
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SSDExplorer: a Virtual Platform for Fine-Grained Design Space Exploration of Solid State Drives / Zuolo, L.; Zambelli,
C.; Micheloni, R.; Galfano, Salvatore; Indaco, Marco; DI CARLO, Stefano; Prinetto, Paolo Ernesto; Olivo, P.; Bertozzi,
D.. - ELETTRONICO. - (2014), pp. 1-6. (Intervento presentato al convegno Design, Automation and Test in Europe,
Conference and Exhibition (DATE) tenutosi a Dresden, DE nel 24-28 Mar. 2014) [10.7873/DATE.2014.297].

Original

SSDExplorer: a Virtual Platform for Fine-Grained Design Space Exploration of Solid State Drives

Publisher:

Published
DOI:10.7873/DATE.2014.297

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2519484 since:

IEEE

SSDExplorer: a Virtual Platform for Fine-Grained Design
Space Exploration of Solid State Drives

Lorenzo Zuolo†, Cristian Zambelli†, Rino Micheloni§, Salvatore Galfano‡,
Marco Indaco‡, Stefano Di Carlo‡, Paolo Prinetto‡, Piero Olivo† and Davide Bertozzi†

†Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara (Italy)
‡Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino (Italy)

§PMC-Sierra Italy (Italy) - E-mail: lorenzo.zuolo@unife.it

Abstract—Solid State Drives (SSDs) are gaining particular momentum in
various frameworks such as multimedia, large data centers and cloud environments.
Unfortunately, efficient CAD tools for SSD design space exploration able to assess
the optimization of the device microarchitecture w.r.t. the target performance are
still missing. This paper tries to close this gap by proposing SSDExplorer, a tool
for fine-grained and fast design space exploration of SSD devices. SSDExplorer
provides unprecedented insights into the architecture behavior and subcomponent
interaction efficiency, while avoiding the need for the actual implementation of
an FTL or of key hardware components. This is achieved by the introduction of
suitable abstractions of the different components. This is confirmed by the thorough
validation of SSDExplorer against a commercial SSD device.

I. INTRODUCTION

Solid State Drives (SSDs) are becoming popular, driven by the
relentless growth of the cloud computing, and high performance
gaming [1]. The development of an SSD architecture implies the
analysis of important trade-offs that, if properly understood, my
help in identifying optimal design points meeting target perfor-
mance requirements. Although SSD hardware prototyping platforms
may capture realistic storage system behaviors, they suffer from an
intrinsic lack of flexibility [2]. The SSD research community is
therefore increasingly relying on sophisticated software tools that
enable modeling and simulation of SSD platforms. Disk emulation
tools in virtual environments [3] use functional simulation to obtain
fast performance evaluation of the SSD in a host environment.
This comes at the cost of constrained design space exploration
capabilities due to the abstract simulation models. Differently, pure
software simulation tools [4] use trace driven simulators to obtain a
steady state performance analysis of the device. However, they often
overlook the macroscopic performance implications of key component
parameters or subtle microarchitecture-level effects. A Fine-Grained
Design Space Exploration (FGDSE) tool is therefore mandatory in the
early development stages of an SSD architecture to avoid its over-
design.
In this work we propose SSDExplorer, an ad-hoc virtual platform
for FGDSE of SSDs. SSDExplorer enables to model all components
of an SSD platform, selecting, for each model, the most suitable
modeling abstraction level. This broadens the design space explo-
ration capabilities provided by competing tools. Parametric models
for often neglected key components such as error correctors, data
compressors and NAND Flash memories are considered. SSDEx-
plorer provides accurate performance breakdowns and identification
of microarchitectural bottlenecks or unexploited parallelism in the
SSD architecture. Moreover, it enables quantitative estimation of
the SSD performance drop introduced by NAND Flash components
wear-out. SSDExplorer accounts for the performance implications
of the Flash Translation Layer (FTL) without requiring its full
implementation. This is achieved exploiting the write amplification
factor abstraction [5]. Similarly, the impact of key hardware blocks on

This research has been partly supported by the 7th Framework Program of the European
Union through the vIrtical Project, under Grant Agreement 288574 and the CLERECO
Project, under Grant Agreement 611404.

the device performance can be projected without need for their actual
implementation. SSDExplorer therefore provides a relatively fast path
for accurate I/O performance quantification. As a result, functional
simulation is not natively supported by the tool. Nevertheless, it can
be later implemented as a device architecture refinement step with
minimum incremental effort. SSDExplorer is fully implemented using
the SystemC language, thus enabling to integrate, in a uniform man-
ner, components with heterogeneous modeling abstractions, and to
provide a uniform and coherent way to parameterize them. Accuracy
of the analysis performed by SSDExplorer has been validated against
a commercial device (i.e., OCZ vertex 120GB [6]).

II. RELATED WORKS

Currently, publications aiming at proposing software frameworks
able to understand the behavior of an SSD mainly focus on disk
emulation [3] and disk trace-driven simulation software [4], [7], [8],
[9], [10], [11], [12].
Yoo et al. [3], propose a disk emulation strategy based on a recon-
figurable framework able to emulate a real SSD. One of the key
contributions of this work is the ability to track the real performance
of a host system through a dynamic manager built around a Qemu
virtual platform1. However, to achieve fast performance estimations,
several components (e.g., the processor, the NAND Flash array, etc.)
are described at a high abstraction level. Performance fluctuations
experienced by these blocks are therefore lost, thus strongly reducing
the performance estimation accuracy. Moving to SSD trace-driven
simulation tools, the open-source frameworks proposed in [4] and [7]
allow SSD performance and power consumption evaluation. Attempts
to improve them in order to achieve real performance matching have
also been proposed in [11], [12]. However, these tools are still highly
abstracted, thus providing an insufficient level of simulation accuracy
and realistic components description to perform real FGDSE.
To overcome this weakness, several cycle-accurate SSD simulators
have been developed. Lee et al. [8] exploits a global clock simulation
for hardware components description. However, it does not allow a
full modeling of all the components building an SSD, thus hiding
some of the bottlenecks affecting the architecture. Other methods for
fast simulation have been proposed in [9], [10]; yet, they also suffer
from precision loss due to lack of a complete architectural modeling.
Hardware platform prototypes have been proposed as well [2], [13].
They enable a precise SSD behavior investigation, although their fixed
architecture severely limits exploration of different design solutions
(the sole internal firmware modification is allowed).
Overall, available frameworks miss a clear exploration of the per-
formance correlation between the host interface capabilities and the
non-volatile memory subsystem, going through all intermediate archi-
tectural blocks. To summarize, Table 1 shows the main characteristics

1http://wiki.qemu.org/Main Page

TABLE I. COMPARISON BETWEEN SSDEXPLORER AND OTHER SSD
FRAMEWORKS.

Reconfigurable SSDExplorer Emulation Trace-driven Hardware
parameters Platform Platforms Platforms Platforms
Actual FTL (WL,
GC, TRIM)

√ √ √ √

WAF FTL
√

No No No
Host IF performance

√ √
No

√

Real workload No
√

No
√

Different Host IF
√

No
√

No
DDR timings

√
No No No

Multi DDR buffer
√

No No No
Way: Shared bus

√ √ √ √

Way: Shared control
√

No
√

No
NAND architecture

√ √ √
No

NAND timings
√ √ √ √

NAND latency
aware

√
No No

√

ECC timings
√

No No
√

Compression
√

No No No
Interconnect model

√
No No

√

Core model
√

No No
√

Real firmware exec
√

No No
√

Multi Core
√

No No No
Model refinement

√
No No No

Simulation Speed Variable High High Fixed

of SSDExplorer in the context of previous work in this field by
comparing relevant features of the available simulation frameworks.

III. SSDEXPLORER AT A GLANCE

One of the key concepts that have driven the development of
SSDExplorer is the possibility for users to experience a unified, recon-
figurable and multi-abstraction simulation environment. To achieve
this goal, each block has been written and integrated using the
SystemC modeling and simulation environment2. SystemC allows
designers to cover in a single language several model refinement
layers, ranging from the Timed Functional up to the Register Transfer
Layer. Thanks to this feature, if a specific block has to be thoroughly
investigated, a more accurate model can be easily developed for it, and
plugged into the simulation environment without changing any other
component. Since the SystemC simulation speed scales inversely to
the description level, the accuracy of each model must be wisely
selected in order to maximize simulation efficiency.

A. Main simulator goals

SSDExplorer primary goal is accurate I/O performance character-
ization of an SSD device, capturing the dependency between the SSD
performance figures and those of its sub-blocks and their interaction
effects. From this perspective, HW/SW components of an SSD that
logically belong to the control path require high modeling accuracy,
while components belonging to the data path can be just modeled in
terms of the introduced processing/storage delays. While this choice
limits the functional simulation capabilities of the virtual platform,
it ultimately mitigates the impact of FGDSE on simulation speed.
Moreover, a detailed implementation of all SSD components might
not be available when the SSD architecture design space is explored.
For instance, developing a full FTL for the SSD is a time consuming
and non-trivial design problem. Its implementation might not be
available to hardware designers during FGDSE, thus preventing a
realistic assessment of the overall device performance. Similarly, key
hardware components such as the error corrector or the compressor
may be more conveniently treated as parameterizable or backanno-
tated black-box models during FGDSE. In fact, their impact over

2http://www.systemc.org

SSD performance can be easily projected based on highly abstract
quality metrics such as a computation latency or a compression ratio.
As a consequence, not only the final component implementation
might not be available during FGDSE, but this is not even strictly
needed in some cases. Detailed implementations become necessary
later in the design flow, when the focus shifts from theoretical I/O
performance characterization to actual functional simulation. For the
above reasons, SSDExplorer has been designed in order to select the
most suitable modeling style for each SSD component to guarantee
an accurate quantification of I/O performance, and to tolerate lack
of precise implementations of specific HW/SW components without
affecting performance estimation accuracy. Fig. 1 shows the SSD
architecture template modeled by the SSDExplorer. Three macro-
architectural abstraction domains can be identified: Register Transfer
Level models (RTL), Cycle Accurate models (CA) and Parametric
Time Delay models (PTD). In the next paragraphs, a description of
all simulator components is reported, and the motivations behind the
selected modeling abstraction in each macro-area of the simulator are
also discussed.

CPU

AMBA AHB

Channel/Way
Controller NAND

Flash
Memory

Array

Data
buffer

Host
Interface ECC

Host
Interface

Compressor

Channel/Way
Compressor

RTL

PTD

CA

Fig. 1. Default architecture template modeled by the simulator.

B. Register Transfer Level models

SSDExplorer tries to offer the highest level of accuracy in mod-
eling those control tasks that determine internal transfer rates within
the SSD. The key components that take part in the management of the
data flow are the CPU, the system interconnect and the channel/way
controller. All these components are involved in the real execution
of the SSD firmware (if available) or of its abstracted behavior. As
a consequence, an RTL-equivalent design abstraction is mandatory
for these components since optimization techniques implemented at
this level may highly impact macroscopic SSD performance. This
requirement has been partially relieved only for the CPU, for which
a pipeline-, pinout- and cycle-accurate modeling style has been
considered enough. Even if this solution overall affects the simulation
speed, it allows precise modeling of real data and command handling
between the SSD components. Moreover, the firmware cost in terms
of overall performance drop can be easily collected.

1) CPU: This component models an ARM7TDMI core3 featuring
a 16MB SRAM and a DMA running at 200MHz. It is responsible for
the SSD’s firmware execution providing an environment for custom
FTL development. Thanks to this feature a full SSD firmware can be
implemented and interchanged in a plug & play way, which is a very
useful feature for platform refinement. The virtual platform is open
to the integration of other instruction set architectures, provided the
proper wrapper with the standard socket interface supported by the
system interconnect is developed.

3http://www.arm.com/products/processors/classic/arm7/index.php

2) System Interconnect: The interconnect model used in SSD-
Explorer is an AMBA v. 2.0 AHB bus4 running at the same CPU
frequency, a well established standard in nowadays SSD devices
[6]. It is configured to support 16 masters and 16 slaves and the
arbiter policy is round-robin. For future architectures development,
SSDExplorer can also instantiate evolutions of the baseline bus
protocol and topology such as the Multi-Layer AMBA AHB inter-
connect as well as the AMBA AXI protocol. Currently, they are
not used in the platform instances under test since they would be
over-designed solutions with respect to current SSD requirements. To
meet the AMBA AHB protocol requirements in optimized platform
instances, both the split and burst transactions are supported, thus
hiding wait states and arbitration penalties as much as possible.
In many modeling frameworks the bus protocol is abstracted away
through behavioral models, hence severely limiting the accuracy on
the maximum achievable SSD performance.

3) Channel/Way Controller: To perform read/write operations
on the NAND Flash memory array, it is mandatory to introduce
a controller deputed to formatting commands issued by the CPU
with a proper protocol. The Open NAND Flash Interface (ONFI)5

standard has been exploited for the NAND memory subsystem. From
an architectural point of view, the channel/way controller is composed
of five macro blocks: an AMBA AHB slave program port, a Push-
Pull DMA (PP-DMA) controller, a SRAM cache buffer, an Open
NAND Flash Interface 2.0 (ONFI) port and a command translator.
The microarchitecture described in [14] has been chosen to mimic re-
alistic functionalities of a channel/way controller in industry-relevant
designs. SSDExplorer can be configured with a flexible channel/way
interconnection scheme based on state-of-the-art solutions such as the
shared bus gang and the shared control gang [15].

C. Cycle Accurate models

The host interface, the DRAM buffers and the NAND Flash mem-
ory array have been described at a higher abstraction level. The key
rationale behind this choice is that these components typically affect
macroscopic SSD performance not due to their specific hardware
implementation (which is pretty consolidated), but rather through their
parameter setting and their latency/throughput figures (which may be
even workload dependent). In fact, in an SSD environment, different
combinations of the parameters of these blocks may lead to a large
performance fluctuation. At the same time, significant performance
deviations are incurred if timing accuracy is lost in modeling com-
ponent behavior. To track in a realistic manner such dependencies, a
cycle-accurate description level for these SSD components has been
used loosing the signal accuracy. The consequent burdening on the
speed of the simulation framework is therefore mitigated.

1) Host Interface: This component manages the communication
protocol with the host, providing commands and data to the SSD. Two
types of interfaces are implemented in SSDExplorer: SATA and PCI
Express. All SATA protocol layers6 and operation timings have been
accurately validated following the SATA protocol timing directives
provided in [16]. Native Command Queuing (NCQ) support has been
implemented featuring arbitrary queue length up to 32 commands.
The PCI Express interface enables to significantly boost sequential
and random operation throughput, and is currently exploited in
enterprise SSDs [1]. Fast operations are achieved through the NVMe

4http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
5http://www.onfi.org
6www.sata-io.org

(Non Volatile Memory Express7) protocol that significantly reduces
packetization latencies with respect to standard SATA interfaces8. All
PCIe configurations (i.e., from gen 1 up to gen 3 with variable lane
numbers) can be modeled, thus ensuring accurate latency matching
[17]. Both interfaces include a command/data trace player which
parses a file containing the operations to be performed. During
simulation the Host Interface model parses the trace file and triggers
operations for the following components accordingly.

To ease the interchange between different host interfaces, a
common control architecture based on an AMBA AHB slave port
and an external DMA controller9 able to transfer data from the
host interface to the data buffers and vice-versa, is available in
SSDExplorer.

2) Data Buffers: This component is used as a temporary storage
buffer for read/write data. A cycle accurate DRAM model is required
to capture realistic behaviors (i.e., column pre-charging, refresh
operations, detailed command timings, etc.). The data buffers of
SDExplorer are modeled with a SystemC customized version of the
simulator proposed in [18]. The number of buffers available in a
SSD architecture is upper bounded by the number of channels served
by the disk controller. In SSDExplorer the user can freely change
this number, as well as the bandwidth of the memory interface,
acting upon a simple text configuration file, which abstracts internal
modeling details. Without lack of generality, the results of this work
are modeled after a DDR2 SDRAM interface.

3) NAND flash memory array: The fundamental component of
an SSD is the non-volatile storage memory array. NAND Flash
devices are hierarchically organized in dies, planes, blocks, and pages.
Program and read operations work on a page basis, whereas the
erase operation is performed blockwise, thus inhibiting the in-place
data update. Due to the internal architecture of NAND Flash devices,
large fluctuations in memory timings arise depending on the chosen
operation, thus introducing a significant amount of performance
variability. Moreover, the command and the data interfaces of the
memory include timing variability as well. To accurately take into
account all these effects, a cycle accurate NAND Flash simulator
has been exploited [19]. All the experimental results of this work
are obtained by modeling a Multi-Level Cell technology whose main
characteristics are a t PROG which ranges from 900 µs to 3 ms,
a t READ of 60 µs and a t BERS which ranges form 1 ms to
10 ms [20].

D. Parametric Time Delay models

The microarchitectural blocks presented in this section have a
twofold feature. On the one hand, they strictly depend on the design
choices of SSD vendors (software, hardware, or even mixed solutions
can be implemented). On the other hand, their behavior and impact
on SSD I/O performance can be easily abstracted by means of well-
defined quality metrics. For these reasons, they have been described
using parametric time delay models capable of accurately capturing
their impact on SSD performance. While this choice enables accurate
I/O performance characterization, it prevents functional simulation
when such components are instantiated. Nevertheless, at the early
design stage, when the internal SSD architecture is defined, functional
simulation is actually not required, since priority is given to the

7http://www.nvmexpress.org/
8http://nvmexpress.org/wp-content/uploads/2013/05/NVM Express 1 1.pdf
9http://www.open-silicon.com/ip-technology/open-silicon-ip/io-controllers/sata-device-

controller/

delivery of target I/O performance with a matched and resource-
aware architecture configuration. Only later, when the design is
refined, parametric delay models can be replaced by cycle-accurate or
even RTL-equivalent models, thus restoring the functional simulation
capability of SSDExplorer.

1) Compressor: Nowadays SSD architectures are increasingly
using compression in order to reduce the effective amount of data
written to NAND Flash memories for wear-out minimization [21].
Since the performance of this component, usually defined as the com-
pression ratio and output bandwidth, is univocally associated with the
specific implementation, a parametric timing model can be exploited.
SSDExplorer is able to reproduce the timing of a hardware GZIP
engine10 starting from a chosen compression placement. Compressors
can be placed either between the host interface and the DRAM buffer
(i.e., Host interface compressor) or between the DRAM buffer and
the channel/way controller (i.e., Channel/Way compressor).

2) Error Correcting Code (ECC): In state-of-the-art SSD simula-
tors the presence of this component is usually neglected. However, an
accurate calculation of the SSD performance must take into account
the latency introduced by the encoding and decoding phases of an
ECC. The virtual platform of this work allows the user to choose
between different ECC solutions such as BCH and adaptive BCH
[22], [23], miming their operation latencies.

E. Simulator Flexibility

SSDExplorer aims to be accurate, hence it requires the precise
specification of RTL implementations, CA models or PTD depending
on the selected abstraction for each component. Nonetheless, the
simulator should not be viewed as hardwired for a specific implemen-
tation. In fact, when considering the use of SSDExplorer for modeling
platforms of different vendors/users, parametric and cycle-accurate
models can be freely replaced to reflect performance/behavior of
vendor-specific components while leaving their interfaces unchanged.
Also, the high degree of platform parameterization enables to model
several architectures without deep changes in the simulation frame-
work. The only high-impact choice would be the replacement of
the system interconnect model and of the controller, given their
RTL-equivalent modeling styles. While this is unavoidable for the
controller, which represents the true IP of each vendor’s platform,
the currently modeled family of system interconnects represent a de-
facto standard in industry. So, it is likely to be the right choice across
many platforms.

F. Write Amplification Factor (WAF) abstraction

The FGDSE of a large set of SSD architectures is critical when
the FTL must be taken into account. Estimating the impact of
the FTL software management algorithms (e.g., garbage collection,
wear leveling, etc) without developing a custom FTL and therefore
burdening on the framework complexity is a complex task. A lot of
research effort is reported in this field, and [5] tackles this problem
by introducing a lightweight algorithm able to evaluate the blocking
time introduced by those algorithms in terms of a Write Amplification
Factor (WAF). Thanks to the standard programming model used by
the considered CPU model (see Section III-B1), SSDExplorer enables
both an actual FTL implementation and its abstraction through a WAF
model can. This flexibility is provided to match the incremental devel-
opment requirements of actual users. For the sake of virtual platform

10http://www.inomize.com/index.php/content/index/gzip-hw-accelerator

validation, the former approach introduces a very high degree of
complexity, and usually several optimizations are hidden for non-
commercial environments, hence preventing simulation validation.
Therefore, in this work, the latter method has been followed and
a reconfigurable WAF algorithm based on greedy policy [5] has been
embedded inside the validated SSDExplorer instance.

G. Performance comparison against real SSD

0

50

100

150

200

250

SW SR RW RR

M
B

/s

SSDExplorer

OCZ VERTEX 120GB

Fig. 2. Performance comparison between OCZ Vertex 120GB and SSDExplorer
in terms of throughput for Sequential Write (SW), Sequential Read (SR), Random
Write (RW) and Random Read (RR).

This section reports a direct comparison between SSDExplorer
and an OCZ Vertex 120GB [6], a widely adopted device. This device
is based the well-know and documented barefoot controller11that
can be easily simulated. We resorted to standard IOZone12 synthetic
benchmarks to quantify the I/O performance of SSD devices. A
sequential and a random write/read workload with a block size of
4KB is injected inside the simulated disk.
As shown in Fig. 2, for a strictly sequential workload, SSDExplorer
tracks the real device performance with an error margin of about 8%
for the write operation and 0.1% for the read operation. Differently,
when a random traffic is used, the performance deviation from the
real disk is of 6% and 2% for writes and reads, respectively. These
differences are due to the approximations that are behind the WAF
theory [5]. In both cases, the closely matching results reported in Fig.
2 confirm the accuracy of the illustrated methodology. This is even
more relevant when we consider that this low error margins can be
achieved by SSDExplorer while avoiding the actual FTL implementa-
tion, i.e., with a good simulation performance (documented in section
IV-C). From this view point, it is useful to remark that SSDExplorer
achieves FGDSE capabilities without having all components with
RTL-equivalent accuracy.

IV. EXPERIMENTAL RESULTS

A. Optimal design point exploration

TABLE II. SSD CONFIGURATIONS.

Configuration SSD architecture
C1 4-DDR-buf;4-CHN;4-WAY;2-DIE
C2 8-DDR-buf;8-CHN;4-WAY;2-DIE
C3 8-DDR-buf;8-CHN;8-WAY;2-DIE
C4 8-DDR-buf;8-CHN;8-WAY;4-DIE
C5 8-DDR-buf;8-CHN;8-WAY;8-DIE
C6 16-DDR-buf;16-CHN;8-WAY;4-DIE
C7 16-DDR-buf;16-CHN;4-WAY;2-DIE
C8 32-DDR-buf;32-CHN;4-WAY;2-DIE
C9 32-DDR-buf;32-CHN;1-WAY;1-DIE

C10 32-DDR-buf;32-CHN;8-WAY;4-DIE

This section shows the SSDExplorer capability in finding the
optimal SSD design point (i.e., minimum resource allocation) for a

11http://www.indilinx.com/solutions/barefoot.html
12http://www. iozone.org/

given target performance. Without lack of generality, in this work the
target performance is set by the host interface bandwidth limits. Table
II shows a set of representative design points used for this purpose. All
results are computed using a workload composed of a sequential write
trace and the payload of each single host interface transaction is fixed
to 4KB. Moreover, all data have been collected using two different
DRAM buffer management policies, which are typically exploited
in both consumer and enterprise environments [24]: caching and no
caching. In the former, the SSD controller notifies the end of each
transaction to the host system when the data have been moved from
the host interface to the DRAM buffers. In the latter the notification is
triggered only when all data have been actually written to the NAND
Flash memory.

1

10

100

1000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

M
B

/s

DDR+FLASH

SSD cache

SSD no cache

SATA ideal

SATA+DDR

Fig. 3. Sequential Write: SATA II host interface.

Fig. 3 shows how the aforementioned architectures exploit the per-
formance of a SATA II host interface. The SATA ideal contribution
is referred to the ideal throughput achievable by the host interface
in a stand-alone fashion. On the contrary, SATA+DDR shows a real
metric for the host interface performance since it incorporates the time
spent by its internal DMA to transfer data from the host system to the
DRAM buffers. The SATA+DDR performance is considered to be the
best-case performance of the SSD architecture as a whole. Starting
from this consideration, the best architecture equalization is achieved
only by the configurations able to match the SATA+DDR contribution
with a perfect balancing between the DDR+FLASH column (i.e., the
time spent by the Flash memory to flush the DRAM buffer and write
the data) and the SSD column (i.e., the overall disk performance).
When a cache algorithm is used, the SSD cache column indicates
C6, C8 and C10 as the best candidates since they reach the target
performance and saturate the host interface bandwidth. However,
when the architecture is taken into account, it is clear that only C6
represents the right choice since it is the only configuration able to
reach the host interface limit with the lower resource consumption.
On the contrary, when a no cache algorithm is used, the overall
disk performance (the SSD no cache column) is bounded in spite
of the high internal memory parallelism. In such a scenario there
is no configuration able to reach the target performance and so, the
search for the optimal design point falls on C1.
The key rationale behind the above performance flattening can be
found inside the SATA interface and more precisely, into its limited
command depth. In fact, the SATA protocol is able to manage only
a maximum of 32 commands at once, and in an SSD exploiting a no
cache policy, the host interface cannot acquire new commands until
the current ones have been written inside the non-volatile memory. In
such a way, the internal parallelism provided by the device cannot be
exploited, which becomes clear when checking the SSD performance
with the DDR+FLASH column.
To overcome this limitation and unveil the performance provided by
highly parallel SSD configurations, an high speed PCIE host interface
encapsulating the NVMe protocol has been explored. Fig. 4 shows

1

10

100

1000

10000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

M
B

/s

DDR+FLASH

SSD cache

SSD no cache

PCIE ideal

PCIE+DDR

Fig. 4. Sequential Write: PCIE host interface.

the achieved results when a PCIE-Gen2 featuring 8 lanes and the
NVMe protocol is exploited. Due to the high PCIE speed, the first
consideration is that the host interface no longer represents the SSD
performance bottleneck. In fact, even the most parallel configuration
(i.e., C10) is not able to saturate the interface bandwidth. However,
the major contribution showed in Fig. 4 can be evidenced by looking
at the SSD no cache columns. In this case, since the NVMe protocol
can handle up to 64K-commands, the SSD internal parallelism can
be unveiled and fully exploited. In such a way the performance of
these SSDs closely track the overall bandwidth showed by SSD cache
disks. Clearly, between these configurations a performance gap still
exists. Indeed, in the latter the time spent to flush the incoming data
to the NAND Flash memories is hidden. Finally, when a NVMe
protocol with a PCIE interface is exploited, since there are no intrinsic
architectural limitations, the search for the most efficient design point
is driven by the hardware costs. If the performance-cost trade-off is
optimized, then C6 becomes again the best candidate since it shows
higher performance with lower resource allocation.

B. Performance over NAND Flash wear-out

0

10

20

30

40

50

60

70

0 0,2 0,4 0,6 0,8 1

M
B

/s

Normalized Rated Endurance

40 Bit Fixed BCH: Read

Adaptive BCH: Read

40 Bit Fixed BCH: Write

Adaptive BCH: Write

Fig. 5. Performance drop with respect to Normalized Rated Endurance.

A key feature of SSDExplorer is the capability to analyze the SSD
performances over NAND Flash wear-out. As Flash memory pages
wear out, both timing and reliability are influenced thus affecting
performance of the whole SSD. In particular reliability loss due
to Flash wear out requires the use of complex ECC subsystems
representing one of the killing factors for the SSD performance.
SSDExplorer is able to simulate ECC activities allowing the user to
choose between two ECC schemes: a fixed BCH ECC with correction
capability fixed to the worst case condition and an adaptable BCH
ECC with correction capability that adapts with the aging of the
Flash pages. This second choice exploits a static correction table
that correlates the target correction capability with the memory page
wear-out, measured by Program/Erase (P/E) cycles. Every time a
new page is written, based on the current P/E count the proper
correction capability is selected from the table. In order to evaluate
the effects of Flash memory wear-out and ECC design choices, the
throughput was measured by applying sequential writes and reads on
two SSD configurations, having both 4 channels 2 ways and 4 dies,

and differing for the ECC adaptability: the first features a fixed BCH
ECC which is able to correct 40 bits whereas the second one features
an adaptable BCH ECC which is also able to correct up to 40 bits.
The trends of throughput (Fig. 5) show that, except for the end-of-life,
adaptable BCH achieves a remarkable read throughput gain w.r.t. fixed
BCH: this depicts adaptable BCH ECC as the best solution between
the two choices.
Those throughput differences are mainly caused by ECC. In fact,
ECC correction capability influences the read and write operations
latency overhead. The encoding operation latency, which is involved
in writing operation, is not substantially affected by the correction
capability choice. The decoding operation latency, which incurs
while reading from the disk, instead, heavily grows with employed
correction capability, thus limiting read throughput. In adaptable BCH
ECC, correction capability across memory wear-out is lower than the
worst case fixed BCH ECC correction capability, thus resulting in
lower overhead and higher read performances.

C. Simulation Speed

Since simulation speed is one of the main targets of SSDExplorer,
it has been evaluated on 8 different SSD architectures reported in Tab.
III. Fig. 6 shows the Kilo-Cycles Per Seconds (KCPS) achieved on
an Intel(R) Xeon(R) CPU E5520 clocked @ 2.27GHz with 12GB
of RAM, on which a Redhat x86-64 Linux operating system runs.
The simulation speed scales inversely to the number of resources
instantiated inside the framework.
The sustained simulation speed for reasonable design points (39,7
KCPS for the C4 configuration adopted in [6] [2]) prove definitely
the effectiveness of using different hardware refinement models.

TABLE III. SSD CONFIGURATIONS.

Configuration SSD architecture
C1 1-DDR-buf;1-CHN;1-WAY;1-DIE
C2 1-DDR-buf;2-CHN;1-WAY;2-DIE
C3 1-DDR-buf;4-CHN;1-WAY;2-DIE
C4 1-DDR-buf;4-CHN;2-WAY;4-DIE
C5 4-DDR-buf;4-CHN;2-WAY;4-DIE
C6 4-DDR-buf;4-CHN;2-WAY;8-DIE
C7 4-DDR-buf;4-CHN;2-WAY;16-DIE
C8 32-DDR-buf;32-CHN;16-WAY;16-DIE

144,1

108,4

79,5

39,7 34,8 25,4 15,8
0,3

0

50

100

150

200

C1 C2 C3 C4 C5 C6 C7 C8

KCPS

Fig. 6. SSDExplorer simulation speed with different SSD configurations.

V. CONCLUSIONS

In this work we presented SSDExplorer, a virtual platform for
fine-grained design space exploration of solid state disks. The main
aim of SSDExplorer is to provide a ready to use framework which is
able to deliver accurate performance breakdown curves of all internal
SSDs components. SSDExplorer enables both abstract FTL models
and real FTL implementations and is built on top of the standard
SystemC programming language. SSDExplorer has been successfully
validated against a real device and thanks to the wise engineering of

the abstraction levels used to describe its modules, a relative high
simulation speed is still guaranteed thus paving the way for its future
integration in a complete virtual platform environment.

REFERENCES

[1] R. Micheloni, A. Marelli, and K. Eshghi, Inside Solid State Drives (SSDs), ser.
Springer series in advanced microelectronics. Springer London, Limited, 2012.

[2] “The OpenSSD Project.” [Online]. Available: http://www.openssd-project.org/
wiki/The OpenSSD Project

[3] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choi, S. Yoon, and J. Cha, “Vssim: Virtual
machine based ssd simulator,” in Mass Storage Systems and Technologies (MSST),
2013 IEEE 29th Symposium on, 2013, pp. 1–14.

[4] “The DiskSim simulation environment version 4.0,” 2008. [Online]. Available:
http://www.pdl.cmu.edu/PDL-FTP/DriveChar/CMU-PDL-08-101.pdf

[5] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write amplification
analysis in flash-based solid state drives,” in Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference, ser. SYSTOR ’09. New York, NY,
USA: ACM, 2009, pp. 10:1–10:9.

[6] “Ocz vertex series 120GB SSD.” [Online]. Available: http://ocz.com/consumer
[7] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A simulator for nand

flash-based solid-state drives,” in Advances in System Simulation, 2009. SIMUL
’09. First International Conference on, 2009, pp. 125–131.

[8] J. Lee, E. Byun, H. Park, J. Choi, D. Lee, and S. H. Noh, “Cps-sim: configurable
and accurate clock precision solid state drive simulator,” in Proceedings of the
2009 ACM symposium on Applied Computing, ser. SAC ’09. New York, NY,
USA: ACM, 2009, pp. 318–325.

[9] H. Jung, S. Jung, and Y. H. Song, “Architecture exploration of flash memory
storage controller through a cycle accurate profiling,” Consumer Electronics, IEEE
Transactions on, vol. 57, no. 4, pp. 1756–1764, 2011.

[10] E.-Y. C. Y. University, “A Solid-State Disk Simulator for Quantitative Performance
Analysis and Optimization,” in NVRAMOS, Operating System Support for Next
Generation Large Scale NVRAM, 2009.

[11] C. Dirik and B. Jacob, “The performance of pc solid-state disks (ssds) as a function
of bandwidth, concurrency, device architecture, and system organization,” in
Proceedings of the 36th annual international symposium on Computer architecture,
ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 279–289.

[12] S. Zertal and W. Dron, “Quantitative study of solid state disks for mass storage,” in
Performance Evaluation of Computer and Telecommunication Systems (SPECTS),
2010 International Symposium on, 2010, pp. 149–155.

[13] S. Lee, K. Fleming, J. Park, K. Ha, A. M. Caulfield, S. Swanson, Arvind, and
J. Kim, “Bluessd: An open platform for cross-layer experiments for nand flash-
based ssds,” in The 5th Workshop on Architectural Research Prototyping, 2010.

[14] “Evatronix NAND Flash controller ip-core.” [Online]. Available: http://www.
evatronix-ip.com/ip-cores/memory-controllers/nand-flash.html

[15] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Pani-
grahy, “Design tradeoffs for ssd performance,” in USENIX 2008 Annual Technical
Conference on Annual Technical Conference, ser. ATC’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 57–70.

[16] “SATA-IP host reference design on SP605 manual,” Accessed, Apr 2013.
[17] A. Athavale, “Implementing pci express designs using fpgas,” Accessed, Aug 2013.

[Online]. Available: http://www.eetimes.com/document.asp?doc id=1274512
[18] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate memory

system simulator,” Computer Architecture Letters, vol. 10, no. 1, pp. 16–19, 2011.
[19] M. Jung, E. Wilson, D. Donofrio, J. Shalf, and M. Kandemir, “Nandflashsim: Intrin-

sic latency variation aware nand flash memory system modeling and simulation at
microarchitecture level,” in Mass Storage Systems and Technologies (MSST), 2012
IEEE 28th Symposium on, 2012, pp. 1–12.

[20] “Samsung NAND Flash memory K9XXG08UXM series.” [Online]. Available:
http://www.arm9board.net/download/fl6410/datasheet/k9g8g08.pdf

[21] “Data Compression in the Intel Solid-State Drive 520 Series.” [On-
line]. Available: http://www.intel.com/content/dam/www/public/us/en/documents/
technology-briefs/ssd-520-tech-brief.pdf

[22] C. Zambelli, M. Indaco, M. Fabiano, S. Di Carlo, P. Prinetto, P. Olivo, and
D. Bertozzi, “A cross-layer approach for new reliability-performance trade-offs in
MLC NAND flash memories,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, march 2012, pp. 881 –886.

[23] M. Fabiano, M. Indaco, S. Di Carlo, and P. Prinetto, “Design and optimization
of adaptable BCH codecs for NAND flash memories,” Microprocessors and
Microsystems: Embedded Hardware Design (MICPRO), vol. 37, pp. 407–419,
2013.

[24] “An Overview of SSD Write Caching.” [Online]. Available: http://community.
spiceworks.com/attachments/post/0013/5918/ssd write caching tech brief lo.pdf

