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Influence of nucleus deformability on cell movement

into cylindrical structures.

C. Giverso1 ∗, A. Grillo1, L. Preziosi1

1 Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract.

Mechanical properties of cell nucleus have been demonstrated to play a fundamental role in cell

movement across extracellular networks and micro-channels. In this work, we focus on the math-

ematical description of a cell entering a cylindrical channel composed of extracellular matrix. An

energetic approach is derived in order to obtain a necessary condition for which cells enter cylin-

drical structures. The nucleus of the cell is treated either (i) as an elastic membrane surrounding a

liquid droplet or (ii) as an incompressible elastic material with Neo-Hookean constitutive equation.

The results obtained highlight the importance of the interplay between mechanical deformability

of the nucleus and the capability of the cell to establish adhesive bonds.

Key words: nucleus deformability, cell migration, micro-channel, cell mechanical properties,

bond force.

1. Introduction

Cell migration inside extracellular matrix networks plays a critical role in many physiological and

pathological processes. For instance, in wound healing the deposition of ECM and the migration

of cells through it contribute to repair both epithelial layers and connective tissues, whereas in im-

mune surveillance and inflammation, leukocytes actively migrate towards the site of infection [15].

On the other hand, in pathological conditions, cell migration is involved, for example, in chronic

inflammatory diseases and in cancer cell invasion and metastasis formation [42].

Moreover, with the advent of tissue engineering, the process of cell migration is finally exploited
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in biomedical applications for the regeneration of various tissues, both in vivo and in vitro [4, 59].

From the biological point of view, an increasing number of experimental works has been designed

in order to determine cell properties and functions that are involved in the dynamics of motion

inside the extracellular microenvironment, and the contribution of this complex network of struc-

tural fibrous proteins on the overall process (see, for instance, [20, 32, 40, 56]). In particular, the

key factors for cell migration on flat substrates are the dynamic adhesion of cells to their environ-

ment via the expression of adhesive molecules (in particular integrins) and the generation of the

force necessary for propulsion by contraction of cytoskeletal elements [16]. These are also the ba-

sic “ingredients” in the process of migration inside three-dimensional (3D) porous environments.

However, in this case, cells require steering their way throughout steric obstacles. This process can

be supported by the production of proteolytic enzymes (e.g. Matrix Metalloproteinases, MMPs)

able to degrade matrix components in order to open gaps for cell movement [13, 14, 41, 58]. The

migratory and invasive process is generally associated with both significant cell deformation and

cytoskeletal force generation while passing through constricted openings of the ECM [40, 56].

Indeed cells are exposed to a variety of mechanical stresses and deformations [30], especially, when

the proteolytic machinery is inhibited or during migration inside artificial rigid scaffold. Cellular

and nuclear deformation require substantial reorganization of the cytoskeleton and compression of

the keratin envelope of the nuclear region, in order to acquire an elongated configuration, allowing

the entire cell to completely squeeze and stretch (see Fig. 1(a)). Indeed, it has been observed

that inside ECM channels, nucleus shape and keratin network structure strongly deviate from the

normal spatial distribution in the undeformed cell [40].

These biological findings highlight that the dimensionality of the environment strongly affects cell

migratory capabilities and that the deformability of the cell, and in particular of the nucleus, are

crucial for cell migration in 3D structures.

The first efforts in describing mechanical behaviour of living cells were aimed at understanding

cell response to mechanical stress in the vascular system (e.g., red and white blood cells) [46]. In

order to measure the mechanical properties of cells, these must be deformed in some way by a

known force or stress and the corresponding deformation must be measured.

In the last years several tests have been developed to pursue this aim. In particular some of the

most used mechanical instruments are atomic force microscope (AFM), optical trap (laser tweez-

ers), microcompression method and micropipette suction [23, 24, 34]. Despite the wide range of

technological instrument available, the description of mechanical properties of cells is still at a

primitive stage and a constitutive theory able to describe cell behaviour is still missing.

Even though the scientific community is becoming aware of the importance of mechanical prop-

erties of cells in their process of migration inside porous structures, poor investigations have been

carried from the mathematical modelling point of view and mechanical information is generally

neglected in the description of cell movements.

Nowadays, if we want to describe the movement of a population of cells inside a region containing

extracellular matrix, from the continuum mechanics point of view, Darcy’s Law is generally used

vvvc = − k(φECM)

ν(1 − φECM)
∇P .
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Therefore cells are viewed as a liquid continuum with velocity vvvc and dynamic viscosity ν that can

flow through the ECM structure, with porosity ε = 1−φECM (where φECM is the volume fraction

of the ECM) driven by the gradient of the interstitial pressure, ∇P . The permeability, k(φECM),
which is a scalar only if the ECM is isotropic (with respect to the flow), is generally a function

of porosity (e.g. Kozeny-Carman or Holmes-Mow [25]), but it is often assumed to be a constant

[35, 39, 53]. Sometimes the orientation of ECM fibres is considered [5, 6, 36]. However, to our

knowledge, mechanical properties of cells are always neglected in the description of cell migration

in porous structures.

Even when we move towards the length scale at which discrete models are used, the mechanical

properties of cells are poorly considered, unless we move towards really detailed models of the

cells. One of them, is the tensegrity model [26, 27], in which loads are supported by struts in

compression and cables in tension. Clearly, this description is close to reality, but the high com-

plexity of this model makes it difficult to be used in simulations with a big number of cells and to

be up-scaled to the description of macroscopic behaviours.

Some first efforts to include cells mechanical properties inside the description of cell movement

on 2D and inside 3D substrates has been done in [44, 45] using Cellular Potts Models (CPM),

which allow intuitive representation of cells and their mechanical properties, without requiring too

expensive computations.

The introduction of microscopic mechanical properties of cells into continuum macroscopic

equations are of fundamental importance in order to make a step towards a more comprehensive

representation of cells and tissue. To do that, we study how the nucleus deformability can influence

the process of a cell entering a 3D extracellular structure, using a continuum description of the cell

nucleus. Even though, in vivo, fibre structures and bundles are arranged into really complex net-

works of strongly varying local densities [57], that create pores and gaps, we simplify the problem,

considering the ECM structured in parallel cylindrical channels composed of fibres and bundles

that provide directional guidance cues to cells. This is of course a strong assumption of the far

more complex real structure of the extracellular environment, but it can be a good approximation

for regular scaffolds used in tissue engineering and moreover it helps to make a first step towards

the description of the real phenomenon.

This paper is organized as follows: in Section 2 we review micropipette experiments and the

related classical aspiration criteria, commenting the difficulty encountered in applying them to

the description of a cell entering an ECM channel. It is shown that these models cannot account

for the boundedness of cells and therefore they lead to some unrealistic results (reported in the

Appendix). A simple mathematical model for adhesive forces, required to accomplish the process,

is analysed in Section 3. In particular, we point out two possible representations of the force that

the distribution of bonds can exert (linear vs. constant) and we make some considerations on the

extension of the adhesive area (boundedness assumption). In Section 4 we propose a mathematical

model, based on an energetic approach, able to describe the deformation of a spherical finite elastic

structure (representing the nucleus) into an elongated deformed one, that can move inside the

channel. Two different representations for nuclear deformation are implemented (ellipsoidal vs.

3
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(a) (b) (c)

Figure 1: Nuclear deformation during cell migration: biological experiments and schematic rep-

resentation of the process. (a) Confocal time-lapse snapshot of cell migration inside mid-density

collagen (3.3 mg/ml) shows nuclear (in green) and cytoplasmic (in red) shape change (with permis-

sion from [17]). (b) Biological sketch of the process of cell migrating through 3D matrix of fibres.

Dots denote focal contacts, pink lines stand for ECM fibres (adapted from [17]). (c) Schematic

representation of the geometry considered in the model: the cytosol (light blue) can freely move

into one of the cylindrical channels composed of ECM bundles, whereas the nucleus stands on the

back and progressively deforms in order to enter the channel.

cigar-shaped). The nucleus is mechanically assimilated either to an elastic membrane (section

4.1) or to an elastic solid (section 4.2). The computational findings are reported and discussed in

Section 5. Results are presented in terms of dimensionless parameters that represent the interplay

between adhesive and mechanical properties.

2. Mathematical Model of Micropipette Aspiration

A cell can be schematically represented as consisting of two main compartments, the cytoplasm

and the nucleus, both surrounded by lipid bilayer membranes. The cytoplasm holds all cell’s inter-

nal sub-structures (except for the nucleus) immersed in what is called cytosol. The cytosol, which

fills much of the volume of the cell, is composed by a complex mixture of cytoskeleton filaments,

dissolved macro-molecules and water. The nucleus is less deformable than the cytoplasm [17] and

its deformability is mainly regulated by both chromatin structure, and lamin intermediate filaments

forming a part of the nuclear envelope [17, 18].

When migrating inside a thick 3D fibrous environment made of extracellular matrix, with typical

pore sizes smaller than the cellular diameter, cells need to deform both their cellular body and their

nucleus. Being the nucleus the stiffest organelle, the nuclear deformability strongly contributes

to the migration efficiency of a cell, whereas it is much easier for the cytosol (and the embedded

organelles) to extend its protrusion while the nucleus lags behind (see Fig. 1(a)).

In order to describe the above complex environment we simplify the geometry considering the

motion of a cell in a cylindrical microchannel as a micropipette. In this respect micropipette aspi-
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ration is one of the most common way to study the mechanical behavior of living cells and it can

help understanding the process of a cell entering inside a functionalized channel. In the typical

experiment, a cell is aspirated into a small glass tube applying a suction pressure. The leading

edge of its surface is tracked with light microscopy. It is observed that, if the suction pressure is

sufficiently high, both soft cells (e.g., neutrophils, that normally transmigrate across small pores)

and more rigid cells (e.g., chondrocytes and endothelial cells) completely enter pipettes, within a

certain range of calibers (see [24] for a review). In both cases the response to an aspiration pressure

is similar until a hemispherical projection is formed inside the pipette. Beyond that point, for cells

behaving like a liquid surrounded by a membrane, a further increase in the suction pressure can

cause the complete entry of the cell into the channel [12]. On the other hand, when cells behaving

like a solid are aspirated, they do not flow into the micropipette when the aspiration length exceeds

the pipette radius, rather the surface extends until a new equilibrium position is reached [28, 49].

Because of the small suction pressures relative to the osmotic pressure of isotonic saline solution in

which cells are positioned, in all these experiments cells usually deform at constant volume [24].

Some simple continuum models, treating the cell either as a liquid droplet surrounded by an elas-

tic cortical shell [60], or as a homogeneous elastic membrane [7], or as a solid [49] have been

formulated in order to fit experimental data. Even though these models do not consider the high

heterogeneity in cell composition, they surprisingly make good predictions of the cell deforma-

tion response to known suction forces produced by the pipette and they are still used today in the

biomechanical community.

In Evans’ model [60], cells are described as passive viscous liquid droplet encapsulated by a

distinct cortical layer, with cortical tension, Tc. The equilibrium condition comes directly from

Laplace law applied to the suction of a cell until a hemispherical projection is formed inside the

pipette. Calling Lp the aspired length and Rp the pipette radius, the critical suction pressure drop

∆Pc is obtained for Lp/Rp = 1, when the following relation holds

∆PcRp

Tc

= 2

(

1− Rp

Rc

)

(2.1)

where Rc is the radius of the cell outside the pipette (when Lp/Rp = 1). The cortical tension

creates a threshold pressure drop below which the cell will not enter the pipette and above which

cells can flow into it. Moreover Evans et al. [60] observed that the rate at which a cell flows into a

pipette is almost constant, with only a small nonlinearity over time until the cell completely enters

the pipette.

When the cell has totally entered the pipette all the microscopic “ruffles” and “folds” have been

pulled smooth. However they observed there exists a lower limit below which cells cannot enter the

pipette, that for the specific cells used in their biological experiments (granulocytes) corresponds

to a caliber of 2.7µm [11, 12].

For what concerns cells behaving like a solid, many studies have been done on human red blood

cell. The interior of this anucleate cells is a Newtonian liquid and the biconcave shape comes from

its membrane. The deformation of such cells has been studied under a constant area assumption

[7, 9, 10, 55], to derive the suction pressure ∆P needed to aspire a portion of cell of length Lp

inside a cylindrical channel of radius Rp, which is given by the following relation (that holds for
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Lp > Rp)

∆PRp

γ
= 2

Lp

Rp

− 1 + log

(

2
Lp

Rp

)

, (2.2)

where γ is the shear elastic modulus of the membrane.

Eq. (2.2) is obtained as the stationary condition of the kinematic relation

∆PRp

γ
= 2

Lp

Rp
− 1 + log

(

2
Lp

Rp

)

+ 4
η

γ

L̇p

Rp
, (2.3)

where a viscoelastic stress-strain relation is assumed for the membrane. Therefore in (2.3) γ rep-

resents the elastic properties of the membrane, whereas η its viscosity.

Experimentally it has been observed that, when
Lp

Rp
> 1, the relation between

∆PRp

γ
and

Lp

Rp

is almost linear, with a slope equal to 2.45. This consideration leads to the well known Chien’s

relation [7]
∆PRp

γ
= 2.45

Lp

Rp

(

Lp

Rp
> 1

)

. (2.4)

Finally, Theret et al. [49] studied the entry into a channel of a cell treated as a homogeneous

elastic solid, with Young’s modulus equal to E. Their analysis for an infinite, homogeneous half-

space drawn into a micropipette can be summarized by the following relation

∆P

E
=

2π

3
Φ
Lp

Rp
, (2.5)

where Φ is a factor linking the external and internal radius of the pipette, which is assumed to be

equal to 2.1 in many works [24].

The process of a cell entering a glass tube has some similarities with the process of a cell en-

tering a channel composed of ECM fibres. Of course in the biological movement of cell migration

across matrix channels, we do not have any aspiring pressure, but what makes the cells deform

and enter the channel is the capability of cells to form adhesive bonds with the ECM, that ac-

tively pull them, through the contraction of filaments composing the cytoskeleton. Therefore, the

∆P in eq. (2.2)-(2.5) should be related to the total adhesive force expressed by cell-ECM bonds,

πR2
p∆P ≈ FZ

adhesion, where FZ
adhesion is the component on the long axis of the cell. We will give

more details about these forces in Section 3.

Moreover we can assume that only the nucleus of the cell behaves as an elastic material, apply-

ing eq. (2.2)-(2.5) to the deformation of the cellular nucleus only. Even though results obtained

under these hypothesis seem promising (see Appendix), we have to be aware that we are push-

ing the criteria away from their limit of validity. In fact, Chien’s and Theret’s models have been

obtained assuming, respectively, an infinite 2D membrane and a 3D half space aspired inside a

pipette. Moreover, the pipettes used in Chien’s biological experiments ranged from 0.3µm up to

0.8µm and the volumes aspired into the pipettes were always < 5% of the cell volume [7]. At

the same time, even though the pipettes used by Theret et al. [49] were bigger (with an internal
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diameter ranging between 2 µm and 3 µm), the portion of the cell aspired was two-to-four times

Rp. Therefore both validations stay away from the complete entry of the cell. Actually, all these

studies were designed in order to determine the mechanical properties of cells in the first stages of

the deformation and they apply best to problems in which the displacement and their gradient are

quite small (normally Lp/Rp up to 5 [49]), whereas micropipette experiments account also for the

total aspiration of the cell.

3. Adhesive forces

To describe cell entry into ECM channels, a fundamental step is the definition of adhesive forces,

that lead to cell deformation and migration inside the channel. The adhesive force can be thought as

the resultant of all forces generated by single cell-ECM bonds on the surface of adhesion through

the contraction of the cytoskeleton. Cell-matrix adhesion is mainly mediated by integrins on the

cell surface that connect ECM to the cytoskeleton. The adhesion can be modulated by the den-

sity of expressed and activated integrins, ρb = Nintegrin/Scell−ECM (where Nintegrin is the number

of integrins over the surface of contact between the cell and the ECM, Scell−ECM), and by the

density of substratum ligands (ECM adhesive sites), here represented by the ECM surface ratio,

αECM = SECM/Schannel. We will assume that the cytoplasm can easily penetrate inside the chan-

nel without any constrictions (see Fig. 2), so that the action of adhesive bonds will cause on one

hand the translation of the cytosolic region (keeping the same shape with a tip that will be modelled

as a spherical cap) and on the other hand the advancement of the nucleus, that, being at the entrance

of the microchannel, will deform to penetrate into it. We can approximately say that the length of

the region in contact with the channel wall and in front of the nucleus is approximately constant and

we can assume that on this surface bonds are formed. Therefore, referring to Fig. 2 and defining

S =
{

(X, Y, Z) : X2 + Y 2 = R2
p , Z̄low(t) < Z < Z̄up(t)

}

the surface for which ECM-bonds are

expressed, we can say that the length for which bonds are formed, Lb = Z̄up(t)− Z̄low(t) remains

constant in time during cell deformation.

Accepting that the density of bonds on cell surface, ρb, and the portion of the channel wall com-

posed of ECM adhesive sites, αECM , do not depend on time, the total adhesion force is

Fadhesion =

∫

S

ρb(X)αECM(X)Fbond(X)dS , (3.1)

where Fbond(X) is the force generated through cytoskeleton contraction, as a consequence of bond

formation. Though ρb and αECM may be generally functions of the space, in the homogeneous

case, eq. (3.1) simplifies into

Fadhesion = ρbαECM

∫

S

Fbond(X)dS . (3.2)

The total adhesive force pulling the cell is therefore a function of the radius of the pipette, the

density of bonds ρb, the surface fraction of the channel composed of extracellular matrix, αECM ,

and the integral of the single bond forces over the length of contact. In particular, under the
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assumption that the length for which bonds are formed is given by the portion of the cell in front

of the nucleus in contact with the channel (see Fig. 2), we have

Lb = L0
cell − Rp − L0

n (3.3)

where L0
cell is the initial length of the cell inside the channel (which corresponds to the length of

the deformed cytoplasm) and L0
n is the portion of the nucleus that can enter the pipette without any

deformation. Easy geometrical reasoning, based on volume conservation of both the cytoplasm

and the nucleus, gives

L0
cell = Rp

[

4

3

R3
c −R3

n

R3
p

+
1

3
+

1

R3
p

(

L0
n

)2
(

Rn −
1

3
L0
n

)]

, (3.4)

L0
n = Rn −

√

R2
n − R2

p , (3.5)

where Rp is the radius of the cylindrical channel, Rn the radius of the nucleus and Rc the radius of

the cell. Once that a proper function representing bonds forces is provided the process of adhesive

force description is accomplished. In particular, we will consider the following simple forms of

FZ
bond, which is the Z-component of the bond force that will do the work to accomplish cell pene-

tration in the microchannel.

Linear bond force

We assume that on each bond it is exerted a force proportional to the distance between the nucleus

and the site in which the bond is formed, i.e.,

FZ
bond = kbZ , (3.6)

where kb is the elastic constant of the bond. Substituting (3.6) into (3.2) we obtain

FZ
adhesion = πRpρbαECMkbL

2
b . (3.7)

This relation takes into account the biological observation that the biggest adhesive forces are

expressed at the apical portion of the cell [1, 8, 33, 38]. However it has the disadvantage that there

is no upper limit to the adhesive force that can be exerted by a bond, which is not true. This may

become important when the size of the channel is very small causing long cell extensions (see

section 5).

Constant bond force

We assume that a fixed force, FZ
bond = FM

b , is exerted on each cell-ECM bonds, which implies that

FZ
adhesion = 2πRpρbαECMFM

b Lb . (3.8)

This relation represents the fact that there is a mean force that bonds can exert and a maximum

force over which bonds break, that has been experimentally measured, [2, 37, 38, 48].
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Figure 2: Schematic representation of the length of the adhesive region and of the types of forces

considered.
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Force over a bounded region

We consider the case in which cells are able to form bonds only over a certain area of the contact

region, e.g. the apical portion of the deformed cell. Therefore, taking a constant force assumption,

we have FZ
bond = FM

b χLM
b
(Z), where LM

b represents the length of the maximal area of contact for

which bonds are formed (adhesive region) and

χLM
b
(Z) =

{

1 if (Lb − LM
b )+ < Z < Lb

0 if 0 ≤ Z ≤ (Lb − LM
b )+ ∨ Z ≥ Lb

where (·)+ stands for the positive part of (·), to take into account that for protrusions smaller

than LM
b all the cytoplasmic membrane participates in the adhesion process. Therefore, the total

adhesive force is represented by the following relation

FZ
adhesion = 2πRpρbαECMFM

b L∗

b , (3.9)

where L∗

b = min
{

Lb, L
M
b

}

. This relation prevents adhesive forces to growth dramatically for

Rp → 0 and it represents the fact that for very small pipette radius the cell cannot extend his

protrusion over too large areas.

A similar relation would be achieved if the interval over Z is substituted by several disconnected

intervals. In this case χ is the sum of the sizes of the intervals. Also the localization of these

”adhesive sites” does not affect the final result, provided that the overall length is the same.

Analogously, it is possible to use the linear force assumption, taking FZ
bond = kbZχLM

b,el
(Z), that

leads to

FZ
adhesion = 2πRpρbαECMkbL

∗

b,el

(

Lb −
1

2
L∗

b,el

)

, (3.10)

where L∗

b,el = min
{

Lb, L
M
b,el

}

. However with a proper re-definition of LM
b,el as a function of LM

b ,

eq. (3.10) leads to the same results as (3.9), when Lb > LM
b .

4. Energy Balance Models

We tackle the problem of a cell entering a cylindrical ECM channel using an energetic approach.

Always working under constant volume assumption, we develop two models to analyse the total

energy required to deform the initial spherical nucleus (see Fig. 3(a)) into a nucleus that is totally

inside a cylindrical channel. As observed in [54] the central nucleus acquires an elongated shape

when the cell is forced to cross channels of different geometries. Experimental evidences [29, 54]

suggest that, when the cell elongates, the initially spherical nucleus significantly deforms, orienting

with respect to the cell long-axis direction. Cell elongation is associated with the formation of

parallel actin bundles on either sides of the nucleus, that are responsible of the nuclear deformation

and help maintaining the deformed configuration. Indeed, during cell elongation, the tension in

actin filaments grows and generates compressive forces acting laterally on both sides of the nucleus

[54].

The shape of the deformed cell can be approximated either

10
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(a) (b) (c)

Figure 3: Deformation from (a) the initial spherical configuration to the final one, considering (b)

an ellipsoidal and (c) a cigar-shaped deformed nucleus

• by a prolate ellipsoid [54, 58], with smaller axis Rp (see Fig. 3(b)) or

• by a cigar-like shape (see Fig. 3(c)), with cylindrical central region of radius Rp and hemi-

spherical caps [58].

Concerning the calculation of the energy required to deform the nucleus, we consider the two

cases in which:

• all the energy is spent to increase the membrane area of the nucleus, whereas the material

inside is treated as an inviscid liquid that freely rearranges following the geometry of the

channel (see subsection 4.2);

• all the energy is spent to deform the internal solid nucleus of the cell, treated as an elastic

material (see subsection 4.3).

Of course, these hypotheses are one the opposite of the other and intermediate situations should be

studied (i.e., energy of membrane plus bulk energy). We recall once again that, in both cases, the

cytoplasm can freely move inside the channel.

The energy required to deform the initial spherical shape will then be compared to the work

done by adhesion forces, described in section 3, to make the cell advance in the microchannel. We

will give more details on the work done by bonds in subsection 4.1.
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4.1. Bond Energy Model

The work required to have the cell completely inside the channel should be provided by adhesive

forces. We can express the adhesive energy as

Wadhesion = FZ
adhesion∆L , (4.1)

where ∆L is the total displacement of the cell nucleus inside the channel, and FZ
adhesion is the

resultant directed along the Z-axis of all forces exerted by cell-ECM bonds, described in Section 3.

In the following we will assume that ∆L = Lfin
n −L0

n, where Lfin
n is the final length of the nucleus

when it is totally inside the channel and it varies depending on the representation chosen for the

deformation of the nucleus. Indeed, for the ellipsoidal shape we have that Lfin
n,ellips = 2he, where

he =
R3

n

R2
p

(4.2)

is the longer semi-axis of the prolate ellipsoid that preserves the initial volume, whereas consid-

ering the cigar nucleus Lfin
n,cigar = 2(h + Rp), where h can be easily computed, assuming the

conservation of the nuclear volume

h =
2

3
Rp

R3
n −R3

p

R3
p

. (4.3)

On the other hand L0
n is the initial length of the nucleus that can freely enter the channel without

any deformation and it is given by eq. (3.4).

(a) (b) (c)

Figure 4: Schematic representation of cell displacement and nucleus deformation.

4.2. Membrane Energy Model

As a first example, we consider the case in which the volume of the nucleus is treated as a liquid

droplet surrounded by an elastic shell. The energy required to increase the surface area, WS
tot, can

be approximated by the following relation [10]

WS
tot = λ(∆S)2 (4.4)

12
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where ∆S is the increase in the surface area of the cell passing from an initial spherical shape to

its final conformation.

We remark that (4.4) has the same form of the term representing surface area increasing in Cellular

Potts Models [19].

The increment in the surface area, ∆S, can be easily calculated, assuming that the volume is

preserved and computing the new surface area of the deformed nucleus. Using the ellipsoidal

deformation assumption, the increment in the surface area is given by

∆Sellips = Sellips − Ssphere = 2πR2
p

(

1 +
he

Rpe
sin−1(e)

)

− 4πR2
n =

= 4πR2
n





1

2
R̃2

p



1 +
1

R̃3
p

√

1− R̃6
p

sin−1

(

√

1− R̃6
p

)



− 1



 . (4.5)

where e =

√

1−
R2

p

h2
e

and he is given by (4.2) and all distances have been conveniently scaled with

the nucleus radius, defining the dimensionless quantity R̃p = Rp/Rn. Therefore
WS

(4πR2
n)

2
is a

function of R̃p. Actually, in the following all the quantities with a tilde represent the corresponding

distance scaled with Rn.

On the other hand, using the cigar-shaped deformation hypothesis we have

∆Scigar = Scigar − Ssphere = 4πR2
p + 2πRp(2h)− 4πR2

n =

= 4πR2
n

(

1

3
R̃2

p +
2

3R̃p

− 1

)

(4.6)

where the height of the cylindrical portion of the cigar, 2h, is given by (4.3).

More complex formulae can be applied to describe the energy required to increase shell area, such

as those proposed in [22, 47, 50, 51], however eq. (4.4) can be used to make easy analytical

computations and it has been shown to well represent cell behaviour at least in a certain range of

deformations [10].

4.3. Solid Nucleus Model

To compute the energy required to deform the nucleus of the cell treated as a simple solid, we have

to assume a proper constitutive equation, representing the response of the material to deformations,

and calculate the deformation gradient, F.

Nowadays, a representation of Cauchy stress tensor of cellular components is still under investi-

gation. For sake of simplicity, we assume an incompressible neo-Hookean constitutive law for the

nucleus of the cell, therefore the elastic stored energy per unit volume is given by

WV =
µ

2

[

tr(C)− 3
]

, (4.7)

13
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where C = J−2/3FTF, J = det(F) and µ is the shear modulus of the nucleus.

In both the cases in which the deformed nucleus has an ellipsoidal shape and the case in which

it acquires a cigar-shaped conformation, we assume that parallel planes perpendicular to the axis

of the cylinder in the undeformed configuration, Z = const, are mapped into parallel planes in

the final deformed geometry, z = const. Using the standard notation of continuum mechanics,

capital letters refers to quantities in the initial configuration whereas lower cases refer to quantities

in the deformed configuration. Therefore with (X, Y, Z) we indicate the cartesian coordinates in

the undeformed configuration and with (x, y, z) the corresponding cartesian spatial coordinates.

Sometimes cylindrical coordinates are used, denoted with (ρ,Φ, Z) and with (r, φ, z) in the un-

deformed and deformed configuration, respectively. The calculation shown in the following are

based on merely geometrical considerations.

4.3.1. Ellissoidal deformed nucleus

The deformation of a sphere in a prolate ellipsoid with the same volume is simply given by a

uniaxial deformation

F = diag

{

Rp

Rn
,
Rp

Rn
,
R2

n

R2
p

}

= diag

{

R̃p, R̃p,
1

R̃2
p

}

. (4.8)

For the particular F given by (4.8), we can rewrite eq. (4.7) as

WV =
µ

2

(

2R̃2
p +

1

R̃4
p

− 3

)

, (4.9)

which integrated over the total volume of the initial sphere gives the total energy required to pass

from the initial to the final configuration, i.e.,

WV
tot =

∫

Vr

WV dV =
2

3
µπR3

n

(

2R̃2
p +

1

R̃4
p

− 3

)

, (4.10)

where Vr is the volume of the cell in the reference configuration.

Eq. (4.10) links the elastic energy of deformation to the mechanical properties of the nucleus, µ,

the morphological properties of the nucleus Rn and the radius of the channel, Rp.

4.3.2. Cigar-shaped nucleus

Another slightly different possibility is that the solid sphere (representing the nucleus), deforms

into a cigar-shaped nucleus, composed of a cylinder of radius R̃p and height h̃ =
h

Rn
and two

hemispherical caps (see Fig. 3(c)).

In order to obtain the deformation gradient we subdivide the initial spherical nucleus into three
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regions: the central one, of scaled height H̃ =
H

Rn
, is mapped into the cylindrical portion of

dimensionless radius R̃p and scaled height h̃ defined by (4.3), whereas the upper and lower poles

of the nucleus are mapped into the apical and basal hemispheres of the cigar-shaped nucleus.

Therefore the deformation gradient can be described as

F =











FN−pole for H̃ ≤ Z ≤ 1 ;

Fc for − H̃ < Z < H̃ ;

FS−pole for − 1 ≤ Z ≤ −H̃ .

(4.11)

Assuming symmetry, we can restrict our analysis to the upper half of the nucleus, i.e. 0 ≤ Z ≤ 1.

To derive the deformation gradient of the central region, Fc, we consider a reference slice of height

ε and volume Vr(ε), which is mapped into the final volume Vf(ε). Assuming that the volume is

conserved and passing to the infinitesimal limit, we obtain

1 = lim
ε→0

Vf(ε)

Vr(ε)
= lim

ε→0

πR̃2
p (z(Z + ε)− z(Z))

π (1− Z2) ε− π

(

Zε2 +
ε3

3

) =
R̃2

p

1− Z2

∂z

∂Z
, (4.12)

which leads to
∂z

∂Z
=

1− Z2

R̃2
p

. (4.13)

We assume that all the slices of the reference ”barrel” remain parallel while deforming, i.e
∂z

∂Z
is

constant for all the points belonging to the same plane parallel to the XY -plane. We then consider

an internal volume of the reference spherical region of height ε and volume Vr(ε) = πρ2ε+ o(ε)
(for ε → 0), which is deformed into a volume Vf = πr2 (z(Z + ε)− z(Z)). Keeping in mind the

relation (4.13) we obtain

r =
ρ√

1− Z2
R̃p . (4.14)

Assuming that φ = Φ, for the central volume of the sphere, one then has the following matrix

representation of the deformation gradient in normalized bases of cylindrical coordinates (for both

configurations)

Fc =



















R̃p√
1− Z2

0
R̃pZρ

(1− Z2)3/2

0
R̃p√
1− Z2

0

0 0
1− Z2

R̃2
p



















. (4.15)

To fulfil the problem of describing the total deformation gradient, we have to consider the upper

and lower portion of the sphere, which are mapped into the two hemispheres of the cigar-shaped
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nucleus. Considering a slice in these region, in analogy with the central region, we have the

following zZ-component of the deformation gradient

∂z

∂Z
=

1− Z2

R̃2
p − (z − h̃)2

. (4.16)

We remark that (4.16) holds for H̃ ≤ Z ≤ 1 and h̃ ≤ z ≤ h̃ + R̃p.

Also in this case, assuming that undeformed parallel planes remain parallel in the deformed con-

figuration, we obtain

r =

√

R̃2
p − (z − h̃)2
√
1− Z2

ρ , (4.17)

that coupled with the hypothesis φ = Φ gives the following deformation gradient in cylindrical

coordinates, for the upper pole of the sphere

FN−pole =























√

R̃2
p − (z − h̃)2
√
1− Z2

0 Γ(Z)ρ

0

√

R̃2
p − (z − h̃)2
√
1− Z2

0

0 0
1− Z2

R̃2
p − (z − h̃)2

,























(4.18)

where

Γ(Z) =







Z
√

R̃2
p − (z − h̃)2

(1− Z2)3/2
− (z − h̃)

√
1− Z2

(

R̃2
p − (z − h̃)2

)3/2






.

We observe that, for the particular form of Fc and FN−pole the deformation gradient, F is continu-

ous.

In order to express all the quantities in the material frame, we integrate eq. (4.16), which gives the

implicit relation between the eulerian coordinate z and the corresponding material one, Z

(z − h̃)3 − 3R̃2
p(z − h̃) + 3(Z − H̃)− (Z3 − H̃3) = 0 . (4.19)

Eq. (4.19) is a cubic function in z and it has three real solutions, but only the root

z(Z) = h̃+ 2R̃p cos

[

1

3
cos−1

(

(Z − H̃)(Z2 + H̃2 + ZH̃ − 3)

2R̃3
p

)

+
4

3
π

]

(4.20)

is acceptable and can be substituted in (4.18) to have the deformation gradient in terms of the

Lagrangian coordinates.

Eq. (4.19) can also be used to derive H̃ , given h̃. Indeed substituting z = h̃+ R̃p, with h̃ given by
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eq. (4.3), and Z = 1 in (4.19) we have a cubic function of the new unknown H̃ , which gives as the

only acceptable solution

H̃ = 2 cos

[

1

3
cos−1

(

R̃3
p − 1

)

+
4

3
π

]

. (4.21)

As for the ellipsoidal deformation, once that the deformation gradient is known it is possible to

compute the total energy required to pass from the initial configuration to the final configuration.

Still assuming an incompressible neo-Hookean constitutive law (4.7) for the nucleus of the cell,

the elastic energy stored per unit volume in the central portion of the sphere is

WV
c =

µ

2

[

2
R̃2

p

1− Z2
+

R̃2
pZ

2ρ2

(1− Z2)3
+

(1− Z2)
2

R̃4
p

− 3

]

, (4.22)

whereas the energy for the upper and lower poles of the spheres is

WV
N−pole = WV

S−pole =
µ

2

[

2
R̃2

p − (z − h̃)2

1− Z2

]

+

+
µ

2













Z
√

R̃2
p − (z − h̃)2

(1− Z2)3/2
+

(z − h̃)
√
1− Z2

(

R̃2
p − (z − h̃)2

)3/2







2

ρ2






+

+
µ

2







(1− Z2)
2

(

R̃2
p − (z − h̃)2

)2 − 3






, (4.23)

where z = z(Z) is given by (4.20). To obtain the total energy required to pass from the initial

spherical configuration to the cell totally deformed inside the channel, we have to integrate over

the corresponding domains in which the deformation is experienced, i.e.,

WV
tot =

∫

V c
r

WV
c dV +

∫

V N−pole
r

WV
N−poledV +

∫

V S−pole
r

WV
S−poledV =

= 2

(
∫

V c+
r

WV dV +

∫

V N−pole
r

WV
N−poledV

)

, (4.24)

where V c
r is the volume of the central zone in the reference configuration, V N−pole

r and V S−pole
r

are the volume of the north and south pole of the sphere and V c+
r is the volume of the upper-half

central part of the sphere, i.e.,

V c+
r =

{

(ρ,Θ, Z) ∈ R
3 : 0 ≤ ρ ≤

√
1− Z2, 0 < Θ ≤ 2π, 0 ≤ Z < H̃

}

,

whereas

V N−pole
r =

{

(ρ,Θ, Z) ∈ R
3 : 0 ≤ ρ ≤

√
1− Z2, 0 < Θ ≤ 2π, H̃ ≤ Z ≤ 1

}

,
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The previous integral can be easily computed in the central region

W tot
c = µπR3

n

[

2R̃2
pH̃ +

1

2
R̃2

p

(

tanh−1 H̃ − H̃
)

]

+

+ µπR3
n

[

1

R̃4
p

(

H̃ − H̃3 +
3

5
H̃5 − 1

7
H̃7

)

− 3

(

H̃ − H̃3

3

)]

. (4.25)

We observe that since H̃ is a function of R̃p through (4.21),
W tot

c

µR3
n

is a function of R̃p .

On the other hand, for what concerns
∫

V N−pole
r

WV
N−poledV , using the fact that the domain of in-

tegration is normal with respect to the XY -plane, we can express the triple integral as a simple

integral

W tot
N−pole =

πµ

2
R3

n

[

2

∫ 1

H̃

[

R̃2
p − (z − h̃)2

]

dZ

]

+

+
πµ

2
R3

n







1

2

∫ 1

H̃







Z
√

R̃2
p − (z − h̃)2

(1− Z2)3/2
+

(z − h̃)
√
1− Z2

(

R̃2
p − (z − h̃)2

)3/2







2

(

1− Z2
)2

dZ






+

+
πµ

2
R3

n







∫ 1

H̃

(1− Z2)
3

(

R̃2
p − (z − h̃)2

)2dZ − 2 +
(

2 + R̃2
p

)
√

1− R̃2
p






, (4.26)

that needs to be evaluated numerically, in order to obtain an estimate of the total energy required

to deform the nucleus.

5. Results

In this subsection we present the results obtained with the energy balance model, presented in

section 4. When the elastic membrane model (subsection 4.2) is used, we consider that the cell can

enter the channel if

Wadhesion ≥ WS
tot , (5.1)

where Wadhesion is given by (4.1) and WS
tot has the form presented in eq. (4.4). On the other

hand, when the elastic solid nucleus model (subsection 4.3) is applied, the nucleus can enter the

cylindrical structure if

Wadhesion ≥ WV
tot , (5.2)

where WV
tot has the form presented in either eq. (4.10) for the ellipsoidal deformation or eq. (4.24)

for the cigar-shaped one. Depending on the hypothesis used to describe adhesive bonds (linear
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vs. constant vs. bounded) and the geometry chosen for the deformed nucleus (ellipsoid vs. cigar-

shaped), inequalities (5.1) and (5.2) lead to the results presented in Table 1, with respect to the

diameter ratio R̃p. L̃
(∗)
b stands either for L̃b = Lb/Rn in the case of the constant force assumption

or L̃∗

b = L∗

b/Rn for the bounded adhesive region case. By scaling all distances with Rn and

writing all material parameters on the right-hand-side, we identify four dimensionless numbers

that represent the ratio between adhesive bond properties and nuclear mechanical parameters. In

particular, for the elastic membrane model we name

Gk
λ =

ρbαECMkb
λ

and GF
λ =

ρbαECMFM
b /Rn

λ
,

whereas, when the elastic nucleus model is used, we introduce

Gk
µ =

ρbαECMkbRn

µ
and GF

µ =
ρbαECMFM

b

µ
.

At the numerator we have all the parameters that characterize bonds forces (densities of bonds,

surface ratio of ECM, elasticity of bonds or maximum force that bonds can exert) whereas at the

denominator we have the parameter describing the mechanical properties of the cell nucleus (λ in

the case of an elastic membrane, µ in the case of an elastic solid).

In Table 1,

I(R̃p) =
W tot

c

4

3
πµR3

n

+ 2
W tot

N−pole

4

3
πµR3

n

.

The right-hand-side of each relation identifies the critical value of the characteristic number and

it is indicated in the following with G
j

i (with i = {λ, µ} , j = {k, F}). Therefore, once a proper

model is chosen, for every diameter ratio R̃p, it is possible to define the value of G
j

i , above which

a cell, with a nucleus of dimension Rn can enter a channel of radius R̃pRn.

We remark that this model, taking into account the finiteness of the nuclear dimensions, is valid

only for R̃p ≤ 1. Indeed, when R̃p → 1, the elastic energy required to deform the nucleus is almost

null, whereas, allowing the cytoskeleton to enter the channel, the adhesive energy is not null and it

can easily pull the nucleus inside the channel.

Fig. 5 shows the value of (a) G
k

λ in the case of linear forces, (b) G
F

λ in the case of constant

forces and (c) G
F

λ for constant force over a bounded adhesive region, above which the cell can

enter a channel of scaled radius R̃p, when the elastic membrane model is used. On the other hand,

Fig. 6 reports the ratios (a) G
k

µ and (b-c) G
F

µ obtained applying the elastic nucleus model, under

the same hypothesis of adhesive forces.

Both in Fig. 5 and 6 solid lines represent ellipsoidal deformations, whereas dashed lines stand for

cigar-shaped final configurations. In any case, the assumption on the geometry acquired by the

deformed nucleus does not affect the qualitative behaviour of the solutions.

We remark that in Fig. 5(a) and (b), for very small radius, the energy required to increase the area

of the nuclear membrane increases but the energy exerted by bonds increases faster and therefore,

19



C. Giverso et al. Influence of nucleus deformability on cell movement.

Table 1: Energy based criteria

Model Linear Force Constant (bounded) Force

Elastic Ellipsoid Gk
λ ≥ 16π

[

1

2
R̃2

p

(

1 +
sin−1 (e)

R̃3
pe

)

− 1

]2

R̃pL̃
2
b∆L̃ellips

GF
λ ≥ 8π

[

1

2
R̃2

p

(

1 +
sin−1 (e)

R̃3
pe

)

− 1

]2

R̃pL̃
(∗)
b ∆L̃ellips

membrane Cigar Gk
λ ≥ 16π

(

1

3
R̃2

p +
2

3R̃p

− 1

)2

R̃pL̃
2
b∆L̃cigar

GF
λ ≥ 8π

(

1

3
R̃2

p +
2

3R̃p

− 1

)2

R̃pL̃
(∗)
b ∆L̃cigar

Elastic Ellipsoid Gk
µ ≥ 2

3

2R̃2
p +

1

R̃4
p

− 3

R̃pL̃
2
b∆L̃ellips

GF
µ ≥ 2

3

2R̃2
p +

1

R̃4
p

− 3

R̃pL̃
(∗)
b ∆L̃ellips

nucleus Cigar Gk
µ ≥ 4

3

I(R̃p)

R̃pL̃
2
b∆L̃cigar

GF
µ ≥ 2

3

I(R̃p)

R̃pL̃
(∗)
b ∆L̃cigar

for R̃p → 0, the critical Gk
λ and GF

λ go to zero when the unbounded Lb is used, giving rise to the

contradiction that cell can enter pipettes of very small diameters.

Indeed, when the radius of the channel is small, the length of the cytoplasm inside it grows con-

siderably, leading, in the linear case, to adhesive forces that are unrealistically high. In particu-

lar, for R̃p → 0, we have that the energy required to deform the elastic membrane increases as

R̃−3
p , whereas ∆L = O

(

R̃−2
p

)

and Lb = O
(

R̃−2
p

)

. Therefore, when the linear force assump-

tion is used, G
k

λ = O
(

R̃3
p

)

for R̃p → 0, whereas, when the bond force is assumed constant,

G
F

λ = O
(

R̃p

)

for R̃p → 0. In order to avoid the unphysical result, we more realistically assume

that bonds are formed on the surface of the channel until the maximum length, LM
b is reached.

Restricting the extent for which bonds are formed to a certain length (Lb = L∗

b), will dramatically

limit the growth of adhesive energy for very small R̃p. In this case, for R̃p → 0, Lb = O (1) and

thus the critical GF
λ goes to infinity like R̃−1

p (see Fig. 5(c)).

The same unrealistic result is obtained using the linear force model coupled with the elastic solid

nucleus model (see Fig. 6(a)). In this case, for very small radii, the energy required to deform the

elastic nucleus grows as R̃−4
p and hence, under the linear force assumption, the critical Gk

µ goes

linearly for R̃p → 0. On the other hand, when a constant force assumption is used, we have that

G
F

µ goes to infinity as R̃−1
p , whereas limiting the adhesive region, it goes like R̃−3

p , for R̃p → 0.

Fig. 6(b) reports the results obtained applying the elastic solid nucleus model with the constant

force assumption, whereas Fig. 6(c) is obtained under the boundedness assumption. In both cases

the relation between G
F

µ and R̃p is a bijection. Therefore, for every R̃p it is possible to uniquely

define a minimum value of GF
µ above which the nucleus is pulled inside the channel, conversely

knowing nuclear mechanical and adhesive properties, the minimum value of Rp that allows the

nucleus of radius Rn to enter the channel, is determined. Being the discrepancy between results

obtained assuming the cigar-shaped and the ellipsoidal deformation very small, it is possible to use
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Figure 5: Elastic membrane model: (a) G
k

λ (in the case of linear forces), G
F

λ in the case of constant

forces (b) and in the case of constant forces over a bounded region, with L̃M
b = 5 (c). The curves

indicate the minimum value of the characteristic numbers that need to be overcome in order to

have the cell enter a channel of radius R̃p.

the analytical relation obtained for the ellipsoidal case

G
F

µ =
2

3

[

2R̃2
p +

1

R̃4
p

− 3

]

R̃pL̃
(∗)
b ∆L̃ellips

. (5.3)

Being GF
µ the ratio between adhesive and mechanical properties, eq. (5.3) shows that with respect

to cells with softer nuclei, in order to enter the same channel, more rigid cells (greater µ) should

either increase the number of adhesive bonds (ρb) or the number of focal points in contact with

ECM (αECM ) or even bond strength (FM
b ). This finding is in qualitative agreement with a num-

ber of experimental works, such as [3, 40, 56], where cell migratory capability is associated with

nuclear deformations and the existence of critical channel radius above which cell can enter has

been observed. Moreover it is comparable with the results obtained with discrete model [44, 45],

confirming that mechanical properties of the nucleus can affect the cell entry into channels.

Eq. (5.3) can be of great value, for instance, in scaffold design. Indeed, assuming that cell me-

chanical properties and their capabilities to express bonds are known it is possible to evaluate the

pore size that allows the cells to penetrate the rigid network.

6. Conclusions

Due to the increasingly recognized importance of cell migration process in extracellular matrix

environments and its exploitations, e.g., in tissue engineering, theoretical models, able to analyse
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Figure 6: Elastic solid nucleus model: (a) G
k

µ in the case of linear forces, (b) G
F

µ in the case of

constant forces and (c) G
F

µ in the case of constant forces over a bounded region (with L̃M
b = 5),

above which the cell can enter a channel of radius R̃p.

the relative influence of single and interrelated parameters on the overall migratory process, are

needed.

We identified some energy-based criteria that take into account the mechanical properties of cell

nucleus, the adhesive characteristics of cell membrane, the finiteness of the nucleus and the aspect

ratio of the structures involved in cell migration, trying to maintain the model as simple as possible

in order to obtain easily manageable results.

For the examples presented, some analytical results are obtained, providing the relation between

adhesive and mechanical properties that should be satisfied in order to have cells entering a chan-

nel of given radius. Therefore, if adhesive and mechanical properties of the cell are known, it is

possible to derive the minimum channel size and, conversely, observing experimentally the capa-

bility of a cell to enter cylindrical channels of different dimensions, it is possible to characterize

the interplay between mechanical and adhesive properties of cells.

Results show that cells are able to enter ECM-networks only for pore radii bigger than a critical

one, depending on the stiffness of the nucleus of the cell and their capabilities to express adhe-

sion molecules in order to bind to the extracellular matrix. Indeed, a rigid cell body would nullify

any attempt of the cell to squeeze through channels and network gaps narrower than the nucleus

dimension, as observed in [40, 56] .

However, in order to obtain reliable quantitative results, more studies are required, both from

the biological and from the mathematical point of view. In particular, more experiments are needed

in order to characterize cell mechanical response and a proper relation for the force exerted by ad-

hesive bonds. A more comprehensive understanding on the microscopical mechanism regulating

nucleus deformation and cytoscheletal reorganization, when the cell is anchored to ECM, can also

help to obtain a more realistic description of the process. Indeed, it has been observed that one of

the major determinants of cell rigidity is the filamentous cytoskeleton. In particular, microtubules

seem to be implicated in cell shape changes and migration, whereas actin filaments are generally

considered more important for elastic resistance to deformation [29].
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Moreover, biological experiments are necessary to validate the model presented, once the mechan-

ical characterization of cells is accomplished.

From the mathematical point of view, the model can be improved in several directions in order to

reproduce more closely the behavior of cells. For instance, in our ongoing work we want to study

the whole dynamic process, considering all the steps of the cell entering the channel. Indeed, the

model we proposed is based on an “integral” approach, i.e., it considers the total work required to

pass from the initial to the final configuration and, thus, it gives an estimate of the “mean” adhesive

forces required, scaled by the mechanical deformability of the nucleus. However, this method does

not take into account the possible existence of intermediate states in which the force exerted by

bounds should be greater than the force needed to squeeze the nucleus inside the channel. That is,

the integral criterion used here to obtain analytical expressions gives a necessary but not sufficient

condition for the passage of the cell inside the channel. Therefore a criterion able to establish the

maximum force needed would be more precise, though it requires 3D time-dependent numerical

simulations.

Of course, one could use more realistic constitutive models representing cell response to stress

(hopefully supported by experimental tests) and more complex relations for the force exerted by

adhesive bonds. In order to obtain a model able to reproduce more closely the behaviour of cells,

in particular, it seems very promising to study the active component that characterizes living matter

response to external stimuli.

In spite of all possible developments, the energetic framework presented here is quite general

and continues to be valid even for more complex cell and membrane constitutive assumptions.

Finally the approach described here could be applied to the design of synthetic scaffolds, with

optimal values of pore size and fibre density, that may accelerate cell transport and in-growth,

critical for regenerative treatments.

Appendix

Micropipette models applied to cell migration inside channels

For sake of completeness, we consider here the case in which nucleus entry obeys the classical

relations (2.2) or (2.5), deforming the initial spherical nucleus into a cigar-like shape, with the

assumption that Lp in (2.2) and (2.5) represents the length of the deformed nucleus, i.e. Lp =

Lfin
n,cigar = 2(h+Rp) with h given by eq. (4.3). We define the critical pressure as the value of ∆P

for which Lp = Lfin
n,cigar and we assume that a proper representation for ∆P in eq. (2.2) and (2.5)

is
FZ
adhesion

πR2
p

, where FZ
adhesion is the Z-component of the adhesive force given either by eq. (3.7) or

(3.8) or (3.9). Then, assuming that a pressure above the critical one makes the cell move inside

the pipette, it is possible to obtain the relation between mechanical and adhesive parameters that

should hold in order to have the cell enter the channel, depending on the geometrical properties

(i.e. Rn, Rc and Rp).
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Figure 7: Critical value of the characteristic numbers obtained applying (a) Chien’s model and (b)

Theret’s model, under either a linear force (blue) or a constant force (black) or a constant force

over a bounded region (red dashed) assumption.

The inequalities that should be satisfied in each case are summarized in Table 2, as a function of the

diameter ratio R̃p =
Rp

Rn
. On the left-hand-side of each relation we have characteristic parameters

representing the ratio between adhesive properties and mechanical properties of cell nucleus. In

particular, we identify

Gk
γ =

ρbαECMkbR
2
n

γ
, GF

γ =
ρbαECMFM

b Rn

γ
,

Gk
E =

ρbαECMkbRn

E
, GF

E =
ρbαECMFM

b

E
.

Table 2: Entry criteria

Model Linear Force Constant (bounded) Force

Chien Gk
γ ≥

2
L̃p

R̃p

− 1 + log

(

2
L̃p

R̃p

)

L̃2
b

GF
γ ≥

2
L̃p

R̃p

− 1 + log

(

2
L̃p

R̃p

)

2L̃
(∗)
b

Theret Gk
E ≥ 2π

3
Φ
L̃p

L̃2
b

GF
E ≥ 2π

3
Φ

L̃p

2L̃
(∗)
b

On the right-hand-side of each relation we have the critical value of the characteristic number

(indicated with G
j

i , with with i = {γ, E} , j = {k, F}), which is a function of the diameter ratio,
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being

L̃p =
Lp

Rn

=
2

3
R̃p



1 + 2

(

1

R̃p

)3


 ,

L̃b =
Lb

Rn
= R̃p







4

3

(

R̃c

R̃p

)3

− 1

R̃3
p

+
1

3
+

(

L̃0
n

)2

R̃3
p

(

1− 1

3
L̃0
n

)







with L̃0
n = 1−

√

1− R̃2
p and R̃c = Rc/Rn.

The critical characteristic numbers are plotted in Fig. 7 as a function of the diameter ratio of the

channel. The graphs represent the minimum value that each constant should assume in order to

have the cell totally inside the channel, according to Chien’s criterion (Fig. 7(a)) and Theret’s one

(Fig. 7(b)). Results obtained with the linearized Chien’s equation (2.4) are comparable with the

ones obtained with the more complex formula (2.2). In Fig. 7 the dashed line represents results

obtained using constant forces over a bounded domain (where we set L̃M
b = 5). It is possible to see

that for big R̃p, G
F

γ and G
F

E are obviously not influenced by the assumption on the boundedness of

the contact region in which integrins are expressed (i.e., the red-dashed curve and the black-solid

one overlap). Indeed, it exists an R̃∗

p such that L∗

b = Lb for R̃p ≥ R̃∗

p, whereas L∗

b = LM
b for

R̃p < R̃∗

p. Therefore the adhesive energy is influenced by the boundedness assumption only for

R̃p < R̃∗

p.

For instance, Fig. 8 explains how these graphs can be interpreted (for the particular case of Chien

model): the bar charts below the graph represent the range of R̃p for which a cell characterized by

a given Gk
γ or a given GF

γ can enter the channel.

In the figure, ’cell 1’ (orange) is characterized by higher Gk
γ or GF

γ than ’cell 2’ (violet). This

means that we are considering either a softer cell (i.e., small γ) or a cell that is able to establish a

higher number (i.e., higher ρbαECM ) of stronger (i.e., bigger kb or FM
b ) adhesive bonds. In any

case, the range for which ’cell 1’ can enter the pipette is bigger than for ’cell 2’ (orange bars vs. vi-

olet bars), according to what we expect from biological observations. Moreover, using the constant

force assumption it is possible to see that the range for which cells can enter the pipette is bounded

both from below and from above. On the other hand, using the linear force assumption, we do not

have any inferior limit, in contrast with biological observation. This contradictory result is due to

the hypothesis used in the representation of forces. Indeed in this case the more the cytoplasm of

the cell spread inside the channel (small R̃p), the more bonds can pull the nucleus inside. In partic-

ular, even though the force required to deform the nucleus grows as R̃−3
p , as R̃p → 0, the bond force

raises faster, since L̃2
b = O

(

R̃−4
p

)

. On the other hand, when a constant force assumption is used,

for small R̃p, the length for which bonds are formed augments
(

L̃b = O
(

R̃−2
p

)

for R̃p → 0
)

.

Thus, the total force exerted by bonds increases, but it is not sufficient to compensate the greater

deformation required to the nucleus, which goes like R̃−3
p for R̃p → 0. Conversely, introducing the

boundedness assumption on Lb, the force exerted by bonds is limited.

In particular, we have that for R̃p → 0, G
γ

F goes like R̃−α
p (with α = 1 for unbounded Lb and
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α = 3 when the adhesive region is limited) and G
γ

K grows linearly.

On the other hand, when the radius of the pipette is very big, the entry of the cell into the channel

is limited due to the decrease in the contact area between the cell and the channel wall, where

adhesive bonds are formed. It is likely that, in this case, the force exerted by adhesive bonds is not

equal to the maximum executable force. Thus, a linear force can better describe the physiological

behaviour. Therefore, a good choice for the bond force relation could be a ramp force on a bounded

adhesive region, which is also the most conservative case.

In Theret’s model it is possible to see that, for R̃p → 0, G
k

E = O
(

R̃2
p

)

and G
F

E = O (1) when

the constant force assumption with unbounded adhesive region is implemented. Thus neither the

constant force assumption nor the linear force one can account for the inferior limit in pipette cal-

ibers. Only enforcing the boundedness of the adhesive region, the capability of cells to enter very

small channels is prevented.

Both Chien’s and Theret’s models, with the assumption of adhesive constant forces over a bounded

region, provide evidence for a biphasic cell migratory behavior that reveals most optimal migration

at pore sizes at nuclear and subnuclear diameters and diminishes at gaps greatly bigger or smaller

than the cell nucleus diameter.

However, even though results obtained applying the classical models above seem promising, espe-

cially when adhesion is active on a bounded domain, they cannot account for the finite boundaries

of the nucleus. Indeed Chien’s model refers to an infinite 2D membrane, whereas Theret’s one

was derived for a 3D half space aspired inside a pipette, only for a small portion. Therefore these

criteria cannot be applied to describe the total entry of the cell into a pipette. The consequence of

this assumption are evident in Fig. 7, where, for R̃p = 1, the force needed to deform the nucleus

does not vanish.
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