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Chapter 1 

1. Introduction 

The purpose of my research is to predict the reliability of friction pendulum 

devices during their service life. These bearings are characterized by the capability 

to undergo large displacements despite their compact size. This  peculiar property 

makes this device competitive among other commonly used isolation devices such 

as lead-rubber bearings. In these supports the dissipation of seismic motion occurs 

exclusively by the friction produced during sliding of the surfaces while the 

seismic isolation is obtained by the shifting of the natural period of the 

superstructure.  

Over the time, the interest of the scientific community for such devices has 

focused on the study of the friction coefficient involved during the motion and 

also on its dependence on certain mechanical variables such as velocity and 

apparent pressure. Several studies have shown that the friction coefficient in a 

contact problem between polymer (PTFE) and stainless steel deviates from the 

Coulomb‟s friction law. Furthermore, most recent studies have shown that the 

coefficient of friction is closely related to the increase of temperature due to the 

thermal effect.  This phenomenon consists in a cyclic degradation of the 

dissipative capacities of friction pendulum that in the design phase is not 

considered. The observed reduction of energy dissipated during repetitive cycles is 



Chapter 1                                                                                                            Introduction 

6 

 

often coupled with peak displacements larger than predicted with potential 

consequences on the whole structure‟s  safety. 

This PhD study is composed by 8 chapter and it start with an introduction of 

the basic concept in seismic base isolation (Chapter 2) while the main 

characteristics of friction pendulum devices are introduced are defined in Chapter 

3. The basic theory of frictional heating useful to describe the increase of 

temperature which occurs in polymer-stainless steel surface is introduced in 

chapter 4. 

Through an experimental campaign carried out with single pendulum bearings, 

the dependence of the friction coefficient with the temperature rise has been 

investigated in chapter 5, in order to propose a phenomenological model able to 

assess the real performance of the friction pendulum. 

Specifically, in chapter 5 is described the experimental analysis carried out in 

Caltrans SRMD Testing Facility of San Diego University of California. A series of 

friction pendulum have been tested at Caltrans SRMD which is equipped with a 

shaking table test specifically designed for full-scale tests. During the tests, the 

table was also equipped with a thermographic camera specially calibrated for the 

type of material tested (polished stainless steel). Thanks to the use of the camera it 

has been possible to evaluate the temperature rise during the whole testing time 

and in the portion of the concave surface affected by the thermal heating. 

In chapter 6, an analytical comparison has been carried out between the 

friction coefficient recorded during the test and the temperature rise obtained with 

the analytical model of degradation of the friction coefficient introduced in chapter 

4. Finally in chapter 7 a prediction model that takes into account mechanical 
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variables such as velocity and apparent pressure, and also the degradation of 

dissipative characteristics of a friction pendulum due to thermal effects, is given. 

The proposed friction model is suitable for immediate implementation in 

generalized structural analysis codes and provides an important design tool for a 

more realistic assessment of the seismic response of structures equipped with 

Friction Pendulum devices. 
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Chapter 2 

2. Seismic Isolation 

The recent seismic events occurred in the regions with high seismic hazard 

like in Japan (Tohoku, 2011) and Chile (2010), have shown that despite the efforts 

made to reduce and prevent economic losses, casualties and injuries, earthquakes 

continue to be a huge plague in the world.  

For mitigating the seismic hazard many seismic construction designs and 

technologies have been developed over the years and particularly attention has 

been given to the effects of earthquake in the most vulnerable buildings like 

bridges, hospitals, data centers, etc.  

Many protection system have been developed and utilized in many application 

all over the world,  and the seismic isolation has become a relevant and important 

way to improve the seismic response in the design of new buildings and in the 

retrofitting of existing ones. 

In seismic, isolation devices are applied between the superstructure and the 

foundation of the building to decouple the structures from the ground earthquake 

motion. These Seismic Response Modification Device (SRMD) refer to a large 

family of mechanical devices that can modify the dynamic characteristics of a 

structure increasing for instance the flexibility of the structures and giving an 

appropriate damping.  

These mechanical systems, in terms of functioning technique, are divided in 

two main categories. The first category includes devices that improve structural 
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dynamic performance by adding supplementary stiffness and/or damping 

properties to help structure gain more stability and energy dissipation property. 

Viscous Fluid Dampers and Tuned Mass Devices are two well recognized devices 

of this category. The second category includes devices that modify structural 

response by the applications of devices mounted underneath the structure witch 

enforced the discontinuity of the ground motion. The mechanical systems which 

belong to the latter category are referred to as base isolation, and they are 

“Seismic Isolation Devices”. 

2.1. Introduction of seismic isolation 

Seismic design of structures is based on the condition that the capacity of 

resistance and deformability of the structure is greater than the demand due to the 

motion of the ground. A seismic event is manifested by the vibrations induced by 

the movement of the ground and generates in the structure forces inertia equal to 

the product of its masses for accelerations. To avoid structural damage during an 

earthquake, it would be necessary to increase the resistance of the structure 

proportionally with the intensity of the earthquake. 

The structural damage does not correspond to a condition of collapse, because 

the structure has significant extra resistance in the plastic range. In fact, the 

structure has the ability to deform while maintaining a constant resistant force of 

the structural elements involved. The indefinite increase of the resistance capacity 

of the structural elements is not the best design method because it is not cost 

convenient. The current codes and regulations permit the use of structural ductility 

to satisfy the capacity design condition related to resistance, deformations and 
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displacements. The acceptance of high demand for ductility constitutes acceptance 

of damage to structural elements as a result of moderate-high earthquake intensity 

and relative costs of interruption and service repair. The seismic design can be 

developed according to two possible strategies:  

 to increase the structural strength, thereby increasing the manufacturing 

costs and allowing more accelerations on the structure.  

 to increase the ductility of the structure through a design aimed at 

developing favorable yielding mechanisms to obtain high and flexible 

local capacity by accurate construction details. 

Current codes are inspired by the latter alternative. With the capacity design 

method, seismic forces are focused on the structural elements which have ductility 

capacity whereas the unfavorable collapse mechanisms are reduces. Modern 

seismic isolation design has the main purpose to avoid the collapse of the 

structures for high intensity earthquake, to reduce the damaging of non-structural 

building elements for medium earthquake by means of an ad hoc selection of 

design criterions and structural features such as stiffness, resistance and ductility.  

Some modern techniques of passive seismic protection of structures use special 

devices to reduce demand and concentrate on them rather than in parts of the 

structure, the absorption and dissipation of energy.   
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Figure 1: Schematic example of dissipative braces.  

An effective technique consists in the dissipation of energy, generally based on 

the use of dissipating braces inserted in the frame of structural buildings. These 

devices dissipate the energy transmitted by the earthquake to the structure, 

significantly reducing the displacements of the structure in the plastic range. A 

dissipation of viscous type does not create particular changes to the dynamic 

behavior of the structure as a whole but instead increases the damping capacity of 

the overall structure. The devices inserted as illustrated on Figure 1 have a 

hysteretic behavior due in particular to an elastic-plastic behavior. The choice of 

devices reflects the criterion of capacity design. The technique based on the 

dissipation of energy is well suited to adjustment and seismic improvement of 

existing framed construction, when the buildings are built in adjacency and joints 

are small.  

 

Figure 2: Base isolation in buildings and bridges.  
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Another effective method is seismic isolation. This method reverses the 

problem and achieves the isolation through the reduction of the global demand of 

the structure, reducing the energy transmitted from the ground over the entire 

structure (see Figure 2). 

2.2. Basic Concepts in Seismic base Isolation 

Base isolation, also known as seismic base isolation or base isolation 

system, is one of the most popular means of protecting a structure against 

earthquake forces. Besides it is one of the most powerful tools of earthquake 

engineering among the passive structural vibration control technologies. It is 

meant to enable a building or non-building structure to survive a potentially 

devastating seismic impact.   

All the technologies developed in the recent past are used to provide effective 

solutions for a wide range of seismic design problems. Base isolation system is 

well effective when for example a large structure has an important role which 

involves for it to be operational right after a severe earthquake, like hospitals, 

airports, data centers and public civil facilities.  

In all those cases the use of isolation system can  considerably increase both 

the seismic performance of the structure and its seismic sustainability , and reduce 

the cost providing the designed earthquake resistance. Reduced costs stem from 

reduced seismic loads, from reduced ductility demand, and from lower structural 

deformations which could bring lower costs for internal and external details of the 

building.  

http://en.wikipedia.org/wiki/Earthquake
http://en.wikipedia.org/wiki/Earthquake_engineering
http://en.wikipedia.org/wiki/Earthquake_engineering
http://en.wikipedia.org/wiki/Vibration_control
http://en.wikipedia.org/wiki/Seismic
http://en.wikipedia.org/wiki/Impact_(mechanics)
http://en.wikipedia.org/wiki/Seismic_performance
http://en.wikipedia.org/wiki/Seismic
http://en.wikipedia.org/wiki/Sustainability
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Typical earthquake accelerations have dominant periods of about 0.1-1s with a 

pick of values between 0.2 and 0.8s. Structures with a natural period of vibration 

within the range of 0.1-1s are therefore vulnerable because they could resonate. 

The main concept of base isolation consist in a system able to reduce the effect 

of the horizontal components of the ground acceleration introducing devices 

having low horizontal stiffness between the structure and the foundation (Figure 

3). The substructure is generally very rigid and takes approximately the same 

ground acceleration, while the superstructure uses the benefits deriving from the 

deformation due to the introduction of isolators. This application gives in the 

isolated structure a fundamental period of oscillation bigger than an equivalent 

fixed-base structure avoiding the resonance of the structures and reducing the 

seismic acceleration response. In this way during the shaking ground motion the 

deformation are concentrated in the isolation system protecting a building or non-

building structure's integrity.   

 

Figure 3: Schematic comparison of the deformation between a fixed base and a base 

isolated structure.  

http://en.wikipedia.org/wiki/Building
http://en.wikipedia.org/wiki/Non-building_structure
http://en.wikipedia.org/wiki/Non-building_structure
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The shift of the period and the consequent increased flexibility also affect the 

horizontal seismic displacement of the structure as shown in Figure 4. The same 

picture shows how excessive displacements are controlled by the introduction of 

increased damping. As a consequence of the shift of the period the higher modes 

of the structure don‟t participate in the motion. If there is high energy in the 

ground motion at these higher frequencies, this energy cannot be transmitted into 

the structures. 

 

 

Figure 4: The increase of flexibility of the structure products a shifting of the period and, 

as a consequence, lower acceleration response. The increased period increases 

the total displacement of the isolated system.  

The isolation system does not absorb the earthquake energy, but addresses it to 

the deformation and the dynamics of the system. Although a certain level of 

damping is beneficial to suppress any possible resonance of the isolation 

frequency and for controlling excessive displacement of the structure, (see Figure 

4), the concept of isolation it is does not strictly rely on damping. On the other 

hand, excessive damping could reduce the effectiveness of the isolation.   
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Seismic isolation systems are particularly designed and installed on the base of 

the structure to maintain all components of the superstructure within the elastic 

range. The displacement of the structure can be concentrated in the isolator 

components, allowing little deformation in the structure, which moves like a rigid 

body mounted on the isolated system.  

The seismic isolation design can be achieved in two main strategies: 

 Increasing of the period, with or without dissipation of energy.  

 limitation of force, without or with energy dissipation.  

With the first strategy, the acceleration of the structure is reduced according to 

the principles just described and summarized in Figure 4. The reduction of the 

effects on the structure is basically achieved through the absorption of the seismic 

energy input to strain energy, largely dissipated with the hysteresis behavior of the 

devices for each cycle of oscillation. The power dissipation of the isolation system 

reduces both the displacements at the base, up to a certain limit, the forces 

transmitted to the superstructure. 

In the strategy of force limitation, the devices are used for rigid or elastic 

perfectly plastic behavior, or otherwise highly non-linear, with a branch nearly 

horizontal for large displacements. The reduction of the effects on the structure 

occurs through the limitation of the force transmitted to the superstructure. The 

imposition of an upper limit on force transmitted can also be seen as an application 

of the capacity design in terms of the structural system, in which a hierarchy is 

established between the resistance of the structure and the resistance of the 

isolation system. The strategy based on the increase of the period is the most 

frequently adopted in the isolation of buildings. Than one based on the limitation 
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of the force is used mainly in cases in which the control of forces induced on the 

structure represents the crucial aspect of the design, as for example it may occur in 

seismic retrofitting of structures. It is essential to adopt a control of the transmitted 

force even when the methodology of the increase period reaches its limits of 

applicability and convenience as for example in case of deformable structures or 

earthquakes expected with a high energy content at low frequencies. 

It is possible to sort seismic isolation systems in two major models. In Figure 

5-a, the first case shows a linear damped isolator by means of a linear spring and a 

viscous damper. As a consequence the hysteretic loop created in the force-

displacement has an effective slope which represents the stiffness of the isolator. 

Figure 5-b represents a bilinear isolator with two parallel springs in which one of 

them has a Coulomb dumper in series with it. The resultant force-displacement 

loop is bilinear, characterized with two slopes which represent the initial and the 

yielded stiffness respectively, resulting of the elastic and plastic deformation of the 

isolator. The most common linear isolator is the laminated-rubber bearing, 

whereas non-linear devices include high damping bearing, lead rubber bearing and 

the friction pendulum.  
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Figure 5: Simplified representation of the force-displacement loops produced of a linear 

damped isolator (a); a bilinear isolator with a Coulomb damper (b) [66I].  

The most application of isolated buildings use multilayered laminated rubber 

bearing. These devices have reinforced steel layers to increase the stiffness in the 

vertical direction and for carrying the vertical load of the structure. Conversely 

they are soft in the horizontal direction as required to the isolation effect. Another 

most commonly used isolation system is the lead-plug rubber bearing. These 

bearings are composed with multilayered, laminated elastomeric bearings with a 

lead circular plugs embedded in the core of the isolator. The lead plug introduces 

an extra damping in the seismic isolation and often they are coupled with normal 

elastomeric bearing.  
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Most recently a new device based on sliding elements has been used (Friction 

Pendulum System). These devices provide a low friction contact layer which 

transmits a lower shear forces in the structures.  

The benefits of adopting seismic isolation are varied. The significant reduction 

of the accelerations on the structure determines the significant differences with 

respect to the fixed base configuration: 

 the reduction of inertia forces and then of stress produced by the 

earthquake on the structure, in order to avoid damage of structural 

elements (beams, columns, etc.); 

 a drastic reducing interstory displacement, such as to significantly reduce 

or eliminate the damage to non-structural elements (cladding, partitions) 

and ensure the full functionality of the building, even after a violent 

earthquake. 

 high protection of the structural content. 

 a much lower perception of earthquakes by the occupants. 

All these technology can be used both for new structural design and seismic 

retrofit. Although isolation techniques have been used for new construction of 

building, 1989 Loma Prieta and 1994 Northridge earthquake in California incited 

designers in applying these devices in process of seismic retrofit in some of the 

most prominent U.S. monuments, e.g. Pasadena City Hall, San Francisco City 

Hall, Salt Lake City and County Building or LA City Hall or the U.S. Court of 

Appeals in San Francisco were mounted on Base Isolation Systems (Figure 6).  

http://en.wikipedia.org/wiki/Structural_design
http://en.wikipedia.org/wiki/Seismic_retrofit
http://en.wikipedia.org/wiki/Seismic_retrofit
http://en.wikipedia.org/wiki/Seismic_retrofit
http://en.wikipedia.org/wiki/Pasadena_City_Hall
http://en.wikipedia.org/wiki/San_Francisco_City_Hall
http://en.wikipedia.org/wiki/San_Francisco_City_Hall
http://en.wikipedia.org/wiki/Salt_Lake_City_and_County_Building
http://en.wikipedia.org/wiki/LA_City_Hall
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Figure 6: The U.S. Court of Appeals was damaged in the 1989 Loma Prieta earthquake. It 

is retrofitted with a total of 256 Friction Pendulum Seismic Isolation Bearing, 

installed between the existing foundation and columns 

As a result of the Hyogo-ken Nanbu earthquake of 1995 and the consequently 

creation of an adequate specific legislation in 2000 which liberalized the use of 

seismic isolation devices, Japan is increasingly consolidating its leadership in the 

world in this sector with over 6,000 current isolated buildings. In this country, the 

tendency is now to isolate skyscrapers buildings supported by a single large 

isolated structure (artificial ground plate) as well as isolate small and light private 

buildings.  

In Italy the application of modern seismic started in 1975 for bridges and 

viaducts and in 1981 for buildings. Particular attention is dedicated in seismic 

isolation of new hospitals and buildings relevant to the civil protection, for the 
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schools. Nowadays, Italy represents one of the world leaders in the number and 

importance of the application of modern seismic in the field of preservation of 

cultural heritage.  

2.3. Theory of Base isolation 

The behavior of an isolated building could be explained using a linear models 

and a linear analysis. This is possible when the structure is provided with a linear 

isolation system having low damping and an effective isolator flexibility higher 

than the effective structural flexibility. The structures are usually approximated by 

linear models with a moderate number N of concentrated masses   , like shown 

in Figure 7a. 

Two general masses    and    are interconnected by a component with a 

stiffness k(r,s) and a damping coefficient c(r,s). In Figure 7a, the generic mass    

has a single horizontal degree of freedom, and it is subject to a seismic 

displacement of     with respect the supporting ground, or    +     if one 

considers the horizontal displacement of the ground. Each discrete mass has an 

inertia force –(   –   )  , while the interconnection exerts an elastic force –(   –  )k(r,s) and a damping force –(   –   )c(r,s). In general the N equations which 

represent the equilibrium of the forces are expressed in matrix form: 

(2.1)                         guuuCu    

where [M], [C] and [K] are the mass, damping and stiffness N x N matrices 

respectively. The seismic responses of the N-mass linear system are obtained as 

the sum of the responses of N independent modes of vibration.  Each mode n has a 
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fixed orthogonal modal shape   , a natural frequency    and damping   . The 

natural frequencies of the undamped modes are obtained by assuming that there 

are free vibrations in which each mass moves as a sinusoid with a frequency  .  

(2.2)                          tu sin                                                                                        

Substituting (2.2) in equation (2.1), removing the ground acceleration and the 

damping terms 

(2.3)                              0sin2   tMK  

The non-trivial solution is given by  

(2.4)                             0det 2  MK   

Equation (2.4) gives N positive frequencies    which represent the undamped 

natural or modal frequencies of the structure. It may be shown that the shape    

of the n mode is found substituting    in equation (2.3) giving N linear 

homogeneous equations 

(2.5)                             02  nn MK   

Where in each modal shape    the top displacement is fixed one. A mode-

shape matrix is defined as 

(2.6)                            Nn   ,,1  

In order to illustrate the natural periods and mode shapes for base fixed and 

isolated structures, let‟s use a continuous uniform shear structure, having a frame 

building equal-mass floors, with the columns considered inextensible and with the 

same shear stiffness.  



Chapter 2                                                                                                     Seismic Isolation 

 

23 

 

 

Figure 7: (a) Linear shear structure with concentrated masses. (b) Uniform shear structure 

with total mass M [66]. 

As illustrated in picture Figure 7b, let consider    = M/N and k(r,r-1)=KN 

with r=1,…,N. The model has a linear isolation with an horizontal stiffness 

k(1,0)=    typically considered less than the overall shear stiffness K. Letting the 

structural model continuous N  →   it may be shown that the mode shapes  n 

have a sinusoidal profile, and that the modal frequencies   are proportional to the 

number of quarter-wavelengths in the modal profile. Non-isolated modes have 

(2n-1) quarter wavelengths and isolated modes have just over (2n-2) quarter 
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wavelengths. The first mode shape is give with Tn1(U)/Tn1(I), where Tn1(U) is the 

first non-isolated periods and Tn2(U) is the first isolated period, with Tn1(I)>Tn1(U). 

The higher isolated modes converge to (2n-2) quarter wavelengths increasing n. 

For an isolated structure, the first mode period is controlled by the isolator 

stiffness. The others modes periods for both isolated and non-isolated structures 

are controlled by the structure.  

 

Figure 8: Variation in height of ϕrn which is the approximate shape of the n
th

 mode at the 

r
th

 level of the continuous uniform shear structure. The modal shapes and 

periods are represented in the unisolated case (U) and isolates (I).  
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The general features given in Figure 8 are also representative of non-shear and 

non-uniform structures, even though the argumentation is less simple. In the case 

considered here, the isolated mode-1 profile is still approximately rectangular. The 

high modes profiles are no longer sinusoidal but they present a sequence of nodes 

and antinodes.  

In order to simplify the interpretation of the behavior of a building block, it is 

possible to identify two fundamental behaviors in the deformability of the system, 

structural seismic isolation and superstructure, and two inertial components, the 

mass of the base of the structure, directly bound to the ground through the 

isolation system, and the mass of the superstructure which moves with respect to 

the latter, being connected to it by the superstructure itself. 

An insight example that provides the fundamental concepts of seismic 

isolation is illustrated in Figure 9 [52], which represents the extreme simplification 

of the structural system described above, in which the masses, stiffness and energy 

dissipation of the superstructure are distributed along the height the building. In 

this example is shown the mode shapes in an isolated building with two 2 degree 

of freedom which a mass,  , carried on a linear structural system on a base mass,   , supported on an isolation system.  
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Figure 9: Two degree of freedom isolation system model. 

The stiffness and damping of the superstructure and isolation system 

(supposed to have an elastic behavior) are denoted    and   , and    and   , 

respectively. The model is characterized by two dynamic degrees of freedom, 

corresponding to the horizontal displacements of the two masses, denoted in 

Figure 9 by    and   , while    represents the displacement of the ground. 

In order to simplify the interpretation of the behavior of the system, the 

problem is carried out in terms of relative displacements: 

(2.7)                            gbb uuv   

(2.8)                            bss uuv   

The basic equations of motion of the two degrees of freedom system shown in 

Figure 9 are written by applying the d'Alembert principle: 

(2.9)      
gbbbbbsbb ummvkvcvmvmm   )(  
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(2.10)    gSSSSsb umvkvcvmvm    

We defined the mass ratio   as: 

(2.11)                          
bmm

m

  

and the frequencies ratio: 

(2.12)              ).10( 2

2

2

2 



 O

T

T

kmm

mk

b

s

sb

b
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b
  

the damping ratio,    e    are given by:  

(2.13)                          
)(

2
b

b

bb
mm

c

   

(2.14)                          
m

c s

ss  2  

In term of these quantities the basic equations of motion become: 

(2.15)          gbbbbbsb uvvvv   22   

(2.16)          gssssssb uvvvv   22   

the variables   ,   ,    and   ,   ,    are the pulse, the period and the 

damping ratio respectively of two elementary oscillators, one involves the 

complete mass constrained by isolation system, the other only by the 

superstructure assumed fixed at the base. 

Beside the ratio of the pulsations, can be introduced by the ratio of isolation, 

which is the ratio between the periods 
    , equal to the square root of the inverse of 
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 . The resolution of eigenvalues and eigenvectors problem leads to the definition 

of the two modes of vibration of the structure. Assuming    , (superstructure 

much more rigid than isolators), it is possible to greatly simplify the problem. The 

approximate expressions of the two modal frequencies are reduced to: 

(2.17)                             122

1 b  

(2.18)                           
  1

)1(

2
2

2
s

 

The modal shapes with (     )        are: 

  

(2.19)                           ,11 T
 

(2.20)                           
   )1(1

1
,12

T
 

 

Figure 10: Mode shapes of two degree of freedom isolation system model.  
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Figure 10 shows the mode shapes of two degree of freedom of the isolation 

system model. The structure is almost rigid in the first mode shape. The second 

mode shape produces deformation in both structure and isolation system, with a 

displacement of the base comparable with the displacement of the top, but in 

opposite direction. The frequency of the first mode represents the characteristic of 

the isolated model when the structure is rigid.  

Determined the vibration modes of the structure, the system response is 

expressed as a linear combination of the mode shapes    e    through two modal 

coefficients (   and   ) that are time-dependant: 

(2.21)                            122111  qqvb  

(2.22)                            222211  qqvs  

the introduction of vibration modes allows to uncouple the equations of motion 

in the modal coefficient       ) of the form: 

(2.23)                   guqqq 
11

2

11111 2    

(2.24)                   guqqq 
22

2

22222 2    

Where    and    and are the modal participation factors: 

(2.25)                    11  

(2.26)                    2  

Similarly, it is possible to express in compact form the damping ratios 

associated with the vibration modes of the structure: 
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(2.27)                   
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11 b  

(2.28)                   
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Considering a generic response spectrum, in terms of displacement          
or pseudo acceleration         for the ground motion      , it is possible to 

calculate the maximum modal response of the structure: 

(2.29)                    111max1 , DeSq   

(2.30)                    222max2 , DeSq   

In order to estimate the maximum value of the maximum displacement of 

isolation system and the maximum interstory drift it is necessary to use the SRSS 

method: 

(2.31)                      212max2

2

11max1max   qqvb  

(2.32)                      222max2

2

21max1max   qqvs  

Inserting the results obtained from Eqs. (2.25), (2.26),(2.29) and (2.30), we 

get: 

(2.33)                          222

222

11

2

max ,,1  DeDeb SSv   

(2.34)                             222

22

11

2

max ,121,21  DeDes SSv 
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where the displacement of high frequencies (i.e.,   ) is much smaller than at 

lower frequencies (i.e.,  ). Thus, when                      , the value               is negligible. So eq. (2.33) and (2.34) become: 

(2.35)                       11max ,1  Deb Sv   

(2.36)                        222

2

11max ,,  DeDes SSv   

Similarly, the base shear coefficient is given by:  

(2.37)                   max

2max ss

ss

s v
m

vk
C    

(2.38)                        222

22

11 ,,  ees SSC   

Assuming     it is possible to simplify Eqs. (2.17), (2.25) and (2.27): 

(2.39)                   bb   111 ,1,  

Assuming                     and              we have the 

approximated equation:  

 

(2.40)                    
bbDeb Sv  ,max   

(2.41)                    
bbDes Sv  ,max   

(2.42)                    
bbes SC  ,  

This expressions indicate that for small   and a typical design spectrum, the 

isolation system can be designed, at least in the initial phase, for a relative base 

displacement of           and the building for a base shear coefficient of 
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         . These two values may be obtained by referring directly to the 

oscillator shown in Figure 9, with a mass equal to the mass of the whole 

superstructure, and stiffness and damping of the corresponding features of the 

isolation system    and   . 

The reduction of the base shear as compared with a fixed-base structure, where              , is given by                    , which for a constant-velocity 

spectrum is      , or roughly of order    ⁄ ; this underestimate the reduction in 

base shear because, in general,    will be larger than   . 

2.4. American Earthquake Regulation for seismically isolated 

Structures  

The first building to be seismically isolated in the United States, and the first 

in the world to incorporate high-damping rubber bearings, was the Foothill 

Community Law and Justice Center in Rancho Cucamonga, California, it was in 

1985. The first rehabilitation of an existing structure with seismic isolation was in 

1986 with the City and County Building in Salt Lake City, Utah. This project 

pioneered many construction methods of jacking and post-installation of bearings 

that are still used today. After the first building to use a seismic isolation system 

was completed, the Structural Engineers Association of Northern California 

(SEAONC) created a working group to develop design guidelines for isolated 

building. The Seismology Committee of the Structural Engineers Association of 

California (SEAOC) is responsible for developing provisions for earthquake-

resistant design of structures. These previsions have been published for described 
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lateral force requirements for conventional structures generally know as the Blue 

Book [70] [71]. This publication served as the basis for different editions of the 

Uniform Building Code (UBC) and it still represents the most widely used code 

for earthquake design. 

 The first document describing prescriptive design requirements for seismic 

isolated buildings was published by the Structural Engineers Association of 

Northern California in 1986 [72]. This was informally referred to as the “Yellow 

Book,” ostensibly to avoid confusion with the existing Blue Book . This document 

was created in response to the design and construction of isolated buildings and 

bridges that had already taken place. A need was identified for some minimum 

standard to assure the safety of the general public who may occupy isolated 

facilities. These early provisions sought to provide a margin of safety comparable 

to that of conventional structures. To this effect, the 1986 Yellow Book states: 

“[ Th e s e ]  l i mi t s  o n  i s o l a t i o n  s ys t e m a n d  s u p e r s t r u c t u r e  r e s p o n s e  

a r e  i n t e n d e d  t o  e n s u r e  t h a t  s e i s mi c a l l y  i s o l a t e d  b u i l d i n g s  wi l l  b e  a t  

l e a s t  a s  s a fe  a s  c o n ve n t i o n a l  b u i l d i n g s  d u r i n g  e xt r e me  e ve n t s  

c o n s i d e r i n g  t h e  u n c e r t a i n t i e s  i n  t h e  n e w a n d  d e ve l o p i n g  t e c h n o l o g y 

o f se i sm ic  i so la t io n . ”  

In these recommended provisions, a clear process for selecting and 

proportioning the isolation system and the supported structure is provided. This 

process mimics that for conventional structures in an effort to maintain consistence 

between the design methodologies. Several key distinctions for the design 

requirements were introduced, including the following: 

 The design base shear for the isolated superstructure is intended to 

limit ductility demand in the design basis earthquake relative to that 
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expected for the conventional fixed-base structure in the same level of 

earthquake. 

 A review of the isolation concept and design is required, as established by 

the governing regulatory agency. Significantly, no prescriptive 

requirements for the scope of this review are established in recognition of 

the diverse nature of potential project sand the agencies charged with 

permit issuance. 

 Testing requirements for isolation devices are required as part of the plan 

approval process.  

Since the publication of the 1986 Yellow Book, these requirements were 

included as an Appendix to the 1991 UBC. The UBC code differs from the 

SEAONC guidelines because the first one explicitly requires that the design have 

to be based on two levels of seismic input. A design Basis Earthquake (DBE) is 

defined as the level of earthquake ground shaking that has a 10% probability of 

being exceeded in a 50-year period. The design provisions for this level of input 

require that the structure above the isolation system remains elastic. The second 

level of input called Maximum Capable Earthquake (MCE), which is the 

maximum level of earthquake ground shaking that may be expected at the site 

within the known geological frame-work. This level is considered as the 

earthquake ground motion that has a 10% probability of being exceeded in 100 

years. The isolation system it is designed with this level of seismicity input as well 

as all the building separations and utilities that cross the isolation interface which 

has to accommodate the forces and displacements.   
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The 1994 editions of the UBC (1994) incorporated many changes. The vertical 

distribution of forces generally used for fixed-base structures were changed from 

uniform to triangular one. The 1994 code specified provisions for prototype tests 

that must be carried out before the construction of the isolators with the intent to 

establish the design properties of the isolation system.  

The isolation provisions remained as an Appendix through each edition of the 

UBC, although revisions were made alongside those for conventional structures. 

Subsequent to the final version of the UBC in 1997, provisions for isolated 

structures have been contained in the International Building Code, the current 

version of which (ICC, 2002) directly references provisions contained in ASCE 7 

(ASCE, 2002). Further changes and new terms have been introduced in the 1997 

UBS version, like a more detailed description and division of new soil profile 

types such as hard rock, rock and soft rock. 

The 1997 version represents a conservative, more complicated version of the 

UBC regulations which have changes the basic and simple set of the 1986 Yellow 

Book. Nowadays the conservatism in calculating design displacements and 

seismic forces seriously undermines the use of isolation technology by the 

engineering community.  

The provisions of the current code requiring isolated buildings to be designed 

for lower ductility-based reduction factors inherently penalize the isolated 

superstructure and lead to unnecessarily high costs for the superstructure. A 

recommendation coming from the scientific and the general engineering 

community is put forth that future code provisions should include optional 

performance requirements for conventional isolated buildings, where the design 

forces are reduced substantially compared to the fixed-base counterpart, while the 
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expected performance is at least equivalent between the two. Other more recent 

publications have been released which provide further provisions for isolate 

structures as the chapter 9 of FEMA-356 (2000) about the seismic rehabilitation of 

existing buildings and chapter 13 of FEMA-368 (2001) for new construction. 

Even though the base isolation technology is a reliable one and in Japan and 

New Zealand many applications exist even in the housing private contest, only a 

few new projects each year are presented and/or completed in USA. This because 

the codes are too conservative, and the professional category have the perception 

that base isolation design is complicated and even more expensive than others 

design process.  

2.5. Design Principles of Seismic Isolated Structures and 

Bridges in the Italian code.  

In Italy a first specific legislation to regulate the construction of buildings in 

concrete and masonry dates back to 1996, with a minister ordinance where for the 

first time were introduced. Immediately after the earthquake of 31 October 2002, 

which affected the territory on the border between Molise and Puglia, the Civil 

Protection has adopted the ordinance of Council of Ministers no. 3274 of 

20.03.2003, which includes two chapters on seismic isolation of buildings and 

bridges, in order to provide an immediate response to the need to update the 

classification of seismic and earthquake regulations.  

This seismic code has been for a long time not mandatory but only indicative 

of the basics of seismic design requirements. Only in 2008 it was published in the 



Chapter 2                                                                                                     Seismic Isolation 

 

37 

 

“Gazzetta Ufficiale” the last Italian seismic code, called "Nuove Norme Tecniche 

delle Costruzioni" [46]. The new technical regulations are based on the European 

standards related to Eurocode 8 and in particular the parts relating to the 

evaluation of the seismic horizontal forces and the seismic isolation design.  

The New Italian Code Introduce in Chapter 7 the seismic design rule action. 

Paragraph 7.10 provides criteria and rules for construction, bridges design and for 

the retrofitting of existing structures in which an isolation system is placed below 

the construction. The legislation introduces the terms "isolation" and "dissipation" 

referring to innovative techniques that propose the use of devices in the structure 

of the constructions in order to protect them from seismic loads. 

 The reduction of the horizontal seismic response can be obtained by two 

strategies of isolation, or through their appropriate combination: 

a) increasing the fundamental period of the construction to bring it in the 

field of minors acceleration response;  

b) limiting the maximum horizontal force transmitted. 

In both strategies, the isolation performance can be improved through the 

dissipation in the isolation system of a substantial portion of the mechanical 

energy transmitted from the ground to the building. 

Italian code includes provisions concerning the devices. Isolation devices and 

their connection to the structure must be designed to ensure the access and make 

the devices inspected and replaced. 

To minimize the torsion effects, the projection of the center of mass of the 

superstructure and the center of rigidity of the isolation devices must be, as far as 

possible, coincident. Also, where the isolation system includes a dissipative and 

self centering function, it is necessary that such devices are, arranged in a way that 
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minimizes the torsion effects (e.g. increasing the perimeter) and are in number 

statically redundant. 

To minimize the differences in behavior of the isolators, the compressive 

strength should be as uniform as possible. In the case of isolation systems that use 

different types of isolators, special attention must be paid to the possible effects of 

different vertical deformation under static and seismic actions.  

To prevent or limit tensile strength that could occur in the isolators, the 

vertical load on an individual isolator should be zero or positive under the seismic 

actions. When the analysis proves that he vertical load are negative, it is should be 

proved with appropriate tests which the isolators is able to support such a 

condition. 

2.6. Fundamental Characteristics of Common Devices 

An Isolation system has to guarantee general requirements and criteria for seismic 

design. The isolation system performs one or more of the following functions: 

a) Support of the vertical loads with high stiffness in the vertical direction 

and low stiffness or resistance in the horizontal direction, allowing 

significant horizontal displacements; 

b) Energy dissipation mechanisms with hysteretic or viscous; 

c) A self centering system;  

d) Support for an adequate stiffness under horizontal loads non-seismic 

(wind force). 
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 A classification of Seismic Isolation Devices could be set considering the 

different functional performance characteristics. All the category of seismic 

isolators creates a discontinuity between the over structures and the foundation 

system and they also contribute to damping the structure providing an additional 

dissipation of energy. Therefore it is possible classified seismic devices 

considering the mechanism they use to give dissipation of energy.  

An isolation system is characterized by different combined devices which 

provide the behavior designed. The devices used in a isolation system could be 

composed by one or two and they are arranged in order to create a link between 

the foundation and the superstructure. Different devices have been proposed and 

developed in the last 20 years and some of them have been massively used in 

different part of the world, [Housner 1998, Buckle and Mayes, 1990].  

The devices used in isolation systems can be distinguished in isolators and 

auxiliary devices. Isolators are generally bidirectional devices which perform the 

function of support the gravity loads, with high stiffness in the vertical direction 

and high deformability in the horizontal direction.  Isolators system currently most 

in use can be divided into two specific categories: 

 Isolators with elastomeric and stainless steel components, based on high 

elastic deformability of the rubber part of the bearing.  

 Sliding isolators, made with two plan or curved surfaces characterized by 

low friction coefficient.  

In Figure 11 is shown the ideal mechanical behavior of elastomeric and sliding 

isolators.  



Chapter 2                                                                                                     Seismic Isolation 

 

40 

 

 

Figure 11: Schematic force-displacement loop for elastomeric isolator (on the left) and 

sliding isolators (on the right).  

The auxiliary devices perform the function of dissipation of energy and / or re-

centering of the system and / or provide lateral horizontal constraint under loads 

such as wind. It is possible to distinguish different auxiliary devices:  

 devices with non-linear behavior, strain rate not dependent, based on the 

hysteresis of some metals, such as steel and lead, Figure 12 (loop a), 

devices based on friction between treated  surfaces (loop b) or on super 

elastic properties of shape memory alloys (loop c) [34] particularly used 

to obtain self-centering properties. 

 devices with viscous behavior (loop d), dependent on the speed of 

deformation, based on the extrusion of highly viscous fluids inside a 

cylinder equipped with orifices of appropriate size. 

 devices with a linear/viscoelastic behavior (loop e), based on the shear 

deformation of special polymers devices.  
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Figure 12: Force-displacement graphs of auxiliary devices with non linear behavior base  

on: (a) hysteresis of metal, (b) friction and (c) on super elastic properties of 

shape memory alloys; (d) auxiliary devices with viscous behavior (e) devices 

with viscoelastic/linear behavior.  

The three most popular subcategories of elastomeric bearings are the Natural 

Rubber (LDRB), Lead Core Rubber (LRB) and High Damping Rubber Bearings 

(HDRB). The family of sliding bearings includes devices that utilize friction as 

mechanism of energy dissipation.   

Among the Seismic Isolation Devices also exist hybrid bearings that couple 

the characteristics of sliding device as well as additional function obtained with 

different materials. 
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Figure 13: Different Seismic Response Modification Devices. 

2.7. Isolation system based on elastomeric bearings 

These devices are meant to accommodate large displacements imposed to the 

structures under a seismic activities. They have a layered structure manufactured 

by laminated rubber layers with steel shims. The rubber is the material which 

exhibits excellent resiliency and it can accommodate very high deformation. The 

use of steel shims is due to increase the vertical stability of the device and 

improves axial load capacity. Figure 14 shows the section view of a common type 

of rubber bearing having a circular section.   
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Figure 14: Section view of a laminated rubber bearing. (Source: Micheli I. et al.,2004) 

During the motion a rubber bearing can accommodate shear strain and steel 

reinforcing plates inhibit flexural deformation while allowing to shear 

deformation. Therefore a laminated rubber beating may be considered like a 

vertical shear beam, in which pure shear deformations occur only in the internal 

rubber layers. The lateral stiffness of a laminated rubber bearing    can be 

approximated as 

(2.43)                                   
h

GA
kb   

where A represent the section area of the bearing, G rubber‟s shear modulus 

and h the cumulated height of rubber‟s layers. Lateral stiffness could be affected 

under the effect of large displacement due to flexural beam action and due to 

increased compression of the reduced overlap area. Although rubber beatings are 

made with different mix design, they could be sort in two major types, low and 

high damping rubbers. They can provide  10% and  15% damping respectively.  
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2.8. Isolation system based on elastomeric: Lead Rubber 

Bearing 

Laminated-rubber bearings are able to supply the required displacements for 

seismic isolation. By introducing in a laminated rubber bearings a lead plug insert 

it is possible to obtain a single compact component able to support the structure 

vertically, to provide the horizontal flexibility together with the restoring force, 

and at the same time providing the required hysteretic damping. The main reason 

for choosing lead as the material for the insert in the isolators is due to the capacity 

of this metal to yield in shear at relative low stress of     MPa at room 

temperature, behaving approximately as an elastic-plastic solid. When plastically 

deformed, lead can restore its mechanical properties with a simultaneous process 

of recovery and recrystallisation and grain growth. This means that lead regains its 

crystalline structure after yielding and continues to dissipate significant amount of 

energy. Deforming lead plastically at 20°C is equivalent to deforming iron or steel 

plastically at a temperature greater than 400°C. The simplest form of a lead core 

bearing is illustrated in Figure 15. 

 

Figure 15: Lead rubber bearing which consist of a lead plug inserted into a vulcanized 

laminated rubber bearing. 
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It is composed by a lead plug that serves as energy dissipating component, 

rubber which is the component that provides restoring force to bring the structure 

back to the static equilibrium point and steel shims that serve as reinforcing 

elements for rubber to improve stability and compressive load capacity.  

The initial elastic stiffness,   , is defined as sum of rubber and lead 

contribution 

(2.44)                                
rrppu AGAG

h
k  1

 

Where     is the total area of the lead plug,    and    are the shear modulus 

of the lead plug and of the rubber respectively,    the area of the rubber and   the 

total height of the bearing. 

  

Figure 16: Force displacement idealized loop of an isolation bearing. 
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The post elastic stiffness,   , is mainly due to the rubber contribution  

(2.45)                             
h

fAG
k crr

d   

Where    is a coefficient related to the contribution of post yield lead. For 

current types of LRB‟s the elastic stiffness   ranges between 6.5 and 10 times 

post yield stiffness,   . The area made with the hysteresis loop is the measure of 

energy dissipated per cycle of motion (EDC). In the idealized system shown in 

Figure 16 the viscous damping is determined by 

( 2.46)                         
2

max2 
effk

EDC

  

where   represents the critical damping;      the effective stiffness and      

the maximum bearing displacement during a single cycle of testing. The yield 

force can be defined as the force required for yielding of the lead plus the elastic 

force carried by the rubber at the corresponding yield displacement 

(2.47)                          



 

pp

rr

ppyy
AG

AG
AF 1  

 where     represents the shear yield strength of lead. The shear force at zero 

displacement is generally associated to the yield strength of the lead core 

(2.48)                          ppy AQ   
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2.9. Isolation system based on sliding  

Sliding bearings include all devices that accommodate large displacement by 

sliding rather than stretching, shearing or compressing. In this bearings, the 

dissipated energy is given by the friction caused by sliding of the surface. Figure 

17 illustrate the friction pendulum device. 

 

Figure 17: Components of a friction pendulum. Source: www.maurer-soehne 

.com/structural _protection _system. 

The bottom portion (concave plate) is typically constructed as a spherical dish 

with a stainless steel overlaying. An articulated slider is free to move over the 

concave plate and inside the bearing plate. The bottom of the slider and the inside 

of the cup part of the bearing plate are lined with the self-lubricating low friction 

composite. The device uses the characteristics of a pendulum to lengthen period of 

the isolated structure. Seismic isolation is achieved by shifting the natural period 

of the supported structure. The natural period is controlled by the selection of the 

radius of curvature,  , of the concave surface. The natural period of vibration,  , 

if a rigid mass supported of FPS connections is determined from the pendulum 

equation 
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(2.49)                         
g

R
T 2  

Where,   is the acceleration of gravity. This pendulum period is the period of 

a mass sliding on FPS isolators, and is the isolated period of vibration of a 

relatively stiff structure supported on the FPS. The isolated period becomes active 

once the friction force level of the isolators is exceeded. Choices of bearing, 

material composite, mating surface properties can define the amount of friction of 

the isolator and therefore the amount of energy dissipation per cycle during 

seismic movements. The lateral stiffness and friction force is directly proportional 

to the supported weight of the bearing. Very recently the original concept of the 

device was extended to bearings with 2 and 3 sliding surface. In Figure 18 is 

presented the typical force-displacement curve of a friction pendulum device. The 

intersection of the curve with the Y-axis (zero displacement) is obtained as 

product of the friction coefficient  , times the supported load  , the stiffness  is 

defined as 

(2.50)                           
R

W
k   
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Figure 18: Schematic of hysteresis loop of a single concave Friction Pendulum bearing 

 

Simpler sliding devices are available with flat sliding surfaces as shown in 

Figure 19. Their behavior is simply associated to the friction as source of energy 

dissipation. 

 

Figure 19: Sliding device with flat sliding surface. 
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2.10. Development of seismic isolation in Italy and in the world 

The first applications of structures disconnected from the ground date back to 

the ancient civilizations in China Greece, Peru, Italy. Layers of materials (coal, 

fleeces of wool, sand) were placed in correspondence to the foundation in order to 

favor the sliding of the structure with respect to the ground. The seismic isolation 

has been proposed in Italy after the earthquake of Messina and Reggio in 1908 

with first patents compatible with the technology available at the beginning of the 

last century. 

The first use of a rubber isolation system to protect a structure from earthquake 

was in 1969 for an elementary school in Skopje, Yugoslavia. The Pestalozzi 

School, a three story concrete structure designed and built by Swiss engineers, is 

isolated by a system known as the Swiss Full Base Isolation-3D System [69]. The 

rubber bearings, used in this application were completely unreinforced so that the 

weight of the building causes them to bulge sideways. 
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Figure 20: Pestalozzi School, Skopje, Macedonia, [52]. 

This bearings were able to bounce and rock backward and forward in an 

earthquake because the vertical and horizontal stiffness of the system is 

approximately the same. Because of this, the adoption of these devices turned out 

to be unsatisfactory and they were no longer used in others application.  

Seismic isolation became a reality in the seventies in England, where were 

produced the first elastomeric bearings by the MRPRA (Malaysian Rubber 

Producers' Association Research), who devised a process for vulcanizing rubber 

layers with a stainless steel. 

The first application was made in France in the early 70s, in order to safeguard 

a series of nuclear power stations and plant facilities. The utility developed a 
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standard nuclear power plant with the safety grade equipment qualified for 0.2g 

acceleration. The system combines laminated neoprene bearings with lead-bronze 

alloy in contact with stainless steel, the sliding surface being mounted on top of 

the elastomeric bearing. The coefficient of friction of the sliding surface is 

supposed to be 0.2 over the service life of the isolator (Electrcité-de- France 

System).  

At the end of the 70s, the concept of seismic isolation was introduced in Italy, 

where it was widely applied to bridges and viaducts, in a period of remarkable 

development of the highway network. In the 80s the seismic isolation technique 

spread throughout the world with important applications in bridges and buildings 

strategic, especially in the U.S. and New Zealand,  elastomeric isolators with high 

damping rubber using high dissipation (HDRB) or isolators with lead plug LRB 

[Tarics et al., 1984; Anderson, 1989, Charlerson. 1987, Reaveley et al. 1988]; in 

Japan the solution initially more adopted involved the use of low-damping 

elastomeric devices (LDRB) with the addition of viscous or hysteretic dissipaters 

[Kelly J.M.,1988].  

A development of applications of seismic isolation system has occurred as a 

result of numerous studies carried out on the 80s who demonstrated the reliability 

of this method in the protection of the structural and non-structural parts in the 

presence of violent earthquakes. Moreover, two catastrophic events such as the 

1994 Northridge and the 1995 Kobe earthquake, which struck respectively 

California and Japan, the development of seismic isolation had an additional input. 

Indeed in those events the isolated structures turned out to be an excellent 

performance than the performance of the equivalent fixed base structures located 

in the same affected area [Asher et al. 1995]. 
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After these events, the number of applications of seismic isolation has 

undergone considerable development particularly in Japan. The interest for this 

application is remarkable in existing buildings, in which the seismic isolation can 

reach levels of security significantly higher than those achieved by the traditional 

type of retrofitting. 

In USA the first examples of seismic retrofitting of existing buildings by basic 

insulation go back to the mid-90s. The structures were large buildings such as City 

Hall in Oakland [Walters et al. 1995], San Francisco [Naaseh 1995] and Los 

Angeles [Youssef 1995]. In all above cases  it have been used rubber devices with 

lead plugs or high damping bearing (LRB or HDRB). 

Recently , important applications of sliding isolators with curved (Friction 

Pendulum System, [Amin and Mokha 1995]  ) or flat surface have been applied in 

the U.S.A. or flat, with the addition of auxiliary devices re-centering rubber [Way 

and Howard, 1990]. 

The seismic isolation in Italy has experienced a constant development in last 

40 years. After the earthquake in Friuli (1976) where the viaduct Somplago, 

protected with a seismic isolation system relatively simple but effective, was the 

only viaduct that was without damage after the earthquake event. Consequently to 

this event, in the decade from 1983 to 1993 seismic isolation was widely used in 

Italy for the protection of highway bridges and viaducts [Medeot 1991]. 

Over the past 15 years, important national and international research programs, 

involving companies, research institutes and Italian universities, have been carried 

out in order to develop the efficacy of the seismic devices. 

At the same time, new technology for devices and isolation systems, and 

developing methods of calculation and verification of safety have been developed. 
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Different studies have involved the study seismic isolation at different scale levels 

and different devices such as the execution of dynamic tests on insulators 

individual small-scale [Kelly and Quiroz 1992] and real scale [Braga et al. 1997], 

or the performance of dynamic shaking table tests on scale models of isolated 

structures [Dolce et al. 2001a, 2006a and 2008]. 
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Chapter 3 

3. Friction Pendulum Devices 

A system using pure sliding was proposed in 1909 by Jahonnes Avetican 

Calantarients, a medical doctor in England; he suggested to separate an existing 

structure from the foundation by a layer of tale.  

 

 

Figure 21: Calantarient‟s base isolation system using a layer of tale as the isolating layer, 
[52].  
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  Calantarients understood that the isolation of systems reduce accelerations in 

buildings at the expense of large relative displacements between the building and 

the foundation. He designed a set of connections for utilities, which were restricted 

to gas lines and sewage pipes to accommodate for these displacements. 

Isolation was first considered as a seismic-resistant design strategy by the 

Italian government after the great Messina. Reggio earthquake of 1908, which 

killed 160,000 people in unreinforced masonry buildings. After this event a 

commission considered an approach for earthquake resistant design to isolate 

buildings from the ground, by either interposing a sand layer in its foundation, or 

by using rollers under columns to allow the building to move horizontally. The 

idea that isolation can help buildings survive when great displacements occur, has 

been observed several times, in different places, for example after the severe 

Indian earthquakes of Dhubai (1930) and Bihar (1934) it was observed that small 

masonry buildings that slid on their foundations survived the earthquake, while 

similar buildings fixed at the base were destroyed.  

A considerable amount of theoretical analysis has been done over the time on 

the dynamics of structures on sliding system subjected to harmonic input, or to an 

earthquake input. Udwadia, 1983 studied the periodic response of a linear 

oscillator on a coulomb friction sliding interface. Contrary to the general 

perception that friction will always reduce the response, they discovered that the 

response may be even larger than might be expected in the equivalent fixed base 

model, and that the single degree of freedom model had subharmonic resonance 

frequencies generated by the sliding interface.  

The assumption of coulomb friction was generally used in the theoretical 

analyses described above, but more recent studies demonstrated how it is not an 
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accurate representation of real behavior [Mokha et al., 1990]. The most common 

materials used for sliding bearings are unfilled or filled Polytetrafluoroethylene 

(PTFE, or Teflon) on stainless steel. Recently PTFE has been replaced with high 

strength polymer, which has better mechanics and dissipative characteristics.  

3.1. Basic Principles of solid Friction  

The utilization of the frictional behavior for sliding bearings requires the 

introduction of the basic mechanism of this phenomenon in order to gain an 

insight into the relevant aspect in seismic applications with sliding bearings. This 

requires that an understanding of the origin of friction in these interfaces is 

developed in order to provide a complete presentation and a base for the good 

interpretation of the results introduced in this dissertation.  

This section presents a physical interpretation and the basic mechanism of the 

phenomenon of friction in selected sliding interfaces. It deals primarily with 

PTFE-stainless steel interfaces. The presentation is limited to certain aspects of 

frictional behavior that are relevant to the interpretation of experimental results at 

the macroscopic level. 

Friction is the resistance to motion, which exist when a solid object is moved 

tangentially with respect to the surface of another that it touches. This dissertation 

aims at explaining the friction caused by sliding movements between solid bodies, 

which is called sliding solid friction. It also presents a description of the frictional 

behavior of sliding interfaces as they are used in sliding bearings for structural 
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applications. The frictional force, F, at the sliding interface of a bearing will be 

described with the classical law of friction of Coulomb: 

(3.1)                                      NF   

Where   is the coefficient of friction and   is the normal load acting in the 

interface. By means of eq. (3.1) is possible define the static or breakaway 

coefficient of friction as the ration    , which is different respect the sliding 

coefficient of friction that occurs during the motion between two sliding surfaces.    

The equation (3.1) postulates a friction coefficient directly proportional to the 

normal force    and independent of sliding velocity and apparent contact area. 

Whereas these laws are valid in many cases, they do not, in general if applied to 

sliding surfaces. So for sliding bearing the friction coefficient is dependent on the 

velocity of sliding and apparent pressure.  

3.1.1. Basic Mechanisms 

To gain an understanding of the basic mechanisms of friction it is important to 

describe the microscopic events that cause friction. For this purpose here is 

reported an overview of the microscopic aspects of friction, this is limited to the 

events that may provide physical insight into the frictional behavior of sliding 

bearings [Bowden and Tabor, 1950, 1964, 1973]. 

Various mechanisms of friction have been proposed over the past years. It is 

believed that all these mechanisms contribute in the generation of friction in 

various degrees depending on the particular situation.  

The origin and magnitude of the frictional force is given from the “adhesion 

theory”. This consider the intimate atomic bonds that interacts when two solid 

material are placed in contact (Figure 22).  
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Figure 22: Schematic illustration of an interface, showing the apparent and real areas of 

contact.  

Some regions on their surface will be very close together in some regions 

called “junctions” and the sum of the areas of all the junctions constitutes the real 

area of contact   . The total interfacial area consists of the area of contact and also 

of those regions denoted as the apparent area of contact,   . When the two 

surfaces are pressed together by a load, sliding is induced the frictional force is 

given by the product of the real area of contact,   , and the shear strength of the 

junctions,  :  

(3.2)                                   rsAF   

Although, a discreet number of frictional phenomena are explained by the 

postulate mentioned above, friction mechanism presents some criticisms and 

limitations and still now it is generally recognized that adhesion does not provide a 

clearly separate contribution of friction.  
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Although, the main resistance to sliding arises from the need to shear of 

adherent surface atoms, there are a number of other factors to be taken into 

account. These components will be described below.  

Roughness component: a contribution is given by the roughness component, 

which arises from the need, during the sliding of rough surfaces, to lift one surface 

over the roughness of the others. If we call the asperity   a contribution of the 

friction will be produced. However, if we consider a plane surface, during the 

motion there may be negative as well as positive values of  . Summing up for all 

the contacts, the roughness friction contribution tend to zero and the remain 

contribution is about 0.05 to the overall friction coefficient.  

 

Figure 23: Schematic illustration of the roughness of sliding surface. Positive and negative 

θ coexist.  

 The plowing component. when a hard surface has a sharp asperity and it slides 

over a soft surface, it will tend to dig into the softer surface and produce a plastic 

deformation. The energy of deformation represented by the groove must be 

supplied by the friction force, which will have the plowing contribution. 

Considering a simple calculation with a circular cone asperity dig into a softer 

surface as schematically illustrated in Figure 24. During sliding, the penetrated 

area    is given by  

(3.3)                           tantan2
2

1 2
rrrAp   
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Therefore the frictional force will be  

(3.4)                                 prsrF  tan22      

Where 
2

r

L
p   represents the pressure in the junction.  

 

Figure 24: Schematic illustration of a cone pressed into a flat surface. The asperity 

moving horizontally create a groove which is swept out of Ap.  

Third body effects:  wear debris and contaminants at the sliding interface 

contribute an additional term to the friction force. The contribution is due to 

plastic deformation as agglomerates of debris and contaminants roll between the 

surfaces or as they indent these surfaces.    

Viscoelastic Effect: polymers, such as PTFE, exhibit viscoelastic behavior. As 

asperities of a harder material slides over a viscoelastic material, energy is 

dissipated due to viscoelastic deformation, contributing thus an additional 

component to friction.  

In general, it is believed that several mechanisms contribute to friction. Their 

relative roles are the subject of much debate. However, we shall recognize that 

adhesion and mechanical deformation (elastic, plastic or viscoelastic) are 

collectively responsible for friction. Moreover, we shall recognize that the real 
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area of contact is of paramount importance in the qualitative description of friction 

at the macroscopic scale. 

3.1.2. Static and Sliding Friction  

The static or breakaway friction is the maximum force, which exists to start a 

macroscopic motion in a solid. The breakaway frictional force decreases, when 

compare to the sliding frictional force, when macroscopic motion occurs. It is 

noticed from experimental results that the static friction is higher than the sliding 

friction force.  Figure 25 illustrates a schematic test of a friction pendulum device, 

in which the low friction material that interfaces the stainless steel concave surface 

is an un-lubricated polymer composite with about 400     compressive yield 

strength. The interface was at constant average pressure of 15    . A cycle of 

sinusoidal motion with a pick velocity of 1.27 (mm/sec) was imposed. The 

different between the static and sliding values of the coefficient of friction is 

relevant.   
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Figure 25: Typical Friction Force-Sliding Loop of Polymer-Stainless Steel Interface 

without the contribution of restoring stiffness W/R (Pressure=15 MPa, Peak 

Velocity=1.27 mm/sec). 

3.1.3. Stick Slip  

The Stick Slip phenomenon is a common experience in the sliding on one 

body over another under the effect of a continue force, and sometimes at constant 

or close to constant velocity. In displacement controlled testing of a sliding 

bearing (i.e., motion is imposed by an actuator and measurement of the friction 

force is made), stick-slip behavior is manifested as fluctuation in the recorded 

friction force versus time. Conversely, in a force controlled test the behavior is 

manifested as motion with stops. Stick-slip may be an intrinsic property of the 

sliding interface or more often is the result of inertia effects and the flexibility in 
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the testing arrangement, although the phenomenon may be aggravated by the 

frictional behavior of the interface.  

 

Figure 26: Schematic representation of a friction apparatus. 

The Stick Slip phenomenon could be explained considering the sliding 

situation represented in Figure 26, in which a rider is fixed to a support by means 

of a spring and posed on a surface in motion under a constant velocity  . It is 

supposed that the velocity is low so that the rider keeps up with the movement of 

the flat and the damping is consequently negligible. Supposing a friction force 

displacement plot as shown in Figure 27a if we start the run at   the rider will 

move over the flat maintaining a constant velocity  . This phase is steady until the 

point   is reached. At this point the frictional force drops abruptly and the rider 

tries to adjust its position following the force-displacement function of the spring. 

The discrepancy created between the straight line of slope   and the friction force 

is highlighted with a dashed area. This portion has the dimension of energy, and it 

represents excess energy in the system, which becomes potential energy for the 

movement of the rider. The body then slips until it reaches the point    where until 
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all the kinetic energy has been used.  The spring force at this point is below the 

friction force, so that the rider will stick to the flat and it will be dragged along by 

it until the point  , where the friction force is large again to initiate relative 

motion again. In Figure 27b it is plotted the friction force as a function of time. 

The path denoted an irregular stick slip and occur really frequently with the sliding 

of clean metals, and the sliding of metals covered with a partially worn away solid 

film lubricant. In the first case the stick slip is basically due to the coalescence of 

the area contact‟s junctions in a larger junction, creating a severe fluctuation of the 

frictional force. In the second case the fluctuation arise because the rider proceeds 

alternately areas covered by the film and regions, in which the film is absent or 

worn. 

   

Figure 27: (a) A schematic hypothetical force displacement plot. (b) Friction record 

corresponding the force displacement plot.  
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3.2. Frictional behavior in PTFE-Polished Stainless Steel 

Interfaces 

. The PTFE is a synthetic  fluoro-polymer of tetrafluoroethylene, which is well 

known as the brand name Teflon by DuPont Co. 

This material finds numerous applications and PTFE or PTFE-based materials 

in contact with polished stainless steel represent, by far, one of the most frequently 

used interface in sliding bearings. 

Friction in this kind of interface is basically the result of adhesion, where the 

contribution of plowing effect is not significant. In PTFE surfaces the sliding 

occurs only at the interface deviating from the tendency of others polymers to 

shear in their bulk (Tabor, 1981).  

The shear strength is given, as first approximation, by a linear function of the 

actual pressure, which is the pressure over the real contact area (Tabor, 1981). 

(3.5)                             
rpss  0

 

then the coefficient is friction is given combining eq. (3.2) and eq. (3.5)  
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Figure 28: Schematic variation of Real Area of contact, Pressure and Coefficient of 

Sliding Friction. 

The reduction in the coefficient of friction with increasing normal load is 

illustrated in figure 28. 

PTFE is a viscoelastic material and it is subjected to creep, therefore to the real 

area of contact and as a result the motion depends on the load dwell (Bowden and 

Tabor, 1964).  

The experiments conducted by many groups demonstrated increases in both 

the real area of contact and the static friction force over loading times. Testing of 

PTFE sliding bearings for the effect of load dwell has been conducted over a long 

time Paynter (1973), Campbell and Kong (1987) and Mokha et al. (1990).  

The results of these studies could be briefly summarized with the following 

points: 

The results on the static friction exhibit fluctuations that cannot be correlated 

to the load dwell. Rather, it was observed that static friction is higher in the first 

test conducted on a new specimen regardless of the load dwell. The static friction 

is lower in any subsequent test, again regardless of the load dwell. This may be 
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explained by the existence of a film of PTFE on the stainless steel surface ,which 

was deposit in the previous tests. 

The time dependent deformation of PTFE is nearly completed within a very 

short time interval, likely of the order of a few minutes or hours, resulting in a 

constant real area of contact. As discussed earlier the experimental results on the 

dependency of the low velocity friction on normal load suggest that the real area 

of contact is approximately equal to the apparent area of the bearing Mokha et al. 

(1988). One explanation of these may be found by investigating the rate of 

deformation of PTFE under conditions of confined compression. Shames and 

Cozzarelli, (1992), demonstrated that confined PTFE creeps at very fast rate. It is 

thus likely that the condition of the real area of contact being approximately equal 

to the apparent area of the bearing is reached within very short time.  

3.3. Single Pendulum System 

In recent years, the use of concave sliding isolators (Friction Pendulum) for the 

seismic protection of buildings and bridges experienced a significant world-wide 

spread. The capability to undergo large displacements despite their compact size 

make these devices competitive among other commonly used isolation devices 

such as lead-rubber bearings or high dumping rubber bearing.  

Concave sliding bearings are suitable for a wide range of applications for 

buildings, bridges and industrial facilities, due to their relevant features. Compared 

with High Damping Rubber Bearings (HDRB) and Lead Rubber Bearings (LRB), 

they offer a quite compact shape, with considerably lower thickness, and larger 

displacement capacity, these characteristics are very desirable for installation in 
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existing structures. Moreover, the natural vibration frequency of the structure 

depends only on the sliding surface radius and not on the supported mass. The 

seismic retrofit of the historic U.S. Court of Appeals building in San Francisco, 

damaged during the Loma Prieta earthquake in 1989 and retrofitted using 256 

Friction Pendulum System (FPS) isolators, the San Francisco Airport International 

Terminal considered the largest isolated building in the world and the Benicia-

Martinez Bridge retrofitted using 24 FPS isolators can be considered among the 

most important applications of this technology. 

FPS have been recently used in Italy for the construction of approximately 

4600 apartments to recover the homeless after the April 2009 earthquake in 

L‟Aquila. The new buildings have been erected on a reinforced concrete slab, 

which supported by 40 steel columns provided on the top with seismic isolators 

(Figure 29). Considerable literature on experimental and analytical analyses of 

these devices is available,  and in these section it is briefly reported. 

 

Figure 29: A single pendulum bearing in situ. In this installation the sliding surface is 

faced down. 

According to the simplified analytical model of the predominantly bilinear 

behavior of sliding concave isolators, developed by Zayas et al. (1989, 1990), the 
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force-displacement relationship based on the horizontal force balance is expressed 

as: 

(3.7)                              Wvsignu
R

W
F   

where   represents the applied vertical load,   the horizontal relative 

displacement between slider and concave base,   the velocity,   the radius of the 

concave surface,   is the friction coefficient of the sliding system and   is the 

horizontal restoring force.  

Equation (3.7) is derived from the equilibrium of forces presented in Figure 

30, in which are represented the theoretical sliding concave behavior and the 

force-displacement loop under a constant vertical load   with a constant 

coefficient of friction  .  

 

Figure 30:Theoretical sliding concave behavior and equilibrium of the forces involved 

during the motion.  

As depicted in Figure 31 the frictional force of the device is partially given by 

the force due to the frictional behavior of the contact surfaces between the steel 
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concave surface and the slider. The rest of the force is provided by a component 

called “restoring stiffness”.  

(3.8)                                
R

W
Kra   

 

Figure 31: Typical bilinear force-displacement loop for a sliding concave device. 

The stiffness of this single pendulum is directly proportional to the supported 

weight   (see eq.(3.8)). This aspect is an important and unique property of the 

FPS and it has advantageous effect on the torsion response of the structure.  

After recent studies carried out from many research groups [Mokha et al. 

1990, Bondonet and Andre Filiatrault, 1997, Dolce et al. 2005] on PTFE-stainless 

steel contact surfaces, it has been demonstrated that, due to the non linear 

relationship between coefficient of friction and weight supported by the isolator, 

the center of rigidity is eccentric, laying in the direction of the lightest portion of 
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the structure. So in the design of friction pendulum system is necessary to avoid an 

irregular distribution of weight on the superstructure in order to avoid unexpected 

torsional effects. 

.   

 

Figure 32: Schematic of concave sliding bearing [44]. 

An important property of the FPB is the unique design of the articulated slider 

(Figure 32). It is designed as a semispherical shape with an internal constant radius 

of curvature. As regards the sliding part, this has the same radius of curvature   of 

the steel sliding surface with the purpose of guarantee a uniform contact pressures 

between the slider and the concave surface for any combination of lateral and 

vertical loads.   

The period is independent of the structure mass in the FP, making it a unique 

device among the SRMD. The flexibility of FPS connections consist of varying 

the sliding period and friction coefficient simply choosing the radius of curvature 

of the concave surface, or design sliding polymer composite liner (Figure 32) such 

as to obtain the desired friction coefficient. The period does not change if the 

structure weight is different than that assumed (2.49).  
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This frictional interface also generates a dynamic friction force that acts as a 

damping system in the event of an earthquake. This lateral displacement greatly 

reduces the forces transmitted to the structure even during strong magnitude 

earthquakes. This type of system also possesses a re-centering capability, which 

allows the structure to center itself by the concave surface of the bearings and 

gravity, if any displacement occurs during a seismic event. 

3.4. Examples of Seismic Isolation with friction pendulum 

system 

San Francisco‟s International Airport Terminal was designed to resist a 

magnitude 8 earthquake that could occur because of the San Andreas fault. The 

267 Friction Pendulum bearings protect this building from the severe ground 

shaking that occurs during major earthquakes.  

 

Figure 33: The arrangement of the Friction Pendulum during the construction phases of 

San Francisco‟s International Airport, www.earthquakeprotection.com.  
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The isolated system provides a 3 seconds isolated period, it also reduces 

earthquake force exerted on the building by 70%. Each bearing can displace up to 

20 inches (50.8 cm) in any direction while supporting loads of up to 6 million 

pounds ( 27 MN). Seismic isolation provideds the lowest construction cost, still 

achieving the desired seismic performance. Moreover, the use of friction 

Pendulum bearings as compared to rubber bearings, allowed a reduction of column 

and bean sizes, and saved an additional amount of structural steel, and this 

construction cost.  

Another important and well-known place where FPS has been put in used is in 

the retrofitting of U.S. Court of Appeals in San Francisco (see Figure 6). This is a 

350,000 sq ft building listed in the National Register of Historic Places. A total of 

256 Friction Pendulum, installed between the existing foundation and columns, 

make the structure one of the largest seismically isolated buildings in the United 

States. Engineering analyses and testing show that the isolators reduce the seismic 

loads caused by a magnitude 8 earthquake by 80 %. These reductions in seismic 

loads and drift protect the historic architectural finishes and structure from 

earthquake damage. Built in 1905, the main building consists of a steel frame with 

un-reinforced granite masonry clay tile. The building has intricate granite exterior, 

interiors of marble, decorative plaster and hardwoods, and hand painted murals 

make this building one of the most decorated Federal building in West America. 

The structure was damaged in the 1989 Loma Prieta earthquake, and was 

immediately closed. Different proposals were submitted by suppliers of Lead-

Rubber bearings, High dampening Rubber hearings, and Friction Pendulum 

Bearings in order provide a seismic rehabilitation to repair the damage and protect 

the structure from future earthquakes. After detailed engineering studies, the 
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Friction Pendulum Bearings were found to more effectively enhance the building's 

seismic performance.  

 

Figure 34:  A view of the Friction Pendulum Bearing used in U.S. Court of Appeals in 

San Francisco retrofitting [source: www.vsl.com]. 

Greater reductions in seismic shear forces were achieved, with practical size 

hearings. The smaller size bearings, and practical installation details, reduced the 

installed costs by allowing the existing footings and columns to he used with 

minimum changes.  

The isolators reduce the earthquake forces on the structure by deflection (via 

pendulum motion) and by absorbing the energy of the earthquake (via friction).  

Extensive testing carried out at the National Center for Earthquake Engineering 

Research supported the performance of the bearings. State University of New 
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York at Buffalo and at the Earthquake Engineering Research Center, University of 

California at Berkeley.   

3.5. Friction coefficient: Effect of Apparent Pressure and 

Sliding Velocity   

First studies about the friction pendulum devices have been carried out since 

1987 (Zayas 1987, Mostaghel and Khodaverdian 1987, Fan et al. 1988). These 

theoretical pioneer works evaluated the seismic performance of sliding isolation 

system demonstrating the feasibility of these devices. In these first studies, friction 

coefficient have been evaluated accordingly with the simplified Coulomb model, 

in which the force of friction is directly proportional to the applied load, 

independent of the apparent area of contact and of the sliding velocity. These 

assumptions lead to a rectangular friction coefficient-displacement loop, 

independent from the level of applied load. 

In the literature there is few data on the frictional properties of PTFE bearings 

at large sliding velocities. Tyler (1977) was the first to report such data and 

focused his study on the breakaway friction under high rate of motion, he also 

reported data on the sliding friction. These data are in general agreement with the 

data of Mokha et al. [48] who conducted tests for a wider range of conditions.   

Mokha et al. [48] conducted a series of test on sheet type Teflon (PTFE) 

sliding bearing, obtaining measurements of the breakaway (static) and sliding 

(kinetic) coefficients of friction. They noticed that the results of these experiments 

were in disagreement with the theoretical studied conducted before. Their analysis 
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of the shape of the loops indicated major effects related to the frictional 

performance of the devices that generated distortion of the Coulomb‟s rectangular 

loop.  

The developed model of friction studied by Mokha [48] exhibits a behavior 

that deviates significantly from that of Coulomb. Results show that under certain 

conditions the Coulomb's model may provide reliable estimates of the forces 

imparted to the isolated structure.  

The first characteristic of this model is the dependency of the frictional force 

on the velocity of sliding. Other features of this model are the dependency of the 

frictional force on bearing pressure and condition of interface (type of Teflon and 

roughness of stainless steel).  

Furthermore, the effect of breakaway friction on the behavior of sliding 

isolation systems is assessed. At initiation of sliding, the structure is subjected  

to high frictional forces. These forces are significant for sliding systems for which 

the Teflon-steel interfaces operate at low velocity. 

The series of test conducted by Mokha et al. were carried out with sliding 

surfaces composed with unfilled or glass filled PTFE with 15% and 25% of the 

weight, and in contact with polished ASTM A240 type 304 polished stainless 

steel, having a roughness surface between 0.03    and 0.04   . Bearing pressure 

at the interface was ranging between 6.9 to 44.9 MPa. Motion at the interface was 

either sinusoidal or with constant velocity, where the peak value of sliding 

velocity was between 0.25 and 50 cm/s.  

First observations on the friction behavior were made with this experimental test, 

and they are summarized below:  
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 The breakaway and sliding friction coefficient are related with the bearing 

pressure and the condition of the interface.  

 The sliding value of the coefficient of friction increases with an increase 

in the sliding velocity 

 Breakaway friction coefficient is substantially larger than the sliding 

value.  

 Interfaces subjected by a run, show a lower breakaway coefficient in 

subsequent test. This may be explained by the existence of a film of 

PTFE on the stainless steel surface which was deposit in the previous 

tests 

 The effect of acceleration of sliding at the interfaces is minimal. 

 

Figure 35: Variation of Sliding Coefficient of Friction with velocity of glass-filled PTFE 

for different pressure values [48]. 
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In Figure 35 it is shown the sliding coefficient of friction upon division by the 

breakaway friction coefficient as function of sliding velocity. Mokha proposes the 

following equation for approximate the experimental data, 

(3.9)                       uaDffs
 expmax  

Where      represents the coefficient of friction at high velocity of sliding,    the difference between      and the sliding value at very low velocity while   

is a constant related with the bearing pressure and condition of interface. 

The frictional force,   , at a sliding interface, could be described with this 

equation: 

(3.10)                      )sgn(uWF sf
  

  

Figure 36: Effect of beating pressure on Breakaway coefficient of Friction for glassfilled 

and unfilled PTFE stainless steel surfaces [Mokha et al., 1990].  
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Mokha noticed and confirmed experimentally the theoretical studies of Tabor 

[73] (see section 3.2, equation (3.6)). In Figure 35 and in Figure 36 it is clear how 

the coefficient of sliding friction decreases with increasing pressure. Moreover, the 

rate of reduction of the sliding coefficient of friction with increasing pressure has a 

strong correlation with the sliding velocity. As illustrated in Figure 36, breakaway 

coefficient of friction reduces its modulus with increasing pressure.  

Frictional properties of the PTFE composite used in FPS bearing have been 

studied by Constantinou et al. [25] and Tsopelas et al. [75]. The values of the 

sliding coefficient of friction were obtained in shake table testing of a bridge 

model with either FPS bearings (Constantinou et al., 1993) or with flat sliding 

bearings (Tsopelas et al., 1994). The data were extracted from either displacement 

controlled tests (open circle and square symbols, Figure 37) or seismic motion 

tests (dark symbols, Figure 37). 
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Figure 37: Coefficient of Sliding Friction of Unfilled PTFE-Polished Stainless Steel 

Interfaces [25].  

In general, for a fixed value of the apparent pressure the sliding coefficient of 

friction, depends on the velocity,  , in a relation that can be described by eq. (3.9) 
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[48]. Figure 37 describes the observed dependency of the sliding coefficient of 

friction on velocity.  

Parameters of eq.(3.9) control the transition of the coefficient of friction from 

its minimum value to its maximum value at high velocity of sliding. Figure 38 

illustrates the effect of parameter   for two values of the ratio          , 2.5 and 

5.  

 

Figure 38: Schematic illustration of the effect of parameter „a‟ in the coefficient of 
Friction with velocity [25].  

Recently Bondonet and Andre Filiatrault [11] conducted experimental tests to 

evaluate the frictional response of PTFE Sliding Bearing at high frequencies.  

Sinusoidal tests were done on sheet-type Teflon- stainless steel interfaces at 

bearing pressures of 5, 15, 30, and 45 MPa, at frequencies of 0.02, 0.2, 1.0, 2.0, 
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and 5.0 Hz, and at displacement amplitudes of ± 10 mm and ±70 mm. A maximum 

sliding velocity of 82 cm/s was reached during the tests. The steel portion of the 

interface was made of stainless steel plates, 1.6 mm thick, which were welded on 

10mm mild steel plates. A grade-eight mirror finish was used for the stainless 

steel. The direction of the predominant surface pattern (surface lays) was parallel 

to the excitation direction in all tests. The PTFE portion of the interface was made 

of Teflon disks having a diameter of 128 mm and a thickness of 5 mm. Three 

different types of Teflon material were considered: unfilled Teflon, glass-filled 

Teflon at a composition of 15% per weight, and carbon-filled Teflon at a 

composition of 25% per weight.  

The test showed a reliable performance during the test series and the interfaces 

between glass-filled Teflon and carbon-filled Teflon exhibited minor damages in 

their surfaces. Only the unfilled surface suffered more damage under higher 

confining pressures between 30 and 45 MPa.  

Two thermocouples were installed on the edges of the stainless steel plate for 

monitoring the variation of temperature during and after the tests. The rises of 

temperature are reported in Table 1. 

Table 1: Maximum Temperatures Recorded. 

Displacement  

[mm]
Teflon

Maximum 

Temperature    

[°C]

±70 unfilled 70

±70 15% glass filled 110

±70 25%carbon filled 130

±70 unfilled <30

±70 15% glass filled <30

±70 25% carbon filled <30  
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The frictional response of the unfilled Teflon with 30 MPa of confining pressure is 

reported in Figure 39.  

 

Figure 39: Experimental Hysteresis Loops for Unfilled Teflon under confining pressure of 

30 MPa [11].  
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The friction coefficient depicted in figure 39 is given by the ration between the 

horizontal applied force,   , and the vertical force,   . 

For each test it is clearly distinguished the initial coefficient of friction,   , 
which occurs at the first peak of the first cycle when the frictional involved forces 

are under static conditions. In the experimental hysteresis loops for low excitation 

frequencies, the initial coefficient of friction it is almost equal to the steady state 

coefficient of friction,    , while for high frequencies a transient response is 

observed between    and     and the gap value between the two coefficients of 

friction is significant.  

In figure 40 is illustrated the variation of the initial coefficient of friction,   , 
and the peak velocity impressed during the sinusoidal input. The experimental 

result could be direct with the eq (3.9) [48]: 

(3.11)                max

minmaxmax

S

iiii

i
e

   

The equation reveals the relation between velocity and coefficient of friction. 

In eq. (3.11)       and       represent the minimum and maximum initial 

coefficient of friction, while    it is an empirical exponential constant with units of 

inverse velocity.  

 The result reported in figure 40 presents the initial coefficient of friction 

tendency to decrease when the confining pressure increases. This is also shown in 

figure 41.  
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Figure 40: Variation of Initial Coefficient of Friction with Absolute Maximum Velocity 

[11].  

 

Figure 41: Influence of Confining Pressure on initial Coefficient of Friction [11]. 
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In recent studies of Dolce, Cardone and Croatto [31] with a large experimental 

investigation on steel-PTFE interfaces, aimed at evaluating the effect of sliding 

velocity and contact pressure, proposed a calibrated mathematical models in order 

to validate the model proposed by Constantinou (1990). In that research more than 

300 tests have been carried out on steel-PTFE interfaces with bearing pressures of  

9.36, 18.72 and 28.1 MPa , varying temperatures of 10, 20 and 50° C, sliding 

velocities changing from 1 mm/s to about 300 mm/s, and displacements 

amplitudes ranging from 10 to 50 mm.  

 

Figure 42: Variation of the friction coefficient with sliding velocity and bearing pressure. 

Comparison between analytical laws and experimental results. 

Dolce et al. [31] pointed out that the sliding friction coefficient increases 

rapidly with velocity, up to a certain velocity value, beyond which it remains 

almost constant. In figure 42 it is shown how this value is around 150mm/s. From 

the same experimental picture it is also possible to evaluate the behavior of the 
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coefficient of friction versus the variation of contact pressure. As known from 

Mokha et al. the sliding friction coefficient of steel PTFE interfaces reduces while 

increasing pressure. The rate of reduction of the friction coefficient is practically 

constant and insensitive to sliding velocity.  

3.6. Friction coefficient: Effect of Room Temperature  

Campbell et al. [19] reported data on the effect of temperature on the 

breakaway and the low velocity sliding friction of un-lubricated unfilled, glass 

filled and PTFE in contact with highly polished stainless steel at apparent pressure 

of 20.7 MPa. Table 2 presents the results of Campbell et at. [19]. 

Table 2: Effect of the Bulk Temperature on the Breakaway and sliding coefficient of 

Friction. 

Temperature 

°C

Breakaway 

Coefficient of Friction 

Sliding Coefficient 

of friction                  

V=1 mm/s

20 0.066 0.016

10 0.125 0.016

0 0.132 0.020

-10 0.149 0.039

-15 0.154 0.057

-20 0.136 0.074

-25 0.157 0.086  

 

Constantinou et al. (1995) have conducted tests on unfilled PTFE and the 

PTFE composite over a wide range of sliding velocities and temperatures in the 

range of 50°C to -50°C. The tests were conducted at apparent pressure of 20.7 
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MPa for the unfilled PTFE and of 69 MPa for the PTFE composite. The stainless 

steel utilized in these tests was ASTM A240, Type 304 with a measured surface 

roughness of 0.03   . 

Figure 43 presents the measured breakaway friction, the minimum sliding 

friction,     , and the sliding friction at three different velocities, this as a function 

of the temperature at the start of each experiment. Figure 43 demonstrates the 

substantial effect of temperature on the low velocity,     , and breakaway friction 

and the much less effect on the high velocity friction. The values of friction in this 

figure are consistent with those reported by Campbell et al. [19] (see Table 2).  

 

Figure 43: Friction PTFE-based composite-Polished stainless Steel Interfaces as Function 

of Bulk Temperature [Constantinou et al., 2005]. 
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Figure 44: Sliding friction coefficient at (a) very low and (b) very high velocities (i.e. 8 

and 316 mm/s, respectively) as function of air temperature, for three different 

normal pressure values (i.e. 9.36, 18.72 and 28.1 MPa, respectively). 

Comparison between experimental results and model predictions. [Dolce et al., 

2005].   
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As mentioned in the previous section, Dolce et al. [31], with a large 

experimental investigation on steel-PTFE interfaces, studied the dependency of 

mechanical behavior of these devices considering even the effect of the air 

temperature. These result are shown in figure 44. 

In figure 44 is reported the friction coefficient at very low (i.e. 8 mm/s) and 

very high (i.e. 316 mm/s) sliding velocities, as a function of air temperature, for 

three different contact pressure values. Dolce at al. provided a second-order 

polynomial law having the expression (3.12):  

(3.12)              0,2  cbawithcTbTa  

Based on experimental results of Dolce et al., the sliding friction coefficient 

decreases when air temperature increases. The rate of reduction depends on the 

sliding velocity, while is almost independent from contact pressure (the three 

curves in figure 44 are likely parallel). Moreover, the sliding coefficient of friction 

results to be greater when passing from low to medium temperatures than when 

passing from medium to high temperatures. At 8 mm/s the average reduction from 

-10 to 20 °C is 0.77%/°C, while is 0.33%/°C when passing from 20 to 50°C.  

The variation of air temperature influences the friction coefficient with respect 

to the reference temperature (20°C). The AASHTO defined two system property 

modification factor,            and         , which quantify the effects of 

temperature variations on the nominal value of the friction coefficient at 20°C 

reference temperature. They are defined as the ration of the friction coefficient at 

the highest and at the lowest expected temperature. Dolce et al. provided from the 

whole set of experimental data that the coefficients of friction are 1.17 and 0.89, 

respectively slightly different with the AASHTO estimations.    
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3.7. Friction coefficient: Recent studies on high strength 

polymers stainless steel contact surfaces, effect of „cycling 

effect‟.  

Applications of exponential models in the analysis of a sliding isolation system 

have been reported in (Constantinou et al., [24]; Mokha et al., [50]; Deb and Paul, 

[44]), mainly with the scope of evaluating the effects of bearing pressure, sliding 

velocity, breakaway friction and bi-directional motion on the seismic response of 

base-isolated buildings.  

A phenomenological model of practical use is able to represent the reduction 

of the friction developed by the sliding system along the travelled path (cycling 

effect) was still needed for design and assessment purposes.  

In a study of 2012 carried out by Benzoni e Lomiento [44], a model that 

allows the prediction of the friction cyclic degradation, as well as the load and 

velocity effects, valid for low friction sliding devices was proposed.  

The model of used to defined the friction coefficient is shown below,  

(3.13)               )()()(),,( vfcfWfvTW vcwf   

where   ,    and    are functions representing the dependency on the vertical 

applied load W (load effect), the cycling variable c (cycling effect), and instant-

velocity v (velocity effect) respectively. In this study, each function has been 

defined and calibrated with experimental data. The devices were tested at the 

Caltrans SRMD Testing Facility at the University of California San Diego campus 

with full-scale experimental tests.  
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The SRMD testing facility consists of a 6 DOFs shake table specifically 

designed for full scale testing of isolators and energy dissipators [Benzoni and 

Seible, 1998]. 

The tests are divided in three categories: tests at low, medium and high vertical 

loads. Specifically, the vertical loads W of 3263 KN, 6525 KN and 13050 KN, 

were applied, corresponding to pressure values p of 15, 30 and 60 MPa, 

respectively.  

For each set of loads, tests were completed at peak velocity V ranging from 

0.254 mm/s to 800 mm/s. Two fully reversed sinusoidal cycles, with displacement 

amplitude D=200 mm were applied for all the tests. 

To assess the relationship between applied vertical load (pressure) and friction 

coefficient, low velocity tests results were used in order to minimize the influence 

of velocity and cycling effects. In the proposed model, the load effect is expressed 

as function of the coefficient of friction coefficient    , the applied vertical load W 

and a load reference value     : 

(3.14)                           refWW

sw eWf
/

)(
   

The values of     and      were determined with a least squares regression 

over the experimental coefficients of friction extracted from slow motion tests. 
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Figure 45: Variation of slow-velocity friction coefficient    with the appliet load W 

(Load effect) [Lomiento et al.. 2012]. 

A determination factor   =0.984 was found to predict the experimental 

values. For the particular data set, the value of     =0.103 and     12300 kN 

provided the best agreement between numerical and experimental results [44]. 

The effect of repetition of reversal motion consists in a progressive reduction 

of the coefficient of friction with distance traveled. A continuous drop of the 

kinetic friction coefficient was detected by Mokha et al. (1990) also for PTFE-

steel sliding surfaces but not further investigated. The temperature rise is related to 

the heat flux generated by the frictional forces, equal to the power dissipated per 

unit area. For the sliding isolator the heat source is the contact surface between the 

slider and the sliding concave surface and the heat flux is expressed as:  
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(3.15)                                      
2

a

vW
q 

  

whereis friction coefficient, W is the applied load, v is the sliding velocity, 

and a is the radius of the contact surface, i.e. the radius of the slider. This heat flux 

varies in intensity and position during the sliding motion. For short duration 

motion, the temperature rise on the surface is directly related to the cumulative 

heat flux acting on the surface from the beginning of the sliding motion. During 

the time interval dt , the heat source moves from the position u to the position u 

du , distributing its heat flux over the grey surface with area 2a du represented 

in figure 46, which is a portion of the whole area A
2

 of the sliding surface. This 

statement assumes that the curvature radius of the concave sliding surface R is 

significantly greater than the radius A of the projection of the surface on the 

horizontal plan. 

 

 
Figure 46: Actual (a) and equivalent uniformly distributed (b) heat flux in the time 

interval dt [44].  
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Being a quantity related to the whole sliding surface of the isolator, the 

uniformly distributed heat flux that crosses the surface during the time interval (t-

t0) can be cumulated as:  

(3.16)                           t

t

dtWv
Aa

q

0

2

22

2   

The cumulative uniformly distributed heat flux is dependent on the geometry 

of the isolator by means of the radius a of the slider, the radius A of the sliding 

surface, the applied vertical load W, the instant sliding velocity v, and the 

coefficient of friction . In order to describe the degradation of the friction 

coefficient with the temperature rise due to cycling, a new variable obtained by 

excluding from     was introduced by Lomiento et al. [44]: 

(3.17)                             refcc

c ecf
/  

where      is a reference value of the parameter c and represents the 

frictional degradation rate. The values       and were determined by means of a 

least squares regression on the  experimental data. For the performed tests the 

values     6600 kN/ms and 0.5 were identified. 
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Figure 47: Reduction of the coefficient of friction predicted. [44] 

Many research groups Mokha et al. 1990, Constantinou et al. 1990, Bondonee 

et al. 2002, Dolce et al. 2005] have documented an increment of the coefficient of 

friction with increasing sliding velocity, in the operational range of these devices. 

In his study Lomiento et al. (2012) correlated the experimental data with a method 

that allows to reduce the mentioned effects that concurs together to the assessment 

of the friction. Therefore the experimental data were opportunely processed in 

order to reduce the cross correlation between the variables.  

Experimental data were well correlated with the exponential law: 

(3.18)                              refvv

v ecf
/

1
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where   is the sliding instant velocity,      is a reference velocity, and ≥ 1 

express the ratio between the fast motion and the slow-motion coefficient of 

friction. The values 1.4 and     10 mm/s have been found to fit the 

experimental data. 

 

Figure 48: Variation of the coefficient of friction with the velocity v (velocity effect): a) 

1
st
 cycle, b) 2

nd
 cycle [44]. 

The three functions previously defined were combined, through (3.18), and 

(3.14), into the proposed model of the friction parameter: 

(3.19)     refrefref vvccWW

svfTwf eeevfTfWfvTW
///

1)()()(),,(
   

 

The experimental parameters were compared, and they are shown in figure 49 

with coefficients of friction predicted by (3.19).  
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Figure 49: Experimental and predicted (load + cycling + velocity effect) friction 

coefficient -displacement loop: 1
st
 picture, p=15 MPa v=1.27 mm/s, 2

nd
 picture, 

p=30 MPa v=1.27 mm/s, 3
rd

 picture, p=15 MPa v=100 mm/s, 4
th

 picture, p=30 

MPa v=100 mm/s. 

The proposed friction model designed to include the cycling degradation 

together with the effects of load and velocity is the first model able to describe the 

experimental behavior of the isolators having a low friction high strength polymer 

stainless steel sliding surface. The variable included in the degradation law were 
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based on the equivalent uniformly distributed heat flux investing the sliding 

surface and assumes the hypothesis of uniform temperature over the whole 

surface. 

The comparison of the experimental data with values predicted by the friction 

model with and without the degradation law showed the importance of the cyclic 

degradation in the prediction of the force displacement loop and introduced for the 

first time the importance of the study of dissipation of dissipative characteristic of 

friction pendulum due to the thermal effect.  

The studies reported in this chapter represent the state of art of the 

phenomenological behavior of friction pendulum. Even though different studies 

have been carried out over the last twenty years, there are still important 

phenomenological characteristics of friction pendulum system that were not 

considered in the design of this device.  

In fact the effect of cumulated motion of the sliding surface, as well as the 

temperature rise on the contact surface have not been studied, or even considered, 

in full-scale experimental testing.   

Furthermore, the behavior of the PTFE-stainless steel or chromium surfaces 

even though has been widely studied is not always suitable for application with 

friction pendulum is not optimal for many reasons. In fact, it has a very low 

friction coefficient, not suitable to get great energy dissipation, which is subjected 

by further reduction of the friction coefficient due to the heat generated by the 

energy dissipation with a consequently great reduction of the bearing capacity due 

to the heating. In addition to that, composite materials based on PTFE after severe 

dynamic tests showed some time separation of particles due to the deterioration of 

the binder for the effect of heat. 
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The continuous development of new materials as high strength polymers used 

to improve the degradation rubbing of the sliding surfaces and the frictional 

characteristics makes it essential to study the mechanical characteristics of these 

new devices with enhanced characteristics in order to determine their reliability 

and proper functioning.  

The studied report in the next parts of this thesis provides an insight about the 

effect of the rise of temperature due to the mechanical work done to overcome the 

friction forces involved during the motion in a single friction pendulum bearing, is 

given. An experimental approach to evaluate live temperature rise during the 

motion is studied in chapter 5 and a prediction model for evaluating the friction 

coefficient of dissipative characteristics of high strength polymer friction 

pendulum bearing is provided in chapter 7.  
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Chapter 4 

4. Theory of frictional Heating  

The sliding motion which occurs in polymer- stainless steel surfaces is coupled 

with a frictional heating basically due to the mechanical work done for overcome 

the friction forces involved during the motion.  

In this chapter the classic work of Carslaw and Jeager is introduced to 

understand the basic theory of frictional heating. The theory reported will be used 

in chapter 6 to make a comparison between the experimental results described in 

chapter 5 and the analytical model explained here.   

4.1. Frictional Heating Nomenclature 

In applying the frictional heating concept it is important understand which 

parameters are involved during the sliding motion, which occurs in friction 

pendulum bearings. In this first section it is reported a nomenclature list to explain 

the most important parameters that are involved in this work.  

Bulk, Contact, and Flash Temperature (Temperature rise). The bulk 

temperature is defined as the average temperature of the body prior to frictional 

heating, the bulk temperature,  , remains constant in the body at some distance 

from the location of frictional energy dissipation. Upon frictional heating, the 

surface temperature ascends from this bulk temperature to a contact temperature, 
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  , at each point comprising the real area of contact. This temperature increase is 

commonly referred to as the flash temperature,   . Therefore: 

(4.1)                       
bcf TTT           

Heat Partition Factor . When two surfaces engage in sliding over a given 

contact area, the thermal energy generated per unit time,  , is assumed to be 

distributed such that part of the heat, namely        penetrates body 1, as the 

remainder,       , enters body 2. The coefficients    and    are known as heat 

partition factors. 

As a function of the thermal properties, bulk temperatures, and relative speeds 

of the respective components, expressions for    have been developed recognizing 

that: 

(4.2)                      121         

and that the contact temperature at each point on the interface is identical for 

both surfaces. Typically, only the maximum or mean surface temperatures within a 

given contact area are equated to ease the analysis. 

Thermal conductivity. Thermal conduction is the phenomenon by which heat is 

transported/transferred from high to low temperature regions. The property that 

characterizes the ability of a material to transfer heat is the thermal conductivity, 

(4.3)                                         

where q denotes the heat flux, or heat flow, per unit time per unit area, k is the 

thermal conductivity, and       is the temperature. The units for q and k are 

W/m
2

 and W/(m°·C), respectively. (Values for stainless steel and PTFE are given 
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in Table 3). It should be noted that the above equation is valid for only steady-state 

heat flow, that is, for situations in which the heat flux does not change with time. 

Table 3: Thermal Properties of PTFE and Stainless Steel 

Thermal Conductivity 

W/(m°C)

Thermal diffusivity 

(mm2/s)

Unfilled PTFE 0.24 0.010 x 10-5

18%Cr,8%Ni Steel 16.3 0.444 x 10-5

15% Cr, 10% Ni Steel 19 0.526 x 10-5

 

 

The specific heat is the amount of heat per unit mass required to raise the 

temperature by one degree Celsius. The relationship between heat and temperature 

change is usually expressed in the form shown below where c is the specific heat. 

The relationship does not apply if a phase change is encountered, because the heat 

added or removed during a phase change does not change the temperature, but 

changes the physical state of the molecules, by increasing their kinetic energy.  

(4.4)                                            

the specific heat capacity are J/(kg°C). 

Thermal diffusivity (usually denoted α, but   and D are also used) is the 

thermal conductivity divided by density and specific heat capacity at constant 

pressure. It has the SI unit of m²/s: 

(4.5)                                      

where   is the thermal conductivity (W/(m·K)),   is the density (kg/m³) and    

is the specific heat capacity (J/(kg·K)). Diffusivity values for various metals are in 

Table 4. 

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/heat.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/temper.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/phase.html#c1
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Thermal diffusivity is the measure of thermal inertia. In a substance with high 

thermal diffusivity, the heat moves rapidly through it because the material 

conducts heat quickly relative to its volumetric heat capacity. 

Table 4: Thermal diffusivity of various metals. 

Material Thermal diffusivity 

(m2/s)

Thermal diffusivity 

(mm2/s)

Silver, pure (99.9%) 1.6563 × 10−4 165.63

Gold 1.27 × 10−4 127

Copper at 25°C 115 × 10−6 255

Aluminium 8.418 × 10−5 84.18

Steel, 1% carbon 1.172 × 10−5 11.72

Steel, stainless 

304A
4.2 × 10−6  4.2

Steel, stainless 310 

at 25°C
3.352 × 10−6 3.352

Iron 2.3 × 10−5 23  

Péclet number,   , is a dimensionless number defined as, 

(4.6)                             
D

uv

k

uvc
P ccccp

e  
 

Where   is the density,    is the specific heat at constant pressure,    is the 

velocity,    is a characteristic length and   is the thermal conductivity. It 

represents the thermal energy transported by the movement or convection of the 

medium, to the thermal energy conducted away from the region where the 

frictional energy is being dissipated.  
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4.2. Theory of frictional Heating 

To evaluate the temperature rise at the sliding interface the Carslaw and Jaeger 

Theory (1959) has been typically used. These authors analyzed the problem of a 

semi-infinite solid subjected by a constant heat flux q (Figure 50).  

 

Figure 50: Semi-infinite Solid with constant heat flux at the surface x=0. 

 The sliding contact may be considered as two solid bodies, of which one or 

even both move at uniform speed past heat source, which represents the sliding 

contact surface. This source has a heat flux distribution,  , with an average value 

of    . A schematic illustration of the problem is given in figure 51. 

The maximum contact temperature,  , will occur at the surface of either body 

and it could be evaluated with equation (4.1). The temperature rise respect the bulk 

temperature, will occur at the surface of both bodies and it is evaluated as, 

(4.7)                          t
b

q
FT a v

s
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Where   represents the time during which any points on the surface is exposed 

to heat,   √     is a thermal contact coefficient.   is dependent on the form of 

the heat flux distribution,  . For a square heat source with uniform distribution      ,         , which is a close approximation for a semielliptical 

distribution while    represents the portion of heat entering to the body for which 

the heat partition factor is referred. With different notation, and considering 

reasonable that the portion      and      the equation (4.7) could be written 

as: 

(4.8)                        

2/1
2 


 

Dt

k

q
Ts  

 

Figure 51: Schematic illustration of the sliding contact surface problem. 
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In applying equations (4.7) and (4.8) it must be pointed out that the solution is 

valid for a half-space with heat flux over the entire free surface (see figure 50), 

whereas the study case has a finite plan dimensions and depth. The approximation            is not, in general, true because the heat flux generated by friction is 

dependent on the variation of time and space, of the friction forces, and of the 

normal load distribution. Furthermore they‟re not considered the effects of 

radiation and convection because the problem is limited for short time intervals. 

For longer time these factors could play an important role, and eventually a steady 

condition may be reached.  

Considering the case, in which a constant velocity motion is applied on the 

body 1 or 2 with a maximum displacement      for a total time exposure t, 

(4.9)                               N
v

u
t

c

c4  

Where   represents the number of cycles. Let‟s consider an average heat flux 

evaluated as the total energy dissipated in   cycles divided by the area   and time 

t, 

(4.10)                     c

cfcf

av pv
A

vF

tA

uNF
q  4

 

where     represents the friction force,   the coefficient of sliding friction, and   the apparent pressure. Appling eq. (4.9) (4.10) in (4.8) we obtain the flash 

temperature for a constant velocity motion.  

(4.11)                  

2/1

2/126.2 
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The quantity under root square        is the Péclet number. If we consider a 

sinusoidal input, as shown in  figure 53, combining eq.(4.8) with 

(4.12)                            
N

t
2 , 

and 

(4.13)                            
 s

a v

pu
q

2  

The flash temperature for a sinusoidal motion it is obtained, 

(4.14)                     

2/1
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Figure 52: Motions considered in the sliding contact problem.  
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When the amplitude of motion is larger than the radius a of the apparent 

contact area .      (see figure 53), equation (4.11) became,  

(4.15)              2/12/1

2/1

2/12
ttt

k

qD
Ts    

Where  ̅ represents the duration of contact between body 1 and body 2. 

 

Figure 53: Sliding contact problem for large displacement     . 

In eq. (4.15)  ̅ is less that        because the apparent contact area is circular 

and not square. In particular considering a circular heat source described by the 

well known equation          the time for cross along the y axis with a 

constant velocity called exposure time is given by eq. (4.16) and the average 

distance traveled during this time is     . 
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(4.16)            
 

c

a
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Figure 54: History of heat flux in a large motion with a constant velocity    for the 

position A and B.  
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Figure 55: The stainless steel surface after a test in a friction pendulum bearing. Stainless 

steel sliding surface shows a superficial orientation in the part subjected by the 

motion    . In some spots there are polymer portions which come from the 

polymer layer.  

Equations (4.11), (4.14) and (4.15) are similar in form to equations used by 

tribologists to estimate the flash temperature. This last case represents the typical 

situation in sliding seismic isolator bearings.  

These equations may be written for the temperature rise at depth    . 

Moreover, a general solution for the problem of the semi-infinite body with heat 

flux      at     may be deduced from the solution of the problem of constant 

heat flux and use of Duhamel's theorem (Carslaw and Jaeger, 1959). 
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(4.17)              
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Where    is the temperature distribution,   is the depth below the contact surface 

and   is the time of analysis.  

Eq. (4.17) will be used for the evaluation of an analytic flash temperature in 

chapter 6. The results will be used for a comparison between the experimental and 

analytical data.  
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Chapter 5 

5. Experimental Investigation 

The sliding motion of FPB involves mechanical work to overcome the friction 

forces which are transformed into thermal energy. The heat source created in the 

contact surface produces a temperature rise which could affect the dynamic 

response of these devices. The assessment of the current temperature rise of the 

sliding bearing during the motion represents an important step for developing a 

confident phenomenological theory capable of evaluating the degradation of 

dissipative characteristics of the contact surface due to thermal effects. 

 In this section the sliding contact problem of a friction pendulum has been 

investigated. In this device the contact surface is given by the concave stainless 

steel surface and a high strength polymers liner. In particular, the heating 

developed on the whole sliding surface during laboratory tests has been 

investigated with a thermographic camera, and the data collected have been 

analyzed according to the temperatures measured with thermocouples. The spatial 

distribution of the temperature variation is described and the temperatures 

recorded during sinusoidal tests with different applied normal loads and peak 

velocities are extrapolated and represented for 3 particular points of the concave 

surface. 
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The presented procedure is useful for investigating the frictional heating 

involved during motion on the whole sliding surface by means of a non-invasive 

instrument such as an infrared thermographic camera. 

5.1. Experimental Campaign and Test Facility   

A set of sliding bearings, with concave surfaces, was tested under three values 

of vertical load for a three-cycle sinusoidal input with fixed displacement range 

and three different peak velocities. The effective radius of the concave surface of 

these specific bearings is 4000 mm, and the low friction material that interfaces 

the stainless steel concave surface is a high strength polymer composite having a 

compressive strength of 220 MPa, more than twice that of PTFE.  

 Therefore the peculiar characteristic of these bearings consist of reducing the 

dimension of the device.  

The devices were tested at the Caltrans SRMD Testing Facility at the 

University of California San Diego campus equipped with a 6 DOFs shake table 

specifically designed for full scale testing of isolators and energy dissipators 

(Benzoni and Seible, 1998). 

 The system has been designed to perform four primary situations which could 

occur for the majority of SMRD test specimens. 

 Simulate the relative seismic motion at the interface of a full-scale SRMD 

bearing specimen by applying large horizontal shearing displacements in 

real-time. 

 Concurrently apply any associated vertical displacement. 
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 React against the associated horizontal shearing forces. 

 Simulate the bridge‟s dead weight by applying large, static, vertical 

compressive loads 

A schematic perspective view of SRMD Test System is given in Figure 56.  

 

Figure 56: Perspective view of SRMD Test System. 

The system includes a pre-stressed concrete box , a removable steel cross 

beam and an interchangeable steel-concrete platens. SRMD bearing specimens are 

installed between a movable (3550 mm x 4880 mm) steel-concrete composite 

platen and the steel cross-beam. The devices move from one side providing the 

relative shearing displacements being installed to the steel plate on the bottom 

portion. The upper part of the device is fixed with the steel cross beam and 
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remains fixed during testing. The vertical and horizontal displacements are 

accomplished by 12 hydraulic actuators.    

 

 

Figure 57: Plan and cross-section views of SRMD Test System.  
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The large lateral displacements required of the platen are accomplished via 

four horizontal actuators, extending from the corners of the concrete frame to the 

platen. 

These non-orthogonal actuators can each swivel up to 10° in the horizontal and 

up to 2° in the vertical plane. They each have a stroke of•  1220 mm, a piston 

diameter of 510 mm, and a compression force capacity of 7100 kN.  

 

Figure 58: Four horizontal actuators can accommodate large lateral displacements. 

These four actuators can accommodate a very large range of combined 

longitudinal, transverse and rotational (yaw) motions. The horizontal forces from 

these actuators are resisted by the post-tensioned walls of the concrete frame. The 

concrete frame transfers the net horizontal force to the steel cross-beam, which in 

turn reacts against the top of the bearing specimen. Hence, the system forms a 

completely self-reacting horizontal frame, as seen in figure 3. Inertial loads 

associated with dynamic testing are transmitted into the surrounding foundation.  

Simultaneously, large vertical compressive loads must be applied to the 

bearing specimen. The traditional multi-axis shaking-table configuration including 
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vertical actuators with swivels at each end would have required extremely long-

stroke actuators and a very deep foundation. Instead, the system‟s platen slides 

over a group of four stationary hydrostatic sliding bearings/actuators, fixed to the 

concrete frame beneath the platen. Each actuator is 810 mm in diameter and is 

capable of applying up to 17.8 MN of compression at a hydraulic oil pressure of 

34 MPa. Each bearing also has a stroke of• ±120 mm to accommodate the vertical, 

roll and pitch degrees of freedom. The polished underside of the steel platen slides 

over these four hydrostatic actuators with very little frictional resistance. 

 

Figure 59: Four stationary hydrostatic sliding bearings/actuators, fixed to the concrete 

frame beneath the platen. 

Above the platen, the vertical force is transmitted through the bearing 

specimen and into the removable steel cross-beam. This steel cross-beam is, in 

turn, anchored to the concrete frame with 24 post-tensioned 152 mm diameter steel 

tie rods extending to the bottom of the concrete frame. Hence, the system forms a 

second self-reacting frame in the vertical plane, as illustrated in Figure 60. 
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Figure 60: Schematic of horizontal and vertical self-reacting frames. 

The system is completed by a heavily reinforced and two-way post-tensioned 

reaction wall at the end of the concrete frame. This provides the necessary reaction 

structure for testing SRMD dampers and lock-up devices. 

The need to apply substantial vertical compressive loads while undergoing 

large lateral displacements presents new challenges for a seismic system. SRMD 

bearing specimens will often either increase or decrease in height as they undergo 

lateral displacement. Since the vertical compression load must be maintained 

throughout a test, the vertical degree of freedom must be controlled for both 

displacement and load, concurrently. This is accomplished by a hybrid control 

loop in the vertical degree of freedom, with adjustable priorities on each 

parameter. The remaining five degrees of freedom are typically controlled solely 

by displacement. 
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5.2. Description of Thermographic camera 

A thermal imaging camera is a reliable non contact instrument which is able to 

scan and visualize the temperature distribution of entire surfaces of machinery and 

electrical equipment quickly and accurately. A thermographic camera has been 

used during the test for evaluating the temperature rise in the stainless steel 

concave surface. The thermographic camera is able to detect the infrared energy of 

the object observed and evaluate the intensity by means of an infrared detector. 

For the test campaign a high performance Infrared imaging and measurement 

system was used that is suitable for advanced thermal analysis.  The technology of 

the thermographic camera allows an outstanding image stability and uniformity, 

and it is ideal where precision temperature measurements from -20°C to 2000°C 

and high sensitivity are required.  

 

Figure 61: The thermographic camera used in the experimental tests.  

The technical specifications of the thermographic camera are collected in 

Table 5. 

 

 



Chapter 5                                                                                  Experimental Investigation 

123 

 

Table 5: Technical specifications of the thermographic camera used in the experimental 

campaign. 

Field of view/min 

focus distance
20° x 15° / 0.3m

Image frequency 50/60 Hz

Type GaAs, QWIP 320x240 pixels

Spectral range 8 to 9 μm

Temperature range -20°C to +1500°C (-4°F to 2732°F) 

±1% or ±1°C (for measurement ranges up to +150°C)

±2% or ±2°C (for measurement ranges above +150°C)

Automatic emissivity 

correction 
Variable from 0.1 to 1. 

Accurancy

MEASUREMENT

DETECTOR

IMAGE PERFORMANCE

 

Some theoretical concepts of IR Thermographic camera technology are 

provided in the following sub section.  

5.2.1. IR Thermography 

Although infrared radiation (IR) is not detectable by the human eye, an IR camera can 

convert it to a visual image that depicts thermal variations across an object or scene. IR 

covers a portion of the electromagnetic spectrum from approximately 900 to 14,000 

nanometers (0.9–14   ). IR is emitted by all objects at temperatures above absolute zero, 

and the amount of radiation increases with temperature. Thermography is a type of 

imaging that is accomplished with an IR camera calibrated to display temperature values 

across an object or scene. Therefore, thermography allows one to make on-contact 

measurements of an objects temperature.  
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IR camera construction is similar to that of a digital video camera. The main 

components are a lens that focuses IR onto a detector, plus electronics and software for 

processing and displaying the signals and images. Typically, IR cameras are designed and 

calibrated for a specific range of the IR spectrum. This means that the optics and detector 

materials must be selected for the desired range.  

The intensity of the emitted energy from an object varies with temperature and 

radiation wavelength. If the object is colder than about 500°C, emitted radiation lies 

completely within IR wavelengths. In addition to emitting radiation, an object reacts to 

incident radiation from its surroundings by absorbing and reflecting a portion of it, or 

allowing some of it to pass through (as through a lens). From this physical principle, the 

Total Radiation Law is derived, which can be stated with the following formula: 

(5.1)                   WWWW    

which can be simplified to: 

(5.2)                    1  

The coefficients  ,  , and   describe the object‟s incident energy absorption ( ), 

reflection ( ), and transmission ( ). Each coefficient can have a value from zero to one, 

depending on how well an object absorbs, reflects, or transmits incident radiation. For 

example, if    = 0,   = 0, and   = 1, then there is no reflected or transmitted radiation, and 

100% of incident radiation is absorbed. This is called a perfect blackbody. In the real 

world there are no objects that are perfect absorbers, reflectors, or transmitters, although 

some may come very close to one of these properties.  

Nonetheless, the concept of a perfect blackbody is very important to the science of 

thermography, because it is the foundation for relating IR radiation to an object‟s 

temperature. Fundamentally, a perfect blackbody is a perfect absorber and emitter of 

radiant energy. This concept is stated mathematically as Kirchhoff‟s Law. The irradiative 

properties of a body are denoted by the symbol  , the emittance or emissivity of the body. 
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Kirchhoff‟s law states that     , and since both values vary with the radiation 

wavelength, the formula can take the form          , where   denotes the wavelength. 

The total radiation law can thus take the mathematical form 1 =        , which for an 

opaque body (  = 0) can be simplified to 1 =      or        (i.e., reflection = 1 – 

emissivity).  Since a perfect blackbody is a perfect absorber,   = 0 and   = 1. 

From Planck‟s law, the total radiated energy from a blackbody can be calculated. This 

is expressed by a formula known as the Stefan-Boltzmann law,  

(5.3)                     24 / mWTW  , 

where   is the Stefan-Boltzmann‟s constant (5.67 × 10
-8

 W/m
2
K

4
). The radiative 

properties of objects are usually described in relation to a perfect blackbody (the perfect 

emitter). If the emitted energy from a blackbody is denoted as    , and that of a normal 

object at the same temperature as     , then the ratio between these two values describes 

the emissivity ( ) of the object,  

(5.4)                    

bb

obj

W

W  

Thus, emissivity is a number between 0 and 1. The better the irradiative properties of 

the object, the higher its emissivity. An object that has the same emissivity   for all 

wavelengths is called a greybody. Consequently, for a greybody, Stefan- Bolzmann‟s law 

takes the form  

(5.5)                     24 / mWTW   

which states that the total emissive power of a greybody is the same as that of a 

blackbody of the same temperature reduced in proportion to the value of   for the object. 

Still, most bodies are neither blackbodies nor greybodies. The emissivity varies with 

wavelength. As thermography operates only inside limited spectral ranges, in practice it is 

often possible to treat objects as greybodies. In any case, an object having emittance that 
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varies strongly with wavelength is called a selective radiator. For example, glass is a very 

selective radiator, behaving almost like a blackbody for certain wavelengths, whereas it is 

rather the opposite for other wavelengths. 

The radiation that impinges on the IR camera lens comes from three different sources. 

The camera receives radiation from the target object, plus radiation from its surroundings 

that has been reflected onto the object‟s surface. Both of these radiation components 

become attenuated when they pass through the atmosphere. Since the atmosphere absorbs 

part of the radiation, it will also radiate some itself (Kirchhoff‟s law). 

Given this situation, we can derive a formula for the calculation of the object‟s 

temperature from a calibrated camera‟s output. The emission from the object is equal to         , where   is the emissivity of the object and   is the transmittance of the 

atmosphere. The reflected emission from ambient sources is              , where (1 

–  ) is the reflectance of the object. While the emission from the atmosphere (1 –  ) ·     , where (1 –  ) is the emissivity of the atmosphere.  

The total radiation power received by the camera can now be written: 

(5.6)       
a tmambobjtot WWWW  )1(11   

where   is the object emissivity,   is the transmission through the atmosphere, Tamb is 

the (effective) temperature of the object‟s surroundings, or the reflected ambient 

(background) temperature, and Tatm is the temperature of the atmosphere. 

Therefore to arrive at the correct target object temperature, it is necessary to evaluate 

the emissivity of the object and evaluate the contributions given by ambient sources and 

the emission from the atmosphere.  The only emission from the object could be obtained 

simply by subtracting the total radiation power received by the camera from the effect of 

ambient sources and the reflectance of the object.  

(5.7)             a tmambtotobj cWbWaWW   
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5.3. Description of Specimen  

A set of 3 sliding bearings, with concave surfaces, has been tested under three 

values of vertical load and 4 different peak velocities. 

The tests are divided into two categories in fact the two different types of 

excitations were used, triangular (sow tooth curve) or sinusoidal wave 

respectively.  

The tests characterized by the triangular shape have been executed in order to 

evaluate the breakaway friction coefficient and the possibility of slip-stick 

phenomena.  

 

Figure 62: Schematic illustration of the Friction Pendulum Bearing tested.  

A schematic view of the devices tested in this campaign is shown in Figure 62 

while in Table 6 is reported the protocol test. 

As shown in Figure 63 three full cycles are applied for all the tests, with a 

displacement amplitude of 260 mm. The sinusoidal tests have been executed with 

the main purpose of evaluating the dynamic friction coefficient and its dependency 

to variables such as the sliding velocity, the applied normal load and its decay with 
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the performed motion. Since the velocity characterizing the starting and final point 

of a sinusoidal displacement is the peak velocity, it has been necessary to apply a 

displacement history in order to start and end the sinusoidal loop with the required 

applied velocity. In this way it was possible to avoid problems of instability due to 

the application of impulsive forces to the device. Therefore for sinusoidal tests the 

bearing starts moving with a very low velocity and reaches a displacement of 

approximately 150 mm. Then the motion is inverted and the bearing is accelerated 

up to the peak velocity of the sinusoidal motion, that is reached when the relative 

displacement is zero.  

 

Figure 63: Triangular and sinusoidal input used in the tests.  

The test have been carried out with low, medium and high vertical loads, 

applying verticals loads   of 500, 1000 and 2850 kN which correspond 

respectively to pressure   of 8, 16 and 45MPa. For each pressure, tests with a 

sinusoidal input have been carried out with a peak velocity of 182 mm/s, 260mm/s 

and 338mm/s. For triangular tests only a low velocity of 1 mm/s was used (see 

table below).  



Chapter 5                                                                                  Experimental Investigation 

129 

 

Table 6: Protocol test 

Test Frequency Velocity  Disp     
Vertical 

Load     
Cycles Input

[m/s]  [m]  [kN] []
201 0,00096 0,001 0,26 2820 3 triangular

202 0,00096 0,001 0,26 1000 3 triangular

203 0,00096 0,001 0,26 500 3 triangular

204 0,15915 0,26 0,26 2820 3 sinusoidal

205 0,11141 0,182 0,26 2820 3 sinusoidal

206 0,2069 0,338 0,26 2820 3 sinusoidal

207 0,15915 0,26 0,26 1000 3 sinusoidal

208 0,11141 0,182 0,26 1000 3 sinusoidal

209 0,2069 0,338 0,26 1000 3 sinusoidal

210 0,15915 0,26 0,26 500 3 sinusoidal

211 0,11141 0,182 0,26 500 3 sinusoidal

212 0,2069 0,338 0,26 500 3 sinusoidal

301 0,00096 0,001 0,26 2820 3 triangular

302 0,00096 0,001 0,26 1000 3 triangular

303 0,00096 0,001 0,26 500 3 triangular

304 0,15915 0,26 0,26 2820 3 sinusoidal

305 0,11141 0,182 0,26 2820 3 sinusoidal

306 0,2069 0,338 0,26 2820 3 sinusoidal

307 0,15915 0,26 0,26 1000 3 sinusoidal

308 0,11141 0,182 0,26 1000 3 sinusoidal

309 0,2069 0,338 0,26 1000 3 sinusoidal

310 0,15915 0,26 0,26 500 3 sinusoidal

311 0,11141 0,182 0,26 500 3 sinusoidal

312 0,2069 0,338 0,26 500 3 sinusoidal

401 0,00096 0,001 0,26 2820 3 triangular

402 0,00096 0,001 0,26 1000 3 triangular

403 0,00096 0,001 0,26 500 3 triangular

404 0,15915 0,26 0,26 2820 3 sinusoidal

405 0,11141 0,182 0,26 2820 3 sinusoidal

406 0,2069 0,338 0,26 2820 3 sinusoidal

407 0,15915 0,26 0,26 1000 3 sinusoidal

408 0,11141 0,182 0,26 1000 3 sinusoidal

409 0,2069 0,338 0,26 1000 3 sinusoidal

410 0,15915 0,26 0,26 500 3 sinusoidal

411 0,11141 0,182 0,26 500 3 sinusoidal

412 0,2069 0,338 0,26 500 3 sinusoidal
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5.4. Thermal experiments 

Various instruments were used during the tests to monitor the variation of 

temperature in the energy dissipating elements of the friction pendulum. The most 

common method consisted of measuring the temperature with thermocouples 

which are embedded at the center of a stainless steel plate at depth of 1.5-2 mm 

from the contact area.  

In this case the temperature rise which occurs during the tests was  

investigated with a thermographic camera and the data collected analyzed 

according to the temperatures measured with thermocouples. 

For each test, the measurement of the temperature was carried out before the 

run and at 50 sec. and 5 minutes after the run in order to evaluate the thermal 

configuration of the stainless steel concave surface in the stationary condition 

before each run and the unsteady state after each run. In particular the 

thermocouple was applied on 3 different points, called since now, slider „s‟, 

middle „m‟, and border „b‟, indicating the correspondent position reported in 

Figure 64.  
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Figure 64: Selected spots for temperature measurement with thermocouple. 

At the same time, an acquisition with thermographic camera was carried out 

starting a couple of seconds before the start of the test up to the end of the input 

displacement. A additional registration was recorded right after the run, in order to 

evaluate the IR radiations in the stationary configuration of null displacement and 

room temperature . The sampling frequency of thermal data is 59.9Hz for 

sinusoidal test, and it is 1Hz for triangular tests and even for the data acquisition 

conducted right after the end of each test.  

 

 



Chapter 5                                                                                  Experimental Investigation 

132 

 

Table 7: Recorded temperature measured with thermocouple in the spots „s‟, „m‟ and „b‟. 

Test
Room 

Temp. 
Slider Mid Border Slider Mid Border Slider Mid Border 

[n°] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C]
201 21,7 21,2 21,2 21,2 30,0 26,8 24,0 24,3 24,0 23,2

202 22,8 22,5 22,5 22,6 27,6 24,5 24,0 22,5 22,4 22,3

203 21,7 22,5 22,5 22,4 27,6 24,5 24,0 23,8 23,2 22,8

204 22,5 22,3 22,3 22,3 43,0 37,8 27,3 28,5 29,0 24,2

205 23,7 23,0 22,9 22,9 45,8 46,5 32,0 31,5 33,4 26,1

206 23,2 22,2 22,2 22,2 46,7 46,3 30,1 31,3 30,5 28,0

207 23,4 23,1 22,7 22,7 43,0 43,2 28,0 32,4 32,0 26,2

208 23,4 23,2 23,0 23,1 50,0 48,0 30,0 34,0 32,5 28,0

209 23,6 22,1 21,9 21,8 52,0 47,0 26,2 34,0 34,5 26,0

210 20,3 21,2 21,1 21,0 46,0 40,8 26,0 28,6 30,5 23,2

211 21,4 21,6 21,6 21,6 48,0 43,0 26,0 28,5 30,5 23,4

212 21,6 22,5 22,5 22,5 44,8 42,8 28,0 32,0 28,3 23,5

Pre Test 50 sec. 300 sec.

[n°] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C]
301 21,6 21,6 21,6 21,6 23,3 23,3 23,1 22,9 22,9 22,9

304 22,2 22,9 22,9 22,9 51,3 53,0 35,0 31,2 35,5 27,0

305 22,8 22,9 22,8 22,8 53,0 52,8 32,5 34,0 35,4 30,0

306 22,5 22,9 22,7 22,7 48,2 51,2 38,0 31,7 32,9 29,7

307 23,5 22,7 22,6 22,7 47,0 46,0 39,8 27,9 32,0 27,9

308 22,7 23,3 23,3 23,3 43,3 44,0 33,3 31,0 31,8 29,0

309 22,3 22,3 22,3 22,3 49,5 47,0 38,5 28,0 33,9 28,1

310 23,0 23,5 23,3 23,3 36,2 40,0 28,2 25,9 27,9 25,9

311 23,7 23,3 23,3 23,3 40,8 40,1 33,0 28,3 30,3 27,3

312 22,9 23,8 23,8 23,2 40,3 46,3 35,3 31,5 31 29,1

[n°] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C]
401 24 24,1 24,1 24,1 26,1 26,1 26,1 \ \ \

404 25,2 24,1 24,1 24,1 42,5 43,2 30,5 28,0 28,8 26,6

405 23,2 24,1 24,1 24,1 41,8 41,0 29,8 28,2 30,2 24,2

406 24,5 24,4 24,4 24,2 42,5 39,5 31,5 30,4 30,4 27,3

407 22,7 22,0 22,0 22,0 35,5 34,5 29,5 27,8 29,0 25,2

408 22,8 23,1 22,8 22,9 40,6 36,8 26,0 30,2 29,0 25,5

409 22,5 23,5 23,4 23,4 29,8 30,1 25,5 26,5 26,5 25,4

410 22,7 24,3 24,1 24,1 43,0 36,7 28,7 30,5 30,2 26,0

411 23,9 23,5 23,3 23,5 36,4 34,5 26,5 28,8 28,7 25,1

412 23,7 23,6 23,6 23,6 38,0 34,0 26,5 29,9 28,0 25,8
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Approximately 50 seconds and 5 minutes after the end of the tests the increase 

in temperature due to the frictional behavior of the device was directly measured 

with thermocouples. 

Considering that the imposed maximum displacement is equal for each test, 

the final temperature variation only depends on the applied normal load, the 

sliding velocity and the friction coefficient involved during the performing of 

motion. 

The variation of temperatures can be expresses as the product between the 

applied normal load and the peak velocity of motion. Figure 65 illustrates the 

variation of temperatures with the product of normal load and peak velocity of the 

referred test for point “s”. 

 

 Figure 65: Temperatures recorded on point “s”  at approximately 50 sec after the end of 

tests. The value with * marker has not been considered in the interpolation 

curve.  
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The heat flux involving the concave surface is given by the product of the 

friction coefficient  , the applied normal load   and the sliding velocity  . The 

data reported in the previous figure are in good agreement with the referred theory, 

since on the left side of the graph the values of temperature variation generally 

increase as the product    increases. For higher values of the product   , the 

temperature variation  shows a stabilization or a decrease. The above phenomenon 

can be explained by considering that the friction coefficient decreases with the 

energy thermally dissipated during each test. Therefore the heat flux imposed to 

the sliding surface does not increase linearly with the product    because of the 

simultaneous decay of the friction coefficient. 

The graph previously reported indicates a considerable degradation of the 

“flash temperatures” with time. The  deviancy can be explained considering that 

the dissipation of the accumulated thermal energy is associated with both the heat 

conduction through the concave stainless steel surface and the convection heat 

transfer, which could be affected by external factors that could influence the 

analyzed parameters.  

5.5. Elaboration of Thermal Data and Calibration of 

Thermographic camera 

The output file elaborated by the thermographic camera is a binary file 

containing matrices of 320x240 pixels. These matrices contain the recorded value 

of the infrared radiation (IR). The number of matrices reported in the output 

depends on the frequency of data acquisition and on the time of acquisition.  These 
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parameters are set according to peak velocity of the referred test. The selected 

frequency of acquisition of thermal data is 59,9Hz for sinusoidal tests and 1Hz for 

triangular tests. 

Accordingly to the image resolution, the thermographic camera is able to 

measure the temperature at one single spot. The bigger the image resolution, the 

smaller the dimension of the spot analyzed and the relative temperature detected. 

The thermographic camera used in this test has a 320 x 240 pixels of resolution 

(see Figure 66).  

 

Figure 66: Thermo-camera SC 3000 used during pre-test on a scaled double pendulum 

bearing.  
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For the arrangement of the thermographic camera a 3D modeling study has 

been performed before the tests. The inclination and the field of view of the device 

has been set to point the camera to the concave sliding surface and catch the 

temperature rise during the motion of the test. According with the  test protocol  

(??) it was convenient to install the thermographic camera as illustrated in Figure 

68. The thermographic camera is fixed  to (?) a rigid stainless steel frame which 

was  then bolted to the cross  beam plate. This system is arranged in parallel  to the 

motion imposed to the device. In this way it was possible to point the camera 

against the whole concave surface except the portion of the slider covered by the 

slider of the device (see Figure 67).  

 

Figure 67: The left picture illustrates a field of view of the thermographic camera with the 

arrangement showed  in the right picture.  
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Figure 68: Final setup of the camera supported by a frame  bolted to the bottom plate of 

the steel cross beam. 

The output file elaborated by the thermographic camera is a binary file 

containing matrices of 320x240 pixels. These matrices contain the recorded value 

of the infrared radiation (IR). The number of matrices reported in the output 

depends on the frequency of data acquisition and on the time of acquisition. These 

parameters are set according to the peak velocity of the referred test. The selected 

frequency of acquisition of thermal data is 59.9Hz for sinusoidal tests and 1Hz for 

triangular tests. 

The radiation that impinges on the IR camera lens comes from the target object 

and from its surroundings that have been reflected onto the object‟s surface. 

Therefore IR radiations are affected by external lights reflected in the test facility 

environment. Generally the radiations due to external lights are reflected on the 

stainless steel surface and their magnitude is always higher  than  the magnitude of 

the radiations due to the temperature rise only. For instance in Figure 67 are 
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visible the ambient sources which reflect on the polished stainless steel concave 

surface.   

Consequently, it is not convenient to associate the data recorded with 

thermocouples directly with the total values of the IR radiations since this  the 

calibration of the thermographic camera would result affected by the IR emissions  

reflected from ambient sources. 

In the present study, the variations of temperature measured with thermocouples 

have been used to calibrate the variations of the IR radiations recorded at the end 

of each test with respect to the IR radiations obtained before the corresponding 

test. Such approach will prove useful in  investigating the variations of 

temperature obtained during the test. In order to avoid the affection of the infrared 

energy detected with the reflected portion of the surface and to evaluate the correct 

target object temperature. is necessary to evaluate the emissivity of the object and 

to evaluate the contributions given by ambient sources and the emission from the 

atmosphere.  The only emission from the object could be obtained by simply 

subtracting from the total radiation power received by the camera the effect of 

ambient sources and the reflectance of the object using the statement explained in 

the IR thermography section and the  abstract from equation (5.7). 

 Therefore the variation of IR radiations will be evaluated by subtracting the 

recorded values measured during each test with the IR radiations recorded during a 

very slow velocity test in which the temperature rise is negligible. In fact, the 

external lights reflected on the stainless steel surface are approximately coincident 

for both tests compared since the subtraction is carried out for the same 

displacement configurations. 

(5.8)                 2_1_ tottotobj WWW   
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Where        is the total energy evaluated by the thermographic camera 

during each run and        is the total energy in a low velocity test considered as 

the baseline for the calibration, respectively, in agreement with equation (5.6).  

The       matrix obtained for each of the selected configurations will present 

values different by zero in those pixels effectively involved by heating, and 

approximately null values for the other pixels. 

In the present section, the calibration of the relationship between the       

radiations and the variation of temperatures recorded with the thermocouples will 

be discussed and validated. 

The first step is to define a “baseline” matrix of the device, positioned in the 

configuration of null displacement, carried out before the start of the considered 

test. Since the IR radiations acquisitions started, for each test, approximately 2 

seconds before the imposed motion, there are many frames describing the initial 

configuration of the device before the imposed motion. The cited frames are 

always characterized by some noisy fluctuations and so the first 5 frames of each 

test record have been averaged in order to obtain the required baseline 

representing the IR configuration before heating. 

The next figure represents the matrix obtained after averaging the first 5 

frames of the registration conducted for test 307. 
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Figure 69: Thermographic camera image‟s before the run of test 307. It represents the 

matrix Wtot_2. 

The image shown in Figure 69 refers to a null displacement configuration of 

the concave surface before the run of test 304. Obviously the contact surface does 

not involve friction and head generation, so the sinusoidal motion and the 

temperature rise consequently generated is null. The sliding stainless steel surface 

is at room temperature. In the same picture, it is possible to locate the headlights 

used during the tests. 

It is evident that the representation of the total values of IR radiations would 

result in images impossible to read and analyze. These images would present many 

different reflections of lights due to the spatial motion of the device. 

The following image illustrates the device disposed in the same spatial 

position after 50 seconds by the end of the applied motion. 
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Figure 70: Static image of Wtot_1 (total radiations with temperature rise of the object) taken 

50 seconds after the end of test 304. 

Figure 70 has been extrapolated 50 seconds after the end of the test because it 

corresponds to the last moment before which the operator started to record the 

thermocouple data, corrupting in this way the quality of the data registered. In 

Figure 71, the matrices previously shown have been subtracted and the resulting 

image is shown. 
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Figure 71: Representation with a contour plot of the ΔWobj  (variation of IR Radiations of 

the object) before and after test 304. 

The image reported shows, with good definition and resolution, the spatial 

distribution of the variation of        , or rather the IR radiations on the concave 

surface. 

It is important to observe that the variation is not exactly equal to zero for 

those pixels corresponding to the positions occupied by the slider. These positions 

should be covered and the corresponding variation of infrared radiation should be 

equal to zero. This can be described considering that the heat generated during 

motion is partially conducted through the depth of the materials involved in 

contact and the portion between the slider and the sliding surface located in the 

central part of Figure 71 is not blue. 
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In order to define the relationship between the       radiations and the 

temperatures registered with thermocouples, a statistical elaboration has been 

performed of    ,     and     extrapolated by small areas of 3x3 pixels 

corresponding respectively to the points at which the temperatures have been 

recorded. The referred areas, that are coincident to the points “s”, “m”, “b” 

previously defined, belong to the strips reported in Figure 72. 

 

Figure 72: Position of selected areas on the concave surface. 

The values of IR radiations, corresponding to 9 pixels for each of the 3 defined 

points, have been carried out for each frame belonging to the period 30-50 seconds 

after the start of registration. This data has been averaged with a standard 

deviation evaluated for every frame recorded in the defined period. The value of 

IR radiation selected has been obtained by the summation of two times the 
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standard deviation to the average value of the referred parameter. The resulting 

values of IR radiation have been combined with the corresponding values obtained 

from the elaboration of the baseline data, previously described. 

The result is the following graph showing the decay of the variation of IR 

radiations in the range 1-70 seconds for all the points and tests elaborated: 

 

Figure 73: Variation of ΔWobj from 1 up to 70 seconds after each test 

It is evident that, for the selected time period, the values of the referred 

parameter have not been affected by the presence of the operator. After 50 

seconds, however, the fluctuation of the curves are due to the disturbance caused 

by the operators. The temperature rise recorded for each test on the selected inas 
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The temperature rise recorded for each test for the selected points has been 

represented according to the corresponding value of DIR radiation. 

 

Figure 74: ΔWobj - ΔT relationship and interpolation function. 

The selected interpolating curve is the following second order polynomial 

function:  

(5.9)                
261017.20046.0 objobj WWT  

   

The determination factor R
2
 between the experimental data and the values 

obtained with the previous equation is 0.75. 
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5.6. Characteristics of the tests executed and the Testing 

procedure  

The calibration of equation (5.9) is used for converting the IR radiations data 

(     ), obtained during each test by means of the thermographic camera, to the 

corresponding values of temperature rise involved during the motion. 

Given the calibration of the relationship between the temperature rise and the 

corresponding variation of infrared radiations, the preliminary step of the present 

procedure requires the selection of a defined number of frames corresponding to 

particular positions of the slider moving on the concave surface. It is necessary to 

select frames both from the referred test and from a test (“baseline”) that doesn‟t 

involve variations of temperatures. 

Since the test selected as “baseline” is supposed to be very slow, and 

according to equations (4.10) and (4.11) the flash temperature is directly 

proportional to the velocity, it is considered reasonable to choose the triangular 

tests characterized by slow constant velocity and negligible temperature rise. 

In fact, frames corresponding to particular displacements have to be selected 

from a sinusoidal test, characterized by particular values of sliding velocity and 

total testing time, and from the triangular “baseline” test which has a different 

shape, constant sliding velocity, and a different testing time (see Figure 63). Since 

the maximum imposed displacement is equal for all the executed tests, the selected 

frames correspond to the slider displaced of multiples of 1/20 of the maximum 

imposed displacement. 
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Figure 75: Example of selection of frames from tests of different shapes. 

In order to make the above picture readable, the “sections” imposed to the 

displacement functions correspond to multiples of 1/4 of the total displacement. 

Once the frames corresponding to the enter and exit displacement histories 

have been removed from the data associated with the sinusoidal tests, the matrices 

corresponding to the selected positions are subtracted and the DIR radiations 

obtained are converted to variations of temperatures by means of equation (5.9). 

The frames selected from the 3 cycles of test 304 are presented below in order 

to describe the temperature variation that occurred during the corresponding test. 
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Figure 76: Temperature extrapolated from the thermographic camera. From the upper left 

frame to the downer right frame are reported three whole cycles of the test 304.  
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5.7. Results of Thermal Experiments 

The present section describes the main features of the frictional heating of the 

experimental investigation according to the presented elaboration of the 

thermographic camera data. 

 

Figure 77: Thermographic camera data corresponding to point ”s” , “m”, “b” for test 304. 

Figure 77  shows thermographic camera data corresponding to points ”s” , 

“m”, “b” for test 304. As the slider moves away from the observed point and 

opens up the thermographic camera‟s field of view, the flash temperature is 

detected by the instrument and the curves start with a first value in the y axis. As 
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shown in Figure 77 the flash temperature rapidly increases in any spot of the 

sliding surface especially for the spot closer to the center of the isolator (point „s‟). 

When the slider moves away the flash temperature appears to decay according to 

an irregular behavior.   

This phenomenon can be explained considering the numerical evaluation of 

the pixels selected in order to describe the required temperature variation. In fact, 

according to the reported testing procedure, the sinusoidal movement is directly 

applied to the concave surface while the slider and the upper portion of the device 

are restrained with respect to the horizontal movement. For this reason, it has been 

necessary to automatically change the observed pixels according to the instant 

position of the surface on the screen. The pixels selected for each of the elaborated 

frames have been marked in Figure 78. The pixels observed present some 

fluctuation with respect to the expected one. 

 

Figure 78: Selected pixel in the sliding surface for the evaluation of the experimental flash 

temperature. 
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 In Figure 77, is possible to identify a pick value and a decay of temperature 

for each curve. The pick value represents the flash temperature in „s‟, „m‟ and „b‟ 

points of the sliding surface when it comes out  of contact with the polymer liner. 

Since the points lose contact with the rubbing surface they show a relevant 

decrease of flash temperature. During the motion the temperature gradient between 

the top and the bulk of the stainless steel layer increase as long as the contact is 

maintained, reaching the pick value represented in picture. Afterwards for the first 

cycle it drops from 68°C to 12°C  from 58°C to 10°C and from 15°C to 0°C for 

points „s‟, „m‟ and „b‟, respectively.  It is noticed that this drop of temperature                    decreases cycle by cycle and that               >               >               .This effect can be considered as a cumulating effect of 

the heat transfer coupled with a consequent increment of bulk temperature of the 

stainless steel layer. 

Figure 79 illustrates the temperature histories referred to the central point “s” 

for 3 different tests: 
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Figure 79: Thermographic camera data corresponding to point ”s” for tests 304-307-310. 

Figure 79 shows the variation of the maximum temperatures according to the 

imposed normal load. The red line corresponds to test 304 which is characterized 

by the maximum applied load of 2820kN corresponding approximately to 45MPa. 

The peak velocity of the referred test is 260mm/s. The green and the blue lines 

describe the variation of temperature on the same position during tests that have 

applied normal loads of 1000kN and 500kN respectively. Figure 79 clearly 

denotes how the temperature rise is strictly related with the pressure applied on the 

sliding surface. In fact, as reported in Table 6, the three tests represented in Figure 

79 have the same sinusoidal input, the same instant velocity and consequently the 

time test. The only difference is given by the applied pressure. Therefore the flash 
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temperature has a relationship with the pressure that appears in the experimental 

curves. 

In Figure 80 the temperature variation of point “s” is described for 3 tests 

carried out according to the same values of vertical load and different peak 

velocities.  

 

Figure 80: Thermographic camera data corresponding to point ”s” for tests 307-308-309. 

To better understand the dependence of the temperature rise with the pick 

velocity in Figure 80 the curves have a „x‟ axis shifted. This graph shows that the 

temperature rise is strictly dependent on the variation of the sliding velocity and 

the applied normal load. As these parameters are increased, the thermally 

dissipated energy per unit time increases and the temperature variation becomes 

more evident. 
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Figure 80 indicates that, for a given applied normal pressure, the variation of 

temperature is mainly due to the sliding velocity. The temperature rise evaluated 

for point “m” is very close to the corresponding one calculated for point ”s” 

because the variation of the sliding velocity of the slider passing through the above 

mentioned points is less relevant than the velocity imposed to the slider while it 

passes through the point “b”. 

The flash temperature picks for the three points of the slider surface („b‟, „m‟ 

and „s‟) have been selected from the graphs shown above, and then have been 

collected in Table 8. To allow a comparison between the maximum flash 

temperature values, Table 9 outlines the flash temperature picks selected for 1°,2° 

and 3° cycles for the point „s‟ with the result being the point most subjected to the 

heat transfer.  

Table 8: Flash temperatures pick selected for 1°,2° and 3° cycle obtained with 

thermographic camera elaboration for series 300 and 400 and for points „s‟ 
„m‟ „b‟.    

Test Border Mid Slider Border Mid Slider Border Mid Slider

[n°] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C]

304 15,5 59,5 66,0 31,9 79,0 81,0 31,8 80,8 91,1

305 22,4 37,0 37,1 10,1 47,0 53,9 5,9 48,8 66,8

307 11,0 30,3 37,3 16,8 48,7 59,9 17,6 50,4 72,4

308 14,7 32,6 36,7 13,5 44,4 50,1 12,9 48,9 59,0

309 20,1 56,1 59,5 30,7 73,4 91,8 33,9 82,7 104,3

310 8,6 18,7 26,4 14,0 31,4 43,9 14,5 33,5 52,8

1° Cycle 2° Cycle 3° Cycle

404 21,6 56,8 45,3 36,2 88,3 67,7 38,2 108,9 83,8

405 12,5 48,1 52,1 14,0 77,3 74,7 13,0 94,5 91,7

406 14,5 76,0 83,0 13,7 115,0 110,2 14,5 116,9 131,4

407 34,2 43,3 40,6 43,0 63,4 60,2 47,4 86,3 77,6

408 21,4 24,2 30,6 12,5 55,7 65,5 11,9 72,7 79,8

410 5,7 30,6 30,2 8,5 63,7 54,3 10,0 80,7 68,0

411 4,5 25,4 30,4 6,3 49,9 45,3 6,4 59,9 52,4
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Table 9: Flash temperature picks selected for 1°, 2° and 3° cycle obtained with  

thermographic camera elaboration for series 300 and 400 and for points „s‟.    

Series
V 

(mm/s)

p=8 

MPa

p=16 

MPa

p=45 

MPa

p=8 

MPa

p=16 

MPa

p=45 

MPa

p=8 

MPa

p=16 

MPa

p=45 

MPa

182 \ 36,7 37,1 \ 50,1 53,9 \ 59,0 66,8

260 26,4 37,3 66,0 43,9 59,9 81,0 52,8 72,4 91,1

338 \ 59,5 \ \ 91,8 \ \ 104,3 \

182 30,4 30,6 45,3 45,3 65,5 67,7 52,4 79,8 83,8

260 30,2 40,6 52,1 54,3 60,2 74,7 68,0 77,6 91,7

338 \ \ 83,0 \ \ 110,2 \ \ 131,4

Tf_slider 1° Cycle  [°C] Tf_slider 2° Cycle  [°C] Tf_slider 3° Cycle  [°C]

300

400

 

Data collected in Table 8 and Table 9 have been represented in a graph in 

order to evaluate a qualitative relationship between the increase of flash 

temperature and the mechanical parameters of the tests.   

 

 

Figure 81: Experimental dependency of Flash Temperature on velocity.  
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Figure 81  depicts the trend of flash temperature versus the instant pick 

velocity with a constant apparent pressure of 16 MPa for test series 300 and 400. 

The experimental Flash temperature evaluated with the thermographic camera 

shows a dependency on the velocity of the test according with equation (4.13).  

In accordance with this equation, Figure 82 show the experimental dependency 

of flash temperature with apparent pressure. At high pressures (45 MPa), the flash 

temperature is double that measured with low pressure test (8 MPa).  

 

Figure 82:  Experimental dependency of Flash Temperature on apparent pressure. 
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Figure 83: Effect of velocity and cumulated motion to Flash Temperature. 

 

Figure 84: Effect of cumulated motion to Flash Temperature in % referred to the initial 

condition room temperature = 20°C. 
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Figure 83 shows the effect of cumulated short motion. The rubbing of the high 

strength polymer liner with the selected spots „b‟, ‟m‟ and „s‟ produces a cycling 

effect due to the accumulation of heat in the stainless steel layer which changes, 

cycle by cycle, the thermodynamic boundary condition of the problem at the start 

of a new cycle. For that reason it is expected an increment of bulk temperature of 

stainless steel layer. In Figure 84 is represented the increment in % of the flash 

temperature for p=16 MPa and v = 260mm/s versus the cycle. The room 

temperature for each test is considered equal to 20°C. As shown in Figure 84 the 

rate of increment decreases cycle by cycle and 50% of increment is concentrated 

in the first cycle. 

The instant velocity on the contact surface of the friction pendulum changes 

because of the sinusoidal shape of the input. This means that only when the slider 

passes through the central point of the sliding surface does the velocity reach its 

peak value. Conversely when the slider reaches the maximum displacement of 

260mm the velocity is zero Figure 85 shows the flash temperature in three 

different spot of the sliding surface for different max pick velocities. In „s‟ the 

dependency of the flash temperature to the instant velocity is more marked, as 

expected. On the border of the slider, even though the rate of the increment is less 

than in „m‟ and „s‟, there is an increment of the flash temperature for a test with a 

higher instant pick velocity. This could mean that either the deceleration or the 

stick slip, or both effects together, generate substantial eccentricity and 

overturning moments on the slider, and so, an extra pressure on the contact surface 

arises, in the outer part of the slider. 
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Figure 85: Maximum variation of the flash temperature (3
rd

 Cycle) in „b‟, „m‟ and „s‟ 
versus velocity. 

By using the measured temperature at the three different points shown in 

Figure 86 and assigning                             and               , it is possible to represent the flash temperature profile along the sliding 

surface  (Figure 87, Figure 88 and Figure 89).  
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Figure 86: Position of the selected points in the sliding surface „s‟, „m‟ and „b‟. 

 

Figure 87: Experimental Temperature profile on the slider surface at the end of each cycle 

for p=16 MPa and v=182 mm/s. 
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Figure 88: Experimental Temperature profile on the slider surface at the end of each cycle 

for p=16 MPa and v=260 mm/s. 

 

Figure 89: Experimental Temperature profile on the slider surface at the end of each cycle 

for p=16 MPa and v=338 mm/s. 
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From the analysis of these experimental results is possible to  make  a number 

of important statements that are valid for high strength-stainless steel contacts 

surface and for the parameters used in this experimental analysis. 

 The experimental flash Temperature evaluated with the thermographic 

camera depends on pressure and velocity with a rate reported in Figure 81 

and Figure 82.  

 The flash temperature significantly increases with higher velocity and 

higher pressure. The maximum value reached in the test series is 131.4 

°C. 

 Cumulative short motion causes an accumulation of heat on the slider and 

on the sliding surface and, as a consequence, the parameter    is 

subjected to a  „cycling effect‟. The rate of increment decreases cycle by 

cycle, and 50% of the increment is concentrated in the first cycle (Figure 

84).    

 The increment of temperature is not constant along the sliding surface and 

is more pronounced in the central part of the slider rather than in the 

border of the sliding surface. This is basically due to the variation of 

instant velocity in the contact surface (Figure 85).  

In the central part it was not possible to evaluate the flash temperature because of a 

blind spot due to the dimension of the slider. A further increment of    in this 

central area of the sliding surface is expected according with the trend reported in 

Figure 87-Figure 89 

. 
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Chapter 6 

6. Comparison between experimental and analytical 

test 

The theory of Carslaw and Jeager explained in Chapter 4  is in this section 

applied with the experimental test described in Chapter 5. Therefore, in order to 

validate the prediction reliability of this theory measured experimental flash 

temperatures  (see Table 7) have been used here.  

As shown in chapter 4, the equation (4.17) is used to estimate the flash 

temperature on the top of the sliding surface (   ): 

(6.1)         
2/1

0

2/1

2/1

)(),( 


d
tq

k

D
txT

t

f  
 

In the test protocol the maximum displacement of the sinusoidal input is          , the diameter of the plane projection of the sliding surface is        while the plane projection of the slider is         . These 

conditions are referred to large displacement       as represented in figure 53. 

The temperature rise at the sliding contact depends on the heat flux   generated, 

given by eq.(4.10). The heat flux history is evaluated at the same fixed position in 

the sliding steel surface considered in Figure 64. The heat flux history at the 

selected fixed spots of the steel part depends on the history of the displacement 

and the size of the apparent contact area. Therefore, for all the intervals of time in 
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which the contact area moves away of the selected fixed area, the heat flux will be 

zero according to this condition: 

(6.2)                            1.2/.
22  condAyyxxcond sii  

                                                0.2/.  condAcond s  

Where   ̅   ̅   represents the coordinate of „s‟, „m‟ and „b‟ spots on the sliding 

surface and   the projection of the diameter of the slider on the horizontal plane.  

For those intervals in which the resultant displacement    is larger than   (the 

radius of sliding surface            ) the condition (6.2) is not satisfied and 

the heat flux is zero  (        ).  

Figure 92 presents the analytical evaluation of flash temperature in the three 

spots „s‟ „m‟ and „b‟. The large displacement condition in these tests (   ⁄        are those of intermittent heat flux for which the history of temperature has 

consecutive build-up and decay intervals.  

 

Figure 90: Comparison between temperature for a central position A and a border position 

B on the sliding surface. 
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Figure 91: Analytical evaluation of temperature rise of the controlled points in test 204. 

 

Figure 92: Analytical evaluation of temperature rise of the controlled points in test 411. 
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The prediction of the temperature has been made considering three different 

sinusoidal input and apparent pressure respectively. The heat flux was calculated 

using the measured coefficient of friction during the test. 

In Figure 92 are depicted rounded markers which represent the flash 

thermocouple temperature measured at 50s after the end of the test. The 

comparison of the continuous lines at           and these spots demonstrates 

that the calculation predicts reasonably well the measured temperature, although in 

some cases it overestimates and in other cases it underestimates the measured 

value. The discrepancies between the analytical temperature and the experimental 

one it could be referred of the loading arrangement and the actual pressure 

distribution at the contact surface with is not constant like assumed in the theory. 

The measurement of the thermocouple is made in a single point and it is unknown 

whether this point is representative of the average conditions at the surface.    

With respect to the thermal images carried out with the thermographic camera, 

the analytical representation of the temperatures rise involved during motion 

appears to be very useful because it allows the understanding of the temperature 

variation even when the slider is positioned on the selected points. In this way, the 

variation of temperature is carried out for each instant and an evaluation of the 

relationship between the variation of temperatures and the decay of friction 

coefficient is allowed.  

The results obtained through the application of the described theory are in 

good agreement with the results illustrated in Constantinou et al. [1995]. The 

average errors affecting the analytical results with respect to the experimental data 

are of the magnitude of 30% in both cases. The Flash temperatures picks selected 

for 1°,2° and 3° cycle obtained with analytical test are reported in Table 10. 
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Table 10: Flash temperatures picks selected for 1°,2° and 3° cycle obtained with analytical 

test. 

Test Border Mid Slider Border Mid Slider Border Mid Slider

[n°] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C]

204 21,5 44,3 49,9 22,7 52,1 62,9 24,6 59,8 68,2

205 17,0 33,6 37,2 18,8 46,5 59,3 21,9 55,0 64,4

206 20,8 42,3 47,8 23,3 56,9 72,8 26,4 65,2 76,8

207 15,6 30,8 32,5 16,0 37,6 47,3 17,6 45,4 51,4

208 11,2 23,2 25,4 12,9 33,0 41,7 15,0 39,4 45,4

209 13,9 28,5 31,1 16,9 41,5 51,7 19,4 48,6 55,1

210 9,9 18,3 20,5 11,4 25,3 31,1 12,9 29,9 33,2

211 8,6 15,1 16,6 10,5 23,9 29,2 12,3 28,6 31,5

212 11,3 20,8 22,2 13,3 30,2 36,4 15,7 35,0 37,5

1° Cycle 2° Cycle 3° Cycle

Test Border Mid Slider Border Mid Slider Border Mid Slider

[n°] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C]

304 41,0 69,8 71,9 40,0 74,8 79,5 40,8 80,5 84,7

305 34,2 59,9 62,5 35,2 68,1 74,4 37,5 75,3 80,4

306 41,6 81,2 87,3 43,5 88,4 97,1 13,6 42,5 91,4

307 27,1 48,4 50,7 29,4 57,1 61,2 31,8 64,1 67,8

308 23,9 44,2 47,3 26,4 52,3 57,2 28,8 58,5 63,0

309 31,9 57,6 60,3 33,3 65,6 73,0 35,3 72,0 77,0

310 20,4 36,2 37,3 22,1 42,6 44,7 23,9 48,3 50,8

311 17,2 31,6 33,1 18,8 37,1 40,5 20,7 41,9 44,5

312 23,2 43,3 45,6 25,0 50,2 55,1 27,2 56,9 61,1

Test Border Mid Slider Border Mid Slider Border Mid Slider

[n°] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C] [°C]

404 45,8 63,4 61,4 43,2 72,3 76,6 44,7 80,7 82,4

405 29,1 52,1 56,8 34,3 65,0 76,3 38,3 74,4 80,6

406 36,8 63,3 68,3 42,1 77,9 92,4 47,0 87,0 92,4

407 22,3 42,0 48,8 25,1 51,2 59,7 27,9 59,1 68,5

408 17,2 37,3 42,8 22,8 48,7 59,2 27,2 57,5 65,2

409 24,4 46,9 52,9 30,1 59,3 70,1 35,5 68,5 75,1

410 16,6 32,5 35,0 20,6 41,2 48,5 23,9 49,4 53,8

411 14,5 28,3 30,1 18,6 37,6 44,1 21,7 44,7 48,1

412 19,2 36,2 39,4 24,0 46,5 54,2 27,5 53,2 57,4  
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In Figure 93-Figure 96, the analytical temperature history is compared with the 

experimental data obtained with the thermographic camera. Figure 93 shows a 

comparison with respect to the analytical evaluation for test 304: 

 

Figure 93: Analytical evaluation of temperature rise history of the controlled points during 

test 304 and comparison with the thermographic camera data.  

Figure 93 shows that the results obtained analytically are in good agreement 

with the experimental data. The temperatures recorded by means of thermographic 

camera are consistent with the theoretical ones.  

The described error can be attributed to the evaluation of the relationship 

between the recorded temperatures and the infrared radiations recorded with the 

thermographic camera. 
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Figure 94: Thermographic camera data corresponding to point ”s” for tests 304-307-310 

compared with the analytical evaluation of the temperature rise. 

 

Figure 95: Thermographic camera data corresponding to point ”s” for tests 404-407-410 

compared with the analytical evaluation of the temperature rise. 
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Figure 96: Thermographic camera data corresponding to point ”s” for tests 404-405-406 

compared with the analytical evaluation of the temperature rise according with 

Carslaw and Jaeger‟s theory. 

The analytical prediction made with Carslaw and Jeager‟s theory, is agreement 

with both the peak temperature values and the trends in the histories of 

temperature although there is a small difference between analytical and 

experimental values of time at which the peak temperature occurs.  

In the graph there are differences in the measured histories of temperatures 

during the intervals of zero heat flux. In Table 11 are represented the errors 

between analytical and experimental flash temperatures in term of percentage and 

the values range between -20% and +20%. 
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Table 11: Errors between Analytical and Experimental flash temperature in %. 

Series
V 

(mm/s)

p=8 

Mpa

p=16 

Mpa

p=45 

Mpa

p=8 

Mpa

p=16 

Mpa

p=45 

Mpa

p=8 

Mpa

p=16 

Mpa

p=45 

Mpa

182 -1,0 28,5 20,2 -2,6 -9,6 11,3 -8,2 -18,3 -3,8

260 13,7 16,8 14,7 -10,7 -0,8 2,5 -20,9 -11,7 -10,1

338 \ -7,2 -17,7 \ \ -16,2 \ \ -29,7

 Analytic- 

Experimental Err. 

values  1° Cycle [%]

 Analytic- 

Experimental Err. 

values  2° Cycle [%]

 Analytic- 

Experimental Err. 

values  3° Cycle [%]

400
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Chapter 7 

7. Friction Model for Sliding Bearing 

Through experimental tests were carried out with single pendulum bearings 

(see chapter 5) in order to obtain a phenomenological model able to access the real 

performance of the friction pendulum and access the variation of the friction 

coefficient with temperature rise. 

In this section, an extension of the degradation model based on Lomiento et al. 

2012 described in section 3.3 is given. This study provides a model that takes into 

account mechanical variables such as apparent pressure, instant velocity, and also 

the degradation of dissipative characteristics of a friction pendulum due to the 

flash temperature that increases in the contact surface during dynamics conditions.  

For the evaluation of the decay of the dissipative characteristics of friction 

pendulum due to thermal effects the experimental part explained on chapter 5 and 

6 has been used in this section.  

7.1. Friction coefficient 

The analysis of the shape of the loops of the test described in section 5.3 

indicates four major effects related to the frictional performance of the devices that 

generates distortion of the Coulomb‟s rectangular loop: 
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 a “load effect”, consisting in the reduction of the friction coefficient due 

to increments of the applied load.  

 a “cycling effect”, that appears as a continue reduction of the friction 

coefficient occurring with the cycling, greater for higher velocity tests 

(see Figure 97). 

 a “velocity effect”, that manifests itself as a rounding of the shape of the 

loops, usually more evident for the high velocity tests. In these cases the 

isolator is reaching the maximum displacement, the sliding velocity is 

decreasing, and at the same time the coefficient of friction is decreasing 

too, suggesting that for higher velocity the friction is higher. 

 a “breakaway” effect appearing as a sudden increase of coefficient of 

friction at the beginning or at each inversion of the motion. This effect 

encloses two phenomena, one at the start of sliding, the other at every 

motion reversal. The increased friction coefficient detected in the first 

phenomenon is generally properly referred as breakaway friction 

coefficient, also known as static friction coefficient, to distinguish it from 

the sliding (kinetic) friction coefficient. The second phenomenon, 

generally referred to as stick-slip (see section 3.1), corresponds to a short 

duration increase of the frictional force, followed by a rapid decrease. 

Both the phenomena can be related to a momentary sticking of the 

interfaces and to the acceleration impulse occurring at the start of the test 

and at every motion reversal. The breakaway effect is clearly visible in all 

the tests. 
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Figure 97: Experimental friction coefficient-displacement loop p=45MPa and   

v=260mm/s. 

The „Velocity‟  slightly influences these experimental tests. The sliding friction 

coefficient increases rapidly with velocity, up to a certain velocity value, beyond 

which it reaches steady state condition and it remains almost constant [11], [31], 

[48]. In literature this velocity threshold ranges between 150-200 mm/s. Since the 

experimental tests in this study are carried out with a chosen instant velocity 

between 182mm/s and 338mm/s, the „velocity effect‟ does not influence the shape 

of the cycles when the instant velocity reaches maximum value. In fact the 

rounded shape that should occurs in the central part of force-displacement loop is 

not visible in Figure 97-Figure 100. Conversely the loops show a concave shape in 
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the central part and this effect could be related the irregular profile of flash 

temperature that has been detected in section 5.7 (see Figure 87-Figure 89). 

 

Figure 98: Experimental friction coefficient-displacement loop for p= 45MPa and 

v=260mm/s. 
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Figure 99: Experimental friction-displacement loop for p= 16MPa and v=260mm/s. 

 

Figure 100: Experimental friction-displacement loop for p= 8MPa and v=260mm/s. 
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„Load effect‟ and „cycling effect‟ are noticeable in these tests  (Figure 97, 

Figure 98, Figure 99, and Figure 100). They directly affect the Energy Dissipated 

per Cycle (   ), evaluated as the area underneath the force-displacement loop. 

Over the considered velocity range, the average values of     are      = 123.4, 

94.8 and 69.7, kNm for the applied pressure of 8,16 and 45 MPa respectively. In 

Table 12 are collected the percent variation of     with respect to the average 

value      .  

Table 12: Energy dissipated per cycle EDC with respect the average EDCav.  

Series V (mm/s) p=8 Mpa p=16 Mpa p=45 Mpa

182 -2.2 -4.3 -5.1

260 -4.1 -4.3 -1.6

338 1.8 0.0 -3.4

182 -8.3 -6.2 -9.0

260 -15.1 -15.1 -22.0

338 -12.0 -15.6 -20.6

182 -11.7 -10.6 -14.6

260 -18.3 -19.1 -28.3

338 -13.8 -20.5 -26.5

3° Cycle

EDC reduction [%]

1° Cycle

2° Cycle

 

 

 

The difference of the value reported in Table 12 confirm the dependence of the 

coefficient of friction on the applied load and a slight dependence on the velocity. 

The variation in percentage, between the actual value of     and the average 

value       is depicted versus the peak velocity and versus the cycles in Figure 

103 and in Figure 104, respectively.  

 



Chapter 7  Friction Model for Sliding Bearings 

181 

 

 

Figure 101: Percent variation of EDC versus velocity for 1
st 

cycle. 

 

Figure 102: Percent variation of EDC  versus velocity for 2
nd

 cycle. 
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Figure 103: Percent variation of EDC with respect to the average value versus velocity for 

3
rd

 cycle. 

The differences represented in Figure 101, Figure 102 and Figure 103 regard 

the variation of     with respect the velocity. Between the velocity of 182 mm/s 

and 260 mm/s there is a significantly decreasing of     then the relationship is 

almost constant. It is possible to confirm  the existence of a critical velocity which 

ranges between 150 and 200 mm/s beyond which friction coefficient remains 

almost constant.  
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Figure 104: Percent variation of EDC with respect to the average value versus cycle and 

v=338 mm/s. 

In Figure 104 is clear the dependency of the variation of EDC on both „cycling 

effect‟ and „load effect‟. The EDC range between low pressure and high pressure 

test increase cycle by cycle and for the third cycle is wider varying between -11.7 

and -28.3%. The observed dispersion shows a relevant dependence of EDC by 

velocity and cycling. Since the dissipated energy is an important parameter for the 

control  of acceleration, velocity and displacement imposed over the isolated 

structure, the load, velocity and cycling effect could significantly influence the 

predicted response of the whole structure.  
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7.2. Proposed model 

The application of exponential models in the analysis of a sliding isolation 

system have been studied in the past (Constantinou et al.,1990 Mokha et al. 1993, 

Dolce et al.) with the purpose of evaluate the effects of sliding velocity, contact 

pressure, breakaway friction on the mechanical behavior of steel-PTFE sliding 

bearings. Indeed the phenomenological evaluation of these parameter have 

represented an important improvement for the evaluation of the friction 

coefficient. But it is still needed in the phenomenological model an 

implementation able to represent the reduction of the friction developed by sliding 

system along the travelled path, due to the increment of flash temperature.  

In this study is proposed a model that allows the prediction of the friction 

degradation due to thermal effect, as well as the load and velocity effects. The 

model has this expression: 

(7.1)               )()()(),,( vfTfWfvTW vfTwf   

Where      ,        and       represent the dependency on the vertical 

applied load   (load effect), the flash temperature    (thermal effect) and instant 

velocity   (velocity effect) respectively. In the next parameters each function will 

be defined and calibrated according with experimental data. Then predicted and 

experimental results are finally compared.       
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7.3. Dependency of kinetic friction coefficient to applied normal 

pressure  

In the existing literature, numerous studies deal with the effects of the applied 

load on the coefficient of friction. Many of the studies regard steel–PTFE 

interfaces [31], [44], [47], [55]. They show that the sliding friction coefficient 

reduces while increasing pressure with a rate of reduction practically constant and 

quite insensitive to sliding velocity. A similar trend was found for the steel-

polymer interfaces of the isolators tested in this study. To assess the relationship 

between applied vertical load (pressure) and friction coefficient a proposed model 

is here evaluated. The load effect is expressed as function of the coefficient of 

friction coefficient   , the applied vertical load   and a load reference value     : 

(7.2)                      refWW

sw eWf
/

)(
   



Chapter 7  Friction Model for Sliding Bearings 

186 

 

 

Figure 105: Variation of semi-static friction coefficient μss with the applied load W.  

Since the load effect is influences by the cross correlation between the 

aforementioned effects, the experimental data are opportunely processed in order 

to reduce the cross correlation between the variables. Therefore the influence of 

cycling effect is reduces only considering experimental data of the fist cycle. With 

regards to the velocity effect, the selected experimental data were picked in the 

portion of the loop with the highest instant velocity or rather the point x=0mm 

where slider pass through with the maximum pick velocity. Since the velocity 

effect is constant and it is not longer related when the velocity is more than 150-

200mm/s [Bondonet 1997, Dolce et al. 2005], in this case in the selected point 

(x=0) data are all influenced by the velocity with a constant parameter   . the 

velocity effect will depurated in the next section of this study with a determined 
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correction parameter. Then in the evaluation of the prediction friction model 

proposed in eq(7.1), cross correlation between variables are reduced. 

A determination factor of    0.79 was found by eq. (7.2) for the prediction 

of the experimental values. The values of    0.14 and      2000 kN are 

determined with a least squares regression over the experimental coefficients. 

These couple of values represent the best agreement between numerical and 

experimental results.  

7.4. Dependency of kinetic friction coefficient to velocity 

An increment of the coefficient of friction with the increasing sliding velocity, 

in the operational range of these devices, was documented by many authors 

(Mokha et al. 1990, Constantinou et al. 1990, Bondonee et al. 2002, Dolce et al. 

2005). The experimental data considered in these studies are conducted at medium 

levels of sliding pick velocity. Apparently, coefficients of friction deducted by the 

experimental tests performed in this work are in disagreement with the exponential 

law existing in literature. The friction-displacement loop represented in Figure 97 

shows a decreasing of friction coefficient in correspondence of higher velocity. 

This disagreement is due mainly by the coexistence of both velocity and cycling 

effect.  

As mentioned above the increment of temperature at the contact surfaces 

between the slider and the steel concave plate due to repetition of cycles increases 

with velocity and the applied load. The device performance observed during high 

velocity and high pressure tests appears to be significantly affected by both the 
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velocity and the cycling effect with the latter influencing the device response in an 

opposite way with respect to velocity (reduction of friction coefficient).  

 

Figure 106: Ratio between friction coefficient after and before the first cycle vs instant 

velocity.  

In Figure 106 is represented between friction coefficient after and before the 

first cycle vs instant velocity. This parameter is 0.85 for low pressure of 8 MPa 

and it is not related with the pick velocity of the test. Whereas the average ratio       is 0.80 and 0.75 for medium and high pressure test respectively.   
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Figure 107: Ratio between friction coefficient μ/μs referred to the second cycle vs instant 

velocity. 

 

Figure 108: Ratio between friction coefficient μ/μs referred to the third cycle vs instant 

velocity. 
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In Figure 107 and in Figure 108 is shown the ratio      referred to the second 

and third coefficient respectively. This experimental data indicates a reduction of 

the coefficient of friction at the higher velocities, especially during the 2
nd

 and 3
rd

 

cycle of the test for which cycling effects are particularly important. In fact 

friction coefficient is significantly affected by cycling effect which results more 

marked for higher velocity test.  

Since for these tests there is a coexistence of both velocity and cycling effects, 

for the study of a relationship between kinetic coefficient of friction and the pick 

velocity it should be necessary a series of test witch range between low pick 

velocity and high velocity. With a full range of velocity it should be possible 

evaluate the influence of friction coefficient with the velocity.  

The range of the experimental test reported in these study is not sufficient to 

evaluate the velocity effect parameter. Even though should have been possible to 

pick points of the loop in correspondence of the maximum displacement of the 

slider when the velocity of the slider decrease and the velocity effect is zero, the 

slider experimented a stick slip phenomenon that distorted the friction coefficient 

(Figure 97, Figure 100). Therefore, to overcome this issue, for the evaluation of a 

final model which includes all the parameter it is used the exponential law 

provided by Lomiento et Al. (2012): 

(7.3)                    refvv

v evf
/

1
   

where v is the sliding velocity,       10 mm/s is a reference velocity, and   1.4 represents the ratio between the fast-motion and the slow-motion 

coefficient of friction. 
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Figure 109: Predicted variation of the friction coefficient of friction with the velocity. 

As shown in Figure 109, for the pick velocity range used in the tests the 

exponential velocity equation is constant it assumes the maximum value.   

During the application of the sinusoidal input, the instant velocity decrease only 

when the slider reaches the maximum displacement (200 260mm). Therefore the 

application of eq. (7.3) in this model slightly influence the friction displacement 

loop and it rounds only the corner of the predicted force-displacement loop. Over 

the fast-motion condition the value of    is equal or quite close to 1.4. When the 

motion is slow, the coefficient of friction     is equal to 1 and the rounding of the 

shape of the experimental loops is not evident because occurred a stick slip for low 

instant velocity. The coexistence of these effects affects the typical rounded shape 

of the loop at peak displacement (x=260mm). 
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7.5. Calibration of friction-temperature relationship  

The repetition of reversal motion affects the coefficient of friction. The 

progressive reduction of the coefficient of friction it is called cycling effect. The 

decreasing of kinetic friction coefficient was for the first time noticed by Mokha et 

al (1990) for PTFE-steel sliding contact surfaces. 

The friction degradation could be attributed to a decrease in hardness of the 

thin surface layer due to the frictional heating [62]. For a moving heat source, 

frictional heating causes also an abrupt gradient in the temperature distribution in 

the depth direction of the sliding surfaces (Jaeger, 1943). A reduction of the 

hardness in the vicinity of the surface based on the temperature distribution is 

reported by Nakahara (2005). The hardness sharp reduction near the sliding 

surface is considered to activate a thin soft layer on the surface that performs as a 

solid lubricant. The theoretical analysis of the temperature rise at contacting 

surfaces is generally based on the work of Blok (1963), Jaeger (1959) and Carlsaw 

et al. (1959), and the relationships obtained by these authors have been discussed 

and applied to the problem of the temperature rise due to friction by Archard 

(1959) and Rabinowicz (1964). Constantinou et al. (1999) have applied these 

theories to PTFE sliding isolators in order to detect the temperature rise at the 

sliding interface, achieving a good agreement between experimental and predicted 

values. In all these studies, the temperature rise is related to the heat flux generated 

by the frictional forces, equal to the power dissipated per unit area.  

In this section a friction degradation is defined as:  

(7.4)                                   refTT

T eTf
/  
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Where      is a reference value of the parameter   and   represents the 

friction degradation rate.  

The values of      and   are obtained by least square regression of the 

experimental results. Since the direct use of the data reflects the load and velocity 

effects, a partial derivative of the friction model with respect of T was used in 

order to isolate the cycling effect and an additional function was defined as: 

(7.5)           TfT

Tf

vTWT

vTW
TZ

T

T 1

),,(

1),,( 


 


 

Eq. (7.5) depends only by thermal variable  . By substituting equation (7.1) in 

(7.5) and it is obtained: 

(7.6)                          


refT

T
TZ

1  

Experimental values of    ̅  at the experimental value of   ̅ were evaluated 

for each test of series 200-300-400 by the analytical model shown in chapter 6. 

(7.7)                         TET

T
TZ

T

T 
 1   

Where   ,    are respectively the central difference operator and the central 

mean operator related to fixed position in the sinusoidal input picked cycles by 

cycles.    represents the difference of temperature evaluated for selected position 

on the sliding surface and cycle by cycle. Equation (7.7) became: 
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(7.8)        
)(_)1()(_)(_)1()(_

)(_)1()(_ 2

jxijxijxijxi

jxijxi

TT
TZ





 


 

Where  ̅(j) with j=1…n. represents the position selected in the loop and n the 

number of points; i=1:3, represents the cycle where the experimental data is 

picked. The values   and      are determined with a least squares regression on 

the experimental data    ̅ . The values of   0.8 and       90 °C are 

determined.  

The degradation function    is reported in Figure 110 versus   . This function 

represents the kinetic friction degradation under sliding motion in a high strength 

polymer-stainless steel contact surface. In Table 13 are reported the maximum 

flash temperatures evaluated with the analytical method (see Table 10) and as well 

the correspondent percent reduction of the coefficient of friction, evaluated as        . An average value of friction reduction due to the cycling effect is 50%. 

The maximum friction coefficient reduction of 69% is obtained for the test 406 

(p=45 MPa, v=338 mm/s) when the value of flash temperature evaluated in the 

central point of sliding surface in the third and last cycle is 92.4°C.  
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Figure 110: Reduction of the coefficient of friction predicted by function fT.  

The continuous line and Figure 110 represents the degradation of friction 

coefficient for the temperature obtained during the test. While the dashed line 

which tends to zero represents the theoretical behavior of the function    for      . The function has a upper limits represented by the glass transition 

temperature of the polymer (  ). Considering the experimental flash temperature 

evaluated with the thermographic camera (Table 9) and the reduction of the 

coefficient of friction predicted by function   , the overall decay of friction during 

the test is between 40-60% in the central part of the slider and  25-40% in the 

border.  
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Table 13: Maximum Flash Temperature of the variable Tf  reported in Table 10 and 

relative friction reduction in each test.  

Series
V 

(mm/s)

p=8 

Mpa

p=16 

Mpa

p=45 

Mpa

p=8 

Mpa

p=16 

Mpa

p=45 

Mpa

182 31,5 45,4 64,4 -31 -39 -48

260 33,2 51,4 68,2 -32 -42 -49

338 37,5 55,1 76,8 -35 -44 -52

182 44,5 63,0 80,4 -30 -42 -52

260 50,8 67,8 84,7 -34 -44 -54

338 61,1 77,0 91,4 -40 -50 -57

182 48,1 65,2 80,6 -49 -58 -64

260 53,8 68,5 82,4 -52 -60 -65

338 57,4 75,1 92,4 -54 -62 -69
400

Tf_slider [°C] friction reduction fc-1 (%)

200

300

 

The correlation between    values predicted by using eq. (7.3) and 

experimental values, corrected to eliminate the temperature effect, is shown in 

Figure 111. 

 

Figure 111: Variation of the coefficient of friction with the velocity v [44] and 

experimental values adjusted with the parameter fTf. 
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7.6. Final Model 

All the model variables defined are in this section combined. By substituting 

eq. (7.2), eq. (7.3) and eq. (7.4) in eq (7.1) the proposed model is expressed as: 

 

(7.9)     refrefref vvTTWW

svfTwf eeevfTfWfvTW
///

1)()()(),,(
   

 

Eq. (7.9) is applied for the protocol test reported in chapter 5. For each test are 

selected three characteristic positions of the friction-displacement loop and for 

each cycle the couple  ̅   ( ̅ )  is represented in Figure 112.  

 

Figure 112: Experimental friction coefficient versus flash temperature compared with 

prediction model values (continuous line).   



Chapter 7  Friction Model for Sliding Bearings 

198 

 

Figure 112 shows the comparison between the prediction model, represented 

with continuous line, and the experimental data with a average error of the 

predicted friction coefficient of 9.5%. 

 The experimental friction-displacement loops are compared in Figure 113, 

Figure 114 and Figure 115 with coefficient of friction predicted by eq. (7.9). The 

comparison between analytical and experimental loop are in good agreement.   

 

Figure 113: Comparison between Experimental and predicted (load + velocity + cycling 

effects) friction coefficient displacement loop for p= 45MPa and v=260mm/s. 
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Figure 114: Comparison between Experimental and predicted (load + velocity + cycling 

effects) friction coefficient displacement loop for p= 16MPa and v=260mm/s. 

 

Figure 115: Comparison between Experimental and predicted (load + velocity + cycling 

effects) friction coefficient displacement loop for p= 8MPa and v=260mm/s. 
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It is possible to give an estimation of the agreement between the proposed 

model and the experimental data in term of EDC. In Table 14 the experimental 

EDCs, as well as the analytical EDCs evaluated with the proposed prediction 

model without the contribution of thermal effect, are collected. Instead In Table 15 

the analytical EDCs evaluated with the contribution of the degradation coefficient       are reported. Different shades of gray are used for highlight the errors 

greater than 10%, 20% and so on.  

 

Table 14:  Experimental values of EDC ad percentage errors of the proposed model  

without the cycling effect. 

P V
1st 

Cycle

2nd 

cycle

3rd 

cycle

(Mpa)  (mm/s) (kNm) (kNm) (kNm) (kNm) (%) (kNm) (%) (kNm) (%)

182 71,2 63,8 61,5 85,2 19,7 85,2 33,5 85,2 38,5

260 66,8 59,2 56,9 90,8 35,9 90,8 53,4 90,8 59,6

338 70,9 61,3 60,1 90,7 27,9 90,7 48,0 90,7 50,9

182 98,8 88,8 84,7 141,5 43,2 141,5 59,3 141,5 67,1

260 90,7 80,4 76,6 132,7 46,3 132,7 65,0 132,7 73,2

338 94,7 79,9 75,3 141,5 49,4 141,5 77,1 141,5 87,9

182 129,6 112,2 105,3 160,4 23,8 160,4 43,0 160,4 52,3

260 121,3 96,2 88,5 150,6 24,2 150,6 56,5 150,6 70,2

338 119,1 97,9 90,7 160,6 34,8 160,6 64,0 160,6 77,1

Analytical  EDC                    

Load+velocity

45

Experimental EDC

8

16

1st Cycle 2nd cycle 3rd cycle
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Table 15:   Experimental values of EDC ad percentage errors of the proposed model  

including the cycling effect. 

P V
1st 

Cycle

2nd 

cycle

3rd 

cycle

(Mpa)  (mm/s) (kNm) (kNm) (kNm) (kNm) (%) (kNm) (%) (kNm) (%)

182 71,2 63,8 61,5 70,8 -0,6 64,3 0,8 54,0 -12,2

260 66,8 59,2 56,9 65,1 -2,5 59,0 -0,3 53,0 -6,9

338 70,9 61,3 60,1 65,7 -7,3 58,7 -4,2 53,3 -11,3

182 98,8 88,8 84,7 101,7 2,9 89,9 1,2 81,5 -3,8

260 90,7 80,4 76,6 93,8 3,4 82,0 2,0 74,1 -3,3

338 94,7 79,9 75,3 93,5 -1,3 81,6 2,1 73,1 -2,9

182 129,6 112,2 105,3 107,7 -16,9 92,6 -17,5 82,8 -21,4

260 121,3 96,2 88,5 95,2 -21,5 83,2 -13,5 75,6 -14,6

338 119,1 97,9 90,7 98,0 -17,7 83,2 -15,0 72,3 -20,3

Analytical  EDC                  

Load+velocity+cycling effects 

45

Experimental EDC

8

16

1st Cycle 2nd cycle 3rd cycle

 

As explained before there is not significant differences in EDC for different 

pick velocity. The deviancy of analytical EDC with respect to the average       

is quite low. The EDC predicted with the analytical model without the 

contribution of the degradation variable       is not accurate. For high pressure 

and higher velocity tests the errors in the prediction are 34.8%, 64% and 77,1% in 

overestimation of the EDC for 1
st
, 2

nd
 and 3

rd
 cycle, respectively. As expected the 

accuracy of the prediction model is lower for the 2
nd

 and 3
rd

 cycle where the 

temperature of the contact surface increase and the cycling effect is more 

significant. With respect to the model reported in eq (7.9) the prediction is more 

reliable and the errors are -17.7%, -15.0% and -20.3% for 1
st
, 2

nd
 and 3

rd
 cycle. 

The results show how the use of the prediction model without the use of the 

thermal effect produces not tolerant errors in the prediction of EDC, above all 

when the vertical applied load produce high contact pressure.  
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Chapter 8 

8. Conclusions 

In this study, it was decided to investigate the degradation of seismic 

performance of friction pendulum devices due to thermal effects. It must be noted 

that these specific anti-seismic devices represent the latest technology for seismic 

protection of buildings and bridges and are presently utilized in many project 

worldwide. In these supports the dissipation of seismic motion occurs exclusively 

by the friction produced during sliding of the surfaces while the seismic isolation 

is obtained by the shifting of the natural period of the superstructure. Several 

studies have shown that the friction coefficient in a contact problem between 

polymer (PTFE) and stainless steel deviates from the Coulomb‟s friction law. 

Furthermore, most recent studies have shown that the coefficient of friction is also 

in a close relationship with the increase of temperature due to the thermal effect.   

The complete characterization of these device performance is however still 

incomplete even though recent experimental activity largely improved their 

acceptance and qualification. The effect of the temperature rise during seismic 

motion is of paramount importance and barely researched on full scale devices. It 

affects, in fact, the frictional characteristics of the low friction material of the 

device, with serious implications on the overall dissipation capacity of the isolator.  

 The research is focused on the acquisition, during laboratory tests, of the 

temperature pattern developed at the interface between sliding components. For 
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this goal it was used an high quality infrared imaging camera. It was necessary the 

design an ad hoc software for data interpretation and image correction due to the 

critical laboratory environment during the tests. 

The acquired thermal information needed to be calibrated and further 

correlated with numerical models of performance degradation due to friction 

coefficient variations.  

Therefore through an experimental campaign carried out with single pendulum 

bearings it has been investigated the dependence of the friction coefficient with the 

temperature rise in order to propose a phenomenological model able to assess the 

real performance of the friction pendulum. 

A series of friction Pendulum have been tested at Caltrans SRMD Testing 

Facility of San Diego University of California which is equipped with a shaking 

table test specifically designed for full-scale tests. During the tests, the table was 

equipped with a thermographic camera specially calibrated for the type of material 

tested (polished stainless steel).  

Based on the available experimental outcomes it was possible to point out 

some important results valid for the increase of flash temperature in high strength-

stainless steel contacts surface according with the velocity and pressure range used 

in the experimental campaign described in this work.  

The experimental flash temperature evaluated with the thermographic camera 

depends on pressure and velocity  and significantly increase for higher velocity 

and higher pressure. Cumulative short motion tests cause an accumulation of heat 

on the slider and on the sliding surface and, as a consequence, the parameter    is 

subjected by a „cycling effect‟. The increment of temperature is not constant along 

the sliding surface and is more pronounced in the central part of the slider rather 
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than in the border of the sliding surface. This is basically due to the variation of 

instant velocity in the contact surface. 

The evaluation of the temperature rise at the sliding interface was also carried 

out with Carslaw and Jaeger‟s Theory. The calibration of this analytical approach 

is based on the experimental temperature procedure deal with the thermographic 

camera.   

In a second step an analytical comparison between the experimental friction 

coefficient and the temperature rise have been carried out and a prediction model 

of degradation of the friction coefficient was proposed. 

The model introduced in this study presents three independent functions that 

take into account all together the effects of applied load   , sliding velocity    and 

thermal effect    on the coefficient of friction of sliding bearing. So it takes into 

account both mechanical variables such as velocity and apparent pressure, and also 

the degradation of dissipative characteristics of a friction pendulum due to thermal 

effects. 

The comparison between experimental data with values predicted by the 

friction model was carried out in terms of EDC per cycle and coefficient of 

friction with and without the application of the degradation variable   . A „Load 

effect‟ and „cycling effect‟ have been detected and they directly affect the    , 

evaluated as the area which is underneath the force-displacement loop. Based on 

experimental outcomes, it is clear the dependency of the variation of EDC on both 

„cycling effect‟ and „load effect‟. Since the dissipated energy is an important 

parameter for the control of acceleration, velocity and displacement imposed over 

the isolated structure, the load, velocity and cycling effect significantly influence 

the predicted response of the whole structure.  
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The results show how the use of the prediction model without the use of the 

thermal effect produces not tolerant deviation in the prediction of EDC above all 

when the vertical applied load produce high contact pressure.  

It could be useful to calibrate a relationship between cycling effect and 

pressure on the contact surface valid for high strength polymer liner and then 

provide a maximum allowable contact pressure to control the decay of friction 

coefficient. The comparison has shown the paramount importance of the thermal 

effect in term of dissipative characteristics of the sliding isolators especially for 

high contact pressure. 
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