
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling Complex Packet Filters with Finite State Automata / Leogrande, Marco; Risso, FULVIO GIOVANNI OTTAVIO;
Ciminiera, Luigi. - In: IEEE-ACM TRANSACTIONS ON NETWORKING. - ISSN 1063-6692. - STAMPA. - 23:1(2015), pp.
42-55. [10.1109/TNET.2013.2290739]

Original

Modeling Complex Packet Filters with Finite State Automata

Publisher:

Published
DOI:10.1109/TNET.2013.2290739

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2519708 since:

IEEE

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 1

Modeling Complex Packet Filters with Finite State
Automata

Marco Leogrande, Member, IEEE, Fulvio Risso, Member, IEEE, and Luigi Ciminiera, Member, IEEE

Abstract—Designing an efficient and scalable packet filter for
modern computer networks becomes each day more challenging:
faster link speeds, the steady increase in the number of encapsu-
lation rules (e.g., tunneling) and the necessity to precisely isolate
a given subset of traffic cause filtering expressions to become
more complex than in the past. Most of current packet filtering
mechanisms cannot deal with those requirements because their
optimization algorithms either cannot scale with the increased
size of the filtering code, or exploit simple domain-specific
optimizations that cannot guarantee to operate properly in case
of complex filters. This paper presents pFSA, a new model
that transforms packet filters into Finite State Automata and
guarantees the optimal number of checks on the packet, also in
case of multiple filters composition, hence enabling efficiency and
scalability without sacrificing filtering computation time.

Index Terms—pFSA, Packet filters, Finite State Automata.

I. INTRODUCTION

IN the recent years, we witnessed many changes in the com-
puting world. The network interaction among devices has

evolved significantly, so we had to re-engineer our computer
networks in order to accommodate many new use cases. A
large portion of these requirements introduced new features in
the network protocols stack, whose complexity increased as
a consequence. For instance, low-level network protocols are
growing in number: new solutions, arising in particular for the
purpose of network virtualization (e.g., 802QinQ, VXLAN),
are rapidly transforming our Ethernet frames [1]. The middle
layers of the protocol stack are facing a similar metamor-
phosis: examples include the widespread adoption of Virtual
Private Networks with their bizarre tunneling mechanisms,
the necessity to transport IPv6 traffic over IPv4 networks
(with different encapsulation methods, such as pure IPv6
encapsulation in IPv4, or through GRE or even UDP, and
more) and WAN traffic transports.

Packet filtering represents a niche that may be dramatically
affected by those changes. Packet filters are the basic build-
ing block of many applications, such as firewalls, network
monitors and more, and the capability to capture at high
speed the traffic we want, independently from the lower level
encapsulations, is becoming more critical day after day.

This paper presents pFSA, a new model for packet filtering
that ensures the optimal number of checks on the packet in
order to take the matching/not-matching decision. This result
is obtained by transforming packet filtering rules into Finite

Marco Leogrande, Fulvio Risso and Luigi Ciminiera are with the Depart-
ment of Computer and Control Engineering, Politecnico di Torino, Torino,
10129 Italy, e-mail: {marco.leogrande,fulvio.risso,luigi.ciminiera}@polito.it.

Manuscript received June 06, 2012; revised November 10, 2013.

State Automata (FSA), which guarantee optimal results even
in case of multiple filters combined together. Vice versa, the
ad hoc optimization techniques used by most of the previous
approaches are based on heuristics that cannot provide such
guarantees, which are needed to ensure the best performance
when operating in the conditions mentioned before (multiple
filters or unconventional encapsulations). Furthermore, our
model is generic enough so that it does not require a priori
protocol definitions: in our prototype the protocol database
is provided at run-time and it can be easily extended or
modified in order to recognize any protocol or encapsulation
the user is interested in. This means that we can create the
best filtering automaton whatever encapsulation we may have,
including unusual protocol patterns such as tunneling (and
self-tunneling) of any kind; the generated filter is able to
locate the desired pattern in the network traffic, independently
from the actual protocol stack of the given packet. Finally,
we present also a prototype implementation that translates
the pFSA model into running code, although this step cannot
formally maintain the optimality properties guaranteed by the
model.

This paper is structured as follows. Section II presents the
state of the art; Section III introduces the proposed model;
Section IV presents the application of that model to the packet
filtering domain, while Section V is dedicated to the problem
of optimization on protocol fields. Finally, Section VI presents
an overview of our implementation, leaving the experimental
evaluation to Section VII and conclusions to Section VIII.

II. RELATED WORK

The CMU/Stanford Packet Filter [2] (CSPF) represents
the ancestor of any modern packet filter. It introduced the
concept of a kernel-level virtual machine that executes an
application-provided program (i.e., the packet filter), which
can be defined at run-time. However, its optimizations capa-
bilities were limited.

The Berkeley Packet Filter [3] (BPF) is also based on a
virtual machine and brings some notable improvements, such
as the adoption of the Control Flow Graph model, which
enables the deployment of compiler techniques to remove
redundant checks from the generated code. The BPF model
was later improved by BPF+ [4], which uses even more
aggressive optimizations derived from software compilation
techniques and adds a Just-In-Time (JIT) compiler.

PathFinder [5] adds the possibility to compact the Control
Flow Graphs of different filters. Each expression in a filter
is exploded into a list of cells, each one describing a step in

Fulvio
Typewritten Text
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.DOI: 10.1109/TNET.2013.2290739

Fulvio
Sticky Note
Marked set by Fulvio

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 2

the construction of the final check; equivalent cells coming
from multiple filters may be merged together. However, fil-
ters are optimized only if they share a common prefix; for
instance, tcp.sport is always checked twice in the expres-
sion (tcp.sport == X and tcp.dport == W) or
(ip.src == K and tcp.sport == Y).

The Dynamic Packet Filter [6] (DPF) extends the previous
approach by introducing the capability to generate native code
instead of running the filter into an interpreter. Furthermore,
field coalescing is introduced, allowing fields at contiguous
offsets to be checked together; for example a single 32-bits
check against the word 0x00800090 is performed for the fil-
ter tcp.sport == 0x80 and tcp.dport == 0x90.

The recently proposed Stateless FSA-based Packet Filter
(SPAF) [7] exploits Finite State Automata for packet filter
generation and guarantees, by construction, code optimal-
ity and safety. Each protocol is modeled through a byte-
consuming automaton, which reads the bytes that are part
of the protocol and follows the encapsulation rules (e.g., the
starting state of the IP protocol is linked to the exit state of
the Ethernet protocol when the bytes associated with the
EtherType field have the proper value); different automata
are then joined together using the algorithms known from the
literature. However, SPAF is extremely slow in the automata
generation phase, because the protocol field abstraction is
lost very early in the computation, hence the amount of
generated states tends to be rather high. This has a huge
impact on FSA construction, as determinization (required in
FSA composition) is exponential in the number of states. For
this reason, SPAF is appropriate only for applications that can
tolerate rather long filter generation times.

Swift [8] focuses on packet filtering updates in strict real-
time. The ultimate goal is to add a new filtering rule for a TCP
session as soon as its three-way handshake is completed, which
is done through a tree-like structure similar to PathFinder. This
enables also the use of new x86 SIMD instructions to perform
multiple checks in parallel.

Ruler [9] is a packet rewriter designed to anonymize traffic
traces, which can also be used for packet filtering. It introduces
a flexible high-level language for deep packet inspection and
rewriting, which is mapped on an extension of the FSA model.
Since it is based on automata, Ruler shares a degree of similar-
ity with pFSA and SPAF, but its design goals are sufficiently
different to produce noticeably distinct results; furthermore,
its source language is not general enough to specify complex
filter statements or certain commonly encountered protocol
structures, such as IPv6 extension headers.

To the best of our knowledge, SPAF is the only packet filter
model that uses a FSA-like approach. If we broaden the area
of research, we find that only a handful of publications has
proposed extensions to the base FSA formalism that might
be similar to ours. pfsr [10] is a predicate-augmented finite
state recognizer, that aims at simplifying the Finite State
Automata used in natural language processing. Even if the
authors describe in detail their model extension, providing
definitions and algorithms, the scope of the predicate that
they introduce is quite different from ours, as it is used only
to define arbitrary sets of input symbols. EFSA [11] models

a fast intrusion detection and prevention system by making
use of augmented FSA transitions with arbitrary predicates.
The EFSA paper, however, does not describe predicates in
detail: e.g, predicate optimization, that is a critical issue in
packet filtering, is not mentioned at all. XFA [12] is also
based on an augmented FSA, but states are associated with a
generic executable code for efficient pattern matching, which
is not appropriate for optimizing predicates in packet filtering
applications.

Other packet filtering technologies such as FFPF [13] are
not described in detail here, as they aim to solve orthogonal
problems, such as how to multiplex incoming packets between
different packet filters, but do not offer any improvement to
the filtering model itself.

The most common filtering architectures (excluding SPAF)
tend to rely on ad hoc optimizations, often inspired at
compiler-oriented techniques, which are applied on the code
that has to be executed. Some of them exploit optimizations
to coalesce packet accesses or use hardware-efficient assembly
instructions. However, no guarantees of optimality can be
given; furthermore, many of those optimization algorithms
scale exponentially with the number of instructions of the
generated filter, which becomes a major problem when the
size of the filter grows because of more complex conditions or
uncommon encapsulations, including tunneling. Instead, pFSA
defines a packet filtering model based on the FSA formalism
that guarantees optimal filtering construction (by minimizing
the number of checks on the packet) and that overcomes the
SPAF limitation in terms of compilation time. This is due to
the capability to derive the FSA from the protocol abstraction,
while SPAF adopts a byte-stream approach, that generates a
much more verbose automaton compared to our pFSA.

III. FINITE STATE AUTOMATA WITH PREDICATES

This section presents the pFSA model, an FSA extension
in which transitions are associated with Boolean predicates.
The advantage is that a well-defined algebra already exists for
FSA, allowing their optimal composition (union, intersection,
negation). In Section IV we will present how the pFSA model
can be used for packet filtering.

A. Definition of pFSA

A Finite State Automaton with Predicates (or, briefly,
pFSA) is a “five-tuple”

Apfsa = (Q, Σ, δp, qo, F)

where:
Q is a finite set of states;
Σ is the set of input symbols;
δp is a transition function with predicates (described

below);
q0 is the starting state, among those in Q;
F is a set of accepting states, among those in Q.
A transition function with predicates mimics the meaning

of “classic” transitions, but adds the possibility to tune the
transition behavior according to a set of Boolean predicates,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 3

Figure 1. pFSA example.

whose semantic is orthogonal to the input symbols of the
automaton. It is defined as:

δp(q1, σ, p) = q2

where:
q1 is the state from which the transition takes place;
σ is the input symbol that triggers the transition, or the

special value ε (epsilon) if no input symbol should
be consumed;

p is a Boolean predicate that “activates” the transition,
that is allowed to fire only if the predicate is true;

q2 is the state reached by the current transition.
A transition with predicates is called a p-transition; if p is

always true (a tautology), the transition is in fact equivalent
to a “classic” one.

Figure 1 depicts an example of a very simple pFSA, where
p-transitions are labeled with the input symbol1 and the predi-
cate associated with it, in the form symbol/predicate. In
the example, a p-transition leaves from state Q1 and reaches
state Q2 for input symbol a and predicate p1.

Predicates are part of an arbitrary set of hypotheses and
can assume either the true or false Boolean value. From the
pFSA model point of view, each predicate is a “black box”
outside the scope of the model, whose actual value cannot
be determined a priori. In fact, pFSA relies on an external
“predicate evaluator” module that will be invoked at run-time
in order to determine the value of the predicate itself.

We do not pose any particular limitation to the predicates;
however, the predicate evaluator cannot change the internal
state of the automaton, such as move the current state from
Qn to Qm, or change the input string, etc. In other words,
the predicate evaluation step must have no side effects other
than returning the current Boolean value of the predicate: it
is duty of the automaton itself to interpret the returned value
and act accordingly. Given this limitation, a predicate could
be as simple as “is the value of variable $x odd?”, but even
a question like “is IP multicast enabled on the eth0 network
interface?” is valid, as long as it is possible to give a true/false
answer. Predicate values are allowed to change only when a
new input symbol is consumed; in other words, they are frozen
when an ε-transition is going to fire. This restriction is needed
for the general algorithms to work, but does not have any
impact on our usage of the model. More details will be given
in Section IV-C, after we describe how we use the model to

1Some transitions (e.g., the self-loop on Q2) may be associated with a
star, which is a compact notation used to include any input symbol that is
not handled by other transitions exiting from the same state.

filter network packets, together with some examples (Figures 7
and 8).

B. Running a pFSA

The state machine defined by pFSA looks similar to the
one of a “classic” FSA. Execution starts with the automaton
in the start state. As long as an input symbol is available,
the automaton reads it and follows any available transition
exiting from the current state and labeled with that symbol; the
landing state becomes the next current state. Non-determinism
is allowed in pFSA, and ε-transitions (that do not consume any
input symbol) are permitted.

Whenever, according to the current state and the input sym-
bol received, a p-transition should be activated, its predicate
is inspected and its current Boolean value is returned; that
transition fires if the predicate is found to be true, otherwise
another transition is taken. Note that if multiple p-transitions
have the same start state and are labeled with the same input
symbol, a subset of them (from zero to all) might fire at
the same time, according to the values taken at run-time by
their predicates: this is an important issue to consider when
stating whether a pFSA is deterministic or not (more details
in Section III-C). Referring to Figure 1, if the symbol a is
received when the control is in state Q1, two p-transitions
might fire: the one that leads to state Q2 can fire depending
on the value of predicate p1, while the one that leads to state
Q3 can fire according to the value of predicate p2. Only the
run-time values of p1 and p2 can clarify which state(s) will
be reached: either Q2, or Q3, or both of them or none.

C. Determinism

Determinism is important for multiple reasons. First, the
FSA complementation algorithm requires the input FSA to
be deterministic. Second, complementation is needed also for
the intersection algorithm, if the latter is implemented using
first De Morgan’s law (A∩B = A ∪B). Third, deterministic
automata are much easier to translate into machine code: only
one state is active at any instant, hence backtracking is not
required. A non-deterministic machine, instead, may have to
“guess” which path to follow; that is, the algorithm might
have to try all the possible routes to the solution, therefore
increasing computation times on strictly sequential machines.

A pFSA is deterministic if it does not include any ε-
transition and, for each state, for each input symbol and for
all possible values of the Boolean predicates, there is exactly
one enabled, outgoing transition.

While this definition looks simple, stating whether a pFSA
is deterministic or not may be complicated in practice, because
the outcome depends on the values of the predicates, that can
be evaluated only at run-time. For instance, if two transitions
labeled with p1 and p2 exit from the same state and are
associated with the same input symbol (such as in Figure 1),
that pFSA is possibly non-deterministic, as both transitions
might be enabled at the same time. Conversely, if those
transitions are labeled with p1 and p1 there is no determinism
issue, as the logic rules assert that exactly one between
those predicates is true at any instant. Consequently, if in a

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 4

given pFSA no state has multiple transitions with the same
symbol (i.e., the base FSA is deterministic) and the predicates
associated with the transitions exiting from every state, labeled
with the same input symbols, are only in the form p1 and p1,
that pFSA is still deterministic.

D. Algorithms

One of the main advantages of reusing the FSA formalism
is that many definitions, algorithms and optimizations from
the literature (e.g. [14]) can be reused with little effort.

For example, union and complementation algorithms re-
quire no changes. The first algorithm merges two automata
by adding a new starting state and connecting it to the
starting states of the two original automata with a couple of
ε-transitions; hence, predicates are not considered at all. The
second algorithm requires only to flip the accepting status of
all states, provided that the input pFSA is deterministic; hence,
again, predicates do not make any difference. No extra effort
is required for the intersection algorithm, as it can be easily
implemented on top of union and complementation by using
first De Morgan’s law.

These algorithms, however, may produce pFSA that are
possibly not deterministic and/or redundant, hence requiring
additional procedures (such as determinization and mini-
mization2) in order to produce better automata. Unfortunately,
these algorithms cannot be plainly reused for pFSA.

Before presenting the determinization algorithm in detail,
we will give a brief look at the main ideas behind the
procedure: (i) predicates Cartesian product and (ii) predicate
anticipation. Both of these procedures will be used later, in
the determinization algorithm.

Predicates Cartesian product: It is used to determinize
a pFSA in which a state has multiple outgoing transitions,
all triggered by the same input symbol but associated with
different predicates3, such as in the leftmost part of the fully
specified pFSA in Figure 2. To guarantee the determinism
property, the pFSA is determinized by introducing a number of
transitions that is equal to the Cartesian product of the existing
predicates; refer to the central part of Figure 2, where each
transition is terminated on the state that would be activated
in the original pFSA, or on a new state (e.g. Q12) that
captures multiple states of the original automaton. This way
we can guarantee that only one out of the four transitions
leaving from Q0 for input symbol a can be true, independently
from the actual values of predicates p1 and p2 at runtime.
The resulting pFSA can be further optimized by additional
algorithms, such as compaction of indistinguishable states:
e.g., in the automaton in the rightmost part of Figure 2, state
Q12 has been merged with Q1.

Predicate anticipation: Sometimes, the pFSA determiniza-
tion algorithm may move a predicate bound to an ε-transition
over another transition that precedes it, with some additional
adjustments; this is useful when the preceding transition is not

2Even if determinization and minimization are two distinct algorithms, the
latter is usually executed immediately after the former; therefore, they are
often presented as being part of the same procedure.

3Starting from Figure 2, the notation !predicate (borrowed from
popular programming languages) is used to express a negated condition.

Figure 2. pFSA predicates Cartesian product.

Figure 3. pFSA predicates anticipation.

already associated with a predicate, and the anticipation allows
a state simplification. This transformation is possible because
it is guaranteed that the predicate has the same Boolean value
in both cases: as already outlined in Section III-A, predicate
values are allowed to change only when a new input symbol
is consumed. A simple example is shown in Figure 3, where
predicate p1 on the ε-transition between states Q2 and Q3 is
moved over the previous transition from Q1 to Q2. However,
moving the predicate requires the creation of two transitions
(one labeled as a/p1, the other as a/p1) and the duplication
of state Q2 (second step of Figure 3). The final pFSA, obtained
by removing the ε-transition and by compacting the states that
are indistinguishable (i.e., Q2 and Q3, and Q2’ and Q4), is
depicted in the rightmost part of Figure 3.

We will now discuss the determinization and minimization
algorithm in more detail, listing how predicates are considered:
(i) when trying to determine the states reached from the current
state upon the receipt of a given input symbol, (ii) when
calculating an ε-closure and (iii) when determining if two
states are indistinguishable by testing the output of function δp
(i.e., they have exactly the same output transitions that bring
exactly to the same output states).

When computing the reachable set, the transitions exiting
from any given state s are considered, for each input symbol
σ. If multiple transitions exist with the same symbol that
potentially can fire because one or more predicates are present,
their Cartesian product is computed and all possible landing
states are evaluated: Boolean rules ensure that only one of the
transitions out of the product can fire at any given instant in
time.

The ε-closure of a set of states recursively adds to the set of
states S all those that are reachable, through an ε-transition,
from any state already in S. If some predicates are found
on those ε-transitions, their Cartesian product is computed,
possibly also against the predicates already discovered in the
previous step.

Finally, the modified transition function δp is used in the
state compaction step to detect if two states are equivalent and
can be merged together. To achieve this, the transition function
δp checks whether, upon the receipt of a given input symbol
σ, two transitions exist that lead from the couple of states

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 5

Figure 4. Example of a pFSA with complex predicates: the union case.

Figure 5. Example of a pFSA with complex predicates: the intersection case.

under testing to any other couple of states that were already
found distinguishable. In a pFSA, if a predicate is present over
a transition, then, for the distinguishability test, all the other
transitions that are associated with the same input symbol and
exiting from the same state must be considered as well.

E. Predicates composition

The algorithms presented in the previous section are used
to combine together more pFSA, leading to a new, equivalent
pFSA that retains all the properties guaranteed by the pFSA
formalism. The example in Figure 4 shows the union of
two simple pFSA through the required processing steps: a
new state is connected to the original pFSA through two ε-
transitions (in the middle), then the final pFSA that comes after
determinization and minimization is shown at the right. The
example in Figure 5 looks more complicated as it shows the
intersection between two pFSA, which occurs by transforming
that operation into a set of union and negation steps4.

It is evident from the examples how the pFSA deter-
minization algorithm analyzes all possible combinations of
the Boolean values of the predicates. This may become a
problem in case of complex pFSA, e.g. obtained by merging
several simpler pFSA together, as the number of possible
combinations may grow exponentially. This represents a non
negligible challenge when the pFSA has to be actually trans-
lated into executable code, because of the large number of
expressions that have to be evaluated at runtime. We feel
that different use cases might benefit from different predicate
optimizations; given that our application domain focuses on
packet filtering, we will present in Section V how we deal
with the predicate composition in that scenario, by means of
a predicate optimization formalism called protoFSA.

4In Figures 4 and 5, transitions with dashed lines are redundant and may
be deleted, as they are included in the default ‘*’ arc.

Figure 6. Overview of the system in which pFSA are used for packet filtering.

IV. PFSA FOR PACKET FILTERING

Although the pFSA model is rather general and can be
adapted to different contexts, this paper focuses on its appli-
cation in packet filtering and shows how multiple filters can
be combined together with a solid guarantee of optimality in
terms of number of checks on the packet. This section focuses
on this objective, presenting how the pFSA model can be
used to describe a generic filter, exploiting pFSA properties
to reduce (and optimize) complex filtering expressions. To
do so, we should be able to translate a filtering expression
into an equivalent pFSA, so that: (i) if a packet matching the
provided filter is given to our system, the pFSA should end in
an accepting state; (ii) otherwise, if the packet does not match,
the pFSA should end in a non-accepting state.

We will describe how the packet filtering machinery is
mapped in the pFSA model: namely, how states, symbols and
predicates are defined. An overview of the system is given in
Figure 6, while a detailed view of each block will be given in
Section IV-E.

A. States

The initial construction of the pFSA associates each state
with a network protocol, that represents the protocol that has
been reached while scanning the current packet5. For instance,
when the ip state becomes active, it means that the IP proto-
col has been found in the current packet and that the protocol
scanner is going to read the first byte associated with it. As
a consequence, for simple pFSA, the set of accepting states
includes only those states that match the protocol requested
by the filter: for instance, in the pFSA modeling the filter that
selects only ip traffic (e.g., in Figure 7), the state labeled
ip would be the only accepting state. More details about the
important bonding between states and network protocols will
be presented in Section IV-D.

B. Input symbols

In a pFSA for packet filtering, each input symbol represents
a single encapsulation rule, i.e., a sort of “jump” from a proto-
col to the next. For instance, the symbol ethernet-to-ip
is associated with a transition that goes from a state that

5This rule does not apply to the starting state, which represents the state
of the automaton before the packet scan has started.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 6

Figure 7. Example of a pFSA for the filter ip.

represents the Ethernet protocol to another that represents
IP, as shown in Figure 7. If the pFSA receives this symbol at
runtime, it means that the packet currently under examination
contains an instance of IP directly encapsulated inside an
Ethernet header6.

In our system, input symbols are generated by a separate
module (the protocol scanner of Figure 6), which inspects
the incoming packet, analyzes the protocols in it, generates
the symbols and passes them to the pFSA engine; for each
encapsulation found in the current packet, a new input sym-
bol is generated. For instance, if a packet contains, in this
order, the Ethernet, IP and TCP headers, then three input
symbols are passed to the pFSA: begin-to-ethernet,
ethernet-to-ip and ip-to-tcp.

The input symbols that the pFSA expects to receive (the Σ
alphabet) are derived from a protocol database, that is pro-
vided to the engine that builds the pFSA at filter compilation
time. More details about the protocol database and the building
process are in Section IV-E.

C. Predicates

While filtering packets, predicates are modeled as hypothe-
ses on specific “properties” of the protocols included in
the packet itself, possibly combined together with Boolean
operators. In our work, predicates are expressed with a “basic
block” in the form <protocol_field> <operator>
<value>. Currently, basic comparison operators are sup-
ported (≤, <, =, 6=, >, ≥) and value must be a constant.
Obviously, filtering conditions can become more complex
when multiple predicates are combined together with the
classical Boolean operators (and , or , not).

Figure 8(a) shows a simple pFSA for the filter
ip.src == 1.1.1.1. Note that, differently from Figure 7,
the ip state is no longer accepting: the ip state is connected
to the actual accepting state through an ε-transition with the
ip.src == 1.1.1.1 predicate. If this predicate is found
to be false at run-time (because the IP source address does
not match the value 1.1.1.1), then the path towards the
accepting state is effectively barred, therefore rejecting the
packet. Figure 8(b) shows the same pFSA after running the
predicate anticipation algorithm, which transforms the pFSA
into a deterministic automaton. It is worth noting that the two
forms (a) and (b) of the given pFSA are completely equivalent
and it is possible to transform one into the other, if needed.

6The only exception to this rule applies to the input symbols that represent
the first protocol of each packet: since there is no explicit “previous protocol”,
the fictitious begin protocol associated with the starting state is used, and
the link-layer associated with the parsed packet determines the input symbol
for the first transition.

Figure 8. Example of a pFSA for the filter ip.src == 1.1.1.1.

The actual Boolean value of the predicates is evaluated by a
dedicated module (the predicates evaluator of Figure 6), that
is logically separated from the protocol scanner. Whenever
the pFSA encounters a predicate at runtime, the evaluator is
invoked and the current Boolean value of that predicate is
returned.

It is worth remembering that predicates can be evaluated
only when the corresponding transition is about to fire and
cannot be precomputed, because their value might change
every time a new input symbol is consumed. For instance,
the Boolean evaluation of ip.src == 1.1.1.1 may result
in different values when filtering a packet that contains a
ip-in-ip tunnel, depending on whether we are operating
on the inner or outer IP header. This case is not handled in
Figure 8 to keep the example simpler.

D. States and network protocols

Due to the properties of the pFSA model applied to packet
filtering, each state can be associated with a precise network
protocol. This is needed at a later stage in order to translate
each state into filtering code (e.g., assembly instructions) and
to be able to perform predicate optimizations, as presented
in Section V-A. This relation is maintained also after merging
and optimizing multiple pFSA, when multiple states are joined
together.

In fact, we can envision three cases in which multiple
states are merged. The first case occurs when computing
the ε-closure, which happens only when a new state, not
associated with any protocol, is added in front of the two FSA.
This requires to merge together both (semantically identical)
begin states of the original automata. The second case occurs
when two states are found to be equivalent, i.e., they have the
same set of outgoing transitions. As transitions are associated
with a specific protocol encapsulation rule, having the same set
of transitions means that the states that are going to be merged
refer to the same protocol. The third case refers to final states,
which are merged independently from the protocol they are
associated with; however, the association with the originating
protocol is useless in this case, because the automaton is going
to terminate anyway.

This nice property of strong relation between states and
protocols can be apparently lost when some optimizations
(particularly, predicate anticipation) come into play. For in-
stance, Figure 10 presents an example in which an intermediate
state is associated with the reachability of a given protocol
field, i.e., the pFSA reaches field ip.src. However, this does
not represent a problem as input symbols (which represent

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 7

Figure 9. Building steps for a simple pFSA.

protocol encapsulation rules) guarantee that two states can be
merged only if they are reached through the same encapsula-
tion rule.

Also note that multiple states, associated with the same
protocol, can coexist. Particularly, this may happen in two
cases: (i) when the same protocol is present on multiple
(disjoint) paths from the beginning state to any final state,
as the pFSA can define different independent paths that cross
the same protocol, and (ii) when the same protocol is present
on the same path, but it refers to different instances, e.g., the
inner and outer IP headers of an ip-in-ip encapsulation.

E. Building a pFSA for packet filtering

The process that creates the pFSA that represents a given
packet filter involves different components, as presented in
Figure 9. The packet filtering pFSA is the result of the
combination of the filtering string, which represents the actual
filtering statement, and a protocol database, which features a
description of the protocols in terms of fields and encapsula-
tion rules (although in this step only the latter is considered).
Encapsulation rules specify how protocols are encapsulated
one into the other, resulting into a directed, potentially cyclic,
graph. For instance, there will be an entry that states that
the IP protocol can be found inside Ethernet, but there
will be no entry for TCP inside Ethernet. The protocol
database should also mark the protocols that can be found at
the beginning of a packet (i.e., link-layers such as Ethernet
or WiFi), in order to highlight which protocols represent some
sort of “starting nodes” of the encapsulation graph; in our
implementation those link-layer protocols follow a fictitious
“begin” protocol. The pFSA model is agnostic with respect
to the protocol database, as long as it includes the required
information; in fact, the choice of this external component is
under the responsibility of the specific pFSA implementation.

The first step towards the pFSA creation is parsing the
filtering string itself, splitting it in basic tokens, i.e., statements
that express a condition operating on a single protocol or a
protocol field, chained together with Boolean operators. A
distinct pFSA is generated for each of these blocks, which
are combined together using the algorithms presented in Sec-
tion III-D, therefore obtaining the final pFSA. As each portion
of the tokenized filtering string refers to a single protocol, it is
used to traverse the encapsulation graph and to select all the
paths that connect the starting protocol (that represents the
starting state of the automaton) to that protocol. For instance,
all paths that result useless for the given filter are discarded in
this step. All nodes and edges selected are then used to build
the pFSA, transforming each encapsulation into a possible

Figure 10. Example of a deterministic pFSA for the filter
ip.src == 1.1.1.1 and tcp.dport == 80.

input symbol for the automaton. An additional state is created,
representing the non-accepting condition (i.e., when the packet
does not match the filter); every other state is then connected
to this failure state using a star transition7.

In the end, an accepting state must be specified. If the
filter statement does not include conditions on protocol fields
(e.g., ip), then the pFSA state associated with that protocol
is marked as accepting. Otherwise, the state representing the
above protocol is connected to a newly created accepting
state by means of an ε-transition, labeled with the provided
predicate. Finally, a looping transition that fires for all symbols
is added to each accepting state, to ensure that the resulting
pFSA is completely specified.

The examples shown in Figure 7 and 8 were created with
this algorithm: in both cases the begin state corresponds to
the starting protocol in the above description. Those examples
show also that the FSA creation process can lead to non-
deterministic pFSA, such as in Figure 8.

Figure 10 represents a more complex example: a pFSA
already determinized for filter ip.src == 1.1.1.1 and
tcp.dport == 80. The filter appears optimal in the num-
ber of tests: only one path leads to state OK, which includes
the verification of both conditions present in the filter. If the
first test fails, the failure state is reached immediately, ignoring
the run-time value of the second predicate.

V. PREDICATES OPTIMIZATION

The optimization of filtering predicates represents a critical
issue in order to effectively model packet filters; in particular,
some applications may be extremely sensible to the problem of
predicate composition previously introduced in Section III-E.
In fact, a model that guarantees optimality with respect to
protocol encapsulations is still not enough for those applica-
tions that require complex filtering expressions operating on
protocol fields: these are somewhat “outside” the pFSA model
and hence, so far, are not optimized at all.

For instance, Figure 11 represents a deterministic
pFSA modeling the filter ip.src == 1.1.1.1 or
ip.dst == 2.2.2.2, which is then translated into a
pFSA that requires the analysis of four predicates when
the ethernet-to-ip input symbol is received. This ex-
ponential explosion in the number of transitions might be
troublesome in complex (but very common) packet filters, e.g.,
those that account hundreds of tests over the same protocol
fields, such as Access Control Lists operating on IP addresses.

7It is worth remembering that the “star” represents a compact notation that
replaces all the input symbols (and predicates) that are not used by the other
transitions exiting from the current state.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 8

Figure 11. Example of a deterministic pFSA for the filter
ip.src == 1.1.1.1 or ip.dst == 2.2.2.2.

Figure 12. The main idea behind the “multilevel” implementation feature.
Predicates are merged within the same predicate evaluation block, leading to
a simplification of the base pFSA: multiple transitions are merged together,
paving the way for further optimizations at the predicate level.

All those transitions must be evaluated by the predicates
evaluator in order to determine which one will fire (if any),
hence posing a substantial run-time overhead when trying
to resolve the current Boolean value of multiple, arbitrarily
complex predicates.

However, note that, due to the potential Cartesian product
on filtering predicates, the predicate evaluator is called several
times for similar expressions. For example, it is evident that
the Boolean values for predicates (p1 && p2) and (p1 &&
!p2) are correlated and some optimizations are possible.

A. Overview

We optimize the behavior of the predicate evaluator by
operating in three steps: (i) we merge multiple predicates
together, enabling the evaluation of multiple queries in a single
pass; (ii) we simplify the pFSA by compacting the transitions
that result redundant when looking at the base automaton
(e.g., because multiple transitions land on the same state),
and (iii) we analyze the semantic of the predicates looking
for possible optimizations at compile time, enabling a faster
predicate evaluation step at run-time (e.g., tcp.sport ==
80 && tcp.sport > 1024 is always false).

For the first step we created a block that can merge multiple
queries coming from different transitions, instead of having
different predicate evaluators for each expression such as in
Figure 12(a), which is possible because the pFSA model does
not mandate the internal architecture of the predicate evaluator.

If predicates operate on the same protocol field (which is rather
common), their evaluation is potentially faster.

The second step (shown in Figure 12(b)) simplifies the
layout of the pFSA when possible. For instance, the three tran-
sitions between states ethernet and OK can be compacted
into one, associated with the logical or of the three predicates,
thus enabling further optimizations in the next step.

The third step minimizes the operations needed to evaluate
the expressions by restructuring the internals of the predicate
evaluator. For instance, given the predicates in Figure 12,
we can structure the predicate evaluator so that the condition
ip.src == 1.1.1.1 is checked once and then its result
is reused for all expressions; or, the test on ip.dst is not
performed if its value does not change the final result.

The effectiveness of the predicate optimization presented
above is a direct consequence of the property that associates
pFSA states with a given instance of a network protocol,
presented in Section IV-D. By construction, all predicates
operating on a given instance of a protocol will be associated
with transitions exiting from the same pFSA state, therefore
becoming part of the same Cartesian product and enabling the
predicate evaluator to optimize them all at once.

B. Going multilevel: the protoFSA

In order to effectively optimize predicates, we need to (i)
define a model for filtering predicates that is able to efficiently
merge filtering predicates when combining different pFSA,
guaranteeing optimality with respect to the number of checks
done on the protocol fields, and (ii) efficiently map filtering
predicates to the chosen model.

Our idea is to create another set of FSA that sits on top of
the pFSA and is in charge of the optimization of the predicates
that result from the same Cartesian product, i.e., that are
associated with a set of transitions exiting from the same pFSA
state. Each of those new FSA is called protoFSA, because it is
associated with a given instance of a network protocol. While
the pFSA is the base model that handles the entire packet filter,
each protoFSA is in charge of the optimizations performed
among all the predicates on transitions exiting from a given
pFSA state.

Formally, for each state qi in the pFSA that has a number of
outgoing transitions originated by the same Cartesian product
Πi, we define (for each Πi) another Finite State Automaton:

Aprotofsa = (S, Σ, δ, so, F)

dedicated to predicates optimization, where:
S is a finite set of states, associated with the protocol

fields referenced by the predicates;
Σ is the set of input symbols, which consists in the

union of the set of values syntactically valid for each
protocol field (e.g., a predicate operating on an IP
address and on the IP TOS byte originates 232 + 28

possible input symbols);
δ is the transition function, which takes into account

whether a condition on a specific field triggers the
analysis of a subsequent condition on another field;

s0 is the starting state;

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 9

F is a set of final states, whose cardinality is equal to
the number of outgoing transitions involved in the
Cartesian product Πi.

A protoFSA is still a FSA and consequently inherits all the
properties guaranteed by that formalism (e.g., composition,
optimality). Each protoFSA can be either deterministic or non-
deterministic; however, in our implementation, for simplicity
and efficiency, we transform those structures into a determinis-
tic automaton before the final translation, i.e., when the model
is converted into running code.

C. Building a protoFSA

If we analyze all complex predicates originated by the
same Cartesian product Πi, it can be formally proven that
the following two properties hold: (i) all predicates are in the
form of basic blocks (<protocol field> <operator>
<value>), joined together in logical and; (ii) the predicates
include exactly the same number of basic blocks, operating
exactly on the same protocol fields, all referring to the same
protocol. Because of property (i) and since the commutative
property holds for the Boolean and operator, we can rewrite
the entire predicate string so that basic blocks will be strictly
ordered, based on the protocol field they refer to8.

To build a better protoFSA out of each Cartesian product,
it would be preferable if, at creation time, we could identify
explicitly (but not necessarily enumerate) the set of values
that satisfy the condition of each predicate. However, since
each basic block compares the protocol field against a constant
value, this property automatically holds.

Each basic block is translated into a minimal FSA in which
the protocol field is associated with a state, while the space
of its possible values is used to define the transitions to the
OK and FAIL states9. If, based on the protocol fields ordering
mentioned above, a basic block refers to a field other than
the first one, a set of states referring to its “preceding” fields
is pre-pended to the state associated with the state itself. In
other words, state si, associated with predicate Pi, is preceded
by states s1 . . . si−1, associated with predicates P1 . . . Pi−1.
Preceding states selected this way are connected with a default
transition, such as in the second basic block (bottom left) in
Figure 13. The OK and FAIL states are then associated with
the transitions (in the base pFSA) that originate the current
query to the predicate level.

The next step consists in building the whole protoFSA, by
merging together all predicates that result from the same Carte-
sian product. The final protoFSA has as many final states as
the number of predicates resulting from the Cartesian product,
each own mapped to a p-transition of the base pFSA. However,
multiple p-transitions in the pFSA can be merged together if

8The chosen evaluation order does not matter (e.g., alphabetic comparison
among protocol field names, or the order in which those fields appear in the
packet), as long as it is kept consistent.

9Although formally each state should include a distinct transition for all
the possible input symbols, in our protoFSA building process we take into
account that some symbols cannot be received when in a given state (e.g.,
the symbols related to the IP TOS byte cannot be received when examining
an IP address), hence simplifying the translation of the protoFSA structure in
running code.

Figure 13. Example of composition of the predicate ip.src == 1.1.1.1
and ip.dst == 2.2.2.2, corresponding to predicate P4 in Figure 12.

Figure 14. Example of the protoFSA created in Figure 12, composing
predicates P1, P2, P3 and P4, and the resulting optimized protoFSA.

their ending states are not distinguishable (in terms of the
minimization algorithm), so we have a chance to optimize
again the protoFSA through the well-known FSA composition
and optimization algorithms. For instance, in Figure 12(a),
predicates P2, P3 and P4 lead to the same state; consequently
the protoFSA can be further optimized, resulting in the final
form shown in Figure 14.

D. About optimality

We can now explain why the claim of the optimal number
of checks on the packet is obtained by construction. When the
final pFSA is built, the number of checks needed to recognize
a matching packet is equal to: (i) the number of protocol
encapsulations, plus (ii) the number of checks on protocol
fields. (i) is optimal because of the way the individual pFSA
are created and aggregated together, since the final automaton
receives as many input symbols as the number of protocol
encapsulations present into the packet. (ii) is optimal for a
similar reason: by construction, the protoFSA consumes as
input the minimum number of symbols needed to resolve the
Boolean value of a predicate, hence it is possible to minimize
the number of checks on protocol fields.

E. Predicates and ranges

The protoFSA creation mechanism presented in Section V-C
may lead to an automaton with a huge number of symbols,
which may represent a problem when defining the transitions
exiting from each state, since their cardinality is equal to
the number of symbols. In fact, the explosion in the number
of transitions affects both the memory occupancy and the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 10

Figure 15. Overview of the building blocks in our prototype.

computational complexity of the FSA algorithms. In order to
overcome this problem, whenever possible we group symbols
into ranges, using the full enumeration of the symbols only
when needed (e.g., when ranges become very complex). For
instance, if a predicate specifies a precise IP address such as
in Figure 13, we define only two transitions, one for the path
that leads to success (associated with the proper IP address,
e.g., {1.1.1.1}) and the other for all the remaining symbols
(e.g., Σ - {1.1.1.1}).

VI. IMPLEMENTATION

The proposed pFSA model has been implemented in the
NetBee library [19], which features an experimental compiler
that creates run-time code for the NetVM [17] virtual machine.
The front-end compiler [18] takes the filtering expression
expressed as a NetPFL [16] string and a NetPDL [15] protocol
database to generate an in-memory representation of the pFSA
filter. This code is then translated into NetIL code, a NetVM-
specific assembly-like language. The generated code can be
executed in a NetVM interpreter, or compiled Just-In-Time
(JIT) if a backend compiler is available for the target archi-
tecture. The pFSA abstraction has been implemented inside
the front-end of the aforementioned high-level compiler.

The NetPDL technology, which consists in user-editable
XML files, allows us to decouple the protocol database
from the code that parses and handles network protocols.
For instance, our NetPDL-based implementation of the pFSA
can operate on all the protocols supported by the NetPDL
language, and NetPDL files can be changed dynamically,
without having to recompile the code that generates the pFSA.

A. Overview

Figure 15 shows an overview of the code generation system
implemented by our prototype, which mimics the general
architecture presented in Figure 6. The pFSA builder takes
the protocol encapsulation graph (dynamically extracted by
the NetPDL protocol database) and the filtering expression
and creates the actual pFSA that implements the packet filter.
The tokens that allow moving from one pFSA state to another
are generated by the protocol scanner, which (again) uses the
NetPDL protocol database to translate encapsulation rules into
running code. Finally, the protoFSA builder creates a set of
protoFSA, each one dedicated to a single Cartesian product
originated by the pFSA. Each protoFSA is then handled by

the protoFSA lowering module, which takes care of some
implementation-dependent optimizations, presented later in
Section VI-C. All the aforementioned blocks generate the
proper data structures according to the primitives exported by
the NetVM framework, which finally merges all the code in
order to build the actual filtering program.

B. Protocol scanner

Our FSA-based approach relies on the possibility to gen-
erate a sequence of input symbols that correspond to the list
of protocols contained at runtime in a given packet. Although
the protocol scanner is a logically separated module, in our
implementation its operations are actually performed by the
same assembly program that implements the pFSA related
to the given protocol filter. For instance, when generating
the NetIL code for a state, the encapsulation definitions
for its protocol are read from a NetPDL database and the
corresponding NetIL code is generated and appended to the
previously generated code.

C. Predicate evaluator

The predicate evaluator operates in two steps. The first
one (protoFSA builder) handles each protoFSA generated
during the pFSA construction and optimizes its behavior using
the well-known FSA algorithms, albeit slightly modified in
order to handle transitions based on ranges instead of single
values. The second step (protoFSA lowering) implements the
lowering of the previous high level structure into running code,
i.e., a set of proper assembly instructions that implement the
protoFSA.

In our implementation both steps are confined into a sep-
arate library that takes into account range-based optimiza-
tions: all numeric comparisons on a protocol field (involving
both range and equality operators) are rearranged into a
tree, organized to easily recognize impossible outcomes (e.g.,
tcp.dport == 80 and tcp.dport > 1024). In ad-
dition, particular attention has been made in order to lower the
code originated by each protoFSA state in the most efficient
way. When all transitions exiting from a state include only
precise values (such as in the filter tcp.sport == 80 or
tcp.sport == 8080), the code will be translated into
a switch-case. When dealing with ranges, instead, the
protocol field is initially checked against the bounds of the
wider range and, if necessary, against the smaller ones; the
comparison for equality against some constants is deferred at
the end, if the value is found to lie in the appropriate range.
An example can be seen in Figure 16.

D. Code generation

Even if the pFSA formalism and the companion protoFSA
components are able to create FSA that guarantee the mini-
mum number of checks on the packets for any given packet
filter, the code generation process is not guaranteed to maintain
this property. In fact, although the final filtering code is created
at the best of our knowledge, we cannot formally prove that it
enables each packet to be processed with the smallest number

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 11

Figure 16. Example of a predicate that specifies multiple
comparisons against the same protocol field, generated with
the filter: tcp.dport > 1024 or tcp.dport == 80 or
tcp.dport == 22 or tcp.dport == 8080. Note the tree
structure and the removal of the redundant checks.

of checks on protocols and fields. However, from the practical
point of view, the characteristics of the NetVM framework
allow us to speculate that, if the generated code is not optimal,
it is very close to it. For instance, the NetVM framework
implements many data-flow and control-flow optimizations
(more details in [17]) and our experimental evaluation proves
that our speculation is correct in case of the most common
filtering expressions, while in other more complex cases the
code is rather close to optimality.

For example, a class of non-optimal filters originates
from the fact that the protocol scanner and the protoFSA
builder operate independently, hence a filter such as ip and
ethertype==0x86DD is considered valid. However, the
optimization algorithms implemented in the NetVM frame-
work later detect that this is an always false filter, as the
ethernet-to-ip encapsulation requires the ethertype
field to be equal to 0x0800. The (missing) early detection
of this problem is a limitation of our current approach, which
should be addressed in our future work.

E. Safety

Safety is one of the key problems to deal with when creating
efficient packet filters, particularly when JIT techniques are
used for code generation. Safety means guaranteeing that the
program always terminates (no infinite loops can occur), and
that all memory accesses refer to valid offsets.

The strong relationship between pFSA and Finite State
Automata should, in principle, help us in guaranteeing that
some properties are satisfied ahead of time. For instance, the
termination property holds if the FSA keeps consuming input
symbols, i.e., reading new bytes from the input packet at
always increasing offsets, which (sooner or later) exhausts the
input buffer, leading the filtering code to come to an end.

In fact, we can guarantee filter termination in pFSA by
checking that each new protocol has an header size greater
than zero: each time a new protocol is encountered, the
offset inside the packet increases, hence reaching the end
of the input buffer at some point. Furthermore, we do not
observe any termination problem within each protoFSA, as (by
construction) loops are not allowed in any protoFSA block.

With respect to bounds checking, we make use of traditional
techniques based on offset validation before loading/storing
a value from/into memory. Although this technique can be
improved, we did not investigate this issue any further and
we decided to make use of the naive algorithm already
implemented in the NetVM compiler. We expect that a mi-

Table I
SAMPLE FILTERS

filter 1 ip
filter 2 ip.src == 10.1.1.1
filter 3 tcp

filter 4 ip.src == 10.1.1.1 and ip.dst == 10.2.2.2
and tcp.sport === 20 and tcp.dport == 30

filter 5 ip.src == 10.4.4.4 or ip.src == 10.3.3.3 or
ip.src == 10.2.2.2 or ip.src == 10.1.1.1

nor performance improvement could be achieved if a more
aggressive algorithm is implemented.

VII. VALIDATION

The pFSA model has been compared with other packet
filters from the state of the art, such as Ruler, BPF and
SPAF. Some experiments have been carried out only against
SPAF, which represents the sole competitor that supports some
of our features, such as arbitrary protocol encapsulations;
furthermore, it is also based on the FSA formalism.

Three different test categories were set up to evaluate
different aspects of our solution: (i) compile-time performance,
(ii) run-time performance and (iii) scalability. These tests
are largely inspired at those in [7] and were performed in
a very similar environment. All tests were performed on a
workstation equipped with an Intel E8400 Core 2 Duo dual-
core processor with 4 GiB of RAM, running a 64-bit version
of Ubuntu Linux 10.04. Time measurements were performed
either using the RDTSC assembly instruction or, for reason-
ably longer periods of time, the gettimeofday() UNIX
function. Memory footprint measurements were performed by
using the GNU time command or, where applicable, using
the Java VM memory management methods. All test processes
were bound to a single processor, with hot disk and processor
caches, and the machine was otherwise unloaded.

A. Filter compilation time

As a first step, we evaluated the compile-time performance
of pFSA and SPAF. The set of filters in Table I was taken
as a reference. Two different protocol databases were chosen:
the first one is called core and includes only definitions for
Ethernet, IPv4, TCP and UDP, without any recursive
encapsulation; the second one is called full, includes also
definitions for VLAN, ARP, PPPoE and IPv6 and some
recursive encapsulations: IPv4-in-IPv4, IPv4-in-IPv6
and IPv6-in-IPv4.

Figure 17 portraits, in logarithmic scale, the time needed
for pFSA and SPAF to compile the filters above, either when
run with the core database or with the full one. pFSA running
times are broken down in actual compilation time (the time
needed to get to the final automaton and generate the NetIL
code from it) and optimization time (the time needed for the
data-flow and control-flow optimizations to run over the NetIL
code). JIT compilation time for pFSA is not displayed; neither
the time required to compile the C code generated by SPAF.
SPAF computation times are missing for filters 3 to 5 when
executed with the full database, because we interrupted those
tests when their processing time exceeded 24 hours.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 12

Figure 17. Comparison of the time needed by pFSA and SPAF to compile
and optimize a filter.

Table II
MEMORY USAGE AND NUMBER OF STATES

pFSA SPAF
chosen memory states ratio memory states ratio
filter (MiB) (MiB/ (MiB) (MiB/

state) state)
filter 1 37.248 4 9.312 1092.608 16 68.288
filter 2 37.472 4 9.368 1537.984 32 48.062
filter 3 37.776 5 7.555 1563.216 26 60.124
filter 4 39.088 9 4.343 1605.696 40 40.142
filter 5 38.384 4 9.596 1591.888 32 49.746

Figure 17 shows that the pFSA filter compilation process
is several orders of magnitude faster than SPAF, even if we
include the optimization time (which is not formally part of
the model). The reason can be found in the greater efficiency
of the building process of the automaton, which is due to
the choice to consider protocols and fields when building
the FSA instead of relying on unlabeled bytes in the packet,
generating a far smaller number of states. This has a huge
impact on the overall building process, as the complexity of
FSA manipulation algorithms is usually exponential in the
number of states, while other sources of inefficiencies (e.g.,
SPAF is coded in Java) are less important.

Table II displays, for each filter, the maximum amount of
memory required for the compilation process by pFSA and
SPAF (which depends on the intermediate transformation of
the automaton), and the number of states included in the final
automaton. These results apply to the core database and, in
case of pFSA, they include also the count of intermediate
protoFSA states. These numbers prove that there is a clear
difference between the two implementations: even if the mem-
ory usage represents a peak measurement, while the number
of states is measured at the end of the filter compilation, those
numbers give a rough indication of the different efficiency of
those algorithms.

B. Filter runtime performance

The next test aims at evaluating pFSA runtime performance.
A single packet trace was created by extracting HTTP sessions
from multiple real-world traces, taken in our University cam-
pus, for a final size of about 1 GiB. All filters in Table I were

Figure 18. Maximum number of CPU cycles needed to evaluate a packet for
each filter.

reused, adapting them to the syntax used by the specific packet
filter, if necessary; filters 4 and 5 were slightly edited in order
to let them match the most active sessions in the trace. We
measured the number of CPU cycles needed to execute each
filter with different packet filters; tests for pFSA and SPAF
were run with the core and the full protocol database.

Figure 18 shows the maximum number of CPU cycles
needed to analyze a packet, for each filter, implementation and
(if applicable) protocol database. We have chosen to record the
maximum number of cycles (instead of the average) to reduce
the impact of non-matching and very short packets on the
experiment. The best results are achieved by pFSA and SPAF:
their performance is roughly the same, especially when using
the core protocol database. SPAF leverages a more aggressive
bounds checking algorithm that represents an advantage when
many packet accesses are needed, such as in case of the full
database. In any case, pFSA results always faster than Ruler
and BPF, even with the full database.

C. Filter scalability

The last round of experiments checks how pFSA performs
when increasing the number of TCP sessions10 in a given
filter. Compilation times for filters with increasing number of
sessions are tested first: results are shown in Figure 19.

Our pFSA implementation was tested both with the core
and the full protocol database. In the former case, the graph
shows a more than linear, but still less than exponential
increase in both compilation and optimization times. When the
number of sessions is relatively low, the time spent optimizing
the generated code prevails over the FSA generation time:
but, since the generation time keeps growing faster than the
optimization one, when the number of sessions increases over
20 the former overcomes the latter.

When the full protocol database is used, both compilation
and optimization times grow exponentially in the number of
sessions: for practical reasons, only the first data points are
drawn in Figure 19. While unfortunate, this behavior is fully

10In our example, a TCP session is defined as a uni-directional tuple of
IP addresses (source and destination) and TCP ports (source and destination):
e.g., filter 4 of Table I describes a single session.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 13

Figure 19. Compile and optimization times needed by pFSA to compile TCP
session filters.

Figure 20. Overall runtime performance w.r.t. TCP session filters.

expected: the explanation lies in the filter statement and in the
protocol database. When dealing with recursive encapsulations
(e.g., IPv4-in-IPv4), a session filter, by itself, does not
state that the IP source and destination addresses should both
match inside the same IP protocol instance; e.g., filter 4 in
Table I matches also a tunneled IP packet in which the outer
IP source address is 10.1.1.1 and the inner IP destination
address is 10.2.2.2. Since a FSA does not have memory,
the only way to handle this situation is by using different
states for all possible combinations. When the number of
sessions increases, the number of combinations (hence the
number of states) grows exponentially, impacting computation
times. However, it is worth mentioning that, should this
behavior be undesired, the language we use to define the filter
(NetPFL) includes additional primitives that, in presence of
tunneling, allow to filter traffic based on a specific header
of the packet (e.g., ip%1.src == 1.1.1.1 to specify the
source address of the first instance of IP only).

Our last test still focuses on TCP sessions scalability, but
instead evaluates the runtime performance of pFSA. We used
the same packet trace of Section VII-B and tested the raw
packet throughput: one-time computations (e.g., filter compi-
lation) were not considered, but run-time overheads (e.g., per-
packet libpcap library calls) are included in the results. Since
some of the competing approaches cannot handle multiple

Table III
NUMBER OF TOKENS IN THE FILTERING STRING NEEDED TO FILTER A

TUNNELED IPV4 INSTANCE WITH A GIVEN DESTINATION ADDRESS

Number of pFSA SPAF BPF BPF (when filtering
encapsulations at any level)

No levels 3 3 3 3
1 level 3 3 7 11
2 levels 3 3 11 23
3 levels 3 3 15 39
4 levels 3 3 19 59
5 levels 3 3 23 83

levels of encapsulation, in this test we configured pFSA and
SPAF to use the core protocol database. Figure 20 shows that
pFSA does not suffer any significant runtime performance
degradation when the number of filtered sessions increases.
This is an expected scenario, because the generated FSA grows
wider, but not deeper; as the number of sessions grows, more
and more states are added in parallel to the old ones, but the
average distance from the starting state to the accepting ones
does not change.

It is interesting to note the slight increase in performance
just after the 16 sessions mark: the reason of this increase
relies on the strategy that the NetVM JIT implementation uses
to generate code for switch statements, emitted by the pFSA
code generator to check for IP addressed and TCP ports. When
the switch is sparsely populated and the number of cases is
low (below 15), a Minimum Rectilinear Steiner Tree (MRST)
is used; when the number of cases increases, a binary switch
is used instead.

D. Ease of use

To conclude this section, we want to underline why pFSA
is easier to use than many previous approaches, like BPF,
specifically in case of complex protocol encapsulations.

Our pFSA-based implementation is able to generate filtering
code that, according to the protocol database given in input,
can match a filter for all possible encapsulations that can be
recognized in the packet. If the protocol database contains the
definition of a tunneled protocol, the pFSA model transpar-
ently filters it, without further input from the user.

As an example, let’s imagine a scenario in which a given
protocol database supports IPv4-in-IPv4 tunnels. With a
filtering string composed by only three tokens (i.e., ip.src
== 1.1.1.1), pFSA and SPAF are able to match packets
that contain at least one IPv4 instance whose source address
is 1.1.1.1, even if that instance is deeply nested in other
protocols. A BPF filter like ip src 1.1.1.1, instead, is
not tunnel-aware. To match the first tunneled IPv4 instance,
a BPF user should write a filter that manually inspects the
protocol field of the outer IP instance and then the IP address
of the inner one, at the right offset: ip[9:1] = 0x04
&& ip[32:4] = 0x01010101. Furthermore, for BPF to
match both a “native” and the first tunneled IPv4 instance, both
previous filters should be put in OR together: the number of
tokens in the filter grows then to 11.

Table III has a rundown of the increasing complexity (in
terms of number of tokens in the filtering string) of a BPF

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY XXXX 14

filter, compared to the constant complexity required by pFSA
and SPAF.

VIII. CONCLUSION

This paper presents pFSA, a novel packet filtering model
based on (multilevel) Finite State Automata augmented with
predicates, which guarantees optimality of packet filtering
composition with respect to the number of checks on the
packet, even in case of complex predicates or unconventional
protocol encapsulations, and independently from the complex-
ity of the filtering string. Furthermore, being agnostic with
respect to network protocols, our implementation exploits a
dynamic protocol database that allows to change the protocols
it operates upon by simply updating those files at run-time,
without having to modify the source code of the packet filter
compiler itself. Our model proved to be as fast as the best
competitors for simple packet filters and to scale linearly with
the number of predicates on the same protocol, such as when
filtering multiple TCP sessions. At the same time it demands
limited processing and memory requirements in the filtering
code generation phase, which represents a huge improvement
when compared with other approaches (e.g., SPAF).

Future work includes the capability to dynamically add
and remove filtering expressions to an existing pFSA, which
would allow to transparently optimize filters originated by
independent applications without having to create multiple
packet filters running in parallel, and a better integration of the
pFSA model with the other components of the system (e.g.,
the protocol scanner). This will allow to keep the optimality
property also when the model is translated into running code,
while currently this is lost in our implementation during the
lowering phase. However, in our experience the number of
packet accesses is the minimum in most of the generated
filters, although it cannot be guaranteed formally.

REFERENCES

[1] I. Cerrato, M. Leogrande, F. Risso, Filtering Network Traffic Based
on Protocol Encapsulation Rules. In Proceedings of the International
Conference on Computing, Networking and Communications (ICNC
2013), San Diego, CA, Jan. 2013.

[2] J.C. Mogul, R.F. Rashid, M.J. Accetta, The packet filter: An efficient
mechanism for user-level network code. In Proceedings of 11th ACM
Symposium on Operating Systems Principles, Austin, TX, pp. 39-51,
Nov. 1987.

[3] S. McCanne, V. Jacobson, The BSD Packet Filter: A new architecture
for user-level packet capture. In Proceedings of the 1993 Winter USENIX
Technical Conference, San Diego, CA, pp. 259-269, Jan. 1993.

[4] A. Begel, S. McCanne, S.L. Graham, BPF+: exploiting global data-flow
optimization in a generalized packet filter architecture. In SIGCOMM
Computer Communication Review, Vol. 29(4), pp. 123-134, Oct. 1999.

[5] M.L. Bayley, B. Gopal, M.A. Pagels, L.L. Peterson, PATHFINDER:
A pattern-based packet classifier. In Proceedings of the First USENIX
Symposium in Operating System Design and Implementation, Monterey,
CA, pp. 115-123, Nov. 1994.

[6] D.R. Engler, M.F. Kaashoek, DPF: Fast, flexible message demultiplexing
using dynamic code generation. In Proceedings of ACM SIGCOMM ’96,
Stanford, CA, pp. 53-59, Aug. 1996.

[7] P. Rolando, R. Sisto, F. Risso, SPAF: stateless FSA-based packet filters.
In IEEE/ACM Transactions on Networking, Vol. 19 Issue 1, Feb. 2011.

[8] Z. Wu, M. Xie, H. Wang, Swift: a fast dynamic packet filter. In
Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, San Francisco, CA, pp. 279-292, Apr. 2008.

[9] T. Hruby, K. van Reeuwijk, H. Bos, Ruler: High-Speed Packet Matching
and Rewriting on NPUs. In Proceedings of the 3rd ACM/IEEE Sympo-
sium on Architecture for networking and communications systems (ANCS
’07), Orlando, FL, pp. 1–10, Dec. 2007.

[10] G. Van Noord, D. Gerdemann, Finite state transducers with predicates
and identities. In Grammars, Vol. 4, No. 3, pp. 263-286, 2001.

[11] R. Sekar, P. Uppuluri, Synthesizing fast intrusion prevention/detection
systems from high-level specifications. In Proceedings of the 8th con-
ference on USENIX Security Symposium, Vol. 8, pp. 6, 1999.

[12] R. Smith, C. Estan, S. Jha, I. Siahaan, Fast Signature Matching Using
Extended Finite Automaton (XFA). In Proceedings of the 4th Inter-
national Conference on Information Systems Security (ICISS 2008),
Hyderabad, India, pp. 158-172, December 2008.

[13] H. Bos, M. Cristea, T. Nguyen, G. Portokalidis, FFPF: Fairly Fast Packet
Filters. In Proceedings of the 6th Symposium on Operating Systems
Design & Implementation, San Francisco, CA, pp. 347–363, Dec. 2004.

[14] J.E. Hopcroft, R. Motwani, J.D. Ullman. Automata Theory, Languages,
and Computation. Addison-Wesley, 3rd Edition, 2006.

[15] F. Risso, M. Baldi, NetPDL: an extensible XML-based language for
packet header description. In Comput. Netw., Vol. 50, No. 5, pp.
688–706, 2006.

[16] L. Ciminiera, M. Leogrande, J. Liu, O. Morandi, F. Risso, A Tunnel-
aware Language for Network Packet Filtering. In Proceedings of
the 2010 IEEE Global Telecommunications Conference (GLOBECOM
2010), Miami, FL, pp. 1–6, Dec. 2010.

[17] O. Morandi, F. Risso, P. Rolando, S. Valenti, P. Veglia, Creating Portable
and Efficient Packet Processing Applications. In Springer Design Au-
tomation for Embedded Systems, Vol. 15, No. 1, pp. 51-85, March 2011.

[18] O. Morandi, F. Risso, M. Baldi, A. Baldini, Enabling Flexible Packet
Filtering Through Dynamic Code Generation. In Proceedings of IEEE
International Conference on Communications, Beijing, China, pp. 5849-
5856, May 2008.

[19] NetBee library, available at: http://www.nbee.org

Marco Leogrande (marco.leogrande@polito.it) re-
ceived his M.Sc. Degree in Computer Engineering
from Politecnico di Torino in 2009 with a thesis
about front-end optimizations for a dynamic packet
filter compiler. He is currently a Ph.D. student in
Information and System Engineering. His main area
of research focuses on performance optimization and
feature development in dynamic packet filters.

Fulvio Risso (fulvio.risso@polito.it) is currently
assistant professor with the Department of Control
and Computer Engineering of Politecnico di Torino,
Italy. His current research activities focus on efficient
packet processing, traffic analysis, programmable
networks.

Luigi Ciminiera passed away on September 3rd,
2012. At the time of his death, prof. Ciminiera
was professor of computer engineering with the
Department of Control and Computer Engineering
of Politecnico di Torino, Italy. His research interests
included grids and peer-to-peer networks, distributed
software systems, and computer arithmetic. He was
coauthor of two international books and more than
100 contributions published in technical journals and
conference proceedings.

