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On the second solution to a critical growth Robin problem

Elvise BERCHIO∗

January 5, 2012

Abstract

We investigate the existence of the second mountain-pass solution to a Robin problem, where
the equation is at critical growth and depends on a positive parameter λ. More precisely, we
determine existence and nonexistence regions for this type of solutions, depending both on λ and
on the parameter in the boundary conditions.
Mathematics Subject Classification: 35J20, 35J25, 35J91.

1 Introduction and main results

Let Ω ⊂ Rn (n ≥ 3) be a smooth and bounded domain and let 2∗ = 2n
n−2 be the critical Sobolev

exponent. We consider the Robin problem
−∆u = λ(1 + u)2∗−1 in Ω
u > 0 in Ω
uν + cu = 0 on ∂Ω,

(1)

where c, λ > 0 and uν denotes the outer normal derivative of u on ∂Ω.
As pointed out in the seminal paper [9], the interest in problems like (1) is due to their similarity to
some geometrical and physical variational problems where a lack of compactness also occurs (recall
that the embedding H1(Ω) ⊂ L2∗(Ω) is not compact).
A solution uλ to (1) is called minimal if uλ ≤ u a.e. in Ω, for any other solution u to (1). Furthermore,
we say that a solution u is regular if u ∈ L∞(Ω). From [5] we know

Proposition 1. For every c > 0, there exists λ∗ = λ∗(c) > 0 such that:

(i) for 0 < λ < λ∗ problem (1) admits a minimal regular solution uλ;

(ii) for λ = λ∗ problem (1) admits a unique regular solution u∗;

(iii) for λ > λ∗ problem (1) admits no solution.

Furthermore, the map c 7→ λ∗(c) is strictly increasing and λ∗(c)→ 0, as c→ 0.

When c = 0, (1) reduces to the Neumann problem (for which no positive solutions exist), whereas the
limit case c→ +∞ may be seen as the Dirichlet problem. Indeed, Proposition 1 includes well-known
results for the Dirichlet problem, see [9, 13, 16, 19].
Under Dirichlet boundary conditions, due to [9], we know that the equation in (1) admits, besides the
minimal solution uλ, a larger mountain-pass solution Uλ (see Section 2 for the definition) for every
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λ ∈ (0, λ∗Dir), where λ∗Dir is the extremal parameter for the Dirichlet problem. One of the purposes of
the present paper is to investigate, for any c > 0 and λ ∈ (0, λ∗(c)), the existence of a larger mountain-
pass solution Uλ to problem (1). This represents a further step towards a complete description of the
set of solutions to (1).
Let H(x) be the mean curvature of ∂Ω at x and let

Hmax := max
x∈∂Ω

H(x). (2)

We show

Theorem 1. Let λ∗(c) be as in Proposition 1. For every c > 0, there exists 0 ≤ Λ(c) < λ∗(c)
such that problem (1) admits, besides the minimal solution uλ, a mountain-pass solution Uλ for any
Λ(c) < λ < λ∗(c). Furthermore, the map (0,+∞) 3 c 7→ Λ(c) is nondecreasing and the following
statements hold

(i) if n = 3 and c > 0 or n ≥ 4 and 0 < c < n−2
2 Hmax, then Λ(c) = 0. Moreover, if n = 4, 5, then

Λ(n−2
2 Hmax) = 0.

(ii) if n ≥ 4, there exists K = K(Ω) ≥ n−2
2 Hmax such that if c > K, then Λ(c) > 0, Uλ exists up to

λ = Λ(c) and does not exist if 0 < λ < Λ(c).

Note that, arguing as in [6], any mountain-pass solution to (1) is regular. Hence, by elliptic regularity,
it solves (1) in a classical sense.
When Λ(c) > 0, one may wonder if different kinds of solutions exist for λ ∈ (0,Λ(c)). If Ω = B,
the unit ball, in [5] explicit radial solutions to (1) have been determined for every λ ∈ (0, λ∗(c)). We
briefly recall their construction. For c > 0 and η > η0(c), where

η0(c) := max{0, n− 2
c
− 1} , (3)

consider the function

ϕ(η) :=
[n(n− 2)]n−2

c4

[c(1 + η)− n+ 2]4ηn−2

(1 + η)2n
. (4)

It is readily seen that ϕ(η0) = 0 = lim
η→+∞

ϕ(η), that ϕ attains a global maximum at

η :=
n+ 2 +

√
(n+ 2)2 − 4c(n− 2− c)

2c
,

that ϕ increases on (η0, η) and decreases on (η,+∞). Hence, for any λ ∈ (0, λn(c)), where λn(c) :=
(ϕ(η))1/(n−2),

there exist ηi = ηi(λ, c) (i = 1, 2) such that ϕ(ηi) = λn−2. (5)

If λ = λn(c), then η1 = η2 = η. Finally, we recall by [5]

Proposition 2. Let Ω = B ⊂ Rn (n ≥ 3). Then, if λn(c) > 0 and η0 < η2 ≤ η ≤ η1 are defined as in
(5), we have

(i) for every λ ∈ (0, λn(c)), there exist two radial solutions of problem (1), the minimal solution uη1
and a larger solution uη2, given by

uηi(x) =
(
n(n− 2)ηi

λ

)(n−2)/4

(ηi + |x|2)−(n−2)/2 − 1, i = 1, 2 ;
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(ii) the extremal parameter satisfies λ∗(c) = λn(c) and the extremal solution u∗ of (1) is given by
u∗(x) := uη(x).

Letting c→ +∞ in Proposition 2, one recovers known results for the corresponding Dirichlet problem,
see [16, Section 5]. In particular, λn(c)↗ λ∗Dir, see also [19, Section VI].
In Section 4 we show that the larger solution uη2 in Proposition 2 has high energy when c > n−2

2 and
λ is sufficiently small. Combining this with the fact that uη1 and uη2 are the only radial solutions to
(1), we prove

Theorem 2. Let Ω = B ⊂ Rn (n ≥ 3) and λn(c) be as in Proposition 2. Then

(i) if 0 < c ≤ n−2
2 , problem (1) admits, besides the minimal solution, a radial mountain-pass solution

Uλ for every 0 < λ < λn(c);

(ii) if c > n−2
2 , there exists Λrad(c) > 0 such that problem (1) admits, besides the minimal solution,

a radial mountain-pass solution Uλ if and only if Λrad(c) ≤ λ < λn(c). Furthermore, the map
(n−2

2 ,+∞) 3 c 7→ Λrad(c) is increasing and limc→(n−2
2

)+ Λrad(c) = 0.

In both cases (i) and (ii), Uλ = uη2 as given in Proposition 2.

Let Λ(c) be as in Theorem 1. When Ω = B, from Theorem 2, we infer Λ(c) ≤ Λrad(c). Hence,
Λ(n−2

2 ) = 0 for every n ≥ 3. On the other hand, we do not know if, as in the Dirichlet case [17], any
(smooth) solution to (1) in the ball is radially symmetric. Namely, if Λ(c) = Λrad(c) for every c > 0.
When n = 3, this is false. Indeed, by combining the statements of Theorems 1 and 2, we deduce the
following

Corollary 1. Let Ω = B ⊂ R3, c > 1
2 and Λrad(c) > 0 be as in Theorem 2. Then, for every

0 < λ < Λrad(c), problem (1) admits, besides the minimal solution, a mountain-pass solution which is
not radial.

A couple of remarks are in order. The proof of Theorem 1 is obtained by studying a suitable Robin
problem at critical growth, see Section 2. The lower order perturbations considered include nonlin-
earities of the form: λ(a(x)u + uq), where λ > 0, a is a positive measurable function in L∞(Ω) and
1 < q < 2∗ − 1. A critical threshold for the exponent q turns out to be

2T :=
2(n− 1)
n− 2

, (6)

the so-called trace exponent. If 2T − 1 < q < 2∗ − 1, existence of mountain-pass solutions to the
corresponding Robin problem is known from [27]. When 1 < q ≤ 2T − 1, λ is sufficiently small and c
is sufficiently large, we show nonexistence of mountain-pass solutions, see Theorem 4 in Section 2. We
should mention that the role of the trace exponent in existence and nonexistence results is well-known
for the corresponding Neumann problem (with λ < 0), see for instance the survey article [15]. In this
case, one has existence if 1 < q < 2T − 1 and nonexistence if 2T − 1 ≤ q < 2∗ − 1, see [10, 14] and
references therein. The “inversion”, between the existence and nonexistence regions, is basically due
to the sign of λ. Roughly speaking, in the Robin case (c > 0 and λ > 0) the subcritical term lowers
the functional, while in the Neumann case (c = 0 and λ < 0) it increases the energy of solutions, see
Section 2.
As a by-product of the above mentioned nonexistence results, we derive a Sobolev type inequality.
First, from [22] (see also [1]), we recall that there exists C = C(Ω) ≥ n−2

2 Hmax such that, for every
c ≥ C(Ω), there holds∫

Ω
|∇u|2 dx+ c

∫
∂Ω
u2 dσ ≥ S

22/n
|u|22∗ for every u ∈ H1(Ω) . (7)
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Here and in the following, |.|p denotes the usual norm in Lp(Ω) and S is the best Sobolev constant,
namely

S = inf{|∇u|22; u ∈ D1,2(Rn), |u|2∗ = 1}. (8)

If Ω = B, then C(Ω) = n−2
2 , see [8]. We also refer to [30] and references therein for some variants to

(7) involving L2 interior and L2T boundary norms.
Let a(x) be a positive measurable function in L∞(Ω). For every c > 0, we set

λa1(c) := inf
u∈H1(Ω)\{0}

∫
Ω |∇u|

2 dx+ c
∫
∂Ω u

2 dσ∫
Ω a(x)u2 dx

. (9)

Namely, λa1(c) is the first eigenvalue (with weight a) of −∆ under Robin boundary conditions.
Finally, for every 0 < λ < λa1(c), we define the norm

‖u‖2λ,c :=
∫

Ω
|∇u|2 dx+ c

∫
∂Ω
u2 dσ − λ

∫
Ω
a(x)u2 dx (10)

and we state

Theorem 3. Let n ≥ 3, 2T as in (6), C(Ω) as in (7), λa1(c) as in (9) and ‖.‖λ,c as in (10). There
exists K = K(Ω) ≥ C(Ω) such that for every c > K there exists 0 < Λ = Λ(c) < λ1

a(c) such that

‖u‖2Λ,c ≥
S

22/n
|u|22∗

1 +
4

n · 2T
Λ|u|2T2T√

Λ2|u|2·2T2T
+ 4‖u‖2Λ,c|u|2

∗
2∗ + Λ|u|2T2T

 (11)

for every u ∈ H1(Ω) \ {0}.

As can be checked, if u ∈ H1(Ω) \ {0},

1 +
n− 2

n(n− 1)
>

1 +
4

n · 2T
Λ|u|2T2T√

Λ2|u|2·2T2T
+ 4‖u‖2Λ,c|u|2

∗
2∗ + Λ|u|2T2T

 > 1 .

The paper is organized as follows. In Section 2 we give some existence and nonexistence results for a
suitable model problem at critical growth. This allows to prove Theorem 1 in Section 3. In Section 4
we prove Theorem 2, while in Section 5 we derive inequality (11).

2 The model problem

Let Ω ⊂ Rn (n ≥ 3) be a smooth and bounded domain and let H1(Ω) be the usual Sobolev space
endowed with the norm

‖u‖2 :=
∫

Ω
|∇u|2 dx+

∫
Ω
u2 dx.

For any c > 0 fixed, the following norm

‖u‖2c :=
∫

Ω
|∇u|2 dx+ c

∫
∂Ω
u2 dσ

is equivalent to ‖.‖, see for instance [25, A.9 Theorem]. As in Section 1, we will denote with |.|p the
usual Lp(Ω) norm and with 2∗ and 2T the critical Sobolev and trace exponents.
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Motivated by problem (1), in the spirit of [9] (see our Section 3), we consider the following model
problem

(Pλ)


−∆u = u2∗−1 + fλ(x, u) in Ω
u > 0 in Ω
uν + cu = 0 on ∂Ω,

where λ, c > 0 and fλ is a lower order perturbation. More precisely, we assume that

(f1) fλ(x, s) ≥ 0 is measurable with respect to x, continuous with respect to s ≥ 0 and sup{fλ(x, s) :
x ∈ Ω, 0 ≤ s ≤ C} < +∞, for every C > 0. Furthermore, the map λ 7→ fλ(x, s) is increasing for
a.e. x ∈ Ω and for every s > 0, and f0(x, s) ≡ 0;

(f2) fλ can be written as fλ(x, s) = λa(x)s + gλ(x, s), where a is a positive bounded measurable
function and

gλ(x, s) = o(s) as s→ 0+ , uniformly with respect to a.e. x ∈ Ω ;
gλ(x, s) = o(s2∗−1) as s→ +∞ , uniformly with respect to a.e. x ∈ Ω ;
gλ(x, s) + s2∗−1 > 0, for every s > 0 and a.e. x ∈ Ω .

(12)

The same equation was studied in [9] but under Dirichlet boundary conditions. When c = 0 and
fλ(x, u) = −a(x)u − λuq, problem (Pλ) was studied in several papers. Existence of least energy
solutions (see (16) for the definition) was proved in [27], for 1 < q < 2T − 1 and n ≥ 3. Existence and
nonexistence of least energy solutions were proved in [10] for q = 2T − 1 and n ≥ 5, and in [14] for
1 < q < 2∗ − 1 and n ≥ 3. See also [3, 12, 28] and the survey article [11].
Less is known under Robin boundary conditions. When fλ(x, u) ≡ 0 and 0 < c < n−2

2 Hmax, with Hmax

as defined in (2), existence of least energy solutions is known from [2]. If fλ(x, u) = f(x, u) = a(x)u+
b(x)uq, where b is a bounded and positive function and 2T − 1 < q < 2∗ − 1, existence of mountain-
pass solutions was shown in [27, Corollary 4.1]. Also we mention that the case fλ(x, u) = λa(x)u
was studied in [23] and [24] by means of a suitable transformation sending the Robin problem into a
Neumann problem. Finally, we refer to [20] and [21] where the case Ω = B, fλ(x, u) = λa(x)u and u
radial is dealt.
We consider weak solutions u ∈ H1(Ω) to (Pλ), namely such that∫

Ω
∇u · ∇v dx+ c

∫
∂Ω
uv dσ =

∫
Ω

(
u2∗−1 + λa(x)u+ gλ(x, u)

)
v dx for every v ∈ H1(Ω) . (13)

Let λa1(c) be as defined in (9). Standard calculus arguments show that λa1(c) is achieved by a unique
positive function ϕa1. Testing (13) with v = ϕa1, by the third assumption in (12), we readily deduce
that (Pλ) admits solutions if and only if λ < λa1(c).
On the other hand, for any λ ∈ (0, λa1(c)), we set

µa1(λ, c) := inf
u∈H1(Ω)\{0}

‖u‖2c − λ
∫

Ω a(x)u2 dx

|u|22
, (14)

the first eigenvalue of the operator −∆ − λa(x) under Robin boundary conditions. It turns out that
µa1(λ, c) > 0 and the minimum is achieved by a unique (up to a multiplicative constant) function
φa1 strictly of one sign in Ω, see [5, Lemma 12]. By (14) it follows that, for any c > 0 and for any
λ ∈ (0, λa1(c)), the norm ‖.‖λ,c in (10) is equivalent to ‖.‖c and, in turn, to ‖.‖.
Weak solutions to (Pλ) are the nonzero critical points of the functional

Jλ,c(u) :=
1
2
‖u‖2λ,c −

1
2∗
|u|2∗2∗ −

∫
Ω
Gλ(x, u) dx, (15)
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where Gλ(x, u) =
∫ u

0 gλ(x, s) ds. In order to deal with nonnegative solutions, one has to consider the
modified functional where |u|2∗2∗ is replaced by |u+|2∗2∗ and gλ(x, u) = 0 for u < 0. These substitutions
do not affect the analysis below.
Exploiting either the fact that ‖.‖λ,c is a norm equivalent to ‖.‖ and the growth conditions assumed
on gλ, it is readily seen that Jλ,c has a mountain-pass structure for any c > 0 and 0 < λ < λa1(c), see
[9, 27]. We set

M(λ, c) := inf
γ∈Γ

max
t∈[0,1]

Jλ,c(γ(t)),

where Γ := {γ ∈ C0
(
[0, 1], H1(Ω)

)
: γ(0) = 0, Jλ,c(γ(1)) < 0}. We also recall that a natural constraint

for Jλ,c is the so-called Nehari manifold:

Nλ,c := {u ∈ H1(Ω) \ {0} : J ′λ,c(u)[u] = 0}.

Arguing as in [29, Chapter 4], one may check that, for any u ∈ H1(Ω) \ {0}, there exists a unique
tλ,c = tλ,c(u) > 0 such that tλ,c(u)u ∈ Nλ,c and the maximum of Jλ,c(tu) is achieved at t = tλ,c(u).
The map H1(Ω) \ {0} 3 u 7→ tλ,c(u) ∈ (0,+∞) is continuous, while the map u 7→ tλ,c(u)u defines an
homeomorphism between the unit ball of H1(Ω) and Nλ,c. Furthermore, there holds

inf
u∈Nλ,c

Jλ,c(u) = inf
u∈H1(Ω)\{0}

sup
t≥0

Jλ,c(tu) = inf
u∈H1(Ω)\{0}

Jλ,c(tλ,c(u)u) = M(λ, c). (16)

Minimizers to Jλ,c(u) in Nλ,c are usually called least energy solutions to (Pλ). Hence, we shall equiv-
alently refer to least energy or mountain-pass solutions to (Pλ).
Some computations show that

tλ,c(u)‖u‖2λ,c − t2
∗−1
λ,c (u)|u|2∗2∗ −

∫
Ω
gλ(x, tλ,c(u)u)u dx = 0 , (17)

for every u ∈ H1(Ω). Then, since by assumption λa(x)s2 + gλ(x, s)s = fλ(x, s)s ≥ 0 for every s ≥ 0
and a.e. x ∈ Ω, we get

tλ,c(u) ≤
(
‖u‖2c
|u|2∗2∗

)(n−2)/4

. (18)

Next we state a compactness result which is obtained by slightly modifying [9, Theorem 2.2] and [27,
Theorem 2.1].

Lemma 1. For c > 0 and λ ∈ (0, λa1(c)), the functional Jλ,c admits a Palais Smale sequence at level
M = M(λ, c), namely there exists a sequence {um}m≥0 ⊂ H1(Ω) such that

Jλ,c(um)→M , J ′λ,c(um)→ 0 in (H1(Ω))′.

If furthermore

M(λ, c) <
Sn/2

2n
,

then there is a solution u ∈ H1(Ω) of (Pλ) such that um → u in H1(Ω) (up to a subsequence) and
Jλ,c(u) = M(λ, c).

Proof. The existence of a Palais Smale sequence {um}m≥0 follows by the mountain-pass structure of
the functional Jλ,c, see [9, Theorem 2.2]. We prove the compactness issue.
By assumption, we have that

1
2
‖um‖2λ,c −

1
2∗
|um|2

∗
2∗ −

∫
Ω
Gλ(x, um) dx = M + o(1) (19)
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and
〈um, ϕ〉λ,c −

∫
Ω
|um|2

∗−2umϕdx−
∫

Ω
gλ(x, um)ϕdx = o(‖ϕ‖) for every ϕ ∈ H1(Ω) (20)

as m→ +∞, where 〈., .〉λ,c denotes the scalar product associated to the norm ‖.‖λ,c.
Writing (20) with ϕ = um and inserting this into (19), we get

1
n
|um|2

∗
2∗ =

∫
Ω

(
Gλ(x, um)− 1

2
gλ(x, um)um

)
dx+M + o(1) . (21)

By (12), for every ε > 0 there exists C1 > 0 such that

|gλ(x, s)| ≤ εs2∗−1 + C1 for s > 0 .

Exploiting the arbitrariness of ε and recalling that gλ(x, s) = 0 for s < 0, (21) yields

|um|2
∗

2∗ ≤ C2‖um‖λ,c +M + o(1) ,

for some C2 > 0. Comparing with (19) and exploiting (12), we conclude that

‖um‖2λ,c ≤ C3‖um‖λ,c + C4 + o(1) ,

for some C3, C4 > 0. Hence, {um}m≥0 is bounded in H1(Ω). Then, (up to a subsequence) there exists
u ∈ H1(Ω) such that

um ⇀ u in H1(Ω) and um → u a.e. in Ω ,

um |∂Ω→ u |∂Ω in L2(∂Ω) and um → u in Lq(Ω) , for every 1 ≤ q < 2∗.

Assume by contradiction that u = 0. As in [9, (2.26) and (2.27)], we deduce that∫
Ω
gλ(x, um)um dx→ 0 and

∫
Ω
Gλ(x, um) dx→ 0.

Then, (20), with ϕ = um, gives
|∇um|22 = |um|2

∗
2∗ + o(1)

and, in turn, by (21) we get

|um|2
∗

2∗ = nM + o(1) and |∇um|22 = nM + o(1) . (22)

This, combined with (7), implies

o(1) + nM = o(1) + |∇um|22 ≥
S

22/n
|um|22∗ =

S

22/n
(nM)2/2∗ + o(1) .

Namely,

M ≥ Sn/2

2n
,

a contradiction.
Let u 6= 0, (20) with ϕ = um − u yields

|∇(um − u)|22 = |um − u|2
∗

2∗+ = o(1) ,

where we have also exploited the Brezis-Lieb Lemma [7]. Then, since
∫

ΩGλ(x, um) dx→
∫

ΩGλ(x, u) dx,
by (19) and the Brezis-Lieb Lemma, we deduce

Jλ,c(u) +
1
n
|∇(um − u)|22 = M + o(1) . (23)

7



Writing (20) with ϕ = u and passing to the limit, we get

‖u‖2λ,c = |u|2∗2∗ +
∫

Ω
gλ(x, u)u + o(1) ,

so that u ∈ Nλ,c (the Nehari manifold associated to Jλ,c). Then, by (16), we deduce that Jλ,c(u) ≥M .
This, inserted into (23), implies that

1
n
|∇(um − u)|22 ≤ o(1) ,

from which the statement follows. 2

Recall that the functions

Uε(x) =
(

εn(n− 2)
ε2n(n− 2) + |x|2

)n−2
2

(ε > 0) (24)

achieve the best Sobolev constant (8) and solve the equation

−∆u = u2∗−1 Rn .

By exploiting the functions in (24), we prove

Lemma 2. For every c > 0, the following statements hold:

(i) M(λ, c) ≤ Sn/2

2n for every λ ∈ (0, λa1(c));

(ii) the map (0, λa1(c)) 3 λ 7→ M(λ, c) is nonincreasing (decreasing when M(λ, c) < Sn/2

2n ) and
continuous;

(iii) lim
λ→0+

M(λ, c) =
Sn/2

2n
for every c ≥ C(Ω), with C(Ω) as in (7), and lim

λ→(λa1(c))−
M(λ, c) = 0, for

every c > 0.

Let λa∞ := lim
c→+∞

λa1(c) (which exists since λa1(c) is increasing). For every λ ∈ (0, λa∞), there exists

c0 > 0 such that λ = λa1(c0) and

(iv) the map (c0,+∞) 3 c 7→ M(λ, c) is nondecreasing (decreasing when M(λ, c) < Sn/2

2n ) and con-
tinuous.

Arguing as in [23, Lemma 3.3], it is not difficult to check that λa∞ corresponds to λa1,Dir, the first
eigenvalue (with weight a) of −∆ under Dirichlet boundary conditions.

Proof. For ε > 0, let Uε(x) be as in (24). Put

U ε(x) :=
Uε(x)
|Uε(x)|2∗

so that, by applying arguments similar to those in [9, Lemma 2.1] (see also (29) below), one has that

sup
t≥0

Jλ,c(tU ε) ≤
1
n
‖U ε‖nc ,

8



for every c > 0 and λ ∈ (0, λa1(c)). By the estimates performed in [1] and [2], we have that

‖U ε‖2c =
S

22/n
+ αn(ε) ,

where αn(ε) = ε + o(ε), if n ≥ 4, while α3(ε) = ε| log(ε)| + O(ε), see also (30) below. Then, letting
ε→ 0, statement (i) follows from (16).
Since the proof of statements (ii) and (iv) is the same as [10, Lemma 3.2], we omit it. The key point
is the exploitation of the characterization (16). This has to be suitably combined with compactness
arguments similar to those applied in the proof of Lemma 1, see also [14, Lemma 11].
Let us consider (iii). Set

Ic(u) :=
1
2
‖u‖2c −

1
2∗
|u|2∗2∗ and sc := inf

u∈Nc
Ic(u) =

1
n

inf
u∈H1(Ω)\{0}

(
‖u‖2c
‖u‖22∗

)n
2

, (25)

where Nc := {u ∈ H1(Ω) \ {0} : I ′c(u)[u] = 0}, see (16). The estimates given above and (7) yield
sc = Sn/2

2n , for every c ≥ C(Ω).
Let λm → 0+ as m → +∞. By (ii), there exists limm→+∞M(λm, c) = Mc and, by (16), Mc ≤ sc,
for every c > 0. If Mc = Sn/2

2n , there is nothing to prove. Assume, by contradiction, that Mc <
Sn/2

2n
for c ≥ C(Ω). Then, M(λm, c) is achieved by um ∈ Nλm,c and the sequence {um}m≥0 turns out to be
bounded in H1(Ω), see the proof of Lemma 1. Thanks to (f1) and (f2), we may repeat the proof of
Lemma 1 (with minor changes) to conclude that um → u 6= 0 in H1(Ω), where u ∈ Nc. In particular,
we get that sc ≤ Ic(u) = limn→+∞ Jλm,c(um) = Mc <

Sn/2

2n , which is impossible for c ≥ C(Ω).
Now we turn to the second part of (iii). Let φa1 be the first positive eigenfunction associated to µa1(λ, c)
as defined in (14). By the third assumption in (12), we get

Jλ,c(tλ,c(φa1)φa1) ≤
t2λ,c(φ

a
1)

2
‖φa1‖2λ,c = µa1(λ, c)

t2λ,c(φ
a
1)

2
‖φa1‖22 =: µa1(λ, c)F (φa1).

The last term in the above equation goes to zero as λ→ (λa1(c))−. Indeed, F (φa1) is bounded by (18)
and, for every c > 0, the map (0, λa1(c)) 3 λ 7→ µa1(λ, c) is continuous, decreasing and µa1(λ, c)↘ 0 as
λ→ (λa1(c))−. Then, recalling (16), we conclude. 2

By Lemma 2, the following infimum is well-defined

Λ(c) := inf

{
0 < λ < λa1(c) : M(λ, c) <

Sn/2

2n

}
, (26)

for any c > 0. Moreover, we have

Lemma 3. Let Λ(c) be as in (26), then the map (0,+∞) 3 c 7→ Λ(c) is nondecreasing.

Proof. Let 0 < c1 < c2. If Λ(c2) = 0, by Lemma 2, we readily get that Λ(c1) = Λ(c2). Assume now
Λ(c2) > 0. Since the map c 7→ λa1(c) is increasing, there exists c0 < c2 such that Λ(c2) = λa1(c0) < λa1(c),
for every c > c0. Then, by Lemma 2-(iv), M(λ, c1) < M(λ, c2) < Sn/2

2n , for every λ ∈ (Λ(c2), λa1(c1))
and for every c0 < c1 < c2. Hence, Λ(c1) ≤ Λ(c2), for every c0 < c1 < c2. The above argument,
suitably iterated, proves the statement. 2

Finally, we prove

Theorem 4. Let Ω ⊂ Rn (n ≥ 3), λa1(c) be as in (9) and Λ(c) as in (26). Furthermore, we denote
with bλ a suitable positive bounded measurable function. Assume that fλ satisfies (f1) and (f2), then
problem (Pλ) admits a mountain-pass solution for every Λ(c) < λ < λa1(c), where
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(i) if 0 < c < n−2
2 Hmax, then Λ(c) = 0;

(ii) if c ≥ n−2
2 Hmax and

gλ(x, s) ≥ bλ(x)sq with 2T − 1 < q < 2∗ − 1 for every s ≥ 0 and a.e. x ∈ Ω , (27)

then Λ(c) = 0. If n ≥ 4 and (27) holds with 1 < q ≤ 2T − 1, then Λ(n−2
2 Hmax) = 0.

(iii) If
gλ(x, s) ≤ bλ(x)sq with 1 < q ≤ 2T − 1 for every s ≥ 0 and a.e. x ∈ Ω ,

then there exists K(Ω) ≥ n−2
2 Hmax such that, for every c > K, Λ(c) > 0 and (Pλ) admits a

mountain-pass solution if and only if Λ(c) ≤ λ < λa1(c).

The first part of Theorem 4 is an immediate consequence of (26) and Lemma 1. A large part of
statements (i) and (ii) is known from [2] and [27]. For completeness, we put the whole proofs in
Section 2.1 below.
Concerning assertion (iii), we note that it includes the cases gλ(x, s) ≡ 0 and gλ(x, s) ≤ 0. To get
its proof, we apply a blow-up argument as λ → (Λ(c))+, in the spirit of the one developed for the
Neumann problem (as λ→ −∞) in [3, 12, 28]. See also [1], where a similar approach was adopted for
problem (P0) as c→ +∞.

2.1 Proof of Theorem 4-(i) and (ii)

We only need to verify that there exists w0 ∈ H1(Ω), w0 ≥ 0 in Ω such that

sup
t≥0

Jλ,c(tw0) <
Sn/2

2n
,

for every 0 < λ < λa1(c) and for c in a suitable interval. Once this proved, Lemma 1 gives the
conclusion.
For ε > 0, let Uε(x) be as in (24). For α > 0, by [4] we recall the following estimates:∫

Ω
|Uε(x)|α dx ≤

{
C1ε

n−αn−2
2 + C2ε

αn−2
2 for α 6= n

n−2

εn/2(C1 + C2| ln ε|) for α = n
n−2 .

(28)

As in the proof of Lemma 2, let

U ε(x) =
Uε(x)
|Uε(x)|2∗

.

By applying arguments similar to those of [9, Lemma 2.1], we get that

Jλ,c(tU ε) ≤
1
n
‖U ε‖nc −

∫
Ω

∫ tεUε

0
fλ(x, s) ds dx for every t ≥ 0 , (29)

where tε = tλ,c(U ε) is as in (17). Furthermore, following the proof of [9, Lemma 2.1], we have that
tε → S(n−2)/4

22∗ as ε→ 0. By the estimates in [2], we know that

‖U ε‖2c =
‖Uε‖2c
|Uε(x)|22∗

=
S

22/n
+Bn

(
c− n− 2

2
Hmax

)
ε+O(ε2| log(ε)|) , (30)

for some Bn > 0 and for n ≥ 4. If n = 3, the same estimate holds but with ε| log(ε)| in place of ε
and with O(ε) in place of O(ε2| log(ε)|). Then, since fλ(x, s) ≥ 0, statement (i) readily follows by
combining (29) with (30).
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Let us now turn to statement (ii). By assumption, since a(x) is positive, we have that fλ(x, s) ≥
bλ(x)sq, where 2T − 1 < q < 2∗ − 1. Hence, by (28),

−
∫

Ω

∫ tεUε

0
fλ(x, s) ds dx ≤ − tq+1

ε

q + 1

∫
Ω
bλ(x)U q+1

ε = −Cn,λεn−(q+1)
(n−2)

2 ,

with Cn,λ > 0 for λ > 0. By noting that 0 < n− (q+ 1) (n−2)
2 < 1, the conclusion follows by combining

this with (29) and (30).
To get the proof of the second part of statement (ii), we simply note that, when n ≥ 4, the above
estimate still holds for 1 < q ≤ 2T − 1. The only difference is that, here, 1 ≤ n − (q + 1) (n−2)

2 < 2.
When c = n−2

2 Hmax, by (29) and (30), this suffices to lower the functional under the compactness
threshold. If n = 3 and c = 1

2 Hmax, the term to be lowered is O(ε) and the growth condition (27)
cannot be weakened.

2.2 Proof of Theorem 4-(iii)

For n ≥ 3, we show that that there exists C ′(Ω) ≥ n−2
2 Hmax, such that M(Λ(c), c) is attained for

every c > C ′. Were Λ(c) = 0, there would exist a sequence of functions {um}m≥0 in H1(Ω) which
achieve M(λm, c) as λm → 0+. Arguing as in the proof of Lemma 2-(iii), we deduce that um → u
in H1(Ω) and u 6= 0 (if u = 0, one gets a contradiction by repeating the proof below). Moreover,
u achieves sc as defined in (25). But sc is constant, hence, it cannot be attained for c > C(Ω),
with C(Ω) as in (7) (sc is strictly increasing when achieved). We conclude that Λ(c) > 0, for every
c > K(Ω) := max{C(Ω), C ′(Ω)}. Similarly, when λ ∈ (0,Λ(c)), M(Λ(c), c) is constant and cannot be
achieved.

Let c > C ′(Ω), with C ′(Ω) ≥ n−2
2 Hmax to be fixed later, and λm → (Λ(c))+. Then, by Lemma 1,

M(λm, c) is achieved by a function um ∈ H1(Ω). The sequence {um}m≥0 is bounded in H1(Ω) (see
the proof of Lemma 1). Hence, up to a subsequence, um ⇀ u in H1(Ω) as m→ +∞. We assume that
u = 0. Otherwise, by arguing as in the proof of Lemma 1, u is a mountain-pass solution to (PΛ) and
we conclude. It follows that

lim
m→∞

|∇um|22 = lim
m→∞

|um|2
∗

2∗ = lim
m→∞

nM(λm, c) =
Sn/2

2
,

see (22).
By this, invoking [3, Lemma 3.7], we obtain that there exist δm > 0 and Pm ∈ ∂Ω such that

lim
m→∞

δm = 0 , lim
m→∞

dist(Pm, ∂Ω)
δm

= 0 and lim
m→∞

|∇(um − Uδm,Pm)|22 = 0 , (31)

where, recalling (24), we denote with Uε,y(x) := Uε(x − y) for ε > 0 and y ∈ Rn. Therefore, up to a
subsequence, Pm → P ∈ ∂Ω.
Then, putting

M := {CUε,y : C ∈ R, ε > 0, y ∈ ∂Ω}

and
d(ϕ,M) := inf{|∇(ϕ− ψ)|22 ψ ∈M},

[3, Lemma 3.1] implies that d(um,M) is achieved by some CmUεm,ym . More precisely, there exist
m0 > 0, εm > 0, Cm ∈ R, ym ∈ ∂Ω, ωm ∈ H1(Ω) such that

um = CmUεm,ym + ωm for every m ≥ m0.
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Furthermore, by [3, Lemma 2.3], up to a subsequence, εm/δm → 1, Cm → 1, ym → P and ωm → 0 in
H1(Ω). Moreover, we have ∫

Ω
∇ωm · ∇Uεm,ym dx = 0 for every m ≥ m0.

Now we recall some estimates. By [2], we know that

|Uεm,ym |2
∗

2∗ =
Sn/2

2
−Anεm + o(εm) , (32)

for some An > 0.
By [3, Lemma 3.5] (with L = 2),

|um|2
∗

2∗ = C2∗
m |Uεm,ym |2

∗
2∗ + 2∗C2∗−1

m

∫
Ω
U2∗−1
εm,ymωm +

2∗(2∗ − 1)
2

C2∗−2
m

∫
Ω
U2∗−2
εm,ymω

2
m + o(‖ωm‖2) . (33)

By [14, (7.33)], ∫
Ω
U2∗−1
εm,ymωm dx = O(βn(εm)‖ωm‖) ,

where

βn(εm) =


εm if n ≥ 5
εm| log(εm)|2/3 if n = 4
ε

1/2
m if n = 3

and, by [14, (7.34)], ∫
Ω
U2∗−2
εm,ymω

2
m dx = O(‖ωm‖2) . (34)

Hence,
|um|2

∗
2∗ = C2∗

m |Uεm,ym |2
∗

2∗ +O(βn(εm)‖ωm‖+ ‖ωm‖2) . (35)

Furthermore, by [1, (3.25)], ∫
∂Ω
Uεm,ym ωm dx = O(βn(εm)‖ωm‖).

Finally, by [14, (7.28)], ∫
Ω
Uεm,ym ωm dx = O(γn(εm))‖ωm‖),

where

γn(εm) =


ε2
m if n ≥ 7
ε2
m| log(εm)|2/3 if n = 6
ε

(n−2)/2
m if n = 3, 4, 5 .

Hence, γn(εm) = o(βn(εm)), for every n ≥ 4, and γ3(εm) = β3(εm).
Next we get a lower bound for ‖ωm‖λm,c.

Lemma 4. Let n ≥ 3, there exist δ > 0 and m0 > 0 such that, for all m ≥ m0,

‖ω‖2λm,c ≥ (2∗ − 1 + δ)
∫

Ω
U2∗−2
εm,ymω

2 dx+O(β2
n(εm)‖ω‖2),

for every c > 0 and for all ω orthogonal to the tangent space to the manifold M at (1, εm, ym).
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Proof. The proof follows the lines of [3, Lemmas 3.3 and 3.4]. The main difference is that the
eigenvalue problem considered there has to be replaced by{

−∆u− λma(x)u = µU2∗−2
εm,ymu in Ω

uν + cu = 0 on ∂Ω.
(36)

Let {uj,εm}j≥1 be a complete set of orthonormal eigenfunctions to (36), that is∫
Ω
U2∗−2
εm,ymui,εmuj,εm dx = δij ,

with corresponding eigenvalues µi,εm .
Now, putting Ωm := Ω−ym

εm
, for every u ∈ H1(Ω), we define

ũ(x) = ε(n−2)/2
m u(εmx+ ym) x ∈ Ωm .

There holds
lim

m→+∞
µi,εm = µi and lim

m→+∞

∫
Ωm

U2∗−2
1 (ũj,εm − ũj)2 dx = 0 , (37)

where the µi and ũj are the eigenvalues and eigenfunctions of
−∆u = µU2∗−2

1 u in Rn
+

uν = 0 on ∂Rn
+∫

Rn+
U2∗−2

1 u2 dx = 1 .
(38)

We refer to [3, Lemma 3.3] for the details of the proof of (37). We simply note that, to get (37),
one first writes (36) in terms of ũ. Then, the “convergence” to (38) is ensured by the fact that
limm→+∞Ωm = Rn

+, by (31), εmλm → 0 (since λm is bounded) and cεm → 0.
Once (37) is proved, the very same arguments of the proof of [3, Lemma 3.4] (see also [14, Lemma
16]) give the statement. 2

Next we estimate

M(λm, c) = Jλm,c(tλm,c(um)um) ≥ sup
t≥0

[
t2

2
‖u‖2λm,c −

t2
∗

2∗
|um|2

∗
2∗ −

tq+1

q + 1
B(λm) |um|q+1

q+1

]
,

where

B(λ) =
{

0 if gλ(x, s) ≤ 0 or gλ(x, s) ≡ 0 ,
|bλ(x)|∞ if gλ(x, s) ≥ 0 .

Then, putting

Qλ,c(u) :=
‖u‖2λ,c
|u|22∗

,

if gλ(x, s) ≤ 0 or gλ(x, s) ≡ 0, we get

M(λm, c) ≥
1
n

(Qλm,c(um))
n
2 . (39)

If gλ(x, s) ≥ 0, we get

M(λm, c) ≥ Jλm,c

((
‖um‖2λm,c
|um|2

∗
2∗

)n−2
4

um

)
≥ 1

n (Qλm,c(um))
n
2 − B(λm)

q+1

(
(Q0,c(um))

n−2
4

|um|2∗

)q+1

|um|q+1
q+1 ,

(40)
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where we have exploited the fact that
(
‖um‖2λm,c
|um|2

∗
2∗

)n−2
4

≤ (Q0,c(um))
n−2

4

|um|2∗
.

From the estimates recalled before stating Lemma 4, we have that

Qλm,c(um) =
(
Qλm,c(Uεm,ym) +

‖ωm‖2λm,c
C2
m|Uεm,ym |22∗

+O(c βn(εm)‖ωm‖) +O(λm γn(εm)‖ωm‖)
)

(
1− (2∗−1)

C2
m|Uεm,ym |2

∗
2∗

∫
Ω U

2∗−2
εm,ymω

2
m +O(βn(εm)‖ωm‖) + o(‖ωm‖2)

)
.

(41)

For n ≥ 4, by (28), |Uεm,ym |22 = o(εm) and, by (30), we deduce

Qλm,c(Uεm,ym) =
S

22/n
+Bn

(
c− n− 2

2
Hmax

)
εm + o(εm) . (42)

If n = 3 (recall that |Uεm,ym |22 = O(εm)), the same estimate holds but with εm| log(εm)| instead of εm
and with O(εm) instead of o(εm).
In what follows we consider separately the case gλ(x, s) ≤ 0 and gλ(x, s) ≥ 0.

Case gλ(x, s) ≤ 0 or gλ(x, s) ≡ 0. Inspired by [14, (7.37)], we use the inequality

c βn(εm)‖ωm‖ ≤
γ

2
‖ωm‖2 +

c2β2
n(εm)
2γ

for all γ > 0 .

This and (42), inserted into (41), give

Qλm,c(um) = Qλm,c(Uεm,ym)− (2∗−1)

C2
m(Sn/2/2)(n−2)/n

∫
Ω U

2∗−2
εm,ymω

2
m +

‖ωm‖2λm,c
C2
m(Sn/2/2)(n−2)/n

+O(cβn(εm)‖ωm‖) + o(‖ωm‖2)

≥ S
22/n +Bn

(
c− n−2

2 Hmax

)
εm + o(εm)

+ 1
C2
m(Sn/2/2)(n−2)/n

[
(1− γ1 − γ2)‖ωm‖2λm,c − (2∗ − 1)

∫
Ω U

2∗−2
εm,ymω

2
m

]
− c2β2

n(εm)
2γ3

,

(43)

where γ1 > 0 and γ2 > 0 can be arbitrarily small (recall that the norms ‖.‖ and ‖.‖λ,c are equivalent,
for every λ < λa1) and γ3 > 0. More precisely, we choose γ1 and γ2 so small that, by Lemma 4, the
quantity in the square parentheses is greater than or equal to o(β2

n(εm)). We conclude that, for every
n ≥ 4,

Qλm,c(um) ≥ S

22/n
+Bn

(
c− n− 2

2
Hmax

)
εm + o(εm)− c2β2

n(εm)
2γ3

.

Since β2
n(εm) = o( εm), for c > C ′(Ω) = n−2

2 Hmax, the above inequality with (39) contradicts the
definition of Λ(c). When n = 3, the same estimate holds with εm| log(εm)| instead of εm and with
O(εm) instead of o(εm). Then, since β2

3(εm) = o( εm| log(εm)|), we conclude as for n ≥ 4.

Case gλ(x, s) ≥ 0. The proof works similarly, except that now one has to take into account the extra
term |um|q+1

q+1, where 1 < q ≤ 2T − 1 = n
n−2 .

By [3, Lemma 3.5] (with L = 2) we have that

|um|q+1
q+1 = Cq+1

m

∫
Ω U

q+1
εm,ym dx+ (q + 1)Cqm

∫
Ω U

q
εm,ymωm dx

+ q(q+1)
2 Cq−1

m

∫
Ω U

q−1
εm,ymω

2
m dx+O(

∫
Ω |ωm|

q+1 dx) .
(44)
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By Holder inequality, Sobolev embedding and the estimates (28), we deduce∫
Ω
U qεm,ymωm dx ≤ |Uεm,ym |

q
2nq/(n+2) |ωm|2∗ ≤ O(θn,q(εm) ‖ωm‖) ,

where

θqn(εm) =


ε
n−(q+1)n−2

2
m if

n ≥ 6 and 1 < q ≤ 2T − 1 or
n = 3, 4, 5 and n+2

2(n−2) < q ≤ 2T − 1

ε
n+2

4
m | log(εm)|

n+2
2n if n = 3, 4, 5 and q = n+2

2(n−2)

ε
q n−2

2
m if n = 3, 4, 5 and 1 < q < n+2

2(n−2) .

A further application of Holder inequality and Sobolev embedding, together with (28), give

∫
Ω
U q−1
εm,ymω

2
m dx ≤ |Uεm,ym |

q−1
(q−1)(n/2) |ωm|

2
2∗ ≤

 O

(
ε
n−(q+1)n−2

2
m ‖ωm‖2

)
if 1 < q < 2T − 1

O
(
εm| log(εm)|2/3 ‖ωm‖2

)
if q = 2T − 1 .

By inserting the above estimates into (44), we get

|um|q+1
q+1 ≤ O(ε

n−(q+1)n−2
2

m ) +O (θqn(εm) ‖ωm‖) + o(‖ωm‖2) , (45)

where 1 < n− (q+ 1)n−2
2 < 2, if 1 < q < 2T − 1, while n− (q+ 1)n−2

2 = 1, if q = 2T − 1. Furthermore,
if n ≥ 4, θqn(εm) = o(εm), for every 1 < q < 2T − 1, and θn,q(εm) = O(εm), if q = 2T − 1. In n = 3,
θqn(εm) = o(β3(εm)), for every 1 < q ≤ 2T − 1.
By (34) and (43), we have that

Q0,c(um) =
S

22/n
+Bn

(
c− n− 2

2
Hmax

)
εm +O(c βn(εm)‖ωm‖) +O(‖ωm‖2) + o(εm)

and subsequently, by (32) and (35), that

(Q0,c(um))(n−2)/4

|um|2∗
= Dn

Cm

(
1 + En

(
c− n−2

2 Hmax

)
εm + o(εm) +O(c βn(εm)‖ωm‖) +O(‖ωm‖2)

)
(
1 +O(εm) +O(βn(εm)‖ωm‖+ ‖ωm‖2)

)
= Dn

Cm

(
1 + Encεm +O(εm) +O(cβn(εm)‖ωm‖) +O(‖ωm‖2)

)
,

for some Dn, En > 0. Note that, if n = 3, one has to replace cεm with cεm| log(εm)|. Finally, by (45),
we conclude that(

(Q0,c(um))(n−2)/4

|um|2∗

)q+1

|um|q+1
q+1 ≤ O(ε

n−(q+1)n−2
2

m ) + o(εm) + o(cεm) + o(‖ωm‖2) ,

with, if n = 3, o(cεm| log(εm)|) instead of o(cεm) and adding the term o(β3(εm)‖ωm‖) from (45).
By repeating the proof of the case gλ(x, s) ≤ 0 and exploiting Lemma 4 (whose proof does not depend
on q), by (40), we get that

M(λm, c) ≥
Sn/2

2n
+B′n

(
c− n− 2

2
Hmax

)
εm +O(ε

n−(q+1)n−2
2

m ) + o(εm) + o(cεm)

+D′n

[
(1− γ3)‖ωm‖2λm,c − (2∗ − 1)

∫
Ω
U2∗−2
εm,ymω

2
m

]
,
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where γ3 > 0 can be chosen so small that the term in the square parentheses is greater than or equal
to o(β2

n(εm)).
Summarizing, for n ≥ 4,

M(λm, c) ≥
Sn/2

2n
+B′n

(
c− n− 2

2
Hmax

)
εm +O(ε

n−(q+1)n−2
2

m ) + o(εm) + o(cεm) .

If n = 3, replace εm with εm| log(εm)|, o(cεm) with o(cεm| log(εm)|) and o(εm) with O(εm).
Hence, in both cases, there exists C ′(Ω) ≥ n−2

2 Hmax such that, for any c > C ′(Ω), the above estimate
contradicts the definition of Λ(c).
We note that, when n = 3 or n ≥ 4 and q < 2T − 1, one can choose C ′ = n−2

2 Hmax.

Remark 1. Even if this is beyond the scope of the present work, we make a couple of remarks
concerning the limit case c→ +∞. As already noticed, λa1(c) converges to λa1,Dir, the first eigenvalue
(with weight a) of −∆ under Dirichlet boundary conditions. On the other hand, by Lemma 3, there
exists limc→+∞ Λ(c) = Λ∞ and Λ∞ > 0, if case (iii) of Theorem 4 occurs. For every λ ∈ (Λ∞, λa1,Dir),
as in [23, Theorem 3.6], it can be proved that any least energy solution to problem (Pλ) converges in
H1(Ω), as c→ +∞, to a least energy solution of the corresponding Dirichlet problem.

3 Proof of Theorem 1

Let λ∗(c) be as in Proposition 1. For any λ ∈ (0, λ∗(c)), as in [13], we look for a second solution to
problem (1) of the form Uλ = uλ + λ−(n−2)/4u, where uλ is the minimal solution and u > 0 in Ω.
Then, u solves problem (Pλ) of Section 2 with

fλ(x, u) := (λ(n−2)/4(1 + uλ) + u)2∗−1 − λ(n+2)/4(1 + uλ)2∗−1 − u2∗−1 ≥ 0 . (46)

Since the map (0, λ∗(c)) 3 λ 7→ uλ(x) is increasing for a.e. x ∈ Ω (see [5]), a direct inspection shows
that also the map (0, λ∗(c)) 3 λ 7→ fλ(x, s) is increasing, for a.e. x ∈ Ω and for every s > 0, and
f0(x, s) ≡ 0. Namely, assumption (f1) holds. On the other hand, write fλ(x, s) = λa(x)s+ gλ(x, s),
where a(x) := (2∗ − 1) (1 + uλ(x))2∗−2. Clearly, a is a measurable positive and bounded function
(recall that uλ is bounded). Since some computations show that gλ satisfies (12), then (f2) holds.
For our purposes, we notice that

gλ(x, s) < 0 if n ≥ 7
gλ(x, s) = 0 if n = 6
0 < gλ(x, s) ≤ ηλ3/4(1 + uλ)s4/3 for some η if n = 5
gλ(x, s) = 3λ1/2(1 + uλ)s2 if n = 4
gλ(x, s) > 5λ1/4(1 + uλ)s4 if n = 3

(47)

for every s > 0. Namely, fλ(x, s) is linear, up to a bounded weight, only when n = 6 (sub-linear if
n ≥ 7 and super-linear for n = 3, 4, 5).
The role of λa1(c) in Section 2 is assumed here by λ∗(c) (recall that the map c 7→ λ∗(c) is increasing by
Proposition 1). In particular, if we define µa1(λ, c) as in (14), the same arguments of [13, Proposition
2.15] yield that µa1(λ, c) → 0 as λ → λ∗(c), for every c > 0. Then, all the analysis performed in the
previous section applies and we may set Λ(c) as in (26) (with λ∗(c) instead of λa1(c)).
To conclude, we note that, if u is a mountain-pass solution to (Pλ), with fλ as in (46), and Uλ =
uλ + λ−(n−2)/4u, then

Jλ,c(u) = λ(n−2)/4

(
1
2
‖Uλ‖2c −

λ

2∗

∫
Ω

(1 + Uλ)2∗
)

+ Cλ := λ(n−2)/4Iλ,c(Uλ) + Cλ .
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Here, Jλ,c is as in (15), Iλ,c is the functional associated to (1) and Cλ = λn/2( 1
2∗

∫
Ω(1 + uλ)2∗ dx −

1
2

∫
Ω(1 + uλ)2∗−1uλ dx). Namely, u and Uλ have the same variational characterization.

Finally, the proof of Theorem 1 follows by combining the statement of Theorem 4 with (47).

4 Proof of Theorem 2

For η > 0, we denote by

Vη(x) =
(ηn(n− 2))(n−2)/4

(η + |x|2)
n−2

2

x ∈ B .

Let λn(c), uη1 and uη2 be as in Proposition 2, where η1 = η1(λ, c) and η2 = η2(λ, c) are as in (5). For
c > 0 and 0 < λ < λn(c), we set

Wλ(x) := λ
n−2

4 (uη2(x)− uη1(x)) = Vη2(x)− Vη1(x) x ∈ B .

Recall that uη1 and uη2 solve problem (1) and that uη1 = uλ, the minimal solution to (1). Then, Wλ

solves (Pλ), as defined in Section 2, with Ω = B and fλ as in (46). Furthermore, this is the only radial
solution to (Pλ), see [5, proof of Theorem 5].
By (5), for every c > 0, η1(λ, c)↗ +∞ and η2(λ, c)↘ η0(c) as λ→ 0+. Hence, if c ∈ (0, n− 2), since
η0(c) > 0, we get

lim
λ→0+

Wλ(x) = Vη0(x) for a.e. x ∈ Ω ,

where Vη0(x) is known to be the only radial solution to (P0). More precisely, by [27, Theorem 4.2],
(P0) admits a positive radial solution if and only if c ∈ (0, n − 2) and the solution is explicitly given
by Vη0(x).
Let Jλ,c be as in (15) with Ω = B and let fλ be as in (46). We have that

Jλ,c(Wλ) =
1
2
‖Wλ‖2c −

1
2∗

(∫
B

(λ(n−2)/4(1 + uη1(x)) +Wλ(x))2∗ − λn/2(1 + uη1(x))2∗ dx

)

+λ(n+2)/4

∫
B

(1 + uη1(x))2∗−1Wλ(x) dx.

On the other hand, since uη1 and uη2 solve problem (1), we deduce that

‖uη1‖2c = λ

∫
B

(1 + uη1(x))2∗−1uη1(x) dx , ‖uη2‖2c = λ

∫
B

(1 + uη2(x))2∗−1uη2(x) dx

and ∫
B
∇uη1(x) · ∇uη1(x) dx+ c

∫
∂B
uη1(x)uη2(x) dσ = λ

∫
B

(1 + uη1(x))2∗−1uη2(x) dx.

Exploiting the above identities, recalling the definition of Wλ and that uηi = λ−(n−2)/4Vηi − 1, we
conclude that

Jλ,c(Wλ) =
1
n

∫
B

(V 2∗
η2 (x)− V 2∗

η1 (x)) dx− λ(n−2)/4

2

∫
B

(V 2∗−1
η2 (x)− V 2∗−1

η1 (x)) dx. (48)

Next we show
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Proposition 3. Let Jλ,c(Wλ) be as in (48), there holds

Jλ,c(Wλ) <
Sn/2

2n
for all λ ∈ (γn(c), λn(c)) ,

where

γn(c) :=

{
0 if 0 < c ≤ n−2

2

n(n−2)
4

(
2c−(n−2)

2c

)4/(n−2)
if c > n−2

2

and limc→+∞ γn(c) = limc→+∞ λn(c) = λ∗Dir.
Furthermore, we have that

lim
λ→(λn(c))−

Jλ,c(Wλ) = 0 and lim
λ→0+

Jλ,c(Wλ) =

{
α(c) ∈ (0, S

n/2

n ) for 0 < c < n− 2
Sn/2

n for c ≥ n− 2 ,

where the map (0, n− 2) 3 c 7→ α(c) is increasing, lim
c→0+

α(c) = 0, α
(
n−2

2

)
= Sn/2

2n and lim
c→(n−2)−

α(c) =

Sn/2

n .

Proof. First we prove the second part of the statement. As λ → (λn(c))−, η1(λ, c) ↘ η and
η2(λ, c)↗ η, for every c > 0, with η as in (5). Hence, Wλ → 0 and Jλ,c(Wλ)→ 0 for a.e. x ∈ B.
Let λ→ 0+, by (5), for every c > 0, η1(λ, c)↗ +∞ and η2(λ, c)↘ η0(c), with η0 as in (3). In turn,∫

B
V 2∗
η1 (x) dx→ 0 ,

∫
B
V 2∗−1
η1 (x) dx→ 0 and

∫
B
V 2∗−1
η2 (x) dx→ η0(c)(n−2)/4Cn ,

for some Cn > 0. Hence,

lim
λ→0+

Jλ,c(Wλ) = lim
η2↘η0(c)

1
n

∫
B
V 2∗
η2 dx.

If c ∈ (0, n− 2), η0(c) > 0 and we have∫
B
V 2∗
η0 (x) dx = (n(n− 2))n/2ηn/20

∫
B

1
(η0 + |x|2)n

dx = (n(n− 2))n/2ηn/20

∫ 1

0

ωn r
n−1

(η0 + r2)n
dr.

For every η > 0, set h(η) := ηn/2
∫ 1

0
ωn rn−1

(η+r2)n
dr. Then,

h′(η) =
nωn η

(n−2)/2

2

∫ 1

0

(r2 − η)rn−1

(η + r2)n+1
dr =:

nωn η
(n−2)/2

2
g(η).

Clearly, g(η) < 0 for any η ≥ 1.
Let now η ∈ (0, 1), then

g(η) =
∫ √η

0

(r2 − η)rn−1

(η + r2)n+1
dr +

∫ 1

√
η

(r2 − η)rn−1

(η + r2)n+1
dr

=
1
ηn

(∫ 1

0

(y2 − 1) yn−1

(1 + y2)n+1
dy +

∫ 1/
√
η

1

(y2 − 1) yn−1

(1 + y2)n+1
dy

)

=
1
ηn

(∫ 1

0

(y2 − 1) yn−1

(1 + y2)n+1
dy +

∫ 1

√
η

(1− s2) sn−1

(1 + s2)n+1
ds

)
< 0.
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Hence, h(η) is a decreasing function. Since the map (0, n − 2) 3 c 7→ η0(c) ∈ (0,+∞) is decreasing,
we conclude that (0, n− 2) 3 c 7→ α(c) := 1

n

∫
B V

2∗
η0 (x) dx is increasing.

Since η0(n−2
2 ) = 1, we have

α

(
n− 2

2

)
=

1
n

∫
B
V 2∗

1 (x) dx =
1
n

(n(n− 2))n/2
∫ 1

0

ωn r
n−1

(1 + r2)n
dr

=
1

2n
(n(n− 2))n/2

∫ +∞

0

ωn r
n−1

(1 + r2)n
dr =

1
2n

(n(n− 2))n/2ωn
Γ(n/2)2

2 Γ(n)
=
Sn/2

2n
.

Recall that

ωn =
2πn/2

Γ(n/2)
and S = πn(n− 2)

(
Γ(n/2)
Γ(n)

)2/n

,

see [26].
When c→ (n− 2)−, then η0(c)↘ 0 and similarly one gets

lim
c→(n−2)−

α(c) = lim
η0(c)↘0

1
n

(n(n− 2))n/2
∫ 1/
√
η0(c)

0

ωn r
n−1

(1 + r2)n
dr =

Sn/2

n
.

Since η0(c) = 0 for any c ≥ n− 2, the same holds for any c in this range.
Let now λ > 0. Computations analogous to those done above give d

dη

(∫
B V

α
η (x) dx

)
< 0 for all α > 0,

if η ≥ 1 ( and also if η ∈ (0, 1), when α = 2∗). Then, when η2 ≥ 1, we deduce

Jλ,c(Wλ) <
1
n

∫
B

(V 2∗
η2 (x)− V 2∗

η1 (x)) dx ≤ 1
n

∫
B
V 2∗
η2 (x) dx ≤ 1

n

∫
B
V 2∗

1 (x) dx =
Sn/2

2n
.

If c ∈ (0, n−2
2 ], η0(c) ≥ 1 and subsequently η2(λ, c) ≥ 1, for every λ ∈ (0, λn(c)). Namely, the above

estimate holds for every λ ∈ (0, λn(c)). When c > n−2
2 , by (5), η2(λ, c) ≥ 1 if λ ∈ (γn(c), λn(c)), where

γn(c) := ϕ(1)1/(n−2), with ϕ as in (4). To conclude we note that η ↘ 1 as c→ +∞. 2

Proof of Theorem 2 completed.

The proof of statement (i) is a straightforward consequence of Lemma 1 and Proposition 3.
Let us now turn to (ii). For c > n−2

2 we set

Λrad(c) := inf

{
0 < λ < λn(c) : Mrad(λ, c) <

Sn/2

2n

}
,

where
Mrad(λ, c) = inf

u∈Nrad
Jλ,c(u)

and Nrad := {u ∈ H1(Ω) \ {0} : u(x) = u(|x|) and J ′λ,c(u)[u] = 0}. As in the nonradial case, the map
λ 7→Mrad(λ, c) is nonincreasing and continuous, see Section 2.
Since Wλ is a radial solution to (Pλ) (with fλ as in (46)), we infer Wλ ∈ Nrad. Then, by Proposition
3, Λrad is well-defined and Λrad(c) ≤ γn(c), for every c > 0. Hence, limc→(n−2

2
)+ Λrad(c) = 0. The fact

that the map c 7→ Λrad(c) is nondecreasing (increasing if Mrad(Λrad(c), c) is achieved) follows as in
Lemma 3.
On the other hand, by Lemma 1, for every λ > Λrad, (Pλ) admits a mountain-pass solution Uλ which
turns out to be radial. Furthermore, Uλ = Wλ (since there are no other radial solutions). Were
Λrad = 0, Wλ would be a mountain-pass solution to (Pλ), for every λ ∈ (0, λn(c)). Since the map
λ 7→ Jλ,c(Wλ) is continuous (η1 and η2 depend continuously from λ), this contradicts Proposition 3.
Hence, when c > n−2

2 , Jλ,c(Wλ) ≥ Sn/2

2n for every 0 < λ ≤ Λrad(c) and Jλ,c(Wλ) < Sn/2

2n for every
λ ∈ (Λrad(c), λn(c), with Λrad(c) > 0. By continuity, JΛrad(c),c(WΛrad(c)) = Sn/2

2n and we conclude.
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5 Proof of Theorem 3

We follow the same notations of Sections 1 and 2. In the spirit of the computations performed in [10,
Appendix A] (see also [18]), we deduce (11) from the nonexistence result of Theorem 4-(iii).
Consider problem (Pλ) of Section 2, with fλ(x, u) = λa(x)u + λu2T−1. Assumptions (f1) and (f2)
are satisfied. For every 0 < λ < λa1(c), let tλ,c(u) be as in (17). With this choice of fλ, tλ,c(u) can be
explicitly computed and we get

tλ,c(u) =

−λ|u|2T2T
+
√
λ2|u|22T

2T
+ 4‖u‖2λ,c|u|2

∗
2∗

2|u|2∗2∗


n−2

2

,

see [10, Appendix A]. This allows us to determine explicitly the function Ψλ,c(u) := Jλ,c(tλ,c(u)u).
More precisely, for every c > 0, 0 < λ < λa1(c) and u ∈ H1(Ω) \ {0}, we set

δλ,c(u) :=
λ

2
|u|2T2T

‖u‖λ,c|u|
2∗/2
2∗

and we get Ψλ,c(u) = 1
n (Φλ,c(u))n/2 , where

Φλ,c(u) := Qλ,c(u)
(√

δ2
λ,c(u) + 1− δλ,c(u)

)4/2∗
[
1− 2

2T
δλ,c(u)

(√
δ2
λ,c(u) + 1− δλ,c(u)

)]2/n

,

with Qλ,c(u) as in Section 2.2.
We note that

0 <
√
δ2
λ,c(u) + 1− δλ,c(u) ≤ 1 and 0 ≤ δλ,c(u)

(√
δ2
λ,c(u) + 1− δλ,c(u)

)
<

1
2
<

2T
2
.

Then, recalling that (
1− 2

2T
y

)2/n(
1 +

4
n · 2T

y

)
≤ 1 for every 0 ≤ y ≤ 2T

2
,

we estimate

Φλ,c(u) ≤
Qλ,c(u)(

1 + 4
n·2T δλ,c(u)

(√
δ2
λ,c(u) + 1− δλ,c(u)

)) .
Let K = K(Ω) ≥ C(Ω) ≥ n−2

2 Hmax, with C(Ω) as in (7), be as given in Theorem 4-(iii). Then,
M(λ, c) = Sn/2

2n , for every c > K(Ω) and for every λ ∈ (0,Λ(c)], with 0 < Λ = Λ(c) < λ1
a(c). This and

(16) yield Ψλ,c(u) ≥ Sn/2

2n for any u ∈ H1(Ω) \ {0}, c > K(Ω) and λ ∈ (0,Λ(c)]. By noting that

δλ,c(u)
(√

δ2
λ,c(u) + 1− δλ,c(u)

)
=

δλ,c(u)√
δ2
λ,c(u) + 1 + δλ,c(u)

=
λ|u|2T2T√

λ2|u|2·2T2T
+ 4‖u‖2λ,c|u|2

∗
2∗ + λ|u|2T2T

then the statement follows from the estimate of Φλ,c(u) (and, in turn, of Ψλ,c) just performed.
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