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Factorized Sub-space Estimation for Fast and

Memory Effective I-vector Extraction

Sandro Cumani and Pietro Laface

Abstract

Most of the state—of-the—art speaker recognition systesgsaucompact representation of spoken
utterances referred to as i—vector. Since the “standardcter extraction procedure requires large mem-
ory structures and is relatively slow, new approaches hawently been proposed that are able to obtain
either accurate solutions at the expense of an increaseeofdmputational load, or fast approximate
solutions, which are traded for lower memory costs. We psepm new approach particularly useful for
applications that need to minimize their memory requiretsie@ur solution not only dramatically reduces
the memory needs for i—vector extraction, but is also fast arcurate compared to recently proposed
approaches. Tested on the female part of the tel-tel exteNd®T 2010 evaluation trials, our approach
substantially improves the performance with respect toftis¢éest but inaccurate eigen-decomposition

approach, using much less memory than other methods.

Index Terms

Speaker Recognition, I-vectors, I-vector extraction,bRtilistic Linear Discriminant Analysis, dic-

tionary.

. INTRODUCTION

A simple and effective model for speaker recognition hasibeoduced in [1], [2]. In this approach,
speaker and channel variability are modeled in a commonticined low—dimensional space spanned by
the column vectors of a matriX, and a speech segment is represented by a low—dimensiaciesltity
vector” or i-vector. The low dimensionality of i—vectors negkthem suitable for fast classification
using either generative models based on Probabilistic Limdscriminant Analysis (PLDA) [3], [4],
or discriminative classifiers such as Support Vector Mach{8&8\) or Logistic Regression [5], [6], [7].

The authors are with the Dipartimento di Automatica e Informatica, Politecdic®orino, 10143 Torino, Italy (e-mail:
sandro.cumani@polito.it, pietro.laface@polito.it).
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Very good results have been obtained using i-vectors ngt ionspeaker but also in several other tasks
such as language recognition [8], [9], speaker segmentdli®], [11], clustering [12], [13], emotion
recognition [14], [15] and age recognition [16].

Since the “standard” i—vector extraction procedure reguiaegge memory structures and is relatively
slow, new approaches have recently been proposed thatlar®aibtain either fast approximate solutions,
[17], [18], possibly traded for lower memory costs, or aatarsolutions based on a Variational Bayes
(VB) formulation, at the expense of an increase of the coatjrtal load [19], [20], [21]. A simplification
of the i—vector extraction is proposed in [17], based on gor@pmated simultaneous diagonalization
of the terms composing the i—vector posterior covarianc&ixad his “eigen—decomposition” approach
is very fast and memory effective, but suffers a significartusacy degradation with respect to the
standard one. The approach in [18] focuses on fast approximegctor extraction, but it does not take
care of memory issues. A VB systems saves memory becauséracesxiteratively sub—blocks of i-
vector elements. Performing a sufficient number of iteratitims technique is able to produce accurate
i—vectors at the expense of being slower than the standagbagh. In [21] we have highlighted that
the incidence of the time spent for i-vector computation system using large models and scoring long
speaker segments is negligible compared to the importahkeeping the original accuracy and saving
memory. However, the effectiveness of the i-vector extraid more relevant for systems dealing with
short utterances [22], [23], [24], [25] such as, for examphe text prompts in speaker verification [26],
[27].

In this paper we propose a new approximate i—vector extmactipproach particularly useful for
applications that need to optimize their memory requiresiaithout sensibly affecting their performance
and speed. We propose a solution for the main memory costddsuthe standard i—vector extraction:
the size of the variability sub—space matiix and the huge amount of memory that has to be devoted
for storing pre—computed matrices for the sake of compuriagpeedup. The key idea in our solution is
that it is possible to factorize the variability sub—spacatnm T so that it is not necessary to store all
its rows to perform i—vector extraction. These rows can baiobt as a linear combination of the atoms
of a common dictionary. The notion of dictionary and atoms &l\wnown in the field of sparse coding
[28]. In particular, given a ranR/ variability sub—space, represented by'a« F' x M matrix T, which
stacksC' (F' x M) sub-matricesI'®), each corresponding to theth mixture component of a Gaussian

Universal Background Model (UBM) with feature dimensiénandC components, we demonstrate that
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a good approximation of th&@(©) matrices can be obtained by means of the decomposition:
T = 0IIQ ~ T | 1)

whereO(® is an orthogonaF x F matrix, II(¢) is a sparsé” x K matrix having at most one non-zero
element per row, an€) is a K x M dictionary matrix, shared among all®), including K atoms in its
rows. T(©) is, thus, a linear combination df atoms ofQ. This factorization of the sub—matric8¥° is
represented in Figure 1, which shows that each row of maliX has a single non—zero element that
selects and weights a dictionary atom. The matrix of weiglatieans is then rotated and scaled by the
orthogonal matrixO(© to finally get the approximated'(©).

Since the sizd( of the dictionary that we estimate can be selected accotdingemory-accuracy trade—
offs, and it is usually much less th&hx F', our solution not only substantially improves the perfonece
with respect to the fast, but inaccurate, eigen-decompasipproach [17], but also dramatically reduces
the memory needed for i—vector extraction compared to othethods [2], [19], [21], which require
storing the original sub—space matriR. In the experimental section, we compare the memory and
computational complexity of these approaches togethen thieir accuracy, looking for the trade—offs
that make our technique suitable both for large and for sfoaliprint applications. Examples of such
applications are not limited to speaker authenticatiomiartphones or other embedded systems, because
memory is a precious resource even for applications runomgervers. Another advantage of saving
memory is that it is also possible to use larger and possildyenprecise models if more data become
available.

The paper is organized as follows: Section |l summarizes thecter representation for speaker
recognition, setting the background for i—vector compatatSection Il recalls two recently proposed
memory—aware i—vector extraction techniques, the eigereriposition and the Variational Bayes ap-
proaches, and analyzes their computational and memory legitypin order to give motivations for our
factorized sub—space approach, which is illustrated ini@e¢V. Section V is devoted to the estimation
of the matrices that are necessary to factorize the matiit€sand in Section VI we detail the steps for
obtaining full-rank approximatef'(®) matrices. I-vector extraction by means of a Conjugate @radi
procedure is illustrated in Section VII, and its complexiyainalyzed in Section VIII. The experimental

results are presented and commented in Section IX, and coctiare drawn in Section X.
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Fig. 1: Factorization of the sub—matric88). C is the number of mixture components of a Gaussian
Universal Background Model with feature dimensibnM is the dimension of the variability sub—space,
0 is an orthogonal matrixII() is a sparse matrix having at most one non-zero element perarmv

Q is a dictionary matrix, shared among all the sub—matriE&8, with X atoms in its rows.

I[I. -VECTOR REPRESENTATION

The i—vector representation [1], [2] constrains the GMM sueetor s, representing both the speaker

and channel characteristics of a given speech segmentetanlia single sub—space according to:
s=m+X:Tw , (2)

wherem is the UBM supervectorT is a low-rank rectangular matrix wit@' x £’ rows andM columns.
The M columns of T are vectors spanning the variability space, ands a random vector of sizé/
having a standard normal prior distributiof. is multiplied for convenience byz, where X denotes
the block—diagonal matrix whose diagonal blocks contailiiBM covariance matriceE(®). It is worth
noting that the i—vector representation (2) is equivalenthe classical one, but takes advantage of the
UBM statistics whitening introduced in [17] to simplify thievector extraction.

Given a set of feature vectof = {xi,...x;...xp} extracted for a speech segment, the corresponding

i—vectorwy is computed as the mean of the posterior distributiow|@’):
Wy = L}lT*fX , (3)
whereLy is the precision matrix of the posterior distribution:

Ly =1+ NYTETO (4)
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In these equationsly)(f) are the zero—order statistics estimated ondhtln Gaussian component of the
UBM for the set of feature vectors if’, T is the F' x M sub-matrix of T corresponding to the
c—th mixture component such tha@ = (T(M* ..., T(*)", andfy is the supervector stacking the

covariance—normalized first—order statistféﬁ, centered around the corresponding UBM means:

PEISCR [Z (%) - N;;>m<c>] | -

t

wherem(© is the mean of the—th Gaussian component of the UBM, is thet—th feature vector i’

and %@ is its occupation probability on the-th Gaussian.

[1l. M EMORY AWARE I-VECTOR EXTRACTION

The complexity of a single i—vector computation (3) mainlyp€eeds on the computation &fy and
on its inversion. In particular, the computation comphexit O(M?3 +CFM) for (3) plusO(CFM?) for
(4). Usually the number of Gaussian componefits greater than the sub—space dimensiénand the
latter is greater that the feature dimensiBnPopular settings for state—of-the-art systems Are: 60,

C = 2048, and M = 400. The termO(CFM?) (quadratic inM) accounts for most of the computation
complexity, whereas the memory demand for storing mdtftils O(CFM). In Section IX, devoted to
the experiments, we refer to this approach as the “slow iesel

The standard solution for (4) is obtained, however, by presmaing and storing for each mixture
componente its covariance matrixC(©*T(), The computational cost is reduced @(C M?), but this
speed-up comes at the expense of an additicial /%) memory demand for computing (4), which
dominates the other memory costs.

Among the approaches that have been recently proposed ® looiln with memory constraints
and computational load, we will consider as benchmarks im work the fast, but inaccurate “eigen—
decomposition” approach, and the accurate i—vector didracnethods based on a Variational Bayes
(VB) formulation.

In the eigen—decomposition approach [17], a simultaneppsoximate diagonalization of the matrices
T(©*1() has been introduced for fast computation of the i-vectorth \gw memory resources. In
this approach, eactt(?*T() is approximated by a diagonal mat(). This approximation has the
remarkable advantage that a diagahal is obtained, which can be computed Gyelement-wise products
of two vectors of dimensionl/, and its inversion cost becomes negligible. Using this eggh, the
computational complexity for the i—vector extraction islueed toO(CF M), due toT*fy in (3). This

cost dominates because computing the diagonal mhtgixhas complexityO(C' M), and its inversion is
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just O(M). The contributionO(M1?) for the back-rotation oLy to obtain the approximate i~vector is
also negligible compared t0(CFM).

The main contribution to memory costs @¥(C F M) for storing matrixT, but additional memory,
O(CM) andO(M?), is needed for computin@iy and storing the back—rotation matrices, respectively.
These additional costs, however, are relatively small besal > M.

This approach is very fast and memory effective, and its perdmce as reported in [17] is good, but it
does not reach the accuracy of the standard approach. Thersatve memory-aware accurate i—vector
extraction methods have been recently introduced, based \driational Bayes (VB) formulation [19],
[20], [21]. In this framework, an i-vector is obtained byraéng the estimation of one sub-block of
ivector elements at a time, keeping fixed all the others. Itasthvnoting that the VB approach computes
i—vectors as accurate as the ones obtained by the stand&mdee, but requires only a fraction of its
memory, the same memory required by the slow baseline agprimakeep in memory matris, i.e.,
O(CFM). This technique is, however, slower than the standard one.

We present in the next sections a new approximate i—vectoacton approach that requires much
less memory than the other mentioned techniques, and gighertperformance compared to the eigen—
decomposition by using comparable or even less processisgurces. In Section IV we present a
decomposition of the sub—matric@$) of T that allowsT to be compressed by using a dictionary shared
among all the sub—matricéB(®), In Section VII we show that using this decomposition togethi¢h a
Conjugate Gradient procedure it is possible to avoid thepdation, and inversion, of the precision matrix
L. We also show that the i—vector extraction is memory effectiecause it does not need storing the
pre—computed covariance matricEs)*T (%), and is fast because it performs, iteratively, simple dieago

and matrix—vector products of matrices smaller than thes arsed by the other approaches.

IV. FACTORIZED SUB-SPACE ESTIMATION OF MATRIXT

Let’s consider the decomposition of sub—mafii” of T
T — O(C)HEEI)G(C)* ’ (6)

where O©) is an orthogonalF’ x F matrix, Hg\? is an ' x M matrix having at most one non-null
element per row, and>(©) is a M x M orthogonal matrix. The decomposition is not unique, but its
existence is guaranteed by the existence of the SingulareMakromposition (SVD) ofl'(¢), which
can be considered as a particular case of (6) Wlﬂejﬁ% has non-negative entries on its diagonal. The

decomposition (6) can be rewritten in a compact form by stapkll matricesG(©) in a single matrix
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G:
G 1)

G(O)x

and by replacing each matrﬂg\? by aF' x (C M) matrix H(chw obtained by appropriately zero—padding
eacht1\? as:
(c) (c)
m-,,=10,...,0,II;/,0,...,0| . 8
cM - M - (8)

Matrix T(¢) can then be computed as:
T = 099, G . (9)

It is worth noting that the-th matrix H(CCEW acts as a selector df rows of G, thus (9) can be simplified,
keeping only the rows o€z which are selected by at least oﬁﬁé}w matrix, and resizing accordingly
the matriced‘[éf}w, obtaining:

T = 09T.G | (10)

whereG is a (CF) x M matrix, andl‘[éf} has dimensior¥’ x (C'F'). The i—vector posterior precision

matrix can be, thus, computed as:

C
ZN(C T 4 T = G* (ZN)(:)H(C?} (C)>G+I (11)

c=1

where each producﬂ(c) (Cc% is a diagonal matrix withF non-zero elements. The computational
complexity of (11) and (4) is the same, however, it is posstbl get an accurate approximatih® of

each matrixT(®) by replacing matrixG by a smallerk x M matrix Q as:
T = 0I9Q ~ T (12)

whereII(© is a sparse” x K matrix with at most one non—zero element per row. Each maifiX is
thus obtained by a linear combination Bfvectors, selected from a set Af atoms of a shared dictionary
represented by th& x M matrix Q. The originalT matrix could be recovered selectidg = CF, but
we are able to greatly reduce the memory needs for storingixTi&t and for computing the i—vector
posterior, by selecting a small value far. In Section IX we show that small values &f are sufficient

to get good accuracy.
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V. MATRIX T(¢) APPROXIMATION

The matrices0(©), II(9), and Q are obtained by minimizing a weighted average square northeof
difference between each(© and its approximatior'(®). In particular, ifw(® is the weight of the—th

component of the UBM, the objective function that we optienig:

T _ o<c>n<c>QH2 . (13)

; (c)

where matrice®(®) are constrained to be orthogonal, and matriBég are constrained to have at most
one non-zero element per row.

In the following, all optimizations with respect t®(°) and I1(® are assumed to have the same
constraints even if not explicitly mentioned.

The optimization is performed by updating a matrix while kegpconstant the others, according to
the iterative sequence of optimizations illustrated in dgkithm 1. In our experiments, 10 iterations of
alternate optimizations dfI®) andO(©) are performed before a new matfiXis estimated keeping fixed
I1(9 and O(). This procedure is repeated for 40 iterations. These empiietings are conservative
because the iterative optimization is fast and done in itxgionce for all. The optimization solutions
for the three terms of the factorized sub—space decompositie presented in the next sub—sections
beginning withQ and O(©), because they are easier to derive. Then, we illustrate ttimiaption with
respect talI(®), which is done in two steps in order to obtain a full-rank xatr

In order to derive the update equations for the factorizdés-space decomposition matrices we rewrite

our objective function (13) as:

; (c) (c)xrp(e)
g 2 [ (1) 2
tr (Q*D(C)Q) —2tr (T(C)*O(C)H(C)Q)} ,
whereD(© = II(9*I1(®) is a diagonal matrix.
A. Matrix Q optimization
We solve forQ by zeroing the gradient of (14) with respect@p:

3 (2 wODOQ — 2 w(C)H(C)*O(C)*T(C)) (15)

c
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Algorithm 1

1. Initialize the matrice€) andO(® (Section V-D).

2. for i « 1 to num_outer_iterations do

3. for j < 1 to num_inner_iterations do

4. UpdateII(®© by equation (31) keeping consta@ and O(©)

5 UpdateO(© by equation (22) keeping consta@t and IT(¢)

6 UpdateQ by equations (16) and (17) keeping constént) and I1(¢)

while keeping fixed all matrice®(© andII(®), obtaining:

-1
Q= (ZW@D@) <Zw(C)H(C)*O(C)*T(C)> ' (16)

The pseudo-inverse of the diagonal mafyiX. w©@D is computed to take care of its possible singu-
larities, i.e., leaving unchanged the tiny or zero diagomedilies.
It is worth noting that our training procedure cannot gutgarthat matrixQ is full rank, but we could
make it full rank by appending to the actual dictionary mat) a (full rank) M x M identity matrix
whose rows are never re—estimated. However, we observédhtipaactice no particular care has to be
taken to avoid rank deficier® matrices even for small sized dictionaries.

Without loss of generality, after each iteration that eates a new matrix), we normalize its rows, and
we update accordingly the corresponding entries irfIf@ matrices. In particular, definind = QQ*ol,

whereo is the element-wise matrix product, the matri€@sandI1(© are updated as:
Q- A'Q, m¥Yma, (17)

so that the objective function is not affected because thenalization factor is taken into account by
matrix II(©). This procedure allows us avoiding that large valuesQnead to small estimatedI(®

values. This bad behavior could reinforce itself in suceesierations.

B. Matrix O(©) optimization

Since the optimization of each mati®(©) can be done independently from the others, we can maximize

the third term in (14) keeping constant the matrit€s) andQ as:

(©* 0@ 1p(©
max tr (T 01 Q). (18)
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Since the trace operator is invariant under cyclic permuratii.e.,tr(ABC) = tr(CAB), (18) can be
rewritten as:

max tr (O(C)H(C)QT(C)*) = max tr (O(C)Z) , (19)

whereZ = II(9QT(9*, Since we solve for a single componenat a time, for the sake of readability
of the equations in this section, the supersc(iptin Z has been dropped.

The Von Neumann’s trace inequality [29], [30] states that:

tr(00Z)| < Zamam, (20)

whereo,; ando.; are the sorted-th singular values obtained by SVD 6f¢) andZ, respectively. Since
0 has to be orthogonal, its singular values must be equal Thus, for any feasible solutio®(©),

the objective function is bounded by:

C)Z Z Ozi » (21)

which is maximized if we find a matri© () such that the singular values 6f(9)Z and Z are exactly

the same. This condition is satisfied by matrix:
0¥ =vV5Uy , (22)

where Vz and Uz are the singular vectors of the SVD & = II(9QT(9* decomposed a& =
UzXz V7. This can be verified substituting (22) in the left hand side2if) (

C. Matrix II(®) optimization
Considering again the last two terms of (14), the optimaattan be done independently for each
I1(9), considering constan®(® and Q.

Using the permutation property of the trace for the seconu e get:
tr (Q*H(C)*H(C)Q) - tr( O 10QQ* ) (23)

Although the dimension 0QQ* is huge, we need only its diagonal because, for any feasdblgien
I1(9*, matrix II(9*I1(%) is diagonal. Moreover, since the atoms of the dictionaryrixa are normalized,

the diagonal elements €@ Q* are g, = 1. Thus, the second term of the objective function (14) can be
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written as:

F
0t (Z ) w&”) (24)
k.k

wherewj(f) is the f-th row of I1(©).

Applying again the invariance rule for cyclic permutatiafsthe trace operator, and recalling that the

trace of a matrix is equal to the trace of its transpose, thid term of (14) can be rewritten as:
u(ﬂwo@n@g):u(H@HﬂWT@Qﬂ. (25)

Defining
A©) = olrTOQ* | (26)

I1(9 can be obtained optimizing:

K F F
Z Z (F;C)*”E‘C))k,k —2 Z tr (WJ(”C)*ASEC)) -
k=1 f=1 f=1
F K
; ; (Wgcc)*ﬁgcc))k7k — 2tr (TF;C)*A;C)) , (27)

whereASf) is the f—th row of A(©). We can optimize eachgf) independently because the terms in the
summation (27) can be factorized with respect to the m\&%. Thus, for a giver: and f, 7r§f) can be
found by minimizing:

K

S wl),  — 2 (50740 (28)

k=1

(c)

Since the row vectofr; " must have a single non-zero elemept with index k, the optimal index: "

f ’
and its corresponding valué}pt, are found as the solution of:
k';pt = argmin min (vz - 2va5f;€) , (29)

k Uk

i.e., for a givenk, the minimum value;, is obtained by zeroing the derivative of the functiszfn—kaAgefL:

e =AY (30)
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Substituting (30) in (29) we finally get:

k;ﬁpt = arginax Agf}f , vjﬁpt = Aﬁcopt . (31)

D. Initialization of matricesQ and O

Recalling that a SVD ofT(®) is a particular case of decomposition (6), in order to ifiite&a the

dictionary matrixQ and allO(©) matrices, we perform the SVD of each mati’)T(© as:
LT — yla gy (32)

Matrix O(°) is initialized by matrixU(©),
Matrix Q is initialized by pooling together the rows of all the mascv (9* and keeping only the rows
corresponding to the largest pooled singular values.

Thus, we can select the siZé€ of the dictionaryQ to be much less than the siz€ ¥ x M) of T,
according to memory-accuracy trade-offs.

No initialization is needed for the matricd$(®) because, givelQ and O, the rows of eacHI(®)

can be set according to (31).

VI. ESTIMATING A FULL—RANK MATRIX TT(¢)

Since the optimization ofI(® is performed independently for each revy(f), it may happen that the
optimal index for two rows: andb is the same, i.e., that two non-zero values appear in the saluen
of m(f) and wéc), as illustrated in Figure 2 (a). This configuration, howevedjdates that matriXI()
is not full-rank, and that two of its rows select the sameidi@ry atom. Thus, one of these rows is
superfluous. By properly merging in a single row the inforim@ttarried by both rows, tThe optimization
function does not change, and additional optimization carobtained by re—estimating, according to
(31), the optimal index and value of the row that was cleaneéﬁ) (in Figure 2). In the following we
present an algorithm that performs these optimizationditegato a full-rank estimate of matriki(®),
which better exploits the shared dictionary.

Let k; denote the index of the non—zero elementmngf, the f—th row of II¥), and letv; be its
corresponding value. Lat; = 0 if all the elements of a rowr, are zero. Then, for matrifI®) to be
full rank it is necessary (see Proposition 1 in Appendix) that > 0 for all rows f and thatk, # k;
for a # b, i.e., I1(9 must have a single non—zero element per row, located inréiffecolumns. Since

the optimization procedure introduced in Section V-C is fdedo directly impose such constraints on
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Fig. 2: Merging two rows of a matrifI(®) having two non-zero values in the same column: (a) initial
configuration, (b) updates of matrid(©) and O(©) according to steps 2 and 3 of Algorithm 2.

matrix I1(®), it may happen that the estimated matrix is not full ranks]ttherefore, possible to estimate
a better matrix. Assuming that bofi(®) and Q are full rank, i.e.,p(T\®) = F, and p(Q) = M, our
goal is an iterative procedure that, keeping cons@nestimates a full-rankI(®) matrix, and decreases
the objective function:

(0, 1)) — HT(C) _ O(C)H(C)QHQ ‘ (33)

Let II(9 and O(© denote a (suboptimal) solution of our optimization problembtained by first
optimizing with respect td (), and then with respect tbI(®), as described in Sections V-B and V-C,
respectively. Assume also that at least two non—zero elemgrand v, of II(©) are on the same column
k = ke = k. We follow a two-step approach to estimate a better solutdff), I1(9)) such that
p(T1€)) > p(TI)) andg(0), 1)) < ¢(0), TT)).

First we estimate a solutiofO(©), II(¢)) equivalent to{O(®), I1(?)) by properly merging rowsa andb of
I1(9), and the corresponding columns ©f%). We then apply (31) to get a better estimatelBf).

Since the values, anduv;, of matrix IT(®) are on the same column, it is easy to verify that, if we replace
the a—th column ofO(©) by the linear combination of the columps andoy, given by, = 1,04 + V05,
and the values, and v, in II(9 by 1 and 0, respectively, we obtain a new solution which does not
change the value of the produ€(©TI(®) and, therefore, does not change the value of the objective
function (33). This solution, however, would make maté%) no more orthogonal.

In order to recover an equivalent feasible solution, oneatzserve that the new solution does not depend
on the values of thé—th column ofO(®) becausey, = 0. Moreover, it is worth noting that if a column

vectoro; of O is divided by a given value, and the valuev; of TI(¢) is multiplied by the same
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Algorithm 2

while a pair of rowsa andb of II(®) exists such thak, = k;, and|v,| > 0, |vs| > 0 do

2. ComputeO(© by replacing the columns, andoy in O by 6, andoy, , respectively (34).
3. ComputelI(©) by replacing the values, andv, in II® by (v2 + v2)? and0, respectively.
4 Estimatel1(©) using (31) as:

=

. a2
I1(°) = argmin HT(C) — O(C)HQH .
I
5. Update: O « O | 119 « 1),

value v, the productO(©TI(®) does not change. Thus, tleth column ofO(©) can be replaced by the
unitary vectoro, = % obtained by dividingd, by its norm, provided that the valug of I1(¢)

is multiplied by same norm. Them, can be set to zero, but the colump of O has to be replaced
by a unitary vector that must be orthogonal both to veépand to all other column vectors @(©).
All these operations are summarized in Algorithm 2, whicbves the steps for estimating a full-rank
matrix I1(°),

Let's define vectors:

R U ) A G 0 (34)
(v3 +v3)? (v3 +v3)
which are unitary and orthogonald,| = 1, ||6,|| = 1 and 6.6, = 0). Sinceo, and 6, are linear

combinations ob, ando,, they are also orthogonal to all other columns®f). Replacing the columns
o, ando, of 0 by 6, andoy, respectively, and the values andv, of II(®) by 7, = (v2 + vf)% and
vy = 0, respectively, we get a feasible solution which does nohghahe value of the objective function
(33). This procedure is indicated in step 2 and step 3 of Algori2, and in Figure 2 (b).

It can be shown that the resulting solution is optimal witepect to all rowsr, of II(°), except for
the null row ;. Since rowm, is null, it can be re—estimated according to (31) to increhseobjective
function value (steps 4 and 5).

This procedure ends in a finite number of steps, and leads td-aank estimate of matridI(©). All

proofs are given in Appendix.

VIIl. |- VECTOR EXTRACTION

Using the approximate(©) of (12), the i—vector posterior precision matrix can be cate as:

Ly = I+ ZN)((C)Q*H(C)*O(C)*O(C)H(C)Q
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= 1+Q ) _NYmOmq . (35)

It is worth recalling that each matrikI®) is virtually large because it has dimensifhx K, but it has
actually at most one non—zero element per row, thus it caridsedsas a sparse matrix. Computibg,

however, not only require®(M?) memory, but has complexity) (K M?). The i—vector extraction (3)
can be performed, however, without actually computing ametrting matrixLy by solving the system

of linear equations:

Lywy = T'fy

= S

c

= Q) m90y . (36)

Since matrixLy is symmetric and positive definite, the linear system of eqnat(36) can be solved by
the Conjugate Gradient (CG) method [31], which soliesw .y = ¢, wherec is the right-hand side of
(36), iterating from an initial gues&,, and generating successive vectors that are closer to hhoso

wy that minimizes the quadratic function:
f(Wx) = iwgixwx — Whe . (37)

The iteration updates in the CG algorithm are based on theuptarf matrix Ly by a vector, which is
eitherw,, or a direction vectop,,, wheren is the iteration number. Exploiting these characteristics o
the algorithm, it is possible to reduce the high memory dafeaand the costs due to the computation
and inversion of matrid.y because the latter always appears multipliedibyor p,,.

The product ofl.x by a genericd/—dimensional vectow,,:

Layv, = Iv, + Q* (z Nﬁf)n@*n@) Qv., (38)
can be effectively computed, right—to—left, by the seqeeoicoperations:

z = Qv, (39)
z (Z Nﬁf)r[(c)*H(C)) z
z +— Q'z

Lyv, = z+v,.
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The order of the operations is important because the first tiperaroduces a vector, which is then
scaled by the values of the diagonal mafyi, N)(f)H(C)*H(C), and finallyLyv,, is obtained by the last
two operations.

Pre—conditioning the conjugate gradient method, by muyitigi the residual by a fixed symmetric positive-
definite matrix, speeds—up convergence. The pre—conditidrixitbat has been used in our experiments

is the inverse of:

M = (Z Nﬁ?) 3w diag(T@*T@) + 1, (40)

i.e., the inverse of a diagonal approximation of the precishatrix of the posterior distribution (4).

TABLE I: Results for the extended NIST SRE2010 female tests msef % EER, minDCF081000 and
minDCF10x 1000 using different i—vector extraction approaches. Latilv—t refers to the Variational
Bayes approach of [21] setting the sub—block dimension, tand the stopping threshold to Label
FSE-—t refers to the Factorized Sub—space Estimation approachgét dictionary dimension t&,
and the stopping threshold to

1 core 12 cores
Memory 1000 utterances 5000 utterances PI__DA _
System cpu time | time ratio | cpu time | time ratio (%) min min
(MB) EER | DCF08 | DCF10

Fast baseline 815 174 4.70 184 8.76 | 3.59 181 566
Slow baseline 188 2462 66.54 2020 96.19 | 3.59 181 566
VB10-10 205 385 10.4 267 12.71 | 3.57 181 570
VB20-10 221 338 9.14 249 11.86 | 3.51 182 569
VB10-100 205 228 6.16 147 7.00 | 3.59 184 587
VB20-100 221 195 5.27 147 7.00 | 3.53 183 572
Eigen—decomposition 191 37 1.00 21 1.00 | 4.27 201 692
FSE-2k-10 No Prec. 32.1 28 0.76 17 0.81 | 3.70 191 575
FSE-2k-100 No Prec. 32.1 21 0.57 15 0.71 | 4.04 194 581
FSE-2k-10 Diag Prec. 32.1 29 0.78 21 1.00 | 3.73 191 579
FSE-2k-100 Diag Prec. 32.1 24 0.65 19 0.90 | 3.86 200 594
FSE-3.5k-10 No Prec. 35.1 36 0.97 22 1.05| 3.76 195 551
FSE-3.5k-100 No Prec. 35.1 25 0.68 18 0.86 | 4.08 201 588
FSE-3.5k-10 Diag Prec. 35.1 34 0.92 25 119 | 3.73 196 545
FSE-3.5k-100 Diag Prec. 35.1 28 0.76 22 1.05| 3.91 200 572
FSE-5k-10 No Prec. 38 43 1.16 28 1.33| 3.49 185 580
FSE-5k-100 No Prec. 38 29 0.78 22 1.05 | 3.69 191 606
FSE-5k-10 Diag Prec. 38 40 1.08 30 143 | 3.43 185 582
FSE-5k-100 Diag Prec. 38 31 0.84 26 1.24 | 3.61 188 605
FSE-10k-10 No Prec. 48 85 2.30 50 2.38 | 3.56 185 584
FSE-10k-100 No Prec. 48 53 1.43 35 1.67 | 3.76 190 589
FSE-10k-10 Diag Prec. 48 68 1.84 46 2.19 | 3.56 184 578
FSE-10k-100 Diag Prec. 48 49 1.32 36 1.71| 3.73 190 599
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TABLE II: PLDA results for the FSE approach using very small dicdoy dimensionsk = 500 and
K = 1000.

Memory | % min min
(MB) EER | DCF08 | DCF10
FSE-0.5k-10 29.8 5.05 247 698
FSE-0.5k-100| 29.8 5.23 255 695
FSE-1k-10 30.6 4.43 227 641
FSE-1k-100 30.6 4.72 229 635

System

VIIl. COMPLEXITY ANALYSIS

The standard, eigen-decomposition, and the VB approachesotavoid the cost of storing matrix
T, which isO(CFM). In our FSE approach, instead, memory demand depends,ahe number of
atoms in the dictionarfQ. In particular, the total memory cost (K M) for Q, O(CF?) for the O(©)
matrices, andD(CF) for the sparse matriceH(®). Additional O(M) memory has to be allocated for
the pre—conditioning matrix (40) that allows reducing theniber of Conjugate Gradient iterations. After
training has been completed, further memory saving can teérsl by selecting the entries in eddi)
having a small absolute value, and clearing the correspgnablumns ofO(®). These columns would
give a negligible or no contribution td'© = O©II(9Q because the corresponding rows Iaf®) Q
are approximately zero. Also, the dictionary can be comgzheixcluding the atoms that are never used
(about 200 in our FSE-5k models).

As far as the computation complexity of the FSE method is corexkrthe first and the third operation
in (39) have complexityO(NK M), where N is the number of CG iterations. The complexity of the
second operation ©(NCF) because each matrbi(¢) includesF entries only, plus a minor contribution
O(NK) for scalingz. The complexity of the last operation is negligible becausis O(NM) only.
Computingc has complexityO(CF? + K M).

Since few iterations (less than 10) are usually necessarpt@irmoapproximate i—vectors that produce
very good results, the Conjugate Gradient approach, haamgverall complexityO(NKM + CF?)
is not only faster than the standard approach, whict(€ FM?), but also of theO(CFM) eigen—
decomposition approach. As shown in Table |, for large \&aloeK the FSE method becomes slower

than the eigen—decomposition approach, which, howeves f& more memory, and is less accurate.
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IX. EXPERIMENTAL SETTINGS AND RESULTS

In this work we followed the same experimental protocol apttisgs that were presented in [20].
Since these works were focused on memory and computatiostd obthe i—vector extraction module,
we did not devote particular care to select the best combmaif features, techniques, and training
data that allow obtaining the best performance. Thus, wedestir systems mainly on the female part
of tel-tel extended NIST 2010 evaluation trials [32]. We ¢eisthe “standard”, the Variational Bayes,
the eigen—decomposition, and the FSE i—vector extractiohntgques, with systems having the same
front—end, based on cepstral features. In particular, viaebed, every 10 ms, 19 Mel frequency cepstral
coefficients and the frame log-energy on a 25 ms sliding Hagmimdow. This 20—dimensional feature
vector was subjected to short time mean and variance naratialh using a 3 s sliding window, and a 60-
dimensional feature vector was obtained by appending tha dad double delta coefficients computed
on a 5—frame window.

We trained a gender-independent UBM, modeled by a diagamariance 2048-components GMM,
and a gender-independéntmatrix using only the NIST SRE 04/05/06 datasets. The i-vedtoedsion
was fixed to 400 for all the experiments.

Our classifier for these experiments is based on Gaussian PLDplemented according to the
framework illustrated in [12]. The scores presented are nahalized. We trained models with full-rank
channel factors, using 120 dimensions for the speakerriacitie i-vectors of the PLDA models afg
normalized after Within Class Covariance NormalizationG®N) [33] has been applied. The WCCN
transformations, and the PLDA models have been trained usamgreviously mentioned NIST datasets,
and additionally the Switchboard I, Phases 2 and 3, and SwitaftbCellular, Parts 1 and 2 datasets.

Table | summarizes the performance of the evaluated appesagn the female part of the extended
telephone condition in the NIST 2010 evaluation. In thisealnd in the following we will refer to the
standard approach as the "fast baseline” approach. Theniticmgaccuracy is given in terms of percent
Equal Error Rate (EER) and Minimum Detection Cost Functions000) defined by NIST for the 2008
(minDCF08) and 2010 (minDCF10) evaluations [32].

As far as the computational speedup is concerned, the sesuthe experiments reported cannot be
directly compared with the ones given in [21], [20] becausgé times larger number of conversation
segments have been processed in order to obtain more accooeaisurements for the faster techniques.
In particular, the computation time has been evaluated lier éxtraction of the i—vectors of 1000

and 5000 segments for the single-thread and multi—thretidgserespectively. Moreover, the absolute
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TABLE IlI: Results for all conditions of the extended NIST SREROMale tests in terms of % EER,
mMinDCF08x<1000 and minDCF101000 using the standard and the Factorized Sub—space Estimati
approach with dictionary dimensioR = 5000. Condition labels Nve, Hve, and Lve refer to Normal,
High, and Low vocal effort, respectively.

] System [ Standard [ FSE
Condition Number % min min % min min
EER | DCF08 | DCF10 | EER | DCF08 | DCF10

Interview in Train and Test, Same Microphone 1 1.62 79 402 1.62 84 379
Interview in Train and Test, Different Microphone 2 2.05 111 472 2.15 120 471
Interview in Train and Nve Phonecall Over Tel Channel in Test 3 2.02 122 443 2.77 128 463
Interview in Train and Nve Phonecall Over Mic Channel in Test 4 2.02 104 452 2.33 111 444
Nve Phonecall in Train and Test, Different Number 5 2.05 111 388 2.22 122 421
Nve Phonecall in Train and Hve Phonecall in Test, Tel 6 4.63 231 761 5.12 246 783
Nve Phonecall in Train and Hve Phonecall in Test, Mic 7 4.47 256 868 5.05 241 829
Nve Phonecall in Train and Lve Phonecall in Test, Tel 8 2.00 102 411 2.14 113 438
Nve Phonecall in Train and Lve Phonecall in Test, Mic 9 1.61 32 137 1.71 36 171

All - 2.29 123 485 2.49 131 491

times heavily depend on the computer architecture, cad®e ishplementation language, and optimized
numerical routines that are used. Thus, the relative spgedf-an approach with respect to the others is
more meaningful and informative than the absolute i—veetdraction times. The eigen—decomposition
approach has been chosen as the reference for the relateel-sp because it is the fastest among
the ones considered in this work. Also, the memory value2®} re doubled with respect to the ones
reported for the experiments done in this work because itatier we forced our Python implementation

to use float rather than double precision structures. Usiisgcthnfiguration, the accuracy of the systems
is practically unaffected, whereas relevant gain is oleim terms of memory and speed-up.

The baseline results, corresponding to the standard i—vegtoaction, were obtained 14 times faster
than the corresponding slow approach. However, the lagiguires only 188 MB for storing matrif,
whereas the former needs 4 times more memory to store the Bfit T(©) required to speed—up the
computation of (4).

The approximate i—vector extraction based on eigen-decsitipo is extremely fast, and requires
almost the same amount of memory needed for the accurateagipvoach. However, it is not able to
reach the accuracy of the baseline system.

Four implementation scenarios for the Variational Baygsregch [21], referred to as VB 10-10, VB
20-10, VB 10-100, and VB 20-100 in Table | were tested as fpdnecsimulation experiments. Label VB
b—t refers to the VB approach of [21] setting the sub—block disi@mtob, and the stopping threshold to

t. The stopping criterion is based on the difference betweern.fhnorm of the current estimated ivector
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and the one computed in the previous iteration. The VB systdim avtight convergence threshold is
able to get the same results of the baseline systems, it ixpypately 1.2 to 2 times slower than the
standard approach, depending on the available number auo@mt threads, but it uses only slightly
more memory than the fast, but inaccurate, eigen—decotigposipproach. Very good performance is
also obtained by the VB 20-100 system, with an earlier stofhefiterations due to a 10 times larger
convergence threshold, leading to i—vector extractionctvhs at worst 1.3 times slower when using a
single thread, but requires only 1/4 of memory required gy dtandard approach.

I-vector extraction with the FSE approach has been testechlnrig four systems, based on different
dimensions of the dictionarys = 2000, 3500, 5000, and10000, respectively. The i—vectors were obtained
by the Conjugate Gradient procedure illustrated in Sectiinstopping the iterations when the residual
r, = ¢ — LW, is less than two different threshold&)0 or 10, respectively. Again two threshold values
have been tested to show that the threshold value is natadrftr the recognition accuracy. The results
show that the FSE performance is always better than the eigeorgposition approach, and depending
on the dimension of the dictionary it can reach an accuracygpeawable to the standard approach. FSE
dramatically reduces the memory cost of i—vector extractly 20 times compared to the standard
approach, but also by 5 times compared to the other memorseaapproaches. It is also extremely fast:
faster than the standard method, and even faster than te-eigcomposition approach for large UBM
models and small dictionary size.

Comparing the results obtained with and without pre—caomiitg the Conjugate Gradient, it can be
observed that pre—conditioning contributes only a smalesgpup for large models (5K and 10K), whereas
it is detrimental for small models. Thus, it is not worth usprg—conditioning for small models because
it does not speed up i—vector extraction, and requi?éd/) additional memory.

The small FSE-2K systems perform surprisingly well, considgtimt they use /5 of the memory
of the eigen—decomposition approach, but obtain resuttdasi to the standard technique.

Dictionary dimensions smaller thaid = 2000 are not included in Table | for two main reasons. First,
our goal was to keep as much as possible the standard systéammence, thus, we don’t consider the
results obtained with{ = 500 and K = 1000, shown in Table Il, comparable with the results given in
Table | even forK = 2000. The second reason is that using such small valuegstas not effective
because memory occupation would be dominated by the set oicesO(©).

Since the relative performance of approximated approachds e affected by the evaluation set that
is used, we tested our FSE technique also on all conditionseoéxtended NIST SRE2010 male tests.

Moreover, in order to maximize the difference with respecthe previous experiments, we used another
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set of i-vectors obtained with different features, basedibrPerceptual Linear Prediction, 19 Cepstrals
(c0-c18), 19 deltady — A1g), and 7 delta—deltaXAo — AAg), rather than on the 60 MFCC features
used for the female tests.

The comparison of the performance of the standard and therae Sub—space Estimation approach
with a dictionary dimension of = 5000 is shown in Table Il. Excluding the tests with different vocal
efforts, which are generally considered less significart, DICFs of the FSE approach are at most 10%
relative worse than the ones of the standard method, aneakby 6.5% relative on the DCF08, and

only 1.2% for the DCF10 on the overall test, as reported in &sé low of Table II.

X. CONCLUSIONS

The aim of this work was to optimize the memory and computatiore required for the i-vector
extraction module of a speaker recognition system. A newaggh has been presented that accurately
approximates the components of the variability matrix byangeof a linear combination of the atoms
of a dictionary. The use of a common dictionary not only allawducing the memory required with
respect to the standard approach, but also with respectetottier memory—aware techniques, which
cannot avoid storing th&@' matrix.

We analyzed the time and memory complexity of the statehefdrt techniques and of our proposed
method for i-vector extraction, and we also experimentatiynpared their performance. Our approach
is not always as fast as the eigen—decomposition technimuegllows obtaining accurate i—vectors and
results, and requires substantially less memory than ther éechniques.

Although this optimization is particularly useful for srh&dotprint applications, it can be also relevant
for speaker identification and verification applications, wehthe duration of the available speaker seg-
ments is short. In fact, for short utterances, and for a givedel dimension, the relative cost of i-vector
extraction increases because the time devoted to i—vegtoacion does not depend on the segment
duration. A table giving the percentage of the overall rextogn time devoted to i-vector extraction
using the standard approach, as a function of the GMM dimessihas been presented in Section VI-B
of [21]. In these conditions, a fast but accurate technigueh as the FSE approach with a large enough

dictionary, gives an important contribution to the redowtbf the recognition times.
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APPENDIX

In this Appendix we prove that:

o The rank ofII®) in (12) is less tharF if and only if two non—zero elements #1(°) appear in the
same column.

« Step 2 and 3 of Algorithm 2 do not change the objective func(@s).

« Step 3 of Algorithm 2 gives the optimal solution for merged mﬁ\ci), thus the optimization of Step
4 can be performed simply on the cleared rmg\?).

« Algorithm 2 converges in a finite number of steps, providingith-fank matrixI1(©).

A. Rank off1(¢)

The procedure introduced in Section V-C for computing a newnese of II(9), given the current
estimate ofO(® and Q, does not guarantee that the new mali%) is full rank, i.e.,p (II®) = F. In
order to demonstrate that Algorithm 2 is able to increaseah& of I1(©) we need to prove the following
proposition:

Proposition 1:

Assume thap(T)) = F, p(Q) = M and thatTI®) is computed as in Section V-C, i.e.,
2
1) = argmin HT(C) — O(C)HQH .
i

Then
0 <H(C)> <Fo3a,30 | ke=kp [va] > 0,|0p >0,

i.e., p (H(C)) is less thanf' if and only if two non—zero elements &I appear in the same column.

Proof: The backward implication of the proposition is easily proeéderving that whenevéy, = k;
for rows m,, m, of I1(9), with values|v,| > 0 and |v,| > 0, respectively, the two rows are linearly
dependent because, = Z—Zwb.

As far as the forward implication of the proposition is comesl, let's assume thdt, £ k;, for all
rows 7, and, and thafvy| > 0 for all rows ;. Then, all rows offlI®) would be linearly independent,
which would implyp(H(C)) = F. Since this negates the hypothesis, then either afr@xists such that
s = 0, or a pair of rowsr, and, exist such thak, = k. In order to prove our proposition, we show

that m; = 0 for some f would contradict the hypothesis tha¥©) and Q are full rank matrices. Since,
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according to the update rule f#1(°) in (31), the valuevy, for each rowf, is estimated as:

vp = Agf?gf ks = argmax Agf}f ,
k
vy = 0 implies thatASf}C = 0 for any choice oft. SinceA(®) would be aF x K matrix with a null row,
we would havep(A(?)) < F. On the other hand, according to the definition of mathixin (26), and
since matrice0(®), T(°), andQ are full rank, matrixA = O©*T(9)Q* has rankF. Hence,|v| > 0
must be true for allf. Sincep (H(C)) < F we can conclude that a pair of row indicesand b must
exist such thak, = k. [ |

As a corollary of Proposition 1 we also obtain thag| > 0 for all rows ;.

B. Step 2 and 3 do not change the objective func(&s)

Let TI(9 and O(© denote a (suboptimal) solution of our optimization problembtained by first
optimizing with respect t®(©) as described in Section V-B, and then with respedHt6 as described
in Section V-C. Let alsar, and, denote a pair of rows dil®) such that, = k, = k, andg(O(©), I1())
denote the objective function related to theth component ofT’, consideringQ constant, defined in
(33).

The first step to prove the convergence of the proposed algogtinsists in proving that

g(09 1) = (0@, 1) |

where g(0(©),TI(%)) is the objective function value computed using the matrioé8 and I1(®) defined
in Algorithm 2 in Section VI. The two objective function valuage equal becaug®@©TI(¢) = O TI(©),

To prove latter statement, we rewri@)TI(¢) as:
0 = Zc‘)fﬁ-f , (41)
f

where the sum extends over all columiis of O©) and all rows7, of II®). Further expanding (41),

taking into account step 2 and step 3 of Algorithm 2 and the iefirs in (34) we get:
O(C)ﬁ(c) = Z(_)fﬁ'f
f

- Z 87} + 047 + 040
f#ab

= 3 opmy 4 Le0a U0 (2 2y,
fFab (v2 +v3)>
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= Z OfT ¢ + 0g€1Vq + Op€LVp
f#a,b
e Zofﬂ-f — O(C)H(C) ,
f

wheree;, is the k—th vector of the standard basisRf¢, i.e.,e, = [0,...,0,1,0,...,0]. The feasibility
of the solution can be easily proved by observing that|| = 1, ||0s]] = 1 and 6’0, = 0. Moreover,

0, ando, are linear combinations a@f, ando;, and therefore are orthogonal to all other column©&?.

C. Step 3 gives the optimal solution for merged o)

We prove that step 3 provides the optimal solution for dh¢h row of matrixII() so that matrices

I1(©) and I1(©) differ only in their b—th rows. Let
A©) = QlrTOQ* | A©) = olrTQr . (42)

Since matricedD(© and O(© differ only in their a—th andb—th columns,ASf) = Agf) for any row

[ #ab.
The optimization in step 4 is performed for each r¢vef I1(©) independently according to (31), we get,

therefore, the same solution for any rgin a, b:
Ty =1 =Ty V| f#ab. (43)

To prove that alsat, = &, we rewrite thea—th row of A(®) as:

CING
Al = Yafha Toly (44)

¢ (vfb + U%)%

where the relation betweeA(© and A derives from the relation betweed(© and O(© defined in

step 2 of Algorithm 2. The optimal solution for the new réwy is given by:

(c) ()
JeoPt — (02 _ (““Aa»k N ””Abvk>
o = argmax A ;° = argmax 5 5
ke k (v3 +v3)

O ”aAg@om + UbAz(;,ciiom

Ukgre = Ay pore = (45)

(3 +13)°
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Since for every original rovwgf)

2
vf = Agf’if, kr = arginax ASCCL , (46)
it follows that:
[val = max|Aqel, o] = max| Ayl (47)
thus,
2
102 (”“Aﬂ + ”bA’()?’z)
max A~ = max 5 (48)
k ’ k (vg + vb)
2
(|eadh] + [onai2])
< max 3
k (v2 + vb)
2
(!va\manl L ‘Jr |vp| maxg, Az()j; )
B (v2 +23)
(va + ”2)2 2, .2
= — = _|_ .
(v2 +v2) (v +v3)
On the other hand, if we séf’" = k, = k, = k, then from (45) we have:
2 2)2
X +v )
Aep o Watv) oy 49
a,k (Ug + U[?) (Ua + Ub) ( )
Therefore k2" = k, = k;, = k is an optimal solution, and the corresponding value is givgn
'Ukom = ('U —+ 'Ub)E . (50)

D. Convergence of Algorithm 2

Since, as previously shown, step 4 of the algorithm actualhestimates only a single rofy,, which
was 0, the corresponding contribution to the objective functisnsimply given by the value of (28)
computed with the optimal value, obtained by (31), i. eAb ]){m, thus the objective function decreases
as:

c c ~e) Frle)y _ 4(c)2
901, 11) — g(O'), ) = A1, . (51)

The proposed algorithm terminates for two reasons: ekhe# k; for all rows, or two rowsrm, andm,

exist such that, = k;, but v, or v, or both are 0. However, Proposition 1 states thafl'if’ and Q
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are full rank, step 4 estimates a row which has exactly one-zeno element. Thus, when Algorithm 2
terminates, every indek; will refer to different rowsm; of II(®),

Finally, it remains to prove that the algorithm converges findie number of steps to a solution where
ky # kg for any f # b. The proof consist in showing that the objective function\adrg iteration of the
algorithm never decreases less than a fixed value greatezéran

Let’s consider a generic orthogonal matx and the matrix produc®*T(©)Q*. Let’s also defined

as the smallest among the largest squared values of eachfribig anatrix. Formally:
(c) ’
= min mj *TOQ* 2
0 Hgnmfmml?x [(O Q )f,lj , (52)

where the minimum and the maximum are taken across all rodrs@nmns of the argument, respectively.
As a corollary of Proposition 1 it follows that, i'® and Q are full rank matrices§ > 0. Since in
step 4 we estimate a new solution minimizing the objectivecfion (33) such that (51) is satisfied, and

by definition
Ab’kopt = ml?x [(O T9Q )bk;] , (53)

it follows that s < A\°)2,. Therefore:

9(0 T1)) — 4(0©, F1)) — flz(f;lgm >6 . (54)

Since the objective function is lower—bounded by zero, aneasth iteration the objective function

decreases by at least a finite positive amayrthe algorithm terminates in a finite number of steps.
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