
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dependable Dynamic Partial Reconfiguration with minimal area & time overheads on Xilinx FPGAS / DI CARLO,
Stefano; Gambardella, Giulio; Indaco, Marco; Prinetto, Paolo Ernesto; Rolfo, Daniele; Trotta, Pascal. - STAMPA. -
(2013), pp. 1-4. (Intervento presentato al convegno 23rd International Conference on Field programmable Logic and
Applications (FPL) tenutosi a Porto, PT nel 2-4 Sept., 2013) [10.1109/FPL.2013.6645549].

Original

Dependable Dynamic Partial Reconfiguration with minimal area & time overheads on Xilinx FPGAS

Publisher:

Published
DOI:10.1109/FPL.2013.6645549

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2519043 since:

IEEE

DEPENDABLE DYNAMIC PARTIAL RECONFIGURATION WITH MINIMAL AREA &
TIME OVERHEADS ON XILINX FPGAS

Stefano Di Carlo, Giulio Gambardella, Marco Indaco, Paolo Prinetto, Daniele Rolfo, Pascal Trotta

Politecnico di Torino, Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24, I-10129, Torino, Italy

Email: {name.familyname}@polito.it

ABSTRACT

Thanks to their flexibility, FPGAs are nowadays widely used
to implement digital systems’ prototypes and, more frequently,
their final releases. Reconfiguration traditionally required
an external controller to upload contents in the FPGA. Dy-
namic Partial Reconfiguration (DPR) opens new horizons in
FPGAs’ applications, providing many new utilization para-
digms, as it enables an FPGA to reconfigure itself: no ex-
ternal controller is required since it can be included in the
FPGA. However, DPR also introduces reliability issues re-
lated to errors in the partial reconfiguration bitstreams. FPGA
manufacturers currently provide solutions that are not effi-
cient. In this paper new DfD (Design for Dependability)
techniques are proposed. Exploiting information density of
configuration data, they improve the performance while pro-
viding the same reliability characteristics as the previous
ones.

1. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are semiconduc-
tor devices made up of a cluster of interconnected functional
blocks, that can be programmed to perform user-defined logic
functions. Modern Xilinx FPGAs (e.g., Virtex family) of-
fer an interesting feature to increase their on-the-fly adapt-
ability. Dynamic Partial Reconfiguration (DPR) extends the
native flexibility of FPGAs making possible to dynamically
change selected portions of a circuit while the rest of the
design is left unchanged and fully functional. The abil-
ity to time-multiplex hardware modules at run-time enables
designing complex Systems-on-Chip (SoCs), thus reducing
cost, board space, and power consumption [1].
DPR is performed by mean of automatically generated par-

tial bitstreams that can be stored either outside the FPGA
(e.g., in a RAM memory) or inside the FPGA (e.g., in Block-
RAMs). To validate the integrity of a partial bitstream file,
Xilinx Virtex devices implement a built-in Cyclic Redun-
dancy Check (CRC) mechanism. Unfortunately, the config-
uration circuitry supports error detection only after a partial
bitstream file has been fully loaded. As a consequence of

this ”late” check, a loaded faulty partial bitstream file may
fatally compromise the entire design (both static and recon-
figurable portions).
Two kinds of partial bitstream errors may occur: data er-
rors and address errors, respectively. According to Xilinx
specifications, when errors occur in the data portion of the
bitstream, the recovery procedure is not critical, because just
the reconfigurable area has been corrupted. Loading a new
partial bitstream file is thus sufficient to fix the error [2].
However, an intensive fault injection campaign, proved that
this is true only under specific conditions. In fact, if links be-
tween static modules are routed through the reconfigurable
area, a full reconfiguration of the FPGA could be required.
When errors occur in the address section of the bitstream,
the corruption may modify the static portion of the design
and, therefore, a safe recovery requires to reconfigure the
whole FPGA.
Highly reliable or real-time applications must adopt addi-
tional error detection mechanisms to overcome this issue.
In the new 7 series family, Xilinx introduced PerFrameCRC

option [2]. This new feature allow the insertion of a CRC
value after every frame in a partial reconfiguration bitstream,
checked before shifting the frame into memory. Nonethe-
less, this solution can only be applied in the 7 series devices,
introducing a significant delay in the reconfiguration pro-
cess; for older technologies, Xilinx proposes the methodol-
ogy explained in Sec. 2.
This paper proposes an innovative methodology aimed at
providing a dependable DPR flow, minimizing both area oc-
cupation and reconfiguration time. Exploiting data provided
by Xilinx manuals, a tool has been developed to isolate and
protect the critical parts of a partial bitstream (i.e., address
part). In addition, Design for Dependability (DfD) rules are
provided to protect critical modules in the static part of the
FPGA.
The paper is organized as follows: Sec. 2 describes in de-
tail the Xilinx solution. The proposed methodology and the
related experimental results are presented in Sec. 3 and 4,
respectively. Sec. 5, eventually, concludes the paper.

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

2. XILINX APPROACH

The problem of dependable partial reconfiguration has been
addressed by Xilinx in the Partial Reconfiguration User Guide

[2], where a Partial Bitstream CRC Checking is suggested.
The main idea is to split the original partial bit file into
blocks, and for each block to calculate a single word CRC

signature. The hardware implementation requires a CRC

evaluator, a Finite State Machine (FSM) to control the re-
configuration process (i.e., a Reconfiguration Manager) and
a set of BRAM(s) to buffer the data. Depending on the avail-
able FPGA resources, the designer need to choose the best
block size, that impacts on both reconfiguration time and in-
ternal memory occupation.
By increasing the number N of blocks, more CRC signatures
must be stored, increasing the bitstream size. At the same
time, the memory occupation becomes smaller, since the re-
quired buffering capability equals the block dimension.
By decreasing the number of blocks, fewer CRC signatures
must be stored in the bitstream. However, during the CRC

checking process, more words must be stored in the BRAM
inside the FPGA, thus increasing the area occupation.
The total reconfiguration time is due to two contributions:

TX−CRC = Tread + Tblock (1)

Tread is the time required to load the bit file from the exter-
nal memory:

Tread =
K +N

min(fICAP , fMem)
(2)

where K is the bitstream dimension in terms of 32 bit words;
N is the number of CRC signatures in terms of 32 bit words;
fICAP is the working frequency of the ICAP; fMem is the
memory working frequency.
Tblock is the time spent loading the buffered block from BRAM
to the ICAP:

Tblock =
K/N

fICAP

(3)

where K/N is the block dimension in terms of 32 bit words.

3. PROPOSED METHODOLOGY

Despite the solution proposed by Xilinx is fairly compre-
hensive, it may implies significant time and area overheads.
In the sequel we propose a methodology that reduces these
overheads, by protecting just the critical part of the partial
bitstream. Some ad-hoc DfD rules are also introduced.

3.1. Partial bitstream file splitting

As aforementioned, the partial bit file is composed of three
main parts. The first part contains the address and control

information. The second includes the data for the reconfig-
uration in the selected frame(s). The last part is the built-in
ICAP CRC checksum.
It is straightforward that, in terms of dependability, the most
critical part is the first one, since it defines the portion of
the FPGA to reconfigure. In fact, if an error occurs in an
address or control information, a static portion of the FPGA
could be unintentionally reconfigured and the system could
become inoperative.
The proposed approach deeply protects the most critical words
of the partial bitstream. At reconfiguration time, the critical
words are checked, while the non-critical words are loaded
from the external memory and directly sent to the ICAP,
without any time overhead or buffering. The proposed solu-
tion requires a CRC evaluator and a Reconfiguration Man-
ager to control the reconfiguration process, while no BRAMs
are required.
The reconfiguration time with the proposed CRC checking
is:

TOUR−CRC =
K + C

min(fICAP , fMem)
(4)

where C is the number of critical words.
Fig. 1 plots the ratio TX−CRC /TOUR−CRC , which proved
to be always >1. Therefore, the proposed solution is always
faster then the Xilinx one.

� ���� ���� ���� ���� �����
�

���

���

���

���

���

���

���

���

���

�

%/2&.�',0(16,21��.�1��>:25'6@

7 ;
í&

5
&
���
7 2

8
5
í&

5
&

��)UDPH
��)UDPHV
��)UDPHV
��)UDPHV

Fig. 1. Comparison between proposed solution and Xilinx
solution

Despite the proved advantages of the proposed solution, to
assure a high dependability of the reconfiguration process,
we have to guarantee that an error in the non-checked part
of the bit file will not lead to a fault in the system. The jeop-
ardy is that some static connections are routed in the recon-
figurable area, and, due to a faulty reconfiguration process,
the link between two points could be broken. This goal is
achieved by fulfilling the following DfD rules: (1) poten-
tial critical links must not cross any reconfigurable area; (2)
connection inside critical modules must not cross (i.e., be
routed through) reconfigurable areas.

3.2. DfD#1: Critical links protection

To ensure a dependable reconfiguration process, critical con-
nections must be protected. These include links between
External-Memory to Memory Controller, Memory Controller
to Reconfiguration Manager and Reconfiguration Manager
to ICAP. In order to guarantee that these links do not cross
the reconfigurable area, after the automatic routing performed
by the synthesis tool, the layout must be checked and some
links manually re-routed, if required.

3.3. DfD#2: Critical modules protection

The second DfD rule imposes that all critical modules must
be protected. In systems which use partial reconfiguration,
all modules involved in DPR must be considered critical. In
addition, also design specific modules could be considered
critical. Their integrity can be preserved by constraining
critical modules in predefined physical region called par-

titions. Xilinx PlanAhead tool enables the user to manually
place a module in a specific area, guaranteeing that all the
specified hardware and the related connections are inside the
physical regions.

4. EXPERIMENTAL RESULTS

This section reports a set of experiments performed to val-
idate the proposed methodology and to compare its perfor-
mance with the Xilinx solution.
The experimental setup includes a Leon3 [3] based SoC, im-
plemented on a Xilinx ML403 demo board, equipped with a
Xilinx Virtex 4 FPGA device and 64 MB of DDR SDRAM
[4]. The SoC contains a reconfigurable area in which it is
possible to dynamically load two modules, namely the AP-

BUART and the GPTIMER from GRIP Library [5]. Both
modules require a reconfigurable area composed of 2 frames.
The SoC also includes an ad-hoc reconfiguration manager
connected to the AMBA bus. The manager addresses the
external memory, loading bitstream files, and manages the
whole reconfiguration process, performing the CRC check
and eventually the DPR through ICAP. The synthesis of the
overall design has been performed using Xilinx ISE Design
Suite 14.4. The Leon3 processor works at 66 MHz, the
ICAP controller and the DDR SDRAM at 100 MHz.

4.1. Xilinx approach implementation

The Xilinx protection methodology has been implemented
using a parallel CRC-32 to minimize the CRC latency. The
selected polynomial is 0x90022004 which guarantees Ham-
ming distance equal to 6 [6].
Fig. 2 shows the relation between the reconfiguration time
and the block size. The solid line plots the reconfiguration

Table 1. Area occupation and reconfiguration time of dif-
ferent implementations

Solution
Block Size CRC BRAM RM Rec. Time

[bit] [#] [#] [# slices] [us]

w/o CRC 0 0 0 197 (3.60%) 61.04

Proposed 1x16 42 0 295 (5.39%) 61.78

Xilinx 64 x 32 31 1 290 (5.30%) 63.72

Xilinx 1 x 32 1,969 0 290 (5.30%) 77.88

Xilinx 1,969 x 32 1 8 290 (5.30%) 73.49

time calculated using Eq. 1 while the dots report the mea-
sured reconfiguration time, confirming the model relevancy.
The synthesized reconfiguration manager requires 290 slices
and 1 BRAM.

� ��� ��� ��� ��� ��� ���
��

��

��

��

��

��

��

��

��

��

��

%/2&.�',0(16,21��.�1��>:25'6@

7 ;
í&

5
&

&DOFXODWHG
0HDVXUHG

Fig. 2. Reconfiguration time with 2 Frames

4.2. Proposed approach implementation

Differently from the Xilinx solution, the proposed approach
is designed to protect 16-bit critical words. A smaller CRC
can therefore be adopted. We implemented a parallel CRC-
16 with polynomial equal to 0x968B which guarantees Ham-
ming distance equal to 7.
The two presented DfD rules have been applied to the pro-
posed design. Partitions have been created using Xilinx PlanA-
head to protect the SoC critical modules (i.e., Reconfigu-
ration Manager (RM) and Memory Controller (MC)). To
ensure that the processor keeps running also after a faulty
reconfiguration, the Leon3 has been constrained in a spe-
cific region, introducing a minimal degradation (1.2%) in
the working frequency. All critical connections have been
checked, in order to assure that they do not cross the re-
configurable area, and only 2 links were manually re-routed
using the Xilinx FPGA Editor Tool (see Sec. 3.2).
The synthesized reconfiguration manager requires 295 slices
and no BRAMs. A fault free reconfiguration takes 61.78 µs.

4.3. Comparison

Table 1 compares the two analyzed solutions, in terms of
area occupation and fault free reconfiguration time. The as-
sets of the proposed solution are no BRAM occupation and
a shorter reconfiguration time compared to the Xilinx solu-
tion, with a very small area overhead in the configuration
manager (increase of 1.7% of slices) due to a more complex
FSM. The reported reconfiguration times, computed with
the model presented in Sec. 3, are related to a 2 frames re-
configurable area (1,969 words), with a 1506 Mbit/s through-
put of the DDR SDRAM. For sake of completeness, Table 1
also provides information about the worst cases of the Xil-
inx solution, and a CRC free DPR system.
So far the performance comparison have not considered the
presence of faults. The rest of this section will compare DPR
performance in case of faults in the bitstream, which have
been injected in the words of the data portion, only. This
condition represents the worst-case condition for the pro-
posed solution, since the fault is detected just at the end of
the process by the ICAP CRC check (requiring a new DPR),
while in Xilinx’ solution is detected as soon as the CRC of
the block is checked (requiring the reload of the block only).
The time overhead introduced by faults in the loaded blocks
for the two considered solutions is therefore influenced by
the DPR rate, and by the word error probability observed
when loading bitstream blocks. Fig. 3 and Fig. 4 analyze
the difference in system activity time spent for DPR in the
two solutions over a one day observation period for differ-
ent DPR rates and word error probabilities, thus enabling an
easy comparison of the two solutions.

Fig. 3. Difference of DPRs time in 1 day - 2 Frames

Fig. 3 analyzes the case of a 2 frames reconfigurable area,
i.e., a partial bit file of 1,969 32-bit words. The experiments
show that the proposed technology outperforms the Xilinx
solution in all working conditions enabling a significant im-
provement in the overall reconfiguration time.
Fig. 4 performs a similar analysis, but considering a larger
reconfigurable area composed of 8 frames, i.e., a partial bit

Fig. 4. Difference of DPRs time in 1 day - 8 Frames

file of 11,040 32-bit words. In this case, when the word
error probability increases over 10−6, the Xilinx solution
should be preferred. This is due to the additional reconfigu-
ration process required in our solution whenever data words
are corrupted. Nevertheless, decreasing the error probabil-
ity or the number of reconfigurations per day, the proposed
methodology is the best one.

5. CONCLUSIONS

This paper presented an innovative methodology for a de-
pendable partial reconfiguration process, assuring a good
level of dependability with marginal impact on performances.
The proposed methodology has a low impact on reconfig-
uration time, and does not affect the static portion of the
FPGA, even in presence of faulty bitstream files. Exper-
imental results demonstrated that the proposed solution is
able to overcome Xilinx solution, thus representing an inter-
esting methodology to increase FPGA dependability while
reducing the DPR time and area overhead.

6. REFERENCES

[1] Partial Reconfiguration of Xilinx FPGAs Using ISE Design

Suite, Xilinx Corporation, July 2012.

[2] Partial Reconfiguration User Guide, Ug702 (v12.3) ed., Xilinx

Corporation, October 2012.

[3] J. Gaisler, “A portable and fault-tolerant microprocessor based

on the SPARC v8 architecture,” in Dependable Systems and

Networks (DSN), 2002. International Conference on, Jun. 23–

26, 2002, pp. 409–415.

[4] Xilinx, ML403 Evaluation Platform, v2.5 ed., May 2006.

[5] GRLIB IP Core Users Manual, 1st ed., Aeroflex Gaisler, Jan-

uary 2012.

[6] P. Koopman, “32-bit Cyclic Redundancy Codes for internet

applications,” in Dependable Systems and Networks (DSN),

2002. International Conference on, December 2002, pp. 459–

468.

