
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A cloud robotics architecture for an emergency management and monitoring service in a smart cityenvironment /
Ermacora, Gabriele; Toma, Antonio; Bona, Basilio; Chiaberge, Marcello; Silvagni, Mario; Gaspardone, M.; Antonini, R.. -
ELETTRONICO. - (2013). (Intervento presentato al convegno 2013 IEEE/RSJ International Conference of Intelligent
Robots and Systems tenutosi a Tokyo (Japan) nel November 3-8, 2013).

Original

A cloud robotics architecture for an emergency management and monitoring service in a smart
cityenvironment

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2520899 since:

Abstract— Cloud robotics is revolutionizing not only the

robotics industry but also the ICT world, giving robots more

storage and computing capacity, opening new scenarios that

blend the physical to the digital world. In this vision new IT

architectures are required to manage robots, retrieve data from

them and create services to interact with users. In this paper a

possible implementation of a cloud robotics architecture for the

interaction between users and UAVs is described. Using the

latter as monitoring agents, a service for fighting crime in

urban environment is proposed, making one step forward

towards the idea of smart city.

I. INTRODUCTION

A new approach to robotics is coming up exploiting the
emerging technologies of internet and cloud computing [1].
While in the past the robot was seen as a unique device that
carried out onboard all the computation and storage
processes, as Steve Cousins said “no robots is an island” [2],
presently we are witnessing the dawn of cloud robotics. This
bring us to a shift where “robot intelligence” once local for
every single robot will now be managed by a higher and
more powerful “centralized brain” located in the cloud
architecture [3]. This breakthrough opens new scenarios
where robots are seen as agents, relying on remote servers for
most of their computational load and data storage, creating a
network of devices where they can share knowledge and
information [4].

The cloud robotics approach involves the software
abstraction of each robot, abstracted from the hardware layer,
and presenting ad hoc APIs to ease its management and the
process of writing code on it. Even non robotics experts can
now write programs without knowing the specific robot
software architecture, simply calling the precise APIs from
their code. Furthermore, once the API has been approved and
tested, this approach facilitates the structure of the program
and reduces the possibility of errors. In this way both
beginners and experts that want to build a service do not
need to know in details the dynamics and the technical
features of the required robot.

This work is in collaboration with Telecom Italia Lab.

G. Ermacora, A. Toma and M. Silvagni are with DIMEAS, Politecnico

di Torino, Torino, Italy, {gabriele.ermacora, antonio.toma,

mario.silvagni}@polito.it
B. Bona is with DAUIN, Politecnico di Torino, Torino, Italy,

basilio.bona@polito.it

M. Chiaberge is with DET, Politecnico di Torino, Torino, Italy,
marcello.chiaberge@polito.it

M. Gaspardone and R. Antonini are with Telecom Italia Lab, Torino,

Italy, {marco.gaspardone, roberto1.antonini}@telecomitalia.it

This paper presents a platform of cloud robotics and its
related services. The platform provides an abstraction layer of
each robot accessible via APIs and offers support to services,
available to final users [5].

Lots of applications are growing that see UAV as
interesting devices for environment monitoring. Many
services can be build fetching data from UAVs, such as
telemetry or video streaming. Making available these
information, users can have access to these services in many
ways. As this paper illustrates, these services, part of the IT
architecture, can be accessed via web or other devices, as
smartphone applications.

Typically in search and rescue or emergency management
when UAVs are required for monitoring intervention, users
ask the service for intervention that builds a request to the
platform of cloud robotics. The latter translates the required
mission to a low level language organizing one or a swarm
of UAVs to fulfill the request. In addition, the platform is
designed to be resilient in case of failure. The mission
configuration is prepared creating a message of instructions
deployed from the platform to the UAV. In case the UAV
loses the connection from the platform, this message is
conceived as a buffer of data so that it can accomplish the
minimum mission requirements. Additionally the platform
accepts mission reconfiguration while the mission has
already been submitted to UAVs.

In this paper the architecture previously outlined for
emergency management and monitoring services is
described. A real security problem in urban context inspired
us as a test case proposed in this paper; urban spaces
monitored by cameras are not an efficient way to decrease
crime rates since criminal events e.g., theft, robbery, rape
moves towards unmonitored zones. Thus the aim of this test
case is to apply this cloud architecture, based on ROS [6], to
crime prevention. In case of aggression the user requests the
emergency service from the IT architecture, providing GPS
coordinates and an identification number. The IT architecture
organizes an UAV to reach him/her for offering monitoring
and support. In the meantime a police officer will use the
service to see the current position of the UAV, its telemetry
and video streaming from its camera.

In this paper there is a first step towards a more complete
idea of cloud robotics. In fact the future developments of this
project aim to:

 Adding to the cloud architecture also robots of
really low capabilities and not running ROS
framework

 Adding a network and database repository (e.g.
Roboheart [7]) to improve services for monitoring

A cloud robotics architecture for an emergency management and

monitoring service in a smart city environment

G. Ermacora, A. Toma, B. Bona, M. Chiaberge, M. Silvagni, M. Gaspardone, R. Antonini

mailto:basilio.bona@polito.it
mailto:marcello.chiaberge@polito.it

and emergency management. In this test case we can
imagine to add capabilities of cloud computing and
storage e.g. a face detection algorithm to recognize
aggressors running on the cloud

This work will have to find a tradeoff between relying all the
intelligence on the cloud and give robots resilient capacity.
The cloud approach makes the robot dependent on the
reliability of the Internet connection while, especially in this
test case, it is important to respect mission constraints and
maintain the control of UAVs in case of connection problem.

Roadmap of the paper. The paper is structured as
follows: Section 2 describes the service from the user and
police officer side in. The cloud robotics platform structure
and mechanism is explained in Section 3. The hardware and
UAV implementation is presented in Section 4.

II. WEB SERVICES AND INTERFACES

The services described in this paper are the following:

 the first is user-side, for requesting help and

assistance from the UAV

 the second is police-side, for monitoring the

ongoing situation from the UAV

The first service requires a device for sending the help

request. This needs a deeper study in the interaction

between this device and users (Human Computer

Interaction) in order to make such device easy to use and

efficient in emergency situation. Following the theories of

Donald Arthur Norman about Human Computer Interaction

will be topic of future work also to distinguish from

intention to action in the interaction with this device [8]. In

other words whether the user wants to send a help request or

it is just an error of interaction. But since the aim of this

paper is not the study of human factors and ergonomics of

the device, we are focusing more on the description of the

IT architecture. Thus in this paper this device is seen just as

a tool which is employed by the user to send an help request.

With regards to the technical specifications, the device has to

send a POST request, over HTTP protocol, to an ad hoc

server listening on a predefined URL and port. In the POST

request there are the GPS coordinates at the moment of the

emergency call and an Identification Number. The web

server is part of the IT architecture and uses the service to

send these information to the platform and make the UAV

get the user for monitoring and assistance.

In this test case, in order to have an easy way to

implement the post request in an affordable and easy to

program device, we have chosen an Android based

smartphone application. There are possibly other devices

that can accomplish the same goal or even better from the

usability perspective, e.g., an ad hoc designed bracelet or a

smart device but this is not the aim of this paper.

The usage of the Android application is as follows :

 the user knowing in advance that is going to enter

in an harmful zone activates the application in

his/her smartphone, holding it in background

 there are two ways to send the help request: the first

is swiping the swipe button. The application start

sending the POST request with GPS coordinates

and user's phone number as Identification Number.

The swipe button has been chosen in order to

reduce errors in the interaction. This particular

widget in fact is widely adopted for the incoming

phone call or to activate the smartphone from

sleeping mode. Another way to send the request is

using voice recognition. A voice recognition

listener is in background when the user activates

the application. In this case the request is activated

by saying the word “help”.

 This application can be used even when the user

does not expect to be in a harmful situation,

assuming he/she would have the possibility to

activate the application and swiping over the help

request button.

 In case of false positive or error of interaction the

user can stop the help request swiping on a similar

widget on the other side of the screen.

 While the application is sending the help request, it

is designed to produce a loud alarm. This has been

chosen for two reasons:

 a) to clearly show the system status to the user: in

this way in emergency situation the user can know

that the request has been sent correctly. This has

been conceived with an audio feedback in addition

to a message displayed on the screen since the user

is supposed not to have the possibility to give

attention to the smartphone.

b) it is widely adopted in common alarm systems to

produce a loud noise. This technique is used as

deterrent against aggressors and also as a help

request for other people that may passing by.

Figure 1 : two screenshots of the application in wireframe. On the

left the asking request activity and on the right the confirmation of

the help request and the widget to delete the help request.

In this case we call the Android application interface and not

service since it is not using the presented API from the IT

architecture. It just send a POST request to a web server that

will utilize the service.

From the police officer perspective a UAV monitoring and

management service is created. The officer via web browser

will have all the information about the UAV collected by

telemetry and video streaming. In this way the he/she can

know the actual position of the UAV, displayed on the web

page map and see how far and how much time it will occur

to get there. In addition, the video streaming from the UAV

can offer assistance to the person in emergency. In this case

the service is build exploiting the API presented from the IT

architecture, so we call it a service.

III. THE CLOUD ROBOTICS PLATFORM

As explained above, the term "Cloud Robotics" is a new

approach to robotics that takes advantage of the Internet as a

resource for massively parallel computation and sharing of

vast data resources in a robust environment; here a list of

aspects to progressively approach the “Cloud Robotics”

concepts mentioned above:

 abstracting the complexity of HW and SW at

different levels to final developer,

 transferring the intelligence, that normally resides

on robot, to the Internet, i.e., to a Cloud Robotics

Platform (remote brain).

 exposing Application Programming Interfaces

(APIs), which ease service developments and share

the resources amongst different services

 managing deployed applications where

parallel computation typically resides, e.g.

keep them alive, error management

 APIs typically abstracting platform

resources

 developer access, e.g. account management

 multi user access i.e. concurrent access to

platform APIs

 security, in our case for robot connection,

e.g. certified VPN to connect robots

Starting from these concepts, we have built a robotics

platform which mainly consists of three layers :

 Front End, containing APIs to build new

services

 Application, containing all specific

applications (the so called “remote brain”),

supporting the above APIs

 Adaption, containing adapters and drivers to

connect the different robots and their sensors,

and abstracting their basics functionalities to

the above applications and APIs .

Our platform is based on ROS framework [9], as showed

in Figure 2, where gray boxes represent ROS nodes. The

platform context is composed by two additional layers:

 Robots, containing all robots, which are

connected to the platforms through specific

ROS nodes, named drivers, and adapters

(Adaption Layer).

 Services, containing all services, which exploit

APIs exposed by the platform (Front End

Layer).

All elements running in Application Layer, represent

various applications each declined by a ROS node. APIs

connect all ROS nodes to abstract their interfaces to service

developer. The interface of a ROS node is a message that is

typically conveyed by the three different communication

processes: publish-subscribe, service-client, action-feedback.

Therefore a ROS message is identified by its type and its

communication process, namely a topic, service or action

name; e.g. the ROS message “geometry-msgs/Twist” [9] and

its topic can be abstracted by “move” API, where the name

is uniquely related to a topic name (/cmd_vel) and the

parameter is an object “Twist” having the same format of

ROS message above. Once this API is called by a service,

the ROS message is composed and published to ROS

framework through the addressed topic.

Another example could be represented by NavData

message abstraction, in this case the “get_feedback” API

subscribes the related topic (/navdata) and registers a

callback to be notified every time NavData message is

published on this topic. The previous examples show the

one-to-one relation between ROS messages (and their

related topics or services) and APIs

Moving from ROS framework concept to ROS Container

means introducing a management system, which traverses

all layers where ROS nodes reside; so the ROS container

includes the ROS framework and adds to it the following

managing elements:

 WatchDog System (WDS): to manage ROS

nodes

 Message Discovery Function (MDF): to enable

or disable APIs according to ROS messages

which will be better explained in the following paragraphs.

Other important issues to be considered are Security and

Concurrency.

 Figure 2 : The cloud platform architecture

Security needs some specific infrastructure and has to be

assured at the platform gates, that are Front End and

Adaption layer. APIs must be safely accessed after a

registration phase, where developers are identified and

specific security keys are provided. Robots are connected to

the platform via-VPN, possibly certified, in order not to be

easily accessed by hackers. Security keys are installed at

robot side.

Concurrency, when two or more users access the same

service, needs also to be managed at ROS level. If a service

makes access to one of the above specified robotic API, a

ROS message is exchanged with the ROS framework. Here

a ROS node is deputed to manage such message. Therefore

this node has to be designed to manage concurrency in a

multithread architecture, e.g., the mission planner node

(better explained in the following) has to manage two or

more drones at the same time.

A. WatchDog System (WDS)

A ROS Node needs to be managed taking into account its

life cycle, as showed in Figure 3. A ROS node life cycle

(NLC) concept is introduced, represented as a simple Finite

State Machine. In this representation the states represent

node status and the arrows represent both expected (e.g.,

start and stop) and unexpected events (e.g., error). For

managing such events dedicated APIs are introduced, which

expose basic functionalities to support error checks and get

or modify nodes status (“on demand” start and stop).

Therefore a WatchDog System (WDS) is built to perform the

following actions:

 enacting strategy to keep ROS nodes alive, e.g., in

case of node break down due to unforeseen causes.

 periodically updating status of each ROS node, for

the benefits of the Message Discovery Function

(see next paragraph)

 Figure 3 : Node Life Cycle in Finite State Machine representation

B. The Message Discovery Function (MDF)

The Message Discovery Function (MDF) enables or

disables APIs basing on available ROS messages; as an

example, the standard structure for accessing data from a

digital camera in ROS is a “sensor_msgs/Image” message.

Thus if this message is not present, the API abstracting this

message is disabled. Furthermore ROS messages could be

related each other, e.g., referring to Figure 4, the message

Msg 1 from Node 1 is related to Msg 2 from Node 3, so API

1 abstracting message Msg 1 is also disabled if Msg 2 is not

present. This complex relation between APIs and messages

results in a tree structure, where ROS messages are the tree

nodes (not to be confused with ROS nodes that contain

actually these messages) and APIs are the tree leaves.

Hence MDF visits this tree and for each ROS node reads

its current status, updated by WDS, to disable or enable APIs

accordingly. For example if node 3 status is “stopped” or

“failure”, then API 1, 3, 5 and 9 are disabled, whereas if

node 2 status is not “started”, both API 3 and 10 are

disabled.

In Figure 5 the management architecture is depicted: the

WDS is a scheduled process to keep alive ROS node (in case

of failure) and to update ROS node status. When something

changes, MDF is triggered to read latest change and enable

or disable APIs accordingly.

 Figure 4: tree structure for Message Discovery Function

 Figure 5 : Management architecture

C. Emergency and monitor service

The APIs and nodes supporting the service described in

previous chapter, are depicted in Figure 6. The service core

logic is implemented in mission planner ROS node, the ROS

message and the service/mission are abstracted by

build_mission API. Thus, in order to build a mission

starting from the home GPS position of the UAV to the

requested GPS position, a call to build_mission API is

needed accepting as parameter an object with the following

request message structure:

Header header

Coordinate home

Coordinate target

The mission planner receives the above message and

optimizes the following cost functions, in order to choose a

drone amongst the available ones in terms of:

 Distance to travel

 Drone battery consumption

 Drone battery autonomy

Once a drone is chosen, mission_planner publishes the

FlightPlan message in specific topic to chosen drone, by

addressing it on namespace basis, and returns that

namespace in the following response message structure

String drone_name

where drone_name is the namespace related to the chosen

drone. The drone name previously returned and, as a

consequence, strictly linked to emergency request, is used to

address following APIs:

 get_feedback collects telemetry and sensor data

from chosen drone, e.g., GPS current position, in

order to feed the drone position to a monitoring

system tracking on a geo referenced map.

 video_streaming returns the camera video

streaming, allowing a remote operator to watch

emergency conditions.

 move used to remotely operate the drone.

In this service, intelligence is totally transferred from drone

to platform. Indeed the mission is planned at platform side,

the drones are simply actuators and are connected and

managed concurrently by the platform itself. The brain

(mission planner and drivers) is kept alive by the WDS

platform component and its functionalities (APIs) enabled or

disabled by MDF platform component.

IV. THE AGENTS

The first validation-tests of the overall system have been

conducted using a quadrotor as agent. A quadrotor offers

several clear advantages with respect to other possible

choices (fixed-wing UAVs, terrestrial rover, etc.).

In particular a quadrotor is well-suited for surveillance and

monitoring tasks because of its capability to hover above the

target. The same is valid also for a standard helicopter

architecture, but at the price of more complex mechanics and

more difficult control scheme.

Figure 6: architecture platform for the service

On the contrary a quadrotor is easy to maintain and less

expensive than a helicopter with similar features (in terms of

autonomy and maximum payload weight). Unfortunately a

quadrotor is an inherently unstable system [10], and for this

reason it requires some electronics (autopilot) to guarantee

its stability in standard flights [11].

Three different products are used in the validation of the

proposed architecture:

Parrot AR.Drone: The AR.Drone [12] is a commercial low-

cost quadrotor solution, fully equipped for remote control

via smartphone. It features a front HD camera and the flight

stability is ensured by a mother board (running a real-time

linux-based operating system) and a navigation board

interfaced with the on-board sensors (two cameras,

ultrasonic range finders, gyroscopes and accelerometers).

The AR.Drone is mainly conceived for gaming applications,

amusement and Augmented Reality videogames, but due to

its low-cost, flexibility and the availability of an official

SDK, it gained a very good popularity in the academic

community.

Mikrokopter: Mikrokopter [13] is a complete auto-pilot

designed for the control of generic multi-rotor platforms. It

features two different boards: the Flight Control board

guarantees vehicle inherent stabilization and altitude-hold

function, the Navi Control board adds a set of GPS/Compass

based autonomous navigation functions (waypoint

navigation, come-home function, position hold mode). The

Flight Controller relies on Atmel ATMEGA644 board

running at 20MHz, and interfaces with the main inertial

sensors (3-axis accelerometer, three gyros, one barometric

sensor). Mikrokopter allows the user to take external control

of the UAV (i.e., bypassing the radio controller) by means of

a dedicated serial protocol.

Micropilot 2128: uPilot 2128 [14] is an auto-pilot board

embedding all the peripherals needed for a stable and

autonomous quad-rotor flight. This auto-pilot is specifically

addressed to professional use and applications, this is

reflected by its higher price and its market segment. Though

Micropilot uses a completely closed-source software, it

offers some tools allowing the user to write his own code.

These functions come with an add-on product called

“Xtender” [15]; Xtender provides a dedicated dynamic

linking library that acts as a intermediate layer between the

user code and the autopilot software. Using the functions

encoded in the library the developer is able to get access to

several low-level parameters of the auto-pilot and can

modify their values.

Due to Micropilot's high price and to its relatively young

support to multi-copters when compared to other solutions

on the market, it is not so common to find academic works

that use this hardware.

The three architectures offer growing functionalities, but

also growing difficulties in implementation. Table 1

summarizes their main features and their integration status in

ROS environment.

TABLE I. QUADROTORS FEATURES AND INTEGRATION STATUS IN

ROS ENVIRONMENT

 Market Command Telemetry

link

Autonomous

navigation

SDK ROS

support

AR.Drone Videogames

/Hobby

Smartphone

(via wifi)

Wifi

(TCP/UDP

packages)

Mikrokopter Hobby/

Photographer

Radio

controller

UART

(Custom

Serial

Protocol)

Micropilot

2128

Professional

applications

Radio

controller

UART

(Custom

Serial

Protocol)

Notice that the only platform adequately supported in ROS

is AR.Drone; a ROS node for Mikrokopter has also been

written [16], but it requires flashing a software patch on the

Flight Control board firmware and thus it has been excluded

from this study, since we aim at maintaining the

compatibility with the standard version of the cited auto-

pilot; finally there is not any ROS node dedicated to

microPilot support.

Therefore two different ROS interfaces have been written

from scratch, one dedicated to Mikrokopter and the second

to Micropilot. We choose to manage these nodes differently

from the AR.Drone one. In fact the AR.Drone is well-suited

for short-range mission and it is acceptable to maintain all its

ROS interfaces in the cloud; on the contrary, the

Mikrokopter and Micropilot are more likely to be used in

long-range GPS-aided missions where a sudden loss of

connection with the cloud must not interrupt the mission or –

worse – exhibit dangerous behaviours or cause damages and

injuries. For this reason, in these latter cases, the ROS driver

node runs on a dedicated PC/104 board directly connected to

the auto-pilot on the UAV. This choice allows to trigger

specific emergency-management routines in case of missing

link or communication issues. As depicted in Figure 2 the

ROS interface takes the function of adapter in the Parrot

AR.Drone case, while it should be considered a driver for

Mikrokopter and Micropilot.

The three described solutions where specifically chosen in

order to cover every possible segment of the market and to

demonstrate the flexibility of the proposed service in

adapting the mission schedule to very different families of

available agents. Moreover they easily show the already

highlighted difference between the adapter and driver

modules in the cloud platform.

CONCLUSION AND FUTURE WORK

In this paper we propose a test case for cloud robotics for

emergency management and monitoring service. We intend

to exploit the emerging technologies of web services and

mobile applications to use robotics in the proposed cloud

architecture. In addition we want to leverage the power of

cloud computing in terms of storage and computing e.g.

adding the ad hoc cloud engine Roboearth [7]. Experimental

results and data will be available in the next few months

since the project is under development. A deeper and more

complete study of Human Robot Interaction in emergency

context will be also part of our future work.

REFERENCES

[1] Mell, Peter, and Timothy Grance. "The NIST definition of cloud

computing (draft)." NIST special publication 800.145 (2011): 7.
[2] Ken Goldberg, Ben Kehoe , Cloud Robotics and Automation: A

Survey of Related Work. Electrical Engineering and Computer

Sciences University of California at Berkeley
[3] Sanfeliu, Alberto, Norihiro Hagita, and Alessandro Saffiotti.

"Network robot systems." Robotics and Autonomous Systems 56.10
(2008): 793-797.

[4] Chibani, A., et al. "Ubiquitous robotics: Recent challenges and future

trends." Robotics and Autonomous Systems (2013).

[5] Kamei, Koji, et al. "Cloud networked robotics." Network, IEEE 26.3

(2012): 28-34.

[6] Quigley, Morgan, et al. "ROS: an open-source Robot Operating
System." ICRA workshop on open source software. Vol. 3. No. 3.2.

2009.

[7] Waibel, Markus, et al. "Roboearth." Robotics & Automation
Magazine, IEEE18.2 (2011): 69-82.

[8] Norman, Donald A. "Categorization of action slips." Psychological

review 88.1 (1981): 1.
[9] http://www.ros.org

[10] Hoffmann, Gabriel M., et al. "Quadrotor helicopter flight dynamics

and control: Theory and experiment." Proc. of the AIAA Guidance,
Navigation, and Control Conference. 2007.

[11] Bouabdallah, Samir, and Roland Siegwart. "Backstepping and sliding-

mode techniques applied to an indoor micro quadrotor." Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE

International Conference on. IEEE, 2005.

[12] http://ardrone2.parrot.com/

[13] http://mikrokopter.de/en/home

[14] http://www.micropilot.com/

[15] http://www.micropilot.com/products-xtendermp.htm
[16] Sa, Inkyu, and Peter Corke. "Estimation and control for an open-

source quadcopter." Proceedings of the Australasian Conference on

Robotics and Automation 2011. 2011.

http://www.ros.org/
https://mail.polito.it/Redirect/ardrone2.parrot.com/
https://mail.polito.it/Redirect/mikrokopter.de/en/home
https://mail.polito.it/Redirect/www.micropilot.com/
https://mail.polito.it/Redirect/www.micropilot.com/products-xtendermp.htm

