of quantization step sizes that yields the

prescribed target rate, then the algorithm successfully controls

both the rate and the maximum distortion.

Fig. 3 reports the results of some experiments (see Sec.

VII-VIII for more details on the test image) that graphically

show the impact of constraining the maximum quantization

step size (called CLIP) on the distribution of quantization

steps and on the rate and quality of the encoded image. In

this case the controller successfully provides the desired rate

even with the very demanding constraint CLIP = 11. Also,

notice the improvement in terms of MAD and SNR obtained

by the hydrid mode. The higher SNR obtained by enforcing a

constraint on the maximum error should not be surprising.

In fact, the l1 projector and Selective Diet alone have no

guarantee of optimality and enforcing an additional constraint

allows to shrink the solution space, eliminating suboptimal

allocations. Finally, if the user were to demand CLIP = 5,

she would actually get MAD=2 but the controller would be

unable to provide the target rate of 3 bpp and, in fact, provides

4.0586 bpp.

VII. EXTENSION OF CCSDS-123 TO NEAR-LOSSLESS AND

LOSSY COMPRESSION WITH RATE CONTROL

A. Review of CCSDS-123

The Consultative Committee for Space Data Systems

(CCSDS) has recently developed the CCSDS-123 recommen-

dation, intended for lossless compression of multispectral

and hyperspectral images. CCSDS-123 is based on the Fast

Lossless compression algorithm [21] [9], which is a predictive

method. The algorithm computes a local sum σz,y,x, obtained

from a causal neighborhood of the pixel. A weighted combi-

nation of the local sums in the P previous bands yields the

predicted pixel value. The algorithm adapts the weights using

the sign algorithm [16], which is a low-complexity solution

for the implementation of a least-mean-square filter.

Let sz,y,x denote the pixel value at position (x, y, z), then

the encoder computes:

d̂z,y,x = WT
z,y,xUz,y,x = WT

z,y,x












4sz,y−1,x − σz,y,x

4sz,y,x−1 − σz,y,x

4sz,y−1,x−1 − σz,y,x

4sz−1,y,x − σz−1,y,x

...

4sz−P,y,x − σz−P,y,x












A scaled predicted sample s̃z,y,x is calculated from d̂z,y,x. The

prediction residual is computed as ∆z,y,x = sz,y,x −
⌊
s̃z,y,x

2

⌋

and then mapped to a positive integer δz,y,x to be entropy

encoded. For further details, we refer the reader to the CCSDS-

123 Blue Book [20] and to the paper by Augé et al. [37] for

a more throughout explanation of the encoder parameters and

their impact on performance.

B. Near-lossless extension

Extending the compression mechanism to near-lossless en-

coding simply requires to introduce a quantizer in the pre-

diction loop. In particular, we use a uniform scalar quantizer

to quantize the prediction residual ∆z,y,x into ∆̂z,y,x =

sgn (∆z,y,x) ·
⌊
|∆z,y,x|+(Q−1)/2

Q

⌋

. The quantized value is then

mapped to a positive integer and sent to the entropy coding

stage. In order to have synchronization with the decoder,

we must consider the dequantized value Q∆̂z,y,x for weight

update. The near-lossless encoder uses a single quantization

step size for the whole image.

C. Rate-controlled lossy extension

The rate-controlled version of the algorithm uses the pro-

posed rate control method to assign a different quantization
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step size to each block in the image. Assuming that the encoder

proceeds in a Band Interleaved by Line (BIL) order, the rate

control procedure is called whenever the current pixel belongs

to the first band and it is at the beginning of a new slice

(i.e., position z = 0, y = k · BS, x = 0). As explained in

the previous sections, the rate controller first tries to encode

ESTLINES lines (with all their spectral bands) in a lossless

mode in order to estimate the variance of the prediction

residuals. Once the variance is estimated and the allocation

of quantization steps is performed, the encoder backtracks to

position (0, k ·BS, 0), discarding all the weight updates done

in the meanwhile and starts the actual encoding pass of the

slice. Similarly to the near-lossless mode, the encoder now

computes the quantized prediction residuals ∆̂z,y,x, but now

employing the quantization steps calculated by the controller

for each block.

It is important to notice that the chosen quantization step

sizes must be written in the header of the compressed file for

usage at the decoder side. In order to keep the overhead low

we propose to use a differential encoding strategy adopting

the Exp-Golomb code [38]. Differential encoding amounts to

encoding only differences between two successive quantization

steps and, since they are expected to be close to each other,

some compression is obtained. A simple universal code such

as the Exp-Golomb code of order zero is then used to compress

the differences.

Finally, formulas (7) and (8) can be implemented by means

of lookup tables. It can be noticed that the rate depends only

on ΛQ and that the distortion can be rewritten as the product

of a function of ΛQ and Q2. We have verified that two lookup

tables of roughly 45000 integer values each are sufficient to

ensure the correct behavior of the algorithm. The values in the

rate table can be represented using 14 bits per value, while the

distortion values need 13 bits. The total memory occupation

of the two tables is thus about 152 kB.

D. Range encoder

The CCSDS-123 recommendation defines an adaptive cod-

ing approach using Golomb-Power-of-2 codes, mainly due

to its low complexity and good performance, as well as the

existence of an earlier standard (CCSDS 121.0-B [39]) using

the Rice coding algorithm, embedded in the block-adaptive

mode.

We propose a different entropy coding stage based on the

range coder [40]. The range coder is essentially a simplified

arithmetic encoder. Such a block coder is needed in order to

achieve rates lower than 1 bpp, as the minimum codeword

length for the Golomb code is 1 bit. Moreover, a higher

performance entropy coder improves the effectiveness of the

rate controller, by limiting the suboptimality introduced at this

stage. For efficiency reasons, the proposed range coder keeps

four separate models for each band for the prediction residuals,

as described in [41].

VIII. NUMERICAL RESULTS

We have performed extensive tests on images extracted

from the corpus defined by the MHDC working group of the

CCSDS for performance evaluation and testing of compression

TABLE I
TEST IMAGES

Image Rows Columns Bands P

AVIRIS SC0 RAW 512 680 224 15

AIRS GRAN9 135 90 1501 10

CASI-T0477F06-NUC 1225 406 72 2

CRISM-SC167-NUC 510 640 545 3

CRISM-SC182-NUC 450 320 545 3

CRISM-SC214-NUC 510 640 545 3

FRT00009326 07 VNIR 512 640 107 3

GEO SAMPLE FLATFIELDED 1024 256 242 10

M3TARGETB-NUC 512 640 260 3

M3TARGETB 512 640 260 3

MODIS-MOD01 250M 8120 5416 2 1

MODIS-MOD01 500M 4060 2708 5 4

MODIS-MOD01DAY 2030 1354 14 2

MODIS-MOD01NIGHT 2030 1354 17 4

MONTPELLIER 224 2456 4 3

MOUNTAIN 1024 1024 6 5

T0477F06 RAW 1225 406 72 2

TOULOUSE SPOT5 XS EXTRACT1 1024 1024 3 3

VGT 1B 10080 1728 4 3

algorithms. A total of 47 images is used to generate the ensem-

ble statistics, while for brevity we report numerical results for a

smaller subset. The whole corpus comprises images of various

nature, from ultraspectral images captured by IASI and AIRS

sensors, through hyperspectral images captured by CASI,

SFSI, AVIRIS and Hyperion sensors, to multispectral images

captured by MODIS, Landsat, Vegetation, MSG, Pleiades and

SPOT5 sensors. Table I reports details about the images used

in the tests and the number of bands P used for prediction.

The images with the NUC suffix present Non-Uniformity

Correction, i.e., a form of compensation of the different gains

of the lines of the image, performed by means of a median

filter, as described in [4].

The tests have multiple goals. First, we want to analyze the

accuracy of the rate control algorithm, assessing how close

the actual rate of the compressed image is with respect to

the specified target. Second, we study the rate-distortion per-

formance of the algorithm by drawing the full rate-distortion

curve in order to compare it against the rate-distortion curve

obtained by the near-lossless version of the encoder. This is

known to be the optimal quantization step selection for a

Gaussian source, but does not provide rate control, although

many rate-distortion points are indeed achievable. We use this

curve as an upper performance bound in order to estimate

how close the proposed rate control algorithm can get to the

ideal solution. Finally, we compare the performance of the

proposed extension of CCSDS-123 to lossy compression with

rate control against a state-of-the-art transform coder intended

for onboard compression.

A. Complexity considerations

Before presenting the experimental performance of the

proposed algorithm, we analyze its computational complexity

both theoretically and on a real implementation.

The lossless version of the compression algorithm is quite

similar to the CCSDS-123 recommendation, with the excep-

tion of entropy coding stage, now replaced by the range coder.

Its complexity and the one of the near-lossless scheme are
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therefore just marginally higher than CCSDS-123. The rate

control algorithm has three main sources of complexity:

• the estimation of the variance of unquantized prediction

residuals

• the l1 projector

• the Selective Diet optimization algorithm

We remarked in Sec. III-B that the l1 projector has complexity

O(NB logNB), essentially due to the sorting procedure. The

Selective Diet algorithm also has a sorting step as the main

source of complexity. After the blocks in the current slice

are sorted according to the value of the cost function, a

linear scan is performed to optimize the quantization step

sizes. This basic operation is repeated for Niter iterations,

hence with good approximation we can say that Selective Diet

has O(Niter(NB logNB + NB)) complexity. However, it is

typically observed that the number of required iterations is

very low (around 5 to 10) and can be bounded to a predefined

value.

We also profiled our C-language implementation of the

compression algorithm and compared lossless encoding

against rate-controlled encoding in terms of running times.

We used the aviris sc0 raw image for our test, as it is one

of the biggest in the dataset. Rate control was set to 3 bpp

with MODE A. The running time of the lossless encoder

was 72.62 seconds, while the rate-controlled encoder took

80.48 seconds. The time spent writing to file was removed

from both measurements in order to avoid any bias due

to different file sizes. It can be noticed that the overhead

of the rate controller is around 10%. Careful profiling of

the code suggests that this overhead is due for 65% (5.11
sec.) to variance estimation, while only 22% (1.73 sec.) to

optimization (l1 projector and Selective Diet). The remaining

13% is due to other inefficiencies in the code, which is not

very optimized. This result confirms our intuition, presented

in Sec. III-A, that variance estimation is the main source of

complexity, and so the number of lines (ESTLINES) used for

this task must be chosen carefully. All the results presented in

this paper were obtained with ESTLINES= 2.

B. Accuracy of rate control

In this section we show some results concerning the accu-

racy of the rate controller in terms of output rate. The tests are

conducted for various target rates, and for the two operating

modes of the algorithm: A and B. The predictor defined in

the CCSDS-123 standard is used in the full prediction mode

and with neighbour-oriented local sums. Square blocks of size

16×16 are used but the variance of the unquantized prediction

residuals is obtained by running the lossless encoder on 2

lines only. This allows to buffer only two spectral lines at

any given time, avoiding the need of large onboard memory

buffers. Table II reports a selection of the test images and

the output rates obtained for the specified target rates. While

later we will report full rate-distortion results, this test aims

at assessing the accuracy achieved at obtaining a given target

rate. It can be noted that the operating mode A is typically

less accurate than mode B. Nonetheless it can still get very

good accuracy in many cases, and, as explained in Sec.

VIII-C, it potentially has better rate-distortion characteristics.

Mode B always has remarkably good accuracy, thanks to

the information on the actual number of bits used to encode

previous slices. Moreover, it can be seen that the algorithm

performs equally well on both hyperspectral and multispectral

images.

Furthermore, Fig. 4 reports histograms of the actual rate

obtained by mode B on a total of 47 images belonging to

the test set of the CCSDS. The bin width is 1% of the target

rate. It should be noticed that, for the histogram at 3 bpp,

some of the images were encoded without losses using a rate

lower than the target, hence they have not been considered

in the histograms. Notice that many images in the test set

reach accuracy as good as 1% or less. We remark that the

rate control results are consistent throughout this large test set

and only few images failed to be encoded with good accuracy.

This is due to the severe noise affecting those images, causing

the predictor to have low performance, and consequently, the

prediction residuals exhibit large deviations from the model

we assumed.

C. Rate-distortion performance

In this section we study the rate-distortion performance of

the encoder, and, in particular, we focus on the suboptimality

of the rate controller with respect to a near-lossless encoding

of the images. The problem with near-lossless compression

is that, apart from the lack of rate control, only certain rates

can be achieved due to choice of a single quantization step

for the whole image. At high rates, this causes rate-distortion

points to be quite far apart from each other (e.g, as much

as 0.5 bpp), hence not allowing very flexible choices for the

rate-distortion operating point. On the other hand, rate control

allows to achieve very fine granularity and any rate-distortion

point, from low rates up to lossless compression, can be used.

Figure 5 shows the rate-SNR curves obtained for near-lossless

compression, rate control with mode A and rate control with

mode B for some test images. The following definition of SNR

is used throughout the paper:

SNR = 10 log10

∑Npixels

i=1 x2
i

∑Npixels

i=1 (xi − x̂i)2

being xi and x̂i the i-th pixel in the original image and in the

decoded image, respectively. As already explained in section

V, the great accuracy in the rate achieved by mode B is paid in

terms of slightly lower rate-distortion performance. However,

it is remarked that when the encoder is run relying on the

rate control only, the greater accuracy of mode B often results

in better quality than that provided by mode A, which often

yields a rate lower than the target. Nevertheless, it can be

noticed that the rate-distortion curves for both mode A and

mode B are quite close to the near-lossless performance. As

an example, for AIRS gran9 the gap is only about 0.2 dB at 2

bpp. For frt00009326 07 vnir the gap at 2 bpp is 0.2 dB for

mode A and 0.4 bpp for mode B. We report image vgt1 1b as

one of the worst cases of rate-SNR performance, where mode

A loses about 1.5 dB with respect to near-lossless encoding

and mode B about 1.8 dB, always at 2 bpp. We also remark
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Fig. 4. Histograms of output rates for mode B

TABLE II
OUTPUT RATES

Image Size (lines×pixels×bands) Mode 1 bpp 2 bpp 3 bpp 4 bpp

AVIRIS SC0 RAW 512 × 680× 224
A 0.951 1.963 2.955 3.959
B 1.004 1.995 3.006 3.994

AIRS GRAN9 135 × 90× 1501
A 0.948 1.939 2.963 3.971
B 0.959 1.976 2.962 3.962

CASI-T0477F06-NUC 1225 × 406× 72
A 0.881 1.944 2.924 3.981
B 0.999 1.994 2.995 3.988

CRISM-SC167-NUC 510 × 640× 545
A 0.678 1.706 2.677 3.690
B 1.003 1.993 2.986 3.991

CRISM-SC182-NUC 450 × 320× 545
A 0.680 1.698 2.691 3.696
B 1.002 1.991 2.985 3.973

FRT00009326 07 VNIR 512 × 640× 107
A 0.607 1.427 2.231 3.140
B 1.000 1.999 3.001 3.994

GEO SAMPLE FLATFIELDED 1024 × 256 × 242
A 0.912 2.070 3.124 3.998
B 0.988 1.987 2.983 3.971

M3TARGETB-NUC 512 × 640× 260
A 0.889 1.974 3.043 3.834(∗)

B 1.000 1.997 2.998 3.834(∗)

MODIS-MOD01 250M 8120 × 5416 × 2
A 0.909 1.997 2.939 3.839
B 1.014 2.009 3.006 4.004

MODIS-MOD01DAY 2030 × 1354 × 14
A 1.042 2.045 2.996 3.985
B 1.014 2.005 2.998 3.986

MONTPELLIER 224 × 2456 × 4
A 0.959 2.122 3.123 4.105
B 1.025 2.035 3.030 4.032

MOUNTAIN 1024 × 1024 × 6
A 0.735 1.935 2.970 3.793(∗)

B 1.002 2.003 3.003 3.793(∗)

T0477F06 RAW 1225 × 406× 72
A 1.138 1.971 2.935 3.987
B 1.016 1.994 2.995 3.993

TOULOUSE SPOT5 XS EXTRACT1 1024 × 1024 × 3
A 0.714 1.815 2.805 3.802
B 1.010 2.002 2.999 3.997

VGT 1B 10080 × 1728 × 4
A 0.630 1.813 2.878 3.914
B 1.009 2.004 3.002 4.001

(*) : lossless

that the curves were obtained without constraining maximum

distortion, which can significantly improve performance, as

shown in Sec. VI.

D. Comparison with transform coding

The CCSDS-122 standard [3] defines a transform coder em-

ploying the Discrete Wavelet Transform and a low-complexity

Bit Plane Encoder, for the compression of 2D imagery. An

extension of such standard to multiband imagery by in-

cluding a spectral transform has been implemented and is

publicly available online [42]. The implementation combines

the CCSDS-122 encoder with the POT spectral transform [4].

The proposed system is run using the memory-1 mode B

of rate control (slice-by-slice feedback) with τ = 5, with

full prediction mode and neighbor-oriented local sums, while

the transform system performs the rate allocation by means

of the reverse waterfill algorithm [1]. We remark that the

availability of the rate controller for the predictive system

allows to perform a direct comparison, in which both systems

work in a pure rate-controlled fashion by specifying a target

rate and letting the encoder perform all the coding decisions

automatically. The proposed rate controller is operated using

16 × 16 blocks and ESTLINES = 2, meaning that only

two lines out of 16 are used for estimation of the variance

of unquantized prediction residuals. On the other hand, the

transform coding system buffers 8 lines, thus requiring more
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Fig. 5. Rate-SNR curves. (a) AIRS gran9 , (b) CRISM-sc182-nuc, (c) vgt1 1b

memory. Table III reports a comparison between the two

systems, highlighting in bold the best results. The proposed

predictive system is competitive against transform coding by

typically providing superior quality, both in terms of SNR and

in terms of maximum absolute distortion (MAD), for the same

rate. Other quality metrics such as the maximum spectral angle

(MSA) and average spectral angle (ASA) have been studied

in the literature [43], but we omit them for reasons of brevity.

However, such metrics follow the same trends observed for

SNR and MAD, respectively. We observe that, at lower rates,

the proposed algorithm achieves significant gains in terms

of MAD even when the SNR gain is small or for the few

cases when the transform coder is more effective. We also

report (Table IV) the mean and median gains in terms of SNR

and MAD obtained by the proposed algorithm on the whole

corpus of images. We choose to report the median gain, as

well as the mean, due to some outliers in the results that

bias the mean gain statistics due to the large gain obtained

by the proposed system. It is sometimes the case that the

proposed system reaches lossless quality for the desired rate,

while the transform coder does not. Such cases are excluded

from the computation of the SNR gain as it would be infinite.

We can notice that the higher gains are achieved for higher

rates, confirming the typical behaviour of predictive encoders

with respect to transform encoders. Finally, we report a visual

comparison (Fig. 6) on a cropped portion of the first band

of the vgt1 1b test image. The two algorithms are compared

at the same rate of 2 bpp. Although it is difficult to see the

differences with the naked eye on paper, the figures reporting

the magnitude of the error clearly show that the proposed

predictive approach consistently achieves smaller deviations

from the original image. Also, notice that despite the block-

based approach of the proposed algorithm, scalar quantization

of the prediction residuals does not produce blocketization

artifacts.

IX. CONCLUSIONS

In this paper we have presented a rate control algorithm

for onboard compression of hyperspectral and multispectral

images designed to work with predictive encoders and suit-

able for implementation on spacecrafts. While rate control

is easy to perform in the case of transform coding, the

predictive coding paradigm poses significant challenges. We

have proposed a scheme based on modelling the predicted

rate and distortion for non-overlapping blocks of the image

and optimizing the assignment of quantization step sizes over

slices of the image. Extensive tests have shown that the

algorithm can effectively control the output rate with excellent

accuracy. Moreover, rate control solves one of the issues of

near-lossless compression, i.e., the scarce number of operating

points at high rates. In fact, the availability of a rate controller

allows the user to choose any rate, depending on their specific

needs. We have also proposed an extension of the CCSDS-

123 standard to deal with lossy, near-lossless and hybrid near-

lossless rate-controlled compression in a single package. The

resulting architecture is competitive with the transform coding

approach, significantly outperforming it at all rates from 1 bpp

up to lossless compression.
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