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Abstract—In the fields of wireless communications, network-
ing and signal processing, systems can be often modeled through
a linear relationship involving a random Vandermonde matrix
V, and their performance can be characterized through the
eigenvalue distribution of the Gram matrix VVH. In spite of its
key role, little is known about the eigenvalue distribution of such a
matrix and only few of its moments are known in closed form. In
this work, we obtain a lower and an upper bound to the eigenvalue
distribution of VVH, as well as an excellent approximation based
on entropy maximization. As an application, we consider the case
of a wireless sensor network sampling a physical phenomenon to
be estimated. We characterize the quality of the estimate through
the eigenvalue distribution of VVH by adopting an asymptotic
approach, which well suites medium-large scale networks. The
proposed method is particularly efficient when dealing with
physical phenomena defined over a d-dimensional support, with
d > 2.

Keywords—sensor networks, Signal estimation, Vandermonde
matrices.

I. INTRODUCTION

Recently, random Vandermonde matrices have attracted a
great deal of interest since they play an important role in fields
such as wireless communications, sensor networks, and image
processing. In these contexts, signals estimation systems can
often be modeled as [1]–[3]:

y = VHa + n , (1)

where the vector1 y represents a set of measurements, the
vector a denotes the system input that has to be estimated,
V is a random Vandermonde matrix representing the system
transfer function, and n is the additive noise, uncorrelated
with respect to a and V. In particular, the model in (1)
can represent a physical phenomenon sampled by a wireless
sensor network composed of nodes randomly deployed on a
d-dimensional support. The physical phenomenon is specified
by the vector a which has to be estimated from the set of
noisy measurements y, collected by the sensors. In this case,
the matrix V accounts for the positions of the sensor nodes.
In [4], it has been shown that the performance of linear
estimation techniques can be accurately described through
the eigenvalue distribution (or matrix spectrum) of the Gram
matrix associated to V, i.e., VVH. In particular, a key role is
played by the asymptotic spectrum of VVH, which is obtained
by letting the size of the matrix V tend to infinity while
keeping the ratio of the number of rows to the number of
columns constant. Unfortunately, such asymptotic spectrum is

1Bold lowercase and uppercase letters denote column vectors and matrices,
respectively. The conjugate transpose operator is denoted by (·)H; the identity
matrix is denoted by I.

still unknown and very few results exist that can shed light
on this important issue. For example the results presented
in [1], [2] were obtained by using a Monte Carlo approach
which, although accurate, turns out to be computationally
expensive when the physical phenomenon to be estimated is
defined over d > 2 dimensions. In this work, we leverage the
existing results on the moments of the asymptotic spectrum
of VVH and contribute to filling the aforementioned gap by
providing (i) a lower and an upper bound to the asymptotic
cumulative distribution function of the eigenvalues of VVH,
and (ii) an approximation of the asymptotic spectrum (both the
cumulative and the density functions), which proves to be very
accurate. Through such results, we are able to characterize the
performance of linear reconstruction techniques by avoiding
the need of computationally expensive Monte Carlo methods.

The rest of the paper is organized as follows. First, in
Section II we provide some background on the system model
and performance metric, as well as on fundamental concepts
related to Vandermonde matrices that we use in our analysis.
We then present our bounds and approximation of the asymp-
totic eigenvalue distribution in Section III and Section IV,
respectively. Finally, we show numerical results in Section V,
and we conclude the paper in Section VI.

II. SIGNAL RECONSTRUCTION IN WSN AND RANDOM
VANDERMONDE MATRICES

We consider m sensors sampling a spatially-finite physical
phenomenon s(x) (hereinafter also called signal), defined over
a d-dimensional hypercube H = [0, 1)d, d ≥ 1, and with
finite energy. The signal can be approximated by its truncated
Fourier series expansion so that the sample of the q-th sensor
(q = 1, . . . ,m) can be modeled as [1]

sq = s(xq) = n−d/2
∑
`

aν(`)e
j2π`Txq (2)

where n is the approximate bandwidth (per dimension) of
the field and ` = [`1, . . . , `d]

T is a vector of integers, with
`j = 0, . . . , n − 1, j = 1, . . . , d. The coefficient n−d/2 is
a normalization factor and the function ν(`) =

∑d
j=1 n

j−1`j ,
maps uniquely the vector ` into {0, . . . , nd−1}. The term aν(`)

denotes the ν(`)-th entry of the vector a = [a0, . . . , and−1]T,
which represents the approximated signal spectrum, while the
vectors xq ∈ H, represents the coordinate of the q-th sampling
point (i.e., the position of the q-th sensor), which is assumed
to be known. We assume that xq , q = 1, . . . ,m, are i.i.d.
random vectors having a generic continuous distribution over
the hypercube H. Also, since in general we do not have any
information on the signal spectrum a, we assume it has zero



mean and covariance σ2
aI. Without loss of generality and for

normalization reasons, we set σ2
a = 1.

The vector of samples s = [s1, . . . , sm]T can be rewritten
in a compact form as s = VHa where V is an nd×m random
Vandermonde matrix whose generic entry

(V)ν(`),q = n−d/2 exp
(
−2πi`Txq

)
(3)

is randomly distributed on the complex circle of radius n−d/2.
The vector of noisy samples y can thus be represented by (1),
where n has zero mean, covariance matrix σ2

nI, and is uncor-
related with a. From the knowledge of y and of the sampling
locations X = {x1, . . . ,xm}, the network provides an estimate
ŝ(x) of the signal s(x). As a performance metric of the signal
reconstruction, we take the mean square error (MSE) of the
estimate, which can be written in terms of the estimate, â, of
the signal spectrum a [1] as

M(n,m) = Ea,n,X ‖a− â‖2/nd (4)

where the average is taken with respect to the subscripted
random vectors (see [1] for details). In the literature, many
estimators for a have been proposed. Among these, linear
estimators such as the zero-forcing (ZF) and the linear mini-
mum MSE (LMMSE) estimators [4] are commonly employed
in signal detection and estimation since their analysis can be
often carried out analytically. They are given, respectively, as

âZF =
(
VVH

)−1
Vy,

âLMMSE =
(
VVH + σ2

nI
)−1

Vy .

By using these estimators, the MSE in (4) becomes

M(n,m)
ZF =

σ2
n

nd
Tr
{

(VVH)−1
}

M(n,m)
LMMSE =

σ2
n

nd
Tr
{

(VVH + σ2
nI)
−1
}
. (5)

When the number of sensors, m, and the number of harmonics,
nd, is large with constant ratio β = nd/m, the MSE can be
tightly approximated by using the asymptotic MSE defined as

M∞ = lim
n,m→∞

M(n,m).

For the two filters above, the asymptotic MSE is given by

M∞ZF = σ2
nβEλ

[
λ−1

]
M∞LMMSE = σ2

nβEλ
[
(λ+ σ2

nβ)−1
]

(6)

where λ is a random variable distributed as the asymptotic
spectrum of βVVH (see [1] for details). The knowledge of
the distribution of λ (in the following denoted as fλ(d, β, z)),
for the case where the positions x1, . . . ,xm are i.i.d and
uniformly distributed, plays an important role since it allows
to compute the asymptotic MSE in (6) also for the case where
x1, . . . ,xm are i.i.d. with generic continuous distribution in
H [5]. Due to the scarcity of results on the behavior of
fλ(d, β, z), whenever needed, such a distribution has to be
evaluated through numerical simulations (i.e., by computing
the eigenvalues of several realizations of the nd × nd matrix
βVVH). Clearly, this is feasible only for fairly small values
of n, m and becomes impractical already when d > 2.

In order to overcome such a problem, we propose to
characterize the distribution by exploiting the only results

known in closed-form, i.e, its first few moments. Under the
assumption of x1, . . . ,xm being uniformly distributed over H,
we have that the p-th moment of fu,λ(d, β, z), defined as

µ(d)
p =

∫ ∞
0

zpfu,λ(d, β, z) dz =

p∑
k=1

βp−k
∑

ω∈Ωp,k

v(ω)d (7)

is a polynomial in the variable β [1]. In (7), Ωp,k is the set
of partitions of the set P = {1, 2, . . . , p} in k subsets, and
for any ω ∈ Ωp,k, v(ω) ∈ (0, 1] is a rational number that
can be analytically computed from ω following the procedure
described in [1]. Note that the computational complexity of
µ

(d)
p , increases with the Bell number of p [1] so only few

moments are available. For simplicity, in the rest of the paper
we omit the superscript (d) in the expression of the moments.

Using the above expressions, in the following sections
we derive a lower and an upper bound to the asymptotic
cumulative distribution function (CDF)

Fλ(d, β, z) =

∫ z

0

fλ(d, β, t) dt (8)

and a tight approximation of fλ(d, β, z) and Fλ(d, β, z).

III. BOUNDS TO Fλ(d, β, z)

Let Λ be a non-negative random variable with CDF FΛ(z).
If E[Λ] < ∞, then for any z > 0 Markov’s inequality states
that P{Λ ≥ z} ≤ E[Λ]/z, i.e., that

FΛ(z) = 1− P{Λ ≥ z} ≥ 1− E[Λ]

z
.

Now, let Λ = λp where λ ≥ 0 is distributed as the asymptotic
spectrum of VVH, and let us define ζ = zp. It follows that,
for any p > 0, we have:

Fλ(d, β, z) = 1− P{λ ≥ z}
= 1− P{λp ≥ zp}

≥ 1− E[λp]

zp

= 1− µp
zp

. (9)

If the moments µp are available for p = 1, . . . , P , then by (9)
a lower bound to Fλ(d, β, z) can be obtained as:

Fλ(d, β, z) ≥ 1−min
p

µp
zp

(10)

An upper bound to Fλ(d, β, z) can be derived by using the
left-sided Chebychev inequality [7, chapter 9.1] stating that for
any random variable Λ and ζ > 0

P(Λ ≤ (1− ζ)E[Λ]) ≤ E[Λ2]− E[Λ]2

E[Λ2] + (ζ2 − 1)E[Λ]2
. (11)

Again, by letting Λ = λp in (11), we obtain

P(λp ≤ (1− ζ)µp) ≤
µ2p − µ2

p

µ2p + (ζ2 − 1)µ2
p

.

By defining zp = (1 − ζ)µp (i.e., ζ = 1 − zp/µp), we can
write:

P(λ ≤ z) = Fλ(d, β, z) ≤
µ2p − µ2

2p

µ2p − 2µpzp + z2p
.



The above inequality is valid for ζ ≥ 0, i.e., z ≤ µ1/p
p . When

z > µ
1/p
p , we assume Fλ(d, β, z) ≤ 1. Then, if the moments

µp are available for p = 1, . . . , bP/2c, we have:

Fλ(d, β, z) ≤ min
p

{
µ2p−µ2

p

µ2p−2µpzp+z2p if z ≤ µ1/p
p

1 else.
(12)

IV. APPROXIMATION OF fλ(d, β, z) AND Fλ(d, β, z)

The reconstruction of a probability density function from
its moments is known as the Classical Moment Problem.
Unfortunately, the knowledge of a finite set of moments does
not guarantee the uniqueness of the solution [8]. In general a
good solution must be selected from a solution space according
to some cost metric. A method to solve the problem has been
proposed in [9], and it is based on the entropy maximization
approach.

In practice, an approximation to fλ(d, β, z) can be found
by maximizing its entropy, under the constraint that the p-
th moment of the distribution must be equal to µp, for
p = 1, . . . , P . More formally, we have to solve the following
constrained optimization problem:

max−
∫ +∞

0

fλ(d, β, z) log fλ(d, β, z) dz

s.t.∫ +∞

0

zpfλ(d, β, z) dz = µp, p = 0, . . . , P .

(13)

When the number of known moments is low, i.e., for P ≤
2, fλ(d, β, z) can be reconstructed analytically [11]. If only µ1

is known, we have fλ(d, β, z) = exp(−z). If µ1 and µ2 are
known, fλ(d, β, z) behaves as Gaussian function and is given
by fλ(d, β, z) = exp(−(1 + a+ bz + cz2)), where a, b and c
are solutions of the following multivariate equations:

e−1−a
(

b2

2 +c

4

√
π
c5 e

b2

4c

(
1− erf

(
b

2
√
c

))
− b

4c2

)
= µ2

e−1−a
(

1
2c −

b
4c

√
π
c e

b2

4c

(
1− erf

(
b

2
√
c

)))
= µ1

e−1−a√ π
4ce

b2

4c

(
1− erf

(
b

2
√
c

))
= 1

However, for a larger number of moments, i.e., P > 2, (13)
is in general intractable analytically. We therefore solve it
numerically by resorting to the stable algorithm in [8], which
is based on the discretization of the integrals through an N -
points Gaussian quadrature rule [10]. The method consists in
approximating the function to be integrated with the product
of a polynomial function and a weighting function w(x), and
then in discretizing the latter two. Specifically, we can write:

−
∫ +∞

0

fλ(d, β, z) log fλ(d, β, z) dz ≈ −
N∑
j=1

wjfj log fj

and ∫ +∞

0

zpfλ(d, β, z) dz ≈
N∑
j=1

wjz
p
j fj , p = 0, . . . , P

where, for j = 1, . . . , N , fj = fλ(d, β, zj) while zj and wj
are, respectively, the abscissae of the Gaussian quadrature rule
and the corresponding values of the weighting function.
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Fig. 1. Comparing bounds, maximum entropy approximation of the CDF,
and the empirical distribution, with d = 1 and for β = 0.1.

V. ESTIMATION PERFORMANCE

We validate our proposed approach by comparing the
bounds and approximation against the empirical distribution.
The latter has been obtained by computing the eigenvalues of
several realizations of VVH for n = 100 and a number of sen-
sors m = n/β, while the maximum entropy approximation has
been computed by using the first 12 moments of the asymptotic
eigenvalue distribution. All results refer to the case where the
phases of the Vandermonde matrix are uniformly distributed
over [0, 1)d; note, however, that other phase distributions could
be considered as well by leveraging the results in [1], [2].

The curves depicted in Figure 1 depict the CDF Fλ(d, β, z),
and have been obtained with d = 1 and β = 0.1. Observe that
our bounds follow the behavior of the empirical distribution
very well, and there is an excellent match between the latter
and the maximum entropy approximation.

Figure 2 compares our approximation to the probability
density function, fλ(d, β, z), against the empirical results,
when d = 1 and for β = 0.2 (top plot) and β = 0.7 (bottom
plot). As expected, in this case the differences between the
approximation and the empirical results are more evident than
in the case of the CDF, however our approximation still shows
to be very tight, even for β as high as 0.7. In addition, the top
plot compares the analytical solution of (13), obtained using
µ1 and µ1,2, to our approximation and the empirical results.
Clearly, the higher the number of considered moments, the
better the approximation accuracy with respect to the empirical
results. We also stress that, by definition of β, meaningful
values of such a parameter are limited to the [0, 1] interval,
as the number of sensors (m) should always outnumber the
signal harmonics (nd).

Figure 3 shows the asymptotic MSE,M∞, achieved by the
ZF and LMMSE filters for d = 1, 4 and for a noise variance
σ2
n = 0.01. The curves were obtained by computing (6) where

the distribution of λ was approximated by solving the problem
in (13). As expected, the LMMSE filter performs better than
the ZF filter since it minimizes the MSE. Also, the figure
shows that given number of harmonics per dimension, n,
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Fig. 2. Comparison between the empirical results and the maximum entropy
approximation of the probability density function, with d = 1 and for β = 0.2
(top) and β = 0.7 (bottom). In the upper plot, it is shown also the analytical
solution with p=1, and p=1,2.
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the asymptotic MSE decreases with the number of available
measurements m, i.e., it increases with β = nd/m. More
importantly, we remark that the maximum entropy approach
proposed here, allows to efficiently estimate fλ(d, β, z) and
M∞ for any d, thus avoiding to resort to the numerical
computation of the eigenvalues of large matrices.

VI. CONCLUSIONS AND FUTURE WORK

We studied the asymptotic eigenvalue distribution of the
Gramian of random Vandermonde matrices, which has an
important role in determining the performance of many sys-
tems for signal estimation. In particular, we derived a lower
and an upper bound to the asymptotic cumulative distribution
function. Additionally, we provided an approximation of both
the cumulative distribution and the probability density func-
tions, which showed to be very accurate, without applying the
cumbersome computation of empirical results.

Our future work will mainly focus on the application of this
approximation method to the achievable mutual information
of systems, when the channel behavior can be represented by
Vandermonde matrix [2]. In this case, we are able to compute
the achievable mutual information by deriving the eigenvalue
distribution through its moments. Other possible extensions
will consider the mutual information in multi-user MIMO
systems, and multifold scattering scenarios.

ACKNOWLEDGMENT

The work was supported by Regione Piemonte (Italy)
through the MASP and the IoT ToI projects, and was made
possible by NPRP grant ]/5− 782− 2− 322 from the Qatar
National Research Fund (a member of Qatar Foundation). The
statements made herein are solely the responsibility of the
authors.

REFERENCES

[1] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Reconstruction of mul-
tidimensional signals from irregular noisy samples,” IEEE Trans. on
Signal Processing, Vol. 56, No. 9, Sept. 2008, pp. 4274–4285.

[2] O. Ryan, and M. Debbah, “Asymptotic Behavior of Random Vander-
monde Matrices with Entries on the Unit Circle”, IEEE Trans. on
Information Theory, Vol. 55, No. 7, July 2009, pp. 3115–3147.

[3] A. Nordio, G. Alfano, C.-F. Chiasserini, and A. M. Tulino, “Asymptotics
of Multifold Vandermonde Matrices with Random Entries,”, IEEE
Trans. on Signal Processing, Vol. 59, No. 6, June 2011, pp. 2760–2772.

[4] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Performance of linear
field reconstruction techniques with noise and uncertain sensor loca-
tions,” IEEE Trans. on Signal Processing, Vol. 56, No. 8, Aug. 2008,
pp. 3535–3547.

[5] A. Nordio, and C.-F. Chiasserini, “Field Reconstruction in Sensor
Networks with Coverage Holes and Packet Losses,” IEEE Trans. on
Signal Processing, Vol. 59, No. 8, Aug. 2011, pp. 3943–3953.

[6] G. H. Tucci, and P. A. Whiting, “Eigenvalue Results for Large Scale
Random Vandermonde Matrices with Unit Complex Entries,” IEEE
Trans. on Information Theory, Vol. 57, No. 6, June 2011, pp. 3938–3954.

[7] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for
Analysis and Control of Uncertain Systems, Springer-Verlag, 2005.

[8] K. Bandyopadhyay, K. Bhattacharya, P. Biswas, and D. A. Drabold,
“Maximum Entropy and the Problem of Moments: A Stable Algorithm,”
Physical Review E 71, 057701, 2005.

[9] L. R. Mead, and N. Papanicolaou, “Maximum Entropy in the Problem
of Moments,” J. Math. Phys. 25, 2404, Aug. 1984, pp. 2404–2417.

[10] M. Hazewinkel, “Gauss Quadrature Formula,” Encyclopedia of Mathe-
matics, Springer, 2001.

[11] F. Socheleau, C. Laot, and J. Passerieux, “Concise Derivation of
Scattering Function from Channel Entropy Maximization,” IEEE Trans.
on Communications, Vol. 58, No. 11, Nov. 2010, pp. 3098–3103.


