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Factorized Sub-space Estimation for Fast and

Memory Effective I-vector Extraction
Sandro Cumani and Pietro Laface

Abstract

Most of the state–of–the–art speaker recognition systems use a compact representation of spoken

utterances referred to as i–vector. Since the “standard” i–vector extraction procedure requires large mem-

ory structures and is relatively slow, new approaches have recently been proposed that are able to obtain

either accurate solutions at the expense of an increase of the computational load, or fast approximate

solutions, which are traded for lower memory costs. We propose a new approach particularly useful for

applications that need to minimize their memory requirements. Our solution not only dramatically reduces

the memory needs for i–vector extraction, but is also fast and accurate compared to recently proposed

approaches. Tested on the female part of the tel-tel extended NIST 2010 evaluation trials, our approach

substantially improves the performance with respect to thefastest but inaccurate eigen-decomposition

approach, using much less memory than other methods.

Index Terms

Speaker Recognition, I-vectors, I-vector extraction, Probabilistic Linear Discriminant Analysis, dic-

tionary.

I. I NTRODUCTION

A simple and effective model for speaker recognition has been introduced in [1], [2]. In this approach,

speaker and channel variability are modeled in a common constrained low–dimensional space spanned by

the column vectors of a matrixT, and a speech segment is represented by a low–dimensional “identity

vector” or i-vector. The low dimensionality of i–vectors makes them suitable for fast classification

using either generative models based on Probabilistic LinearDiscriminant Analysis (PLDA) [3], [4],

or discriminative classifiers such as Support Vector Machines(SVM) or Logistic Regression [5], [6], [7].

The authors are with the Dipartimento di Automatica e Informatica, Politecnicodi Torino, 10143 Torino, Italy (e-mail:
sandro.cumani@polito.it, pietro.laface@polito.it).
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Very good results have been obtained using i-vectors not only in speaker but also in several other tasks

such as language recognition [8], [9], speaker segmentation [10], [11], clustering [12], [13], emotion

recognition [14], [15] and age recognition [16].

Since the “standard” i–vector extraction procedure requires large memory structures and is relatively

slow, new approaches have recently been proposed that are able to obtain either fast approximate solutions,

[17], [18], possibly traded for lower memory costs, or accurate solutions based on a Variational Bayes

(VB) formulation, at the expense of an increase of the computational load [19], [20], [21]. A simplification

of the i–vector extraction is proposed in [17], based on an approximated simultaneous diagonalization

of the terms composing the i–vector posterior covariance matrix. This “eigen–decomposition” approach

is very fast and memory effective, but suffers a significant accuracy degradation with respect to the

standard one. The approach in [18] focuses on fast approximate i–vector extraction, but it does not take

care of memory issues. A VB systems saves memory because it extracts iteratively sub–blocks of i-

vector elements. Performing a sufficient number of iterations, this technique is able to produce accurate

i–vectors at the expense of being slower than the standard approach. In [21] we have highlighted that

the incidence of the time spent for i-vector computation in asystem using large models and scoring long

speaker segments is negligible compared to the importance of keeping the original accuracy and saving

memory. However, the effectiveness of the i-vector extractor is more relevant for systems dealing with

short utterances [22], [23], [24], [25] such as, for example, the text prompts in speaker verification [26],

[27].

In this paper we propose a new approximate i–vector extraction approach particularly useful for

applications that need to optimize their memory requirements without sensibly affecting their performance

and speed. We propose a solution for the main memory cost issues in the standard i–vector extraction:

the size of the variability sub–space matrixT, and the huge amount of memory that has to be devoted

for storing pre–computed matrices for the sake of computation speedup. The key idea in our solution is

that it is possible to factorize the variability sub–space matrix T so that it is not necessary to store all

its rows to perform i–vector extraction. These rows can be obtained as a linear combination of the atoms

of a common dictionary. The notion of dictionary and atoms is well known in the field of sparse coding

[28]. In particular, given a rankM variability sub–space, represented by aC ×F ×M matrix T, which

stacksC (F ×M ) sub-matricesT(c), each corresponding to thec–th mixture component of a Gaussian

Universal Background Model (UBM) with feature dimensionF , andC components, we demonstrate that
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a good approximation of theT(c) matrices can be obtained by means of the decomposition:

T̂(c) = O(c)Π(c)Q ≈ T(c) , (1)

whereO(c) is an orthogonalF ×F matrix,Π(c) is a sparseF ×K matrix having at most one non-zero

element per row, andQ is aK ×M dictionary matrix, shared among all̂T(c), includingK atoms in its

rows.T̂(c) is, thus, a linear combination ofF atoms ofQ. This factorization of the sub–matricesT(c) is

represented in Figure 1, which shows that each row of matrixΠ(c) has a single non–zero element that

selects and weights a dictionary atom. The matrix of weightedatoms is then rotated and scaled by the

orthogonal matrixO(c) to finally get the approximated̂T(c).

Since the sizeK of the dictionary that we estimate can be selected accordingto memory-accuracy trade–

offs, and it is usually much less thanC×F , our solution not only substantially improves the performance

with respect to the fast, but inaccurate, eigen-decomposition approach [17], but also dramatically reduces

the memory needed for i–vector extraction compared to othermethods [2], [19], [21], which require

storing the original sub–space matrixT. In the experimental section, we compare the memory and

computational complexity of these approaches together with their accuracy, looking for the trade–offs

that make our technique suitable both for large and for small-footprint applications. Examples of such

applications are not limited to speaker authentication in smartphones or other embedded systems, because

memory is a precious resource even for applications runningon servers. Another advantage of saving

memory is that it is also possible to use larger and possibly more precise models if more data become

available.

The paper is organized as follows: Section II summarizes the i–vector representation for speaker

recognition, setting the background for i–vector computation. Section III recalls two recently proposed

memory–aware i–vector extraction techniques, the eigen–decomposition and the Variational Bayes ap-

proaches, and analyzes their computational and memory complexity in order to give motivations for our

factorized sub–space approach, which is illustrated in Section IV. Section V is devoted to the estimation

of the matrices that are necessary to factorize the matricesT(c), and in Section VI we detail the steps for

obtaining full-rank approximated̂T(c) matrices. I–vector extraction by means of a Conjugate Gradient

procedure is illustrated in Section VII, and its complexity is analyzed in Section VIII. The experimental

results are presented and commented in Section IX, and conclusions are drawn in Section X.
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Fig. 1: Factorization of the sub–matricesT(c). C is the number of mixture components of a Gaussian
Universal Background Model with feature dimensionF . M is the dimension of the variability sub–space,
O(c) is an orthogonal matrix,Π(c) is a sparse matrix having at most one non-zero element per row, and
Q is a dictionary matrix, shared among all the sub–matricesT(c), with K atoms in its rows.

II. I– VECTOR REPRESENTATION

The i–vector representation [1], [2] constrains the GMM supervectors, representing both the speaker

and channel characteristics of a given speech segment, to live in a single sub–space according to:

s = m+Σ
1

2Tw , (2)

wherem is the UBM supervector,T is a low-rank rectangular matrix withC×F rows andM columns.

The M columns ofT are vectors spanning the variability space, andw is a random vector of sizeM

having a standard normal prior distribution.T is multiplied for convenience byΣ
1

2 , whereΣ denotes

the block–diagonal matrix whose diagonal blocks contain the UBM covariance matricesΣ(c). It is worth

noting that the i–vector representation (2) is equivalent to the classical one, but takes advantage of the

UBM statistics whitening introduced in [17] to simplify thei–vector extraction.

Given a set of feature vectorsX = {x1, . . .xt . . .xT } extracted for a speech segment, the corresponding

i–vectorwX is computed as the mean of the posterior distribution p(w|X ):

wX = L−1
X T∗fX , (3)

whereLX is the precision matrix of the posterior distribution:

LX = I+
∑

c

N
(c)
X T(c)∗T(c) . (4)
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In these equations,N (c)
X are the zero–order statistics estimated on thec–th Gaussian component of the

UBM for the set of feature vectors inX , T(c) is the F × M sub-matrix ofT corresponding to the

c–th mixture component such thatT =
(
T(1)∗, . . . ,T(C)∗

)∗
, and fX is the supervector stacking the

covariance–normalized first–order statisticsf
(c)
X , centered around the corresponding UBM means:

f
(c)
X = Σ(c)−

1
2

[
∑

t

(

γ
(c)
t xt

)

−N
(c)
X m(c)

]

, (5)

wherem(c) is the mean of thec–th Gaussian component of the UBM,xt is thet–th feature vector inX

andγ(c)t is its occupation probability on thec–th Gaussian.

III. M EMORY AWARE I–VECTOR EXTRACTION

The complexity of a single i–vector computation (3) mainly depends on the computation ofLX and

on its inversion. In particular, the computation complexity is O(M3+CFM) for (3) plusO(CFM2) for

(4). Usually the number of Gaussian componentsC is greater than the sub–space dimensionM , and the

latter is greater that the feature dimensionF . Popular settings for state–of–the-art systems are:F = 60,

C = 2048, andM = 400. The termO(CFM2) (quadratic inM ) accounts for most of the computation

complexity, whereas the memory demand for storing matrixT is O(CFM). In Section IX, devoted to

the experiments, we refer to this approach as the “slow baseline”.

The standard solution for (4) is obtained, however, by pre–computing and storing for each mixture

componentc its covariance matrixT(c)∗T(c). The computational cost is reduced toO(CM2), but this

speed–up comes at the expense of an additionalO(CM2) memory demand for computing (4), which

dominates the other memory costs.

Among the approaches that have been recently proposed to cope both with memory constraints

and computational load, we will consider as benchmarks in this work the fast, but inaccurate “eigen–

decomposition” approach, and the accurate i–vector extraction methods based on a Variational Bayes

(VB) formulation.

In the eigen–decomposition approach [17], a simultaneous approximate diagonalization of the matrices

T(c)∗T(c) has been introduced for fast computation of the i–vectors with low memory resources. In

this approach, eachT(c)∗T(c) is approximated by a diagonal matrix̄D(c). This approximation has the

remarkable advantage that a diagonalL̄X is obtained, which can be computed byC element–wise products

of two vectors of dimensionM , and its inversion cost becomes negligible. Using this approach, the

computational complexity for the i–vector extraction is reduced toO(CFM), due toT∗fX in (3). This

cost dominates because computing the diagonal matrixL̄X has complexityO(CM), and its inversion is



10.1109/TASLP.2013.2290505 6

just O(M). The contributionO(M2) for the back–rotation of̄LX to obtain the approximate i–vector is

also negligible compared toO(CFM).

The main contribution to memory costs isO(CFM) for storing matrixT, but additional memory,

O(CM) andO(M2), is needed for computinḡLX and storing the back–rotation matrices, respectively.

These additional costs, however, are relatively small becauseCF ≫M .

This approach is very fast and memory effective, and its performance as reported in [17] is good, but it

does not reach the accuracy of the standard approach. Thus, alternative memory-aware accurate i–vector

extraction methods have been recently introduced, based ona Variational Bayes (VB) formulation [19],

[20], [21]. In this framework, an i-vector is obtained by iterating the estimation of one sub-block of

ivector elements at a time, keeping fixed all the others. It is worth noting that the VB approach computes

i–vectors as accurate as the ones obtained by the standard technique, but requires only a fraction of its

memory, the same memory required by the slow baseline approach to keep in memory matrixT, i.e.,

O(CFM). This technique is, however, slower than the standard one.

We present in the next sections a new approximate i–vector extraction approach that requires much

less memory than the other mentioned techniques, and gives higher performance compared to the eigen–

decomposition by using comparable or even less processing resources. In Section IV we present a

decomposition of the sub–matricesT(c) of T that allowsT to be compressed by using a dictionary shared

among all the sub–matricesT(c). In Section VII we show that using this decomposition together with a

Conjugate Gradient procedure it is possible to avoid the computation, and inversion, of the precision matrix

LX . We also show that the i–vector extraction is memory effective because it does not need storing the

pre–computed covariance matricesT(c)∗T(c), and is fast because it performs, iteratively, simple diagonal

and matrix–vector products of matrices smaller than the ones used by the other approaches.

IV. FACTORIZED SUB–SPACE ESTIMATION OF MATRIXT

Let’s consider the decomposition of sub–matrixT(c) of T:

T(c) = O(c)Π
(c)
M G(c)∗ , (6)

whereO(c) is an orthogonalF × F matrix, Π(c)
M is an F ×M matrix having at most one non–null

element per row, andG(c) is a M ×M orthogonal matrix. The decomposition is not unique, but its

existence is guaranteed by the existence of the Singular Value Decomposition (SVD) ofT(c), which

can be considered as a particular case of (6) whereΠ
(c)
M has non–negative entries on its diagonal. The

decomposition (6) can be rewritten in a compact form by stacking all matricesG(c) in a single matrix
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G:

G =








G(1)∗

...

G(C)∗








, (7)

and by replacing each matrixΠ(c)
M by aF × (CM) matrixΠ(c)

CM obtained by appropriately zero–padding

eachΠ(c)
M as:

Π
(c)
CM =



0, . . . ,0
︸ ︷︷ ︸

c−1

,Π
(c)
M ,0, . . . ,0
︸ ︷︷ ︸

C−c



 . (8)

Matrix T(c) can then be computed as:

T(c) = O(c)Π
(c)
CMG . (9)

It is worth noting that thec-th matrixΠ(c)
CM acts as a selector ofF rows ofG, thus (9) can be simplified,

keeping only the rows ofG which are selected by at least oneΠ(c)
CM matrix, and resizing accordingly

the matricesΠ(c)
CM , obtaining:

T(c) = O(c)Π
(c)
CF Ḡ , (10)

whereḠ is a (CF )×M matrix, andΠ(c)
CF has dimensionF × (CF ). The i–vector posterior precision

matrix can be, thus, computed as:

C∑

c=1

N
(c)
X T(c)∗T(c) + I = G∗

(
C∑

c=1

N
(c)
X Π

(c)∗
CF Π

(c)
CF

)

G+ I , (11)

where each productΠ(c)∗
CF Π

(c)
CF is a diagonal matrix withF non-zero elements. The computational

complexity of (11) and (4) is the same, however, it is possible to get an accurate approximation̂T(c) of

each matrixT(c) by replacing matrixG by a smallerK ×M matrix Q as:

T̂(c) = O(c)Π(c)Q ≈ T(c) , (12)

whereΠ(c) is a sparseF ×K matrix with at most one non–zero element per row. Each matrixT̂(c) is

thus obtained by a linear combination ofF vectors, selected from a set ofK atoms of a shared dictionary

represented by theK ×M matrix Q. The originalT matrix could be recovered selectingK = CF , but

we are able to greatly reduce the memory needs for storing matrix T, and for computing the i–vector

posterior, by selecting a small value forK. In Section IX we show that small values ofK are sufficient

to get good accuracy.
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V. M ATRIX T(c) APPROXIMATION

The matricesO(c), Π(c), andQ are obtained by minimizing a weighted average square norm ofthe

difference between eachT(c) and its approximation̂T(c). In particular, ifω(c) is the weight of thec–th

component of the UBM, the objective function that we optimize is:

min
{O(c)},{Π(c)},Q

∑

c

ω(c)
∥
∥
∥T

(c) −O(c)Π(c)Q

∥
∥
∥

2
. (13)

where matricesO(c) are constrained to be orthogonal, and matricesΠ(c) are constrained to have at most

one non–zero element per row.

In the following, all optimizations with respect toO(c) and Π(c) are assumed to have the same

constraints even if not explicitly mentioned.

The optimization is performed by updating a matrix while keeping constant the others, according to

the iterative sequence of optimizations illustrated in Algorithm 1. In our experiments, 10 iterations of

alternate optimizations ofΠ(c) andO(c) are performed before a new matrixQ is estimated keeping fixed

Π(c) and O(c). This procedure is repeated for 40 iterations. These empirical settings are conservative

because the iterative optimization is fast and done in training once for all. The optimization solutions

for the three terms of the factorized sub–space decomposition are presented in the next sub–sections

beginning withQ andO(c), because they are easier to derive. Then, we illustrate the optimization with

respect toΠ(c), which is done in two steps in order to obtain a full–rank matrix.

In order to derive the update equations for the factorized sub–space decomposition matrices we rewrite

our objective function (13) as:

min
{O(c)},{Π(c)},Q

∑

c

ω(c)
[

tr
(

T(c)∗T(c)
)

+ (14)

tr
(

Q∗D(c)Q
)

− 2 tr
(

T(c)∗O(c)Π(c)Q
)]

,

whereD(c) = Π(c)∗Π(c) is a diagonal matrix.

A. Matrix Q optimization

We solve forQ by zeroing the gradient of (14) with respect toQ :

∑

c

(

2 ω(c)D(c)Q− 2 ω(c)Π(c)∗O(c)∗T(c)
)

(15)
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Algorithm 1
1. Initialize the matricesQ andO(c) (Section V-D).
2. for i← 1 to num outer iterations do
3. for j ← 1 to num inner iterations do
4. UpdateΠ(c) by equation (31) keeping constantQ andO(c)

5. UpdateO(c) by equation (22) keeping constantQ andΠ(c)

6. UpdateQ by equations (16) and (17) keeping constantO(c) andΠ(c)

while keeping fixed all matricesO(c) andΠ(c), obtaining:

Q =

(
∑

c

ω(c)D(c)

)−1(
∑

c

ω(c)Π(c)∗O(c)∗T(c)

)

. (16)

The pseudo–inverse of the diagonal matrix
∑

c ω
(c)D(c) is computed to take care of its possible singu-

larities, i.e., leaving unchanged the tiny or zero diagonalvalues.

It is worth noting that our training procedure cannot guarantee that matrixQ is full rank, but we could

make it full rank by appending to the actual dictionary matrix Q a (full rank) M ×M identity matrix

whose rows are never re–estimated. However, we observed that in practice no particular care has to be

taken to avoid rank deficientQ matrices even for small sized dictionaries.

Without loss of generality, after each iteration that estimates a new matrixQ, we normalize its rows, and

we update accordingly the corresponding entries in theΠ(c) matrices. In particular, defining∆ = QQ∗◦I,

where◦ is the element–wise matrix product, the matricesQ andΠ(c) are updated as:

Q←∆−1Q , Π(c) ← Π(c)∆ , (17)

so that the objective function is not affected because the normalization factor is taken into account by

matrix Π(c). This procedure allows us avoiding that large values inQ lead to small estimatedΠ(c)

values. This bad behavior could reinforce itself in successive iterations.

B. Matrix O(c) optimization

Since the optimization of each matrixO(c) can be done independently from the others, we can maximize

the third term in (14) keeping constant the matricesΠ(c) andQ as:

max
O(c)

tr
(

T(c)∗O(c)Π(c)Q
)

. (18)
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Since the trace operator is invariant under cyclic permutations, i.e.,tr(ABC) = tr(CAB), (18) can be

rewritten as:

max
O(c)

tr
(

O(c)Π(c)QT(c)∗
)

= max
O(c)

tr
(

O(c)Z
)

, (19)

whereZ = Π(c)QT(c)∗. Since we solve for a single componentc at a time, for the sake of readability

of the equations in this section, the superscript(c) in Z has been dropped.

The Von Neumann’s trace inequality [29], [30] states that:

∣
∣
∣tr(O(c)Z)

∣
∣
∣ ≤

F∑

i=1

σoiσzi , (20)

whereσoi andσzi are the sortedi–th singular values obtained by SVD ofO(c) andZ, respectively. Since

O(c) has to be orthogonal, its singular values must be equal to1. Thus, for any feasible solutionO(c),

the objective function is bounded by:

tr(O(c)Z) ≤

F∑

i=1

σzi , (21)

which is maximized if we find a matrixO(c) such that the singular values ofO(c)Z andZ are exactly

the same. This condition is satisfied by matrix:

O(c) = VZU
∗
Z , (22)

whereVZ and UZ are the singular vectors of the SVD ofZ = Π(c)QT(c)∗, decomposed asZ =

UZΣZV
∗
Z. This can be verified substituting (22) in the left hand side of (21).

C. Matrix Π(c) optimization

Considering again the last two terms of (14), the optimization can be done independently for each

Π(c), considering constantsO(c) andQ.

Using the permutation property of the trace for the second term we get:

tr
(

Q∗Π(c)∗Π(c)Q
)

= tr
(

Π(c)∗Π(c)QQ∗
)

. (23)

Although the dimension ofQQ∗ is huge, we need only its diagonal because, for any feasible solution

Π(c)∗, matrixΠ(c)∗Π(c) is diagonal. Moreover, since the atoms of the dictionary matrix Q are normalized,

the diagonal elements ofQQ∗ are qk = 1. Thus, the second term of the objective function (14) can be
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written as:

tr
(

Π(c)∗Π(c)QQ∗
)

=

K∑

k=1

q2k





F∑

f=1

π
(c)
f

∗
π
(c)
f





k,k

(24)

=

K∑

k=1

F∑

f=1

(π
(c)
f

∗
π
(c)
f )k,k ,

whereπ(c)
f is thef -th row of Π(c).

Applying again the invariance rule for cyclic permutationsof the trace operator, and recalling that the

trace of a matrix is equal to the trace of its transpose, the third term of (14) can be rewritten as:

tr
(

T(c)∗O(c)Π(c)Q
)

= tr
(

Π(c)∗O(c)∗T(c)Q∗
)

. (25)

Defining

A(c) = O(c)∗T(c)Q∗ , (26)

Π(c) can be obtained optimizing:

K∑

k=1

F∑

f=1

(π
(c)∗
f π

(c)
f )

k,k
− 2

F∑

f=1

tr
(

π
(c)∗
f A

(c)
f

)

=

F∑

f=1

[
K∑

k=1

(π
(c)∗
f π

(c)
f )

k,k
− 2 tr

(

π
(c)∗
f A

(c)
f

)
]

, (27)

whereA(c)
f is thef–th row ofA(c). We can optimize eachπ(c)

f independently because the terms in the

summation (27) can be factorized with respect to the rowsπ
(c)
f . Thus, for a givenc andf , π(c)

f can be

found by minimizing:
K∑

k=1

(π
(c)∗
f π

(c)
f )

k,k
− 2 tr

(

π
(c)∗
f A

(c)
f

)

. (28)

Since the row vectorπ(c)
f must have a single non-zero elementvk, with indexk, the optimal indexkoptf ,

and its corresponding valuevoptf , are found as the solution of:

koptf = argmin
k

min
vk

(

v2k − 2vkA
(c)
f,k

)

, (29)

i.e., for a givenk, the minimum valuevk is obtained by zeroing the derivative of the functionv2k−2vkA
(c)
f,k:

vk = A
(c)
f,k . (30)
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Substituting (30) in (29) we finally get:

koptf = argmax
k

A
(c)2
f,k , voptf = A

(c)
f,kopt . (31)

D. Initialization of matricesQ andO(c)

Recalling that a SVD ofT(c) is a particular case of decomposition (6), in order to initialize the

dictionary matrixQ and allO(c) matrices, we perform the SVD of each matrixω(c)T(c) as:

ω(c)T(c) = U(c)
S

(c)V(c)∗ . (32)

Matrix O(c) is initialized by matrixU(c).

Matrix Q is initialized by pooling together the rows of all the matricesV(c)∗ and keeping only the rows

corresponding to the largest pooled singular values.

Thus, we can select the sizeK of the dictionaryQ to be much less than the size (CF ×M ) of T,

according to memory-accuracy trade-offs.

No initialization is needed for the matricesΠ(c) because, givenQ andO(c), the rows of eachΠ(c)

can be set according to (31).

VI. ESTIMATING A FULL –RANK MATRIX Π(c)

Since the optimization ofΠ(c) is performed independently for each rowπ(c)
f , it may happen that the

optimal index for two rowsa andb is the same, i.e., that two non–zero values appear in the samecolumn

of π(c)
a andπ

(c)
b , as illustrated in Figure 2 (a). This configuration, however, indicates that matrixΠ(c)

is not full-rank, and that two of its rows select the same dictionary atom. Thus, one of these rows is

superfluous. By properly merging in a single row the information carried by both rows, tThe optimization

function does not change, and additional optimization can be obtained by re–estimating, according to

(31), the optimal index and value of the row that was cleared (π
(c)
b in Figure 2). In the following we

present an algorithm that performs these optimizations leading to a full–rank estimate of matrixΠ(c),

which better exploits the shared dictionary.

Let kf denote the index of the non–zero element ofπf , the f–th row of Π(c), and let vf be its

corresponding value. Letvf = 0 if all the elements of a rowπf are zero. Then, for matrixΠ(c) to be

full rank it is necessary (see Proposition 1 in Appendix) that|vf | > 0 for all rows f and thatka 6= kb

for a 6= b, i.e., Π(c) must have a single non–zero element per row, located in different columns. Since

the optimization procedure introduced in Section V-C is not able to directly impose such constraints on
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Fig. 2: Merging two rows of a matrixΠ(c) having two non-zero values in the same column: (a) initial
configuration, (b) updates of matrixΠ(c) andO(c) according to steps 2 and 3 of Algorithm 2.

matrix Π(c), it may happen that the estimated matrix is not full rank. It is, therefore, possible to estimate

a better matrix. Assuming that bothT(c) andQ are full rank, i.e.,ρ(T(c)) = F , andρ(Q) = M , our

goal is an iterative procedure that, keeping constantQ, estimates a full–rankΠ(c) matrix, and decreases

the objective function:

g(O(c),Π(c)) =
∥
∥
∥T

(c) −O(c)Π(c)Q

∥
∥
∥

2
. (33)

Let Π(c) and O(c) denote a (suboptimal) solution of our optimization problem, obtained by first

optimizing with respect toO(c), and then with respect toΠ(c), as described in Sections V-B and V-C,

respectively. Assume also that at least two non–zero elements va andvb of Π(c) are on the same column

k = ka = kb. We follow a two–step approach to estimate a better solution(Ō(c), Π̂(c)) such that

ρ(Π̂(c)) ≥ ρ(Π(c)) andg(Ō(c), Π̂(c)) < g(O(c),Π(c)).

First we estimate a solution(Ō(c), Π̄(c)) equivalent to(O(c),Π(c)) by properly merging rowsa andb of

Π(c), and the corresponding columns ofO(c). We then apply (31) to get a better estimate ofΠ(c).

Since the valuesva andvb of matrixΠ(c) are on the same column, it is easy to verify that, if we replace

thea–th column ofO(c) by the linear combination of the columnsoa andob, given byõa = vaoa+vbob,

and the valuesva and vb in Π(c) by 1 and 0, respectively, we obtain a new solution which does not

change the value of the productO(c)Π(c) and, therefore, does not change the value of the objective

function (33). This solution, however, would make matrixO(c) no more orthogonal.

In order to recover an equivalent feasible solution, one canobserve that the new solution does not depend

on the values of theb–th column ofO(c) becausevb = 0. Moreover, it is worth noting that if a column

vector of of O(c) is divided by a given valuev, and the valuevf of Π(c) is multiplied by the same
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Algorithm 2
1. while a pair of rowsa andb of Π(c) exists such thatka = kb and |va| > 0, |vb| > 0 do
2. ComputeŌ(c) by replacing the columnsoa andob in O(c) by ōa and ōb , respectively (34).
3. ComputeΠ̄(c) by replacing the valuesva andvb in Π(c) by

(
v2a + v2b

) 1

2 and0, respectively.
4. EstimateΠ̂(c) using (31) as:

Π̂(c) = argmin
Π̄

∥
∥
∥T

(c) − Ō(c)Π̄Q

∥
∥
∥

2
.

5. Update: O(c) ← Ō(c) , Π(c) ← Π̂(c).

value v, the productO(c)Π(c) does not change. Thus, thea–th column ofO(c) can be replaced by the

unitary vectorōa = vaoa+vbob

‖vaoa+vbob‖
, obtained by dividing̃oa by its norm, provided that the valueva of Π(c)

is multiplied by same norm. Then,vb can be set to zero, but the columnob of O(c) has to be replaced

by a unitary vector that must be orthogonal both to vectorōa and to all other column vectors ofO(c).

All these operations are summarized in Algorithm 2, which shows the steps for estimating a full–rank

matrix Π(c).

Let’s define vectors:

ōa =
(vaoa + vbob)
(
v2a + v2b

) 1

2

, ōb =
(vaob − vboa)
(
v2a + v2b

) 1

2

, (34)

which are unitary and orthogonal (‖ōa‖ = 1, ‖ōb‖ = 1 and ōTa ōb = 0). Since ōa and ōb are linear

combinations ofoa andob, they are also orthogonal to all other columns ofO(c). Replacing the columns

oa andob of O(c) by ōa and ōb, respectively, and the valuesva andvb of Π(c) by v̄a =
(
v2a + v2b

) 1

2 and

v̄b = 0, respectively, we get a feasible solution which does not change the value of the objective function

(33). This procedure is indicated in step 2 and step 3 of Algorithm 2, and in Figure 2 (b).

It can be shown that the resulting solution is optimal with respect to all rowsπf of Π(c), except for

the null rowπb. Since rowπb is null, it can be re–estimated according to (31) to increasethe objective

function value (steps 4 and 5).

This procedure ends in a finite number of steps, and leads to a full–rank estimate of matrixΠ(c). All

proofs are given in Appendix.

VII. I- VECTOR EXTRACTION

Using the approximated̂T(c) of (12), the i–vector posterior precision matrix can be computed as:

L̂X = I+
∑

c

N
(c)
X Q∗Π(c)∗O(c)∗O(c)Π(c)Q
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= I+Q∗
∑

c

N
(c)
X Π(c)∗Π(c)Q . (35)

It is worth recalling that each matrixΠ(c) is virtually large because it has dimensionF ×K, but it has

actually at most one non–zero element per row, thus it can be stored as a sparse matrix. ComputingL̂X ,

however, not only requiresO(M2) memory, but has complexityO(KM2). The i–vector extraction (3)

can be performed, however, without actually computing and inverting matrixL̂X by solving the system

of linear equations:

L̂X ŵX = T̂∗fX

=
∑

c

T̂(c)∗f
(c)
X

= Q∗
∑

c

Π(c)∗O(c)∗f
(c)
X . (36)

Since matrixL̂X is symmetric and positive definite, the linear system of equations (36) can be solved by

the Conjugate Gradient (CG) method [31], which solvesL̂X ŵX = c, wherec is the right–hand side of

(36), iterating from an initial guesŝw0, and generating successive vectors that are closer to the solution

ŵX that minimizes the quadratic function:

f(ŵX ) =
1

2
ŵ∗

X L̂X ŵX − ŵ∗
Xc . (37)

The iteration updates in the CG algorithm are based on the product of matrix L̂X by a vector, which is

either ŵn or a direction vectorpn, wheren is the iteration number. Exploiting these characteristics of

the algorithm, it is possible to reduce the high memory demands and the costs due to the computation

and inversion of matrix̂LX because the latter always appears multiplied byŵn or pn.

The product of̂LX by a genericM–dimensional vectorvn:

L̂Xvn = Ivn +Q∗

(
∑

c

N
(c)
X Π(c)∗Π(c)

)

Qvn (38)

can be effectively computed, right–to–left, by the sequence of operations:

z = Qvn (39)

z ←

(
∑

c

N
(c)
X Π(c)∗Π(c)

)

z

z ← Q∗z

L̂Xvn = z+ vn .
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The order of the operations is important because the first operation produces a vector, which is then

scaled by the values of the diagonal matrix
∑

cN
(c)
X Π(c)∗Π(c), and finallyL̂Xvn is obtained by the last

two operations.

Pre–conditioning the conjugate gradient method, by multiplying the residual by a fixed symmetric positive-

definite matrix, speeds–up convergence. The pre–condition matrix that has been used in our experiments

is the inverse of:

M =

(
∑

c

N
(c)
X

)
∑

c

ω(c) diag(T(c)∗T(c)) + I , (40)

i.e., the inverse of a diagonal approximation of the precision matrix of the posterior distribution (4).

TABLE I: Results for the extended NIST SRE2010 female tests in terms of % EER, minDCF08×1000 and
minDCF10×1000 using different i–vector extraction approaches. LabelVB b–t refers to the Variational
Bayes approach of [21] setting the sub–block dimension tob, and the stopping threshold tot. Label
FSE–K–t refers to the Factorized Sub–space Estimation approach setting the dictionary dimension toK,
and the stopping threshold tot.

System
Memory

1 core 12 cores
PLDA1000 utterances 5000 utterances

(MB) cpu time time ratio cpu time time ratio
(%) min min
EER DCF08 DCF10

Fast baseline 815 174 4.70 184 8.76 3.59 181 566
Slow baseline 188 2462 66.54 2020 96.19 3.59 181 566
VB10-10 205 385 10.4 267 12.71 3.57 181 570
VB20-10 221 338 9.14 249 11.86 3.51 182 569
VB10-100 205 228 6.16 147 7.00 3.59 184 587
VB20-100 221 195 5.27 147 7.00 3.53 183 572
Eigen–decomposition 191 37 1.00 21 1.00 4.27 201 692
FSE-2k-10 No Prec. 32.1 28 0.76 17 0.81 3.70 191 575
FSE-2k-100 No Prec. 32.1 21 0.57 15 0.71 4.04 194 581
FSE-2k-10 Diag Prec. 32.1 29 0.78 21 1.00 3.73 191 579
FSE-2k-100 Diag Prec. 32.1 24 0.65 19 0.90 3.86 200 594
FSE-3.5k-10 No Prec. 35.1 36 0.97 22 1.05 3.76 195 551
FSE-3.5k-100 No Prec. 35.1 25 0.68 18 0.86 4.08 201 588
FSE-3.5k-10 Diag Prec. 35.1 34 0.92 25 1.19 3.73 196 545
FSE-3.5k-100 Diag Prec. 35.1 28 0.76 22 1.05 3.91 200 572
FSE-5k-10 No Prec. 38 43 1.16 28 1.33 3.49 185 580
FSE-5k-100 No Prec. 38 29 0.78 22 1.05 3.69 191 606
FSE-5k-10 Diag Prec. 38 40 1.08 30 1.43 3.43 185 582
FSE-5k-100 Diag Prec. 38 31 0.84 26 1.24 3.61 188 605
FSE-10k-10 No Prec. 48 85 2.30 50 2.38 3.56 185 584
FSE-10k-100 No Prec. 48 53 1.43 35 1.67 3.76 190 589
FSE-10k-10 Diag Prec. 48 68 1.84 46 2.19 3.56 184 578
FSE-10k-100 Diag Prec. 48 49 1.32 36 1.71 3.73 190 599
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TABLE II: PLDA results for the FSE approach using very small dictionary dimensions:K = 500 and
K = 1000.

System
Memory % min min

(MB) EER DCF08 DCF10
FSE-0.5k-10 29.8 5.05 247 698
FSE-0.5k-100 29.8 5.23 255 695
FSE-1k-10 30.6 4.43 227 641
FSE-1k-100 30.6 4.72 229 635

VIII. C OMPLEXITY ANALYSIS

The standard, eigen-decomposition, and the VB approaches cannot avoid the cost of storing matrix

T, which isO(CFM). In our FSE approach, instead, memory demand depends onK, the number of

atoms in the dictionaryQ. In particular, the total memory cost isO(KM) for Q, O(CF 2) for theO(c)

matrices, andO(CF ) for the sparse matricesΠ(c). Additional O(M) memory has to be allocated for

the pre–conditioning matrix (40) that allows reducing the number of Conjugate Gradient iterations. After

training has been completed, further memory saving can be obtained by selecting the entries in eachΠ(c)

having a small absolute value, and clearing the corresponding columns ofO(c). These columns would

give a negligible or no contribution tôT(c) = O(c)Π(c)Q because the corresponding rows ofΠ(c)Q

are approximately zero. Also, the dictionary can be compacted excluding the atoms that are never used

(about 200 in our FSE-5k models).

As far as the computation complexity of the FSE method is concerned, the first and the third operation

in (39) have complexityO(NKM), whereN is the number of CG iterations. The complexity of the

second operation isO(NCF ) because each matrixΠ(c) includesF entries only, plus a minor contribution

O(NK) for scalingz. The complexity of the last operation is negligible because it is O(NM) only.

Computingc has complexityO(CF 2 +KM).

Since few iterations (less than 10) are usually necessary to obtain approximate i–vectors that produce

very good results, the Conjugate Gradient approach, havingan overall complexityO(NKM + CF 2)

is not only faster than the standard approach, which isO(CFM2), but also of theO(CFM) eigen–

decomposition approach. As shown in Table I, for large values of K the FSE method becomes slower

than the eigen–decomposition approach, which, however, uses far more memory, and is less accurate.



10.1109/TASLP.2013.2290505 18

IX. EXPERIMENTAL SETTINGS AND RESULTS

In this work we followed the same experimental protocol and settings that were presented in [20].

Since these works were focused on memory and computational costs of the i–vector extraction module,

we did not devote particular care to select the best combination of features, techniques, and training

data that allow obtaining the best performance. Thus, we tested our systems mainly on the female part

of tel-tel extended NIST 2010 evaluation trials [32]. We tested the “standard”, the Variational Bayes,

the eigen–decomposition, and the FSE i–vector extraction techniques, with systems having the same

front–end, based on cepstral features. In particular, we extracted, every 10 ms, 19 Mel frequency cepstral

coefficients and the frame log-energy on a 25 ms sliding Hamming window. This 20–dimensional feature

vector was subjected to short time mean and variance normalization using a 3 s sliding window, and a 60-

dimensional feature vector was obtained by appending the delta and double delta coefficients computed

on a 5–frame window.

We trained a gender-independent UBM, modeled by a diagonal covariance 2048-components GMM,

and a gender-independentT matrix using only the NIST SRE 04/05/06 datasets. The i-vector dimension

was fixed to 400 for all the experiments.

Our classifier for these experiments is based on Gaussian PLDA, implemented according to the

framework illustrated in [12]. The scores presented are not normalized. We trained models with full–rank

channel factors, using 120 dimensions for the speaker factors. The i–vectors of the PLDA models areL2

normalized after Within Class Covariance Normalization (WCCN) [33] has been applied. The WCCN

transformations, and the PLDA models have been trained using the previously mentioned NIST datasets,

and additionally the Switchboard II, Phases 2 and 3, and Switchboard Cellular, Parts 1 and 2 datasets.

Table I summarizes the performance of the evaluated approaches on the female part of the extended

telephone condition in the NIST 2010 evaluation. In this table, and in the following we will refer to the

standard approach as the ”fast baseline” approach. The recognition accuracy is given in terms of percent

Equal Error Rate (EER) and Minimum Detection Cost Functions (×1000) defined by NIST for the 2008

(minDCF08) and 2010 (minDCF10) evaluations [32].

As far as the computational speedup is concerned, the results of the experiments reported cannot be

directly compared with the ones given in [21], [20] because a5 times larger number of conversation

segments have been processed in order to obtain more accurate measurements for the faster techniques.

In particular, the computation time has been evaluated for the extraction of the i–vectors of 1000

and 5000 segments for the single–thread and multi–thread setting, respectively. Moreover, the absolute
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TABLE III: Results for all conditions of the extended NIST SRE2010 male tests in terms of % EER,
minDCF08×1000 and minDCF10×1000 using the standard and the Factorized Sub–space Estimation
approach with dictionary dimensionK = 5000. Condition labels Nve, Hve, and Lve refer to Normal,
High, and Low vocal effort, respectively.

System Standard FSE

Condition Number
% min min % min min

EER DCF08 DCF10 EER DCF08 DCF10
Interview in Train and Test, Same Microphone 1 1.62 79 402 1.62 84 379
Interview in Train and Test, Different Microphone 2 2.05 111 472 2.15 120 471
Interview in Train and Nve Phonecall Over Tel Channel in Test 3 2.02 122 443 2.77 128 463
Interview in Train and Nve Phonecall Over Mic Channel in Test 4 2.02 104 452 2.33 111 444
Nve Phonecall in Train and Test, Different Number 5 2.05 111 388 2.22 122 421
Nve Phonecall in Train and Hve Phonecall in Test, Tel 6 4.63 231 761 5.12 246 783
Nve Phonecall in Train and Hve Phonecall in Test, Mic 7 4.47 256 868 5.05 241 829
Nve Phonecall in Train and Lve Phonecall in Test, Tel 8 2.00 102 411 2.14 113 438
Nve Phonecall in Train and Lve Phonecall in Test, Mic 9 1.61 32 137 1.71 36 171

All - 2.29 123 485 2.49 131 491

times heavily depend on the computer architecture, cache size, implementation language, and optimized

numerical routines that are used. Thus, the relative speed–up of an approach with respect to the others is

more meaningful and informative than the absolute i–vectorextraction times. The eigen–decomposition

approach has been chosen as the reference for the relative speed-up because it is the fastest among

the ones considered in this work. Also, the memory values in [20] are doubled with respect to the ones

reported for the experiments done in this work because in thelatter we forced our Python implementation

to use float rather than double precision structures. Using this configuration, the accuracy of the systems

is practically unaffected, whereas relevant gain is obtained in terms of memory and speed–up.

The baseline results, corresponding to the standard i–vector extraction, were obtained 14 times faster

than the corresponding slow approach. However, the latter requires only 188 MB for storing matrixT,

whereas the former needs 4 times more memory to store the terms T(c)∗T(c) required to speed–up the

computation of (4).

The approximate i–vector extraction based on eigen-decomposition is extremely fast, and requires

almost the same amount of memory needed for the accurate slowapproach. However, it is not able to

reach the accuracy of the baseline system.

Four implementation scenarios for the Variational Bayes approach [21], referred to as VB 10–10, VB

20–10, VB 10–100, and VB 20–100 in Table I were tested as part of the simulation experiments. Label VB

b–t refers to the VB approach of [21] setting the sub–block dimension tob, and the stopping threshold to

t. The stopping criterion is based on the difference between the L2-norm of the current estimated ivector
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and the one computed in the previous iteration. The VB system with a tight convergence threshold is

able to get the same results of the baseline systems, it is approximately 1.2 to 2 times slower than the

standard approach, depending on the available number of concurrent threads, but it uses only slightly

more memory than the fast, but inaccurate, eigen–decomposition approach. Very good performance is

also obtained by the VB 20–100 system, with an earlier stop ofthe iterations due to a 10 times larger

convergence threshold, leading to i–vector extraction which is at worst 1.3 times slower when using a

single thread, but requires only 1/4 of memory required by the standard approach.

I–vector extraction with the FSE approach has been tested by training four systems, based on different

dimensions of the dictionary:K = 2000, 3500, 5000, and10000, respectively. The i–vectors were obtained

by the Conjugate Gradient procedure illustrated in Section VII, stopping the iterations when the residual

rn = c− L̂ŵn is less than two different thresholds,100 or 10, respectively. Again two threshold values

have been tested to show that the threshold value is not critical for the recognition accuracy. The results

show that the FSE performance is always better than the eigen–decomposition approach, and depending

on the dimension of the dictionary it can reach an accuracy comparable to the standard approach. FSE

dramatically reduces the memory cost of i–vector extraction by 20 times compared to the standard

approach, but also by 5 times compared to the other memory aware approaches. It is also extremely fast:

faster than the standard method, and even faster than the eigen–decomposition approach for large UBM

models and small dictionary size.

Comparing the results obtained with and without pre–conditioning the Conjugate Gradient, it can be

observed that pre–conditioning contributes only a small speed–up for large models (5K and 10K), whereas

it is detrimental for small models. Thus, it is not worth usingpre–conditioning for small models because

it does not speed up i–vector extraction, and requiresO(M) additional memory.

The small FSE-2K systems perform surprisingly well, considering that they use1/5 of the memory

of the eigen–decomposition approach, but obtain results similar to the standard technique.

Dictionary dimensions smaller thanK = 2000 are not included in Table I for two main reasons. First,

our goal was to keep as much as possible the standard system performance, thus, we don’t consider the

results obtained withK = 500 andK = 1000, shown in Table II, comparable with the results given in

Table I even forK = 2000. The second reason is that using such small values forK is not effective

because memory occupation would be dominated by the set of matricesO(c).

Since the relative performance of approximated approaches could be affected by the evaluation set that

is used, we tested our FSE technique also on all conditions of the extended NIST SRE2010 male tests.

Moreover, in order to maximize the difference with respect to the previous experiments, we used another
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set of i-vectors obtained with different features, based on45 Perceptual Linear Prediction, 19 Cepstrals

(c0-c18), 19 delta (∆0 −∆18), and 7 delta–delta (∆∆0 −∆∆6), rather than on the 60 MFCC features

used for the female tests.

The comparison of the performance of the standard and the Factorized Sub–space Estimation approach

with a dictionary dimension ofK = 5000 is shown in Table II. Excluding the tests with different vocal

efforts, which are generally considered less significant, the DCFs of the FSE approach are at most 10%

relative worse than the ones of the standard method, and decrease by 6.5% relative on the DCF08, and

only 1.2% for the DCF10 on the overall test, as reported in the last row of Table II.

X. CONCLUSIONS

The aim of this work was to optimize the memory and computationtime required for the i-vector

extraction module of a speaker recognition system. A new approach has been presented that accurately

approximates the components of the variability matrix by means of a linear combination of the atoms

of a dictionary. The use of a common dictionary not only allowsreducing the memory required with

respect to the standard approach, but also with respect to the other memory–aware techniques, which

cannot avoid storing theT matrix.

We analyzed the time and memory complexity of the state–of–the–art techniques and of our proposed

method for i-vector extraction, and we also experimentallycompared their performance. Our approach

is not always as fast as the eigen–decomposition technique,but allows obtaining accurate i–vectors and

results, and requires substantially less memory than the other techniques.

Although this optimization is particularly useful for small footprint applications, it can be also relevant

for speaker identification and verification applications, where the duration of the available speaker seg-

ments is short. In fact, for short utterances, and for a givenmodel dimension, the relative cost of i–vector

extraction increases because the time devoted to i–vector extraction does not depend on the segment

duration. A table giving the percentage of the overall recognition time devoted to i-vector extraction

using the standard approach, as a function of the GMM dimensions, has been presented in Section VI-B

of [21]. In these conditions, a fast but accurate technique,such as the FSE approach with a large enough

dictionary, gives an important contribution to the reduction of the recognition times.
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APPENDIX

In this Appendix we prove that:

• The rank ofΠ(c) in (12) is less thanF if and only if two non–zero elements ofΠ(c) appear in the

same column.

• Step 2 and 3 of Algorithm 2 do not change the objective function(33).

• Step 3 of Algorithm 2 gives the optimal solution for merged rowπ(c)
a , thus the optimization of Step

4 can be performed simply on the cleared rowπ(c)
b .

• Algorithm 2 converges in a finite number of steps, providing a full–rank matrixΠ(c).

A. Rank ofΠ(c)

The procedure introduced in Section V-C for computing a new estimate of Π(c), given the current

estimate ofO(c) andQ, does not guarantee that the new matrixΠ(c) is full rank, i.e.,ρ
(
Π(c)

)
= F . In

order to demonstrate that Algorithm 2 is able to increase therank ofΠ(c) we need to prove the following

proposition:

Proposition 1:

Assume thatρ(T(c)) = F , ρ(Q) = M and thatΠ(c) is computed as in Section V-C, i.e.,

Π(c) = argmin
Π

∥
∥
∥T

(c) −O(c)ΠQ

∥
∥
∥

2
.

Then

ρ
(

Π(c)
)

< F ⇔ ∃a, ∃b | ka = kb, |va| > 0, |vb| > 0 ,

i.e., ρ
(
Π(c)

)
is less thanF if and only if two non–zero elements ofΠ appear in the same column.

Proof: The backward implication of the proposition is easily provedobserving that wheneverka = kb

for rows πa,πb of Π(c), with values |va| > 0 and |vb| > 0, respectively, the two rows are linearly

dependent becauseπa = va

vb
πb.

As far as the forward implication of the proposition is concerned, let’s assume thatka 6= kb for all

rowsπa andπb, and that|vf | > 0 for all rowsπf . Then, all rows ofΠ(c) would be linearly independent,

which would implyρ(Π(c)) = F . Since this negates the hypothesis, then either a rowf exists such that

πf = 0, or a pair of rowsπa andπb exist such thatka = kb. In order to prove our proposition, we show

thatπf = 0 for somef would contradict the hypothesis thatT (c) andQ are full rank matrices. Since,
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according to the update rule forΠ(c) in (31), the valuevf , for each rowf , is estimated as:

vf = A
(c)
f,kf

kf = argmax
k

A
(c)
f,k

2
,

vf = 0 implies thatA(c)
f,k = 0 for any choice ofk. SinceA(c) would be aF ×K matrix with a null row,

we would haveρ(A(c)) < F . On the other hand, according to the definition of matrixA in (26), and

since matricesO(c), T(c), andQ are full rank, matrixA = O(c)∗T(c)Q∗ has rankF . Hence,|vf | > 0

must be true for allf . Sinceρ
(
Π(c)

)
< F we can conclude that a pair of row indicesa and b must

exist such thatka = kb.

As a corollary of Proposition 1 we also obtain that|vf | > 0 for all rowsπf .

B. Step 2 and 3 do not change the objective function(33)

Let Π(c) and O(c) denote a (suboptimal) solution of our optimization problem, obtained by first

optimizing with respect toO(c) as described in Section V-B, and then with respect toΠ(c) as described

in Section V-C. Let alsoπa andπb denote a pair of rows ofΠ(c) such thatka = kb = k, andg(O(c),Π(c))

denote the objective function related to thec–th component ofT, consideringQ constant, defined in

(33).

The first step to prove the convergence of the proposed algorithm consists in proving that

g(Ō(c), Π̄(c)) = g(O(c),Π(c)) ,

whereg(Ō(c), Π̄(c)) is the objective function value computed using the matricesŌ(c) andΠ̄(c) defined

in Algorithm 2 in Section VI. The two objective function valuesare equal becausēO(c)Π̄(c) = O(c)Π(c).

To prove latter statement, we rewritēO(c)Π̄(c) as:

Ō(c)Π̄(c) =
∑

f

ōf π̄f , (41)

where the sum extends over all columnsōf of Ō(c) and all rowsπ̄f of Π̄(c). Further expanding (41),

taking into account step 2 and step 3 of Algorithm 2 and the definitions in (34) we get:

Ō(c)Π̄(c) =
∑

f

ōf π̄f

=
∑

f 6=a,b

ōf π̄f + ōaπ̄a + ōb0

=
∑

f 6=a,b

ofπf +
(vaoa + vbob)
(
v2a + v2b

) 1

2

(
v2a + v2b

) 1

2ek
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=
∑

f 6=a,b

ofπf + oaekva + obekvb

=
∑

f

ofπf = O(c)Π(c) ,

whereek is thek–th vector of the standard basis ofR
K , i.e., ek = [0, . . . , 0, 1, 0, . . . , 0]. The feasibility

of the solution can be easily proved by observing that‖ōa‖ = 1, ‖ōb‖ = 1 and ō∗aōb = 0. Moreover,

ōa andōb are linear combinations ofoa andob, and therefore are orthogonal to all other columns ofŌ(c).

C. Step 3 gives the optimal solution for merged rowπ(c)
a

We prove that step 3 provides the optimal solution for thea–th row of matrixΠ̂(c) so that matrices

Π̄(c) andΠ̂(c) differ only in their b–th rows. Let

Â(c) = Ō(c)∗T(c)Q∗ , A(c) = O(c)∗T(c)Q∗ . (42)

Since matricesŌ(c) and O(c) differ only in their a–th andb–th columns,Â(c)
f = A

(c)
f for any row

f 6= a, b.

The optimization in step 4 is performed for each rowf of Π(c) independently according to (31), we get,

therefore, the same solution for any rowf 6= a, b:

π̂f = πf = π̄f ∀f | f 6= a, b . (43)

To prove that alsôπa = π̄a we rewrite thea–th row of Â(c) as:

Â(c)
a =

vaA
(c)
a + vbA

(c)
b

(
v2a + v2b

) 1

2

, (44)

where the relation betweenA(c) and Â
(c)
a derives from the relation betweenO(c) and Ō(c) defined in

step 2 of Algorithm 2. The optimal solution for the new roŵπa is given by:

kopta = argmax
k

Â
(c)2
a,k = argmax

k

(

vaA
(c)
a,k + vbA

(c)
b,k

)2

(
v2a + v2b

)

vkopt
a

= Â
(c)
a,kopt =

vaA
(c)
a,kopt + vbA

(c)
b,kopt

(
v2a + v2b

) 1

2

. (45)
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Since for every original rowπ(c)
f

vf = A
(c)
f,kf

, kf = argmax
k

A
(c)
f,k

2
, (46)

it follows that:

|va| = max
k
|Aa,k| , |vb| = max

k
|Ab,k| , (47)

thus,

max
k

Â
(c)2
a,k = max

k

(

vaA
(c)
a,k + vbA

(c)
b,k

)2

(
v2a + v2b

) (48)

≤ max
k

(∣
∣
∣vaA

(c)
a,k

∣
∣
∣+
∣
∣
∣vbA

(c)
b,k

∣
∣
∣

)2

(
v2a + v2b

)

≤

(

|va|maxk1

∣
∣
∣A

(c)
a,k1

∣
∣
∣+ |vb|maxk2

∣
∣
∣A

(c)
b,k2

∣
∣
∣

)2

(
v2a + v2b

)

=

(
v2a + v2b

)2

(
v2a + v2b

) =
(
v2a + v2b

)
.

On the other hand, if we setkopta = ka = kb = k, then from (45) we have:

Â
(c)2
a,k =

(
v2a + v2b

)2

(
v2a + v2b

) =
(
v2a + v2b

)
. (49)

Therefore,kopta = ka = kb = k is an optimal solution, and the corresponding value is givenby:

vkopt
a

=
(
v2a + v2b

) 1

2 . (50)

D. Convergence of Algorithm 2

Since, as previously shown, step 4 of the algorithm actually re–estimates only a single roŵπb, which

was 0, the corresponding contribution to the objective functionis simply given by the value of (28)

computed with the optimal valuevb obtained by (31), i.e.̂A(c)2

b,k
opt
b

, thus the objective function decreases

as:

g(O(c),Π(c))− g(Ō(c), Π̂(c)) = Â
(c)2

b,k
opt
b

. (51)

The proposed algorithm terminates for two reasons: eitherka 6= kb for all rows, or two rowsπa andπb

exist such thatka = kb, but va or vb or both are 0. However, Proposition 1 states that, ifT(c) andQ
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are full rank, step 4 estimates a row which has exactly one non–zero element. Thus, when Algorithm 2

terminates, every indexkf will refer to different rowsπf of Π(c).

Finally, it remains to prove that the algorithm converges in afinite number of steps to a solution where

kb 6= kf for any f 6= b. The proof consist in showing that the objective function at every iteration of the

algorithm never decreases less than a fixed value greater thanzero.

Let’s consider a generic orthogonal matrixO, and the matrix productO∗T(c)Q∗. Let’s also defineδ

as the smallest among the largest squared values of each row of this matrix. Formally:

δ = min
O

min
f

max
k

[(

O∗T(c)Q∗
)

f,k

]2

, (52)

where the minimum and the maximum are taken across all rows and columns of the argument, respectively.

As a corollary of Proposition 1 it follows that, ifT(c) andQ are full rank matrices,δ > 0. Since in

step 4 we estimate a new solution minimizing the objective function (33) such that (51) is satisfied, and

by definition

Â
(c)
b,kopt = max

k

[(

Ō(c)∗T(c)Q∗
)

b,k

]2

, (53)

it follows that δ ≤ Â
(c)2
b,kopt . Therefore:

g(O(c),Π(c))− g(Ō(c), Π̂(c)) = Â
(c)2
b,kopt ≥ δ . (54)

Since the objective function is lower–bounded by zero, and ateach iteration the objective function

decreases by at least a finite positive amountδ, the algorithm terminates in a finite number of steps.
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