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Abstract— Cloud robotics is revolutionizing not only the 

robotics industry but also the ICT world, giving robots more 

storage and computing capacity, opening new scenarios that 

blend the physical to the digital world. In this vision new IT 

architectures are required to manage robots, retrieve data from 

them and create services to interact with users. In this paper a 

possible implementation of a cloud robotics architecture for the 

interaction between users and UAVs is described. Using the 

latter as monitoring agents, a service for fighting crime in 

urban environment is proposed, making one step forward 

towards the idea of smart city. 

I. INTRODUCTION 

A new approach to robotics is coming up exploiting the 
emerging technologies of internet and cloud computing [1]. 
While in the past the robot was seen as a unique device that 
carried out onboard all the computation and storage 
processes, as Steve Cousins said “no robots is an island” [2], 
presently we are witnessing the dawn of cloud robotics. This 
bring us to  a shift  where “robot intelligence” once local for 
every single robot will now be managed by a higher and 
more powerful “centralized brain” located in the cloud 
architecture [3]. This breakthrough opens new scenarios 
where robots are seen as agents, relying on remote servers for 
most of their computational load and data storage, creating a 
network of  devices where they can share knowledge and 
information [4]. 

The cloud robotics approach involves the software 
abstraction of each robot, abstracted from the hardware layer, 
and presenting ad hoc APIs to ease its management and the 
process of writing code on it. Even non robotics experts can 
now write programs without knowing the specific robot 
software architecture, simply calling the precise APIs from 
their code. Furthermore, once the API has been approved and 
tested, this approach facilitates the structure of the program 
and reduces the possibility of errors. In this way both 
beginners and  experts that want to build a service do not 
need to know in details the dynamics and the technical 
features of the required robot.  
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This paper presents a platform of cloud robotics  and its 
related services. The platform provides an abstraction layer of 
each robot accessible via APIs and offers support to services,  
available to final users [5].  

Lots of applications are growing that see UAV as 
interesting devices for environment monitoring. Many 
services can be build fetching data from UAVs, such as 
telemetry or video streaming. Making available these 
information, users can have access to these services in many 
ways.  As this paper illustrates, these services, part of the IT 
architecture, can be accessed via web or other devices, as 
smartphone applications. 

Typically in search and rescue or emergency management 
when UAVs are required for  monitoring intervention, users 
ask the service for intervention that builds a request to the 
platform of cloud robotics. The latter translates the required 
mission to a low level language  organizing one or a swarm 
of UAVs to fulfill the request. In addition, the platform is 
designed to be resilient in case of failure. The mission 
configuration is prepared creating a message of instructions 
deployed from the platform to the UAV. In  case the UAV 
loses the connection from the platform, this message is 
conceived as a buffer of data so that it can accomplish the 
minimum mission requirements. Additionally the platform 
accepts mission reconfiguration while the mission has 
already been submitted to UAVs. 

In this paper the architecture previously outlined for 
emergency management and monitoring services is 
described. A real security problem in urban context inspired 
us as a test case proposed in this paper; urban spaces 
monitored by cameras are not an efficient way to decrease 
crime rates since criminal events e.g., theft, robbery, rape 
moves towards unmonitored zones. Thus the aim of this test 
case is to apply this cloud architecture, based on ROS [6], to 
crime prevention. In  case of aggression  the user requests the 
emergency service from the IT architecture,  providing GPS 
coordinates and an identification number. The IT architecture 
organizes an UAV to reach him/her for offering monitoring 
and support. In the meantime a police officer will use the 
service to see the current position of the UAV, its telemetry 
and video streaming from its camera. 

In this paper there is a first step towards a more complete 
idea of cloud robotics. In fact the future developments of this 
project aim to:  

 Adding to the cloud architecture also robots of 
really low capabilities and not running ROS 
framework 

 Adding a network and database repository (e.g. 
Roboheart  [7]) to improve services for monitoring 
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and emergency management. In this test case we can 
imagine to add capabilities of cloud computing and 
storage e.g. a face detection algorithm to recognize 
aggressors running on the cloud  

This work will have to find a tradeoff between relying all the 
intelligence on the cloud and give robots resilient capacity. 
The cloud approach makes the robot dependent on the 
reliability of the Internet connection while, especially in this 
test case, it is important to respect mission constraints and 
maintain the control of UAVs in case of connection problem. 

Roadmap of the paper.  The paper is structured as 
follows: Section 2 describes the service from the user  and 
police officer side  in. The cloud robotics platform structure 
and mechanism is explained in Section 3. The hardware and 
UAV implementation is presented in Section 4. 

II. WEB SERVICES AND INTERFACES 

The services described in this paper are the following: 

 the first is user-side, for requesting help and 

assistance from the UAV 

 the second is police-side, for monitoring the 

ongoing situation from the UAV 

The first service requires a device for sending the help 

request. This needs a deeper study in the interaction  

between this device and users (Human Computer 

Interaction) in order to make such device easy to use and 

efficient in emergency situation. Following the theories of 

Donald Arthur Norman about Human Computer Interaction  

will be topic of future work also to distinguish from 

intention to action in the interaction with this device [8]. In 

other words whether the user wants to send a help request or 

it is just an error of interaction.  But since the aim of this 

paper is not the study of human factors and ergonomics of 

the device,  we are focusing more on the description of the 

IT architecture. Thus in this paper this device is seen just as 

a tool which is employed by the user to send an help request. 

With regards to the technical specifications, the device has to 

send a POST request, over HTTP protocol, to an ad hoc 

server listening on a predefined URL and port. In the POST 

request there are the GPS coordinates at the moment of the 

emergency call and an Identification Number. The web 

server is part of the IT architecture and uses the service to 

send these information to the platform and make the UAV 

get the user for monitoring and assistance.  

In this test case, in order to have an easy way to 

implement the post request in an affordable and easy to 

program device, we have chosen an Android based 

smartphone application. There are possibly other devices 

that can accomplish the same goal or even better from the 

usability perspective, e.g., an ad hoc designed bracelet or a 

smart device but this is not the aim of this paper. 

The usage of the Android application is as follows : 

 the user knowing in advance that is going to enter 

in an harmful zone activates the application in 

his/her smartphone, holding it in background 

 there are two ways to send the help request: the first 

is swiping the swipe button. The application start 

sending the POST request with GPS coordinates 

and user's phone number as Identification Number.  

The swipe button has been chosen in order to 

reduce errors in the interaction. This particular 

widget in fact is widely adopted for the incoming 

phone call or to activate  the smartphone from 

sleeping mode. Another way to send the request is 

using voice recognition. A voice recognition 

listener is in  background when the user activates 

the application. In this case the request is activated 

by saying the word “help”. 

 This application can be used even when the user 

does not expect to be in a harmful situation, 

assuming he/she would have the possibility to 

activate the application and swiping over the help 

request button. 

 In case of false positive or error of interaction the 

user can stop the help request swiping on a similar 

widget on the other side of the screen. 

 While the application is sending the help request, it 

is designed to produce a loud alarm. This has been 

chosen for two reasons: 

 a) to clearly show the system status to the user: in 

this way in emergency situation the user can know 

that the request has been sent correctly. This has 

been conceived with an audio feedback in addition 

to a message displayed on the screen since the user 

is supposed not to have the possibility to give 

attention to the smartphone. 

b) it is widely adopted in common alarm systems to 

produce a loud noise. This technique is used as 

deterrent against aggressors and also as a help 

request for other people that may passing by. 

 
Figure 1 : two screenshots of the application in wireframe. On the 

left the asking request activity and on the right the confirmation of 

the help request and the widget to delete the help request. 

 

In this case we call the Android application interface and not 

service since it is not using the presented API from the IT 

architecture. It just send a POST request to a web server that 

will utilize the service. 

 



  

From the police officer perspective a UAV monitoring and 

management service is created. The officer via web browser 

will have all the information about the UAV collected by 

telemetry and video streaming. In this way the he/she can 

know the actual position of the UAV, displayed on the web 

page map and see how far and how much time it will occur 

to get there. In addition, the video streaming from the UAV 

can offer assistance to the person in emergency.  In this case 

the service is build exploiting the API presented from the IT 

architecture, so we call it a service. 

 

III. THE CLOUD ROBOTICS PLATFORM 

As explained above, the term "Cloud Robotics" is a new 

approach to robotics that takes advantage of the Internet as a 

resource for massively parallel computation and sharing of 

vast data resources in a robust environment; here a list of 

aspects to progressively approach the “Cloud Robotics” 

concepts mentioned above:  

 abstracting the complexity of HW and SW at 

different levels to final developer, 

 transferring the intelligence, that  normally resides 

on robot, to the Internet, i.e., to a Cloud Robotics 

Platform (remote brain).   

 exposing Application Programming Interfaces 

(APIs), which ease service developments and  share 

the resources amongst different services 

 managing deployed applications where 

parallel computation typically resides, e.g. 

keep them alive, error management 

 APIs typically abstracting platform 

resources  

 developer access, e.g. account management 

 multi user access i.e. concurrent access to 

platform APIs 

 security, in our case for robot connection, 

e.g. certified VPN to connect robots 

  

Starting from these concepts, we have built a robotics 

platform which mainly consists of three layers : 

 Front End, containing APIs to build new 

services  

 Application, containing all specific 

applications (the so called “remote brain”), 

supporting the above APIs  

 Adaption, containing adapters and drivers to 

connect the different robots and their sensors, 

and abstracting their basics functionalities to 

the above applications and APIs . 

 

Our platform is based on ROS framework [9], as showed 

in Figure 2, where gray boxes represent ROS nodes. The 

platform context is composed by two additional layers: 

 Robots, containing all robots, which are 

connected to the platforms through specific 

ROS nodes, named drivers, and adapters 

(Adaption Layer). 

 Services, containing all services, which exploit 

APIs exposed by the platform (Front End 

Layer).  

 

All elements running in Application Layer, represent 

various applications each declined by a ROS node. APIs 

connect all ROS nodes to abstract their interfaces to service 

developer. The interface of a ROS node is a message that is 

typically conveyed by the three different communication 

processes: publish-subscribe, service-client, action-feedback. 

Therefore a ROS message is identified by its type and its 

communication process, namely a topic, service or action 

name; e.g. the ROS message “geometry-msgs/Twist” [9] and 

its topic can be abstracted by “move” API, where the name 

is uniquely related to a topic name (/cmd_vel) and the 

parameter is an object “Twist” having the same format of 

ROS message above. Once this API is called by a service, 

the ROS message is composed and published to ROS 

framework through the addressed topic.  

Another example could be represented by NavData 

message abstraction, in this case the “get_feedback” API 

subscribes the related topic (/navdata) and registers a 

callback to be notified every time NavData message is 

published on this topic. The previous examples show the 

one-to-one relation between ROS messages (and their 

related topics or services) and APIs 

 

Moving from ROS framework concept to ROS Container 

means introducing a management system, which traverses 

all layers where ROS nodes reside; so the ROS container 

includes the ROS framework and adds to it the following 

managing elements: 

 WatchDog System (WDS): to manage ROS 

nodes 

 Message Discovery Function (MDF): to enable 

or disable APIs according to ROS messages  

 

which will be better explained in the following paragraphs. 

Other important issues to be considered are Security and 

Concurrency. 

 

 
 
 Figure 2 : The cloud platform architecture 



  

Security needs some specific infrastructure and has to be 

assured at the platform gates, that are Front End and 

Adaption layer. APIs must be safely accessed after a 

registration phase, where developers are identified and 

specific security keys are provided. Robots are connected to 

the platform via-VPN, possibly certified, in order not to be 

easily accessed by hackers. Security keys are installed at 

robot side. 

 

Concurrency, when two or more users access the same 

service, needs also to be managed at ROS level. If a service 

makes access to one of the above specified robotic API, a 

ROS message is exchanged with the ROS framework. Here 

a ROS node is deputed to manage such message. Therefore 

this node has to be designed to manage concurrency in a 

multithread architecture, e.g., the mission planner node 

(better explained in the following) has to manage two or 

more drones at the same time. 

A. WatchDog System (WDS) 

A ROS Node needs to be managed taking into account its 

life cycle, as showed in Figure 3. A ROS node life cycle 

(NLC) concept is introduced, represented as a simple Finite 

State Machine. In this representation the states represent 

node status and the arrows represent both expected (e.g., 

start and stop) and unexpected events (e.g., error). For 

managing such events dedicated APIs are introduced, which 

expose basic functionalities to support error checks and get 

or modify nodes status (“on demand” start and stop). 

Therefore a WatchDog System (WDS) is built to perform the 

following actions: 

 enacting strategy to keep ROS nodes alive, e.g., in 

case of node break down due to unforeseen causes. 

 periodically updating status of each ROS node, for 

the benefits of the Message Discovery Function 

(see next paragraph) 

 

 
 

 Figure 3 : Node Life Cycle in Finite State Machine representation 

B. The Message Discovery Function (MDF) 

 

The Message Discovery Function (MDF) enables or 

disables APIs basing on available ROS messages; as an 

example, the standard structure for accessing data from a 

digital camera in ROS is a “sensor_msgs/Image” message. 

Thus if this message is not present, the API abstracting this 

message is disabled. Furthermore ROS messages could be 

related each other, e.g., referring to Figure 4, the message 

Msg 1 from Node 1 is related to Msg 2 from Node 3, so API 

1 abstracting message  Msg 1 is also disabled if Msg 2 is not 

present. This complex relation between APIs and messages 

results in a tree structure, where ROS messages are the tree 

nodes (not to be confused with ROS nodes that contain 

actually these messages) and APIs are the tree leaves.  

Hence MDF visits this tree and for each ROS node reads 

its current status, updated by WDS, to disable or enable APIs 

accordingly. For example if node 3 status is “stopped” or 

“failure”, then API 1, 3, 5 and 9 are disabled, whereas if 

node 2 status is not “started”, both API 3 and 10 are 

disabled.  

In Figure 5 the management architecture is depicted: the 

WDS is a scheduled process to keep alive ROS node (in case 

of failure) and to update ROS node status. When something 

changes, MDF is triggered to read latest change and enable 

or disable APIs accordingly.   

  

  

  Figure 4: tree structure for Message Discovery Function  

 
 

 
 Figure 5 : Management architecture 

C. Emergency and monitor service 

 

The APIs and nodes supporting the service described in 

previous chapter, are depicted in Figure 6. The service core 



  

logic is implemented in mission planner ROS node, the ROS 

message and the service/mission are abstracted by 

build_mission API. Thus, in order to build a mission 

starting from the home GPS position of the UAV to the 

requested GPS position, a call to build_mission API is 

needed accepting  as parameter an object with the following 

request message structure: 

 

Header header 

Coordinate home 

Coordinate target 

 

The mission planner receives the above message and 

optimizes the following cost functions, in order to choose a 

drone amongst the available ones in terms of: 

 Distance to travel 

 Drone battery consumption 

 Drone battery autonomy 

 

Once a drone is chosen, mission_planner publishes the 

FlightPlan message in specific topic to chosen drone, by 

addressing it on namespace basis, and returns that 

namespace in the following response message structure 

 

String drone_name 

 

where drone_name is the namespace related to the chosen 

drone. The drone name previously returned and, as a 

consequence, strictly linked to emergency request, is used to 

address following APIs: 

 get_feedback collects telemetry and sensor data 

from chosen drone, e.g., GPS current position, in 

order to feed the drone position to a monitoring 

system tracking on a geo referenced map. 

 video_streaming returns the camera video 

streaming, allowing a remote operator to watch 

emergency conditions. 

 move used to remotely operate the drone. 

 

In this service, intelligence is totally transferred from drone 

to platform. Indeed the mission is planned at platform side, 

the drones are simply actuators and are connected and 

managed concurrently by the platform itself. The brain 

(mission planner and drivers) is kept alive by the WDS 

platform component and its functionalities (APIs) enabled or 

disabled by MDF platform component. 

IV. THE AGENTS 

The first validation-tests of the overall system have been 

conducted using a quadrotor as agent. A quadrotor offers 

several clear advantages with respect to other possible 

choices (fixed-wing UAVs, terrestrial rover, etc.). 

In particular a quadrotor is well-suited for surveillance and 

monitoring tasks because of its capability to hover above the 

target. The same is valid also for a standard helicopter 

architecture, but at the price of more complex mechanics and 

more difficult control scheme. 

 
 

Figure 6: architecture platform for the service 

 

On the contrary a quadrotor is easy to maintain and less 

expensive than a helicopter with similar features (in terms of 

autonomy and maximum payload weight). Unfortunately a 

quadrotor is an inherently unstable system [10], and for this 

reason it requires some electronics (autopilot)  to guarantee 

its stability in standard flights [11].  

Three different products are used in the validation of the 

proposed architecture: 

 

Parrot AR.Drone: The AR.Drone [12] is a commercial low-

cost quadrotor solution, fully equipped for remote control 

via smartphone. It features a front HD camera and the flight 

stability is ensured by a mother board (running a real-time 

linux-based operating system) and a navigation board 

interfaced with the on-board sensors (two cameras, 

ultrasonic range finders, gyroscopes and accelerometers). 

The AR.Drone is mainly conceived for gaming applications, 

amusement and Augmented Reality videogames, but due to 

its low-cost, flexibility and the availability of an official 

SDK, it gained a very good popularity in the academic 

community. 

 

Mikrokopter: Mikrokopter [13] is a complete auto-pilot 

designed for the control of generic multi-rotor platforms. It 

features two different boards: the Flight Control board 

guarantees vehicle inherent stabilization and altitude-hold 

function, the Navi Control board adds a set of GPS/Compass 

based autonomous navigation functions (waypoint 

navigation, come-home function, position hold mode). The 

Flight Controller relies on Atmel ATMEGA644 board 

running at 20MHz, and interfaces with the main inertial 

sensors (3-axis accelerometer, three gyros, one barometric 

sensor). Mikrokopter allows the user to take external control 

of the UAV (i.e., bypassing the radio controller) by means of 

a dedicated serial protocol. 

 

Micropilot 2128:  uPilot 2128 [14] is an auto-pilot board 

embedding all the peripherals needed for a stable and 

autonomous quad-rotor flight. This auto-pilot is specifically 

addressed to professional use and applications, this is 



  

reflected by its higher price and its market segment. Though 

Micropilot uses a completely closed-source software, it 

offers some tools allowing the user to write his own code. 

These functions come with an add-on product called 

“Xtender” [15]; Xtender provides a dedicated dynamic 

linking library that acts as a intermediate layer between the 

user code and the autopilot software. Using the functions 

encoded in the library the developer is able to get access to 

several low-level parameters of the auto-pilot and can 

modify their values. 

Due to Micropilot's high price and to its relatively young 

support to multi-copters when compared to other solutions 

on the market, it is not so common to find academic works 

that use this hardware. 

 

The three architectures offer growing functionalities, but 

also growing difficulties in implementation. Table 1 

summarizes their main features and their integration status in 

ROS environment. 

TABLE I.  QUADROTORS FEATURES AND INTEGRATION STATUS IN 

ROS ENVIRONMENT 

 Market Command Telemetry 

link 

Autonomous 

navigation 

SDK ROS 

support 

AR.Drone Videogames 

/Hobby 

Smartphone 

(via wifi) 

Wifi 

(TCP/UDP 

packages) 
   

Mikrokopter Hobby/ 

Photographer 

Radio 

controller 

UART 

(Custom 

Serial 

Protocol) 

   

Micropilot 

2128 

Professional 

applications 

Radio 

controller 

UART 

(Custom 

Serial 

Protocol) 

   

 

Notice that the only platform adequately supported in ROS 

is AR.Drone; a ROS node for Mikrokopter has also been  

written [16], but it requires flashing a software patch on the 

Flight Control board firmware and thus it has been excluded 

from this study, since we aim at maintaining the 

compatibility with the standard version of the cited auto-

pilot; finally there is not any ROS node dedicated to 

microPilot support. 

Therefore two different ROS interfaces have been written 

from scratch, one dedicated to Mikrokopter and the second 

to Micropilot. We choose to manage these nodes differently 

from the AR.Drone one. In fact the AR.Drone is well-suited 

for short-range mission and it is acceptable to maintain all its 

ROS interfaces in the cloud; on the contrary, the 

Mikrokopter and Micropilot are more likely to be used in 

long-range GPS-aided missions where a sudden loss of 

connection with the cloud must not interrupt the mission or – 

worse – exhibit dangerous behaviours or cause damages and 

injuries. For this reason, in these latter cases, the ROS driver 

node runs on a dedicated PC/104 board directly connected to 

the auto-pilot on the UAV. This choice allows to trigger 

specific emergency-management routines in case of missing 

link or communication issues. As depicted in Figure 2 the 

ROS interface takes the function of adapter in the Parrot 

AR.Drone case, while it should be considered a driver for 

Mikrokopter and Micropilot. 

The three described solutions where specifically chosen in 

order to cover every possible segment of the market and to 

demonstrate the flexibility of the proposed service in 

adapting the mission schedule to very different families of 

available agents. Moreover they easily show the already 

highlighted difference between the adapter and driver 

modules in the cloud platform.  

CONCLUSION AND FUTURE WORK 

In this paper we propose a test case for cloud robotics for 

emergency management and monitoring service. We intend 

to exploit the emerging technologies of web services and 

mobile applications to use robotics in the proposed cloud 

architecture. In addition we want to leverage the power of 

cloud computing in terms of storage and computing e.g. 

adding the ad hoc cloud engine Roboearth [7].  Experimental 

results and data will be available in the next few months 

since the project is under development. A deeper and more 

complete study of Human Robot Interaction in emergency 

context will be also part of our future work. 
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