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The Multi-Handler Knapsack Problem under Uncertainty

Guido Perboli®?, Roberto Tadei®*, Luca Gobbato?

4 Politecnico di Torino, Turin, Italy
> CIRRELT, Montreal, Canada

Abstract

The Multi-Handler Knapsack Problem under Uncertainty is a new stochastic knapsack problem where, given a set
of items, characterized by volume and random profit, and a set of potential handlers, we want to find a subset of
items which maximizes the expected total profit. The item profit is given by the sum of a deterministic profit plus
a stochastic profit due to the random handling costs of the handlers. On the contrary of other stochastic problems
in the literature, the probability distribution of the stochastic profit is unknown. By using the asymptotic theory
of extreme values, a deterministic approximation for the stochastic problem is derived. The accuracy of such a
deterministic approximation is tested against the two-stage with fixed recourse formulation of the problem. Very
promising results are obtained on a large set of instances in negligible computing time.

Keywords: knapsack problem, stochastic profit, multiple handlers, deterministic approximation.

1. Introduction

The increasing competition due to both globalization of production processes and the movement of large quan-
tities of freight between continents and countries creates the need for new tools for strategic and tactical decisions,
that are able to deal with the stochastic nature of the processes involved. While this leads to new location and trans-
portation problems [1, 2], only a few studies deal with the stochastic study of packing problems [3]. This is mainly
due to the peculiarities of the literature related to packing. In fact, even if packing problems play a central role in
transportation and logistics, the problems presented in the literature are mainly related to operational issues [4, 5].
Moreover, the parameter uncertainty affecting the final solutions such as the profit associated to item delivery or
the cost of container renting is usually more evident in the planning phases rather than in the operational ones.

In this paper we introduce a new stochastic variant of the knapsack problem, the Multi-Handler Knapsack
Problem under Uncertainty (MHKP,). Given a set of items, characterized by volume and random profit, and a
set of potential logistics handlers, the problem consists in finding a subset of items which maximizes the expected
total profit. The profit is given by the sum of a deterministic profit and a stochastic profit oscillation, with unknown
probability distribution, due to the random handling costs of the handlers.

A large number of real-life situations can be satisfactorily modeled as a MHKP,, e.g. in financial and resource
allocation. The general idea is to think of the capacity of the knapsack as the available amount of a resource (i.e.
budget) and the items as activities to which this resource can be allocated (i.e. shares). Moreover, these items
present profits which are random variables. The MHKP, may also appear as a subproblem of larger optimization
problems.

A specific application of the MHKP, can be found in the automotive sector [6]. There the delivery of cars
from manufacturers to dealers is not managed by the manufacturers themselves, but is delegated to specialized
companies. These companies manage both the finishing operations on the cars (e.g. removal of the protective
wax, installation of specific accessories, etc.) and the logistics operations linked to delivery to the dealers. In
order to have a more flexible structure, the fleet of auto-carriers used to deliver the cars is only partially owned
by each company, while a substantial part of the deliveries is sub-contracted to micro-companies with highly
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variable random costs. Moreover, the auto-carriers have different capacities due to the presence of specific technical
features. From the point of view of the cars that must be delivered, the net profit for the company is affected by
different factors, including delays in the finishing operations, additional costs due to violations of the negotiated
deadlines or additional transportation costs.

Another example of real-world applications of the MHKP, comes from trans-continental naval shipping op-
erations, where freight transportation from eastern ports to Europe and North America is managed by specialized
companies. The competition between the transportation companies, as well as the possibility of managing the port
cranes by different operators, force the companies to consider both the profit given by the shipped items and the
additional costs due to the logistics operations.

The problem can be also seen as a relaxation of container loading problems where the capacity of the given
containers are collapsed into one single container. This leads to an approximation of the real problem suitable in
strategic and tactical planning, where the stochastic nature of the profits in more relevant than the actual loading
of the items. Moreover, it is required to obtain accurate solutions within a limited computational effort in order to
explore multiple scenarios of the underlying business model.

Other applications come from the domain of Smart City and City Logistics, and particularly in the last mile
delivery. One of the trends is to substitute traditional single-echelon routing structures with two and three-echelon
ones. The reason is the willingness to use “’green’’ vehicles inside the city, whilst consolidating the freight in
medium and small sized transshipment depots, called satellites [7, 8, 9]. In the satellites different sequences of
consolidation operations are done by different workers. The different skill levels of the workers can cause delay
in the operations reducing the overall profit. A similar problem is present in yard management, where the profit
oscillations are given by the operations done by workers working for yard management companies, different in
skills and reliability.

In general, the MHKP, arises in logistics and production scheduling applications, where a single item can be
managed by several handlers (third-party logistics providers or sub-contractors), whose costs affect the net profit
of the item itself. The large number of possible handler cost scenarios and the difficulty to measure the associ-
ated handler costs suggest the representation of these net profits as stochastic variables with unknown probability
distribution.

This paper introduces the formulation of the stochastic problem. From this formulation, a deterministic approx-
imation is derived. In particular, under a mild hypothesis on the unknown probability distribution, the deterministic
approximation becomes a knapsack problem where the total expected profit of the loaded items is proportional to
the logarithm of the total accessibility of those items to the set of handlers. Moreover, at optimality, the percentage
of an item handled by any handler is given by a multinomial Logit model.

The paper is organized as follows. The literature review is introduced in Section 2. In Section 3 the model of
the MHKP,, is given. Section 4 is devoted to presenting the deterministic approximation of the MHKP,,, while in
Section 5 its two-stage program with fixed recourse is given. Finally, in Section 6 the deterministic approximation
and the two-stage program with fixed recourse are tested and compared on a set of newly introduced instances.
The conclusion of our work is reported in Section 7.

2. Literature review

While different variants of the stochastic knapsack problem are present in the literature, the MHKP,, is absent.
For this reason, we will consider some relevant literature on similar problems, highlighting the main differences
with the problem faced in this paper.

A first group of studies consider deterministic profits and random volumes, with the goal of maximizing the
total expected value of selected items, while ensuring that the probability to satisfy the knapsack capacity is limited
by some upper bounds. Usually, heavy assumptions on the distribution of the random volumes are considered (e.g.
[10], [11] where item volumes have a Bernoulli distribution, and [12], [13] where the distribution is a Normal one).
These assumptions on the distributions heavily limit the possibility to extend the results to other variants of the
problem.

A second group of studies deals with random profits and the goal to assign a set of items to the knapsack in
order to maximize the probability of achieving some target total value. They are usually more related to financial
and economic issues than to the impact of the operations on the final revenue [14, 15, 16]. Unfortunately, these
problems differ from MHKP,, because they consider the random profit associated only to the item, while in MHKP,,



the randomness is given by the interaction between the item and the handler managing the loading/unloading
operations.

Finally, from a methodological point of view, the study most similar to the present paper is [3], where the
authors consider the stochastic version of the Generalized Bin Packing Problem, a recently introduced packing
problem where, given a set of bins characterized by volume and cost and a set of items characterized by volume and
profit (which also depends on bins), a subset of items is selected for loading into a subset of bins which maximizes
the total net profit, while satisfying the volume and bin availability constraints [17]. Similarly to MHKP,, the item
profits are random variables and the probability distribution of these random variables is assumed to be unknown.

3. The MHKP,

In the MHKP, the item profits are random variables. In fact, they are composed by a deterministic profit plus
a random term, which represents the profit oscillation due to the handling costs occurred by the different handlers
for preparing items for loading. In practice, such profit oscillations randomly depend on the handling scenarios
adopted by the handlers for preparing items for loading and are actually very difficult to be measured. This implies
that the probability distribution of these random terms must be assumed as unknown.

Let it be

I: set of items

J: set of handlers

L: set of handling scenarios for loading items into the knapsack

e p;: non-negative deterministic profit of item i

e p;;: non-negative deterministic profit of item i when loaded by handler j

o /" random profit oscillation of any item when it is loaded by handler j under scenario [ € L
° pi j(éﬂ) = pij+ 6/': random profit of item i when loaded by handler j under scenario [

e y;: boolean variable equal to 1 if item i is loaded, O otherwise

e x;;: percentage of item i handled by handler j

e w;: volume of item i

e W: knapsack capacity.

The MHKP, is formulated as follows

ZZZM%4 (1)

max Z piyi + E[(;,'I}
i€l

b} icl jeJ IeL
subject to
D iwyi < w 2)
iel
D=y i€l 3)
jeJ
yi€{0,1} iel 4
x;20 iel, jel %)

The objective function (1) expresses the maximization of the profit of the items loaded into the knapsack plus
the expected value of the handling profit; constraint (2) ensures that the capacity of the knapsack is not exceeded;



constraints (3) guarantee that any item is completely processed by some handlers only if it is loaded. Finally,
(4)-(5) are the integrality and non-negativity constraints, respectively.
Let us assume that 6/ are independent and identically distributed (i.i.d.) random variables with a common and
unknown probability distribution
F(x) = Pr{d" < x}. (6)

Let us define with §/ the maximum of the random profit oscillations #/ for handler j among the alternative
scenarios [ € L ' '
6/ = max 6" jeJ 7

Because F(x) is unknown, &/ is still of course a random variable with unknown probability distribution given
by
Bix)=Pr{d/ <x}  jel (8)
As, for any handler j, 6/ < x & 6/ < x, 1 € L and 6/ are independent, using (6) one gets
Bj(x) = ]_[ Pr{f/ < x| = ]_[ Fx)=[FIH  jeJ 9)
leL leL

We assume that the knapsack loading is efficiency-based so that, for any item i and any handler j, among the
alternative scenarios / € L the one which maximizes the random profit p; j(éﬂ) will be selected. This does not mean
that, in the stochastic problem, we select the model scenario which maximizes the profit, but that, when the actual
profits become known (e.g. in day-by-day operations, the profits of a given day), the choice among the different
alternatives is done by taking the most profitable one.

Then, the random profit of item i when it is loaded (i.e. y; = 1) by handler j becomes

Dij(®') = max pyj@") = pij + max ' = p; + & icliyi=1.jel (10)
€ €

The maximum profit oscillation 6’ can be either positive or negative, but, in practice, its absolute value does
not overcome the profit p;;, so that p;;(6’) is always non negative.

The expected maximum total profit of the loaded items is obtained by solving the following problem

Eg) max Z Zf)ij(éj)xij )
icly;=1 jeJ

Zx,»,:l iel:y =1 (12)

jeJ

x;j20 iel:y=1, jel (13)

The objective function (11) maximizes the expected total profit for the loaded items. Constraints (12) guarantee
that each loaded item is completely processed by some handlers, while (13) are the non-negativity constraints.

For each item i, let us consider the handler j = i* (for the sake of simplicity, we assume it is unique), which
gives the maximum random profit for loading the item.
The maximum random profit for loading item i then becomes

pi0") = max pi;(@)  iel:yi=1 (14)
JE.
and the optimal variables {x,'j} are
1, if j=1¢
Xii = 15
! {O, otherwise (15)
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which satisfy (12) and (13).
Using (14), (15), and the linearity of the expected value operator E, the objective function (11) becomes

Egi| >, B@)|= >, Eg|[5@)]= ) b (16)
iely;=1 iely;=1 iely;=1
where
pi=Eg |p@)] iel:y=1 (17)
The MHKP, (1)-(5) then becomes
max i+ A,‘ i 18
1a ;(p Piy (18)
D Wi < W (19)
i€l
y; €{0,1} iel (20)

However, the calculation of p; in (18) requires to know the probability distribution of the maximum random
profit for loading item i, i.e. p;(#" ) in (17), which will be derived in the next section.
4. The deterministic approximation of the MHKP,

By (10) and (14), let
Gi(x) = Pr{pi@) < x} = Pr{max [pij+ ] < x} iel 1)
jeJ ’

be the probability distribution of the maximum random profit for loading item i.

As, for any item i, maxjes [pij + 9j] <x [pij + éj] < x, j € J, and the random variables ¢/ are
independent (because 67 are independent), due to (8) and (9), G;{x} in (21) becomes a function of the total number
|L| of handling scenarios for loading as follows

Gi(xIL)  =Pr {%x i +8] < x} =[ [ Pr{[ps+] <+
jeJ
= nPr{éj < x—Pij} = HB/‘(X—PU)
jeJ jet
=[TlF(-pa)]"  icr 22)
jeJ

First, let us consider the following aspect: the optimal solution of problem (11)-(13) does not change if any
arbitrary constant is added or subtracted to the random variables 6/.
Let us choose this constant as the root a of the equation

1 - F(a) = 1/|L|. (23)

Let us assume that |L| is large enough to use the asymptotic approximation limyz—+.. Gi(x, |L|) as a good ap-
proximation of G;(x), i.e.

Gi(x) = |Lllim Gi(x,|L])) i€l (24)

The calculation of the limit in (24) would require to know the probability distribution F'(.) in (6), which is still
unknown. From [3], we know that under a mild assumption on the shape of the unknown probability distribution
F(.) (i.e. itis asymptotically exponential in its right tail), the limit in (24) tends towards the following Gumbel [18]
probability distribution



Gi(x)= lim G(x,|L|)) = exp (—A,»e-ﬁ*) iel (25)
|L|—>+00
where 5 > 0 is a parameter to be calibrated and

A = Z L el (26)
jeJ
is the accessibility, in the sense of Hansen [19], of item i to the set of handlers.

The accessibility in the sense of Hansen is defined as the potential of opportunities for interaction and is a
measure of the intensity of the possibility of interaction. Here the interaction is between item and handlers. (26)
shows that the accessibility of an item to the set of handlers is proportional to a function of profits associated to the
different handlers.

Using the probability distribution G,(x) given by (25), after some manipulations, p; in (17) becomes

+00 +00
pi = f xdGi(x) = f xexp(-Ae ™) Ae P pdx = 1/B(InA; +y) i€l Q7

o 00

where y ~ 0.5772 is the Euler constant.
By (27), the MHKP,, (18)-(20) becomes

maxy) ZP:‘)’:’ + é Zyi InA; + % Zyi =

i€l iel iel

= maxgy, Zp,-y,- + é In HA?? + % Zyi =

iel iel iel
1
= maxm Z piyi + B In® + %/ Z Vi (28)

iel iel

subject to (19)-(20), where ® = [];; A} is the total accessibility of the loaded items to the set of handlers.

It is interesting to observe that the total expected profit of the loaded items is proportional to the logarithm of
the total accessibility of those items to the set of handlers.

In the following, we will refer to the deterministic approximation of the MHKP, as DA-MHKP,,.

The following theorem holds

Theorem 1. Ar optimality, the percentage of each item i handled by handler j, x;j, is given by

ePpii

=——— i€l jel. 29
Z jeJ eﬁp,-_,-' / ( )

x,-j

Proof. At optimality, the probability that item i is handled by handler j is equal to the probability that handler j is
that one of maximum profit. Then, from the Total Probability Theorem [20], one obtains

f+<><> 1_[ exp [_efﬁ(X—ﬁn-)] d [exp (_e—ﬁ(x—p,-_,))] _

- V#j

+00
i f Be Prexp(—AeP)dx =

+00 ePpii
eﬁ”'ff e Mdr = =
0

A;
ePpii ) ]
= m 1€ I,J elJ 30)

Xij

where t = ¢#*. O



It is trivial to check for x;; the satisfaction of constraints (12) and (13).

Expression (29) represents a multinomial Logit model, which is widely used in choice theory [21]. In our case,
it describes how the optimal handling of item i is split among different handlers j, due to the stochastic handling
profit of item i.

5. The MHKP, as a two-stage program with fixed recourse

Approximating the profit stochasticity by discretizing the probability distributions and generating a set of sce-
narios S C L, the MHKP, (1)-(5) may be interpreted as a two-stage program with fixed recourse.
Let be the variables

e y; : first stage decision variable equals to 1 if item i is loaded, O otherwise
e x;; : first stage decision variable which represents the percentage of item i handled by handler j
e y/*: second stage decision variable equals to 1 if item i is loaded under scenario s, O otherwise

e y;*: second stage decision variable equals to 1 if item 7 is unloaded under scenario s, 0 otherwise

+s

e x;;' : second stage decision variable which represents the percentage of loaded item i handled by handler j

under scenario s

o X second stage decision variable which represents the percentage of unloaded item i handled by handler

J under scenario s.

Moreover, we define by '
71'?}Y =pi'|'pij+é]x 3D

and

—-s _ +5 ’
Tij = TR T 32)

the stochastic profits related to loading and unloading operations in the second stage, respectively, where —; ;
represents an extra cost to be paid for unloading item i by handler j in the second stage.

Finally, given the probability p, of each second-stage scenario s, the two-stage program with fixed recourse,
named 2S-MHKP,,, is formulated as follows



D YR I W WA DIPI ARSI 7e (33)
iel

i€l jeJ s€S iel jeJ iel jeJ
S < W G4)
iel
Zx,»jzyi iel (35)
jeJ
Zwiyi+ZZw,~yjs—ZZw,~y{sSW (36)
iel iel seS§ iel seS
lefjfzyjs iel, seS§ (37
el
Zx;f:y;s iel, seS (38)
jeJ
yi'<l-y iel, seS (39)
yi*<y i€l, seS (40)
xlf}s:x;fj"’ iel, jelJ ss €S (41)
X = x;j:" iel, jelJ s,s5€S (42)
yi€{0,1} iel 43)
yi*e{0,1} iel, seS (44)
y;i'ef{0,1} iel, seS§ (45)
x,~j20 iel, ]EJ (46)
X720 iel, jelJ, seS 47)
x;20 iel, jel, seSs. (48)

The objective function (33) expresses the maximization of the total profit, given by the sum of the first stage
profit plus the expected profit of the items handled in the second stage. Note that constraints (34) and (35) are the
first stage constraints, while constraints (36)-(42) are the second stage ones. In particular, constraints (34) and (36)
ensure that the capacity of the knapsack is not exceeded in first and second stages, respectively. Constraints (35)
guarantee that any item is completely processed by some handlers only if it is loaded. Constraints (37) and (38)
guarantee that if an item is loaded or unloaded in the second stage it is completely processed by some handlers.
Constraints (39) establish that no item can be handled for loading in the second stage if it has already been loaded
in the first stage. Similarly, constraints (40) establish that no item can be handled for unloading in the second stage
if it has not been loaded in the first stage. Constraints (41) and (42) are the non-anticipativity constraints. Finally,
constraints (43)-(45) and (46)-(48) are the integrality and the non-negativity constraints, respectively.

The optimal solutions of the two-stage model 2S-MHKP,, and the deterministic approximation DA-MHKP,, are
strictly related. Let us suppose to have an optimal solution of model DA-MHKP,. This model gives us a feasible
approximation of the first-stage variables y;, while it gives, by (29), a continuous relaxation of the assignment
variables x;;. Notice that, given the values of the variables x;; in (29), one can derive a feasible first-stage solution
of 2S-MHKP, by fixing to one, for each item with y; = 1, any x;; variable associated to it (for example, the one
with the greatest value). This means that the information given by model DA-MHKP, is related to the first level
only, while to obtain the possible recursion we need to force the first-level solution in the two-stage model.

6. Computational results

In this section, we present and analyze the results of the computational experiments. The first goal is to assess
the behavior of the 2S-MHKP,,, the two-stage program with fixed recourse for the MHKP, proposed. The second
is to evaluate the effectiveness of the deterministic approximation of the MHKP, we derived. Moreover, we want
to calculate and evaluate the handling costs obtained by using our approximated results as first-stage decisions of
the 2S-MHKP,,.
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Figure 1: Scenario tree generation

The two-stage program with fixed recourse was implemented with CPLEX 12.3. Experiments were performed
on a Intel i7 2 Ghz workstation with 6 GB of RAM.

Section 6.1 introduces the instance set. The calibration of the deterministic approximation of the MHKP, is
described in Section 6.2, whilst the comparison between the two-stage and approximated solutions is given in
Section 6.3. Finally, we study the impact of the approximated results on the two-stage program with fixed recourse
in Section 6.4.

6.1. Instance set

No instances are present in the literature for this stochastic version of the knapsack problem. We then generated
instances, partially based on those available for the deterministic knapsack problem [22].

Instances were created with the goal of providing the means to explore the impact of both the correlation
between volume and profit of the items and the different probability distributions of the profit oscillations. Thus,
the instances are characterized by various correlation strengths, as well as different probability distributions. Ten
instances were randomly generated for each combination of the parameters.

e Number of items in the interval [100, 1000].
e Number of handlers in the interval [3, 5].
e [tem volume uniformly distributed in the interval [1, R], where R = 1000.

o Deterministic item profits generated according to the following three rules

UC: the deterministic item profits are uncorrelated to item volumes. They are uniformly generated in the
interval [1, R] [5, 22].

SC: the deterministic item profits are strongly correlated with the item volumes. The profit is defined as
w;+R /10, where w; is the item volume [5, 22].

PC: the deterministic item profits are proportionally correlated with the item volumes.The profit is defined
as aw;, where « is uniformly drawn from the interval [1, 5].

9



e Capacity of the knapsack was computed according to # >.iel Wi, where H is the number of instances for
a set of parameters and & € [1, H] is the identification of an instance in that subset. This approach covers
a large number of cases, diversifying the correlation between the parameters and the maximum capacity of
the knapsack.

e Scenario generation. For each combination of the parameters described above, we first generate, for all the
scenarios, the deterministic the item profits according to the above three rules. Given the average value
of the deterministic profits, let p, let Px = Kp be the maximum profit oscillation, where K belongs to
the set {0.1, 0.3, 0.5}. The item profit oscillations were generated as M1 = Z)(éjs;Kﬁ/Z, 0, Kp), where
Z)(éj“‘; M, min, max) is the distribution 9 with mean y and truncated between the values min and max (see
Figure 1). In our tests we used the Uniform and the Gumbel distributions.

Having solved the instances 10 times each and computed the standard deviation and the mean of the optima
over the runs, we derived that the appropriate number of scenarios is 50. For each instance, this value ensures a
maximum ratio between the standard deviation and the mean for the optima which is less than 1%.

The parameters were also chosen to reflect realistic cases of supply chain applications. In details, the different
levels of correlation between item volumes and profits have the double effect to explore more challenging instances
from the computation point of view [22] and explore price policies quite common in transportation [23]. The
interval of item volumes and their link to the knapsack capacity is derived from Pisinger [22]. Finally, the bound
of the stochastic oscillations has been set as in Tadei et al. [2] and reflects typical boundaries for profit oscillations
in logistics.

6.2. Calibration of the 8 parameter

The deterministic approximation of the MHKP, given by (28) requires an appropriate value of the positive
parameter 8. This parameter describes the propensity of the model to choose among the set of the handlers char-
acterized by different handling profits.

[ is obtained by calibration as follows. Let us consider the standard Gumbel distribution G(x) = exp (e™). If an
approximation error of 2%o is accepted, then G(x) = 1 & x = 6.08 and G(x) = 0 & x = —1.76. Let us consider the
range [m, M] ([0, Px] in our case) where the stochastic profit oscillations are drawn from. The following equations
hold

Bm—-¢)=-1.76 (49)
BM - ) = 6.08 (50)

where ¢ is the mode of the Gumbel distribution G(x) = exp (e‘mx—g )). From (49) and (50) one gets the correspond-
ing value of the parameter 8

= 7.84  7.84 7.4
“M-m Py Kp’

More sophisticated methods to calibrate S can be found in [24].

(D

6.3. Comparison of two-stage program and deterministic approximation results

The two-stage program solutions showed a common trend: the 2S-MHKP,, reserves half of the total knapsack
capacity in the second stage. For this reason, no items are unloaded in 99% of the instances. This means that the
2S-MHKP,, uses the knowledge given by the scenarios in order to forecast what items can be immediately loaded,
while preserving a proper loading space for items to be arranged in the recourse. This leads to a drastic reduction
of the unloading and rearranging operations. Thus, the 2S-MHKP,, policy is quite far from the usual supply chain
approach of almost fully loading the knapsack in advance, while the unloading/rearranging operations are made at
a later time and the percentage gap with the optimal solution can easily overcome 10%.

Here we summarize the results for all instances and different combinations of the parameters. The perfor-
mance, in terms of optimality gap, is defined by the relative percentage error of the approximated solution when
compared to the optimum. Moreover, we estimate the solution likelihood as the percentage of items loaded by the
approximated solution which are also present in the optimal solution.

Note that the comparison results do not consider the number of handlers, which does not seem to affect the
average performance of the deterministic approximation.
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Table 1 reports the percentage optimality gap and the solution likelihood of the deterministic approximation for
all combinations of the parameters, while varying the probability distribution (either Gumbel or Uniform). The first
column displays the number of items, while Columns 2-3 and 5-6 report the mean and variance of the optimality
gap, and Columns 4 and 7 show the mean percentage solution likelihood. The best mean values are obtained
for the Gumbel distribution, that is very close to the optimum (0.12% for larger instances) and characterized
by a negligible variance. Moreover, increasing the number of items gives better results for the deterministic
approximation. Similarly, in terms of likelihood, this method guarantees results close to the optimum for both
distributions.

Table 1: Optimality gap and solution likelihood of the deterministic approximation

1T GUMBEL UNIFORM
mean var likelihood mean var likelihood
100 0.25 0.05 97.12 1.33  0.74 96.26
1000 0.12 0.01 98.54 1.33 0.52 97.31

Table 2 reports the percentage optimality gap and the solution likelihood performance of the deterministic
approximation while varying the correlation between profits and volumes of items (Column 2) and the probability
distribution (Columns 3-8). The results indicate that the strongly correlated instances (SC) yield the worst gaps, as
well as the worst solution likelihood, with an average optimality gap of about 0.27% and 1.54% for the Gumbel
and the Uniform distributions, respectively. For uncorrelated instances (UC) and the Gumbel distribution, some
solutions of the deterministic approximation exactly match the two-stage program solutions.

Table 2: Optimality gap and solution likelihood for the profit correlation rules

IT PROFIT GUMBEL UNIFORM
mean var likelihood mean var likelihood
100 UucC 0.23  0.05 98.78 1.20  0.57 98.21
SC 0.27 0.06 95.28 1.54 093 95.19
PC 0.25 0.05 97.31 1.26 0.68 95.19
1000 ucC 0.10 0.01 99.31 1.14  0.38 98.92
SC 0.15 0.02 98.06 1.56  0.55 96.40
PC 0.11  0.01 98.23 1.29  0.55 96.62

The analysis of the impact of the maximum profit oscillations on the results accuracy is proposed in Table
3, considering different probability distributions (Columns 3-8). Recalling the definition of the maximum profit
oscillation Py = Kp, column 2 represents the percentage K of the mean profit p of the instances. The gap and the
solution likelihood are clearly inversely proportional to the range of the oscillations. Indeed, the best mean values
are obtained for K = 0.1.

Table 3: Optimality gap and solution likelihood for the maximum profit oscillations

IT K GUMBEL UNIFORM
mean var likelihood mean var likelihood
100 0.1 0.09 0.01 97.56 0.53 0.04 96.67
0.3 030 0.06 97.02 1.33  0.27 96.54
0.5 036 0.06 96.80 2.13  0.64 95.58
1000 0.1 0.04 0.00 98.81 0.55 0.04 97.88
03 0.12 0.0l 98.56 1.39 0.13 97.29
0.5 030 0.01 98.23 2.09 0.26 96.76

In conclusion, the results are very promising. The procedure performs very well for all types of instances and
distributions and guarantees a high accuracy. The best performance is obtained if the random profits have a Gumbel
distribution, that is usually the case for real market oscillations. Moreover, the variance of the results is tight and
in some cases close to zero. With respect to the solution likelihood, the mean values are all greater than 95% and
increase according to the number of items.
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As we expected, the mean optimality gap slightly increases for instances with Uniform distributed profit oscil-
lations, but results are stable for each combination of the parameters and improve with respect to the number of
items. Furthermore, it is interesting to note that the hardest subset of instances are the stronglly correlated ones. In
fact, this kind of instance is characterized by a peculiar profit-volume correlation, as shown in [22].

From a computational point of view, the average CPU-times to solve to optimality the 2S-MHKP, and to
compute the deterministic approximation are about 120 seconds and less than one second, respectively.

6.4. Usage of the approximated model as a decision tool

In the last part of this computational analysis, we analyze the losses, in terms of optimality gap, obtained
by plugging the solution of the deterministic approximation of the MHKP,, into the first-stage decision of the 2S-
MHKP, [25]. In this way we can measure the accuracy of the approximated model when used not only as a method
to calculate the optimum, but also as a decision tool to actually choose the items to be loaded. This means that the
only degrees of freedom to maximize the objective function are the item-to-handler assignments and the handling
operations in the second stage. Indeed, the effect of this strategy is the increase of the unloading operations, which
does not exceed 6% of total operations, however.

Next, we present the comparison results organized as in Section 6.3. Tables 4, 5, and 6 summarize the average
gap for all combinations of the parameters, for the profit correlations and for the maximum profit oscillations,
respectively.

Table 4: Optimality gap with fixed first stage decision

IT GUMBEL UNIFORM
mean var mean var

100 1.18 044 199 140
1000 122 048 199 1.15

Table 5: Optimality gap with fixed first stage decision for the profit correlation rules

IT PROFIT GUMBEL  UNIFORM
mean var mean var
100 uC 1.05s 031 177 1.06

SC .36 059 231 174
PC .12 038 1.88 1.28
1000 UC 1.0o1 028 175 0.88
SC 149 0.64 232 125
PC 1.15 042 191 1.18

Table 6: Optimality gap with fixed first stage decision for the maximum profit oscillations

IT K GUMBEL UNIFORM

mean var mean var

100 10 047 003 081 0.09
30 124 010 2.01 048

50 182 026 3.13 093

1000 10 047 0.02 082 0.08
30 126 0.10 2.08 0.29

50 192 026 3.07 053

As expected, the best performance is obtained by instances with the Gumbel distribution (Table 4). With
respect to the profit correlations, the observed gap of SC instances is worse than other rules (Table 5). Finally, the
gap increases according to the maximum range of the random profits (Table 6).
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7. Conclusions

In this paper we have addressed the Multi-Handler Knapsack Problem under Uncertainty, which consists in
finding a subset of items which maximizes the expected total profit, given by the sum of deterministic profits plus
stochastic profit oscillations. One of the main features of this problem is that the profit oscillations are random
variables with unknown probability distribution.

From a theoretical perspective, the paper shows that, under a mild assumption, the probability distribution of
the maximum random profit for loading any item becomes a Gumbel distribution. Moreover, the total expected
profit of the loaded items is proportional to the logarithm of the total accessibility of those items to the set of
handlers and, at optimality, any item is handled by the set of handlers according to a multinomial Logit model.

The deterministic approximation of the stochastic model obtained provides very promising results on a large
set of instances in negligible computing time.

In conclusion, the performance of the methodology proposed is particularly good when the probability dis-
tribution of the random profits of the stochastic model is a Gumbel distribution, even if good results are also
provided by the Uniform distribution. This feature makes our deterministic approximation a good predictive tool
for considering stochastic handling costs in supply chain problems.
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