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Summary

Most of the engineering problems of the last two centuries have been solved thanks to
structural models for both beams, and for plates and shells. Classical theories, such as
Euler-Bernoulli, Navier and De Saint-Venant for beams, and Kirchhoff-Love and Mindlin-
Reissner for plates and shells, permitted to reduce the generic 3-D problem, in one-
dimensional one for beams and two-dimensional for shells and plates. Refined higher
order theories have been proposed in the course of time, as the classical models do not
consent to obtain a complete stress/strain field.

Carrera Unified Formulation (UF) has been proposed during the last decade, and
allows to develop a large number of structural theories with a variable number of main
unknowns by means of a compact notation and referring to few fundamental nuclei. This
Unified Formulation allows to derive straightforwardly higher-order structural models, for
beams, plates and shells. In this framework, this thesis aims to extend the formulation for
the analysis of Functionally Graded structures, introducing also the thermo-mechanical
problem, in the case of functionally graded beams. Following the Unified Formulation, the
generic displacements variables are written in terms of a base functions, which multiplies
the unknowns. In the second part of the thesis, new bases functions for shells modelling,
accounting for trigonometric approximation of the displacements variables, are considered.





Sommario

La maggior parte dei problemi ingegneristici degli ultimi due secoli sono stati risolti grazie
a modelli strutturali per travi, piastre e gusci. Le teorie classiche, come ad esempio Eulero-
Bernoulli, Navier e De Saint-Venant per le travi, e Kirchhoff-Love e Mindlin-Reissner per
piastre e gusci, hanno permesso di ridurre il generico problema 3-D, a problemi mono-
dimensionali per le travi e bidimensionali per gusci e piastre. Teorie di ordine superiore
sono state proposte nel corso del tempo, in quanto i modelli classici non consentono di
ottenere un campo completo di tensioni e deformazioni. La Carrera Unified Formulation
(UF) Ã¨ stata proposta nel corso dell’ultimo decennio, e permette di sviluppare un gran
numero di teorie strutturali con un numero variabile di incognite mediante una notazione
compatta e con riferimento pochi nuclei fondamentali. Questa formulazione unificata per-
mette di derivare semplicemente modelli strutturali di ordine superiore, per travi, piastre
e gusci. In questo quadro, questa tesi si propone di estendere la formulazione unificata
per l’analisi di strutture Functionally Graded (FGM), introducendo anche il problema
termomeccanico, nel caso di travi FGM. Grazie alla formulazione unificata, le generiche
variabili spostamento sono scritte in termini di funzioni di base, che moltiplicano le inco-
gnite. Nella seconda parte della tesi sono state introdotte nuove basi di funzioni per la
modellazione di strutture a guscio, basate sull’approssimazione delle variabili spostamento
secondo funzioni trigonometriche.





Résumé

La plupart des problèmes d’ingénierie des deux derniers siècles ont été résolus grâce à
des modèles structuraux pour poutres, plaques et coques. Les théories classiques, tels
que Euler-Bernoulli, Navier et de Saint-Venant pour les poutres, et Kirchhoff-Love et
Mindlin-Reissner pour plaques et coques, ont permis de réduire le problème générique
3-D, dans le problème unidimensionnel pour les poutres et deux dimensionnelle pour les
coques et les plaques. Théories raffinés d’ordre supérieur ont été proposées au cours du
temps, comme les modèles classiques ne consentez pas à d’obtenir une complète domaine
des contraintes et des déformations. La Carrera Unified Formulation (UF) a été proposé
au cours de la dernière décennie, et permet de développer un grand nombre de théories
structurelles avec un nombre variable d’inconnues principales au moyen d’une notation
compacte et se référant à des nuclei fondamentales. Cette formulation unifiée permet de
dériver carrément des modèles structurels d’ordre supérieur, pour les poutres, plaques
et coques. Dans ce cadre, cette thèse vise à étendre la formulation pour l’analyse des
structures fonctionnellement gradués (FGM), en introduisant aussi le problème thermo-
mécanique, dans le cas des poutres fonctionnellement gradués. Suite à la formulation
unifiée, les variables génériques déplacements sont écrits en termes de fonctions de base, qui
multiplie les inconnues. Dans la deuxième partie de la thèse, de nouvelles fonctions de bases
pour la modélisation des coques, qui représentent une approximation trigonométrique des
variables déplacements, sont pris en compte.
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Résumé XI
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Chapter 1

Introduction

The present thesis concerns with a unified approach, named ’Carrera Unified Formula-
tion (UF)’ that allows to formulate several axiomatic theories for beams, plates and shells
structures. The first part of the thesis present the formulation for beam structures. After a
brief introduction and literature survey on beam modelling, we introduce the UF for beam
with solid and thin-walled cross-section and results for the modal analysis of such struc-
tures is carried out. The concept of the Unified Formulation in beams structure analysis is
to assume A N -order polynomials approximation on the cross-section for the displacement
unknown variables. The three-dimensional kinematic field is derived in a compact form
as a generic N -order approximation, being N a free parameter of the formulation. The
governing differential equations and the boundary conditions are derived by variationally
imposing the equilibrium via the principle of virtual displacements. They are written in
terms of a fundamental nucleo that does not depend upon the approximation order. The
free vibration analysis of solid and thin-walled isotropic beams is carried out through a
closed form, Navier type solution. Bending, torsional and axial modes, as well as local
modes are considered. Results are assessed toward finite element solutions.

The free vibration analysis of functionally graded beams via higher-order models and
unified formulation is straight after considered.

Functionally graded materials are a class of composite materials, whose mechanical and
thermal properties vary continuously on the space directions according to a specific gra-
dation law, in order to accomplish certain functions. Bones are an example of functionally
graded materials present in nature. In general these materials are made of a metal and a ce-
ramic component, since their principal purpose concern high-temperature application. We
considered a power law distribution in terms of volume fraction of material constituents,
along the cross-section of the beam. Young’s modulus, Poisson’s ratio and density vary
along one or two dimensions of the cross-section. A Navier-type, closed form solution is
adopted. Higher-order displacements-based theories that account for non-classical effects
are formulated. Classical beam models, such as Euler-Bernoulli’s and Timoshenko’s, are
obtained as particular cases.

The thermal behaviour of beams made of orthotropic and functionally graded materi-
als is also investigated. The governing equations are derived from the principle of virtual
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1 – Introduction

displacements accounting for the temperature field as an external laod only. The required
temperature field is not assumed a priori, but is determined solving Fourier’s heat conduc-
tion equation. Numerical results for temperature, displacements and stress distributions
are provided and moreover a comparison with finite elements solutions obtained via the
commercial code ANSYS are presented.

The second part of the thesis presents the derivation of various shell’s and plate’s the-
ories, based on the Unified Formulation, where the assumed displacements field is written
in terms of new trigonometric basis functions of the thickness coordinate. To introduce
this topic we presented a comparison of several, significant shell theories to evaluate the
free vibration response of multi-layered, orthotropic cylindrical shells. Carrera Unified
Formulation for the modelling of composite spherical shell structures is adopted. Via this
approach, higher order, zig-zag, layer-wise and mixed theories can be easily formulated.
As a particular case, the equations related to Love’s approximations and Donnell’s approx-
imations and as well as of the corresponding classical lamination and shear deformation
theories (CLT and FSDT) are derived. The governing differential equations of the dy-
namic problem are presented in a compact general form. These equations are solved via
a Navier-type, closed form solution.

Equivalent single layer and Layer-wise shells theories based on trigonometric functions
expansions are derived in chapter 6. The aim of this part is is to extend the bases functions
used for higher order shell theories, in the framework of Carrera Unified Formulation, to
new trigonometric basis functions, outlined in an appropriate way. These theories are then
considered to evaluate the static behaviour of multilayered, orthotropic plates and shells.

2



Chapter 2

Beam’s Higher-order Modelling

2.1 Introduction

Modelling refers to the process of generating a model, and in particular a mathematical
model, as a conceptual representation of some phenomenon. A mathematical model is a
representation, similar but simpler, of an object or system, using mathematical concepts
and language. A beam is a structural element, characterized by a prevalent dimension
over the other two, that is capable of withstand load primarily by resisting bending.
An important feature of the beams is the cross-section shape, that can be solid or thin-
walled. Many primary and secondary structural elements, such as helicopter rotor blades,
automotive frames, robot arms and space erect-able booms, can be idealised as beams.
These structures play an important role in engineering fields (such as aeronautics and
space) in which an effective and safe design is mandatory.

2.2 Modelling Literature Review

There are different beam models with different accuracy present in literature. Classi-
cal beam models are based on the theories developed by Euler-Bernoulli [12], [43], De
Saint-Venant [40], [40] and Timoshenko [115], [116]. The first two models neglect trans-
verse shear deformation, whereas the last model accounts for uniform shear distribution
along the beam cross-section. Non classical effects are not identified by these theories and
therefore it required the development of higher-order theories. A review of historical con-
tributions to refined beams theories can be find in the book of Carrera et al. [31]. The free
vibration characteristics are of fundamental importance in the design of beam structures,
and therefore, the analysis of solid and thin-walled isotropic beams via refined theories
represents an interesting research topic. Benamar et al. [11] presented a general model for
large vibration amplitudes of thin straight beams. Hamilton’s principle was used to deter-
minate a set of non-linear algebraic equations. A condition is imposed on the contribution
of one motion in order to obtain a numerical solution for the non-linear problem. Simply
supported and clamped-clamped boundary condition were investigated. Matsunaga [72]
analysed the natural frequencies and buckling loads of simply supported beams subjected
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2 – Beam’s Higher-order Modelling

to initial axial forces. Thin rectangular cross-sections were investigated. A bi-dimensional
displacement field was assumed. Chen et al. [37] combined the state space method with the
differential quadrature method to obtain a semi-analytical method for the free vibration
analysis of straight isotropic and orthotropic beams with rectangular cross-sections. A
discussion about properties of the natural frequencies and modes for a Timoshenko beam
was presented by Van Rensburg and Van Der Merwe [118]. In [7] Attarnejad et al. intro-
duced the basic dispacement functions (BDF), that are calculated solving the governing
differential equations of transverse motion of Timoshenko beams by means of power series
method. BDF are applied for free vibration analysis of non-prismatic beams. Gunda et
al. [51] analysezed the large amplitude free vibration of Timoshenko beams using a finite
element formulation. Transverse shear and rotatory inertia are considered, togheter with
several boundary conditions. Tanaka and Bercin [113] studied the natural frequencies of
uniform thin-walled beams having no cross sectional symmetry. A study on the free vibra-
tion of axially loaded slender thin-walled beams is presented in the work by Jun et al. [56].
The effects of warping stiffness and axial force are included within the Euler-Bernoulli
beam theory. Chen and Hsiao [35] investigated the natural frequency of the axial and
torsional vibration for Z-section beams. The governing equations are derived by the prin-
ciple of virtual work. Numerical examples investigate the effect of boundary conditions.
In [36], the same authors presented a finite element formulation for the coupled free vibra-
tion analysis of thin-walled beams with a generic open cross-section. Duan [42] presented
a finite element formulation for the non-linear free vibration of thin-walled curved beams
with non-symmetric open cross-section. Vörös [123] accounted for the coupling between
different vibration modes considering that is induced not only by the eccentricity of ge-
ometry but also by steady state lateral loads and internal stress resultants. The governing
differential equations and boundary conditions were derived using the linearized theory of
large rotations and small strains, the principle of virtual work and a finite element model
with seven degrees of freedom per node. Ambrosini [3, 4] presented a numerical and ex-
perimental study on the natural frequencies of doubly non-symmetrical thin-walled and
open cross-section beams. Vlasov’s theory equations of motion were modified to include
the effects of shear deformation, rotatory inertia and variable cross-section properties.
An extension of the previous theory is used in the work of Borbón and Ambrosini [39]
to investigate natural frequencies of thin-walled beams axially loaded. They carried out
experimental tests in order to verify the proposed theory.

2.3 Higher-order models based on Carrera’s Unified Formu-

lation

In the following sections we present results for higher-order beams models derived via a
Unified Formulation (UF) that has been previously formulated for plates and shells, (see
Carrera [26]). In the Unified Formulation the displacements’ assumptions are written in a
compact form. The governing equations variationally consistent with the made hypothesis
are derived through the Principle of Virtual Displacements, in terms of ‘fundamental
nucleo’. This is a free parameter of the formulation, since it does not depend upon the order
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2 – Beam’s Higher-order Modelling

of expansion. As a result, an exhaustive variable kinematic model can be obtained that
accounts for transverse shear deformability and cross-section in- and out-of-plane warping.
Classic and higher modes are predicted although no warping functions are assumed.

2.3.1 Preliminaries

A beam is a structure whose axial extension (l) is predominant if compared to any other
dimension orthogonal to it. The cross-section (Ω) is identified by intersecting the beam
with planes that are orthogonal to its axis. A Cartesian reference system is adopted: y-
and z-axis are two orthogonal directions laying on Ω. The x coordinate is coincident to
the axis of the beam. Cross-sections that are obtainable by the union of NΩk rectangular
sub-domains:

Ω =
N

Ωk

∪
k=1

Ωk (2.1)

with:

Ωk =
{
(y, z) : yk1 ≤ y ≤ yk2 ; z

k
1 ≤ z ≤ zk2

}
(2.2)

are considered, see Fig. 1. Terms
{(

yki , z
k
j

)
: i, j = 1, 2

}
are the coordinates of the corner

points of a k sub-domain. Through the paper, superscript ‘k’ represents a cross-section
sub-domain index, while, as subscript, it stands for summation over the range [1, NΩk ].
The cross-section is considered to be constant along x. The displacement field is:

uT (x, y, z) =
{

ux (x, y, z) uy (x, y, z) uz (x, y, z)
}

(2.3)

in which ux, uy and uz are the displacement components along x-, y- and z-axes. Su-
perscript ‘T ’ represents the transposition operator. Stress, σ, and strain, ε, vectors are
grouped into vectors σn, εn that lay on the cross-section:

σT
n =

{
σxx σxy σxz

}
εTn =

{
εxx εxy εxz

}
(2.4)

and σp, εp laying on planes orthogonal to Ω:

σT
p =

{
σyy σzz σyz

}
εTp =

{
εyy εzz εyz

}
(2.5)

The strain-displacement geometrical relations are:

εTn =
{

ux,x ux,y + uy,x ux,z + uz,x
}

εTp =
{

uy,y uz,z uy,z + uz,y
} (2.6)

Subscripts ‘x’, ‘y’ and ‘z’, when preceded by comma, represent derivation versus the corre-
sponding spatial coordinate. A compact vectorial notation can be adopted for Eqs. (2.6):

εn = Dnpu+Dnxu

εp = Dpu
(2.7)

5



2 – Beam’s Higher-order Modelling

where Dnp, Dnx, and Dp are the following differential matrix operators:

Dnp =




0 0 0

∂

∂y
0 0

∂

∂z
0 0




Dnx = I
∂

∂x
Dp =




0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y




(2.8)

I is the unit matrix. Under the hypothesis of linear elastic materials, the generalised
Hooke law holds. According to Eqs. (2.4) and (2.5), it reads:

σp = Cppεp +Cpnεn
σn = Cnpεp +Cnnεn

(2.9)

Matrices Cpp, Cpn, Cnp and Cnn in Eqs. (2.9) are:

Cpp =




C22 C23 0
C23 C33 0
0 0 C44


 Cpn = CT

np =




C12 0 0
C13 0 0
0 0 0




Cnn =




C11 0 0
0 C66 0
0 0 C55




(2.10)

In the case of isotropic material, coefficients Cij are:

C11 = C22 = C33 =
1− ν

(1 + ν) (1− 2ν)
E C12 = C13 = C23 =

ν

(1 + ν) (1− 2ν)
E

C44 = C55 = C66 =
1

2 (1 + ν)
E

(2.11)

being E the Young modulus and ν the Poisson ratio.

2.4 Hierarchical Beam Theories

The variation of the displacement field over the cross-section can be postulated a-priori.
Several displacement-based theories can be formulated on the basis of the following generic
kinematic field:

u (x, y, z) = Fτ (y, z)uτ (x) with τ = 1, 2, . . . , Nu (2.12)

Nu stands for the number of unknowns. It depends on the approximation order N that
is a free parameter of the formulation. The compact expression is based on Einstein’s
notation: subscript τ indicates summation. Thanks to this notation, problem’s governing
differential equations and boundary conditions can be derived in terms of a single ‘funda-
mental nucleo’. The theoretical formulation is valid for the generic approximation order

6



2 – Beam’s Higher-order Modelling

N Nu Fτ

0 1 F1 = 1
1 3 F2 = y F3 = z
2 6 F4 = y2 F5 = yz F6 = z2

3 10 F7 = y3 F8 = y2z F9 = yz2 F10 = z3

. . . . . . . . .

N (N+1)(N+2)
2

F (N2+N+2)
2

= yN F (N2+N+4)
2

= yN−1z . . .

. . . FN(N+3)
2

= yzN−1 F (N+1)(N+2)
2

= zN

Table 2.1. Mac Laurin’s polynomials terms via Pascal’s triangle.

and approximating functions Fτ (y, z). In the following, the functions Fτ are assumed to
be Mac Laurin’s polynomials. This choice is inspired by the classical beam models. Nu

and Fτ as functions of N can be obtained via Pascal’s triangle as shown in Table 2.1. The
actual governing differential equations and boundary conditions due to a fixed approxi-
mation order and polynomials type are obtained straightforwardly via summation of the
nucleo corresponding to each term of the expansion. According to the previous choice of
polynomial function, the generic, N -order displacement field is:

ux = ux1 + ux2y + ux3z + · · ·+ u
x
(N2+N+2)

2

yN + · · ·+ u
x

(N+1)(N+2)
2

zN

uy = uy1 + uy2y + uy3z + · · ·+ u
y
(N2+N+2)

2

yN + · · ·+ u
y
(N+1)(N+2)

2

zN

uz = uz1 + uz2y + uz3z + · · · + u
z
(N2+N+2)

2

yN + · · ·+ u
z
(N+1)(N+2)

2

zN
(2.13)

As far as the first-order approximation order is concerned, the kinematic field is:

ux = ux1 + ux2y + ux3z
uy = uy1 + uy2y + uy3z
uz = uz1 + uz2y + uz3z

(2.14)

Classical models, such as Timoshenko’s beam theory (TB):

ux = ux1 + ux2y + ux3z
uy = uy1
uz = uz1

(2.15)

and Euler-Bernoulli beam theory (EB):

ux = ux1 − uy1,xy − uz1,xz
uy = uy1
uz = uz1

(2.16)

are straightforwardly derived from the first-order approximation model. In TB, no shear
correction coefficient is considered, since it depends upon several parameters, such as the

7



2 – Beam’s Higher-order Modelling

geometry of the cross-section (see, for instance, Cowper [38] and Murty [78]). Higher
order models yield a more detailed description of the shear mechanics (no shear correction
coefficient is required), of the in- and out-of-section deformations, of the coupling of the
spatial directions due to Poisson’s effect and of the torsional mechanics than classical
models do. EB theory neglects them all, since it was formulated to describe the bending
mechanics. TB model accounts for constant shear stress and strain components. In the
case of classical models and first-order approximation, the material stiffness coefficients
should be corrected in order to contrast a phenomenon known in literature as Poisson’s
locking (see Carrera and Brischetto [28, 29]).

2.5 Governing Equations

The Principle of Virtual Displacements reads:

δLi + δLin = 0 (2.17)

δ stands for a virtual variation, Li represents the strain energy and Lin stands for the
inertial work.

2.5.1 Virtual Variation of the Strain Energy

According to the grouping of the stress and strain components in Eqs. (2.4) and (2.5), the
virtual variation of the strain energy is considered as sum of two contributes:

δLi =

∫

l



∫

Ωk

δǫTnσn dΩ




k

dx+

∫

l



∫

Ωk

δǫTp σp dΩ




k

dx (2.18)

By substitution of the geometrical relations, Eqs. (2.7), the material constitutive equations,
Eqs. (2.9), and the unified hierarchical approximation of the displacements, Eq. (2.12),
and after integration by parts, Eq. (2.18) reads:

δLi =

∫

l

δuT
τ



∫

Ωk

[
−DT

nxC
k
npFτ (DpFsI)−DT

nxC
k
nnFτ (DnpFsI) +

−DT
nxC

k
nnFτFsDnx + (DnpFτ I)

T
Ck

np (DpFsI) + (DnpFτI)
T
Ck

nn (DnpFsI)+

+ (DnpFτI)
T
Ck

nnFsDnx + (DpFτ I)
T
Ck

pp (DpFsI) + (DpFτI)
T
Ck

pn (DnpFsI)+

+ (DpFτ I)
T
Ck

pnFsDnx

]
dΩ

)
k
us dx+

+


δuT

τ



∫

Ωk

Fτ

[
Ck

np (DpFsI) +Ck
nn (DnpFsI) +Ck

nnFsDnx

]
dΩ




k

us




x=l

x=0

(2.19)

In a compact vectorial form:

δLi =

∫

l

δuT
τ K

τs
us dx+

[
δuT

τ Πτs us

]x=l

x=0
(2.20)
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2 – Beam’s Higher-order Modelling

The components of the differential linear stiffness matrix K
τs

are:

K
τs
xx = J66

τ,ys,y + J55
τ,zs,z − J11

τs

∂2

∂x2
K

τs
xy =

(
J66
τ,ys − J12

τs,y

) ∂

∂x

K
τs
yy = J22

τ,ys,y + J44
τ,zs,z − J66

τs

∂2

∂x2
K

τs
yx =

(
J12
τ,ys − J66

τs,y

) ∂

∂x

K
τs
zz = J44

τ,ys,y + J33
τ,zs,z − J55

τs

∂2

∂x2
K

τs
zx =

(
J13
τ,zs − J55

τs,z

) ∂

∂x

K
τs
xz =

(
J55
τ,zs − J13

τs,z

) ∂

∂x
K

τs
yz = J23

τ,ys,z + J44
τ,zs,y

K
τs
zy = J23

τ,zs,y + J44
τ,ys,z

(2.21)

The generic term Jgh
τ(,φ)s(,ξ) is a cross-section moment:

Jgh
τ(,φ)s(,ξ)

=



∫

Ωk

Ck
ghFτ(,φ)Fs(,ξ) dΩ




k

(2.22)

Be:

Fτ(,φ)Fs(,ξ) = kyy
nykzz

nz (2.23)

where ky, kz, ny and nz are constant depending upon indexes τ and s as in Table 2.1 and
whether differentiation with respect to y and z should be performed or not, the analytical
solution of integral in Eq. (2.22) is:

Jgh
τ,φs,ξ

=

{
Ck
gh

ky
ny + 1

[(
yk2

)ny+1
−

(
yk1

)ny+1
]

kz
nz + 1

[(
zk2

)nz+1
−

(
zk1

)nz+1
]}

k

(2.24)

As far as the boundary conditions are concerned, the components of Πτs are:

Πτs
xx = J11

τs

∂

∂x
Πτs

xy = J12
τs,y Πτs

xz = J13
τs,z

Πτs
yy = J66

τs

∂

∂x
Πτs

yx = J66
τs,y Πτs

yz = 0

Πτs
zz = J55

τs

∂

∂x
Πτs

zx = J55
τs,z Πτs

zy = 0

(2.25)

2.5.2 Virtual Variation of the Inertial Work

The virtual variation of the inertial work is:

δLin =

∫

l



∫

Ωk

ρkδukük dΩ




k

dx (2.26)

9



2 – Beam’s Higher-order Modelling

where dot stands for differentiation versus time. Upon substitution of Eq. (2.12), Eq. (2.26)
becomes:

δLin =

∫

l

δuT
τ



∫

Ωk

ρkFτFsdΩ




k

üs dx (2.27)

In a compact vectorial form:

δLin =

∫

l

δuT
τ M

τs
üs dx (2.28)

The components of the matrix M
τs

are:

M
τs
ij = δijρ

kJτs with i, j = x, y, z (2.29)

where δij is Kronecker’s delta and:

Jτs =



∫

Ωk

FτFs dΩ




k

(2.30)

2.5.3 Governing Equations’ Fundamental Nucleo

The explicit form of the fundamental nucleo of the governing equations is:

δuxτ :

−J11
τsuxs,xx +

(
J55
τ,zs,z + J66

τ,ys,y

)
uxs +

(
J66
τ,ys − J12

τs,y

)
uys,x +

(
J55
τ,zs − J13

τs,z

)
uzs,x

+ρkJτsüxs = 0

δuyτ :(
J12
τ,ys − J66

τs,y

)
uxs,x − J66

τsuys,xx +
(
J22
τ,ys,y + J44

τ,zs,z

)
uys +

(
J23
τ,ys,z + J44

τ,zs,y

)
uzs

+ρkJτsüys = 0

δuzτ :(
J13
τ,zs − J55

τs,z

)
uxs,x +

(
J23
τ,zs,y + J44

τ,ys,z

)
uys − J55

τsuzs,xx +
(
J33
τ,zs,z + J44

τ,ys,y

)
uzs

+ρkJτsüzs = 0

(2.31)

The boundary conditions are:
[
δuxτ

(
J11
τsuxs,x + J12

τs,yuys + J13
τs,zuzs

)]x=l

x=0
= 0

[
δuyτ

(
J66
τs,yuxs + J66

τsuys,x

)]x=l

x=0
= 0

[
δuzτ

(
J55
τs,zuxs + J55

τsuzs,x
)]x=l

x=0
= 0

(2.32)

For a fixed approximation order, the nucleo has to be expanded versus the indexes τ and
s in order to obtain the governing equations and the boundary conditions of the desired
model.
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2 – Beam’s Higher-order Modelling

2.6 Closed Form Analytical Solution

The previous differential equations are solved via a Navier-type solution. Simply supported
beams are, therefore, investigated. The following harmonic displacement field is adopted:

uxτ = Uxτ cos (αx) e
iωmt

uyτ = Uyτ sin (αx) e
iωmt

uzτ = Uzτ sin (αx) e
iωmt

(2.33)

where α is:
α =

mπ

l
with m ∈ N \ 0 (2.34)

m represents the half-wave number along the beam axis. i =
√
−1 is the imaginary

unit and t the time. {Uiτ : i = x, y, z} are the maximal amplitudes of the displacement
components. The displacement field in Eqs. (2.33) satisfies the boundary conditions since:

uxτ,x (0) = uxτ,x (l) = 0
uyτ (0) = uyτ (l) = 0
uzτ (0) = uzτ (l) = 0

(2.35)

Upon substitution of Eqs. (2.33) into Eqs. (2.31), the fundamental nucleo of the algebraic
eigensystem is obtained:

δUτ :
(
Kτs − ω2

mMτs
)
Us = 0 (2.36)

The components of the algebraic stiffness matrix (Kτs) and of the inertial one (Mτs) are:

Kτs
xx = α2J11

τs + J55
τ,zs,z + J66

τ,ys,y Kτs
xy = α

(
J66
τ,ys − J12

τs,y

)

Kτs
yy = α2J66

τs + J22
τ,ys,y + J44

τ,zs,z Kτs
yx = α

(
J66
τs,y − J12

τ,ys

)

Kτs
zz = α2J55

τs + J33
τ,zs,z + J44

τ,ys,y Kτs
zx = α

(
J55
τs,z − J13

τ,zs

)

Kτs
xz = α

(
J55
τ,zs − J13

τs,z

)

Kτs
yz = J23

τ,ys,z + J44
τ,zs,y

Kτs
zy = J23

τ,zs,y + J44
τ,ys,z

(2.37)

and:

M τs
ij = δijρ

kJτs with i, j = x, y, z (2.38)

For a fixed approximation order and m, the eigensystem has to be assembled according to
the summation indexes τ and s. Its solution yields as many eigenvalues and eigenvectors
(or modes) as the degrees of freedom of the model.

2.7 Numerical Results and Discussion

The proposed formulation has been applied to the free vibration analysis of solid and
thin-walled beams and these results have been compared with three-dimensional FEM
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2 – Beam’s Higher-order Modelling

models. Beams made of the aluminium alloy 7075-T6 are considered. Mechanical prop-
erties are: Young’s modulus equal to 71700 MPa, Poisson’s ratio equal to 0.3. Solid and
thin-walled cross-sections are considered. For thin-walled cross-sections, the ratio between
a representative dimension of the cross-section (a) and the walls’ thickness (h) is 20. a
is assumed equal to 2 · 10−2 m. The length-to-side ratio is as high as 100 and as low as
5. Slender and deep beams are, therefore, investigated. Classical (bending and torsional)
and higher modes up to the axial one are investigated. For the sake of brevity the natural
frequency related to the axial mode is not included in tables, since this modal shape is
already accurately provided by classical theories. Natural frequencies are put into the
following dimensionless form:

ω = 102 ω a

√
ρ

E
(2.39)

As far as validation is concerned, results are compared with three-dimensional FEM so-
lutions obtained via the commercial code ANSYSr. The quadratic three-dimensional
“Solid95” element is used. A convergence analysis of the three-dimensional FEM solution
versus the element sides’ lenght (xe, ye, ze) is also carried out. Modal shapes are compared
via visualisation. Although the three-dimensional FEM solution and the analytical one
are different in nature, some considerations about computational time and effort can be
addressed. For the reference FEM simulations, the computational time is as high as about
five minutes (refined meshes) and as low as about a minute (coarse meshes). In the case
of the proposed analytical solutions, the computational time is less than a second for the
highest considered approximation order (N = 15). The same amount of time is required
by a FEM model based on the proposed theories and a very fine mesh (see Carrera et
al. [30]). As far as the computational effort is concerned, it should be noticed that the
degrees of freedom (DOF) of the three-dimensional reference solution are, at least, about
6 · 104, whereas in the case of a 12th-order analytical model, they are 273.

2.7.1 Square Cross-Section

A square cross-section is considered. Tables 2.2 to 2.4 present the dimensionless natural
frequencies for l/a = 100, ten and five. Flexural (Mode I, II) and torsional (Mode III)
modes are reported. The half-wave number m is assumed equal to one and two. Results
are compared with three-dimensional FEM solutions where two different meshes (a refined
and a coarse ones) are used in order to show the convergence of the solution.

Due to cross-section symmetry, two bending modes are present. Bending occurs on
planes rotated by ±45 degrees versus y-axis, since the cross-section presents the minimum
inertia along those directions. Classical theories results agree with FEM 3D solution for
the flexural modes, with a maximum error rate of 0.05% in the case m = 2. The torsional
mode is not provided by classical theories. The Hierarchical Beam Theories show a good
agreement with the FEM 3D solutions. For the flexural mode ω converges already for
N = 3, while an expansion order higher than 10 is required to have convergence also
for the torsional mode for the case m = 2. The FEM 3D analysis carried out using a
refined mesh gives results more accurate only in the case of m = 2, but the time needed to
perform the computation increases noticeably. Deep beam are investigated in Tables 2.3
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m = 1 m = 2
Mode I, II Mode III Mode I, II Mode III

ω ×102 ×1 ×10 ×1

FEM 3Da 2.8487 1.7894 1.1389 3.5787
FEM 3Db 2.8487 1.7894 1.1391 3.5788
N ≥ 10 2.8486 1.7894 1.1389 3.5787
N = 8, 9 2.8486 1.7894 1.1389 3.5788
N = 6, 7 2.8486 1.7899 1.1389 3.5798
N = 4, 5 2.8486 1.7904 1.1389 3.5808
N = 3 2.8486 1.9483 1.1389 3.8967
N = 2 2.8487 1.9483 1.1390 3.8967
N = 1 2.8487 1.9483 1.1390 3.8967
TB 2.8487 −c 1.1390 −
EB 2.8490 − 1.1395 −
a: mesh 80× 15× 15 elements. b: mesh 50× 10× 10 elements.

c: mode not provided by the theory.

Table 2.2. Dimensionless natural frequency, square cross-section, l/a = 100.

m = 1 m = 2
Mode I, II Mode III Mode I, II Mode III

ω ×1 ×10−1 ×10−1 ×10−1

FEM 3Da 2.8038 1.7893 1.0730 3.5786
FEM 3Db 2.8038 1.7894 1.0731 3.5786
N = 12 2.8039 1.7893 1.0730 3.5786
N = 10, 11 2.8039 1.7894 1.0730 3.5786
N = 8, 9 2.8039 1.7894 1.0730 3.5787
N = 6, 7 2.8039 1.7899 1.0730 3.5797
N = 5 2.8039 1.7904 1.0730 3.5807
N = 4 2.8039 1.7905 1.0731 3.5819
N = 3 2.8039 1.9483 1.0731 3.8967
N = 2 2.8086 1.9483 1.0796 3.8967
TB 2.8081 −c 1.0788 −
EB 2.8374 − 1.1213 −
a: mesh 40× 20× 20 elements. b: mesh 20× 10× 10 elements.

c: mode not provided by the theory.

Table 2.3. Dimensionless natural frequency, square cross-section, l/a = 10.
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m = 1 m = 2
Mode I, II Mode III Mode I, II Mode III

ω ×10−1 ×10−1 ×10−1 ×10−1

FEM 3Da 1.0730 3.5786 3.7362 7.1563
FEM 3Db 1.0730 3.5786 3.7363 7.1565
N = ≥ 10 1.0730 3.5786 3.7362 7.1563
N = 8, 9 1.0730 3.5787 3.7362 7.1565
N = 7 1.0730 3.5797 3.7362 7.1586
N = 6 1.0730 3.5797 3.7362 7.1587
N = 5 1.0730 3.5807 3.7362 7.1611
N = 4 1.0731 3.5819 3.7369 7.1707
N = 3 1.0731 3.8967 3.7383 7.7933
N = 2 1.0796 3.8967 3.8024 7.7933
N = 1 1.0788 3.8967 3.7955 7.7933
TB 1.0788 −c 3.7955 −
EB 1.1213 − 4.2848 −
a: mesh 40× 20× 20 elements. b: mesh 20× 10× 10 elements.

c: mode not provided by the theory.

Table 2.4. Dimensionless natural frequency, square cross-section, l/a = 5.

and 2.4. Table 2.3 shows results for l/a = 10. Classical theories provide acceptable
results for the flexural modes, with a maximum error rate of 4.5% in the case m = 2.
As seen for slender beams, the hierarchical beam theories addressed before provide good
agreement with results obtained via the FEM 3D analysis, even for the torsional mode.
Table 2.4 is referred to l/a = 5. As expected the frequencies predicted by the proposed
hierarchical beam theories are smaller than those predicted by the classical beam theories.
In fact, as known from mechanical vibrations, natural frequencies decrease as the stiffness
of a structure decreases. Furthermore, the difference between the frequencies of classical
theories and the hierarchical beam theories decreases as the value of l/a increases, with
respect of the flexural mode. Then it can be notice that the classical theories can be
accepted only for slender beams. The natural frequencies increase when the value of l/a
is reduced, by virtue of the fact that the longer beam is less rigid. Moreover the natural
frequencies increase as the half-wave number m along the beam axis increases.

2.7.2 Box Cross-Section

A beam with a box cross-section is considered, as shown in Fig. 2.1. The half-wave num-
ber m is assumed equal to one. Several modes have been identified. Different behaviors
between slender and deep beams can be observed. Table 2.5 presents the natural di-
mensionless frequency in the case of l/a = 100. Since the cross-section of the beam is
symmetric two flexural modes are present, indicated as Mode I, II. Torsion is addressed as
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Figure 2.1. Box-beam cross-section geometry.

Mode III. Modes I and II lay on planes rotated by ±45◦ respect to the cross-section axes.
Two three-dimensional FEM solutions are provided, in order to present a convergence
analysis. For the flexural modes the hierarchical beam theories match the FEM solution

Mode I, II Mode III

ω ×102 ×1

FEM 3Da 3.8311 1.7067
FEM 3Db 3.8311 1.7078
N = 14 3.8313 1.7214
N = 12 3.8313 1.7229
N = 10 3.8313 1.7311
N = 8 3.8313 1.7326
N = 6 3.8314 1.7387
N = 4 3.8315 1.7703
N = 2 3.8321 1.9483
TB 3.8321 -c

EB 3.8328 -

a: mesh 200× 40× 40 elements.

b: mesh 100× 20× 20 elements.

c: mode not provided by the theory.

Table 2.5. Dimensionless natural frequency, box cross-section, l/a = 100.
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with an expansion order as low as 4. The natural frequency related to the torsional mode

Mode I, II Mode III Mode IV Mode V

ω ×1 ×10−1 ×10−1 ×10−1

FEM 3Da 3.6483 1.0028 1.6585 1.6980
FEM 3Db 3.6488 1.0139 1.6594 1.6991
N = 15 3.6544 1.1399 1.6625 1.7133
N = 13 3.6560 1.2463 1.6666 1.7150
N = 11 3.6583 1.2546 1.6700 1.7239
N = 9 3.6616 1.5908 1.6921 1.7260
N = 7 3.6672 2.1342 1.7067 1.7361
N = 6 3.6708 -c 2.1612 1.7385
N = 5 3.6720 - 2.3703 1.7702
N = 4 3.6823 - - 1.7705
N = 2 3.7362 - - 1.9483
TB 3.7353 - - -
EB 3.8048 - - -

a: mesh 80× 40× 40 elements.

b: mesh 40× 20× 20 elements.

c: mode not provided by the theory.

Table 2.6. Dimensionless natural frequency, box cross-section, l/a = 10.

converges more slowly and a higher order of expansion is required in order to minimize
the error, which is less than 1% for N = 14. Classical theories yield good results for the
flexural modes, differing the values from the FEM solution only in the fourth significant
digit. Torsional mode is not provided by classical theories. The case l/a = 10 is presented
in Table 2.6, where values for the first five dimensionless natural frequencies are presented.
Modes I and II refer also in this case to symmetric flexural modes rotated by ±45◦. Mode
III is a shear mode on plane yz, as shown in Fig. 2.2. Fig. 2.3shows Mode IV, charac-
terised by bending on different sense for two contiguous sides of the cross-section. Mode
V correspond to torsion. The highest expansion order is required for modes III, IV and V
in order to achieve a good convergence with the FEM solution. However, the shear mode
differs from the FEM solution by about 14% even when N = 15. This problem could
be solved by using a local approach. It should be noted that for low expansion orders
not all the modal shapes are obtained. In particular, for Mode III an expansion order
equal to seven is necessary. This explains the error rate observed before. Higher modes
are not provided by medium-low order theories, then higher values of N are required to
match the FEM results. Classical theories are not suitable when l/a = 10 because only
the two flexural modes are provided. The corresponding values of the frequencies are in
accordance with the FEM solution, being the error about 4%. Table 2.7 presents the
dimensionless natural frequencies for a deep beam (l/a = 5). The first eight values of ω
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Figure 2.2. Box beam, Mode III, l/a = 10.

are reported. Modes I and II refer to the ±45◦ bending seen before. Modes III and IV
observed in the previous analysis are also present. Other three modes (VI, VII and VIII)
after the torsional one (Mode V) are present. Modes VI and VII are characterised by the
same value of ω (see Fig. 2.4). Mode VIII is presented in Fig. 2.5. It is confirmed that,
for a deep beam, the maximum expansion order is necessary in order to achieve a good

Figure 2.3. Box beam, Mode IV, l/a = 10.
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Mode I, II Mode III Mode IV Mode V Mode VI,VII Mode VIII

ω ×10−1 ×10−1 ×10−1 ×10−1 ×10−1 ×10−1

FEM 3Da 1.2487 1.3043 1.7032 3.3320 3.4390 3.8525
FEM 3Db 1.2503 1.3123 1.7044 3.3348 3.4630 3.9189
N = 15 1.2673 1.4065 1.7152 3.3669 3.7586 4.7429
N = 13 1.2727 1.4914 1.7302 3.3716 3.8908 4.8897
N = 11 1.2798 1.4983 1.7333 3.3956 4.1046 5.7512
N = 9 1.2898 1.7844 1.8052 3.4038 4.4573 5.8295
N = 8 1.2952 2.2817 1.8075 3.4349 4.5126 -c

N = 7 1.3080 2.2829 1.8443 3.4558 - -
N = 5 1.3189 5.1352 2.9848 3.5393 - -
N = 4 1.3309 - - 3.5422 - -
N = 2 1.3969 - - 3.8967 - -
TB 1.3957 - - - - -
EB 1.4894 - - - - -

a: mesh 80× 40× 40 elements.

b: mesh 40× 20× 20 elements.

c: mode not provided by the theory.

Table 2.7. Dimensionless natural frequency, box cross-section, l/a = 5.

Figure 2.4. Box beam, Mode VI and VII, l/a = 5.

agreement with the FEM solution. The maximum error, about 20%, is found for Mode
VIII. This modal shape is provided only for high expansion orders (N ≥ 9). The modes
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Figure 2.5. Box beam, Mode VIII, l/a = 5.

that are provided already from N = 2 are the flexural modes (I and II) and the torsion
(V). The others modal shapes are detected at higher N . For instance, N = 5 is necessary
to identify modes III and IV, whereas N = 8 is the minimum expansion order that yields
Modes VI and VII. Classical theories are not applicable because only two modes (I, II)
are provided.

2.7.3 I Cross-Section

Figure 2.6. I-shaped cross-section geometry.
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A beam with I-shaped cross-section is investigated (see Fig. 2.6).

Table 2.8 presents the first three dimensionless natural frequency for a slender beam
(l/a = 100), considering a half-wave number m = 1 and m = 2. It is possible to identify a

m = 1 m = 2
Mode I Mode II Mode III Mode I Mode II Mode III

ω ×102 ×102 ×10 ×102 ×10 ×10

FEM 3Da 2.3671 4.1451 1.1915 9.4639 1.6538 2.5143
FEM 3Db 2.3671 4.1451 1.1934 9.4646 1.6539 2.5178
N = 15 2.3670 4.1452 1.3134 9.4641 1.6540 2.7446
N = 12 2.3671 4.1453 1.3780 9.4642 1.6540 2.8680
N = 10 2.3671 4.1453 1.4725 9.4643 1.6541 3.0491
N = 8 2.3671 4.1454 1.8149 9.4644 1.6542 3.7122
N = 7 2.3671 4.1454 3.1243 9.4644 1.6542 6.2883
N = 4 2.3671 4.1458 3.3051 9.4653 1.6548 6.6508
N = 3 2.3671 4.1458 16.774 9.4653 1.6548 33.548
N = 2 2.3672 4.1474 16.774 9.4658 1.6574 33.550
TB 2.3671 4.1474 -c 9.4657 1.6574 -
EB 2.3673 4.1483 - 9.4641 1.6540 -

a: mesh 200× 40× 40 elements.

b: mesh 100× 20× 40 elements.
c: mode not provided by the theory.

Table 2.8. Dimensionless natural frequency, I-shaped cross-section, l/a = 100.

flexural mode on the xy plane, bending on the xz plane, and a torsional mode. They are
referred to in Table as Mode I, II and III, respectively. Fifteenth-order model matches the
FEM solution except for the torsional mode, where the error is around 10%. This value is
however acceptable if compared with lower-order theory such as seventh-order, where the
error overcomes 150%. Classical theories do not provide Mode III. Modes I agrees with
FEM solution already for N = 3, in the case of m = 1.
Table 2.9 refers to a deep beam. Only the case m = 1 is reported. The first six values
of the dimensionless natural frequency are presented. Mode I stands for a flexural mode
on plane xy, whereas Mode III refers to a flexural mode on plane xz. Between these two
modes is found the torsional mode (II). Higher modes, due to the fact that beams with
thin-walled cross-sections present a ‘plate’ behaviour locally, are also found. Modes IV,
V and VI are shown in Figs. 2.7, 2.8 and 2.9, respectively. An expansion order up to
fifteen is used. Results match the FEM solution for the flexural modes and the torsional
one. Local modes are found for higher expansion orders and at least N = 11 is required
to detect mode VI. Mode IV and V appear from N = 4 and N = 6, respectively, but low
expansion orders are not accurate. Table 2.10 refers to the case l/a = 5. Mode I and IV
correspond to a flexural mode respect to the plane xy, with different symmetries of the
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Mode I Mode II Mode III Mode IV Mode V Mode VI

FEM 3Da 2.3277 2.5626 3.8133 7.2068 13.179 21.843
FEM 3Db 2.3278 2.5633 3.8138 7.2230 13.263 21.957
N = 15 2.3292 2.6093 3.8275 7.6793 15.355 25.236
N = 13 2.3295 2.6382 3.8305 7.8576 16.135 26.179
N = 11 2.3301 2.6811 3.8355 8.1270 17.669 27.787
N = 10 2.3312 2.6812 3.8390 8.2092 19.696 -c

N = 7 2.3334 3.7276 3.8531 9.6172 23.787 -
N = 6 2.3360 3.7711 3.8648 10.661 70.623 -
N = 5 2.3372 3.9052 3.8653 21.908 - -
N = 4 2.3415 3.9067 3.8856 24.367 - -
N = 3 2.3416 16.780 3.8867 - - -
N = 2 2.3446 16.808 4.0262 - - -
TB 2.3436 - 4.0257 - - -
EB 2.3607 - 4.1129 - - -

a: mesh 80× 40× 40 elements.

b: mesh 40× 20× 40 elements.

c: mode not provided by the theory.

Table 2.9. Dimensionless natural frequency, I-shaped cross-section, l/a = 10.

fins, as shown in Figs. 2.10 and 2.11. Between these two modal shapes the torsional mode
(II) and the flexural mode respect to the plane xz (Mode III, see Fig. 2.12) are found.

Figure 2.7. I-shaped cross-section beam, Mode IV, l/a = 10.
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Figure 2.8. I-shaped cross-section beam, Mode V, l/a = 10.

Figure 2.9. I-shaped cross-section beam, Mode VI, l/a = 10.
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Mode I Mode II Mode III Mode IV Mode V

FEM 3Da 7.5865 8.5485 9.3928 11.939 14.575
FEM 3Db 7.5977 8.5596 9.4017 11.952 14.646
N = 15 7.9297 8.7744 9.6487 12.308 16.514
N = 13 8.0482 8.8484 9.7658 12.393 17.245
N = 11 8.1934 8.9472 9.9520 12.531 18.705
N = 9 8.4642 9.1832 10.422 12.752 20.843
N = 7 8.7776 10.209 11.754 12.958 25.757
N = 6 8.9600 10.285 14.747 13.074 -c

N = 4 9.0737 10.447 32.061 13.322 -
N = 3 9.0792 33.599 - 13.362 -
N = 2 9.1235 33.812 - 14.903 -
TB 9.1098 - - 14.897 -
EB 9.3635 - - 16.043 -

a: mesh 80× 40× 40 elements.

b: mesh 40× 20× 40 elements.

c: mode not provided by the theory.

Table 2.10. Dimensionless natural frequency, I-shaped cross-section, l/a = 5.

The fifhth frequency (Mode V) is associated with the higher mode shown in Fig. 2.13.
The same considerations done for l/a = 10 are valid also in this case. Classical theories
provide only modes I and IV.
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Figure 2.10. I-shaped cross-section beam, Mode I, l/a = 5.

Figure 2.11. I-shaped cross-section beam, Mode IV, l/a = 5.
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Figure 2.12. I-shaped cross-section beam, Mode III, l/a = 5.

Figure 2.13. I-shaped cross-section beam, Mode V, l/a = 5.
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2.7.4 C Cross-Section

Figure 2.14. C-shaped cross-section geometry.

A free vibration analysis of slender and deep beams with C-shaped cross-section is
carried out (see Fig. 2.14). For l/a = 100, Tab. 2.11, three modal shapes are present: two
flexural modes on plane xy (Mode I) and xz (Mode II) and a torsional mode (III). For the
first mode an expansion order N = 4 matches already the FEM solution. For modes II and
III, a higher expansion order is required in order to match the FEM solution. N = 14 gives
a relative error around 1% for the second flexural mode and around 3% for the torsional
mode.
Up to seven values of ω can be retrieved when l/a = 10, Tab. 2.12. Mode I corresponds
to a bending on plane xz, whereas Mode II stand for a flexural mode on plane xy. In
Fig. 2.15 the third modal shape is presented. The torsional mode is addressed as Mode
IV. Other two modal shapes (V and VI) are found, related to a local behaviour of the
beam’s faces. These are shown in Fig. 2.16 and 2.17, respectively. An expansion order
up to N = 6 is necessary to identify them, whereas N = 4 provides Mode III only. Since
the beam is deep a high expansion order is required, in particular when higher modes are
taken into account. Figs. 2.18, 2.19 and 2.20 show the behaviour of ω respect to N in the
case of l/a = 5. Modes I, III and VI are found for N ≥ 5 and correspond to a flexural
mode on plane xz (see Fig. 2.21), a shear mode (see Fig. 2.22) and a local mode (see
Fig. 2.23). Modes II, IV and V are found already for N = 2 and correspond to bending
on plane xz (see Fig. 2.24), a bending on plane xy and to the torsional mode. Other two
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Mode I Mode II Mode III

ω ×102 ×102 ×10

FEM 3Da 3.2098 3.6048 1.2469
FEM 3Db 3.2098 3.6066 1.2485
N = 14 3.2098 3.6466 1.2857
N = 11 3.2098 3.6861 1.3286
N = 9 3.2098 3.7695 1.4421
N = 7 3.2098 3.9056 1.7488
N = 6 3.2098 4.0340 2.4709
N = 4 3.2098 4.1026 3.8367
N = 3 3.2099 4.1446 16.110
N = 2 3.2100 4.1474 18.860
TB 3.2101 4.1474 -c

EB 3.2105 4.1483 -

a: mesh 200× 40× 40 elements.

b: mesh 100× 20× 20 elements.

c: mode not provided by the theory.

Table 2.11. Dimensionless natural frequency, C-shaped cross-section, l/a = 100.

Mode I Mode II Mode III Mode IV Mode V Mode VI

FEM 3Da 1.4328 3.0814 3.4639 6.6624 7.7554 22.717
FEM 3Db 1.4339 3.0828 3.4813 6.6629 7.8192 22.741
N = 14 1.4500 3.0940 3.6994 6.6646 8.5880 22.869
N = 12 1.4577 3.0967 3.7704 6.6652 9.0209 22.924
N = 10 1.4866 3.1014 3.9789 6.6672 9.5124 23.077
N = 8 1.5163 3.1098 4.4073 6.6724 11.273 23.307
N = 6 1.8337 3.1150 5.2359 6.7889 15.947 28.907
N = 5 2.2074 3.1252 17.940 7.0154 -c -
N = 4 2.3205 3.1273 22.289 7.1906 - -
N = 3 3.7922 3.1326 - 16.320 - -
N = 2 4.0234 3.1490 - 18.867 - -
TB 4.0257 3.1524 - - - -
EB 4.1129 3.1940 - - - -

a: mesh 80× 40× 40 elements.

b: mesh 40× 20× 20 elements.

c: mode not provided by the theory.

Table 2.12. Dimensionless natural frequency, C-shaped cross-section, l/a = 10.
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Figure 2.15. C-shaped cross-section beam, Mode III, l/a = 10.

Figure 2.16. C-shaped cross-section beam, Mode V, l/a = 10.

higher modes are found when the expansion order is N ≥ 8. These modes are shown in
Figs. 2.25 and 2.26 and are indicated as Mode VII and VIII, respectively. All curves show
a decreasing trend as the expansion order increase since the higher the number of degree
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Figure 2.17. C-shaped cross-section beam, Mode VI, l/a = 10.
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Figure 2.18. Frequency convergence versusN , Mode I, III and VI, C-shaped
cross-section beam, l/a = 5.

of freedom in the model, the lower is the stiffness of the structure. Convergence depends
on the considered mode. The maximum error respect to the FEM solution is achieved for
mode VIII. The axial mode is not reported in the graphics since it is already outlined by
lower expansion orders.
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Figure 2.19. Frequency convergence versusN , Mode II, IV and V, C-shaped
cross-section beam, l/a = 5.
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Figure 2.20. Frequency convergence versus N , Mode VII and VIII, C-
shaped cross-section beam, l/a = 5.
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Figure 2.21. C-shaped cross-section beam, Mode I, l/a = 5.

Figure 2.22. C-shaped cross-section beam, Mode III, l/a = 5.
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Figure 2.23. C-shaped cross-section beam, Mode VI, l/a = 5.

Figure 2.24. C-shaped cross-section beam, Mode II, l/a = 5.
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Figure 2.25. C-shaped cross-section beam, Mode VII, l/a = 5.

Figure 2.26. C-shaped cross-section beam, Mode VIII, l/a = 5.
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2.8 Conclusions

A unified formulation (UF) has been proposed in the previous part and some application
to the free vibration analysis of solid and thin-walled beam structures have been presented.
Via this approach, higher-order models that account for shear deformations, in- and out-
of-plane warping can be formulated straightforwardly. Classical models, such as Euler-
Bernoulli’s and Timoshenko’s, are regarded as particular cases. A closed form, Navier-type
solution has been addressed. Thin-walled beams with several cross-sections (box, I-shaped
and C-shaped) have been investigated. Three-dimensional FEM solutions obtained via the
commercial code ANSYSr have been considered as reference solutions. On the basis of
the presented results, the following conclusions can be drawn:

• the proposed formulation allows obtaining results as accurate as desired through
an appropriate choice of the approximation order. Results of one-dimensional CUF
models match the three-dimensional FEM solution.

• The description of warping does not require any specific warping-function within
CUF. It derives from the formulation itself.

• No local reference coordinates for the cross-section have to be defined.

• Classical models are not applicable, except for flexural modes of slender beams.

• Mechanics due to torsional modes as well as local modes is more difficult to describe
accurately. Higher approximation order than for the flexural modes are required.

• The efficiency of the models is very high since the computational cost is few seconds
for the highest order model considered, whereas the three-dimensional finite element
models require about 10 minutes.
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Chapter 3

Functionally Graded Materials

3.1 Introduction

Functionally graded materials (FGM) are a particular kind of composite materials, char-
acterised by the continuous variation of the properties of their components, in order to
accomplish specific functions. The mechanical and thermal response of materials with
spacial gradients in composition and micro-structure is nowadays of considerable interest
in several technological fields. The use of structures made from functionally graded mate-
rials is increasing because a smooth variation of material properties along some preferred
direction, provides continuous stress distribution in the FGM structures. An overview on
functionally graded materials, fabrication processes, area of application and some recent
research studies is presented in the work of Mahamood et al. [69]. FGM structures can
be studied assuming that the material properties, such as Young’s modulus, poisson ratio
and density, vary through the directions of the structures according to several gradation
laws.

3.2 FGMs Laws

In literature we find various gradation laws, proposed to study structures made of FGM,
whose parameters may be varied to obtain different distributions of the component mate-
rials through the dimensions of the structure. One of the most exploited gradation laws
was adopted by Praveen and Reddy [88] and is based on a power law distribution. For
plates it reads:

P (z) = (Pc − Pm)

(
2z + h

2h

)n

+ Pm (3.1)

z is the thickness coordinate and h is the total thickness of the plate. P stands for the
generic material property, subscripts c and m refer to the ceramic component and the
metallic component, respectively. n is the volume fraction exponent (n ≥ 0). When n is
equal to 0 we have a fully ceramic plate. The above power law assumption reflects a simple
rule of mixtures that allows to obtain the effective properties of a ceramic-metal plate.
The previous power law distribution is found also in several works [44, 64, 83, 108, 126,
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9, 33, 63, 57, 54, 71]. Qian et al [96] and Ganapathi [49] evaluated the effective material
moduli by using the Mori-Tanaka homogenization technique [75].

K −Km

Kc −Km
= Vc

/[
1 + (1− Vc)

3(Kc −Km)

3Km + 4Gm

]

G−Gm

Gc −Gm
= Vc

/[
1 + (1− Vc)

(Gc −Gm)

Gm + f1

]

f1 =
Gm(9Km + 8Gm)

6(Km + 2Gm)

(3.2)

K and G are the bulk modulus and the shear modulus, whereas V is volume-fraction of
phase material. It should be mentioned that in [33], an exponential gradation law is also
applied:

P (z) = (Pmexp(−δ(1 − 2z/h))), δ =
1

2
log

(
Pm

Pc

)
(3.3)

3.3 Free vibration analysis of Functionally Graded Beams:

Overview

Free Vibration and modal analysis of beams represents an interesting and important re-
search topic. A brief overview of recent works about the free vibration of functionally
graded beams is reported below. Fundamental frequency analysis of functionally graded
(FG) beams with several boundary conditions have been carried out by Simsek [110] using
classical, first order and various higher order shear deformation beam theories. Kapuria
et al. [58] validated through experiments the static and free vibration response of layered
functionally graded beams. A third order zigzag theory based model in conjunction with
the modified rule of mixtures (MROM) for effective modulus of elasticity has been consid-
ered. Timoshenko beam theory is adopted by Xiang and Yang [128] for the study of free
and forced vibration of laminated functionally graded beam of variable thickness under
thermally induced initial stresses. Aydogdu and Taskin [8] investigated free vibration of
simply supported FG beam by different higher order shear deformation and classical beam
theories. Young’s modulus of beam varies in the thickness direction according to power
and exponential law. Static and dynamic behaviour of functionally graded Timoshenko
and Euler-Bernoulli beams is investigated by Li [63] adopting a unified approach. [111]
A new first-order shear deformation beam theory is used by Sina et al. [111] to analyse
free vibration of functionally graded beams. The equations of motion are derived using
Hamilton’s principle. Different boundary conditions are considered. FG beam properties
are assumed to be according to a simple power law function of the volume fractions of
the beam material constituents. The free vibration analysis of FG beams is investigated
using numerical finite element method in the work of Alshorbagy et al. [2]. Material
graduation in axially and transversally through the thickness based on a power law is
considered. The system of equations of motion is derived by using the principle of vir-
tual work under the assumptions of the Euler-Bernoulli beam theory. MurÃn et al. [77]
consider linear beam theory to establishing the equilibrium and kinematic equations of
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multi-layered FGM sandwich beams. The shear force deformation effect and the effect of
consistent mass distribution and mass inertia moment have been taken into account. Nu-
merical experiments were performed to calculate the eigenfrequencies and corresponding
eigenmodes. The solution results are compared with those obtained using a commercial
finite element model (FEM) code. A free vibration analysis of FGM beams via hierarchical
models is presented in the following. The Unified Formulation (UF) that has been previ-
ously presented (Chapter 2) is extended to functionally graded beams. Material gradation
is considered through a power law function of either one or two cross-section coordinates.
The proposed models are validated through comparison with three-dimensional FEM so-
lutions. Numerical results show that very accurate results can be obtained with small
computational costs.

3.4 Constitutive equations for FG beams

In the case of isotropic FGMs, the matrices’ coefficients Cpp, Cpn, Cnp and Cnn of the
constitutive equations (2.9) take into account the variation of the coefficients Cij as follow:

C11 = C22 = C33 =
1− ν

(1 + ν) (1− 2ν)
E C12 = C13 = C23 =

ν

(1 + ν) (1− 2ν)
E

C44 = C55 = C66 =
1

2 (1 + ν)
E

(3.4)

being Young’s modulus (E) and Poisson’s ratio (ν) function of the position above the
cross-section. The generic material property f is assumed to vary versus y or/and z
coordinate according to a power law distribution:

f = (f1 − f2) (αyy + βy)
ny (αzz + βz)

nz + f2 (3.5)

This gradation law is obtained through the assumption of a power gradation law of the
volume fraction of two constituent materials and the rule of mixtures, see Reddy [88] and
Chakraborty et al. [33].

3.5 Numerical Results and Discussion

FGMs beams made of alumina and steel are considered. The mechanical properties of
alumina are: E1 = 3.9 ·105 MPa, ν1 = 0.25, ρ1 = 3.96 ·103 kg/m3. In the case of steel, the
following mechanical properties are used: E2 = 2.1 · 105 MPa, ν2 = 0.31, ρ2 = 7.80 · 103
kg/m3. E, ν and ρ vary along either y-axis or both y and z directions according to the
power gradation law. Unless differently stated, a linear variation is considered in Eq. 3.5.
Square cross-sections are considered. The sides of the cross-section are a = b = 0.1 m. The
length-to-side ratio l/a is equal 100, ten and five. Slender and deep beams are, therefore,
investigated. The half-wave number m in Eq. 2.34 is assumed equal to one. Flexural,
torsional and axial free vibration modes are investigated. Natural frequencies are put into
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the following dimensionless form:

ω = 102 ω a

√
ρ2
E2

(3.6)

As far as validation is concerned, results (in terms of both natural frequencies and modes)
are compared with three-dimensional FEM solutions obtained via the commercial code
ANSYS R©, see ANSYS theory manual [5], Madenci and Guven [68] and Barbero [10].
The three-dimensional quadratic element “Solid95” is used. Each element is considered as
homogeneous by referring to the material properties at its centre point. The accuracy of the
three-dimensional FEM solution depends upon both the FEM numerical approximation
and the approximation of the gradation law. In order to present the convergence of the
three-dimensional reference solution, for each case three different meshes are considered.
Acronym FEM 3Da stand for a three-dimensional FEM model with 40 elements along
the axial direction and 30 elements along y and z directions. Coarser solutions FEM 3Db

(30×20×20 elements) and FEM 3Dc (20×10×10 elements) are also considered. Although
the three-dimensional FEM solution and the analytical one are different in nature, some
considerations about computational time and effort can be addressed. For the reference
FEM simulations, the computational time is as high as about two hour (refined mesh) and
as low as about a minute (coarsest mesh). In the case of the proposed analytical solutions,
the computational time is less than a second regardless the considered approximation
order.

3.5.1 Material gradation along a cross-section direction

In this first example, material properties are supposed to vary along the y-axis only.
Tables 3.1 to 3.3 present the dimensionless natural natural frequencies for l/a = 100,
ten and five. Mode I and II are two flexural modes on planes xz and xy, respectively.
Mode III is a torsional mode and Mode IV is an axial one. Refined and coarsest three-
dimensional solutions differ by less than about 0.1%. Increasing the number of degrees of
freedom, the frequencies decrease since a less stiff model is considered. Considering five
significant digits, the considered natural frequencies converge for an expansion order equal
to eight in the case of slender beams and ten for l/a ≤ 10. Convergence is determined
by the torsional mode, higher-order terms are required to accurately describe the in-plane
cross-section warping. Torsional natural frequencies computed via a second- and a third-
order theory differ from the FEM 3Da solution by about 9%. In the case of N = 4, the
difference reduces to about 0.1%. Converged results differ from FEM 3Da solution by the
last significant digit only. Classical models account for a stiff cross-section in its plane
and, therefore, no torsional mode is present. EB yields very accurate flexural natural
frequencies in the case of slender beams, whereas they differ by about 4.5% from the FEM
reference solution in the case of l/a = 5.

3.5.2 Material gradation along both cross-section directions

Changes in properties along both y and z directions are considered. Fig. 3.1 shows the
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Mode I1 Mode II2 Mode III3 Mode IV4

ω ×102 ×102 ×1 ×1

FEM 3Da 3.8627 3.9217 2.4860 4.3247
FEM 3Db 3.8635 3.9223 2.4860 4.3247
FEM 3Dc 3.8665 3.9244 2.4858 4.3247
N ≥ 8 3.8623 3.9214 2.4861 4.3247
N = 6, 7 3.8623 3.9214 2.4868 4.3247
N = 5 3.8623 3.9214 2.4876 4.3247
N = 4 3.8624 3.9214 2.4877 4.3247
N = 3 3.8624 3.9214 2.7011 4.3247
N = 2 3.8639 3.9235 2.7080 4.3247
TB 3.8622 3.9215 − 4.3239
EB 3.8626 3.9219 − 4.3248

1: Flexural mode on plane xz. 2: Flexural mode on plane xy.

3: Torsional mode. 4: axial mode.

Table 3.1. Dimensionless natural frequencies, E(y), ν(y), ρ(y), l/a = 100, n1 = 1.

Mode I1 Mode II2 Mode III3 Mode IV4

ω ×1 ×1 ×10−1 ×10−1

FEM 3Da 3.8027 3.8568 2.4872 4.3163
FEM 3Db 3.8029 3.8568 2.4872 4.3163
FEM 3Dc 3.8038 3.8569 2.4870 4.3163
N ≥ 10 3.8026 3.8568 2.4873 4.3163
N = 8, 9 3.8026 3.8568 2.4874 4.3163
N = 6, 7 3.8026 3.8568 2.4881 4.3163
N = 5 3.8026 3.8568 2.4889 4.3163
N = 4 3.8027 3.8569 2.4892 4.3163
N = 3 3.8027 3.8574 2.7023 4.3163
N = 2 3.8099 3.8656 2.7091 4.3174
TB 3.8076 3.8663 − 4.3203
EB 3.8455 3.9060 − 4.3271

1: Flexural mode on plane xz. 2: Flexural mode on plane xy.

3: Torsional mode. 4: axial mode.

Table 3.2. Dimensionless natural frequencies, E(y), ν(y), ρ(y), l/a = 10, n1 = 1.
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Mode I1 Mode II2 Mode III3 Mode IV4

ω ×10−1 ×10−1 ×10−1 ×10−1

FEM 3Da 1.4563 1.4726 4.9822 8.5820
FEM 3Db 1.4563 1.4726 4.9822 8.5821
FEM 3Dc 1.4566 1.4727 4.9816 8.5826
N ≥ 10 1.4562 1.4725 4.9824 8.5819
N = 8, 9 1.4562 1.4725 4.9825 8.5819
N = 7 1.4562 1.4725 4.9839 8.5819
N = 6 1.4562 1.4725 4.9840 8.5819
N = 5 1.4562 1.4726 4.9856 8.5819
N = 4 1.4563 1.4726 4.9873 8.5819
N = 3 1.4564 1.4735 5.4117 8.5822
N = 2 1.4648 1.4827 5.4251 8.5912
TB 1.4633 1.4861 − 8.6192
EB 1.5179 1.5436 − 8.6680

1: Flexural mode on plane xz. 2: Flexural mode on plane xy.

3: Torsional mode. 4: axial mode.

Table 3.3. Dimensionless natural frequencies, E(y), ν(y), ρ(y), l/a = 5, n1 = 1.
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Figure 3.1. Material gradation law.

variation of the Young modulus. Due to the material gradation law, the cross-section is
less stiff and heavier than the case of variation along one direction only. Lower natural
frequencies are, therefore, expected. Results are presented in Tables 3.4 to 3.6 for slender
up to deep beams. Due to the material gradation law, cross-section axes of symmetry y’
and z’ are identified by a anti clock wise rotation of π/4 around the positive direction of
x-axis. Mode I and II are two flexural modes on planes xz’ and xy’, respectively. Mode III
is a torsional mode and Mode IV is an axial one. The same comments made in the case
of Tables 3.1 to 3.3, are also valid in this case. Figures 3.2 and 3.3 show the effect of the
power law exponents n1 and n2 on the modal frequencies seen before. The power law
exponent plays an important role on the modal frequencies of the FGM beam. For seek of
brevity only the case of gradation along both cross-section directions is reported, since a
similar behaviour is found considering variation of the material along only a cross-section
coordinate. For all the mode analysed is evident that an increase in the value of the power
law exponent leads to a decrease in the values of the frequencies The highest frequency
values are obtained for a beam that is almost fully ceramic (n1 = n2 = 0.1), while the
lowest frequency values are obtained for almost fully metallic beam (n1 = n2 = 10). This
is due to the fact that an increase in the value of the power law exponent results in a
decrease in the value of elasticity modulus and the value of bending rigidity.
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Mode I1 Mode II2 Mode III3 Mode IV4

ω ×102 ×102 ×1 ×1

FEM 3Da 3.2532 3.4149 2.1047 3.6968
FEM 3Db 3.2535 3.4155 2.1047 3.6968
FEM 3Dc 3.2567 3.4165 2.1047 3.6968
N ≥ 8 3.2520 3.4153 2.1048 3.6968
N = 6, 7 3.2520 3.4153 2.1054 3.6968
N = 4, 5 3.2520 3.4154 2.1061 3.6968
N = 3 3.2522 3.4155 2.2875 3.6968
N = 2 3.2526 3.4168 2.2906 3.6970
TB 3.2521 3.4153 − 3.6960
EB 3.2524 3.4157 − 3.6968

1: Flexural mode on plane xz’. 2: Flexural mode on plane xy’.

3: Torsional mode. 4: axial mode.

Table 3.4. Dimensionless natural frequencies, E(y, z), ν(y, z), ρ(y, z), l/a = 100, n1 = n2 = 1.

Mode I1 Mode II2 Mode III3 Mode IV4

ω ×1 ×1 ×10−1 ×10−1

FEM 3Da 3.2021 3.3596 2.1053 3.6916
FEM 3Db 3.2024 3.3595 2.1053 3.6916
FEM 3Dc 3.2039 3.3586 2.1052 3.6916
N ≥ 8 3.2019 3.3597 2.1053 3.6916
N = 6, 7 3.2019 3.3597 2.1059 3.6916
N = 5 3.2019 3.3597 2.1066 3.6916
N = 4 3.2019 3.3598 2.1068 3.6916
N = 3 3.2023 3.3599 2.2880 3.6916
N = 2 3.2077 3.3667 2.2911 3.6924
TB 3.2072 3.3654 − 3.6944
EB 3.2386 3.4018 − 3.6978

1: Flexural mode on plane xz’. 2: Flexural mode on plane xy’.

3: Torsional mode. 4: axial mode.

Table 3.5. Dimensionless natural frequencies, E(y, z), ν(y, z), ρ(y, z), l/a = 10, n1 = n2 = 1.

42



3 – Functionally Graded Materials

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  2  4  6  8  10

M
o
d
e
 I

n1, n2

FEM 3D
a

N=6
N=2

TB
EB

(a) modeI

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  2  4  6  8  10

M
o
d
e
 I

I

n1, n2

FEM 3D
a

N=4
N=2

TB
EB

(b) modeII

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0  2  4  6  8  10

M
o
d
e
 I

II

n1, n2

FEM 3D
a

N=5
N=4
N=3

(c) modeIII

 3

 3.5

 4

 4.5

 5

 5.5

 0  2  4  6  8  10

M
o
d
e
 V

I

n1, n2

FEM 3D
a

N=9
N=5

TB
EB

(d) modeIV

Figure 3.2. Variation of the modal frequencies with power law exponents n1 and n2,
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Mode I1 Mode II2 Mode III3 Mode IV4

ω ×10−1 ×10−1 ×10−1 ×10−1

FEM 3Da 1.2263 1.2837 4.2135 7.3520
FEM 3Db 1.2264 1.2837 4.2135 7.3520
FEM 3Dc 1.2269 1.2833 4.2135 7.3523
N ≥ 10 1.2262 1.2838 4.2136 7.3519
N = 8, 9 1.2262 1.2838 4.2137 7.3519
N = 6, 7 1.2262 1.2838 4.2149 7.3519
N = 5 1.2262 1.2838 4.2163 7.3519
N = 4 1.2263 1.2839 4.2178 7.3520
N = 3 1.2267 1.2840 4.5790 7.3522
N = 2 1.2338 1.2920 4.5850 7.3571
TB 1.2338 1.2917 − 7.3792
EB 1.2791 1.3442 − 7.4018

1: Flexural mode on plane xz’. 2: Flexural mode on plane xy’.

3: Torsional mode. 4: axial mode.

Table 3.6. Dimensionless natural frequencies, E(y, z), ν(y, z), ρ(y, z), l/a = 5, n1 = n2 = 1.

3.6 Conclusions

A unified formulation of one-dimensional beam models has been proposed for the free vi-
bration analysis of functionally graded beams. Via this approach, higher order models that
account for shear deformations, in- and out-of-plane warping can be formulated straight-
forwardly. Classical models, such as Euler-Bernoulli’s and Timoshenko’s, are regarded as
particular cases. A closed form, Navier-type solution has been addressed. Material proper-
ties (Young’s modulus, Poisson’s ratio and density) have been supposed to vary above the
cross-section according to a power gradation law. Flexural, torsional and axial frequencies
and mode shapes have been investigated. Results have been validated through compar-
ison with three-dimensional FEM solutions obtained via the commercial code ANSYS.
On the basis of the presented results, it can be concluded that the proposed formulation
allows obtaining results as accurate as desired through an appropriate choice of the ap-
proximation order, results of one-dimensional CUF models match the three-dimensional
FEM solutions. The description of warping does not require any specific warping-function
within the proposed formulation. It derives from the formulation itself. The efficiency of
the proposed models is very high since the computational time is less than a second for
the highest considered approximation order, whereas the three-dimensional FEM solution
can require hours.
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Chapter 4

Thermo-mechanical analysis of

orthotropic and FG beams

4.1 Introduction

Many typical aeronautical and space structures concern beam-like structures that must op-
erate in severe temperature environment. Hence the interest in detailed thermo-mechanical
analyses that allow to understand the behaviour of beams subjected to various conditions
of thermal loads. Furthermore, the materials with which these structures are made, must
be capable of withstanding high temperatures. Functionally graded materials are high-
temperature resistant materials, therefore, in the following, the thermal problem will be
dealt by referring to these materials. In literature we find several works on the thermo-
mechanical problem, dealing with isotropic, composite and fgm beams. Various application
of the theory of thermoelasticity can be found in the book of Hetnarski and Eslami [52].
In particular, the thermal stress analysis of beams based on Euler-Bernoulli assumptions
was presented. Beams made of functionally graded materials were also investigated. The
thermo-elastic stress analysis of multilayered beams was carried out by Carpinteri and
Poggi in [16]. Analytical solution were given under the Euler-Bernoulli hypotheses, when
rigid interfaces between the layers were taken into account. Functionally graded materi-
als were also investigated, considering a linear variation of material properties along the
beam’s thickness. A finite element semi-discretisation for composite beams was presented
by Ghiringhelli [50]. The temperature distribution within the beam cross-section was
computed by a two-dimensional finite element procedure. The structural thermo-elastic
problem was discussed and comparison with three-dimensional finite element analysis were
presented. Beams with variable thickness and subjected to thermo-mechanical loads were
investigated in the work of Xu and Zhou [129]. The non-linear temperature profile along
the beam’s thickness was computed solving the heat conduction equation. Results were
compared with those obtained from the commercial finite element software ANSYS. A
three-noded thermomechanical beam finire element for the analysis of laminated beam
was derived by Vidal and Polit [120]. Kapuria et al. [59] preented a higher order zigzag
theory for thermal stress analysis of laminated beams under thermal loads. The thermal
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4 – Thermo-mechanical analysis of orthotropic and FG beams

field is approximated as piecewise linear across the thickness. The governing equations
are derived using the principle of virtual work and Fourier series solutions are obtained
for simply-supported beams. Tanigawa et al. [114] consider the transient thermal stress
analysis of a laminated beam. The heat conduction problem is treated as one-dimensional
in the thickness direction. The thermal stress distributions was obtained using the ele-
mentary beam theory and Airy’s thermal stress function method. Sayman [107] studied
the elasto-plastic thermal behavior of steel fiber-reinforced aluminium metal-matrix com-
posite beams. Linear variation of the temperature is taken into account. The problem
of thermal stresses in FGMs was addressed by Noda [82]. The optimal gradation profiles
to decrease the thermal stresses in FGMs were discussed. The thermoelastic behaviour
of functionally graded beams was also studied by Chakraborty et al. [33]. A beam finite
element based on Thimoshenko’s theory was developed, accounting for an exponential and
a power law through-the-thickness variation of elastic and thermal properties. A meshless
method for thermo-elastic analysis of functionally graded materials combined with radial
basis functions was presented by Wang and Qin [124]. Mahi et al. [70] studied the free
vibration of FGM beams subjected to initial thermal stress. Exact solutions based on sev-
eral shear deformation theories were presented considering different boundary conditions.
The temperature profile was computed solving a one-dimensional steady-state heat con-
duction equation. Thermal buckling and thermo-elastic vibration analysis of FGM beams
were carried out by Wattanasakulpong et al. [125] by means of a third-order shear defor-
mation theory. Material properties were considered to dependent on the temperature via
a non-linear polynomial law [117]. The thermal response of orthotropic laminated plates
was investigated by Carrera [20], through the comparison between theories formulated on
the basis of the principle of virtual displacements (PVD) and mixed theories based on the
Reissner’s mixed variational theorem (RMVT). The effect of the through-the-thickness
temperature profile on the accuracy of classical and advanced plate theories was studied
by Carrera in [24]. The static response of functionally graded plates subjected to thermal
loads was addressed by Brischetto et al. [14]. The temperature field was determined by
solving Fourier’s equation. Different volume fractions of the material constituents were
considered to evaluate the temperature, displacement and stress distributions.

4.2 Unified formulation for thermo-mechanical analysis of

beams: overview

The Unified Formulation (UF) seen in Sec.2, is extended in order to cover also the thermal
analysis of composite and FGM beams. The temperature field is obtained by solving
Fourier’s heat conduction equation. Material gradation along the beam cross-section is
concerned for functionally graded materials. The numerical investigations are carried out
considering a power law variation along the beam thickness direction of the elastic and
thermal material properties.
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4.2.1 Constitutive equations for thermo-mechanical problems

In the case of thermo-mechanical problems, the constitutive equations (2.9) are:

σp = σpe − σpt = Cppεp +Cpnεn − λpT
σn = σne − σnt = Cnpεp +Cnnεn − λnT

(4.1)

where subscripts ‘e’ and ‘t’ refer to the elastic and the thermal contributions, respectively.
The coefficients λn and λp:

λT
n =

{
λ1 0 0

}
λT
p =

{
λ2 λ3 0

}
(4.2)

are related to the thermal expansion coefficients αn and αp:

αT
n =

{
α1 0 0

}
αT

p =
{

α2 α3 0
}

(4.3)

through the following equations:

λp = Cppαp +Cpnαn

λn = Cnpαp +Cnnαn
(4.4)

A Lagrange approximation on Np Chebyshev points along y and z cross-section co-
ordinates based on Newton series expansion is assumed for the material stiffness coefficients
Cij and thermal coefficients λi:

Cij (y, z) ≈ ωξ (y)ωη (z)Cij [y0, y1, . . . , yξ; z0, z1, . . . , zη]

λi (y, z) ≈ ωξ (y)ωη (z)λi [y0, y1, . . . , yξ; z0, z1, . . . , zη]
with ξ, η = 0, 1, . . . , Np

(4.5)
being:

ωm (ζ) =





1 m = 0
m−1∏
n=0

(ζ − ζn) m ∈ [1, Np]
(4.6)

and Cij [. . . ; . . . ] and λi [. . . ; . . . ] the divided difference of the approximated function, see
Philips [86]. Chebyshev’s points are defined on the domain [−1,+1] via the following
equation:

ζm = cos

(
mπ

Np

)
with m = 0, 1, . . . , Np (4.7)

These points are then mapped into the cross-section domain via a variable transformation.
In this manner the software implementation of the proposed models is general and does
not depend upon a specific gradation law that, once defined, will be approximated via a
Newton series expansion.
The beam models are derived considering the temperature (T ) as an external loading
resulting from the internal thermal stresses. This requires that temperature profile is
known over the whole beam domain. Fourier’s heat conduction equation is solved in order
to obtain T . The temperature is written as follows:

T (x, y, z) = Θn (x)ΘΩ (y, z) (4.8)
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4.2.2 Fourier’s heat conduction equation

A solution of Fourier’s heat conduction equation for FGM beams can be obtained by ideally
dividing the cross-section Ω into NΩk non-overlapping sub-domains (or layers) along the
through-the-thickness direction z:

Ω =
N

Ωk

∪
k=1

Ωk (4.9)

Each sub-domain is, then, supposed to be homogeneous, being the elastic and material
properties constant and equal to the value at sub-domain’s centre. For a kth homogeneous
and isotropic layer, the Fourier differential equation becomes:

∂2T k

∂x2
+

∂2T k

∂y2
+

∂2T k

∂z2
= 0 (4.10)

In order to obtain a closed form analytical solution, it is further assumed that the tem-
perature does not depend upon the through-the-width co-ordinate y. This also implies
that the material gradation law should be independent from y. The continuity of the
temperature and the through-the-thickness heat flux qz hold at each interface between
two consecutive sub-domains:

T k
t = T k+1

b

qkzt = qk+1
zb

(4.11)

Subscript ‘t’ and ‘b’ stand for sub-domain top and bottom, respectively. The through-
the-thickness heat flux is proportional to the temperature derivative versus z:

qkz = Kk ∂T
k

∂z
(4.12)

being Kk the thermal conductivity. The following temperatures are imposed at cross-
section through-the-thickness top and bottom:

T = Tt sin (αx)

T = Tb sin (αx)
(4.13)

Tt and Tt are the maximal amplitudes and α has been introduced in Eq. 2.34. The following
temperature field:

T k (x, z) = Θk
Ω (z) sin (αx) = T k

0 exp (sz) sin (αx) (4.14)

represents a solution of the considered heat conduction problem. T k
0 is an unknown con-

stant obtained by imposing the boundary condition, whereas s is obtained by replacing
Eq. 4.14 into Eq. 4.10:

s1,2 = ±α (4.15)

Θk
Ω (z), therefore, becomes:

Θk
Ω (z) = T k

01 exp (+αz) + T k
02 exp (−αz) (4.16)
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or, equivalently:

Θk
Ω (z) = Ck

1 cosh (αz) + Ck
2 sinh (αz) (4.17)

The solution can be written as:

T (x, z) =
[
Ck
1 cosh

(
sk1z

)
+Ck

2 sinh
(
sk1z

) ]
sin

(mπx

l

)
(4.18)

where the unknown coefficients Ck
1 and Ck

2 are constant for each layer k. If Nl is the
number of layer, we have 2Nl unknowns and we need 2Nl equations to determine them.
The temperature at the top and bottom surfaces is known and therefore we have the
following two conditions:

Tb = C1
1 cosh

(
s11zb

)
+ C1

2 sinh
(
s11zb

)

Tt = CNl
1 cosh

(
sNl
1 zt

)
+ CNl

2 sinh
(
sNl
1 zt

) (4.19)

Others Nl − 1 equations can be obtained from the continuity of temperature at each
interface, whereas Nl− 1 equations result from the continuity of the heat flux through the
interfaces, as written in Equation (4.11). We can write:

Ck
1 cosh

(
sk1z

k
t

)
+ Ck

2 sinh
(
sk1z

k
t

)
−Ck+1

1 cosh
(
sk+1
1 zk+1

b

)
+ Ck+l

2 sinh
(
sk+l
1 zk+1

b

)
= 0

Kk
3C

k
1 s

k
1 sinh

(
sk1z

k
t

)
+Kk

3C
k
2 s

k
1 cosh

(
sk1z

k
t

)
−Kk+1

3 Ck+1
1 sk+1

1 sinh
(
sk+1
1 zk+1

b

)
+

−Kk+1
3 Ck+1

2 sk+1
1 sinh

(
sk+l
1 zk+1

b

)
= 0

(4.20)
In Equation 4.20, zkt and zk+1

b represent the top of the k−th layer and the bottom of
the (k + 1)−th layer, respectively. Solving the system given by Equations 4.19 and 4.20
we obtain the Nl coefficients Ck

1 and Ck
2 . Therefore we can compute the temperature at

different values of z and x coordinates.

4.3 Governing Equations

The governing equations and the boundary conditions are derived through the PVD:

δLi = 0 (4.21)

where δ stands for a virtual variation and Li represents the strain energy. According to the
grouping of the stress and strain components in Eqs. (2.4) and (2.5), the virtual variation
of the strain energy for a thermo-mechanical case is:

δLi =

∫

l

∫

Ω

[
δǫTn (σne − σnt) + δǫTp (σpe − σpt)

]
dΩdx (4.22)
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By substitution of the geometrical relations, Eqs. (2.7), the constitutive equations, Eqs. (4.1),
and the unified hierarchical approximation of the displacements, Eq. (2.12), Eq. (4.22) be-
comes:

δLi =

∫

l

δuT
τ

∫

Ω

[
(DnpFτ )

T
Cnp (DpFs) + (DnpFτ )

T
Cnn (DnpFs) + (DnpFτ )

T
CnnFsDnx

+(DpFτ )
T
Cpp (DpFs) + (DpFτ )

T
Cpn (DnpFs) + (DpFτ )

T
CpnFsDnx

+DT
nxCnpFτ (DpFs) +DT

nxCnnFτ (DnpFs) +DT
nxCnnFτFsDnx

]
dΩ us dx

−
∫

l

δuT
τ

∫

Ω

[
(DnpFτ )

T (λnΘΩI) + (DpFτ )
T (λpΘΩI) +DT

nxFτ (λnΘΩI)
]
dΩ Θn dx

(4.23)
After integration by parts, Eq. (4.23) reads:

δLi =

∫

l

δuT
τ

∫

Ω

[
(DnpFτ )

T Cnp (DpFs) + (DnpFτ )
T Cnn (DnpFs) + (DnpFτ )

T CnnFsDnx

+(DpFτ )
T
Cpp (DpFs) + (DpFτ )

T
Cpn (DnpFs) + (DpFτ )

T
CpnFsDnx

−DT
nxCnpFτ (DpFs)−DT

nxCnnFτ (DnpFs)−DT
nxCnnFτFsDnx

]
dΩ us dx

−
∫

l

δuT
τ

∫

Ω

[
(DnpFτ )

T (λnΘΩI) + (DpFτ )
T (λpΘΩI)−DT

nxFτ (λnΘΩI)
]
dΩ Θn dx

+δuT
τ

∫

Ω

Fτ [Cnp (DpFs) +Cnn (DnpFs) +CnnFsDnx] dΩ us|x=l
x=0

−δuT
τ

∫

Ω

Fτ (λnΘΩI) dΩ Θn|x=l
x=0

(4.24)
In a compact vectorial form:

δLi =

∫

l

δuT
τ K

τs
uu us dx−

∫

l

δuT
τ K

τ
uθ Θn dx+

[
δuT

τ Π
τs
uu us

]x=l

x=0
−
[
δuT

τ Π
τ
uθ Θn

]x=l

x=0
(4.25)

The components of the differential stiffness matrix K
τs
uu are:

K
τs
uuxx

= J66
τ,ys,y + J55

τ,zs,z − J11
τs

∂2

∂x2
K

τs
uuxy

=
(
J66
τ,ys − J12

τs,y

) ∂

∂x
K

τs
uuxz

=
(
J55
τ,zs − J13

τs,z

) ∂

∂x

K
τs
uuyy

= J22
τ,ys,y + J44

τ,zs,z − J66
τs

∂2

∂x2
K

τs
uuyx

=
(
J12
τ,ys − J66

τs,y

) ∂

∂x
K

τs
uuyz

= J23
τ,ys,z + J44

τ,zs,y

K
τs
uuzz

= J44
τ,ys,y + J33

τ,zs,z − J55
τs

∂2

∂x2
K

τs
uuzx

=
(
J13
τ,zs − J55

τs,z

) ∂

∂x
K

τs
uuzy

= J23
τ,zs,y + J44

τ,ys,z

(4.26)

The generic term Jgh
τ(,φ)s(,ξ) is a cross-section moment:

Jgh
τ(,φ)s(,ξ)

=

∫

Ω

CghFτ(,φ)Fs(,ξ) dΩ (4.27)
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The components of the differential thermo-mechanical coupling matrix K
τ
uθ are:

K
τ
uθxx = −J1

τ

∂

∂x
K

τ
uθyy = J2

τ,y K
τ
uθzz = J3

τ,z (4.28)

The generic term J
g

τ(,φ)
is:

J
g

τ(,φ)
=

∫

Ω

Fτ(,φ) λg ΘΩ dΩ (4.29)

As far as the boundary conditions are concerned, the components of Π
τs
uu are:

Π
τs
uuxx

= J11
τs

∂

∂x
Π

τs
uuxy

= J12
τs,y Π

τs
uuxz

= J13
τs,z

Π
τs
uuyy

= J66
τs

∂

∂x
Π

τs
uuyx

= J66
τs,y Π

τs
uuyz

= 0

Π
τs
uuzz

= J55
τs

∂

∂x
Π

τs
uuzx

= J55
τs,z Π

τs
uuzy

= 0

(4.30)

and the components of Π
τ
uθ are:

Π
τ
uθxx = J1

τ Π
τ
uθyy = 0 Π

τ
uθzz = 0 (4.31)

The fundamental nucleo of the governing equations in a compact vectorial form is:

δuT
τ : K

τs
uuus = K

τ
uθΘn (4.32)

In explicit form:

δuxτ :

−J11
τsuxs,xx +

(
J55
τ,zs,z + J66

τ,ys,y

)
uxs +

(
J66
τ,ys − J12

τs,y

)
uys,x +

(
J55
τ,zs − J13

τs,z

)
uzs,x = −J1

τΘn,x

δuyτ :(
J12
τ,ys − J66

τs,y

)
uxs,x − J66

τsuys,xx +
(
J22
τ,ys,y + J44

τ,zs,z

)
uys +

(
J23
τ,ys,z + J44

τ,zs,y

)
uzs = J2

τ,yΘn

δuzτ :(
J13
τ,zs − J55

τs,z

)
uxs,x +

(
J23
τ,zs,y + J44

τ,ys,z

)
uys − J55

τsuzs,xx +
(
J33
τ,zs,z + J44

τ,ys,y

)
uzs = J3

τ,zΘn

(4.33)
The fundamental nucleo of the natural and mechanical boundary conditions at x = 0 and
l are:

either uxτ = uxτ or J11
τsuxs,x + J12

τs,yuys + J13
τs,zuzs − J1

τΘn = 0

either uyτ = uyτ or J66
τs,yuxs + J66

τsuys,x = 0

either uzτ = uzτ or J55
τs,zuxs + J55

τsuzs,x = 0

(4.34)

For a fixed approximation order, the nucleo has to be expanded versus the indexes τ and
s in order to obtain the governing equations and the boundary conditions of the desired
model.
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4.4 Closed Form Analytical Solution

The differential equations are solved via a Navier-type solution. Simply supported beams
are, therefore, investigated. The following harmonic form for the axial variation of the
displacement and temperature fields is adopted:

ux = UxτFτ (y, z) cos (αx)

uy = UyτFτ (y, z) sin (αx)

uz = UzτFτ (y, z) sin (αx)

T = ΘΩ (y, z)Θn (x) = ΘΩ sin (αx)

(4.35)

where α is:
α =

mπ

l
(4.36)

m ∈ N+ represents the half-wave number along the beam axis. {Uiτ : i = x, y, z} are the
maximal amplitudes of the displacement components. Upon substitution of Eqs. (4.35)
into Eqs. (4.33), the algebraic fundamental nucleo is obtained:

δUxτ :(
α2J11

τs + J55
τ,zs,z + J66

τ,ys,y

)
Uxs + α

(
J66
τ,ys − J12

τs,y

)
Uys + α

(
J55
τ,zs − J13

τs,z

)
Uzs = −αJ1

τ

δUyτ :

α
(
J66
τs,y − J12

τ,ys

)
Uxs +

(
α2J66

τs + J22
τ,ys,y + J44

τ,zs,z

)
Uys +

(
J23
τ,ys,z + J44

τ,zs,y

)
Uzs = J2

τ,y

δUzτ :

α
(
J55
τs,z − J13

τ,zs

)
Uxs +

(
J23
τ,zs,y + J44

τ,ys,z

)
Uys +

(
α2J55

τs + J33
τ,zs,z + J44

τ,ys,y

)
Uzs = J3

τ,z

(4.37)

4.5 Numerical Results and Discussion

4.5.1 Isotropic material

Isotropic beams made of an alluminium alloy are first considered. The mechanical proper-
ties are: E = 72 GPa, ν = 0.3, K = 121 W/m◦C, α̃ = 23·10−6 ◦C−1. Square cross-sections
are considered. The sides of the cross-section are a = b = 0.1 m. The length-to-side ratio
l/b is equal to 100, ten and five. Slender and deep beams are, therefore, investigated. The
half-wave number m in Equation 4.36 is assumed equal to one. The thermal boundary
conditions are: Tb = 25◦C and Tt = 500◦C. Displacements and stresses are evaluated in
the following points:

ux at (l,−a/2, b/2) uy at (l/2, 0, b/2) uz at (l/2, a/2, b/2)

σxx at (l/2, 0, a/2) σxz at (0,−a/2, 0) σzz at (l/2,−a/2, 0)
(4.38)
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Results are reported in Tables 4.1- 4.6 and in Figures 4.1- 4.6.

uz ux ×−102 uy × 104

FEM 3Da 1.1074 3.6608 5.7491
FEM 3Db 1.1074 3.6608 5.7480
N ≥ 6 1.1074 3.6608 5.7499
N = 3− 5 1.1074 3.6608 5.7498
N = 2 1.1074 3.6607 5.7496
TB 2.4480 8.0953 −
EB 2.4480 8.0951 −
a: mesh 50x20x20

b: mesh 50x10x10

Table 4.1. Displacements ([m]), isotropic beam, l/b = 100

(a) (b)

Figure 4.1. Axial displacement ux ([m]), isotropic beam, l/b = 10 via (a) FEM
3-D solution and (b) N = 8 model

As far as validation is concerned, results are compared with three-dimensional FEM solu-
tions obtained via the commercial code ANSYS R©. The accuracy of the three-dimensional
FEM solution depends upon the FEM numerical approximation. In order to present the
convergence of the three-dimensional reference solution, for each case two different meshes
are considered. Acronym FEM 3Da stand for a three-dimensional FEM model with 50
elements along the axial direction and 20 elements along y and z directions. A coarser so-
lution FEM 3Db (50×10×10 elements) is also considered. Although the three-dimensional
FEM solution and the analytical one are different in nature, some considerations about
computational time and effort can be addressed. For the reference FEM simulations, the
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(a) (b)

Figure 4.2. Transverse displacement uy ([m]), isotropic beam, l/b = 10 via (a) FEM
3-D solution and (b) N = 8 model

σxx ×−10−4 σxz ×−10−6 σzz ×−10−4

FEM 3Da 3.4121 1.4966 1.6846
FEM 3Db 3.2153 1.4851 1.6603
N = 13 3.1923 1.5003 1.6930
N = 12 3.1984 1.5025 1.6963
N = 11 3.2027 1.5025 1.6963
N = 10 3.1989 1.4917 1.7028
N = 9 3.2007 1.4917 1.7028
N = 8 3.1705 1.4963 1.7114
N = 7 3.1473 1.4963 1.7114
N = 6 3.2616 1.5951 1.5673
N = 5 3.0066 1.5951 1.5672
N = 4 3.3814 1.3200 1.0693
N = 3 4.1457 1.3200 1.0693
N = 2 8.1480 1.1880 −5.4997
TB −1.0031E+9 3.0745E-6 −
EB −1.0031E+9 − −
a: mesh 50x20x20

b: mesh 50x10x10

Table 4.2. Stresses ([Gpa]), isotropic beam, l/b = 100
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uz × 102 ux ×−103 uy × 104

FEM 3Da 1.1511 3.6847 5.7362
FEM 3Db 1.1511 3.6847 5.7362
N ≥ 9 1.1511 3.6847 5.7362
N = 8 1.1511 3.6848 5.7362
N = 7 1.1511 3.6848 5.7361
N = 6 1.1511 3.6845 5.7356
N = 5 1.1511 3.6845 5.7349
N = 4 1.1513 3.6868 5.7337
N = 3 1.1513 3.6868 5.7330
N = 2 1.1501 3.6757 5.7111
TB 2.4440 8.0546 −
EB 2.4440 8.0546 −
a: mesh 50x20x20

b: mesh 50x10x10

Table 4.3. Displacements ([m]), isotropic beam, l/b = 10

σxx ×−10−6 σxz ×−10−7 σzz ×−10−6

FEM 3Da 3.1717 1.4860 1.6574
FEM 3Db 3.2093 1.4745 1.6333
N = 13 3.1560 1.4898 1.6657
N = 12 3.1620 1.4920 1.6690
N = 11 3.1664 1.4920 1.6690
N = 10 3.1627 1.4812 1.6753
N = 9 3.1642 1.4813 1.6755
N = 8 3.1342 1.4859 1.6844
N = 7 3.1106 1.4860 1.6841
N = 6 3.2221 1.5843 1.5441
N = 5 2.9749 1.5841 1.5398
N = 4 3.3527 1.3100 1.0496
N = 3 4.1150 1.3100 1.0518
N = 2 8.0406 1.1822 −5.4328
TB −993.90 − −
EB −993.90 − −
a: mesh 50x20x20

b: mesh 50x10x10

Table 4.4. Stresses ([Gpa]), isotropic beam, l/b = 10
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uz × 103 ux ×−103 uy × 104

FEM 3Da 3.2029 1.8774 5.6949
FEM 3Db 3.2029 1.8774 5.6949
N ≥ 11 3.2029 1.8774 5.6949
N = 10 3.2029 1.8774 5.6948
N = 9 3.2029 1.8774 5.6948
N = 8 3.2029 1.8775 5.6946
N = 7 3.2029 1.8775 5.6942
N = 6 3.2029 1.8770 5.6922
N = 5 3.2030 1.8770 5.6894
N = 4 3.2044 1.8813 5.6846
N = 3 3.2046 1.8813 5.6818
N = 2 3.1910 1.8599 5.5971
TB 6.0802 3.9679 −
EB 6.0802 3.9679 −
a: mesh 50x20x20

b: mesh 50x10x10

Table 4.5. Displacements ([m]), isotropic beam, l/b = 5

σxx × 10−7 σxz × 10−7 σzz × 10−6

FEM 3Da 1.2257 2.9092 6.3141
FEM 3Db 1.2401 2.8857 6.2204
N = 13 1.2197 2.9168 6.3462
N = 12 1.2221 2.9214 6.3588
N = 11 1.2239 2.9214 6.3587
N = 10 1.2225 2.8999 6.3826
N = 9 1.2228 2.9000 6.3859
N = 8 1.2111 2.9096 6.4232
N = 7 1.2012 2.9102 6.4186
N = 6 1.2425 3.1042 5.9066
N = 5 1.1526 3.1025 5.8409
N = 4 1.3072 2.5603 3.9693
N = 3 1.6096 2.5605 4.0041
N = 2 3.0914 2.3297 −20.949
TB 96.706 − −
EB 96.706 − −
a: mesh 50x20x20

b: mesh 50x10x10

Table 4.6. Stresses ([Gpa]), isotropic beam, l/b = 5
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computational time is as high as about 20 minutes (refined mesh) and as low as 5 min-
utes (coarsest mesh). In the case of the proposed analytical solutions, the computational
time is few second regardless the considered approximation order. For slender beams, low
expansion orders results match already the FEM solutions for displacements, whereas for
stresses, higher expansion orders are required. This behaviour becomes more evident for
deep beams. N = 9 or 11 is necessary to obtain good results for displacements when
l/b is 10 and 5. For stresses, the higher expansion orders are necessary even for deep
beams. Classical theories provide very poor results if compared with those obtained via
higher-order models.

(a) (b)

Figure 4.3. Transverse displacement uz ([m]), isotropic beam, l/b = 10 via (a) FEM
3-D solution and (b) N = 8 model

Figures 4.1- 4.6 show the displacements and stresses fields at the beam cross-section
in x = 0 or x = l/2. The considered expansion order is N = 8 and the slenderness ratio
is l/b = 10. In general, N = 8 is sufficient to achieve a good overall solution along the
cross-section of the beam, while in tables there is a set set of punctual values, and then
higher orders of expansion are necessary to reduce the error.
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(a) (b)

Figure 4.4. Axial stress σxx ([GPa]), isotropic beam, l/b = 10 via (a) FEM 3-D
solution and (b) N = 8 model

(a) (b)

Figure 4.5. Shear stress σxz ([GPa]), isotropic beam, l/b = 10 via (a) FEM 3-D
solution and (b) N = 8 model
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(a) (b)

Figure 4.6. Out-of-plane Ω stress σzz ([GPa]), isotropic beam, l/b = 10 via (a) FEM
3-D solution and (b) N = 8 model
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4.5.2 Orthotropic material

Figure 4.7. Deformation of the beam, l/b = 10

Composite beams are considered in this section. The mechanical properties are: EL =
172.72 × 109 Pa, ET = 6.91 × 109 Pa, GLT = 3.45 × 109 Pa, GTT = 1.38 × 109 Pa,
νLT = νTT = 0.25, KL = 36.42 W/mK, KT = 0.96 W/mK, α̃L = 0.57 · 10−6K−1, α̃T =
35.60 · 10−6K−1. A two layers [0/90] lamination, starting from the bottom, is considered.
Square cross-sections are considered. The sides of the cross-section are a = b = 1 m. The
length-to-side ratio l/b is equal to ten. The thermal boundary conditions are: Tb = 0 K
and Tt = 1 K. In Figure 4.7 is reported the deformed shape of the beam. The behaviour
after deformation is due to the 90 ◦ layer that is on the top of the beam and has a small
value of α̃L. Results for displacements and stresses are presented in Figure 4.8. Higher-
order models result necessary when we consider composite beams. From the pictures we
notice that at the interface of the two layers we have the higher errors, compared to the
FEM3D solution. A layer-wise approach could better identify the behaviour of the beam.
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(a) uy (m), FEM3D solution (b) uy (m), N=15

(c) uz (m), FEM3D solution (d) uz (m), N=15

(e) σxx (Pa), FEM3D solution (f) σxx (Pa), N=20

Figure 4.8. Composite beam, l/b = 10
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4.5.3 Functionally Graded Materials

Beams made of ceramic metal Functionally Graded Materials (FGMs) are able to combine
temperature resistance and a continuous stress distribution because of the smooth varia-
tion of material properties along some preferred directions.
A ceramic-metallic gradation along the thickness direction is considered. The ceramic
phase is made of Zirconia (ZrO2), whereas Monel (70Ni-30Cu), a nikel-based alloy, is con-
sidered as metallic phase. Materials properties are presented in Table. 4.7. The generic

E [GPa] ν K [W/mK] α [10−6 K−1]

Zirconia 151.01 0.300 2.09 10.
Monel 179.40 0.368 25.00 15.

Table 4.7. FGM constituents elastic and thermal properties.

material property, f , is assumed to vary versus the thickness coordinate z according to
the power law distribution of Eq. 3.1.

f = (f1 − f2) (αzz + βz)
nz + f2 (4.39)

nz is the power law exponent and it is equal to the unit, fi is the generic material property
of each constituent and αz and βz are two constant coefficients that depend upon the
through-the-thickness extension of the FGM layer and the through-the-thickness position
of the center of the reference system, which is centred at the cross-section bottom left
corner. A mono-layer and a sandwich FGM cross-section configuration are investigated.
In the case of the mono-layer FGM cross-section and for the assumed reference system,
αz = 1/b and βz = 0. The half-wave number m in Eq. (4.36) is equal to one. The thermal
boundary conditions (see Eq. 4.13)are: Tt = +400 K and Tb = +300 K. Square cross-
sections with sides length a = b = 1 m are considered. The length-to-side ratio l/a is
equal 100 and 10. Slender and deep beams are, therefore, investigated. As far as tabular
results are concerned, the displacements and stresses evaluated at the following points are
considered:

ux = ux (0, a/2, b) uy = uy (l/2, a, b) uz = uz (l/2, a/2, b/2)

σxx = σxx (l/2, a/2, b/2) σxz = σxz (0, 0, b/2) σzz = σzz (l/2, a/2, b/2)
(4.40)

Results obtained using the proposed higher-order models are compared with three-dimensional
FEM solutions obtained via the commercial code ANSYS R©. The three-dimensional quadratic
element “Solid90” is used for the thermal analysis, whereas the 20-node element “Solid186”
is considered for the mechanical problem. For a FGM layer, each element is considered
as homogeneous by referring to the material properties at its centre. The accuracy of the
three-dimensional FEM solution depends upon both the FEM numerical approximation
and the approximation of the gradation law. In order to present the convergence of the
three-dimensional reference solution, two different meshes are considered for each analysis.
The acronym FEM 3Da stands for a three-dimensional FEM model with a 30 × 30 × 30
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elements mesh, whereas the coarser 20× 20× 20 mesh solution is addressed by FEM 3Db.
Although the three-dimensional FEM solution and the analytical one are different in na-
ture, some considerations about computational effort can be addressed. The degrees of
freedom (DOFs) of the three-dimensional FEM mechanical problem over a beam cross-
section as function of the number of elements for each side, n, are 3 (3n+ 1) (n+ 1). n is
as low as 20 (DOFs = 3843) and as high as 30 (DOFs = 8463). For a fixed approximation
order N , the DOFs of the proposed solutions are 3 (N + 1) (N + 2) /2. In the case of the
highest considered expansion order (N = 13) they are 315.

Mono-layer FGM beam

Beams made of a single FGM layer, see Fig. 4.9, are first investigated. The temperature

Figure 4.9. Mono-layer FGM beam.

variation over the cross-section at mid-span in presented in Figs. 4.10. The solution of
Fourier’s equation via the procedure presented in the Sec.4.2.2 has been obtained consid-
ering 16 fictitious layers. It matches the FEM 3Da solution. Table 4.8 to 4.11 present the
displacements and the stresses in Eqs. 4.40 for slender and thick beams. Differently
from a bending mechanical load, a thermal load results in axial and through-the-thickness
displacement components as well as normal stress components of comparable order of
magnitude. This is due to the fact that in the former case the mechanics is mainly gov-
erned by bending (and shear, for thick beams), whereas the normal stresses along the
other two directions are mainly due to the coupling governed by the Poisson effect. In
the thermo-mechanical case, the deformations are governed by the thermal expansion co-
efficients. Classical theories yield a zero through-the-width displacement since, according
to their kinematic hypotheses (see Eqs. 2.15 and 2.16), the cross-section is rigid on its
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(a)

(b)

Figure 4.10. Mono-layer FGM beam temperature profile [K] at x/l = 1/2 via (a) Fourier’s
equation solution and (b) FEM 3Da, l/a = 10.
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−10 · uz −10 · ux 103 · uy
FEM 3Da 6.583 1.204 1.972
FEM 3Db 6.527 1.205 1.967
N = 9− 13 6.533 1.205 1.961
N = 8 6.533 1.205 1.960
N = 7 6.533 1.205 1.958
N = 6 6.534 1.205 1.955
N = 5 6.534 1.205 1.950
N = 4 6.538 1.205 1.948
N = 3 6.537 1.205 1.937
N = 2 6.697 1.202 1.889
TBT 6.522 1.205 0.000
EBT 6.521 1.205 0.000

a: mesh 30× 30× 30.

b: mesh 20× 20× 20.

Table 4.8. Mono-layer FGM beam, displacements [m], l/a = 100.

10−7 · σxx 10−5 · σxz 10−6 · σzz

FEM 3Da 1.088 2.247 5.522
FEM 3Db 1.098 2.239 5.590
N = 13 1.109 2.232 5.582
N = 12 1.119 2.235 5.778
N = 11 1.119 2.240 5.770
N = 10 1.121 2.231 5.804
N = 9 1.120 2.225 5.800
N = 8 1.115 2.218 5.736
N = 7 1.117 2.191 5.772
N = 6 1.171 2.293 6.618
N = 5 1.156 2.289 6.333
N = 4 0.885 1.892 1.516
N = 3 0.945 2.020 2.451
N = 2 2.351 1.573 23.55
TBT 0.793 4.135c −d

EBT 0.787 − −
a: mesh 30× 30× 30.

b: mesh 20× 20× 20.

c: scale factor −105 (instead of 10−5).

d: result not provided by the theory.

Table 4.9. Mono-layer FGM beam, stresses [Pa], l/a = 100.
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−103 · uz −102 · ux 103 · uy
FEM 3Da 6.704 1.195 1.953
FEM 3Db 6.644 1.196 1.958
N = 12, 13 6.648 1.197 1.955
N = 9− 11 6.648 1.197 1.954
N = 8 6.648 1.197 1.953
N = 7 6.648 1.197 1.952
N = 6 6.648 1.197 1.947
N = 5 6.648 1.197 1.943
N = 4 6.653 1.197 1.940
N = 3 6.655 1.197 1.929
N = 2 6.854 1.194 1.866
TBT 6.649 1.191 0.000
EBT 6.648 1.191 0.000

a: mesh 30× 30× 30.

b: mesh 20× 20× 20.

Table 4.10. Mono-layer FGM beam, displacements [m], l/a = 10.
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10−6 · σxx 10−6 · σxz 10−6 · σzz

FEM 3Da 8.635 2.292 6.459
FEM 3Db 8.738 2.284 6.535
N = 13 8.865 2.276 6.521
N = 12 8.968 2.279 6.722
N = 11 8.964 2.285 6.714
N = 10 8.980 2.276 6.740
N = 9 8.977 2.270 6.735
N = 8 8.915 2.261 6.663
N = 7 8.942 2.232 6.703
N = 6 9.540 2.335 7.648
N = 5 9.374 2.331 7.330
N = 4 6.383 1.925 2.011
N = 3 7.024 2.058 3.020
N = 2 23.19 1.601 27.53
TBT 10.62 4.090c −d

EBT 10.57 − −
a: mesh 30× 30× 30.

b: mesh 20× 20× 20.

c: scale factor −105 (instead of 10−6).

d: result not provided by the theory.

Table 4.11. Mono-layer FGM beam, stresses [Pa], l/a = 10.

68



4 – Thermo-mechanical analysis of orthotropic and FG beams

own plane and the problem is symmetric versus a plane parallel to Oxz and passing at
mid-width. Nevertheless, they provide a well globally estimated displacement field. As

(a)

(b)

Figure 4.11. Mono-layer FGM beam, uz [m] at x/l = 1/2 via (a) N = 4 and (b)
FEM 3Da, l/a = 10.

shown in Figs. 4.11 to 4.13, where the variation of the displacement components over the
cross-section is presented, lower-order theories match the reference solution FEM 3Da.
For instance, a fourth-order model is able to predict the trough-the-width variation of
the axial displacement component, which it is constant in the case of TBT. As far
as the stresses are concerned, higher-order models (e.g., N as low as eight) are required
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(a)

(b)

(c)

Figure 4.12. Mono-layer FGM beam, ux [m] at x/l = 0 via (a) TBT, (b) N = 4
and (c) FEM 3Da, l/a = 10.
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(a)

(b)

Figure 4.13. Mono-layer FGM beam, uy [m] at x/l = 1/2 via (a) N = 4 and (b)
FEM 3Da, l/a = 10.
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(a) (b)

(c) (d)

Figure 4.14. Mono-layer FGM beam, σxx [Pa] at x/l = 1/2 via (a) TBT, (b) N = 4, (c)
N = 13 and (d) FEM 3Da, l/a = 10.
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(a) (b)

(c) (d)

Figure 4.15. Mono-layer FGM beam, σxz [Pa] at x/l = 0 via (a) N = 4, (b) N = 13, (c)
FEM 3Da and (d) TBT, l/a = 10.

for an accurate solution. The stress field is three-dimensional. Figs. 4.14 show the ax-
ial stress component at mid-span cross-section. Results are obtained via, TBT, fourth-
and 13th-order model and FEM 3Da. The latter presents a relevant though-the-width
variation and a high through-the-thickness gradient, especially at cross-section top. This
is very different from a typical mechanical problem of global bending. The solution for
N = 13 compares globally well with the reference solution. The shear component σxz is
presented in Figs. 4.15. TBT yields a solution several order of magnitude smaller than
the reference solution. A different scale has been used in the figure and the tables for this
reason. A steep stress gradient is present at both cross-section sides. N = 13 solution
matches the reference one. Figs. 4.16 present σxy computed via N = 4 and 13 and FEM
3Da. The fourth-order theory yields an acceptable estimation in the neighbourhood of
cross-section’s centre. The last two solutions compare very well. This is also true for the
shear component σyz presented in Figs. 4.17. The normal stress component σyy is shown
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(a)

(b)

(c)

Figure 4.16. Mono-layer FGM beam, σxy [Pa] at x/l = 0 via (a) N = 4, (b) N = 13
and (c) FEM 3Da, l/a = 10.
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(a)

(b)

Figure 4.17. Mono-layer FGM beam, σyz [Pa] at x/l = 1/2 via (a) N = 13 and
(c) FEM 3Da, l/a = 10.
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(a)

(b)

(c)

Figure 4.18. Mono-layer FGM beam, σyy [Pa] at x/l = 1/2 via (a) N = 4, (b)
N = 13 and (c) FEM 3Da, l/a = 10.
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(a)

(b)

Figure 4.19. Mono-layer FGM beam, σzz [Pa] at x/l = 1/2 via (a) N = 13 and
(c) FEM 3Da, l/a = 10.

in Figs. 4.18. N = 13 and FEM 3Da solutions compare fairly well. This stress component
presents a relevant thought-the-width variation and localised stress zones. A fourth-order
approximation is obviously not sufficient to describe it. N = 13 yields also a fairly accu-
rate prediction of σzz as demonstrated by Figs. 4.19. The results presented in a graphical
form have been all obtained for l/a = 10. The case of slender beams is very similar and it
is not presented here for the sake of brevity.
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4.5.4 Sandwich FGM beam

A FGM sandwich configuration is investigated, see Fig. 4.20. A FGM core connects the top

Figure 4.20. Sandwich FGM beam.

and bottom layers that are entirely made of zirconia and monel. The thickness, hf , of the
top and bottom faces is 0.1 times the cross-section side length. The solution of Fourier’s
equation is accurate when compared to the FEM 3Da solution. It is not presented here for
the sake of brevity. The main difference versus the mono-layer configuration is in a globally
slightly cooler bottom part of the cross-section since the ceramic layer acts as a further
thermal barrier. Displacements and stresses for slender and thick beams are presented
in Table 4.12 to 4.15. Higher-order models match the reference three-dimensional FEM
results. Lower-order and classical theories yield good displacements but are not capable of
predicting the stress field properly. When compared with the mono-layer configuration, a
higher transverse displacement (resulting in higher stresses) is observed. The temperature
profile for the sandwich FGM beam is showed in fig. 4.21.
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−1 · uz −10 · ux 103 · uy
FEM 3Da 1.022 1.126 1.919
FEM 3Db 1.019 1.127 1.902
N = 11− 13 1.023 1.126 1.900
N = 9, 10 1.023 1.126 1.899
N = 8 1.023 1.126 1.898
N = 7 1.023 1.126 1.890
N = 6 1.024 1.126 1.883
N = 5 1.024 1.126 1.868
N = 4 1.024 1.126 1.865
N = 3 1.024 1.126 1.827
N = 2 1.047 1.122 1.763
TBT, EBT 1.021 1.126 0.000

a: mesh 30x30x30.

b: mesh 20x20x20.

Table 4.12. Sandwich FGM beam, displacements [m], l/a = 100.

10−7 · σxx 10−5 · σxz 10−6 · σzz
FEM 3Da 1.457 3.881 7.721
FEM 3Db 1.460 3.871 7.737
N = 13 1.465 3.870 7.828
N = 12 1.462 3.883 7.739
N = 11 1.449 3.911 7.479
N = 10 1.444 3.919 7.416
N = 9 1.463 3.912 7.811
N = 8 1.487 3.852 8.293
N = 7 1.502 3.749 8.528
N = 6 1.533 3.883 8.843
N = 5 1.422 3.826 6.777
N = 4 1.036 3.285 −0.090
N = 3 1.300 3.721 3.897
N = 2 3.118 2.459 31.22
TBT 1.037 4.869c −d

EBT 1.032 − −
a: mesh 30x30x30.

b: mesh 20x20x20.

c: scale factor −105 (instead of 10−5).

d: result not provided by the theory.

Table 4.13. Sandwich FGM beam, stresses [Pa], l/a = 100.
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(a) FEM-3D

(b) N=13

Figure 4.21. Sandwich FGM beam temperature profile [K] at x/l = 1/2 via (a) Fourier’s
equation solution and (b) FEM 3Da, l/a = 10.
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−102 · uz −102 · ux 103 · uy
FEM 3Da 1.033 1.118 1.894
FEM 3Db 1.029 1.119 1.895
N = 12, 13 1.034 1.118 1.894
N = 10, 11 1.034 1.118 1.893
N = 8, 9 1.034 1.118 1.892
N = 7 1.034 1.118 1.883
N = 6 1.034 1.118 1.877
N = 5 1.033 1.118 1.861
N = 4 1.034 1.118 1.858
N = 3 1.034 1.118 1.818
N = 2 1.063 1.114 1.741
TBT 1.033 1.113 0.000
EBT 1.033 1.112 0.000

a: mesh 30x30x30.

b: mesh 20x20x20.

Table 4.14. Sandwich FGM beam, displacements [m], l/a = 10.

For the sake of brevity, only a 13th-order model is considered for the plots over the
cross-section of displacements and stresses. Figs. 4.22 shows the displacement components.
Results are practically identical. The stress components σn are presented in Figs. 4.23.
The proposed results and the reference solutions match. The presence of an inner and
outer homogeneous layer changes the profile of the axial stress increasing the maximum
and minimum values and introducing a stress gradient also at the cross-section bottom.
Finally, Figs. 4.24 present the stress components σp. The normal stress components also
present localised stress areas that make them difficult to be correctly predicted, especially
in the case of σzz. Nevertheless, fairly good results are obtained. A future work perspective
consists in a the formulation of higher-order theories by means of a layer-wise approach
that should enhance the accuracy of the approximation.
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(a) uz, N = 13, x/l = 1/2 (b) uz, FEM 3Da, x/l = 1/2

(c) ux, N = 13, x/l = 0 (d) ux, FEM 3Da, x/l = 0

(e) uy , N = 13, x/l = 1/2 (f) uy , FEM 3Da, x/l = 1/2

Figure 4.22. Sandwich FGM beam, displacements components [m] via N = 13
and FEM 3Da, l/a = 10.
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(a) σxx, N = 13, x/l = 1/2 (b) σxx, FEM 3Da, x/l = 1/2

(c) σxz, N = 13, x/l = 0 (d) σxz, FEM 3Da, x/l = 0

(e) σxy, N = 13, x/l = 0 (f) σxy, FEM 3Da, x/l = 0

Figure 4.23. Sandwich FGM beam, σn stress components [Pa] via N = 13 and
FEM 3Da, l/a = 10.
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(a) σyy, N = 13 (b) σyy, FEM 3Da

(c) σzz, N = 13 (d) σzz, FEM 3Da

(e) σyz, N = 13 (f) σyz, FEM 3Da

Figure 4.24. Sandwich FGM beam, σn stress components at x/l = 1/2 via N = 13
and FEM 3Da, l/a = 10.
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10−7 · σxx 10−6 · σxz 10−6 · σzz
FEM 3Da 1.237 3.921 8.701
FEM 3Db 1.239 3.910 8.721
N = 13 1.245 3.910 8.802
N = 12 1.242 3.922 8.700
N = 11 1.229 3.951 8.441
N = 10 1.222 3.959 8.358
N = 9 1.242 3.951 8.757
N = 8 1.269 3.891 9.299
N = 7 1.284 3.785 9.526
N = 6 1.317 3.920 9.888
N = 5 1.206 3.863 7.790
N = 4 0.783 3.311 0.269
N = 3 1.053 3.752 4.346
N = 2 3.080 2.483 35.13
TBT 1.303 4.816c −d

EBT 1.297 − −
a: mesh 30x30x30.

b: mesh 20x20x20.

c: scale factor −0.1 (instead of 10−6).

d: result not provided by the theory.

Table 4.15. Sandwich FGM beam, stresses [Pa], l/a = 10.

4.6 Conclusions

A unified formulation of one-dimensional beam models has been proposed for the ther-
mal analysis of isotropic, composite and functionally graded beams. The temperature
field has been obtained by solving Fourier’s heat conduction equation and it has been
accounted for in the mechanical analysis as an external load. Results have been validated
through comparison with three-dimensional FEM solutions obtained via the commercial
code ANSYS R©. In has been shown that the considered thermo-mechanical problems, al-
though presenting a global bending deformation, are governed by three-dimensional stress
fields that call for very accurate models. Through an appropriate choice of the approxi-
mation order over the cross-section, the proposed formulation yields accurate results with
reduced computational costs.
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Chapter 5

Refined shell’s and plate’s theories

via Unified Formulation

5.1 Introduction

The development of appropriate shell theories is a well established topic in structural anal-
ysis of shell panels that are used to build significant structural parts of automotive, ship
and aerospace vehicles, and shell-made civil constructions. Carrera Unified Formulation
for the modelling of composite shell and plate structures is presented in the following. Via
this approach, higher order, zig-zag, layer-wise and mixed theories can be easily formu-
lated. As a particular case, the equations related to Love’s approximations and Donnell’s
approximations and as well as of the corresponding classical lamination and shear defor-
mation theories (CLT and FSDT) are derived. Classical theories (Classical Lamination
Theory, CLT) developed for thin elastic shells are based on Love-Kirchhoff’s [66] assump-
tions: (1) the shell is thin, (2) the deflections of the shell are small, (3) normal stresses
that are perpendicular to the middle surface can be neglected in comparison with other
stresses, and (4) straight lines that are normal to the undeformed middle surface remain
straight and normal to the deformed middle surface. The last assumption leads to neglect
the transverse shear strains. Over the last years, curved shell structures made of compos-
ite laminae have gained widespread acceptance for primary structural components due to
high value of strength- and stiffness-to-weight ratios. Love-Kirchhoff’s kinematic assump-
tions applied to layered anisotropic composite shells may not yield a correct prediction of
displacement and stress fields. An elastic shell theory in which the thinness assumption is
delayed has independently been derived by Flügge [48], Lur’E [67], and Byrne [15]. The
introduction of transverse shear and normal stress represents an improvement to classical
theories. The effects of transverse shear deformations (SDT-Shear Deformation Theory)
and normal stresses have been considered by Hildebrand, Reissner and Thomas [53] and
Reissner [100]. Non-linear theories were considered by Sanders [106]. Moreover, other
approximations on curvature terms for shallow shell analysis have been introduced by
Donnell [41] and Mushtari [79]. A survey of various classical shell theories can be found
in the works of Naghdi [80] and Leissa [62].
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The analysis of the vibration characteristics for shells and plates is a fundamental topic
at the early design stage of these structures. The open literature offers several works con-
cerning free vibration analysis of shell. Some of these are reviewed in the following text. A
review of the recent researches (2000-2009) done on the dynamic behaviour of composites
shells is presented by Qatu et al. [95]. This review includes about 200 references that
are organized according to the following criteria: 1- shell theories, 2- shell geometries, 3-
type of dynamic analysis, 4- material complexity, and 5- structural complexity. Laminated
composite deep thick shells are investigated in the works of Qatu [89] and [90]. In [90]
accurate stress resultant equations are derived including initial pre-twist and, further, the
term (1+z/R). Free vibration analysis yielded frequencies that are close to those obtained
by 3-D theory of elasticity. Homogeneous and composite thick barrel shells were investi-
gated by Qatu in [93]. Several natural frequencies analyses are carried out, taking into
account the curvature and thickness effects. Reddy and Liu [99] investigated the statics
and the free vibrations of shallow thick cylindrical and spherical shells made of orthotropic
layers via a cubic through-the-thickness approximation of the displacement components
laying on shell surface and a constant transverse displacement. Governing equations were
solved through a Navier-type solution. Chaudhuri and Kabir [34] used four classical shal-
low shell theories - Donnel, Sanders, Reissner and modified Sanders - to obtain Fourier
series solutions for cross-ply doubly curved panels with simply supported boundary condi-
tions. They extended CLT-based analytical solutions for cross-ply curved panels to other
types of boundary conditions. A boundary-discontinuous double Fourier series approach
was used to solve a system of three partial differential equations (one fourth-order and two
second-order, in terms of the transverse displacement). In the work of Ferreira et al. [47],
Reddy’s higher-order shear deformation theory of laminated orthotropic elastic shells was
implemented through a multiquadrics discretization of equations of motion and boundary
conditions. Static and free vibration analyses of doubly curved laminated elastic shells
were carried out by the use of third-order theory in combination with a meshless technique
based on the multiquadric Radial Basis Function (RBF) method. Another mesh-free ap-
proach for vibration analysis of laminated composite cylindrical panels was presented by
Zhao and Liew [132].
Some studies of vibration response of composite shells included the presence of a cut-out.
In the work of Poore et al. [87] a semi-analytical solution method is presented for deter-
mining the natural frequencies and mode shapes of laminated cylindrical shells containing
a circular cut-out. Sai Ram and Sreedhar Babu [105] investigated the free vibration of
composite spherical shell caps with and without a cut-out. The analysis is carried out
using the finite element method based on a higher-order shear deformation theory that
accounts for rotary inertia and parabolic variation of transverse shear strain across the
thickness. The transverse displacement of the shell is assumed constant through the thick-
ness. Narasimhan and Alwar [81] studied the free vibration of orthotropic annular spheri-
cal shells with clamped boundary conditions at both the edges using Chebyshev-Galerkin
spectral method. Fundamental frequencies were presented for cross-ply laminated shells
with fibres oriented in circumferential and meridian directions. Xavier et al. [127] modelled
the vibration of thick orthotropic laminated composite shells using a simple higher-order
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layer-wise theory. The theory accounts for a cubic variation of both the in-plane dis-
placements and the transverse shear stresses within each layer. They defined the General
Performance Index (GPI) as a measure of the natural frequency and stress predicting ca-
pability of a theory. Composite cylindrical shells and their applications concerning free
vibration analysis have been analysed by Yadav and Verma in [130], while Liew et al.
presented a three-dimensional vibration analysis for spherical shells subjected to different
boundary conditions in [65]. Matsunaga [73] presented a two-dimensional global higher-
order theory of cross-ply laminated composite circular cylindrical shells, able to accurately
predict natural frequencies and buckling stresses. The effects of both shear deformations
with thickness changes and rotatory inertia were considered.
Approximated three-dimensional solutions can be obtained assuming that the ratio be-
tween the panel thickness and its middle surface radii is negligible as compared to unity.
Bhimaraddi [13] analysed the free vibration of homogeneous and laminated doubly curved
shells on rectangular planform and made of orthotropic material using the three-dimensional
elasticity equations. Ye and Soldatos [131] studied the three-dimensional flexural vibra-
tion response of laminated cylindrical shell panels of symmetric and antisymmetric cross-
ply material. Recently, static and free vibration characteristics of anisotropic laminated
cylindrical shell were analyzed applying the differential quadrature method (DQM) by
Alibeigloo [1].
Nowadays, the use of composite materials is well established since these materials exhibit
high transverse shear deformation and discontinuous material properties in the thickness
direction. Both of these features require the development of refined theories, [23, 25]
for an accurate and effective design. Soldatos [112] presented a good survey of the the-
ories adopted in the dynamic analysis of composite laminated shells, while a review of
equivalent-single-layer and layerwise laminate theories is presented by Reddy [98]. In the
first survey, governing equations and numerical results are quoted for Donnell’s, Love’s,
Sanders’ and Flügge’s theories based on CLT approximations, and for Donnell’s, Love’s
and Sanders’ theories based on SDT approximations. In [17] the first author investigated
of CLT and SDT assumptions and Donnell, Love and Flügge theories on buckling and
vibrations of cross-ply laminated composite shells. More recent analyses are reported in
the articles by Qatu [91, 92] and more extensively in the book by the same author [94]
that documents some of the latest research in the field of vibration of composite shells
and plates, presenting also deep thick shells. To the best of the authors’ knowledge, no
exhaustive results are known in which the approximation related to refined models, in-
cluding transverse normal strain effects, are compared with those introduced by curvature
(Love, Donnell).
The Unified Formulation (UF) [18, 26] allows formulating several two-dimensional mod-
els on the basis of the choice of the a-priori main unknowns (displacements or mixed
models), the approximation level (laminate or lamina level), the through-the-thickness
polynomial approximation order. As a result, an exhaustive variable kinematic model has
been obtained: models that account for the transverse normal and shear deformability, the
continuity of the transverse stress components and the zig-zag variation along the thickness
of displacement and transverse normal stresses can be formulated straightforwardly. The
use of the refined theory has made it possible to conduct a quite comprehensive analysis
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of the thickness locking phenomenon (also known as Poisson locking) in the bending and
vibration of metallic shells [29].

5.2 Geometry

Shells are bi-dimensional structures with one dimension, in general the thickness along
z direction, negligible with respect to the others two on the reference surface directions.
The main features of shell geometry are shown in Fig. 5.1.

Figure 5.1. Geometry and reference system for cylindrical shell.

A laminated shell composed of Nl layers is considered. The integer k, used as su-
perscript or subscript, indicates each layer starting from the shell bottom. The layer
geometry is denoted by the same symbols as those used for the whole multilayered shell
and vice-versa. αk and βk are the curvilinear orthogonal co-ordinates (coinciding with
lines of principal curvature) on the layer reference surface Ωk (middle surface of the k-
layer). zk denotes the rectilinear co-ordinate measured along the normal direction to Ωk.
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The following relations hold in the orthogonal system of coordinates above described:

ds2k = Hk
αdα

2 +Hk
βdβ

2 +Hk
z dz

2

dΩk = Hk
αH

k
βdαkdβk

dV = Hk
αH

k
βH

k
z dαkdβkdzk

(5.1)

where ds2k is the square of line element, dΩk is the area of an infinitesimal rectangle on Ωk

and dV is an infinitesimal volume. Here

Hk
α = Ak

(
1 + zk/R

k
α

)

Hk
β = Ak

(
1 + zk/R

k
β

)
,Hk

z = 1.
(5.2)

Rk
α and Rk

β are the radii of curvature along the two in-plane directions αk and βk respec-

tively. Ak and Bk are the coefficients of the first fundamental form of Ωk [61]. For shells
with constant curvature these coefficients are equal to unity.

5.3 Overview of the considered Shell Theories

Since a large variety of two-dimensional theories can be formulated on the basis of different
kinematic assumptions, it may be useful to recall some details of the theories considered
in this chapter.

5.3.1 Classical theories

Classical Lamination Theory

Shells’ Classical Lamination Theory (CLT) is based on Love-Kirchhoff’s kinematic as-
sumptions [66]. The relative displacements model can be written as follow:

uq (α, β, z) = uq0 (α, β) − zuz0,q q = α, β
uz (α, β, z) = uz0 (α, β)

(5.3)

that is, normals to the reference surface remain normal, straight and unstrained after defor-
mation. Subscript ‘0’ denotes the variable value in correspondence to the reference surface
Ω. Subscripts preceded by comma represent spatial derivation. The transverse shear and
the through-the-thickness deformations are discarded. The corresponding stresses can be
obtained ’a posteriori’ upon integration of the indefinite equilibrium equations, see Car-
rera [22]. Poisson’s locking is corrected via the assumption of reduced stiffness coefficients
in Hooke’s law as derived from the assumption of a plane stress state (see Carrera and
Brischetto [29, 28]).

First Order Shear Deformation Theory

Mindlin [74] postulated a kinematic field that accounts for constant transverse shear strain
components along the thickness, whereas the normal deformation is neglected. Such a
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model is known as First Order Shear Deformation Theory (FSDT):

uq (α, β, z) = uq0 (α, β) + zuq1 (α, β) q = α, β

uz (α, β, z) = uz0 (α, β)
(5.4)

As for CLT, more accurate results can be obtained upon ‘a posteriori’ integration of the
indefinite equilibrium equations.

5.3.2 Higher Order Theories

According to Koiter [60] statement: “... a refinement of Love’s first approximation theory
is indeed meaningless, in general, unless the effects of transverse shear and normal stresses
are taken into account at the same time”, Higher Order Theories (HOTs) can be formulated
adopting the following expansion for displacements variables u:

uq(α, β, z) = uq0(α, β) + zruqr(α, β)
q = α, β, z r = 1, 2, . . . , N

(5.5)

The summing convention for repeated indexes has been adopted. N is the order of ex-
pansion and it is a free parameter. In the following, an approximation order as high as
4 is considered. A N-order theory based upon Eq. 5.5 is addressed as ‘EDN’. Letter ‘E’
denotes that the kinematic is preserved for the whole layers of the shell, as in the so-called
Equivalent Single Layer (ESL) approach. ‘D’ indicates that only displacement unknowns
are used. ‘N’ stands for the expansion order of the through-the-thickness polynomial
approximation. For instance, the displacement field of an ED3 model is:

uα = uα0 + zuα1 + z2uα2 + z3uα3
uβ = uβ0 + zuβ1 + z2uβ2 + z3uβ3
uz = uz0 + zuz1 + z2uz2 + z3uz3

(5.6)

This theory accounts for a parabolic and cubic variation along the thickness of transverse
normal and shear strains, respectively. If transverse normal strain is discarded the previous
theory becomes:

uq(α, β, z) = uq0(α, β) + zruqr(α, β)
q = α, β r = 1, 2, . . . , N
uz(α, β, z) = uz0(α, β)

(5.7)

and is denoted as ’EDNd’.

HOTs including Zig-Zag Effect

Laminate structures are characterized by a change in slope of displacements and transverse
normal and shear stresses at layer interfaces. These quantities are C0 class function of
the transverse coordinate. EDN and EDNd models are based on C∞ functions in z and,
therefore, are intrinsically incapable to describe this zig-zag variation. This latter can be
accounted for within an ESL approach via Murakami’s function M (ζk) (see Murakami [76]
and Carrera [27]):

M (ζk) = (−1)kζk (5.8)
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where k counts the laminae, hk stands for the thickness of a k-layer and ζk = zk/2hk such
that −1 ≤ ζk ≤ 1, being zk a k-layer local coordinate. The following properties hold:
a) M (ζk) is a piece-wise linear function of the local coordinate zk, b) its slope assumes
opposite sign between two adjacent layers. The kinematic field including Murakami’s
function is:

uq(α, β, z) = uq0(α, β) + zruqr(α, β)+
+(−1)kζkuqN+1(α, β)
q = α, β, z r = 1, 2, . . . , N

(5.9)

A model based on Murakami’s function is addressed as ‘EDZN’. Other possible manners
of modeling the zig-zag variation are reported in Carrera [25].

5.3.3 Layer-Wise Theories

Multi-layered shells can be analyzed by independent kinematic assumptions for each layer.
According to Reddy [97], this approach is stated as Layer-Wise (LW). In order to satisfy
the compatibility of the displacement field, a MacLaurin’s expansion across the thickness,
typical of ESL models, is not convenient. Interface values should be rather assumed as
unknown variables. The following expansion is, therefore, adopted:

ukq = Ftu
k
qt + Fbu

k
qb + Fru

k
qr

q = α, β, z r = 2, 3, . . . , N k = 1, 2, . . . , Nl
(5.10)

Nl represents the total number of layers. Subscripts ‘t’ and ‘b’ denote values evaluated at
top and bottom surface of a k-layer, respectively. The thickness functions Ft, Fb and Fr

depend on ζk. They are defined as follows:

Ft =
P0 + P1

2
Fb =

P0 − P1

2
Fr = Pr − Pr−2

r = 2, 3, .., N
(5.11)

Pj = Pj(ζk) is a Legendre’s polynomials of order j. The first four Legendre’s polynomials
are:

P0 = 1 P1 = ζk P2 =
3ζ2k−1

2

P3 =
5ζ3k
2 − 3ζk

2 P4 =
35ζ4k
8 − 15ζ2k

4 + 3
8

(5.12)

The following properties hold:

ζk = 1 : Ft = 1, Fb = 0, Fr = 0
ζk = −1 : Ft = 0, Fb = 1, Fr = 0

(5.13)

Top and bottom displacements of each lamina are assumed as unknown variable. Inter-
laminar compatibility of displacements can be easily linked:

ukqt = u
(k+1)
qb q = α, β, z k = 1, 2, . . . , Nl − 1 (5.14)

The acronym used for these theories is ‘LDN’, where ‘L’ stands for the LW approach. For
all the models that has been previously described, the governing equations and the bound-
ary conditions are derived via the Principle of Virtual Displacement (PVD) in Sec. 5.4.
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5.3.4 Mixed Theories based on Reissner’s Mixed Variational Theorem

The kinematics described previously does not satisfy the interlaminar continuity of trans-
verse shear and normal stresses. It can be fulfilled ‘a priori’ assuming transverse shear and
normal stresses together with displacements as primary variables by means of Reissner’s
Mixed Variational Theorem [101, 102] (RMVT). Transverse stresses σk

αz, σ
k
βz and σk

αz are
approximated via the same model as that addressed in Eq. 5.10:

σk
qz = Ftσ

k
qzt + Fbσ

k
qzb + Frσ

k
qzr

q = α, β, z r = 2, 3, . . . , N k = 1, 2, . . . , Nl
(5.15)

The interlaminar continuity is imposed straightforwardly:

σk
qzt = σ

(k+1)
qzb q = α, β, z k = 1, 2, . . . , Nl − 1 (5.16)

This group of models is denoted by ‘LMN’. ‘M’ means mixed models based on RMVT.

5.3.5 Carrera Unified Formulation

Carrera’s Unified Formulation (UF) allows several two dimensional models to be obtained
for shells, thanks to the separation of the unknown variables into a set of thickness func-
tions only depending on the thickness coordinate z, and the correspondent unknowns
depending on the in-plane coordinates (α, β). In force of that the considered theories can
be all unified considering that CLT and FSDT are a peculiar case of ESL higher order
models. These latter models can be regarded as a particular case of LW models in which
the number of layers is equal to one and the through-the-thickness polynomial approxi-
mation is performed via the classical base {zr : r = 0, 1, . . . , N}. In the case of EDZN
models, Murakami’s function is also considered. Eqs. 5.3, 5.4, 5.5, 5.9, and 5.10 can be
unified into the following compact notation:

ukq = Fτu
k
qτ q = α, β, z τ = t, b, r,

σk
qz = Fτσ

k
qzτ r = 2, 3, . . . , N

k = 1, 2, . . . , Nl

(5.17)

The governing equations are derived according to the chosen variational statement (either
PVD or RMVT) in a general way that does not depend upon the approximation approach
(ESL or LW) and the polynomial expansion order.

5.4 Governing Equations

The displacement approach is formulated in terms of uk by variational imposing the equi-
librium via PVD. In the dynamic case, this establishes:

Nl∑
k=1

∫
Ωk

∫
hk

(
δǫkTp σk

p + δǫkTn σk
n

)
dzk dΩk =

=
Nl∑
k=1

∫
Ωk

∫
hk

ρkδukükdV

(5.18)
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(5.19)

‘T’ as superscript stands for the transposition operator. δ signifies virtual variations and
ρk denotes mass density. The variation of the internal work has been split into in-plane
and out-of-plane parts and involves the stress obtained from Hooke’s Law and the strain
from the geometrical relations. Geometrical relations link strains ǫ and displacements u.
Strains are conveniently grouped into in-plane and normal components denoted by the
subscripts p and n, respectively. The geometric relations are:

ǫkp = Dpu
k +Apu

k

ǫkn = DnΩu
k + λDAnu

k +Dnzu
k

(5.20)

in which Dp, DnΩ, and Dnz are differential matrix operators and Ap and An are geomet-
rical terms accounting for the through-the-thickness variation of the curvature:
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(5.21)

Dnz =




∂

∂z
0 0

0
∂

∂z
0

0 0
∂

∂z




Hk
α and Hk

β account for the change in length of a k-layer segment due to the curvature.
λD is a trace operator, it has been introduced to identify terms that are neglected in the
Donnell-type shallow shell theories.
The aim of this part is to evaluate the effect of a second class of shell theories derived
from approximations on curvature terms in the strain-displacement relations. It can be
shown, see Kraus [61] that by putting λD = 0, the shell curvature becomes that of the
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corresponding plate as it is in Donnell- type approximation theory. Donnell’s approxima-
tion is strongly related to the geometrical parameter a/Rα and b/Rβ.
Love’s shell theory is instead related to the following approximation for the coefficients of
the second fundamental form (see Eq. 5.1) of the shell:

Hα = Hβ = 1 (5.22)

It appears evident that Love’s approximation is related to the shell parameter h/Rα and
h/Rβ , where h is the shell thickness.
In the case of linear elastic material, stresses and strains are related via Hooke’s generalized
law:

σk
p = C̃k

ppǫ
k
p + C̃k

pnǫ
k
n

σk
n = C̃k

npǫ
k
p + C̃k

nnǫ
k
n

(5.23)

Terms C̃k
pp, C̃k

pn, C̃k
np and C̃k

nn are the material stiffness matrices for a k-layer in the
global reference system, see Carrera [26]. By replacing Eqs. 5.23, 5.20 and the unified
displacement field in Eq. 5.17. into Eq. 5.18, PVD reads:
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(5.24)

being:
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(5.25)

By assigning the definition of virtual variations for the unknown displacement variables,
the differential system of governing equations and related boundary conditions for the Nl
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k-layers in each Ωk domain are found. The equilibrium and compatibility equations are:

Kkτs
d uk

s = Mkτsük
s (5.26)

with boundary conditions

uk
τ = uk

τ geometrical on Γg
k

Πkτs
d uk

s = Πkτs
d uk

s mechanical on Γm
k

(5.27)

Differential stiffness, inertia and mechanical boundary conditions matrices are:
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Mkτs =

∫
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I is the unit array. Eq. 5.26 is solved via a Navier-type solution upon assumption of the
following harmonic form for the unknown displacements:
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(5.31)

where a and b are the lengths of the shell along the two coordinates α and β. m and
n represent the number of half-waves in α and β direction, respectively. These numbers
characterize the vibration mode associated to the circular frequency ωmn. i =

√
−1 is

the imaginary unit and t the time. Capital letters indicate maximal amplitudes. These
assumptions correspond to the simply-supported boundary conditions. Upon substitution
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of Eq. 5.31, the governing equations assume the form of a linear system of algebraic
equations in the time domain:

K∗Û = −ω2
mnMÛ (5.32)

where K∗ is the equivalent stiffness matrix obtained by means of static condensation
(for further details see Carrera [19, 21]), M is the inertial matrix and Û is the vector of
unknown variables. By defining λmn = −ω2

mn, the solution of the associated eigenvalue
problem becomes:

||K∗ − λmnM|| = 0 (5.33)

The eigenvectors Û associated to the eigenvalues λmn (or to circular frequencies ωmn)
define the vibration modes of the structure in terms of primary variables. Once the wave
numbers (m,n) have been defined in the in-plane directions, the number of obtained
frequencies becomes equal to the degrees of freedom of the employed two-dimensional
model. It is possible to obtain the relative eigenvector, in terms of primary variables, for
each value of frequency, in order to plot the modes in the thickness direction.

5.5 Results

The free vibration response and the effect of various through the thickness and curva-
ture approximations in multilayered orthotropic cylindrical composite shells are evaluated
through a comparison of several, significant shell theories. Refined theories with up to
fourth-order displacement field for both in-plane and transverse displacements, and two
approaches for modelling variables (ESL, equivalent single layer and LW, Layer Wise)
are compared to evaluate the free vibration response of cylindrical and spherical shells.
The UF is employed to derive shell equations that are solved for the case of simply sup-
ported boundary conditions and doubly curved shells with constant curvatures. Navier-
type closed form solution are obtained. Love’s and Donnell’s approximations are compared
in the framework of higher order theories and classical ones. Parametric analysis have been
carried out since the behaviour of laminated composite shells made of high-modulus and
low-density materials are strongly dependent of the degree of orthotropy of the individual
layer, the stacking sequence of laminates and the thickness parameter of the shells. Unless
otherwise specified, the mechanical material properties of the lamina are those used by
Pagano [84]: EL = 25ET , GLT = 0.5ET , GTT = 0.2ET , νLT = νTT = 0.25, ρ = 1.0,
χ = 1.0. Subscript ‘L’ stands for direction parallel to the fibres, ‘T’ identifies the trans-
verse direction, νLT is the major Poisson ratio, ρ denotes the density, and χ the shear
correction factor. χ = 5/6 is adopted in FSDT 5/6 theory. The fibre orientation of the dif-
ferent laminae alternate between 0 and 90 deg with respect to the α-axis. Both symmetric
and antisymmetric laminations with respect to the middle surface are considered. Cylin-
drical shell geometry have been studied using the side-to-thickness parameter a/h = 10,
whereas the other geometric features are specified in each case. All the numerical results
are shown as the dimensionless quantity:

ω̄ = ω × a2
√

ρ/h2ET (5.34)
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The analysis were carried out in order to investigate the effects on the natural frequencies
and the accuracy of the UF two-dimensional models with respect to Love’s and Donnell’s
approximation theories.

5.5.1 Assessment

Firstly, an assessment of the present solutions with results from literature is presented.
A comparison with the exact solution by Ye and Soldatos [131] has been provided in
Table 5.1. The superscript accompanying exact numerical results in Table 5.1 indicates

Rβ/a 5 10 50 100

Exact 10.30514 10.02722 9.83424 9.8152

— Present analysis
LM4 10.305 10.027 9.834 9.815
LM3 10.305 10.027 9.834 9.815
LM2 10.306 10.027 9.835 9.816
LM1 10.324 10.046 9.855 9.836
LD4 10.305 10.027 9.834 9.815
LD3 10.305 10.027 9.834 9.815
LD2 10.307 10.028 9.835 9.816
LD1 10.368 10.091 9.899 9.880
ED4 10.453 10.178 9.987 9.969
ED3 10.453 10.179 9.988 9.969
ED2 11.291 11.040 10.86 10.84
ED1 11.294 11.043 10.86 10.85
EDZ3 10.307 10.030 9.837 9.819
EDZ2 10.367 10.090 9.898 9.879
EDZ1 10.383 10.104 9.908 9.890

FSDT 5/6 10.958 10.698 10.51 10.50
FSDT 11.295 11.044 10.86 10.85
CLT 13.708 13.507 13.35 13.33

Table 5.1. Comparison of present analysis with available reference solution for [0/902t/0]
cylindrical shell. Values of ω̄ for a/h = 10, m = 1, n given in superscripts.

the circumferential wave number, n, for which the fundamental frequency was detected.
In the case that corresponding results values were obtained for the same value of n such a
superscript is omitted. A three-layered, moderately thick cylindrical ringed shell [0/902t/0]
has been considered, where the subscript 2t means h1 = h3 = h2/2 (hi is the thickness
of each lamina, i = 1, 2, 3). Mixed theories solutions match the exact one and accordance
is still verified even for the lowest order theory LM1. Furthermore, LW4 accuracy is
confirmed. Concerning ESLM, it should be noted that the higher-order theory ED4 can
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Rβ/a 1 2 5 10 20 ∞
Y S [131] 10.697 9.4951 9.4951 8.9778 8.9778 8.9248
B [13] 10.409 9.3627 9.0200 8.9564 8.9341 8.9179
Q [93] 10.666 9.4577 9.0286 8.9479 8.9199 8.9001
— Present analysis
LM4 10.698 9.4936 9.0598 8.9759 8.9460 8.9241
LM3 10.698 9.4936 9.0598 8.9759 8.9460 8.9241
LM2 10.714 9.5123 9.0791 8.9953 8.9653 8.9434
LM1 10.734 9.5230 9.0841 8.9986 8.9679 8.9452
LD4 10.698 9.4936 9.0598 8.9759 8.9460 8.9241
LD3 10.698 9.4937 9.0598 8.9759 8.9460 8.9241
LD2 10.735 9.5384 9.1066 9.0229 8.9929 8.9709
LD1 10.785 9.5920 9.1612 9.0774 9.0474 9.0252
ED4 10.721 9.5219 9.0892 9.0054 8.9755 8.9536
ED3 10.765 9.5656 9.1322 9.0479 9.0177 8.9955
ED2 10.785 9.5920 9.1612 9.0774 9.0474 9.0252
ED1 10.721 9.5190 9.0857 9.0019 8.9719 8.9500
EDZ3 10.729 9.5275 9.0946 9.0109 8.9810 8.9592
EDZ2 10.769 9.5705 9.1379 9.0540 9.0239 9.0018
EDZ1 10.744 9.5529 9.1302 9.0500 9.0219 9.0017

FSDT 5/6 10.668 9.4582 9.0287 8.9479 8.9199 8.9001
FSDT 10.751 9.5564 9.1309 9.0502 9.0219 9.0017
CLT 11.225 10.105 9.6992 9.6184 9.5887 9.5661

Table 5.2. Comparison of present analysis with available reference solution for
[90/0] cylindrical shell. Values of ω̄ for a/h = 10, a/b = 1, m = n = 1, ν12 = 0.25,
ν13 = 0.03, ν23 = 0.4.

lead to poorer results than EDZ3 and EDZ2. Because of the different continuity conditions
of displacement components at the interface between the layers the layer-wise theories
results always more accurate then the equivalent single-layer theories. Fine results with
respect to standard classical displacement formulation are found. Refined theories lead
to lower values of ω according to the related reduction in stiffness. A second assessment
analysis is carried out considering a two layer [90/0] cylindrical shell. The fundamental
frequency parameter ω is shown in Table 5.2 and compared with corresponding results
by Ye and Soldatos [131], Bhimaraddi [13] and Qatu [93]. The shell has equal axial and
circumferential lengths and 0 deg outer layer. Similar consideration to that made for
Table 5.1 about the accuracy of the proposed theories are valid also in this case.
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5.5.2 Influence of the degree of orthotropy

Fundamental frequencies parameters computed via the UF two-dimensional models are
presented in Table 5.3 for several values of the degree of orthotropy of the single layer.

EL/ET 3 10 25 40

Rβ/h = 4

CLT 18.095 20.896 25.447 29.202
FSDT 16.680 18.841 21.741 23.729

FSDT 5/6 16.437 18.505 21.201 23.009
ED1 17.167 18.792 21.691 23.670
ED4 16.520 18.494 20.974 22.575
EDZ1 16.906 18.765 21.134 22.649
EDZ3 16.348 18.335 20.779 22.323
LD2 16.352 18.345 20.799 22.351
LD4 16.345 18.317 20.690 22.151
LM2 16.350 18.329 20.718 22.193
LM4 16.345 18.317 20.690 22.151

Rβ/h = 100

CLT 5.0841 9.0638 14.205 17.864
FSDT 4.9462 8.3217 11.748 13.576

FSDT 5/6 4.9200 8.1951 11.400 13.051
ED1 4.9387 8.3177 11.746 13.574
ED4 4.8851 8.0322 10.989 12.471
EDZ1 4.9394 7.9805 10.819 12.240
EDZ3 4.8548 7.9065 10.700 12.084
LD2 4.8548 7.9070 10.702 12.089
LD4 4.8546 7.9059 10.698 12.081
LM2 4.8548 7.9065 10.700 12.085
LM4 4.8546 7.9059 10.698 12.081

Table 5.3. Effect of degree of orthotropy of the individual layers EL/ET on ω of three
layers [0/90/0] symmetric cylindrical shells. γ = π/3, m = 1, n = 1.

EL/ET is considered to be as low as 3 and as high as 40. A symmetric [0/90/0] cross-ply
laminated composite cylindrical shell is considered, with equal thickness of each lamina and
γ = π/3. A deep moderately thick shell and a shallow thin one are considered, depending
on the radii-to-thickness parameter Rβ/h = 4 or Rβ/h = 100, respectively. Considering
the UF-two dimensional models, similar consideration made for the assessment can be
done also for each analysis once the parameters are fixed. Results for Rβ/h = 100 and
EL/ET = 3 show that in this case classical theories lead to a good accuracy respect to the
refined UF-two dimensional theories. The hypotheses at the base of classical theories are
quite verified in this case. As EL/ET increases, the difference between classical theories
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and higher-order ones becomes more significant. Analogous consideration can be done for
the case Rβ/h = 4, but here the error between classical theories and HOTs increases, as the
thickness assumption is not verified. CLT gives higher values of ω then FSDTs, whereas
these last theories agree with HOTs, and this effect is more evident when the ratio EL/ET

is low. The extreme case of highest degree of orthotropy and deep moderately thick shell
yields to the most significant differences between classical theories and refined models.

5.5.3 Effect of the lamination sequence

The influence of the lamination sequence on the fundamental frequencies parameter ω of
cross-ply laminated composite shells with simply supported edges is presented in Tables 5.4
and 5.5.

[0/90] [0/90]2 [0/90]3 [0/90]4 [0/90]5
CLT 6.984 9.922 10.376 10.530 10.60
FSDT 6.714 8.987 9.299 9.402 9.449

FSDT 5/6 6.665 8.834 9.127 9.223 9.266
ED2 6.707 8.956 9.283 9.393 9.443
ED3 6.686 8.687 9.050 9.181 9.242
ED4 6.675 8.571 9.038 9.179 9.241
EDZ2 6.703 8.758 9.076 9.184 9.233
EDZ3 6.686 8.441 8.831 8.972 9.037
LD1 6.714 8.448 8.812 8.944 9.005
LD2 6.694 8.397 8.785 8.928 8.995
LD4 6.665 8.395 8.785 8.927 8.995
LM1 6.671 8.407 8.791 8.931 8.997
LM3 6.665 8.395 8.785 8.927 8.995
LM4 6.665 8.395 8.785 8.927 8.995

Table 5.4. Effect of the stacking sequence of laminates on ω of cross-ply anti-symmetric
cylindrical shells. γ = π/3, Rβ/h = 100, m = 1, n = 1.

All the layers have the same thickness. Both symmetric and anti-symmetric lamina-
tions with respect to the middle plane are considered. Compact notation is adopted to
indicate the lamination sequence [55]. The first value in the sequence refers to the first
layer of the laminate, starting from the bottom of the shell. In the symmetric laminates
having an odd number of layers, the 0 deg layers are at the outer surfaces of the laminate.
As the number of layer increases, results obtained via HOTs theories move away from
those that come by classical theories. To remark the result obtained with FSDT 5/6 and
[0/90], that is practically the same achieved using refined theories, as LD4 and LM4. In
fact a shear correction factor χ = 5/6 means to correct the deficiencies of FSDT theory
(non-parabolic variation of shear stresses and non-vanishing of the shear stresses at the
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[0/90]s [0/90/0]s [0/90/0/90]s [0/90/0/90/0]s
CLT 14.205 13.030 12.437 12.084
FSDT 11.748 11.028 10.655 10.430

FSDT 5/6 11.400 10.735 10.389 10.180
ED1 11.746 11.026 10.653 10.427
ED2 11.746 11.027 10.654 10.429
ED3 10.990 10.709 10.413 10.214
ED4 10.989 10.709 10.413 10.214
EDZ1 10.819 10.422 10.182 10.027
EDZ2 10.808 10.408 10.167 10.011
EDZ3 10.700 10.328 10.075 9.9084
LD1 10.810 10.362 10.087 9.9072
LD2 10.702 10.318 10.063 9.8930
LD3 10.698 10.317 10.063 9.8930
LD4 10.698 10.317 10.063 9.8930
LM1 10.751 10.334 10.071 9.8973
LM2 10.700 10.318 10.063 9.8930
LM3 10.698 10.317 10.063 9.8930
LM4 10.698 10.317 10.063 9.8930

Table 5.5. Effect of the stacking sequence of laminates on ω of cross-ply symmetric
cylindrical shells. γ = π/3, Rβ/h = 100, m = 1, n = 1.

top and bottom surfaces of the shell), but still violates continuity requirement of the inter-
laminar shear stresses. Usually a comparison between EDZ3 and ED4 theories, bring to
better results for the first one. This trend is not verified in the case of [0/90] lamination.
When the number of layers is not high, for instance NL = 2, ED4 model yields more
accurate results then EDZ3 do. On the contrary, when the number of layer is high, the
results achieved with EDZ3 theory are definitively finer than the same obtained with
higher-order theory ED4.

5.5.4 Influence of the Radius-to-Thickness ratio and Love’s approxima-

tion

A three layers [0/902t/0] composite shell with variable thickness parameter Rβ/h is consid-
ered. An effective comparison of the effect of shear deformation, higher order shear defor-
mation, through-the-thickness strain and Love’s approximation could be conveniently built
for such shell geometry. Fundamental frequency parameter ω are compared in Tables 5.6
and 5.7.

Rβ/h is considered to be as low as 2 and as high as 1000, going from a deep moder-
ately thick shell to a shallow thin one. Two values of the number of waves n along the
circumferential β direction are considered, whereas the axial wave number m is fixed to 1.
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Rβ/h 2 4 10 100 1000

CLT 107.22 31.879 15.493 13.678 13.330
CLTLOVE 155.75 124.96 57.377 13.695 13.330
FSDT 63.693 25.841 13.367 11.289 10.846
FSDTLOVE 63.384 25.818 13.372 11.289 10.846
FSDT 5/6 59.855 25.011 13.077 10.956 10.496

FSDT 5/6
LOVE 59.584 24.989 13.082 10.956 10.496

ED4 58.534 24.435 12.660 10.455 9.9688
ED4LOVE 58.197 24.409 12.663 10.455 9.9688
EDZ3 58.658 24.362 12.545 10.313 9.8187
EDZ3LOVE 58.261 24.334 12.548 10.313 9.8187
LD4 57.713 24.104 12.535 10.309 9.8154
LD4LOVE 57.340 24.063 12.536 10.309 9.8154
LM4 57.688 24.103 12.535 10.309 9.8154
LM4LOVE 57.312 24.062 12.536 10.309 9.8154

Table 5.6. Evaluation of Love effects in refined theories. Comparison on ω of 0/90/0
multilayer composite shell. EL/ET = 25, γ = π/3, m = 1, n = 1.

Rβ/h 2 4 10 100 1000

CLT 1078.0 543.64 240.53 14.877 13.336
CLTLOVE 1076.2 543.43 240.52 16.491 13.336
FSDT 890.37 439.66 167.71 12.366 10.850
FSDTLOVE 888.47 439.41 167.68 12.366 10.850
FSDT 5/6 813.17 402.09 154.66 12.014 10.500

FSDT 5/6
LOVE 811.44 401.86 154.65 12.014 10.500

ED4 686.84 402.27 154.46 11.519 9.9724
ED4LOVE 701.12 404.69 154.44 11.519 9.9724
EDZ3 705.85 410.38 155.54 11.377 9.8222
EDZ3LOVE 722.30 412.92 155.52 11.377 9.8222
LD4 640.58 394.39 153.67 11.367 9.8190
LD4LOVE 651.53 396.45 153.65 11.367 9.8190
LM4 639.66 393.23 153.37 11.367 9.8190
LM4LOVE 649.27 394.97 153.35 11.367 9.8190

Table 5.7. Evaluation of Love effects in refined theories. Comparison on ω of 0/90/0
multilayer composite shell. EL/ET = 25, γ = π/3, m = 1, n = 10.

It is confirmed that the error of CLT increases as the thickness increases. Larger absolutes
errors are obtained from an increase of the circumferential wave number n. All the theories
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match in the case of thin shells. Slight differences between LD4 and LM4 theories can
be noticed for lower values of Rβ/h, while the results agree when the radius-to-thickness
parameter rises. This effect becomes more evident when the number of waves n increases.
Love type approximations are significantly subordinate to the thickness parameter Rβ/h.
Tables 5.6 and 5.7 compares Love’s approximation results with the exact (Flügge type
ones). CLT, FSDT and fourth-order shell theories are considered for n = 1 and n = 10
waves numbers. Love’s results match to exact solutions for high values of the thickness
parameter. In fact in such cases the term Hβ is almost equal to the unit.

5.5.5 Analysis of curvature parameter and Donnell effect

A three layer [0/90/0] deep moderately thick cylindrical shell with a variable span angle γ
is considered. A comparison on ω of curvature approximation through UF two-dimensional
models is presented in Table 5.8.

γ CLT FSDT ED1 ED4 EDZ1 EDZ3 LD2 LD4 LM2 LM4
π/12 248.90 147.36 147.36 140.36 144.40 140.81 140.61 138.72 138.95 138.66
π/10 202.31 117.94 117.93 112.46 115.42 112.76 112.79 111.15 111.40 111.12
π/9 169.54 103.16 103.14 98.476 100.93 98.689 98.784 97.307 97.555 97.290
π/8 138.38 88.387 88.352 84.509 86.488 84.631 84.764 83.483 83.715 83.473
π/6 82.756 59.240 59.174 56.921 58.056 56.882 57.010 56.209 56.374 56.206
π/5 59.380 45.292 45.219 43.650 44.423 43.548 43.645 43.105 43.224 43.105
π/4 39.898 32.400 32.332 31.294 31.744 31.142 31.199 30.903 30.972 30.902
π/3 25.447 21.741 21.691 20.974 21.134 20.779 20.799 20.690 20.718 20.690
π/2 17.963 15.891 15.871 15.320 15.270 15.121 15.120 15.104 15.109 15.104

Table 5.8. Evaluation of curvature approximation through Classical Vs Refined theories
comparison on ω of [0/90/0] cylindrical shells. Rβ/h = 4, m = 1, n = 1.

As the span angle γ ranges from π/12 to π/2 the frequency parameter decreases,
depending on the reduction in stiffness and the augment in mass of the structure analysed.
Lower errors are found in the case of higher span angle γ, comparing classical theories
with refined ones. In the case of γ = π/12, the aspect ratio of the shell is a/b ≈ 10
and, therefore, the structure can be considered nearly one-dimensional. For this reason
CLT, leads to relative errors of about 80% respect the higher-order theories reported in
Table 5.8. Using a First Order Shear Deformation Theory this error falls to about 6%.
Rather it cannot be notice any improvement from FSDT when a ED1 model is adopted.
When γ = π/2 the aspect ratio of the shell is about 1.6 and therefore the error between
classical theories and refined ones decrease significantly, due to the best two-dimensional
approximation of the problem. Layer-wise second-order models provide good results, which
are even better in the case of mixed formulation. Notable results are obtained adopting
a EDZ3 model. In Tab 5.9 a comparison between Donnell type approximations and exact
solutions (Flügge type ones), for Classical and Higher-Order shells theories is presented.

Two values of the radius-to-thickness parameter are reported considering a thin shallow
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CLT FSDT EDZ3 LD4 LM4

γ Exact Donnell Exact Donnell Exact Donnell Exact Donnell Exact Donnell
Rβ/h = 100

π/12 14.116 14.975 11.605 11.605 10.530 10.531 10.528 10.529 10.528 10.529
π/10 14.101 14.703 11.600 11.601 10.530 10.530 10.528 10.529 10.528 10.529
π/9 14.099 14.589 11.605 11.605 10.537 10.538 10.535 10.536 10.535 10.536
π/8 14.102 14.491 11.615 11.615 10.550 10.551 10.548 10.549 10.548 10.549
π/6 14.126 14.345 11.652 11.652 10.594 10.595 10.592 10.593 10.592 10.593
π/5 14.147 14.299 11.680 11.680 10.625 10.626 10.624 10.624 10.624 10.624
π/4 14.174 14.271 11.713 11.713 10.662 10.662 10.660 10.660 10.660 10.660
π/3 14.205 14.260 11.748 11.748 10.700 10.700 10.698 10.698 10.698 10.698

Rβ/h = 4
π/12 248.90 248.98 147.36 148.48 140.81 141.88 138.72 139.72 138.66 139.67
π/10 202.31 219.47 117.94 119.20 112.76 113.98 111.15 112.31 111.12 112.28
π/9 169.54 205.42 103.16 104.52 98.689 99.995 97.307 98.558 97.290 98.540
π/8 138.38 191.98 88.387 89.844 84.631 86.031 83.483 84.832 83.473 84.821
π/6 82.756 167.51 59.240 60.925 56.882 58.489 56.209 57.776 56.206 57.773
π/5 59.380 156.84 45.292 47.090 43.548 45.261 43.105 44.785 43.105 44.784
π/4 39.898 147.53 32.400 34.272 31.142 32.929 30.903 32.664 30.902 32.663
π/3 25.447 139.82 21.741 23.510 20.779 22.486 20.690 22.379 20.690 22.379

Table 5.9. Evaluation of Donnell effect in Classical Vs Refined theories comparison on ω
of [0/90/0] cylindrical shells. m = 1, n = 1.

shell when Rβ/h = 100 and a deep moderately thick shell when Rβ/h = 4. In the first
case the curvature parameter γ is irrelevant on the values of ω. The stiffness and the mass
of the structure do not vary significantly and the frequency parameter remains almost the
same. The aspect ratio a/b ranges from 0.4 to 0.01, then the shell is more like a ring.
Donnell’s approximation results in such case are nearly identical to the exact ones and
are not influenced by the variation of γ. This is due to the radius-to-thickness parameter
Rβ/h = 100, and, in such case, the structure correspond to a thin shallow shell.
On the contrary, when Rβ/h = 4, it can be noticed that the Donnell’s approximation
is meaningful respect to the curvature parameter γ. As γ increases, the error between
exact solution and Donnell’s one is becoming more important. To conclude, considering
high-order effect in shell theories can result meaningless unless an accurate description of
the curvatures term related to γ is made at the same time.

5.5.6 Natural frequencies versus wave mode number curves

The first two natural frequencies without axial stress are plotted in Figure 5.2. A sym-
metric [0/90/0] cross-ply laminated composite cylindrical shell is considered, with equal
thickness of each lamina and γ = π/3. A shallow thin shell is considered, since the radius-
to-thickness parameter Rβ/h = 100. Only results obtained using a LD4 model are plotted,
as the same trend can be found also for all higher-order theories. The dominant first two
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eigenvalues that correspond to the lowest two natural frequencies are of most concern.
The lower natural frequency ω1 is a flexural mode with some shear deformations, whereas
the upper frequency ω2 is an extensional mode with thickness changes. Figures 5.3 to 5.5
show the variation of the first two natural frequencies for m = 1 − 3 with respect to
n = 0 − 10. Although, in general, the natural frequencies increase as the circumferential
wave number n grows, the lowest frequencies occur at specific higher modes in the case
of the first natural frequencies for m = 1, 2, as shown in detail in Figures 5.3, 5.4. When
m = 3 also the first natural frequency increases as n goes from 0− 10 (see Figure 5.5).
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Figure 5.2. Natural frequency parameter versus circumferential mode number curves of a
[0/90/0] cylindrical shell. a/h = 10, γ = π/3, Rβ/h = 100.
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Figure 5.3. Detail for ω1 with axial wave number m=1.
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Figure 5.4. Detail for ω1 with axial wave number m=2.

107



5 – Refined shell’s and plate’s theories via Unified Formulation

 45.9

 45.95

 46

 46.05

 46.1

 46.15

 46.2

 46.25

 46.3

 0  2  4  6  8  10

fr
eq

u
en

cy
 p

ar
am

et
er

 ω
1

n

m=3

Figure 5.5. Detail for ω1 with axial wave number m=3.
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5.6 Conclusions

A unified approach to formulate two-dimensional shell theories has been here addressed to
evaluate the free vibration response of cylindrical multi-layered shells made of composite
materials. Both thin shallow shells and moderately thick deep ones are considered, as well
as lower and higher vibration modes. Analyses are carried out considering the influence
of the stacking sequences of laminate, the degree of orthotropy, the thickness and the
curvature parameters. Higher-order theories are considered in the framework of Love-
and Donnell-type approximations. Classical theories have been considered for comparison
purpose. The following main remarks can be made: 1- Classical models yield good results
only for thin shallow shells, 2- Zig-zag function increases the results accuracy of Equivalent
Single Layer Models, 3- a very accurate description of the vibration response of highly
anisotropic thick shells requires a Layer-Wise approach. Above all it must be highlighted
that inclusion of shear deformation and higher-order effects could result meaningless unless
curvatures terms are correctly included in a given theories.
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Chapter 6

Trigonometric basis functions and

Unified Formulation

6.1 Introduction

The aim of the present section is to extend the bases functions used for higher order shell
theories to a trigonometric basis functions. Carrera Unified Formulation for the modelling
of composite shell structures is adopted. Equivalent single layer and layer-wise shells theo-
ries based on trigonometric functions expansions are then considered to evaluate the static
behavior of multilayered, orthotropic plates and shells.
Classical theories (Classical Lamination Theory, CLT) developed for thin elastic shells are
based on Love-Kirchhoff’s assumptions [61]. Nowadays curved shell structures made of
composite laminae have gained widespread acceptance for primary structural components
due to high value of strength- and stiffness-to-weight ratios. Love-Kirchhoff’s kinematic
assumptions applied to layered anisotropic composite shells may not yield a correct pre-
diction of displacements and stresses fields. These materials exhibit high transverse shear
deformation and discontinuous material properties in the thickness direction. These fea-
tures require the development of refined theories [23, 25]. According to published research,
various theories in mechanics for composite structures have been developed. They can be
classified as:

• Equivalent Single Layer (ESL): the number of unknowns is independent from the
number of layers, but the shear stress continuity on the interfaces of layers is often
violated.

• Layer-wise approach (LW): this theory aims at overcoming the restriction of the ESL
about the discontinuity of in-plane displacement on the interface layers.

A review of equivalent single layer and layer-wise laminate theories is presented by Reddy [98].
Concerning trigonometric theories for structural analysis the following literature is found.
Shimpi and Ghugal [109] have used trigonometric terms in the displacements field for the
analysis of two layers composite beams. An ESL model is developed by Arya et al. [6]
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using a sine term to represent the non-linear displacement field across the thickness in
symmetric laminated beams. An extension of [6] to composite plates is presented by Fer-
reira et al. [46]. A trigonometric shear deformation theory is used to model symmetric
composite plates discretized by a meshless method based on global multiquadric radial
basis functions. A specialized version of this theory with a layer-wise approach is pro-
posed by the same authors in [104]. Vidal and Polit [121] designed a new three-noded
beam finite element for the analysis of laminated beams, based on a sinus distribution
with layer refinement. A recent work from the same authors [122] deals with the influence
of the Murakami’s zig-zag function in the sine model for static and vibration analysis of
laminated beams. Static and free vibration analysis of laminated shells is performed by
radial basis functions collocation, according to a sinusoidal shear deformation theory in
Ferreira et al. [45]. It accounts for through-the-thickness deformation, by considering a
sinusoidal evolution of all displacements with the thickness coordinate.
In the framework of the Unified Formulation 5.3.5, to postulate the displacements distri-
bution, we present a new set of trigonometric functions of the shell thickness coordinate
z. This approach is adopted in ESL and LW models. In the next subsections we present
the unified and compact form of resulting equations.

6.2 Trigonometric Shell Theories

6.2.1 Equivalent single layer model

Considering equivalent single layer formulation, the two dimensional shells theories seen
in Sec. 5.3.2 have been extended to a new trigonometric basis function defined as:

{1, z, cos(πz/h), sin(πz/h), cos(2πz/h), sin(2πz/h), cos(3πz/h), · · · , cos(nπz/h), sin(nπz/h)}
(6.1)

The complete displacements field can be written as:

u = u0 + u1z + u2 cos
(
π z
h

)
+ u3 sin

(
π z
h

)
+ u4 cos

(
2π z

h

)
+ u5 sin

(
2π z

h

)
+

+u6 cos
(
3π z

h

)
+ · · ·+ uN cos

(
Nπ z

2h

)
+ uN+1 sin

(
Nπ z

2h

) (6.2)

where u = {uα, uβ, uz}. We mention this theory with the acronym ‘TN’, where ’T’ refers
to the trigonometric basis functions adopted to write the assumed displacements field. The
kinematics of the proposed theory (Eq. 6.2) is useful, because if the trigonometric term
(involving thickness coordinate z ) is expanded in power series, the kinematics of higher
order theories (which are usually obtained by power series in thickness coordinate z ) are
implicitly taken into account. Thus the use of trigonometric functions in the thickness
coordinate (in the kinematics) also results in the reduction of the number of unknown
variables as compared to other theories, as Layer-Wise (LW).
The ESL theories mentioned above have the number of unknown variables that are inde-
pendent from the number of constitutive layers Nl.
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6.2.2 Layer-wise approach

If detailed response of individual layers is required and if significant variations in dis-
placements gradients between layers exist, as it is the case of local phenomena descrip-
tion, a layer-wise approach is necessary. That is, each layer is seen as an independent
plate/shell and compatibility of displacement components with correspondence to each
interface is then imposed as a constraint. Legendre Polynomials basis functions is usu-
ally adopted(Eqs. 5.10, 5.11). In the framework of trigonometric functions expansions,
we present and validate a new set of thickness functions for layer-wise approach. We use
functions containing sine and cosine terms instead of Legendre Polynomials. This new set
of trigonometric functions meets conditions in Eq. 5.13. The thickness functions Ft and
Fb are defined as previously:

Ft =
P0 + P1

2
Fb =

P0 − P1

2
(6.3)

whereas Fr, r = 2, 3, . . . , N , are redefined in the following way:

F2 = cos
(π
2
ζk

)
, F3 = sin

(π
2
ζk

)
− ζk, F4 = cos (πζk) + 1, F5 = sin (πζk)

F6 = cos

(
3π

2
ζk

)
, F7 = sin

(
3π

2
ζk

)
+ ζk, F8 = cos (2πζk)− 1, F9 = sin (2πζk)

F10 = cos

(
5π

2
ζk

)
, F11 = cos

(
5π

2
ζk

)
− ζk

(6.4)
The maximum expansion order introduced is N = 11. Besides to the sine and cosine
functions, in some case we added a unit or a linear term, so as to satisfy the conditions
of Eq. 5.13 seen before. The displacements expansion of Eq. 5.10 is still valid, but Fr are
now defined by Eq. 6.4. We refer to this theories with the acronym ’LDTN’, where ’T’
stands for trigonometric thickness functions basis.

6.2.3 Carrera Unified Formulation

Carrera Unified Formulation (UF) is adopted to obtain two dimensional models for shells.
In case only displacements assumption is introduced, the following expansion in the thick-
ness coordinate z can be written:

uk = Fτ (z)u
k
τ (α, β) k = 1, 2, . . . , Nl (6.5)

where:

• u = {uα, uβ, uz} are the three displacement components of the generic shell point
P (α, β, z) measured in a curvilinear reference system (α, β, z).

• uτ = {uτα, uτβ , uτz} are the introduced displacement variables that depend only on
the coordinates α and β, lying on the reference shell surface.

• Fτ are the introduced functions of the thickness coordinates z.
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• Nl is the number of layers of the laminate.

Einstein convention for repeated indexes is referred to. The order of the expansion as well
as the choice of the base functions used to build the thickness function Fτ is completely
free. Therefore the set of trigonometric functions (Eq. 6.1) proposed in the present section
can be easily introduced. The introduced assumptions for displacements 6.5 can be made
at layer or at multilayer level. Layer-Wise (LW) description is obtained in the first case
whereas Equivalent Single Layer (ESL) description is acquired in the latter one. If LW
description is employed than uτ are layer variables. These are different in each layer. If
ESL description is referred to, then uτ are shell variables. These are the same for the
whole multilayer. Examples of ESL and LW assumption are given in Fig. 6.1.
The governing equations and the boundary conditions are derived via the Principle of

Figure 6.1. Examples of ESL (left) and LW (right) assumptions. Linear and cubic cases.

Virtual Displacements (PVD) in a general way that does not depend upon the variable
description (ESL or LW) and the expansion order (Sec. 6.3). Carrera Unified Formu-
lation (UF) is employed to derive shell equations that are solved for the case of simply
supported boundary conditions and doubly curved shells with constant curvatures. Navier-
type closed form solutions are obtained (Sec. 6.4). Results for multilayered cross-ply shells
and plates are presented to validate the proposed theory, and further are compared with
exact solutions present in literature.

6.3 Governing Equations

6.3.1 Equations for the Nl layers

The displacements approach is formulated in terms of uk by variationally imposing the
equilibrium via PVD, considering also an external load pkz :

Nl∑
k=1

∫
Ωk

∫
hk

(
δǫkTp σk

p + δǫkTn σk
n

)
dzk dΩk =

=
Nl∑
k=1

∫

Σb
k∪Σ

t
k

δukTpkdΩk

(6.6)
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where

ǫp =





ǫαα
ǫββ
ǫαβ



 , ǫn =





ǫαz
ǫβz
ǫzz



 , σp =





σαα
σββ
σαβ



 , σn =





σαz
σβz
σzz



 (6.7)

‘T’ as superscript stands for the transposition operator. δ signifies virtual variations.
p
kT = {pkα, pkβ, pkz} is a generic pressure loading acting on the top (Σt

k) and on the bottom

(Σb
k) of each lamina. The variation of the internal work has been split into in-plane and

out-of-plane parts and involves the stresses obtained from Hooke’s law 5.23 and the strains
from the geometrical relations 5.20, which replaced together with the unified displacement
field of Eq. 6.5 into Eq. 6.6, gives:

Nl∑

k=1

∫

Ωk

δukT
τ

∫

hk

{(−FτD
T
p + FτA

T
p )[C̃

k
pp(FsDp + FsAp) + C̃k

pn(FsDnΩ + FsAn + Fs,z)] + (−FτD
T
nΩ+

+FτA
T
n + Fτ,z)[C̃

k
np(FsDp + FsAp) + C̃k

nn(FsDnΩ + FsAn + Fs,z)]}Hk
αH

k
βdzku

k
s dΩk+

+

Nl∑

k=1

∫

Γk

δukT
τ

∫

hk

{Fτ I
T
p [C̃

k
pp(FsDp + FsAp) + C̃k

pn(FsDnΩ + FsAn + Fs,z)] + FτI
T
nΩ[C̃

k
np(FsDp+

+FsAp) + C̃k
nn(FsDnΩ + FsAn + Fs,z)]}Hk

αH
k
βdzku

k
s dΓk =

Nl∑

k=1

∫

Σb
k∪Σ

t
k

δukT
τ pk

τdΩk

(6.8)
being:

Ip =




1

Hk
α

0 0

0
1

Hk
β

0

1

Hk
β

1

Hk
α

0




InΩ =




0 0
1

Hk
α

0 0
1

Hk
β

0 0 0




(6.9)

p
k
τ = {pkατ , pkβτ , pkzτ} are the variationally consistent load vectors coming from the applied

loadings pk. By imposing the definition of virtual variations for the unknown displacement
variables, the differential system of governing equations and related boundary conditions
for the Nl k-layers in each Ωk domain are found. The differential system of governing
equations is:

δuk
τ : Kkτs

d uk
s = pk

τ (6.10)

with boundary conditions:

uk
τ = uk

τ geometrical on Γg
k

Πkτs
d uk

s = Πkτs
d uk

s mechanical on Γm
k

(6.11)
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The further subscript d signifies values employed in the displacements formulation. Dif-
ferential stiffness and mechanical boundary conditions matrices are:

Kkτs
d =

∫

hk

{(−FτD
T
p + FτA

T
p )[C̃

k
pp(FsDp + FsAp) + C̃k

pn(FsDnΩ + FsAn + Fs,z)]+

+(−FτD
T
nΩ + FτA

T
n + Fτ,z)[C̃

k
np(FsDp + FsAp) + C̃k

nn(FsDnΩ + FsAn + Fs,z)]}Hk
αH

k
βdzk

Πkτs
d =

∫

hk

{Fτ I
T
p [C̃

k
pp(FsDp + FsAp) + C̃k

pn(FsDnΩ + FsAn + Fs,z)]+

+FτI
T
nΩ[C̃

k
np(FsDp + FsAp) + C̃k

nn(FsDnΩ + FsAn + Fs,z)]}Hk
αH

k
βdzk

(6.12)
Previous equations consist of 3 × 3 fundamental nuclei. The following sub/super-scripts
are applied: τ , s and k. Explicit forms of the governing equations for each layer can be
written by expanding the introduced subscripts and superscripts in the previous arrays as
follows:

k = 1, 2, . . . , Nl; τ = 0, 1, . . . , N s = 0, 1, . . . , N (6.13)

6.3.2 Assemblage and Multilayer equations

PVD has been written for the Nl independent layers. C0
z requirements must be imposed

to drive equations from layer to multilayer level. Multilayered equations can be written
according to the usual variational statements: stiffness related to the same variables is
accumulated in this process. Interlaminar continuity conditions are imposed at this stage.
An example is shown in Figs. 6.2 and 6.3. Details on this procedure can be found in
Carrera’s papers [26]. Multilayered arrays are obtained at the very end of the assemblage.
The equilibrium and boundary conditions for the displacements formulation take on the
following form:

Kdu = p

u = u or Πdu = Πdu
(6.14)

6.4 Closed form solution

In order to assess the proposed models, equations 6.10 are herein solved for a special case
in which closed form solutions are given. The particular case in which the material has
the following properties (as it is the case of cross-ply shells) C̃16 = C̃26 = C̃36 = C̃45 has
been considered, for which Navier-type closed form solutions can be found by assuming
the following harmonic forms for the applied loadings pk = {pkατ , pkβτ , pkzτ} and unknown
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Figure 6.2. Assemblage from layer to multilayered level in ESLM description
for a three layered plate.

Figure 6.3. Assemblage from layer to multilayered level in LW description for a
three layered plate.

displacement uk = {ukατ , ukβτ , ukzτ} variables in each k-layer:
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k = 1, . . . , Nl; τ = 0, . . . , N

(6.15)
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which correspond to simply-supported boundary conditions. ak and bk are the lengths of
the shell along the two coordinates αk and βk. m and n represent the number of half-
waves in αk and βk direction, respectively. Capital letters indicate amplitudes. Upon
substitution of Eq. 6.15, the governing equations assume the form of a linear system of
ordinary differential equations.

6.5 Numerical Results and Discussion

The higher-order trigonometric theories described above have been applied to the static
analysis of multilayered composite plates and shells. The mechanical material properties
of the lamina are: EL = 25ET , GLT = 0.5ET , GTT = 0.2ET , νLT = νTT = 0.25. Subscript
’L’ stands for direction parallel to the fibres, ’T’ identifies the transverse direction, νLT is
the major Poisson’s ratio. Thin and moderately thick plates and shells are considered. The
total thickness of the laminate is h. We present results for ‘classical’ and trigonometric
ESL and LW theories. A comparison with available exact solutions is given in the following
paragraphs.

6.5.1 Assessment

Tables 6.1 and 6.2 show a comparison between the ESL models.

uz(a/2, a/2, 0) σαα(a/2, a/2, 1/2) σαz(0, a/2, 0)

layers 3 9 3 9 3 9

3D [85] 1.709 1.512 0.559 0.551 0.301 0.247
N = 4 1.665 1.413 0.559 0.546 0.284 0.384
N = 3 1.665 1.413 0.560 0.547 0.284 0.384
N = 2 1.448 1.342 0.504 0.517 0.141 0.262
N = 1 1.436 1.333 0.501 0.515 0.140 0.260
T4 1.672 1.412 0.560 0.546 0.295 0.389
T3 1.672 1.412 0.561 0.547 0.295 0.389
T2 1.448 1.342 0.504 0.517 0.141 0.262
CLT 1 1 0.539 0.539 0.339 0.259

Table 6.1. Comparison between ESL with Lagrange polynomial basis functions and ESL
with trigonometric basis functions results. Maximum transverse deflection uz and maximum
stresses σαα and σαz for 3-ply and 9-ply square plate, a/h=10 [85].

Results for the Lagrange polynomial basis functions and for the trigonometric ba-
sis functions are reported for a multilayered square plate and a circular cylindrical shell
(see [85] and [119]). In table 6.1 we consider 3 and 9 layers cross-ply plates, with fixed
side to thickness ratio a/h = 10. An expansion order up to four is taken into account.
Considering the same stratification, with the trigonometric models we obtain almost the
same results as that of the ’classical’ ESL models or at least some improvements of about
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uz(z = 0) σzz(z = 0) σβz(z = 0)
Rβ/h 100 10 4 100 10 4 100 10 4

3D [119] 0.4715 1.223 4.009 −8.30 −1.27 −0.62 −3.127 −3.264 −2.349
N = 4 0.4708 1.141 3.720 −6.28 −1.29 −0.59 −1.730 −2.292 −1.761
N = 3 0.4708 1.141 3.718 −6.28 −1.29 −0.59 −1.730 −2.292 −1.760
N = 2 0.4692 0.952 2.921 −2.52 −1.03 −0.56 −0.631 −1.158 −1.002
N = 1 0.4674 0.951 2.953 −2.63 −1.02 −0.54 −0.630 −1.157 −1.013
T 4 0.4732 1.212 4.323 −6.55 −1.37 −0.67 −1.845 −2.535 −2.099
T 3 0.4732 1.212 4.312 −6.54 −1.37 −0.68 −1.845 −2.525 −2.095
T 2 0.4716 1.003 3.367 −2.53 −1.08 −0.66 −0.635 −1.221 −1.154
CLT 0.4656 0.5205 0.4796

Table 6.2. Comparison between ESL with Lagrange polynomial basis functions and ESL
with trigonometric basis functions results. Maximum transverse deflection uz and maximum
stresses σzz and σβz for [90◦/0◦/90◦] circular cylindrical shell [119].

4%, on equal expansion order.
Table 6.2 is referred to a 3-layers [90◦/0◦/90◦] circular cylindrical shell subjected to trans-
verse sinusoidal loadings at the inner layer. Thick and thin shells are considered. The
TN solution is better or worse than the N solution depending on the case, but there is
not a regular trend. For a given expansion order, ie. N = 4, the solution is worse for
uz, when Rβ/h = 100 and 4, and for σzz when Rβ/h = 10 and 4, whereas in other cases
we obtain better results. However the maximum improvement that is achieved is at most
15%, compared to the N solution.

6.5.2 Bending of Plates

Pagano’s square laminates

In this section, we investigate the bending of square bidirectional plates consisting of 3,
5, 7 and 9 layers, loaded via a bisinusoidal loading pzz. The elastic solution for this
problem was given by Pagano and Hatfield in [85]. Symmetric laminations with respect
to the central plane are considered, with fiber oriented alterning between 0◦ and 90◦, with
respect to the α-axis. The outer layers are 0◦ oriented and the total thickness of the 0◦ and
90◦ layers is the same. Moreover each layer with same orientation have same thickness.
Results present the following dimensionless quantities:

uz =
π4 Q

12 p0 h (a/h)4
uz

σαα =
1

p0 (a/h)2
σαα

σαz =
1

p0 (a/h)
σαz

(6.16)

where Q = 4GLT + (EL + ET (1 + 2νTT ))/(1 − νLT νTL) and p0 is a constant representing
the load’s amplitude. a is the edge length. In terms of normalized functions (6.16), the
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CLT solution is independent of the ratio a/h.

uz(a/2, a/2, 0) σαα(a/2, a/2, 1/2) σαz(0, a/2, 0)

a/h 100 10 4 100 10 4 100 10 4

3D [85] 1.008 1.709 4.491 0.539 0.559 0.720 0.339 0.301 0.219
T11 1.008 1.697 4.446 0.539 0.558 0.717 0.317 0.283 0.207
T10 1.008 1.694 4.433 0.539 0.558 0.717 0.338 0.302 0.158
T9 1.008 1.694 4.433 0.539 0.558 0.717 0.338 0.302 0.222
T8 1.007 1.687 4.410 0.539 0.558 0.715 0.371 0.332 0.244
T7 1.007 1.687 4.411 0.539 0.558 0.715 0.371 0.332 0.244
T6 1.007 1.686 4.401 0.539 0.558 0.714 0.377 0.335 0.240
T5 1.007 1.686 4.400 0.539 0.558 0.714 0.377 0.335 0.240
T4 1.007 1.672 4.360 0.539 0.560 0.723 0.329 0.295 0.219
T3 1.007 1.672 4.363 0.540 0.561 0.724 0.329 0.295 0.219
T2 1.005 1.448 3.454 0.539 0.504 0.432 0.149 0.141 0.118
CLT 1 1 1 0.539 0.539 0.539 0.339 0.339 0.339

Table 6.3. Maximum transverse deflection uz and maximum stresses σαα

and σαz for 3-ply square plate [85].

Table 6.3 reports the displacement uz and the stresses σαα and σαz for a 3-ply laminate.
When the plate is thin (a/h = 100) CLT results agree with the exact solution. It is almost
unnecessary the use of higher-order theories. We have even worst results, for instance
when we consider σαz. We can conclude that TN theories do not give improvement in
the solution when a/h = 100. On the contrary considering a thick plate the proposed TN
model gives better results compared with CLT ones. For the displacement uz we observe a
smooth progression, when we increase the expansion order of the model we obtain better
results. When a/h = 4, CLT leads to 77% error with respect to the reference solution.
This error reduces to 23% using a T2 theory and it drops to less than 3% when a T3 is
considered. Simply adding a sinus term it leads to a marked improvement of the solution.
Finer solutions are obtained when we increase the expansion order, till an error of 1%
when we take into account for a T11 theory.
In general considering all the quantities reported in the table it is important to notice
the significant improvement in the results passing from T2 to T3 theory. Between these
two theories an error up to 50% is seen. It is worth noting that, in some cases, when a
cosine term is added in the adopted displacements field the solution doesn’t change. This
behavior is evident when we consider uz or σαz at a/h = 10. Therefore it appears that
in these cases there is no influence of the cosine term in the solution. We can note also
an irregular trend for stresses. For a/h = 4 the in-plane stress σαα agrees with the exact
solution when a T4 theory is considered, but adding other terms gives worse results. To
have the same error of theory T4 it is necessary to go up to a T9. The same happens for
the transverse stress σαz. When a/h = 100 or 10 a T11 gives a worse result then a T3
theory. For a/h = 4 an expansion order of 10 leads to an error of almost 30%, whereas
already with a T3 we obtain the same value of the 3D solution. What should be noted
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is that not always a higher order of expansion is associated with a solution more accu-
rate. This means that some terms that are added to the displacements field, instead of
improving the solution even lead to a worsening. We can conclude saying that increasing
the expansion order can result meaningless. But when we consider the theories T2 and T3
instead, a great change in the results is seen. The sinus term added in T3 theory leads to
a great improvement of the solutions. Tables 6.4, 6.5 and 6.6 refer to square bidirectional
laminates consisting of 5, 7 and 9 layers respectively.

As we increase the number of layers and considering higher thickness, there is a more

uz(a/2, a/2, 0) σαα(a/2, a/2, 1/2) σαz(0, a/2, 0)

a/h 100 10 4 100 10 4 100 10 4

3D [85] 1.006 1.570 4.291 0.539 0.545 0.685 0.272 0.258 0.238
T11 1.006 1.548 4.163 0.539 0.544 0.675 0.242 0.229 0.209
T10 1.006 1.544 4.140 0.539 0.543 0.671 0.240 0.226 0.205
T9 1.006 1.544 4.140 0.539 0.543 0.671 0.240 0.226 0.205
T8 1.006 1.536 4.094 0.539 0.542 0.670 0.280 0.264 0.239
T7 1.006 1.536 4.094 0.539 0.542 0.670 0.280 0.264 0.239
T6 1.005 1.496 3.912 0.539 0.544 0.671 0.384 0.364 0.324
T5 1.005 1.496 3.912 0.539 0.545 0.672 0.384 0.364 0.324
T4 1.005 1.455 3.692 0.539 0.536 0.623 0.477 0.453 0.403
T3 1.004 1.455 3.695 0.539 0.537 0.622 0.478 0.453 0.403
T2 1.004 1.365 3.143 0.539 0.506 0.456 0.309 0.292 0.255
CLT 1 1 1 0.539 0.539 0.539 0.272 0.272 0.272

Table 6.4. Maximum transverse deflection uz and maximum stresses σαα

and σαz for 5-ply square plate [85].

slowly convergence of the solution, both for displacement uz and for the in-plane stress
σαα. Transverse stress σαz instead presents a different trend. As the number of layers in-
creases, even if we consider the thin case, the solution obtained with higher order theories
is worse than the results of CLT. The value that we consider in the point (0, a/2, 0) has
a swinging trend. We get to overcome a 50% error with for example a T10 theory. This
behaviour can be explained by looking at figures 6.4 and 6.5.
A cross-ply 9 layers plate is considered. The reference solution is given by a fourth-order
Layer-wise approach (LD4) [26]. Layered structures are characterized by non-continuous
thermo-mechanical material property distribution in the thickness direction. We eval-
uate the transverse stress σαz a posteriori from Hooke’s law and by integration of the
3D indefinite equilibrium equations, respectively. The difference among this two ways
of evaluating transverse shear stresses was investigated by Carrera in [22]. Superscript
H denotes stresses evaluated with classical form of Hooke’s law, while I denote stresses
obtained by integration of the 3D-indefinite equilibrium equations. H type analyses lead
to the poorest accuracy: interlaminar equilibria is violated in all the investigated cases.
Transverse stresses evaluated by integration of the 3D indefinite equilibrium equations led
to the best description in all the considered models. Considering figure 6.4 we can observe
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uz(a/2, a/2, 0) σαα(a/2, a/2, 1/2) σαz(0, a/2, 0)

a/h 100 10 4 100 10 4 100 10 4

3D [85] 1.005 1.529 4.153 0.539 0.548 0.678 0.272 0.255 0.219
T11 1.005 1.504 4.002 0.539 0.545 0.666 0.286 0.268 0.230
T10 1.005 1.482 3.878 0.539 0.544 0.663 0.238 0.223 0.192
T9 1.005 1.482 3.878 0.539 0.545 0.663 0.238 0.223 0.192
T8 1.004 1.482 3.654 0.539 0.544 0.653 0.170 0.223 0.140
T7 1.004 1.440 3.654 0.539 0.545 0.653 0.170 0.161 0.140
T6 1.004 1.431 3.594 0.539 0.541 0.638 0.147 0.140 0.125
T5 1.004 1.431 3.593 0.539 0.541 0.638 0.147 0.140 0.125
T4 1.004 1.424 3.540 0.539 0.542 0.632 0.171 0.163 0.147
T3 1.004 1.424 3.543 0.539 0.542 0.631 0.171 0.163 0.147
T2 1.003 1.348 3.091 0.539 0.513 0.477 0.114 0.109 0.098
CLT 1 1 1 0.539 0.539 0.539 0.272 0.272 0.272

Table 6.5. Maximum transverse deflection uz and maximum stresses σαα

and σαz for 7-ply square plate [85].
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Figure 6.4. Distribution of stress σαz for 9-ply laminate, Hooke’s law case, a/h = 10.
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Figure 6.5. Distribution of stress σαz for 9-ply laminate, Equilibrium equations case, a/h = 10.
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uz(a/2, a/2, 0) σαα(a/2, a/2, 1/2) σαz(0, a/2, 0)

a/h 100 10 4 100 10 4 100 10 4

3D [85] 1.005 1.512 4.079 0.539 0.551 0.684 0.259 0.247 0.223
T11 1.005 1.448 3.705 0.539 0.548 0.664 0.333 0.318 0.288
T10 1.004 1.420 3.544 0.539 0.546 0.649 0.406 0.390 0.355
T9 1.004 1.420 3.544 0.539 0.546 0.650 0.406 0.390 0.355
T8 1.004 1.419 3.537 0.539 0.546 0.651 0.404 0.387 0.347
T7 1.004 1.419 3.537 0.539 0.546 0.651 0.404 0.387 0.347
T6 1.004 1.415 3.507 0.539 0.545 0.647 0.376 0.358 0.317
T5 1.004 1.414 3.505 0.539 0.545 0.648 0.376 0.358 0.317
T4 1.004 1.412 3.479 0.539 0.546 0.646 0.405 0.389 0.353
T3 1.004 1.412 3.482 0.539 0.547 0.645 0.405 0.389 0.353
T2 1.003 1.342 3.072 0.539 0.517 0.491 0.272 0.262 0.240
CLT 1 1 1 0.539 0.539 0.539 0.259 0.259 0.259

Table 6.6. Maximum transverse deflection uz and maximum stresses σαα

and σαz for 9-ply square plate [85].

that the value of σαz in the central point (z=0) is close to that of the reference solution
when a T2 theory is adopted. To increase the expansion order leads to worse results. But
if we consider the trend along the whole thickness of the plate, then we see that higher
order theories, such as T6, give overall reduced errors. If we consider the I case instead
we obtain the same solution for all the considered expansion orders and this results match
the reference solution.

Table 6.7 reports the displacement uz for a 9−ply laminate. When the plate is thin
(a/h = 100) we have agreement with the reference solution for all the considered theories
and expansion orders. Instead, when a/h decreases we notice the difference between ESL
and LW theories. In the case a/h = 10 we have an error of 7% and it reaches 15% for
a/h = 4. For this case, the trigonometric theories do not give improvements respect to the
classic ones. This behavior is highlighted in Figure 6.6, which represents the displacement
uz in function of the plate’s thickness. The most thick plate case has been considered
(a/h = 4). The ED4 and EDT4 curves are overlapped as well as those related to LD4 and
LDT4. Figures 6.7, 6.8 and 6.9 show the distributions of displacement uz and stresses
and for a 3-ply laminate, in the a/h = 10 case. Results for classical and trigonometric
theories are comparable.
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EDN EDTN LDN LDTN

a/h = 100
Ref. [13] 1.005
N = 4 1.004 1.004 1.005 1.005
N = 3 1.004 1.004 1.005 1.005
N = 2 1.003 1.003 1.005 1.005

a/h = 10
Ref. [13] 1.512
N = 4 1.413 1.412 1.512 1.512
N = 3 1.413 1.412 1.512 1.512
N = 2 1.342 1.342 1.512 1.512

a/h = 4
Ref. [13] 4.079
N = 4 3.488 3.479 4.079 4.079
N = 3 3.493 3.482 4.079 4.078
N = 2 3.074 3.072 4.078 4.078

CLT 1

Table 6.7. Maximum transverse deflection uz evaluated in z = 0 for
9−ply square plate, Ref. [85].

Figure 6.6. Distribution of displacement uz for 9-ply laminate, a/h = 4, expansion order
N = 4. Results for classical and trigonometric ESL and LW models.
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Figure 6.7. Distribution of displacement uz for 3-ply laminate, a/h = 10

Figure 6.8. Distribution of stress σαα for 3-ply laminate, a/h = 10
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Figure 6.9. Distribution of stress σαz for 3-ply laminate, a/h = 10

6.5.3 Bending of Shells

Ren’s Cylindrical Panels

Results presented in Table 6.8 refer to a [90◦/0◦/90◦] cylindrical shell with layers of equal
thickness, loaded via a bisinusoidal loading pzz applied at the top (external) layer. Exact
solutions were considered by Ren [103] for cross-ply cylindrical panels in cylindrical bend-
ing. The geometrical data (see fig. 6.10) are: number of half-waves in βk direction n = 1
and Rβ/b = π/3. Layers are numbered, starting from the shell bottom−internal surface.
The fibre L-orientation coincided with the αk-layers direction. Transverse displacement,
in-plane and transverse shear stresses values are normalized by:

uz =
10 ET

p0 h (Rβ/h)4
uz

σββ =
1

p0 (Rβ/h)2
σββ

σβz =
1

p0 (Rβ/h)
σβz

(6.17)

We consider the trigonometric set of thickness functions described in Sec. 6.2.1 to carry
out the analyses. Some considerations about table 6.8 are made hereinafter.
We present results also for the classical ESL and LW models in order to provide a

comparison with the new trigonometric basis functions. Concerning the displacement, uz
trigonometric LW theories provide results in agreement with the reference solution for an
expansion order as low as 3 and for both thin and thick shells. Therefore higher expansion
orders are not necessary for this case. Instead, if we consider the TN models we note
that for the displacement uz there is a regular trend. Adding terms in the expansion
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Figure 6.10. Geometrical notations used for the investigated cylindrical panels
and cylindrical shells.

improves the result, especially considering thick shells (Rβ/h = 4), but at least we get
to an error of 11%. When the shell is thin (Rβ/h = 100) higher-order theories do not
give improvement in the solution, respect the CLT results. In fact the difference between
CLT and LDT11 solutions is about 1%. Considering stress σββ, with trigonometric ESL
models, we notice that in some cases adding a term in the expansion leads to major errors.
The thick shell case (Rβ/h = 4) presents an irregular trend. For example the solution that
we obtain with an expansion order of 10 is worse than that relative to N = 3. Therefore it
becomes interesting to study the contribution of each term in the expansion. LDTN results
convergence to the reference solution already for N = 4 and thus we do not need to add
other terms to increase the accuracy of the solution. The transverse shear component σβz

presents an unexpected behaviour. The solutions that we obtain with the trigonometric
ESL models are better than the LW ones, when we consider high expansion orders. In
fact, the LW solutions do not change from N = 3 onwards, but the error remains high
especially in the case of thin plate where it reaches 30%. The EDTN models instead have
a regular trend and as we add terms to the expansion we obtain more accurate solutions.

Varadan and Bhaskar’s Cylindrical Shells

Varadan and Bhaskar [119] considered exact solutions for cross-ply laminated, cylindrical
shells, subjected to transverse pressure pzz at the bottom (internal) surface. The geomet-
rical data (see fig. 6.10) are: a/Rβ = 4, m = 1, n = 8. The three layers [90◦/0◦/90◦]
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uz(z = 0) σββ(z = h/2) σβz(z = 0)

Rβ/h 100 10 4 100 10 4 100 10 4

3D [103] 0.0787 0.144 0.457 0.781 0.897 1.367 0.523 0.525 0.476
LDT4− 11 0.0786 0.144 0.458 0.779 0.897 1.367 0.367 0.497 0.442

LDT3 0.0786 0.144 0.458 0.779 0.896 1.363 0.367 0.497 0.442
LDT2 0.0786 0.144 0.454 0.779 0.895 1.344 0.366 0.496 0.438
LD4 0.0786 0.144 0.458 0.779 0.897 1.367 0.367 0.497 0.442
LD3 0.0786 0.144 0.458 0.779 0.897 1.367 0.367 0.497 0.442
LD2 0.0786 0.144 0.454 0.779 0.896 1.347 0.366 0.496 0.437
LD1 0.0785 0.141 0.441 0.779 0.866 1.213 0.366 0.498 0.446
T11 0.0782 0.135 0.404 0.775 0.831 0.910 0.416 0.524 0.436
T10 0.0782 0.135 0.403 0.775 0.830 0.895 0.430 0.537 0.454
T9 0.0782 0.135 0.396 0.774 0.846 1.140 0.430 0.537 0.451
T8 0.0782 0.135 0.395 0.775 0.845 1.136 0.408 0.515 0.426
T7 0.0782 0.135 0.397 0.775 0.849 1.187 0.408 0.515 0.427
T6 0.0781 0.133 0.388 0.775 0.845 1.180 0.337 0.446 0.365
T5 0.0781 0.133 0.387 0.775 0.846 1.169 0.337 0.446 0.365
T4 0.0781 0.131 0.380 0.775 0.842 1.179 0.233 0.356 0.317
T3 0.0781 0.131 0.380 0.776 0.844 1.196 0.233 0.355 0.317
T2 0.0779 0.113 0.292 0.774 0.739 0.710 0.033 0.166 0.164
CLT 0.0776 0.078 0.078 0.776 0.759 0.732

Table 6.8. Maximum transverse deflection uz and maximum stresses σββ and σβz for
[90◦/0◦/90◦] cylindrical shell [103].

lamination schemes have been considered. Results are quoted in Table 6.9:

uz =
10 EL

p0 h (Rβ/h)4
uz

σzz =
1

p0
σzz

σβz =
10

p0 (Rβ/h)
σβz

(6.18)

The conclusions and comments reached for the cylindrical panels (Sec. 6.5.3) can be
extended to cylindrical shells. For the transverse displacement uz a T2 (Rβ/h = 100) or
at least a T3 (Rβ/h = 10, 4) theory is enough to match the reference solution. Actually
by adding more terms the solution gets worse. We note the same behaviour considering
stresses. For σβz at Rβ/h = 10 the error respect the reference solution goes from 5% to
15% when we consider a T5 or a T9 theory, respectively. In figures 6.11 and 6.12 we show
the behaviour of σzz and σβz along the shell’s thickness. We notice that the introduction of
trigonometric thickness functions can leads to variations of the solution. It is meaningful
the wide variation between a T7 theory with respect to a T8 theory (Fig. 6.11).
Then it is evident that theories developed from a new basis of trigonometric thickness
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uz(z = 0) σzz(z = 0) σβz(z = 0)
Rβ/h 100 10 4 100 10 4 100 10 4

3D [119] 0.4715 1.223 4.009 −8.30 −1.27 −0.62 −3.127 −3.264 −2.349
T 11 0.4737 1.264 4.329 −6.82 −1.27 −0.65 −2.949 −3.664 −2.895
T 10 0.4737 1.263 4.332 −7.08 −1.31 −0.86 −3.028 −3.736 −2.800
T 9 0.4737 1.265 4.508 −7.08 −1.27 −0.61 −3.028 −3.739 −2.840
T 8 0.4737 1.263 4.497 −7.16 −1.26 −0.55 −2.898 −3.586 −2.719
T 7 0.4737 1.262 4.448 −7.16 −1.27 −0.61 −2.898 −3.585 −2.709
T 6 0.4736 1.243 4.343 −6.93 −1.28 −0.62 −2.468 −3.104 −2.283
T 5 0.4736 1.243 4.362 −6.93 −1.28 −0.60 −2.468 −3.104 −2.289
T 4 0.4732 1.212 4.323 −6.55 −1.37 −0.67 −1.845 −2.535 −2.099
T 3 0.4732 1.212 4.312 −6.54 −1.37 −0.68 −1.845 −2.525 −2.095
T 2 0.4716 1.003 3.367 −2.53 −1.08 −0.66 −0.635 −1.221 −1.154
CLT 0.4656 0.5205 0.4796

Table 6.9. Maximum transverse deflection uz and maximum stresses σzz and σβz for
[90◦/0◦/90◦] circular cylindrical shell [119].
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functions are effective depending on the terms that are adopted in the expansion. It
becomes interesting to evaluate the importance of higher-order terms (see [32]).
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Figure 6.11. Distribution of stress σzz for [0◦/90◦/0◦] cylindrical shell, a/h = 10.
3D solution in [119]

-6

-5

-4

-3

-2

-1

 0

 1

 2

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ β
z

z/h

3D

T7

T5

T3

Figure 6.12. Distribution of stress σβz for [0
◦/90◦/0◦] cylindrical shell, a/h = 10.
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Another analysis was carried out considering a two layers [0◦/90◦] lamination scheme.
For the sake of brevity, results quoted in Figures 6.13, 6.14 and 6.15 are referred to the
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Rβ/h = 10 case and present the behaviour of the investigated quantities (Eq. 6.18) along
the shell’s thickness. We compared the solutions obtained for N = 4 for each theory
that we have considered in the second part of the thesis, as the classical theories and the
trigonometric ESL and LW. Being equal the approach adopted, the trends do not change,
with or without the use of trigonometric functions. This applies especially to stresses,
whereas the displacement uz undergoes an improvement when we consider the TN model,
compared to the EDN one.

Figure 6.13. Distribution of displacement uz for [0◦/90◦] cylindrical shell, a/h =
10. 3D solution in [119]
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Figure 6.14. Distribution of stress σzz for [0◦/90◦] cylindrical shell, a/h = 10.
3D solution in [119]

Figure 6.15. Distribution of stress σβz for [0◦/90◦] cylindrical shell, a/h = 10.
3D solution in [119]
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6.6 Conclusions

In the framework of axiomatic approaches which can be developed on the basis of vari-
ational statements, new trigonometric displacement distributions in the thickness of the
shell z have been postulated. We presented higher-order shell theories based on Equiv-
alent Single Layer approach that have been formulated on the basis of new kinematic
assumptions. We built up a set of trigonometric thickness functions to write the assumed
displacement field. Governing equations and boundary conditions were derived via the
Principle of Virtual Displacement. A unified approach to formulate two-dimensional shell
theories has been here addressed to evaluate the static response of cylindrical multilay-
ered plates and shells made of composite materials. Navier-type closed form solution is
considered, that corresponds to simply supported boundary conditions. All results have
been compared with exact solutions available in literature. On the basis of the presented
results, we can make some considerations about the effectiveness of the formulation. When
the thickness of the shell becomes high, we need to use higher order theories, which pro-
vide better results compared to classical theories. It should be take into account that
depending on the case considered we note that some terms used in the expansion are not
very useful or even negative. We must therefore understand which order of expansion is
appropriate depending on the problem being analysed. The theories that we have pro-
posed are suitable for further investigation and in the opinion of the authors can bring
improvements in the field of shells structural models.
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Conclusions

Carrera’s Unified Formulation (UF) has been presented, in the framework of beams, as
well as plates and shells modelling. The UF is based on a compact notation allowing to
obtain classes of Equivalent Single Layer (ESL) or Layerwise (LW) theories characterised
by the type of the main unknowns via the assumption of either the Principle of Virtual Dis-
placement (PVD) or the Reissner’s Mixed Variational Theorem (RMVT). Concerning the
fisrt part of the thesis, the free vibration analysis of thin-walled isotropic beams is carried
out through a closed form, Navier type solution. Slender and deep beams are investigated.
Bending, torsional and axial modes, as well as local modes are considered. Results are
assessed toward finite element solutions. The numerical investigation has shown that the
proposed unified formulation yields accurate results as long as the appropriate approxi-
mation order is considered. The accuracy of the solution depends upon the geometrical
parameters of the beam.
Functionally graded beams have been introduced. Their modal response has been eval-
uated through higher-order models, in the framework of UF. Bending, torsion and axial
modes are investigated. Slender as well as short beams are considered. Numerical results
highlight the effect of different material distributions on natural frequencies and mode
shapes and the accuracy of the proposed models.
The Unified formulation has been extended to evaluate the thermal behaviour of beams
made of several materials. The temperature profile is determined by solving Fourier’s
heat conduction equation. The governing equations are, then, derived from the Princi-
ple of Virtual Displacements considering the temperature field as an external load. A
Navier-type, closed form solution is used. Simply supported beams are, therefore, con-
sidered. Functionally graded mono-layer and sandwich cross-section configurations are
investigated. Numerical results in terms of temperature, displacement and stress distri-
butions are provided for different beam slenderness ratios. Results are assessed towards
three-dimensional finite element solutions demonstrating that accurate results can be ob-
tained with reduced computational costs.

Concerning the second part of the thesis, an introduction to Equivalent single layer and
layer-wise models for shells analysis has been presented. These models have been applied
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to the modal analysis of thin and moderately thick as well as shallow and deep shells. Sev-
eral parametric analyses are carried out depending on the stacking sequences of laminates,
on the degree of orthotropic ratio and the thickness and on the curvature parameters. Con-
clusions are drown with respect to the accuracy of the theories for the considered lay-outs
and geometrical parameters. In the framework of shells modelling, besides the polyno-
mial approximation for the main unknown variables, we presented new basis functions
for the assumed displacement field, that account for trigonometric variation. Equivalent
single layer and Layer-wise shells theories based on trigonometric functions expansions are
considered to evaluate the static behavior of multilayered, orthotropic plates and shells.
Carrera Unified Formulation for the modeling of composite shell structures is adopted,
extending the bases functions used for higher order shell theories to trigonometric bases
functions. The governing differential equations of the problem are presented in a compact
general form. These equations are solved via a Navier-type, closed form solution. The
static bahaviour of plates and shells is investigated. As assessment, results are compared
with available exact solutions present in literature.
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