
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Self-Learning Classifier for Internet traffic / Grimaudo, Luigi; Mellia, Marco; Baralis, ELENA MARIA; Ram, Keralapura. -
STAMPA. - (2013), pp. 423-428. (Intervento presentato al convegno The 5th IEEE International Traffic Monitoring and
Analysis Workshop (TMA 2013) tenutosi a Torino, IT nel 19 April 2013) [10.1109/INFCOMW.2013.6562900].

Original

Self-Learning Classifier for Internet traffic

Publisher:

Published
DOI:10.1109/INFCOMW.2013.6562900

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2519096 since:

IEEE

Self-Learning Classifier for Internet Traffic
Luigi Grimaudo∗, Marco Mellia∗, Elena Baralis∗, Ram Keralapura+
∗ Politecnico di Torino, Italy. + Narus Inc, Sunnyvale, California.

Abstract—Network visibility is a critical part of traffic en-
gineering, network management, and security. Recently, unsu-
pervised algorithms have been envisioned as a viable alternative
to automatically identify classes of traffic. However, the accuracy
achieved so far does not allow to use them for traffic classification
in practical scenario.

In this paper, we propose SeLeCT, a Self-Learning Classifier
for Internet traffic. It uses unsupervised algorithms along with
an adaptive learning approach to automatically let classes of
traffic emerge, being identified and (easily) labeled. SeLeCT
automatically groups flows into pure (or homogeneous) clusters
using alternating simple clustering and filtering phases to remove
outliers. SeLeCT uses an adaptive learning approach to boost its
ability to spot new protocols and applications. Finally, SeLeCT
also simplifies label assignment (which is still based on some
manual intervention) so that proper class labels can be easily
discovered.

We evaluate the performance of SeLeCT using traffic traces
collected in different years from various ISPs located in 3
different continents. Our experiments show that SeLeCT achieves
overall accuracy close to 98%. Unlike state-of-art classifiers, the
biggest advantage of SeLeCT is its ability to help discovering
new protocols and applications in an almost automated fashion.

I. INTRODUCTION AND MOTIVATION

A critical part of network management and traffic engi-
neering is the ability to identify applications and protocols
originating traffic flows. To provide network visibility, in the
last years several classification techniques have been proposed
(see [1], [2] and references therein). Deep packet inspection
(DPI) [1], and behavioral techniques have been investigated
since the seminal work of [3].

Both approaches share key limitations. First, they require
training, i.e., the availability of a signature, or of a training
set. Second, and most critical, the classifiers can identify
only the specific applications they have been trained for
and they cannot identify new applications, or changes in the
applications’ protocol or behavior, unless an expensive re-
training phase is entered. Designing a classification engine
capable of automatically identifying new emerging protocols
is still an open and challenging research topic.

In this paper, we propose SeLeCT, a novel algorithm that
overcomes the limitations highlighted above. We leverage
unsupervised data mining algorithms to automatically split
traffic into homogeneous subsets (or clusters) by using sim-
ple layer-4 metrics, like segment size and inter-arrival time.
These features are known to carry valuable information for
traffic classification [2]. However, they are known not to

The research leading to these results has received funding from the
European Union under the FP7 Grant Agreement n. 318627 (Integrated Project
”mPlane”)

TABLE I
DATASETS USED FOR PERFORMANCE EVALUATION.

name DateTime Place Type IP Flow
DS-1 Aug05 1pm S.America backbone 108k 527k
DS-2 Sep10 10am Asia backbone 111k 1.8M
DS-3 Aug11 2am Europe access 111k 885k
DS-4 Aug11 5pm Europe access 190k 2.3M

perform well in the context of unsupervised (i.e. clustering)
algorithms [4]. Hence we have to adopt some ingenuity to
improve cluster homogeneity. To overcome the limitation of
previous proposals, we design an iterative clustering procedure
in which a filtering phase follows each clustering phase to
eliminate possible outliers. The filtering phase is based on the
information provided by the server port number which instead
turns out to be hard to include in clustering algorithms.

Using traffic traces collected in different years from various
ISPs located in 3 different continents, we show that SeLeCT
generate clusters with excellent properties: few, and very pure
clusters. This allows to quickly inspect each cluster, allowing
an easy manual labeling of flows.

Once labels are assigned, SeLeCT will automatically inherit
them for classification of future batches. We refer to this
as adaptive or progressive learning since flows labeled in
the past are used to seed the subsequent datasets. Notably,
this will minimize the bootstrapping effort required to label
applications, and manual intervention is required only for the
initial label assignment.

In the data mining community, the semi-supervised learning
approaches were proposed first [5], [6], where labeled data
are mixed to new samples before clustering. Labeled data is
thus exploited to assign labels to unlabeled data. Our labeling
process is similar to [5]. Due to its iterative refinement process,
SeLeCT is particularly suited to model Internet traffic changes,
because it allows a seamless adaptation of the obtained traffic
classes to traffic pattern evolution. In the context of traffic
analysis, [7] is one of the first work that proposes clustering
techniques to obtain insights about the traffic. Then, several
work apply unsupervised methodologies to traffic analysis
problem [4], [8], [9], [10], [11]. However, moderate accuracy
(≤ 80 − 85%) has been achieved so far. Furthermore, few
traffic classes have been considered (e.g., P2P, HTTP, Email,
FTP). For example, in [8] authors leverage the standard k-
means to construct clusters. Then, a semi-supervised algorithm
is proposed where a simple voting scheme is used to extend the
dominant label to the whole cluster. Performance when only
coarse classes are considered shows that, to achieve accuracy
up to 85%, a large number of clusters must be used (≥ 400).
SeLeCT follows similar principles, extending the idea with i)

2

iterative filtering and ii) multi-batch seeding. Both significantly
boost overall performance (accuracy larger than 98%), while
the number of clusters is reduced to less than 150. A similar
idea of an unsupervised algorithm is described in [9]. The
authors leverage the entropy of the packet payload to find out
clusters of traffic, focusing specifically on UDP traffic.

The excellent properties of SeLeCT helped in unveiling
the presence of unknown/undesired classes too (e.g., Apple
push notification, Bot/Trojan, or Skype authentication traffic),
i.e., offering almost automatic and very fine-grained traffic
visibility.

II. PROBLEM STATEMENT AND DATASETS

We consider directed traffic flows as the objects to clas-
sify. A directed flow, or flow for short, is defined as the
group of packets that have the same five tuple F =
{srcIP, dstIP, srcPort, dstPort, protocol}. Note that pack-
ets going in opposite directions belong to two directed flows.
This allows the classifier to work even in presence of asym-
metric routing (backbone networks for instance).

We assume all packets traversing a link are exposed to the
classifier which keeps track of per-flow state. For each flow F ,
a set of features is collected. The goal of SeLeCT is to assign
a proper application to each flow based on the sole knowledge
of the flow feature. In this work, we choose behavioral features
that are well known to carry useful information about the
application and protocol used at the application layer [1], [2].
In particular, we select: (i) The server port srvPrt, (ii) the
length of the first n segments with payload, and (iii) their
corresponding inter-arrival-time1.

Table I summarizes the main characteristics of the datasets
(DS) we use for performance evaluation. We collected four
different traces from access and backbone networks of large
ISPs. Each dataset is a 1-hour long complete packet trace
including the packet payloads. We selected these traces to
create a very heterogeneous benchmark set.

For each trace, we generate two separate datasets - the set
of flows originated by clients (i.e., hosts actively opening the
TCP connection) and the set of flows originated by servers
(i.e., hosts that replied to the connection request). A letter ’C’
(client-to-server) or ’S’ (server-to-client) is appended at the
dataset name when needed.

As mentioned before, only flows that have at least n data
packets are considered by SeLeCT. We checked the fraction
of traffic that SeLeCT targets. As expected, the large majority
of the flows are “mice”, i.e., flows with few packets. For
instance, 90% of client flows have no more than 6 data packets.
However, they account for no more than 1% of the volume
of traffic. Thus, by considering flows that have at least 6
data packets: (i) we allow a richer description of each flow
characteristics (ii) we are discarding the large majority of mice
flows and (iii) we are looking at more than 99% of traffic
volume. Based on these observations, in the rest of the paper
we use n = 6.

1The choice of which feature to use is a matter of optimization. Given the
already excellent performance of SeLeCT, we leave this for future work.

1: Main()
2: Output: set C of labeled clusters
3: S = ∅
4: while (newbatch B) do
5: ProcessBatch(B, S, C, NS)
6: S = NS
7: end while
8: ProcessBatch(B, S, C, NS):
9: Input: Set B of new flows, set S of seeds

10: Output: set C of labeled clusters, set NS of new seeds
11: B′ = B ∪ S {Merge new flow and seeding set}
12: C′ = doIterativeClustering(B′);
13: C = doLabeling(C′);
14: NS = extractSeeds(C);

Fig. 1. SeLeCT Main loop algorithm.

III. THE SELECT ALGORITHM

We consider a scenario in which traffic is sniffed in real
time and new flows enter the system continuously. Flows are
processed in batches. SeLeCT analyzes each batch of newly
collected flows via the ProcessBatch() in Fig. 1. This function
takes in input B, the set of new flows, and S, the set of
seeding flows, i.e., flows already analyzed in past batches for
which SeLeCT was able to provide a label. Its main steps (see
Fig. 1) are (i) clustering batch data to get homogeneous subsets
of flows (function doIterativeClustering()), (ii) flow label
assignment (function doLabeling()), and (iii) extraction of a
new set of seeds (function extractSeeds()). In the following
we detail each step of the batch processing.

A. Iterative clustering: it is the core of SeLeCT. It exploits
the k-means clustering algorithm [12] to group flows into
subsets or clusters which are possibly generated by the same
applications. In this context, it is natural to consider two flows
with similar packet length and inter-arrival time to be close
(i.e., to be likely generated by the same application). However,
the same property does not hold for the srvPort feature. For
instance, two flows directed to port 25 and to port 80 are not
more likely to be similar than two flows directed to port 80 and
to port 62000. The srvPort feature is a nominal feature [12],
thus it cannot be included in Euclidean distance computations.

Still, the srvPort is an important feature for traffic clas-
sification [2]. Two cases can be distinguished: protocols and
applications i) running on one (or more) specific srvPort on
servers, or ii) running on a random srvPort selected by each
server. We denote them as dominatedPort and randomPort
protocols respectively. In both cases, the srvPort carries
valuable information if applied as a filter.

We engineer an iterative procedure to identify clusters of
flows in which the srvPort information is used to filter
elements in each cluster. We devise an iterative process, in
which clustering and filtering phases alternate (see Fig. 3).

1) The filtering procedure: (Fig. 2) Filtering is performed
on a single cluster at a time, the input cluster I. First, doFil-
tering() discards clusters which have less than minPoints
flows to avoid dealing with excessively small clusters. Flows
in these clusters are returned in set U , the set of unclustered
flows (lines 5-7).

The core activity of the filtering procedure is the identifica-

3

1: doFiltering(I, C, U , DP , portFraction, DominatingPhase)
2: Input: cluster I of flows, DominatingPhase flag
3: Output: set C of clusters, set U of noise, set DP

of dominant ports
4: DP = ∅
5: if ||I|| < minPoints then
6: U = U ∪ I; return
7: end if
8: if DominatingPhase then
9: {Processing dominatedPort cluster}

10: if (topPortFreq(I) > portFraction) then
11: C′ = getFlows(I,dp)
12: C = C ∪ C′ {Add the filtered cluster to C}
13: R = I \ C′

14: U = U ∪R {Put discarded flows in U}
15: dp = dominantPort(I)
16: DP = DP ∪ {dp} {Record dominant port}
17: else
18: U = U ∪ I {I flows must be reclustered}
19: end if
20: else
21: C = C ∪ I {I is a good cluster at last}
22: end if

Fig. 2. Cluster filtering algorithm.

tion of dominatedPort clusters (DominatingPhase is true).
To this aim, the srvPort distribution is checked. If the fraction
of flows with the most frequent srvPort in I exceeds the
threshold portFraction, the cluster is a dominatedPort clus-
ter. The flows involving the dominant srvPort are clustered
together and added to the set C of final clusters (line 11-12),
while flows not involving the dominant srvPort are removed
and put in U (lines 13-14). The dominant port dp is included
in the set DP of dominant ports (lines 15-16). If there is no
dominant port, all flows from I are put in U (lines 17-18).

When DominatingPhase is false, randomPort clusters are
handled. In this case, cluster I (with all its flows) is simply
added to the set of final clusters (line 21).

2) The iterative clustering procedure: (Fig. 3) It first itera-
tively generates dominated port clusters, and finally generates
random port clusters. More specifically, the set of flows to be
clustered is processed for itermax iterations. At each iteration
the set U of flows that are not yet assigned to any cluster is
processed (lines 5-12). k clusters are formed using the well-
known k-means algorithm [12] and assigned to C′. Each cluster
in C′ undergoes a filtering phase (lines 8-11), which is looking
for dominatedPort clusters only. The doFiltering() procedure
returns in U flows that do not pass the filter and must be
processed at the next iteration.

After itermax iterations, randomPort clusters are handled.
In this case, the information carried by the dominant port
has been already exploited in previous phases, and the set
of dominant ports DP contains the srvPort that appeared
as dominant in the past. Intuitively, if a srvPort emerged as
dominant port, then flows that have not been already put into
srvPort dominated clusters should be considered outliers.
Hence, all flows involving any port in DP are removed from
U (lines 13-15) before the final clustering and filtering phases
(line 16-20) are completed.

B. Labeling: Once flows have been clustered, the

1: doIterativeClustering(B)
2: Input: Set B of flows to be clustered
3: Output: set of clusters C
4: U = B, DP = ∅
5: for (step=1; step ≤ itermax; step++) do
6: C′ = k-means(U)
7: U = ∅, update(portFraction)
8: for I in C′ do
9: {look for dominatedPort clusters first}

10: doFiltering(I,C,U ,DP ,portFraction,true)
11: end for
12: end for
13: for dp in DP do
14: delFlows(U ,dp) {Discard flows still to DP}
15: end for
16: C′ = k-means(U)
17: for I in C′ do
18: {look for randomPort clusters now}
19: doFiltering(I,C,U ,DP ,0,false)
20: end for
21: return C

Fig. 3. Iterative clustering algorithm.

doLabeling(C′) procedure assigns a label to each cluster. For
each cluster I in C′, flows are checked. If I contains some
seeding flows, i.e., flows (belonging to S) that already have a
label, a simple voting scheme as in [8] is adopted: the label
with the largest frequency will be extended to all flows in I,
possibly over-ruling a previous label for other seeding flows.
More complicated voting schemes may be adopted (e.g., by
requiring that the most frequent label wins by 50% or more).
However, performance evaluation shows that the homogeneity
of clusters produced by the iterative clustering procedure is so
high that simple schemes work very nicely in practice.

1) Bootstrapping the labeling process: If no seeding flows
are present, I is labeled as “unknown” and passed to the
system administrator that should manually label the cluster.
This will clearly happen during the bootstrapping of SeLeCT,
when no labeled flows are present.

To address this issue, several solutions can be envisioned.
For example, labels can be manually assigned by using the
domain knowledge of the system administrator, supported by
all the available information on the flows in the cluster (e.g.,
port number, server IP addresses or even the flow payload, if
available). We show how easily this can be done in Sec. V.
A second option is to use a bootstrapping flow set from some
active experiments in which traffic of a targeted application
is generated. Similarly, a set of bootstrapping flows can be
generated by providing labels obtained by some other available
traffic classification tools, e.g., any DPI tool.

In all cases, the complexity of the labeling process is
reduced to the analysis of few clusters, instead of hundred
of thousands of flows. Notice that this process is particularly
easy for port dominated clusters, for which the port number is
expected to carry a lot of valuable information. We illustrate
this in Sec. V. This mechanisms can be also automated as
suggested by [13], but this is outside the scope of this paper.

C - Self-seeding: Once some clusters have been labeled,
SeLeCT is able to automatically reuse this information to
process next batches. This is simply achieved by extracting

4

some seeding flows from labeled clusters by means of the
extractSeeds(C) procedure. To avoid the bias due to classes
having much more flows than others (unbalanced classes), we
support the adoption of a proportional sampling technique.
Let numSeeds be the target number of seeding flows, i.e.,
numSeeds = ||NS||. For each labeled cluster I, a number
of labeled flows proportional to the cluster size is extracted at
random. That is ||I|| ||NS||

||C|| flows are randomly selected. This
simple sampling process guarantees that all clusters will have
a number of representatives in NS that is proportional to the
cluster size. This mechanism enforces a self training process
that allows the system to grow the set of labeled data and thus
augment the coverage of the classification process.

IV. EXPERIMENTAL RESULTS

We use two separate advanced DPI classifiers to label
flows and use these labels as our ground truth: NarusInsight2

professional tool, and Tstat [14]. A total of 23 different
protocols are identified including web (HTTP/S, RTSP, TLS),
mail (SMTP/S, POP3/S, IMAP/S), chat (XMPP, MSN, YA-
HOOIM), peer-to-peer (BitTorrent, eMule, Gnutella, Fasttrack,
Ares) and other protocols (SMB, FTP, Telnet, IRC). Flows that
do not match any of the DPI rules or that DPIs label differently
are labeled as “unknown”. Each dataset has a different share
of application labels, with a typical bias toward most popular
protocols like HTTP and/or P2P that dominate the datasets;
we do not report these details for the sake of brevity. In order
to evaluate classification performance, we use standard metrics
such as overall accuracy, recall, and precision.

Extensive parameter sensitivity analysis has been carried
out and is provided in [15]. In the rest of this section, we
report the main results considering the following parame-
ter settings: Batch size ||B|| = 10, 000, number of flows
used for seeding numSeeds = 8, 000, minPoints = 20,
itermax = 3, portFraction = 0.5 for step < itermax, and
portFraction = 0.2 for step itermax. In general, parameter
setting results robust and intuitive to tune. For the k-means
algorithm, we set k = 100, number of iterations smaller than
1, 000, 000 and, to avoid the initial centroid placement bias,
we execute 10 independent runs and select the one with the
best Sum of Squared Errors (SSE) [12].

A. Iterative clustering performance: We first evaluate the
benefits of the iterative clustering procedure in SeLeCT when
compared to the clustering algorithm that was proposed in [8]
which is based on the classical k-means3. Experiments here
consider, for each dataset, the first batch of 10, 000 flows only.
The labeling process uses the DPI labels; the majority label is
extended to all flows in a cluster (again, mimicking [8]). Once
flows in each cluster have been labeled, the overall accuracy is
computed by comparing the assigned labels versus the original
DPI labels. Fig. 4 reports results for all datasets. It highlights
the benefit of the iterative clustering process for which the
accuracy is about 97.5% on average, with a worst case of

2http://www.narus.com/index.php/product/narusinsight
3We tested other clustering algorithms like DB-SCAN or x-means. Results

are similar or worse, with a trickier sensitivity to parameter settings.

 70

 75

 80

 85

 90

 95

 100

1C 2C 3C 4C 1S 2S 3S 4S

A
cc

ur
ac

y
[%

]

Dataset

k-means SELECT

Fig. 4. Accuracy of the clusters for classic k-means and SeLeCT.

94.2% for DS-3C. The simple k-means adopted in [8] results
in no more than 85% accuracy, which is in line to the findings
in [8]. In some scenarios, the iterative clustering we propose
boosts clustering homogeneity from 80% up to 99.5% (e.g.,
for DS-1S).

An interesting observation in Fig. 4 is that the Server
datasets show better accuracy than the Client datasets. The
intuition is that server responses have more peculiar lengths
than client queries, e.g., HTTP responses are different from
SMTP banners length.

Investigating further the reason for such poor performance
of the k-means algorithm, we have observed that it tends to
suffer from capture effects, i.e., samples of classes with small
number of elements are not identified and are mixed into the
clusters of the most popular classes. SeLeCT instead is able to
filter out outliers from port-dominated cluster. These outliers
are then successfully processed in the next phases to form
clusters of less predominant classes (see [15] for more details).

Furthermore, we observed that SeLeCT is more robust
than the DPI-based classifier because layer-4 features are
less sensitive to small feature changes that the DPI pattern
matching rules. For example, a simple character change in the
protocol signature was able to fool the DPI which mislabeled
some SMTP flows as unknown in the DS-2 where the SMTP
banner included some non-English pattern.

B. Interesting findings enabled by SeLeCT: We investigate
clusters whose DPI inherited label is “Unknown” for all
datasets. In more details, SeLeCT identified the following
clusters among “Unknown” flows4 used as oracles:
• srvPort = 1755 - the Microsoft Media Server (MMS)
protocol is found in DS-1;
• srvPort = 1863 - the Microsoft Messenger (MSN)
protocol is found in all datasets;
• srvPort = 1935 - the Macromedia RTMP protocol is
found in DS-3 and DS-4;
• srvPort = 5223 - the Apple push notification server over
TLS is found in DS-3 and DS-4;
• srvPort = 5152 - Backdoor.Laphex.Client traffic is found
in DS-1;
• srvPort = 12350 - the Skype proprietary authentication
protocol is found in DS-3 and DS-4;

Label correctness for the first three clusters has been
confirmed by manually inspecting the flow payload in each

4Some DPI signatures are present in the DPI tools, but revealed to be
ineffective due to the nature of the traces, e.g., asymmetry in routing, or
different patterns due to non-English customization of protocols.

5

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
[%

]

Batch

DS-1C
DS-1S
DS-2C
DS-2S

DS-3C
DS-3S
DS-4C
DS-4S

Fig. 5. Accuracy over different batches.

cluster. For these protocols, DPI would be a viable solution
if i) correct and ii) properly customized to the monitored
network signatures were provided. Even more appealing is
the ability of SeLeCT to automatically reveal traffic generated
by novel services that appear as real unknown to the network
administrator. This is the case of the Apple Push Notification
system for iOS and iCloud enabled devices, which is based
on the SSL/TLS protocol, but running on srvPort = 5223.
All flows in this cluster are labeled by the DPI as SSL/TLS
protocol. To find the correct label, a whois lookup for the
srvIP addresses reveals that the servers are all registered
to Apple Inc. Active experiments confirm that this cluster is
related to Apple Push Notification and iCloud services.

A second cluster of unknown flows aggregates traffic gen-
erated by the malware Backdoor.Laphex.Client Bot/Trojan.
Manual inspection of flows payload confirms this assumption.
Finally, a cluster of flows directed to srvPort = 12350 turns
out to unveil Skype Authentication protocol traffic. Also in this
case, the srvIP reveals strong clues about the application. All
flows are directed to srvIP in the subnet 213.146.189.0/24,
registered to Skype Inc.

Overall, we were able to find labels for about 90% of
unlabeled clusters. The remaining 10% of clusters contains
flows that appear to be encrypted, and for which the IP
addresses point to ranges dynamically assigned to customers
hosts/modems by ISPs. We suspect those could be Skype
flows, but we are not able to confirm this assumption.

These examples confirm the ability of SeLeCT to auto-
matically reveal new classes of traffic that would be hard to
highlight by means of any supervised technique. Once SeLeCT
is augmented with this knowledge by injecting these labels,
flows are correctly classified in all subsequent batches thanks
to the seeding mechanism.

V. EXPLORING THE SEEDING PROCESS

We are interested now in analyzing the performance of the
seeding process. We run SeLeCT on ten successive batches
of flows. As previously done, the bootstrapping at batch 1
is initialized using the DPI labels. Then, for the subsequent
batches, extractSeeds() is used to seed the labeling process
from batch n to batch n+ 1.

A. Self-seeding: Fig. 5 shows the results for all datasets.
First, notice how the accuracy of SeLeCT is very high and sta-
ble over time for all server datasets. For DS-3C and DS-4C, the
accuracy slightly decreases over time. For instance, in DS-3C
it decreases to about 90% during the first 7 batches, then it

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l [

%
]

Batch

S=1
S=2
S=3

Fig. 6. eMule recall when only S labeled clusters are used at bootstrap.

stabilizes. Investigating further, we notice that both recall and
precision of SeLeCT are permanently higher than 98% for all
classes of traffic except for BitTorrent and eMule protocols.
This is a desirable property, since confusion actually happens
among P2P protocols only. The relative higher fraction of P2P
traffic in the DS-3C (collected at 2am) results in a global
decrease in the overall accuracy. For the DS-4C (referring to
peak time), the fraction of P2P flows is smaller than during
the night and thus it has less impact on the overall accuracy.

Finally, for DS-4S, the scenario with the highest flow arrival
rate, SeLeCT was able to complete the processing of batch n
before the collection of flows of batch n + 1 was complete,
thus enabling real-time operation. While we acknowledge that
more thorough testing and implementation should be done to
validate the scalability of SeLeCT, this result confirms that
the processing time required by SeLeCT is small enough to
be considered for live deployment.

B. Bootstrapping: As we noted before, SeLeCT requires
manual intervention to provide labels to clusters. When a label
for a few flows is introduced, SeLeCT will carry it on for
future classification. We now investigate how difficult it can
be to manually bootstrap the system. We assume that a network
operator is offered clusters of flows, and s/he has to use her/his
domain knowledge to provide labels.

We consider the DS-4S trace, ignore all the DPI labels, and
provide no labels to SeLeCT. At the end of the first batch, the
operator has to analyze the clusters that have been formed to
label them.

To assign a label, the information provided by the srvPort
for dominatedPort clusters provides to be very valuable. In
addition to clusters dominated by well-known ports (whose
label is trivial to assign), SeLeCT naturally creates some
clusters whose protocol was not even known to the DPI, e.g.,
a cluster dominated by port 5223 that is used by Apple push
notification services, or port 12350 cluster that contains flows
going to Skype Inc. managed servers. As we have seen in the
previous section, labeling dominatedPort clusters is very easy.

The analysis of randomPort clusters is expected to be more
complicated since the srvPort information is, by construction,
providing limited information.

Nonetheless, srvPort analysis still provides vital clues
about the protocol when analyzing the port number frequency
distribution by considering all flows in a cluster together.
For instance, consider a P2P protocol in which the user can
manually change the port used by the application, e.g., eMule.
It is very likely that the port the user would choose is “similar”

6

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8 9 10
A

cc
ur

ac
y

[%
]

Batch

DS-4S

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on
 [%

]

Batch

HTTPS
POP3

Fig. 7. New protocols suddenly appear: HTTPS traffic is added at batch 3,
and POP3 traffic is added at batch 6 in DS-4S.

to the default number offered by the application, therefore
biasing the port frequency distribution. Consider a cluster in
which the topmost ports are 4664, 4661, 8499, 7662, 6662,
5662, 4663, 64722, . . . The intuition suggests to label flows
in that cluster as eMule whose default port is 4662 (which
turns out to be the correct label). On the contrary, clusters in
which port numbers are uniformly distributed clearly suggest
that the application itself is enforcing a random port selection,
as done, e.g., by most popular BitTorrent applications. Some
domain knowledge coupled with ingenuity allows to easily
assign a proper label also in this case.

In general, and unlike traditional per-flow analysis, the
inspection of clustered flows simplifies the identification of
labels since all flows in a cluster share a common threat and
thus can be analyzed in parallel.

C. Seeding evolution: To show the ability of SeLeCT to
increase its knowledge over time, we perform the following
experiment. Consider DS-4S and focus on the eMule flows
not having the default 4662 srvPort (which are clustered as
dominatedPorts clusters). At the end of batch 1 processing,
only the largest S randomPort clusters are manually labeled
as eMule (e.g., by checking the port number distribution as
above). Labeled flows are then used to bootstrap the seeding
process. Fig. 6 reports the recall evolution over the different
batches for different values of S. For S = 3, SeLeCT already
achieves 98% of recall at batch 10. Worst case precision
is 98.6%. Notice that the seeding process is successfully
bootstrapped even if only S = 1 cluster is used as initial
seed, even if with slower convergence time.

We now perform another experiment in which we simulate
the sudden appearance of a new class of traffic. We consider
the DS-4S trace, from which we removed all POP3 and
HTTPS flows. Then, during the third and sixth batch, HTTPS
and POP3 traffic is injected to simulate the sudden birth of
new protocols. We run SeLeCT over all 10 batches. Results are
reported in Fig. 7. The top plot reports the overall accuracy,
while the bottom plot reports precision, respectively. Notice
how SeLeCT rapidly detects the presence of new traffic
classes. In particular, at batch 3, accuracy severely drops
since HTTPS flows are mislabeled as “Unknown”. At batch
4, HTTPS bootstrapping is performed, and accuracy returns to
97.5%, and HTTPS precision and recall approach 100%.

The same transient is observed when POP3 flows are in-

jected. Being their number small, the impairment on accuracy
is less evident. From batch 7 on, the bootstrapping of the POP3
protocol is completed so that accuracy, recall (and precision)
get back to excellent values.

These examples show how easy is to augment network
administrator visibility by providing homogeneous clusters of
flows whose analysis is much easier, due to the aggregated
information provided by the flows in the cluster.

VI. CONCLUSIONS

In this paper we presented SeLeCT, a semi-automated In-
ternet flow traffic classifier which leverages unsupervised clus-
tering algorithms to automatically groups flows into clusters.
SeLeCT significantly improves the performance and coverage
of previous proposal by alternating clustering and filtering
phases. Cluster labeling is easily bootstrapped using several
approaches, including simplified human-in-the-middle. Once
labels for some flows are provided, SeLeCT inherits them
to automatically label new clusters. Furthermore, it adapts
the model to traffic changes, and it is able to increase its
knowledge.

Extensive experiments showed that SeLeCT achieves excel-
lent performance: Accuracy is close to 98% in most datasets,
with worst case still higher than 90%. SeLeCT proved able to
automatically expose classes of traffic that even an advanced
DPI-based classifier was ignoring.

REFERENCES

[1] T. Nguyen, G. Armitage. A Survey of Techniques for Internet Traffic
Classification using Machine Learning. IEEE Communications Surveys
and Tutorials, vol. 10, no. 4, 2008.

[2] H.Kim, KC.Claffy, M.Fomenkov, D.Barman, M.Faloutsos, K.Lee. In-
ternet traffic classification demystified: myths, caveats, and the best
practices. ACM CoNEXT, Madrid, SP, 2009.

[3] T. Karagiannis, D. Papagiannaki, M. Faloutsos. Blinc: Multilevel traffic
classification in the dark. ACM SIGCOMM, Philadelphia, PA, 2005.

[4] J. Erman, M. Arlitt, A. Mahanti. Traffic classification using clustering
algorithms. ACM SIGCOMM, Pisa, IT, 2006.

[5] A. Demiriz, K. Bennett, M. Embrechts. Semi-supervised clustering using
genetic algorithms. ANNIE 99, St. Louis, MO, 1999.

[6] R. Dara, S.C. Kremer, D.A. Stacey. Clustering unlabeled data with
SOMs improves classification of labeled real-world data. IEEE IJCNN,
Honolulu, HA, v.3, pp.2237/2242, 2002.

[7] A. McGregor, M. Hall, P. Lorier, J. Brunskill. Flow clustering using
machine learning techniques. PAM 2004, Antibes, FR, 2004.

[8] J.Erman, A.Mahanti, M.Arlitt, I.Cohen, C.Williamson. Offline/realtime
traffic classification using semi-supervised learning. Perform. Eval., v.64,
n.9-12, pp.1194-1213, 2007.

[9] A.Finamore, M.Mellia, M.Meo. Mining unclassified traffic using auto-
matic clustering techniques. TMA 2011, Vienna, Austria, 2011.

[10] L. Bernaille, R. Teixeira, K. Salamatian. Early application identification.
ACM CoNEXT, Lisboa, PT, 2006.

[11] Y. Wang, Y. Xiang, S. Yu. An automatic application signature con-
struction system for unknown traffic. Concurrency and Computation:
Practice and Experience 2010, vol.22, pp.1927-1944, 2010.

[12] P.N. Tan, M. Steinbach, V. Kumar, others. Introduction to data mining.
Pearson Addison Wesley Boston, 2006.

[13] I.Trestian, S.Ranjan, A.Kuzmanovic, A.Nucci, Googling the Internet:
Profiling Internet Endpoints via the World Wide Web. IEEE/ACM
Transactions on Networking, v.18, n.2, pp.666-679, 2010.

[14] A.Finamore, M.Mellia, M.Meo, M.Munafo, D.Rossi, ”Experiences of
Internet traffic monitoring with tstat,” Network, IEEE, vol.25, no.3, 2011.

[15] L.Grimaudo, M.Mellia, E.Baralis, R.Keralapura, ”TR-291112 - SE-
LECT: Self-Learning Classifier for Internet Traffic”, submitted to
IEEE Transactions on Networking, http://www.tlc.polito.it/mellia/TR-
291112.pdf.

