
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FEMIP: A high performance FPGA-based features extractor & matcher for space applications / DI CARLO, Stefano;
Gambardella, Giulio; Prinetto, Paolo Ernesto; Rolfo, Daniele; Trotta, Pascal; Lanza, L.. - STAMPA. - (2013), pp. 1-4.
(Intervento presentato al convegno 23rd International Conference on Field programmable Logic and Applications (FPL)
tenutosi a Porto, PT nel 2-4 Sept., 2013) [10.1109/FPL.2013.6645606].

Original

FEMIP: A high performance FPGA-based features extractor & matcher for space applications

Publisher:

Published
DOI:10.1109/FPL.2013.6645606

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2519044 since:

IEEE

FEMIP: A HIGH PERFORMANCE FPGA-BASED FEATURES EXTRACTOR & MATCHER
FOR SPACE APPLICATIONS

Stefano Di Carlo, Giulio Gambardella,
Paolo Prinetto, Daniele Rolfo, Pascal Trotta
Dipartimento di Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi 24

I-10129, Torino, Italy
email: {name.familyname}@polito.it

Piegiorgio Lanza

ThalesAlenia Space Italia S.p.a.

Strada Antica di Collegno 253
I-10146, Torino, Italy

email: piergiorgio.lanza@thalesaleniaspace.com

ABSTRACT

Nowadays, Video-Based Navigation (VBN) is increasingly
used in space-applications. The future space-missions will
include this approach during the Entry, Descent and Land-
ing (EDL) phase, in order to increase the landing point pre-
cision. This paper presents FEMIP: a high performance
FPGA-based features extractor and matcher tuned for space
applications. It outperforms the current state-of-the-art, en-
suring a higher throughput and a lower hardware resources
usage.

1. INTRODUCTION

VBN is a well-studied area of computer vision, embracing
several application fields, including robotics, unmanned ve-
hicles, avionics [9] and, more recently, space-applications.
Space-missions are increasingly resorting to VBN systems
to assist and enhance the precision of the EDL phase of
space modules.
VBN extracts geometrical information from a set of real-
time sampled images, performing two distinct computational
tasks: Features Extraction and Matching (FEM) and Motion

Estimation. During FEM, interesting features (e.g., corners
or edges) of each image are extracted; features that match
between two consecutive images are then identified. FEM
is a very computational-intensive task and it must be per-
formed at a high frame rate to assure high precision. Very
efficient hardware accelerators are therefore mandatory to
ensure the required performances.
Several feature extraction algorithms have been proposed in
the literature (e.g., Beaudet, SUSAN, Harris, SURF) [11].
The Harris corner detector is the best trade-off between pre-
cision and complexity. It is therefore a good candidate to be
implemented as a hardware accelerator block.
This paper proposes FEMIP, a high performance FPGA-
based FEM IP-core based on the Harris algorithm and op-
timized for being used in space EDL systems.

Only few publications proposed FPGA-based implementa-
tions of the Harris algorithm. Benedetti et al. [1] presented
a very high speed hardware architecture (i.e., 30 fps output
frame rate). However, their solution requires the parallel
use of four FPGAs and is therefore not suitable for space-
applications. Cabani et al. presented in [2] an interesting
scale-invariant implementation of Harris. However, area oc-
cupation is not well-optimized.
To the best of our knowledge, the state-of-the-art solution
has been developed in the framework of the ESA NPAL Project

[5]. It provides good performances in terms of resources
utilization and output frame rate (20 fps). Nonetheless, it
requires an external co-processor to perform the matching
phase. The present paper overcomes these limitations, propos-
ing a high performance FEM architecture able to process
images at up to 33 fps, with very limited hardware resources
and without resorting to external co-processors.
The rest of the paper is organized as follows. In Section 2
FEMIP and its internal architecture are described; in Sec-
tion 3 experimental results are reported and finally, Section
4 summarizes the main contributions and concludes the pa-
per.

2. FEMIP ARCHITECTURE

FEMIP gets a 32-bit input stream representing 1024x1024
grey scale images with 10 bit per pixels (bpp) resolution, as
provided by almost all space-qualified CMOS cameras [3].
It provides a set of features that match between two consec-
utive images. FEMIP internal structure includes three func-
tional blocks: Gaussian Filter, Harris Features Extractor,
and Features Matcher.

2.1. Gaussian Filter

The Gaussian Filter performs Gaussian smoothing [7] of the
input image. It reduces the level of noise in the image, im-
proving the accuracy of the feature extraction algorithm. In

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

our architecture, Gaussian filtering is performed via a 2D-
convolution of the input image with a 7x7 pixels Gaussian
kernel mask [7]. A 7x7 kernel is enough to forcefully re-
duce the noise that strongly affects images taken in space
environments. Fig. 1 shows the optimized architecture of
the Gaussian Filter.

Fig. 1: Gaussian Filter internal architecture

The Splitter gets the image flow through the 32-bit FEMIP
input interface and unpacks it in order to reconstruct the
original 10-bit pixel flow. Images are received in a raster for-
mat, line-by-line from left to right and from top to bottom,
without any control or padding bit. Pixels are then sent to
the Smart Write Dispatcher (SWD), that stores them inside
the Rows Buffer (RB) before the actual convolution compu-
tation. RB is composed of 7 FPGA Block-RAMs (BRAMs)
[12], each one able to store a full image row. The number of
rows of the buffer is dictated by the size of the used kernel
matrix (i.e., 7x7). Image rows are buffered into RB using a
circular policy, as reported in Fig. 2.
The Smart Reader Dispatcher (SRD) works in parallel with
SWD, retrieving a set of consecutive 7x7 image blocks from
RB, following a sliding window approach.
The SRD activity starts when the first 7 rows of the image
are loaded in RB. At this stage, pixels of the central row
(row number 4) can be processed and filtered. It is worth
to remember here that, using a 7x7 kernel matrix, a 3-pixel
wide border of the image is not filtered, and related pixels
are therefore discarded during filtering. At each clock cycle,
a full RB column is shifted into a 7x7 pixels Sliding Win-

dow Buffer (SWB), composed of 49 10-bit registers. After
the 7th clock cycle, the first image block is ready for con-
volution. The Computation Stage (CS) convolves it by the
Kernel Mask and produces an output filtered pixel. At each
following clock cycle, a new RB column enters the SWB
and a new filtered pixel of the row is produced.

(a) 1st to 7-th row received (b) 8-th image row received

Fig. 2: Smart Write Dispatcher operations. (i,j) indicates
pixel coordinates.

While this process is carried out, new pixels continue to feed
RB through SWD, thus implementing a fully pipelined com-
putation. When a full row has been filtered, the next row can
be therefore immediately analyzed. However, according to
the circular buffer procedure used to fill RB, the order in
which rows are stored changes. Thus in order to provide the
pixel in the right order to the Computation Stage, the SRD
includes a dynamic connection network with the SWB. This
network guarantees that, while rows are loaded in RB in dif-
ferent positions, SWB is always fed with an ordered column
of pixels (See Fig. 3). The Computation Stage performs the

Fig. 3: SRD behavior example. Pixel (5,4) is elaborated and
filtered.

7x7 matrix convolution using the MUL/ADD tree architec-
ture presented in [4]. The tree executes 49 multiplications
in parallel and then adds all 49 results. It contains 49 mul-
tipliers and 6 adder stages, for a total of 48 adders. Adders
and multipliers must support fixed-point representation, be-
cause the used kernel values are fractional numbers. Kernel
factors are represented in the 0.15 format, assuring a mini-
mal error introduced by the fixed-point approximation. All
filtered pixels, represented in 10.15 bit format, are sent both
to the Harris Features Extractor and to an external memory
via a second 32-bit output interface. Storing filtered pixels
in an external memory is mandatory since this information
is needed during the following features matching phase.

2.2. Harris Features Extractor

The Harris Features Extractor implements the Harris corner
detection algorithm [8], and applies it on the filtered pixels
received from the Gaussian Filter block. It outputs a set of
extracted features represented as: feature coordinates and
the related R-factors (i.e., each R-factor quantifies the ro-
bustness of each extracted feature).
The Harris corner detector algorithm is computed through
a fully parallelized and pipelined architecture in order to
strongly speed up the computation. In this way, this mod-
ule is able to compute an R-factor each clock cycle.
Just the features whose R-factor is greater than a given thresh-
old are provided in output. This guarantees that only the fea-
tures that potentially represent a real corner are propagated
to the next module.
The value of the threshold strongly depends on the image

environment type (e.g., Mars or Moon) and condition (e.g.,
brightness, noise or contrast). To increase adaptation, a self-
adaptive threshold is computed frame by frame.
The threshold is computed for the next image based on in-
formation on the current image. This is acceptable since,
thanks to the high frame rate achievable by our architecture,
consecutive frames show marginal differences. Obviously,
at startup, to output a valid threshold some cycles are re-
quired. During this phase, the Features Matcher is unable
to produce useful results. However, an experimental cam-
paign on a set of planetary images provided by Thales Ale-

nia Space S.p.a., highlighted that the maximum number of
frames required to reach a stable threshold is relatively small
(i.e., 9 frames). After this transitory phase, the threshold be-
comes stable and the Features Matcher can start processing
the extracted features.

2.3. Features Matcher

The Features Matcher (Fig. 4) receives the features extracted
by the Harris Feature Extractor and finds the set of features
that match in two consecutive images.

Fig. 4: Features Matcher internal architecture

This module adopts two different optimization strategies.
The former concerns the matching task, that is performed
exploiting un-normalized Cross-Correlation. In this context
the high frame rate leads to negligible differences in the con-
ditions (e.g., brightness or contrast) of two consecutive im-
ages. Thus, the usage of un-normalized Cross Correlation
does not introduce any error in the matching task. In ad-
dition, if compared to a NCC approach [13], it leads to a
very simple hardware implementation, providing a signifi-
cant gain in FPGA resources utilization and throughput.
The latter concerns the selection of potentially correlated
features. Analyzing the speed of a space-module during the
descending phase, and considering the high input frame rate
used to sample images, we identified that a feature can per-
form a maximum movement of 17 pixels between two con-
secutive images [10]. Thus, two features can be considered
as potentially correlated if they are both in a 35x35 pixel
neighborhood between the two considered images. Cross-
Correlation is therefore computed on these features, only.
The Features Matcher receives feature coordinates and as-

sociated R-factor from the Harris Feature Extractor, and
stores them in the Features Buffer (FB), implemented as a
group of BRAMs.
Whenever an entire image is processed and all features are
stored in FB, the 3x3 Non-Max Suppressor scans, for each
feature, a 3x3 pixels neighborhood looking for close fea-
tures. If they are found, just the feature with the highest
R-factor in this region is marked as valid. To speed up this
operation, that would require a complete search into FB, we
observed that, in our experimental campaign, no more than
10 features per image row have been identified. Thus, con-
sidering that features are obtained analyzing the image row
by row and then saved into FB, a neighbor feature will be
for sure stored in a (+20, -20) region of FB, centered on the
considered feature. This allows us to reduce the neighbor
search space and therefore to dramatically decrease the exe-
cution time, without increasing area occupation.
The NMS Buffer is composed of two sub-buffers (Frame 1

Features buffer and Frame 2 Features buffer) that are alter-
natively used to internally store features associated with two
consecutive images.
The Correlation Controller scans the Frame 1 Features buffer
and the Frame 2 Features buffer and compares the coordi-
nates associated with a feature contained in one of the two
buffers with all the coordinates in the other buffer. When-
ever two potentially correlated features are found, their un-
normalized Cross-Correlation is computed using the inten-
sity of all pixels contained in the two 11x11 pixels windows
surrounding the two correlated features.
The 11x11 window related to the first feature is loaded into
the Patch Register. Then, while the window associated to the
feature of the second image is loaded, the cross-correlation
is computed ”on-the-fly”. Each time a new pixel is received
from the external memory, it is subtracted from the corre-
sponding pixel of the first image, that is already stored in
the Patch Register. This operation is performed by the Com-

putation module that contains a 25-bit subtractor connected
to an accumulator. This approach makes the area occupa-
tion of this module independent from the correlation win-
dow dimension, making the designer free to select the more
appropriate correlation window without any area occupation
penalty.
Finally, the Cross-Correlation results are thresholded, in or-
der to eliminate fake-matchings. If the calculated Cross-
Correlation value is less than a given threshold, the coor-
dinates of the correlated features are stored inside the inter-
nal Matched Buffer. This buffer is able to store up to 512
matched features pairs.
Moreover, since a feature of the first image can be corre-
lated to several features of the second image, only the match
that has the lowest Cross-Correlation value (i.e., the highest
probability to be correlated) is considered valid. This en-
sures unique matched pairs, and higher quality of matches.

3. EXPERIMENTAL RESULTS

To evaluate the hardware resources usage and the timing
performances, the proposed architecture has been synthe-
sized resorting to Xilinx ISE Design Suite 14.4 on a space-
qualified Xilinx Virtex 4-QV VLX200 FPGA device. Post
place and route simulations have been done with Modelsim
SE 10.0c. Table 1 compares the performances and the area
occupation of FEMIP w.r.t. the actual state-of-the-art im-
plementation (FEIC)[5] [6]. Slices and Internal memory of
FEIC are reported for a Virtex II device (as in [6]), but the
slice and memory architectures are the same as in Virtex
4 family devices. The reported data confirm the great im-
provements of FEMIP, both in terms of resources usage and
speed (i.e., frames per second (fps)).

Table 1: Resource Usage for Xilinx XQR4VLX200 Virtex 4

FPGA device

Resource Usage Max. Speed

Slices Internal Memory [KB] [fps]

FEMIP 9,801 76.5 33

FEIC [6] 25,344 162.5 20

Improvements -61.3% -52.9% +65%

To verify the correctness of the implementation, a software
model of FEMIP, written in MATLAB, has been developed.
The model reflects exactly the fixed-point data parallelism
adopted in the hardware implementation. Results extracted
from hardware simulations have been compared with the
ones taken from the MATLAB simulation, and equivalence
has been verified.
Finally, in order to evaluate the overall performances of the
proposed architecture, two parameters, namely Number of

Extracted Matches (NEM), and Spatial Distribution Percent-

age (SDP), were evaluated for an images dataset (i.e., Veri-

fication Data-set) provided by Thales Alenia Space S.p.a..
The first represents the number of extracted matches be-
tween a pair of images, instead the second quantifies the
distribution of the matched points on the image. The higher
is the value of these parameters, the more accurate will be
the motion estimation task.
The Verification Dataset is composed of 89 image pairs cov-
ering different environmental conditions (i.e., image qual-
ity), with different camera movement types, in a synthesized
Mars environment.
For the given dataset, the NEM and the SDP are always
greater than 100 and 50%, respectively. These data demon-
strate that FEMIP always guarantees high matching capabil-
ity, and well distributed matches.
Unfortunately, a comparison of these parameters with the
ones associated with FEIC (i.e., the current state-of-the-art)
cannot be performed since the FEIC implementation is not

public available.

4. CONCLUSION

This paper presented FEMIP, a high performance FPGA-
based feature extractor and matcher IP core based on the
Harris algorithm. This IP core enables to accelerate the fea-
ture extraction and matching task of an EDL system. The
effective improvement on both area occupation and perfor-
mances with respect to the state-of-the-art implementation
allows to exploit the free hardware resources to integrate in
the FPGA device the complete VBN system.

5. REFERENCES

[1] A. Benedetti and P. Perona. Real-time 2D feature detection

on a reconfigurable computer. In Conference on Computer

Vision and Pattern Recognition (CVP), pages 586–593, 1998.

[2] C. Cabani and W. MacLean. A proposed pipelined-

architecture for FPGA-based affine-invariant feature detec-

tors. In Computer Vision and Pattern Recognition Workshop

(CVPRW), pages 121–126, 2006.

[3] Cypress Semiconductor Corporation. STAR1000 1M Pixel

Radiation Hard CMOS Image Sensor, 2007.

[4] S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, G. Tiotto,

and P. Prinetto. An area-efficient 2-D convolution implemen-

tation on FPGA for space applications. In 6th International

Design and Test Workshop (IDT), pages 88 –92, 2011.

[5] M. Dunstan, S. Parkes, and S. Mancuso. Visual navigation

chip for planetary landers. In Conference on DAta Systems In

Aerospace (DASIA), pages 1–7, 2005.

[6] M. Dunstan and M. Souyri. The FEIC development for NPAL

project: A core image processing chip for smart landers nav-

igation applications. In MicroElectronics Presentation Days,

ESA/ESTEC, 2004.

[7] R. González and R. Woods. Digital Image Processing. Pear-

son/Prentice Hall, 2008.

[8] C. Harris and M. Stephens. A combined corner and edge de-

tector. In 4th Alvey Vision Conference, pages 147–151, 1988.

[9] P. Nangtin, P. Kumhom, and K. Chamnongthai. Video-based

obstacle tracking for automatic train navigation. In Interna-

tional Symposium on Intelligent Signal Processing and Com-

munication Systems (ISPACS), pages 21–24, 2005.

[10] Thales Alenia Space S.p.a. Aerospace module speed and tra-

jectory estimation - internal report. Technical report, 2012.

[11] T. Tuytelaars and K. Mikolajczyk. Local Invariant Feature

Detectors: A Survey. Now Publishers Inc., 2008.

[12] Xilinx Corporation. Virtex-4 FPGA User Guide, 2008.

[13] F. Zhao, Q. Huang, and W. Gao. Image matching by normal-

ized cross-correlation. In International Conference on Acous-

tics, Speech and Signal Processing(ICASSP), pages II:729–

732, 2006.

