
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fixed-Length Payload Encoding for Low-Jitter Controller Area Network Communication / Cena, Gianluca; I. C., Bertolotti;
Hu, Tingting; Valenzano, Adriano. - In: IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. - ISSN 1551-3203. -
STAMPA. - 9:4(2013), pp. 2155-2164. [10.1109/TII.2013.2240310]

Original

Fixed-Length Payload Encoding for Low-Jitter Controller Area Network Communication

Publisher:

Published
DOI:10.1109/TII.2013.2240310

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2519288 since:

IEEE

Fixed-Length Payload Encoding for Low-Jitter
Controller Area Network Communication
Gianluca Cena, Ivan Cibrario Bertolotti, Tingting Hu, a n d A d r i a n o V a l e n z a n o

Abstract—The controller area network (CAN) bit stuffing mech-
anism, albeit essential to ensure proper receiver clock synchro-
nization, introduces a significant, payload-dependent jitter onmes-
sage response times, which may worsen the timing accuracy of
a networked control system. Accordingly, several approaches to
overcome this issue have been discussed in literature. This paper
presents a novel software payload encoding scheme, which is able
to guarantee that no stuff bits will ever be added to the data field by
the CAN controller during transmission and, hence, lessens jitters
considerably. Particular care has been put in its practical imple-
mentation and its subsequent evaluation to show how the simplicity
and inherent high performance of the schememake it suitable even
for low-cost, embedded architectures.

Index Terms—Controller area network (CAN), industrial con-
trol, real-time distributed systems.

I. INTRODUCTION

S INCE it was introduced about 20 years ago, controller area
networks (CANs) [1] have steadily gained popularity and

are nowadays adopted in a variety of embedded, networked
control systems. One peculiar facet of the CAN protocol is its
bit-stuffing (BS) mechanism, which is an efficient way to ensure
that a sufficient amount of edges appear in the signal sent over
the bus, and thus, guarantee a proper receiver clock synchro-
nization. However, due to BS, the actual length of a message
sent over the bus depends not only on the size of its payload
but also on its content. As a consequence, the exact duration
of frame transmissions cannot be known in advance, leading
to a certain degree of jitter on response times. Also for this
reason, recent automotive protocols such as FlexRay [2] rely
on fixed-length encoding instead.
Communication jitter may be, at least in some demanding

cases, a limiting factor in the design of a networked control
system, both in general [3]–[7], and for CAN in particular
[8]–[13]. Even in the case of simple systems that rely on the

G. Cena, I. Cibrario Bertolotti, and A. Valenzano are with the National Re-
search Council of Italy, Institute of Electronics, Computer and Telecommunica-
tion Engineering (CNR-IEIIT), I-10129 Turin, Italy.
T. Hu is with the National Research Council of Italy, Institute of Electronics,

Computer and Telecommunication Engineering (CNR-IEIIT), I-10129 Turn,
Italy, and also with the Dipartimento di Automatica e Informatica, Politecnico
di Torino, I-10129 Turin, Italy.

master–slave approach, the nonconstant duration of CAN mes-
sages leads to annoying jitters on actuation. TTCAN controllers
[14] overcome this drawback but in this case applications ought
to be redesigned in order to comply with the time-triggered
paradigm.
Although new-generation isochronous protocols—e.g.,

FlexRay and some real-time Ethernet solutions—are the best
option for a new design of a high-performance dependable
control system [15], CAN is still a viable option in many other
cases [16]. In fact, CAN technology is undoubtedly really
stable, well known, and widespread. For these reasons, most
microcontroller families from all major vendors include at least
one member that embeds, at no extra cost, a CAN controller.
As a consequence, when design constraints are not so tight and
the focus is instead on reducing system cost, complexity, and
time-to-market, many designers still prefer to stick to CAN.
Recently, some researchers started considering the use of

conventional CAN also for applications with tight timing
constraints, as witnessed by some proposals made for soft-
ware-based synchronization techniques in CAN. However, a
high degree of determinism can be obtained in a distributed
system only if the duration of frame transmissions over the
network is fixed and known in advance (unless a time-triggered
approach is followed). As discussed above, this is not the case
in CAN. The common rationale behind all solutions to this
issue that have been proposed in the past [8], [9], [17]–[20]
is to encode the payload of the frames in software, so that the
hardware insertion of stuff bits in this part of the frame by
the CAN controller is either reduced or prevented completely.
Using the same principle, and building on a preliminary version
presented in [21], this paper discusses a new fixed-length en-
coding scheme, called 8B9B. It is characterized by an encoding
efficiency comparable to, or better than, most other proposals,
and it is able to completely prevent bit stuffing in the CAN
data field. Even more importantly, since 8B9B independently
encodes every single byte in the original payload, it is amenable
to a portable, very compact, and fast implementation, realized
by means of a high-level programming language. Regarding
these aspects, it outperforms the other techniques described in
the literature.
This paper is structured as follows. In Section II, the problem

of jitters in CAN caused by BS is briefly described and the
8B9B encoding technique is introduced, whereas in Section III
some details are provided about the development of a portable
8B9B codec and its optimization. Then, in Section IV, the cor-
responding experimental results on two dissimilar microcon-
trollers are presented. Section V contains a performance eval-
uation of the codec, including a comparison with related work,
and Section VI draws some concluding remarks.

1

Fig. 1. CAN frame format, with an 11-bit identifier.

II. REDUCING STUFF BITS IN CAN

The physical layer of CAN relies on the nonreturn to zero
encoding scheme with bit stuffing. Every time the CAN con-
troller in the transmitting node detects that five consecutive
bits with the same value have been sent, it inserts a stuff bit
at the opposite level. For example, if the original sequence is

, the sequence of bits sent on the bus
will be (from now on, underlining
is used to denote stuff bits). Bit stuffing applies only to those
fields in a CAN frame from the start of frame bit (SOF) up to
the cyclic redundancy check (CRC) included. The remaining
fields, from the CRC delimiter up to the end of the frame
(EOF), are of fixed form and are not affected (see Fig. 1).
The rationale behind BS lies in its higher efficiency when

compared to fixed-length encoding schemes, e.g., Manchester
and 4B5B (adopted in Ethernet). The worst case for the en-
coding efficiency of BS occurs when the bitstream to be sent
consists of, e.g., 5 b at , followed by a repeated pattern made up
of 4 b at followed by 4 b at , that is,
[9] (in the following, sequences of 5 b at the same value, either
or , are referred to as primer sequences). This means that

the maximum number of stuff bits that, in theory, can be
added to a frame in CAN, is equal to ,
where is the size in bytes of the payload. In practice,
is always one or two bits less than the above theoretical value,
since part of the header has a fixed value (e.g., SOF and res bits)
while DLC is closely related to the payload.
As pointed out in [9], in real CAN networks the mean number

of stuff bits actually inserted in messages is much lower than
. While this is surely a benefit for the average frame trans-

mission times, which are typically quite close to their minimum
value , where is the bit time, BS causes
jitters on the expected reception times. The actual transmission
time for a message lies in the range ,
where is the worst-case “bit-level” jitter the message may
suffer because of BS, that is, .
When CAN is used to support event-driven communications,

as in the automotive domain, in normal operating conditions
is usually much lower than the “frame-level” jitter that may
affect response times, which is mostly due to the non-preemp-
tive priority-based CAN access scheme (bitwise arbitration). At
the frame level, the worst-case response time for any mes-
sage can be evaluated through schedulability analysis [22] and
can last many frame times, whereas in the best case (when the
bus is idle) the frame is sent immediately and received com-
pletely after a time equal to . Seemingly, the contribution of
BS to the overall jitter could be neglected in these cases. How-
ever, a change in the effective duration of any frame affects
both the blocking time for higher priority messages and the in-
terference on the lower priority ones. Therefore, bit-level jitters
do indeed affect frame-level jitters as well. In order to prevent
such a dependency, schedulability analysis techniques always

assume that the maximum number of stuff bits is added to every
message.
When CAN is used to implement tightly synchronized dis-

tributed systems [8], jitters caused by BS can be even more an-
noying. In these cases, suitable techniques are usually adopted
in order to avoid frame-level jitters. A simple approach is using
very-high-priority frames for time-critical messages: when the
highest priority CAN identifier is used for this aim, decreases
to just one frame time at worst. In the case time-division mul-
tiple access (TDMA) is exploited, as in TTCAN [14], messages
are assigned disjoint slots, hence making arbitration unneces-
sary. As a simpler alternative, bus contentions can be avoided by
using CAN according to amaster–slave approach. In this kind of
system, countermeasures are usually required in order to reduce
bit-level jitters as well, since message reception times should
not depend on the specific values carried in the payload. Addi-
tional hardware and software jitters introduced by the CAN con-
troller and protocol stack [23] are not taken into account explic-
itly in the following, since they do not depend on the protocol
and cannot be tackled bymeans of suitable encoding techniques.

A. Previous Solutions

As several literature papers point out, jitters in CAN, which
are due to BS, can be reduced by modifying the payload on the
transmitter side so as to remove primer sequences. This process
must be revertible on the receiver side. For instance, the XOR
technique in [9] carries out the exclusive OR (EXOR) between
the original payload and a specific pattern consisting of an al-
ternating bit sequence. Although XOR reduces the likelihood that
stuff bits are inserted in the data field—especially when real data
are taken into account—there is no guarantee that they are com-
pletely prevented.
This approach was enhanced in [8], [18], where EXOR was

applied selectively to either the payload as a whole (SXB) or on
single bytes separately (SXB). These techniques were formerly
denoted Nolte B and C, respectively. Despite achieving reduced
jitter (especially SXB), encoding efficiency decreases because
of the need to include information about the EXOR process
(whether or not, and where to apply it) while encoding time
increases. Moreover, some stuff bits may still be added to the
data field nevertheless.
Other techniques were subsequently introduced, which are

able to prevent the insertion of stuff bits in the data field com-
pletely. As an example, the SBS approach [19] performs a soft-
ware bit stuffing in advance on the original payload, so that
one software stuff bit is added every time 4 consecutive bits
are found at the same value. Processing time increases conse-
quently with respect to SXP and SXB. In a similar way, EEM is
a fixed-length 8-to-11 modulation scheme [20], which encodes
every byte in the original payload as an 11-bit pattern and proved
to be faster than SBS.
To the best of our knowledge, all of the existing approaches

only tackle the data field, and hence, they are unable to prevent
stuff bits in other parts of the frame.

B. 8B9B Encoding

The 8B9B encoding scheme is straightforward. Basically,
every single byte of the original payload is translated separately
to a suitable pattern made up of 9 b. The encoded bit stream is
then obtained by concatenating all these patterns in the original

2

order. Clearly, this does not apply to frames with an empty
payload (i.e., when DLC is 0). Encoded 9-b patterns must
satisfy two properties, given here.
1) None of the patterns is allowed to include primer se-
quences. For instance, the pattern is unsuit-
able for our purposes.

2) Primer sequences must never appear in the encoded bit
stream, not even across pattern boundaries. In order tomeet
this additional constraint, all patterns that include 3 (or
more) b at the same level, at either the beginning or the
end, have to be discarded as well. For instance, the pat-
tern is not suitable because, when followed
by the (legitimate) pattern , it would give rise
to the sequence , which includes a
primer sequence.

A simple algorithm was developed to find exhaustively all
the 9-b patterns that satisfy both of the above constraints. The
resulting set of candidates includes 258 different elements.
This confirms that every single-byte value (from 0 to 255) can
be encoded by means of a unique 9-b pattern. To this aim, 256
patterns were reserved. Two additional patterns exist in the set,
which are not used to encode any data byte value. They were
labeled and and could be
adopted as escape sequences, but this aspect falls beyond the
scope of this paper.
Basically, the above ordered set of patterns represents a for-

ward lookup table (FLT) for the direct replacement of bytes in
the original payload with corresponding 9-b patterns. Let
be the original data byte, the corresponding 8B9B-encoded
value, and the encoding function carried out through the
FLT. The forward translation process can be synthetically ex-
pressed as .
Because of the properties the patterns which were selected

satisfy, if is a valid pattern also is necessarily valid,
where “ ” represents the complement operator (bitwise NOT),
which inverts every single bit in the pattern it is applied to. Since
candidate patterns were obtained in increasing numerical order,
a basic property of the binary representation of numbers (that is,

) implies that, overall, the FLT is “specular.”
In formulas, we have

(1)

By exploiting this property, only the first half of the FLT is
required to be stored in real implementations (see Table I).

C. Break Bit and Padding Field

The reasoning above takes into account the data field alone.
Unfortunately, the preceding parts of the frame may contribute
to the creation of a primer sequence together with the beginning
of the data field. The DLC field is not in complete control of the
user, since it specifies the size in bytes of the payload—repre-
sented on 4 b as a binary value. For this reason, unlike the pay-
load, it cannot be encoded. For example, when the DLC value
is 8 and the first encoded pattern is , the re-
sulting (partial) bit sequence is , which
includes a primer sequence.
A simple remedy is inserting a single bit, called break bit

(BB), in the very first position of the data field. The value of BB
is opposite to the last DLC bit, i.e., it is either when the DLC

TABLE I
8B9B FORWARD LOOKUP TABLE (ENCODING PROCESS)

value is even or on the contrary. Thanks to BB, bit strings with
two or more bits at the same value cannot appear immediately
before the first 9-b pattern in the encoded payload, for any value
of DLC between 1 and 8, included. Only when ,
the BB could be preceded by one stuff bit at its same level, ap-
pended to the DLC by the CAN controller. In any case, the oc-
currence of a primer sequence affecting the data field is com-
pletely precluded.
In theory, BB is mandatory only when the DLC is 3 ,

7 , or 8 . The reason why it is required also in the
first case is that a stuff bit at could be possibly inserted just
after the bit pair, hence giving rise to the sequence .
In practice, two choices are available for the codec: either BB
is included only when strictly required or it can be maintained
for any frame size. In this paper we opted for the latter choice,
since it does not worsen efficiency appreciably and makes the
codec simpler and faster.
A second aspect to be considered is that the bit sequence ob-

tained by the 8B9B translation process is generally not aligned
to a byte boundary. As a consequence, the last byte in the data
field may not be filled up completely by actual data (i.e., the
encoded payload). In this case, a variable-size padding field
(PAD) is foreseen to align the encoded bit stream to the next 8-b
boundary. The transmitting node sets PAD to a suitable value
that does not cause the insertion of any stuff bit, e.g., an alter-
nating bit pattern .

D. Other Fields of the Frame

Only the data field is covered by 8B9B. There are, however,
other parts of the CAN frame that are subject to BS too, namely
the frame header and CRC.
The header in CAN frames is basically made up of the mes-

sage identifier, DLC and few additional bits whose value is fixed
(e.g., SOF and res). Stuff bits are typically not a problem here,

3

TABLE II
8B9B-ENCODED DATA FIELD VERSUS ORIGINAL PAYLOAD

since in real-world applications both the message identifier and
the payload size for any given message stream are usually not
allowed to change over time. As a consequence, the number
of stuff bits that are added by the CAN controller to the frame
header is fixed and known in advance by the system designer.
A number of design hints on this subject are reported in [17].
The CRC field follows immediately the data field and is the

last part of the frame to which BS applies. Unlike the preceding
fields, for which countermeasures exist to prevent jitters, there
is no simple remedy to avoid the insertion of stuff bits in the
CRC, because it is computed in hardware by the CAN controller
at runtime. No more than four stuff bits can be added in the
CRC when using 8B9B. The worst case consists of the sequence

In fact, the first three bits
can be found at the end of the data field (at most 2 b at the same
value are allowed at both ends of 9-b patterns, but they can be
equal to the single padding bit at the end of the data field when

), whereas the following 15 b correspond to a plau-
sible CRC. This is enough for causing one primer sequence and
three 4-b subsequences, which, because of the domino effect,
give rise to four stuff bits.

E. Encoding Example

Let us consider a very simple one-byte datum at the value
. In conventional CAN, this value would fit directly into

a single-byte data field , and would result in the
transmitted (partial) sequence (only
the DLC and data fields are shown). As can be seen, two stuff
bits have been inserted.
Table II shows that the DLC value in the corresponding

8B9B-encoded frame is 2 . As the DLC is even, BB is
set to , which is placed as the starting bit of the data field.
Then, every byte in the payload (only one in this case) is
translated. According to (1), byte is first complemented
(it starts with a bit at), which yields ; a lookup operation
on the FLT in Table I returns the 9-b pattern ,
which, when complemented, yields . Finally, a
padding is appended to the end of the 8B9B-encoded payload,
which consists of 6 b set to the alternating bit pattern men-
tioned before. Overall, the transmitted (partial) sequence is

, where the DLC, BB, en-
coded payload (one pattern) and PAD are shown. As expected,
no additional stuff bit is inserted into the data field when the
frame is transmitted.
Incidentally, 8B9B is also able to improve the error detection

capabilities of CAN slightly. In fact, no invalid pattern should

be found in the received payload in normal operating conditions:
their presence is evidence that a transmission error has occurred.
This constitutes an additional error detection mechanism and
increases reliability further at the expense of an extra decoding
overhead.

III. IMPLEMENTATION AND OPTIMIZATION

The encoding and decoding algorithms discussed in the pre-
vious section have been implemented in the ISO C language
[24] and then cross-compiled, using different toolchains, for two
dissimilar architectures. Those architectures have been chosen
because they are at the extremes of the range of microcontrollers
currently adopted for CAN-based applications.
Namely, the NXP LPC2468 microcontroller [25] (called
in the following) is a low-end component based on the

ARM7TDMI-S processor core designed in 2001 and running
at 72 MHz. Instead, the NXP LPC1768 microcontroller [26]
(in the following) is based on the contemporary ARM
Cortex-M3 processor core running at 100 MHz.
The base version of the C code has then been optimized in

several ways, better discussed in the following, by working at
both the toolchain and source code levels. Neither handwritten
nor hand-optimized machine code has been developed, because
one of the implementation goals was to show that it is possible
to achieve good optimization results across different processor
architectures—by working exclusively at the C language level
and without necessarily having a thorough knowledge of the
processor machine language level.
For both platforms, the toolchain consists of open-source

components only, namely: binutils (assembler, linker, li-
brarian), the gcc compiler collection, and the newlib runtime
library. Platform initialization files and linker scripts have been
taken from the FreeRTOS [27] operating system.

A. Determinism and Performance Optimization

The first optimization goal was to achieve full execution time
determinism, that is, make the execution time of the encoding/
decoding algorithms independent from message contents. After
all, if full determinism were impossible to achieve, the original
source of jitter (CAN bit stuffing) would be simply replaced by
another one (data processing jitter due to the encoding/decoding
layer, called in the following). On the other hand, a (hope-
fully linear) dependency on the payload size is both expected
and acceptable.
For this purpose, the code has been reworked in two different

ways. First, all conditional statements have been replaced by
conditional expressions, in order to make their execution time
independent from predicate truth. For instance, the execution
time of a conditional statement in the form
depends on the sign of , because the assignment and the bitwise
complement are performed only if is negative.
On the contrary, assuming that is an 8-b variable, the ex-

ecution time of is constant,
because both sides of the conditional expression have got the
same structure. Then, the expression can subsequently be
used to obtain either itself or the bitwise complement of de-
pending on its sign, again, in constant time.
Moreover, by leveraging a property of the 8B9B encoding and

decoding algorithms, it was possible to write down the code so

4

that all iteration statements are executed a number of times that
only depends on the payload size, rather than contents. All in all,
after both optimizations have been carried out, the code contains
just one loop for the encoder and one for the decoder, and there
is a single execution path within these loops. Both loops are
always executed once for each payload byte to be encoded and
decoded.
The second goal of the optimization was to improve code

performance as much as possible to minimize the additional
end-to-end response time introduced by the encoding and de-
coding process. Three kinds of optimization have been identi-
fied and implemented.
1) Code/Data Placement: Microcontrollers usually support

different kinds of memory such as Flash memory, dynamic
RAM (DRAM), and static RAM (SRAM). Each kind of
memory has its own peculiar behavior in terms of access speed
and determinism. The goal of this optimization step was to
force the toolchain to place the code, data, and stack segments
of the encoding and decoding routines in the most appropriate
place. Even if this is a relatively straightforward decision, most
toolchains are unable to take it autonomously. Moreover, as it
will be better discussed in Section IV, their default placement
rules are far from being optimal.
2) Computed Masks: In the base implementation shown in

[21], several auxiliary arrays hold the bit masks used on every
iteration of the encoding and decoding loop, to split the 9-bit
value obtained from the forward lookup table into two output
bytes during encoding, and join them again during decoding. In
this optimization, the masks have been computed directly, as a
function of the loop index. Since this computation can be carried
out in the processor registers, the extra memory accesses to the
arrays are avoided. The arrays themselves can be deleted to save
memory, too.
3) Load/Store Reduction: The base version of the encoding

algorithm, on each iteration, loads one input byte and stores
some data into two adjacent output bytes. One of the output
bytes overlaps with those of the previous iteration, and hence,
each output byte except the first one is accessed twice. With this
optimization, a local buffer has been introduced to carry forward
the common output byte from one iteration to the next, in order
to store it only once. The decoding algorithm has been optimized
in the same way, too.
Since these optimizations are independent from each other,

each optimization step started from the previous one.

B. Memory Footprint Optimization

The starting point of the memory footprint optimization is the
basic symmetry property of the FLT equation (1). With the help
of this property, as stated in Section II, it is possible to store only
half of the table and reduce its size from 256 to 128 9-b entries.
For efficient access, the size of each FLT entrymust nevertheless
be an integral number of bytes, and hence, each entry actually
occupies 16 b in memory. However, the most significant bit of
the FLT is always zero in the first half of the table, as shown in
Table I, whereas it is always one in the second half. Therefore,
it is not necessary to store this bit explicitly and the FLT can be
further shrunk down to 128 8-b entries, that is, one quarter of its
original size.

The quickest method to revert the 8B9B encoding scheme on
the receiver side is to use a reverse lookup table (RLT) that rep-
resents the inverse of the encoding function . Since is
injective, but not surjective, not every 9-bit pattern actually cor-
responds to a valid encoder output. As a consequence, each RLT
entry must store two distinct pieces of information: an indica-
tion of whether or not the given value of is valid, and the
original data byte, that is, the value of for the given , if any.
The entry size is therefore 9 b, 1 b for the flag, and 8 b for ,
corresponding to 16 b in memory. In turn, the total size of the
full RLT is 512 16-b entries.
As for the FLT, the RLT size can be halved by exploiting sym-

metry, which means that 256 entries are sufficient. Moreover,
when doing so, only the seven least significant bits of each
must be stored explicitly, because the most significant bit of
can be inferred from the most significant bit of . Overall, the
RLT can hence be reduced to 256 8-b entries. Of these, 128 en-
tries correspond to either invalid patterns or the and escape
codes.
Further memory savings would be possible, by noticing

that the numerically lowest valid pattern in the halved FLT is
while the highest is .

This means that only 180 RLT entries must actually be stored in
memory, whereas the others can be inferred by range checking.
However, this opportunity has not been further considered,
because preliminary experiments have shown that the overhead
associated with it would be excessive.

IV. EXPERIMENTAL RESULTS

The performance of the code discussed in Section III has been
evaluated by encoding and decoding a set of uniformly-dis-
tributed, pseudorandom messages of varying lengths. On both
architectures, the time spent in the encoding and decoding rou-
tines, as a function of the payload size , has been measured by
means of a free-running, 32-b counter clocked by the CPU core
clock.
In this way, it was possible to collect a cycle-accurate en-

coding and decoding delay measurement for each message.
Working on a large number of pseudorandom messages was
convenient to single out any data dependency. External sources
of measurement noise were avoided by running the experiments
in a very controlled environment, with interrupts disabled and
unused peripheral devices powered down.

A. Code/Data Placement

A first interesting insight into system behavior is given by
the experiments carried out on the architecture with the
default code/data placement set by the toolchain. On the evalu-
ation board being used, this implies that code, data, and stacks
are stored in an off-chip DRAM. Fig. 2 shows the frequency
distribution of the encoder delay in this case, for a payload size
of and bytes.
The experimental data clearly show that the encoder is un-

acceptably slow, namely, the amount of time needed to encode
a payload of 7 bytes is 15 s on average. At a bit rate of 500
kbps, this corresponds to about . Moreover, the delay is
also affected by a significant amount of jitter, which increases as

5

Fig. 2. Frequency distribution, DRAM-resident encoder delay.

Fig. 3. Encoder/decoder delay, architecture.

grows, and is of the order of 1 s in the worst case. The slow-
ness can be justified by considering that external memory is ac-
cessed by means of a 16-b data bus, to reduce costs. On the other
hand, jitter is due to DRAM refresh cycles, which stall any in-
struction or data access operation issued by the CPU while they
are in progress. For this architecture, both issues were solved by
moving the critical code, data and stack into the on-chip SRAM.
After this was done, all of the subsequent measurements exhib-
ited no jitter.
It must also be remarked that this behavior is not specific to

the architecture, but is just a special case of a more wide-
spread phenomenon. For instance, the architecture exhib-
ited a very similar behavior (not shown in the paper for concise-
ness) when the forward and reverse lookup tables were stored
in Flash memory.
In this case, the jitter was due to a component—known as

Flash accelerator—whose purpose is to mitigate the relatively
large access time of Flash memory (up to five CPU clock cy-
cles), by anticipating future Flash memory accesses. Although

TABLE III
ENCODER/DECODER DELAY MODEL, ARCHITECTURE

the prediction algorithm is quite effective with instruction fetch,
it does not work equally well for forward and reverse table
lookup, and, hence, it introduces a variability in the table ac-
cess time. Like in the previous case, the solution was to force
the compiler to allocate the forward and reverse lookup tables
in on-chip SRAM instead of Flash.

B. Delay Model

Fig. 3 (plots 1–3) shows the outcome of the optimizations dis-
cussed in Section III-A on the architecture. Unlike Fig. 2,
it shows the delay as a function of . The sample distribution is
not shown because, after appropriate code/data placement, the
sample variance was zero in all experiments. In other words,
during the experiments was consistently below the timer res-
olution, that is, one CPU clock cycle.
Intuitively, the delay needed to encode or decode a message,

where is the payload size in bytes, can be modeled by as

if
if

(2)

where is the base delay incurred, regardless of the payload
length, because of the function prologue and epilogue, is the
additional processing time needed to set up the encoding or de-
coding loop when , and is the time needed to process
each byte of the message.
The model parameters have been derived from the experi-

mental data as follows: has been measured directly, has been
obtained by a linear least-squares fit of the experimental data for

, and has been obtained by difference between the ex-
trapolation of the linear fit to the case and . To evaluate
the accuracy of the fit, instead of the commonly used norm of
the residuals, the maximum absolute value of the residuals has
been used, because the worst-case prediction error is of interest
in this case. It is defined as

(3)

where is the measured delay and is the predicted delay
for a given . was not considered in (3), because the case

is handled in a special way by the algorithms.
Table III (rows 1–4) lists the model parameters for the soft-

ware versions presented in Section III-A, derived from the cor-
responding experiments. The first interesting result is that the
prediction error was zero in all cases, that is, the behavior of
the implementation always followed the linear model (2)
perfectly.
On the other hand, the same experiments performed on the

moremodern architecture gave rather different results, even
with the same toolchain configuration and options. They are
shown in Fig. 4 for what concerns the decoder delay, but the

6

Fig. 4. Decoder delay, architecture, loop unrolling enabled.

Fig. 5. Encoder/decoder delay, architecture, loop unrolling disabled.

encoder’s behavior is very similar. Although the sample vari-
ance was still zero in all cases—meaning that the architecture
nevertheless behaved in a fully deterministic way—the clean,
linear relationship between and the encoding/decoding time
of the architecture was lost.
After some further experimentation, the reason of the peculiar

behavior was identified in a compiler optimization, known as
loop unrolling. In this particular scenario, the compiler unrolled
the encoding and decoding loops by a factor of two, and this
gave rise to the up/down pattern in the delays, depending on
whether is odd or even. When this optimization was turned
off linearity was almost completely restored, as shown in Fig. 5
(plots 1–3), at a small performance cost.
Interestingly enough, loop unrolling never took place on the
architecture (Fig. 3). This difference is most probably due

to the different compiler versions in use and to the architectural
dissimilarities between and .
The linear model (2) was then fitted onto the new set of data,

obtaining the results shown in Table IV (rows 1–3). Since

TABLE IV
ENCODER/DECODER DELAY MODEL, ARCHITECTURE

TABLE V
DETAILED ENCODER/DECODER FOOTPRINT FOR ALL CODE VERSIONS

is not zero, perfect linearity was not achieved yet. However,
the values of also show that the worst-case prediction error
of the linear delay model is less than or equal to 42 ns. This
value is likely to be acceptable in most applications, both in
absolute terms (less than 5 clock cycles on the platform)
and when compared with other sources of delay misprediction
in the system as a whole.
It is important to remark again that a delay prediction error

does not imply that there is any uncertainty or jitter in the delay
itself. On the contrary, it only means that the use of a linear
delay prediction from Table IV instead of the actual measured
data plotted in Fig. 5 may introduce a systematic prediction error
less than or equal to .
Regarding raw performance, it is important to remark the ef-

ficacy of the source-level code optimizations described so far.
As shown in Tables III and IV, when combined together, they
brought the encoding time from 0.50 to 0.36 s (28%) per byte
on the architecture. The improvement on the architec-
ture was even better, from 0.32 to 0.21 s (34%) per byte. The
optimizations were less effective, but still remarkable, on the de-
coder: 23% on and 18% on . In absolute terms, the
encoder and decoder loops were both reduced to 26 clock cycles
per byte on and to 21 and 23 cycles, respectively, on .

C. Memory Footprint/Performance Trade-Off

Table V (rows 1–3) lists the footprint of all code ver-
sions presented so far. Unlike the optimizations presented
in Section III-A, the further updates to the code discussed
in Section III-B are not “one-way,” because they entail a
tradeoff between footprint reduction and loss of perfor-
mance/determinism.
For what concerns encoder and decoder table folding, mea-

sured performance results are shown in Figs. 3 and 5 (plot 4).
The corresponding linear delay model parameters can be found
in the fourth row of Tables III and IV. In both cases, the Boolean

7

negation operations needed to fold the table were implemented
by means of the C exclusive OR operator with appropriate bit
masks, to avoid introducing any data dependency in the delay.
Moreover, a last version of the decoding function has been

developed, which checks for invalid patterns and escape
codes—discussed in Section II—in the encoded byte stream.
Although the raw performance of this version ought to be
inferior to the previous ones by intuition, it turns out that—if
the additional checks are carefully coded—the actual overhead
is as small as 0.01 s (1 clock cycle) per byte on . The
overhead on is zero, because the compiler is able to
embed the additional checks in the existing instruction stream.
As can be seen in Table V, the footprint reduction due to table

folding more than offsets the extra code size.

V. PERFORMANCE EVALUATION

8B9B is compared here with the other proposals described in
Section II-A, with respect to encoding efficiency, jitter reduction
capability, and implementation complexity.

A. Encoding Efficiency

The data field in CAN frames—and, typically, the message
payload as well—are encoded on an integral number of bytes.
Hence, the encoding efficiency can be defined as the ratio be-
tween the size of the original payload and the DLC value in
the encoded frame. Only XOR does not cause any overhead. On
the contrary, part of the data field is unavoidably wasted in all
the other approaches. SXP, SXB, SBS, and EEM have been con-
ceived originally for the use with the shared-clock (S-C) syn-
chronization protocol, which means that some additional infor-
mation (slave ID) has to be included in the frame. In order to
carry out a fair comparison we assumed that only the original
payload is encoded in the data field.
As said in Section II, because of the translation process of

the payload into 9-b patterns, the final 8B9B-encoded sequence
is exactly one byte larger than the original payload. In the case
of SXP, only one bit is required in order to specify whether or
not the EXOR is applied to the payload; in practice, this means
that one byte is wasted. Instead, in SXB a bit map has to be
included, which specifies on a per-byte basis if EXOR was ap-
plied. BS should be prevented in this part of the frame also: if
the payload is 5 bytes or less, one byte is sufficient to store the
bit map, which can be encoded at the beginning of the data field
as , where bits , , and have the same
function as the break bit (they are at the opposite level as the pre-
ceding bit), whereas each bit specifies whether or not EXOR
was applied to the byte in position of the payload. If the pay-
load is larger than 5 bytes, the bit map should take two bytes.
This means, in SXB, 6 bytes at most can fit in the payload (7
bytes are also allowed, if no countermeasures are taken to pre-
vent stuff bits in the bit map).
Concerning SBS, one software stuff bit may be required every

three original bits at worst. This case corresponds, e.g., to the
sequence

for the data field, where boxes denote software stuff bits (the
first one takes into account a possible contribution due to the
frame header). A padding is required in SBS at the end of the

TABLE VI
ENCODING EFFICIENCY

encoded bit sequence to make its length fixed. The size of the
data field has to be selected so that the worst case depicted above
can be tackled as well. Finally, in EEM, every byte of the pay-
load is encoded on 11 b as , where
, , and have the same purpose as BB whereas is the

bit in position of the considered byte.
In Table VI the DLC value is shown vs. the original payload

size . As can be seen, the resulting data field in 8B9B is never
longer than the other approaches, except XOR. Moreover, it is
the only solution that is able to encode also 7-byte payloads,
besides SXP (and XOR). If the contribution of stuff bits, which
are possibly added to the data field by the CAN controller, is
taken into account as well, 8B9B, SBS, and EEMmanage to im-
prove, on the average, their encoding efficiency with respect to
EXOR-based approaches. For XOR in particular, the mean trans-
mission time may increase by 1 to 3 bit times [28].

B. Jitter Reduction Capability

The overall communication jitter is made up of two parts,
which are not completely uncorrelated: the former is caused by
BSwhereas the latter depends on the codec. Variations in the en-
coding and decoding times, in fact, lead to additional processing
jitters. Likely, the simpler and shorter the code is, the lower
is. Generally speaking, the first contribution on modern CPUs
is likely to be larger than the latter.
Concerning jitter due to BS, none of the existing approaches

deals with the CRC. Thus, insertion of stuff bits is never pre-
vented completely, which means that jitter can only be lowered
but not removed altogether. The best way to describe jitter is
through the statistical distribution of frame transmission times
over the bus. Two related meaningful quantities are the stan-

dard deviation and worst-case jitter for
any given message stream.
Although an upper bound on jitter can be computed

analytically, its measured value , as well as , depend
heavily on experimental conditions and, in particular, on the
actual traffic (payload size and set of values it may assume).
Several theoretical bounds and statistical indices—including
and —have been computed in [28] for different, realistic

traffic models (each of which defines basically the generation
law of the messages belonging to a set of streams).
The XOR scheme is by far the simplest and fastest approach,

but its performance can be suboptimal—in terms of jitter reduc-
tion capability—when the traffic shows a high degree of ran-
domness. As shown in [18], XOR hardly provides any advantage
in the case the payload contains uniformly distributed random

8

values. The same happens when messages carry analog signals
that do not vary abruptly [28]. On the contrary, XOR adoption
can be advantageous if long sequences of bits at the same value
are likely to be found in the payload, as in the case of packed
digital signals. In this case, a decrease of both and in ex-
cess of 40% could be expected when the payload includes more
than 4 bytes [28]. However, is the same as in plain CAN,
that is, .
The selective XOR scheme SXB is able to show better behavior

than XOR under generic traffic conditions. According to [18],
improvements as high as about 40% (for large messages) can be
achieved on and for random traffic. For the sake of truth,
stuff bits may still be added to the data field in this case: since
one stuff bit may appear at worst on each boundary between
bytes, . Moreover, the codec is more complex,
which means that is likely to increase consequently. The
simpler SXP scheme is not any better than XOR, both in theory
(same) and in practice [18].
SBS, EEM, and 8B9B are all able to ensure that no stuff bit at

all is added to the data field. This implies that both and
are noticeably lower than EXOR-based approaches. Furthermore,
the expected residual jitter is, in theory, almost the same in these
three cases. In fact, the only possible difference among them
depends on bit stuffing carried out on the CRC field. Because
of the way the CRC is computed, it is reasonable to assume that
the number of stuff bits that are added to the messages in each
stream is, on the average, the same, irrespective of payload size,
generation law, and encoding.
A thorough analysis of 8B9B [28] confirms that, as expected,

both the overall jitter due to bit stuffing and its standard
deviation do not depend on the specific characteristics of
the signals carried in the message stream. In particular, in the
experiments never exceeded the theoretical upper bound

while was in the worst case.
By contrast, when using XOR, was as high as

when 8-byte random data are taken into account, whereas
increased to . The improvements achieved by 8B9B are
even higher when analog signals are considered: in this case,
for the same payload size, and in XOR were equal to

and , respectively.
Evaluating is not simple, in that it heavily depends on both

the specific platform and code optimizations. For this reason, a
direct comparison of the results obtained in Section IV with the
figures available in literature (in the order of several tens of mi-
croseconds and even bigger) would not be fair. In principle, the
8B9B codec shall feature a very low because it is concep-
tually simpler than selective XOR, SBS, and EEM. As a conse-
quence, the optimizations outlined in Section III-A can readily
be applied to it without effort.
This is not necessarily true for the other algorithms. For in-

stance, since the insertion of software stuff bits in SBS inherently
depends on an iterative, bit-by-bit inspection of the payload con-
tent, it is conceptually difficult to devise an implementation in
which neither the number of iterations nor the operations done
in each iteration are affected by the payload content itself.
In practice, as discussed in Section IV, we found that it is

indeed possible to reduce the of 8B9B below the measurable
threshold (i.e., less than one CPU clock cycle) on two dissimilar

processor architectures. For all the above reasons, 8B9B is able
to offer on the whole better jitter reduction capability than the
other solutions.

C. Implementation Complexity

This parameter has to do with the codec footprint and (av-
erage) execution time. XOR is by far the simplest and fastest so-
lution, with the smallest footprint. Both SXP and SXB encoders
have to check the presence of primer sequences in the payload.
Decoding is instead much faster.
SBS operates on a bit-by-bit basis on both the transmitter and

receiver’s sides, in order to determine when a software stuff bit
has to be inserted or removed, respectively. On the other hand,
both EEM and 8B9B operate on a byte-by-byte basis, and hence,
they are potentially faster. Because of its intrinsic simplicity,
8B9B is likely able to ensure the shortest execution time, ex-
cluding XOR, together with a small footprint.

VI. CONCLUSION

This paper presented 8B9B, an encoding scheme designed to
prevent bit stuffing within the data field of CAN messages, a
property especially useful in tightly synchronized systems. Al-
though several other methods with the same purpose have been
proposed in the recent past, we believe that 8B9B can outper-
form them when the typical requirements of small embedded
systems are taken into account. Namely, it provides a balanced
blend of determinism, encoding efficiency, codec speed, and
footprint.
The encoding scheme is completely transparent to both the

sending and receiving applications, as well as other mechanisms
aimed at reducing or removing frame-level jitter. Since no as-
sumptions are made on how the payload is used and formatted
by the upper protocol layers, the proposed approach is com-
pletely general-purpose. Moreover, it is possible to apply 8B9B
only to jitter-sensitive messages, because encodedmessages can
coexist with plain ones. In this way, full backward compatibility
is achieved. As is typical in CAN, the distinction between the
two kinds of message can easily be done through the message
identifier. The only limitation is that the payload to be encoded
cannot be larger than 7 bytes.
In order to show that the 8B9B scheme is suitable for practical

use, it has been implemented on two popular families of micro-
controllers and then thoroughly evaluated. The results show that
the code is very fast, exhibits a small memory footprint and does
not introduce any processing jitter. Overall, the proposed mech-
anism can therefore be profitably adopted in existing projects
and solutions, even if the underlying hardware platform has got
a limited processing power.

REFERENCES
[1] ISO 11898-1—Road Vehicles—Controller Area Network (CAN)—Part

1: Data Link Layer and Physical Signalling, , International Organiza-
tion for Standardization, 2003, ISO.

[2] FlexRay Communications System Protocol Specification. ver. 3.0.1,
FlexRay Consortium, Oct. 2010.

[3] P. Martí, J. Yépez, M. Velasco, R. Villà, and J. Fuertes, “Managing
quality-of-control in network-based control systems by controller and
message scheduling co-design,” IEEE Trans. Ind. Electron., vol. 51,
no. 6, pp. 1159–1167, Dec. 2004.

[4] R. A. Gupta and M.-Y. Chow, “Networked control system: Overview
and research trends,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp.
2527–2535, Jul. 2010.

9

[5] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in
networked control systems—A survey,” IEEE Trans. Ind. Inf., vol. 9,
no. 1, pp. 403–416, Feb. 2013.

[6] J. Aweya, “Technique for differential timing transfer over packet net-
works,” IEEE Trans. Ind. Inf., vol. 9, no. 1, pp. 325–336, Feb. 2013.

[7] Y. Xia, J. Yan, P. Shi, and M. Fu, “Stability analysis of discrete-time
systems with quantized feedback andmeasurements,” IEEE Trans. Ind.
Inf., vol. 9, no. 1, pp. 313–324, Feb. 2013.

[8] M. Nahas, M. Short, and M. J. Pont, “The impact of bit stuffing on the
real-time performance of a distributed control system,” in Proc. 10th
Int. CAN Conf., 2005, pp. 10.1–10.7.

[9] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat, “Using bit-
stuffing distributions in CAN analysis,” in Proc. IEEE/IEE Real-Time
Embedded Syst. Workshop, 2001, pp. 1–6.

[10] H. Zeng, M. Di Natale, P. Giusto, and A. Sangiovanni-Vincentelli,
“Using statistical methods to compute the probability distribution of
message response time in Controller Area Network,” IEEE Trans. Ind.
Electron., vol. 6, no. 4, pp. 678–691, Nov. 2010.

[11] G. Rodriguez-Navas, S. Roca, and J. Proenza, “Orthogonal, faulttol-
erant, and high-precision clock synchronization for the Controller Area
Network,” IEEE Trans. Ind. Inf., vol. 4, no. 2, pp. 92–101, May 2008.

[12] M. J. Pont, Patterns for Time-triggered Embedded Systems:
Building Reliable Applications With the 8051 Family of Micro-
controllers. Reading, MA, USA: Addison-Wesley, 2001.

[13] P. Martí, A. Camacho, M. Velasco, and M. El Mongi Ben Gaid,
“Runtime allocation of optional control jobs to a set of CAN-based
networked control systems,” IEEE Trans. Ind. Inf., vol. 6, no. 4, pp.
503–520, Nov. 2010.

[14] ISO 11898-4—Road Vehicles—Controller Area Network (CAN)—Part
4: Time-Triggered Communication, , International Organization for
Standardization, 2004, ISO.

[15] P. Gaj, J. Jasperneite, andM. Felser, “Computer communication within
industrial distributed environment-a survey,” IEEE Trans. Ind. Inf., vol.
9, no. 1, pp. 182–189, Feb. 2013.

[16] D. Gessner, M. Barranco, and J. Proenza, “Design and verification of a
media redundancy management driver for a CAN star topology,” IEEE
Trans. Ind. Inf., vol. 9, no. 1, pp. 237–245, Feb. 2013.

[17] T. Nolte, H. Hansson, and C. Norström, “Minimizing CAN response-
time jitter by message manipulation,” in Proc. IEEE Real-Time and
Embedded Technol. Applications Symp., 2002, pp. 197–206.

[18] M. Nahas and M. Pont, “Using XOR operations to reduce variations in
the transmission time of CAN messages: A pilot study,” in Proc. 2nd
UK Embedded Forum, 2005, pp. 4–17.

[19] M. Nahas, M. J. Pont, and M. Short, “Reducing message-length vari-
ations in resource-constrained embedded systems implemented using
the CAN protocol,” J. Syst. Architecture, vol. 55, no. 5–6, pp. 344–354,
2009.

[20] M. Nahas, “Applying eight-to-eleven modulation to reduce message-
length variations in distributed embedded systems using the Controller
Area Network (CAN) protocol,” Can. J. Electr. Electron. Eng., vol. 2,
no. 7, pp. 282–293, 2011.

[21] G. Cena, I. Cibrario Bertolotti, and A. Valenzano, “An efficient fixed-
length encoding scheme for CAN,” in Proc. 9th IEEE Int. Workshop
Factory Commun. Syst., 2012, pp. 265–274.

[22] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Syst., vol. 35, no. 3, pp. 239–272, 2007.

[23] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “Performance
evaluation and improvement of the CPU-CAN controller interface
for low-jitter communication,” in Proc. 17th IEEE Conf. Emerging
Technol. Factory Autom., Sep. 2012, pp. 1–8.

[24] International Standard ISO/IEC 9899, Programming Languages—C, ,
ISO/IEC, Dec. 1999, 2nd ed..

[25] “LPC24XX User Manual, UM10237 Rev. 2,” NXP B.V., Dec. 2008.
[26] “LPC17XX User Manual, UM10360 Rev. 2,” NXP B.V., Aug. 2010.
[27] R. Barry, Using the FreeRTOS Real Time Kernel—Standard Edition,

1st ed. Raleigh, NC, USA: Lulu, 2010.
[28] G. Cena, I. C. Bertolotti, T. Hu, and A. Valenzano, “Performance

comparison of mechanisms to reduce bit stuffing jitters in Controller
Area Networks,” in Proc. 17th IEEE Conf. Emerging Technol. Factory
Autom., Sep. 2012, pp. 1–8.

Gianluca Cena (SM’09) received the Laurea de-
gree in electronic engineering and Ph.D. degree
in information and system engineering from the
Politecnico di Torino, Turin, Italy, in 1991 and 1996,
respectively.
In 1995, he became an Assistant Professor with

the Department of Computer Engineering, Politec-
nico di Torino. Since 2005 he has been Director of
Research with the Institute of Electronics, Computer
and Telecommunication Engineering, National Re-
search Council of Italy (CNR-IEIIT), where he is en-

gaged in research activities concerning industrial communications and real-time
networks. In these areas, he has authored and coauthored about 100 technical
papers.
Prof. Cena served as Program Co-Chairman for the 2006 and 2008 editions

of the IEEE Workshop on Factory Communication Systems and has been an
associate editor of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS since
2009.

Ivan Cibrario Bertolotti (M’06) received the
Laurea degree (summa cum laude) in computer
science from the University of Turin, Turin, Italy, in
1996.
Since then, he has been a Researcher with the Na-

tional Research Council of Italy (CNR). Currently,
he is with the Institute of Electronics, Computer
and Telecommunication Engineering (IEIIT), Turin,
Italy. He has taught several courses on real-time
operating systems at Politecnico di Torino, Turin,
Italy, has coauthored a book on the same topics, and

serves as a technical referee for primary international conferences and journals.
His current research interests include real-time operating system design and
implementation, industrial communication systems and protocols, and formal
methods for vulnerability and dependability analysis of distributed systems.

Tingting Hu (M’11) received the M.S. degree in
computer engineering from Politecnico di Torino,
Turin, Italy, in 2010, where she is working toward the
Ph.D. degree in information and system engineering.
Since then, she has been a Research Fellow with

the National Research Council of Italy (CNR).
Currently, she is with the Institute of Electronics,
Computer and Telecommunication Engineering
(IEIIT), Turin, Italy. Her primary research interests
concern design and implementation of real-time
operating systems and communication protocols.

She serves as a technical referee for several primary conferences in her research
area.

Adriano Valenzano (SM’09) received the Laurea
degree in electronic engineering from Politecnico
di Torino, Turin, Italy, in 1980.
He is Director of Research with the National Re-

search Council of Italy (CNR). He is currently with
Institute of Electronics, Computer and Telecommu-
nication Engineering (IEIIT), Turin, Italy, where he
is responsible for research concerning distributed
computer systems, local area networks, and com-
munication protocols. He has coauthored approxi-
mately 200 refereed journal and conference papers

in the area of computer engineering.
Dr. Valenzano received, as a coauthor, the Best Paper Award presented at

the Fifth and Eighth IEEE Workshops on Factory Communication Systems
(WFCS 2004 and WFCS 2010). He has served as a technical referee for
several international journals and conferences, also taking part in the pro-
gram committees of international events of primary importance. Since 2007,
he has been serving as an associate editor for the IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS. He is also Vice-President of the Piedmont Chapter
of the Italian National Association for Automation.

10

