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Abstract—Resource allocation in LTE networks is known to
be an NP-hard problem. In this paper, we address an even more
complex scenario: an LTE-based, 2-tier heterogeneous network
where D2D mode is supported under the network control. All
communications (macrocell, microcell and D2D-based) share
the same frequency bands, hence they may interfere. We then
determine (i) the network node that should serve each user and
(ii) the radio resources to be scheduled for such communication.
To this end, we develop an accurate model of the system
and apply approximate dynamic programming to solve it. Our
algorithms allow us to deal with realistic, large-scale scenarios.
In such scenarios, we compare our approach to today’s networks
where eICIC techniques and proportional fairness scheduling are
implemented. Results highlight that our solution increases the
system throughput while greatly reducing energy consumption.
We also show that D2D mode can effectively support content
delivery without significantly harming macrocells or microcells
traffic, leading to an increased system capacity. Interestingly, we
find that D2D mode can be a low-cost alternative to microcells.

I. INTRODUCTION

The deployment of Heterogeneous Networks (HetNets) [1]

is a cost-effective solution to ever-growing traffic demands.

Heterogeneity in their design is achieved through a multi-tier

architecture, i.e., a mix of macrocells and smaller cells, namely

microcells, picocells and femtocells. The benefits of spatial

spectrum reuse, which comes with the proximity between

access network and end users, amply justify the new technical

challenges. Among such challenges is the likelihood of cross-

tier interference brought about by intense frequency reuse in

neighboring or overlapping cells. Techniques to mitigate such

superposition of transmission resources are already available,

e.g., ICIC (Inter-Cell Interference Coordination).

However, innovations and challenges introduced by the

heterogeneity of future networks does not stop at cell coverage.

As a further solution to improve spectrum utilization, User

Equipment (UEs) are expected to be able to communicate in

a device-to-device (D2D) fashion [2], [3]. Such D2D links will

be established on LTE licensed bands, as foreseen by the 3GPP

ProSe group working on Release 12 [4]. This communication

paradigm (commonly referred to as in-band underlay D2D)

will likely be implemented under the control of the cellular

infrastructure (e.g., Base Stations, BSs) [5]. In D2D mode, a

UE (called serving UE) can forward to another UE content it

has previously downloaded from a network node. However, the

presence of a serving UE in a specific area is ephemeral, due

to, e.g., user mobility, forcing resource allocation procedures

to promptly adapt to changes in the availability of such nodes.

In our paper, we address the challenges above by proposing

a model for heterogeneous, LTE-based networks. We assume

that radio resources in such a network are managed by an area

controller, which forwards its decisions to BSs, using a high-

speed link [6]. Such a scenario accounts for the coexistence

and integration between I2D (Infrastructure-to-Device) and

network-controlled D2D communication paradigms. Under

this framework, we answer the following questions: (i) which

network node (macrocell BS, microcell BS, UE) should serve

a UE and (ii) which radio resources should be used? Answers

to these questions will aim at reducing interference owing to

spatial reuse of radio resources, hence ensuring higher data

rates. As a side effect, for a fixed amount of transferred data,

this will also lead to a significant reduction in the system

energy consumption.

Resource allocation in LTE is performed on a short time

period (1 ms) basis. We therefore develop a system model

using dynamic programming, which is particularly suitable to

update decisions every time period. Then, since the resource

allocation problem in (even simpler) LTE scenarios is known

to be NP-hard [3], [7], we apply Approximate Dynamic Pro-

gramming (ADP) to solve the model. We remark that our ADP

methodology yields a very efficient solution strategy, which

caters for the swiftness required by real-world LTE scenarios.

We compare our solution to a scenario representing today’s

networks, where standard eICIC (enhanced ICIC) techniques

are implemented and proportional fairness is used for traffic

scheduling at BSs. Results highlight that the ADP approach

combines energy-efficiency with an increased throughput and

it fully exploits the potentiality of D2D transfer. Additionally,

thanks to the limited interference when compared to the I2D

paradigm, D2D can be effectively used to offload traffic from

the cellular infrastructure, and even to replace some microcells.

The remainder of this paper is organized as follows. After

discussing related work in Sec. II, we introduce the system

under study and our main assumptions in Sec. III. The

network model is presented in Sec. IV. Sec. V outlines the

dynamic programming formulation of the problem and our

ADP solution. Results derived in a realistic scenario are shown

in Sec. VI. Finally, we draw our conclusions in Sec. VII.

II. RELATED WORK

The deployment of a multi-tier network where cells use the

same radio resources is highly beneficial since it allows traffic

offloading from macrocells to smaller cells [8]. However,

such scenario imposes the adoption of ICIC techniques, for978-1-4799-3360-0/14/$31.00 ©2014 IEEE



which a good survey can be found in [9]. Additionally, eICIC

specifications in 3GPP Rel. 10 [10] foresee the use of the Cell

Range Expansion (CRE) in LTE systems, which allows edge

users of microcells to significantly improve their performance

[11]. In our work, we do not focus on eICIC techniques,

rather, we take a scenario implementing them as our term

of comparison. Unlike the above works, we assume the

presence of an area controller that issues resource allocation

and scheduling instructions to BSs, through high-speed optical

fiber connectivity [6]. Also, we assume both I2D and D2D

communication paradigms in all cells.

How D2D communication can be integrated with cellular

networks and the applications it can support are investigated

in [12]. This work presents a conceptual framework for the

formulation of problems such as peer discovery, scheduling

and resource allocation. The problem of resource allocation is

also studied in [3], [7], where however only macrocell BSs

and D2D mode are considered. Additionally, in [3] the D2D

pairs wishing to exchange data are given at the outset (i.e.,

unlike our work, [3] does not address the endpoint associ-

ation problem). Both [3], [7] formulate resource allocation

as a mixed integer optimization problem, which is NP-hard,

hence impractical to solve, with [3] also presenting a greedy

heuristic. The work in [13] further compounds the problem by

investigating the selection of the most suitable communication

mode, still in a single-tier scenario with D2D. There, an

analytic model is proposed, based on the assumption that

the positions of BSs and users can be modeled as a Poisson

point process. Beside the different methodology and scope of

the above studies, we stress that our work addresses HetNets

including macrocells, microcells and D2D. While [13] derives

an optimal factor of spectrum partition between cellular and

D2D communication, we aim at determining the endpoint that

should serve each user and an efficient data scheduling, on a

single radio resource basis.

III. SYSTEM SCENARIO AND ASSUMPTIONS

We consider a two-tier HetNet, including LTE-based macro-

cells and microcells deployed in a urban environment. Each

cell, either macro or micro, is controlled by a base station

(BS), which is referred to as macroBS in the former case and

as microBS in the latter. Given the new, complex tasks and the

ever increasing amount of traffic that the cellular infrastructure

is expected to handle, we assume that BSs have optical fiber

connectivity to the core network, as envisioned by operators

and network manufacturers [6]. This means that the connection

between BSs and the core network is never a bottleneck.

The coverage of a BS (either macroBS or microBS), is given

by the area where the received strength of the BS pilot signal is

higher than -70 dBm [14]. A UE under the coverage of both a

macroBS and a microBS can be served by either of them. I2D

and D2D information transfers take place in the same band and

share the same frequency spectrum, i.e., we assume in-band,

underlay D2D communication. Indeed, as shown in [13], the

in-band underlay D2D mode outperforms the overlay mode

in terms of achieved throughput. In particular, in this work
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Fig. 1. An example scenario. UEs are denoted by u1, . . . , u6, macroBSs by
M1,M2 and microBSs by m1, m2,m3. Solid lines denote coverage areas.
Dotted lines correspond to RBs used by a pair of endpoints.

we focus on the LTE downlink spectrum, although our model

can be easily extended to consider other frequency bands,

either uplink or unlicensed spectrum portions. This choice

is motivated by the fact that most of the mobile and web

traffic is represented by downloads from the Internet [15].

Additionally, based on the recent trend and standardization

activities, we consider network-controlled (or, equivalently,

operator-controlled) D2D communication [2], [4], [5]. This

implies that, not only synchronization and security issues can

be easily solved, but also UE pairs can be efficiently scheduled

so as to use cellular resources even at high traffic load.

We focus on unicast data transfers and assume that UEs

can be served by only one endpoint at the time. Considering

the most popular types of terminals, we also assume UEs

to be half-duplex, i.e., they cannot transmit and receive at

the same time. In downlink direction, this implies that a UE

receiving information from the cellular infrastructure cannot

simultaneously serve another UE.

According to the LTE specifications [16], the minimum

resource scheduling unit is referred to as a radio block (RB).

One RB consists of 12 subcarriers (each 15 kHz wide) in the

frequency domain and one subframe (1-ms long) in the time

domain. Radio resource allocation is updated every subframe

by an area controller in the core network, which assists BSs

in radio resource allocation and traffic scheduling. The area

controller collects information on the channel quality from

the BSs and receives content requests from the users. Note

that BSs are oblivious to higher-layer demands, namely, user

content requests. From the collected information, the area

controller allocates resources, i.e., it determines (i) which

endpoint (among the possible ones: macroBS, microBS, or

UE) should serve each user, and (ii) which RB(s) to employ

for such communication. Decisions taken by the area controller

are issued to the BSs, which forward them to the UEs.

In Sec. VI we compare the performance of the proposed

system to a distributed scenario reflecting today’s networks,

where D2D is not supported and UEs are always served

according to the proportional fairness algorithm, by the BS

whose received signal is the strongest.

IV. NETWORK MODEL

We now build our model for the LTE-based network de-

scribed in Sec. III. In the following, we denote sets of elements



TABLE I
LIST OF SYMBOLS

Symbol Description

B Set of BSs
C Set of content items
R Set of radio resources (RBs)
U Set of users
lc Size of content c

wc(u) Time step when user u becomes interested in content c

hk
c (u) Cumulative amount of data of content c that user u has

downloaded until the beginning of time step k

δkr (e1, e2) Amount of data that can be sent from e1 to e2 on RB r
at time step k

χk
c (e1, e2) Amount of data of content c transferred from e1 to e2

at time step k (over any possible RB)

by calligraphic-capital letters and elements of a set by lower-

case letters. Auxiliary variables are represented by lower-

case Greek letters. The dependency on time appears as a

superscript, while that on a radio resource (RB), or on a

content, as subscript. The main symbols we use can be found

in Table I. In the text we may also refer to variables through

the corresponding symbol, but omitting their dependency on

the system parameters.

1) Base stations, users and radio resources: We denote by

B the set of all BSs. Elements in B correspond to different

kinds of network infrastructure, namely, macro- and microBSs.

We refer to a user equipped with a mobile terminal as,

equivalently, user or UE, and define U as the set of users

in the network area.

The set of radio resources that can be assigned to a trans-

mission is denoted by R, i.e., r ∈ R is an RB in the downlink

direction. Recall that RBs are assigned to transmitters every

1 ms-subframe. We therefore divide time into a set of time

steps K, each assumed to be equal to one subframe. In

principle, all network nodes can use any RB at the same time,

though each node uses its RBs in a time step to transmit to

one other node only. Also, a UE can be served by only one

endpoint during one time step.

Endpoints of communication in our system depend on the

chosen paradigm. Given a data flow from e1 to e2, e2 is a

downloader, while e1 is a serving UE in D2D mode and a

macroBS, or a microBS, in I2D mode.

2) Power and interference: The power with which end-

point e1 ∈ B ∪ U transmits to endpoint e2 is indicated

by P (e1, e2). For I2D (downlink) transmissions, the value of

such parameter depends only on whether e1 is a macroBS

or a microBS, i.e., P (e1, e2) = P (e1) [16]. Conversely, we

assume that the transmit power of a serving UE in D2D

communication is subject to a closed-loop control, so that its

value may depend on such factors as propagation conditions

and positions of either endpoints.

In addition, we define A(e1, e2) as the signal attenuation

affecting the transmission between endpoints e1, e2. The at-

tenuation depends on both the position and the type of the

endpoints (e.g., on the height of the network node antennas).

In all cases, from the viewpoint of our model, power and

attenuation are input values. Thus, any assumption about

propagation conditions and power control algorithms can be

accommodated with no change to the model itself. In particu-

lar, in order to precompute A(e1, e2), we adopt the ITU urban

propagation models specified in [14] for macro- and microBSs,

and the model in [17] for D2D communication. It is important

to stress that, by including power and attenuation figures as

an input to our model, we can obtain a remarkable level of

realism, while keeping the complexity low.

Given the transmit power and the attenuation factor, the use-

ful power received at e2 from source e1 is P (e1, e2)/A(e1, e2).
Similarly, considering a generic node pair (e, u) communicat-

ing on the same RB where e2 is receiving, the interference

suffered by e2 can be written as P (e, u)/A(e, e2). Assuming

that e1 is transmitting to e2 at time step k on RB r, the total

interference experienced by e2 is:

Ikr (e2) =
∑

(e,u) use r at k∧

e:A(e,e2)>0

P (e, u)/A(e, e2) ,

while the signal to noise plus interference ratio (SINR) is

yielded by

SINRk
r(e1, e2) =

P (e1, e2)

A(e1, e2)(N + Ikr (e2))
. (IV.1)

We can finally map the SINR onto the amount of data that

can be transferred from e1 to e2 using RB r during step k.

We indicate this amount by δkr (e1, e2), and we determine its

value based on experimental measurements, as detailed later.

3) Content and interest: We denote by C the set of content

items that the users may request (e.g., videos, ebooks, maps,

web pages). For each content item c ∈ C, we know the size lc
and the maximum delay Dc with which it should be delivered

to a user (e.g., before the user loses interest in it).

For each user u ∈ U , we introduce an input parameter

to the model called want-time, wc(u) ∈ K, defined as the

time step at which user u becomes interested in content c.
We then indicate by hk

c (u) the total amount of content c
that u has downloaded until the beginning of time step k.

Note that 0 ≤ hk
c (u) ≤ lc, and that such a quantity is non

decreasing, i.e., hk
c (u) ≥ hk−1

c (u), ∀k > 0. We abuse the

notation and define hk
c (e1) = lc, ∀e1 ∈ B. That is, BSs

can download the whole content c in negligible time (recall

that they are connected to the core network through optical

fibers). We remark that partially-downloaded content items can

be transferred on a D2D link, though limited to the portion

available at the serving UE.

Variable χk
c (e1, e2) denotes the amount of data of content c

transferred from endpoint e1 to e2 during time step k, over all

possible RBs. Thus, we have the following inequality:

∑

c∈C

χk
c (e1, e2) ≤

∑

r∈R

δkr (e1, e2). (IV.2)

In (IV.2), strict inequality holds when e1 is a serving UE and

the total amount of data it is caching for e2 is smaller than

what could be transferred over the link between the two nodes.



TABLE II
DYNAMIC PROGRAMMING MODEL

Quantity and symbol Description

Current state sk Set of duplets, each referring
to a different user-content pair.
A duplet includes the amount
of content c already downloaded
by u, hk

c (u), and the want-
time wc(u) if no greater than k

Action to take a
k Set of triplets indicating which

pairs of endpoints (e1, e2)
should communicate on which
RB, i.e., (e1, e2, r)

Exogenous information Want-times wc(u)

Cost C(sk, ak) Ratio of the amount of content
still to be retrieved by interested
users to the remaining time be-
fore the deadline for content de-
livery expires

Value V(sk , ak) Total (expected) costs due to the
system future evolution

V. A DYNAMIC PROGRAMMING-BASED APPROACH

In the following, we introduce the model we developed

using the standard dynamic programming methodology. As

shown by previous work [3], [7], the problem of radio resource

allocation in LTE-based systems is NP-hard, even when less

complex scenarios than ours are considered. Thus, we resort

to approximate dynamic programming in order to solve the

model in realistic, large-scale scenarios.

A. The dynamic programming model

Dynamic programming is an optimization technique based

on breaking a complex problem into simpler, typically time-

related, subproblems. Since scheduling in LTE systems occurs

every subframe, we solve the resource allocation problem ev-

ery time step k. A dynamic programming model consists of the

following elements (denoted by bold-face Latin letters) [18]:

• the state variable, sk, which describes the state of the

system at time k;

• the action set, Ak = {ak} i.e., all possible decisions that

can be taken at time k;

• an exogenous (and potentially stochastic) information

process, accounting for information on the system be-

coming available at time k;

• the cost of an action, C(sk, ak), i.e., the immediate cost

due to the selected action, given the current state;

• the value, V(sk, ak), of ending up at a new state s
k+1,

determined by the current state and action; such value

is given by the cost associated with the optimal system

evolution from s
k+1.

Table II summarizes these quantities, their meaning in our

system and the symbols we use for them. Fig. 2 shows how

each of them is used in the model.
In particular, in our case the system state at generic time k

is given by the set of duplets: sk = {hk
c (u), wc(u)}u,c. Each

duplet refers to a different user-content pair, u and c, and

includes (i) the amount hk
c (u) of the content downloaded by

the user, and (ii) the want-time wc(u). Clearly, at time k we

only know those want-times wc(u) ≤ k.

An action is a set of triplets, each defining which endpoint

e1 should serve downloader e2 and using which RB r, i.e.,

a
k = {(e1, e2, r)}. In simpler terms, an action is a realization

of resource allocation.

The dynamic programming model works as shown in

Fig. 2 (left): for each time step we enumerate and evaluate

the possible actions, select (and enact) the best one, and move

to the next time step. At this point, we become aware of

which content items have been recently requested, hence we

can determine the next system state.

Fig. 2 (right) offers a more detailed view. The starting point

is given by the current state sk and the set of actions describing

the possible resource allocations (steps 1 and 2 in the figure).

For each action, we compute the potential (δ) and, then, the

actual (χ) amount of data that can be transferred between

every pair of endpoints (steps 3–4). Given the variables χ, we

update the total amount of data that each downloader e2 can

obtain by the beginning of the next time step as,

hk+1
c (e2)← hk

c (e2) +
∑

e1∈B∪U

χk
c (e1, e2) . (V.1)

For each action a
k, we can then evaluate the cost C(sk, ak)

the system incurs if ak is selected (step 5 in Fig. 2 (right)). We

define such cost as the sum over all downloaders and content

of the ratio of the amount of data still to be retrieved by the

downloader to the time before the content delivery deadline

expires, i.e.,

C(sk, ak)=
∑

c∈C

∑

e2∈U :

wc(e2)≤k

lc −
(

hk
c (e2) +

∑

e1∈B∪U χk
c (e1, e2)

)

wc(e2) +Dc − k

(V.2)

By the above definition, a lower cost is therefore obtained

for those allocation strategies, ak , assigning more resources

to downloads that are closer to their completion deadline.

The value V(sk, ak) (step 6 in Fig. 2 (right)) is yielded by

the sum of the costs C(sk+1, ak+1) + C(sk+2, ak+2) + . . ..
In other words, it is the cost that will be paid in the future,

after the system has reached state s
k+1. State values do not

normally admit a closed-form expression. In standard dynamic

programming [18, Ch. 3], they are computed by accounting

for all possible states and actions, typically leading to an

exceedingly high complexity in non-toy scenarios. We address

such an issue in the following section.

Once C(sk, ak) and V(sk, ak) have been computed for

all actions, the action a
∗ minimizing the cost C(sk, ak) +

V(sk, ak) is selected (step 7 in Fig. 2 (right)). Given a
∗, the

corresponding amount of transferred data can be calculated

(steps 8-9). This, along with fresh information on user requests

(step 10), leads to the next state s
k+1.

Next, we detail how to compute the amount of data

δkr (e1, e2) (Alg. 1) and χk
c (e1, e2) (Alg. 2), taking into account

the interference due to the spatial reuse of radio resources. It

is worth stressing that, in spite of its apparent intricacy and

high level of realism, the process we describe below has a

very low computational complexity, namely O(|U|).
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k ← k + 1

Fig. 2. Dynamic programming. Left: main steps involved. Right: detailed view. Given the current state (1), the set of possible actions can be determined
(2). For each action, it can be computed the potential (3) and actual (4) amount of content transferred between the pairs of endpoints. These values are used
to compute the cost (5) of an action, and to estimate the value of the state it leads to (6). The latter two figures are used (7) to select the best action. The
resulting transfers (8-9), along with the users that just became interested in a content, define the next state.

Algorithm 1 Computing the amount δ of data that can be

potentially transferred

Require: a
k

1: Ikr (u)← 0, ∀u ∈ U , ∀r ∈ R
2: for all (e1, e2, r) ∈ a

k do

3: for all u ∈ U \ {e1, e2} do

4: Ikr (u)← Ikr (u) + 1A(e1,u)>0P (e1, e2)/A(e1, u)

5: for all (e1, e2, r) ∈ a
k do

6: SINRk
r (e1, e2)←

P (e1,e2)
A(e1,e2)(N+Ik

r (e2))

7: δkr (e1, e2)← sinr to delta(SINRk
r(e1, e2))

8: return δkr (e1, e2)

Algorithm 2 Computing the amount χ of data being actually

transferred

Require: a
k, δkr (e1, e2)

1: χk
c (e1, e2)← 0, ykr,c(e1, e2)← 0, ∀c, e1, e2, r

2: for all (e1, e2, r) ∈ a
k : δkr (e1, e2) > 0 do

3: while
∑

c∈C : wc(e2)≤k y
k
r,c(e1, e2) < δkr (e1, e2) do

4: c⋆ ← argminc∈C : hk
c<lc wc(e2)

5: ykr,c⋆(e1, e2) ← min {hk
c⋆(e1) − hk

c⋆(e2),
δkr (e1, e2)−

∑

c∈C y
k
r,c(e1, e2)}

6: χk
c⋆(e1, e2)← χk

c⋆(e1, e2) + ykr,c⋆(e1, e2)

7: return χk
c (e1, e2), y

k
r,c(e1, e2)

Algorithm 1 is used in steps 3 and 8 in Fig. 2 (right). In

line 4, we account for the fact that every active endpoint pair

may create interference at other users. All interference values

are computed within the first loop. The second loop computes

the SINR (line 6) and maps it onto the amount of data that can

be transferred on RB r during time step k (line 7). We perform

such mapping by using the experimental values in [19].

Algorithm 2 instead refers to steps 4 and 9 in Fig. 2 (right)).

The algorithm takes as input the action a
k and the amount

of data δkr (e1, e2) that can be potentially transferred as a

consequence of this action (computed through Alg. 1). Then,

for each pair of active endpoints and assigned RB, it selects

which content to transmit. This is done in line 4, giving priority

to incompletely transferred content items that were requested

first. Note that the conditional loop in line 3 reflects the fact

that data from multiple content can be accommodated in the

same RB, if needed. In particular, in line 5, for each item the

data transferred on RB r is determined: this amount, indicated

by ykr,c⋆(e1, e2), is given by the minimum between the amount

of data that source e1 still has for downloader e2 and the

amount of data that can still be accommodated in the RB.

Finally, the χ-value is obtained by summing the y values over

all RBs (line 6).
Notwithstanding the low complexity implied by the compu-

tation of the δ and χ quantities, standard dynamic program-

ming itself is affected by the well-known “curse of dimension-

ality” [18], which makes it impractical for all but very small

scenarios. What causes such problem is the exceedingly large

set of possible actions and the aforementioned complexity in

the evaluation of the future cost V. As an example, consider

the set Ak of possible actions that can be taken at time step

k, which includes all possible sets of (e1, e2, r) triplets. There

are |B∪U||U||R| such tuples and, thus, a total of 2|B∪U||U||R|

possible actions a
k ∈ A

k. Some of these actions can be

discarded as meaningless, e.g., allocating RBs to a UE that

already completed its download. Others, e.g., having a UE

receive from more than one endpoint in the same time step,

or receiving a content while transmitting to another UE, are

ruled out by technology constraints [16]. However, the very

fact that the size of Ak grows exponentially with the number

of UEs, BSs and RBs makes a standard dynamic programming

model not scalable. For a similar reason, the evaluation of

V stemming from A
k is exceedingly cumbersome. Indeed,

one should consider all possible system evolutions starting

from the current state, by selecting at each future time step

the optimal action. Thus, we resort to ADP and propose the

algorithms below so as to efficiently generate and rank actions,

hence finding a solution with low computational complexity.

B. The ADP solution

Recall that the immediate cost C of each action can be

evaluated with very low complexity, thanks to Algs. 1 and 2.

Thus, in order to ensure scalability, it is sufficient to act

along two directions: (i) making the number of actions to be

evaluated at each time step smaller and independent of the

number of UEs and BSs, and (ii) reducing the complexity

of evaluating the future cost V of an action. Of course, it

is not possible to achieve such a result while keeping the

optimality guarantee. However, such an approach has been

shown to be very effective [18, Ch. 1], as also confirmed by

our performance evaluation in Sec. VI.
Below, we describe how we tackle the two issues.



1) Reducing the action space: We define an auxiliary action

space Ã
k, whose size is much smaller than the original action

space A
k and, more importantly, does not grow with the

number of UEs or BSs. Then, we show a deterministic (and

computationally efficient) way to map an action ã
k ∈ Ã

k of

the auxiliary action space into an action a
k ∈ A

k. It follows

that the actions we evaluate (steps 5–7 in Fig. 2 (right)) are

only those a
k ∈ A

k that have a correspondence in Ã
k.

To determine the auxiliary action space, we proceed as

follows. We ask ourselves what kind of choice has the highest

relevance in a system such as ours. The most significant one

is to rank transfer paradigms, i.e., using macroBSs, microBSs

or D2D – and test which combination of them yields the

highest throughput and carries the least interference. We thus

represent the “importance” of each paradigm by a triplet of

real values αM , αm, αu ∈ [0, 1]. These values indicate which

endpoints should be preferably used, as shown in Alg. 3, and

each triplet represents an auxiliary action ã
k. For the set of

auxiliary actions to be manageable, we need to discretize each

value in the α triplet. The set Ãk is thus finite and we can

control its size by choosing the granularity of each α. This is

our tuning knob for scalability purposes.

Algorithm 3 takes as input an action ãk and maps it onto

an action ak (line 21). Its logic is straightforward: we serve

downloaders, starting from the neediest ones, selecting the

most effective endpoint.

More specifically, in line 1, we identify the set D ⊆ U of

downloaders, i.e., users with an incomplete download. This

set is sorted (line 2) by the want-time wc(u), so that users

that required the content first are given higher priority. Then,

for each downloader u ∈ D, we loop over the potential source

endpoints e and RBs r that e may use to transmit to u (line 4).

For each (e, r) pair, we compute a score σ, which is initialized

(line 6) to the amount of data (computed by Alg. 2) that u
may download from e. Lines 7-9 play out the prioritization role

of the αM , αm, αu coefficients as follows. We weight the σ
scores by multiplying them by the α-coefficient corresponding

to the type of endpoint e. For convenience, we spell out

the subsets including macro- and microBSs as BM and Bm,

respectively. As an example, the α-coefficients give us leverage

to encourage D2D transfers by setting a high value for αu, or

to limit the usage of macroBSs to users that have no other

means to be served by setting a low value for αM . In line 10,

we select the endpoint corresponding to the highest sum of

scores over all possibles RBs. Notice that by selecting only

one endpoint in line 10, we honor the technology constraint by

which each user can download data from at most one source

in a given time step. In the following line, we assign to the

endpoint pair (e⋆, u) the RB that maximizes their σ score.

However, before including the new triplet (e⋆, u, r⋆) in the

allocation yielded by a
k, we check whether the total amount

of data transferred in the network increases or not (lines 13–

19). While verifying that, we resort again to Algs. 1 and 2 to

compute the δ and y values. If the amount of data grows, the

triplet is added to action a
k (line 20).

In conclusion, we stress that the size of the auxiliary action

space Ã is small and it is independent of the number of UEs

and BSs. We thus achieved our scalability goal.

Algorithm 3 Mapping α-triplets into actions

Require: ã
k = (αM , αm, αu)

1: D ← {u ∈ U s.t. ∃c ∈ C : wc(u) < k ∧ hk
c (u) < lc}

2: sort D by wc(u)
3: for all u ∈ D do

4: for all e, r do

5: compute ykr,c(e, u), ∀c ∈ C (Alg. 2)

6: σ(e, r)←
∑

c∈C y
k
r,c(e, u)

7: if e ∈ BM then σ ← σ · αM

8: if e ∈ Bm then σ ← σ · αm

9: if e ∈ U then σ ← σ · αu

10: e⋆ ← argmaxe
∑

r σ(e, r)
11: r⋆ ← argmaxr σ(e

⋆, r)
12: tcurr ← 0, tnew ← 0
13: for all (e1, e2, ρ) ∈ a

k and c ∈ C do

14: compute δkρ(e1, e2) and ykρ,c(e1, e2) (Algs. 1-2)

15: tcurr ← tcurr + ykρ,c(e1, e2)

16: for all (e1, e2, ρ) ∈ a
k ∪ (e⋆, u, r⋆) and c ∈ C do

17: compute δkρ(e1, e2) and ykρ,c(e1, e2) (Algs. 1-2)

18: tnew ← tnew + ykρ,c(e1, e2)

19: if tnew > tcurr then

20: a
k ← a ∪ (e⋆, u, r⋆)

21: return a
k

2) Evaluating the state values: To evaluate an action, it is

important to compute the value of the state s
k+1 the action

leads to. As already stated, the value of a state corresponds to

the sum of the costs we will pay due to future actions, if these

are chosen optimally. Clearly, if we set V(sk, ak) = 0 for all

actions, i.e., we select the action that seems more profitable

at the current step, we end up adopting a greedy strategy.

However, in network scenarios where D2D is allowed, a more

balanced approach accounting for future actions may be of

particular relevance. Indeed, transmitting to some users at a

faster pace, so that they can act as serving UEs later, may

benefit the whole network.

It follows that we need to compute the value function V

accurately enough, while keeping the complexity low. To do

so, we resort to the methodology typically used in ADP. Such

methodology [18, Ch. 9] implies that, at each step k, we fix

the sequence of future actions, starting from state s
k+1. We

apply this procedure to our problem as described in Alg. 4.

The algorithm takes as input: (i) the current state s
k and

the current action to be evaluated a
k (i.e., the two elements

determining next step s
k+1), and (ii) the future actions that we

expect will be taken. In order to compute the latter, we start

by assuming that the conditions experienced by a user do not

change during its download time. This is a fair assumption

since, as shown by our numerical results, users complete their

download in few seconds (≤ 5 s), hence the movement of

pedestrian users during content download is negligible. Also,

note that the procedure for computing the value function V



is repeated at every time step k. We feed such information

to a Markov chain-based machine learning model, so as to

compute actions {ak+1, . . . , aK} [18, Ch. 9].

Algorithm 4 Estimating the value of a state

Require: s
k, ak, {ak+1, . . . , aK}

1: v ← 0
2: for q = k + 1→ K do

3: for all (e1, e2, r) ∈ a
q do

4: compute δqr(e1, e2) using Alg. 1

5: for all (e1, e2) : ∃ δ
q
r(e1, e2) > 0 do

6: for all c ∈ C : wc(u) ≤ k ∧ hq
c(u) < lc do

7: compute χq
c(e1, e2) using Alg. 2

8: ĥq+1
c (e2)← ĥq

c(e2) + χq
c(e1, e2)

9: compute C(sq, aq)
10: v ← v +C(sq, aq)

11: return V(sk, ak) = v

Next, we exploit the estimated information on the system to

compute, at each future time step q > k, the δ and χ values

for each communication foreseen by action a
q (lines 4 and

7). To this end, we resort to the low-complexity algorithms

presented in Sec. V-A, which account for interference.

In line 8, for each step q > k, given the previous state

and the χ values, we apply (V.1) and update the amount of

data of content c, hq
c(e2), that each downloader e2 can retrieve

until step q. Then, we use the quantities χ and h to evaluate

the cost of action a
q . Note that we cannot predict future user

requests, however, due to the short time span before a user

download completion, their number is limited. Additionally,

their deadline will be further away in time1, hence their impact

is minimal (see (V.2)). At last, V(sk, ak) is calculated by

summing all future cost contributions (line 11).

C. Solution complexity

Recall that our goal is to design a low-complexity so-

lution. This requirement is indeed met. With reference to

Fig. 2 (right), and assuming that the dominant factor is the

number of users, the complexity is as follows. Step (2),

O(2|U|) with plain dynamic programming, which reduces to

O(|U|) using Alg. 3. Steps (3) and (4), linear with O(|U|). Step

(5), O(1). Step (6), O(|A|k) with plain dynamic programming,

which reduces to O(|U|) with Alg. 4.

VI. RESULTS

We evaluate our solution in the two-tier scenario that is

typically used within 3GPP for LTE network evaluation [20].

The scenario comprises a service network area of 12.34 km2,

covered by 57 macrocells and, unless otherwise specified, 228

microcells. Macrocells are controlled by 19 three-sector BSs;

the macroBSs inter-site distance is set to 500 m. MicroBSs

are deployed over the network area, so that there are 4 non-

overlapping microcells per macrocell. A total of 3420 users

are present in the area. In particular, in order to have a

1Recall that Alg. 4 is repeated at every time step k.

TABLE III
CONTENT TYPES

Feature eBook Video Viral

No. of items 10 10 1
Size [Mbit] 12 3 3
Deadline [steps] 4000 1000 1000
Request interval [steps] 1–1000 1–1000 41–60

higher user density where microcells are deployed, 10 users

are uniformly distributed within 50 m from each microBS.

The rest of the users are uniformly distributed over the

remaining network area. Users move according to the cave-

man model [21], with average speed of 1 m/s. According to

current specifications [14], [22], we assume the following pairs

of values for power and antenna height: (43 dBm, 25 m)

for macroBSs, (30 dBm, 10 m) for microBSs, and (23 dBm,

1.5 m) for UEs. All network nodes operate over a 10 MHz

band at 2.6 GHz, thus |R| = 50 RBs. As already mentioned,

the signal propagation for I2D is modelled according to

ITU specifications for urban environment [14] and for D2D

according to the specifications in [17], while the SINR is

mapped onto per-RB throughput values using the experimental

measurements in [19]. The energy consumption of the network

nodes is instead computed according to [22].

Users may require content from a set of 21 different items,

belonging to three categories: ebooks, videos, or viral content;

their characteristics and intervals between user requests are

summarized in Table III. We highlight that video and viral

items have stricter constraints on delivery time. Additionally,

the viral item is modeled as being in high demand to mimic

content becoming suddenly popular through social networks

(the so-called “flash-crowd” phenomenon).

While applying our ADP approach, we consider that the

values of the αM , αm, αu parameters, are discretized as

{0.1, 0.2, . . . , 1}. Additional experiments with values exhibit-

ing finer granularity have shown negligible improvement.

We compare our approach against a system implementing

the 3GPP eICIC with a microcell bias of 15 dB and the

ABS model where macroBSs are silent in 1 out of every 2

subframes [23]. In the latter, D2D mode is not supported and

UEs connect to the BS from which they receive the strongest

pilot signal. At the BSs, traffic is scheduled according to

the proportional-fairness (PF) algorithm, which is standard in

today’s LTE networks [16]. In the following, we will refer to

this benchmark scenario as PF.

The first comparison between ADP and PF is presented in

Fig. 3. Colors are used to differentiate among the possible

endpoints (black for macroBSs, gray for microBSs and red for

UEs) and between ADP (orange) and PF (blue). In particular,

Fig. 3(a) shows that ADP allows the transfer of more data

than the state-of-the-art, while using a much smaller amount

of energy. Such a gain is due to the lower usage of macrocells

(characterized by very high transmit power), in favor of

microcells and D2D. Note that the energy consumption due

to D2D mode is negligible and can be barely seen in the plot.

Also, under both ADP and PF, transmissions from microBSs
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Fig. 3. ADP vs. PF: total amount of transferred data and consumed energy (a); CDF of the completion time (b), failed downloads (c), RB usage (d).
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Fig. 5. Halving the number of microcells: amount of transferred data and consumed energy (a); amount of transferred data by ADP (b); average RB usage
(c); CDF of the completion time (d).

are more efficient than those from macroBSs, as the former

carry a higher amount of data at a much lower energy cost.

Fig. 3(b) depicts the completion time of successful down-

loads, for the different content categories (denoted by a differ-

ent colors). A download is successful if it can be completed

by the corresponding deadline. First, note that, since video and

viral content have tighter deadlines, they are characterized by

better performance than ebooks. Indeed, our cost C in (V.2)

accounts for content deadlines, giving higher priority to those

downloads that are closer to their completion deadline. Com-

paring ADP (solid lines) to PF (dotted lines), we observe that

our approach can better meet the time requirements of content

with strict deadlines (video and viral), while guaranteeing

similar delays for ebooks.

Results in Fig. 3(c) confirm the above observation: ADP

can dramatically reduce the number of failed downloads with

respect to PF. The only content type for which ADP is unable

to deliver some items is video. This due to the fact that, in the

traffic scenario under study, video has a quite strict deadline,

and it cannot significantly benefit from the D2D mode as users

typically ask for different items.

Finally, Fig. 3(d) highlights the improvement in ADP usage

of radio resources compared to PF. Observe that, on average,

ADP can transmit a higher amount of data per RB, as our

interference-aware scheduling assigns endpoints and radio

resources far more efficiently than the PF-based system. In

other words, ADP scheduling yields higher values of SINR,

hence of data rates per RB. This is also underlined by the

average number of times an RB is reused in the whole network,

whose value normalized to the network area is about 1.58

under ADP and 2.3 under PF. The higher value recorded under

PF may at first be surprising, given that ADP allows D2D

communication to reuse RBs too. However, such result further

underscores the inefficiency of PF in handling interference:

it needs to reuse more RBs in order to keep up with traffic

demand. At last, looking at different types of endpoints, we

note that RBs assigned to macro- and microBS by PF are

characterized by similar data rates, in spite of the lower power



irradiated by microBS. Such behavior is due to the use of ABS,

which mutes macrocells when microcells serve far-away UEs,

and to the short distance between microBSs and the other UEs.

Conversely, when ADP assigns RBs to microBSs, the differ-

ence in data rates between macrocells and microcells flares

up. Indeed, D2D communication causes additional interference

to UEs served by the cellular infrastructure, which is more

significant for microBSs since they transmit at a lower power

level. As for D2D mode, it exhibits slightly worse performance

than I2D communication. This was expected since serving UEs

transmit at very low power. Thus, D2D communications are

characterized by lower SINR values, hence lower rates.

Fig. 4 presents the breakdown of delivered data under ADP

and PF, on a per-content type basis. In spite of the lower

transmission quality, D2D appears to play a crucial role in the

delivery of viral content, as shown by Fig. 4(a). Indeed, in

case of a peak of social content demand, it is likely that a

downloader finds a serving UE within its radio range. Thus,

D2D can be effectively used to offload traffic from the cellular

infrastructure. On the contrary, PF has to relay on macro-

and microBSs only (see Fig. 4(b)). As a consequence, along

with a better exploitation of radio resources, ADP requires a

much lower energy per transferred data compared to PF, as

evident from Figs. 4(c) and (d). In particular, the ADP plot in

Fig. 4(c) underscores that the energy consumption due to D2D

communication, normalized to the amount of downloaded

data, is negligible, thus confirming that D2D mode is a very

convenient way to spread social content.

In the scenario above, we now halve the number of micro-

cells from 228 to 114, i.e., 2 microcells per macrocell. The

most noticeable effect is that, with ADP, D2D communication

steps up to compensate for the missing microBSs, as shown in

Fig. 5(a). Instead, PF falls short of providing the same through-

put as before. Indeed, comparing to Fig. 3(a), ADP exhibits

a mere 8% drop in transferred data, with respect to 30% for

PF. Energy consumption increases for both approaches, though

ADP still retains a clear edge. A breakdown of per-content data

downloaded by ADP (Fig. 3(b)) shows that D2D is even more

dominant (by a 32% increase) in viral transfers. In Fig. 5(c),

spectrum usage is less effective with the increase in D2D

communication: the surging number of D2D links interferes

more with macroBSs and the remaining microBSs. Those D2D

links whose coverage overlaps one of the missing microcells

instead see their amount of transferred bits per RB increase. In

Fig. 5(d), viral content relying more on D2D shows the same

completion times as before, while video and ebooks experience

higher delays. The latter phenomenon is a consequence of the

lower number of microcells. Also, ADP tends to favor content

with stricter time constraints (viral and video), at the expense

of ebooks. For reasons of space, we omit plots comparing

other metrics, which however confirm the above observations.

VII. CONCLUSIONS

We considered a 2-tier, LTE-based network, supporting D2D

communication. We devised a solution to the problem of

selecting which endpoint should serve a user, and the radio

resources to allocate for such communication. In particular,

we presented approximate dynamic programming algorithms

to generate and rank possible resource allocation decisions. In

this way, we obtained a low-complexity solution that can deal

with realistic, large-scale scenarios. Our results show the good

performance of our solution, as well as the conditions under

which D2D communication is more effective. Furthermore, we

highlight that D2D mode can be a valid, low-cost alternative to

microcells in supporting traffic with little energy consumption.
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