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1. Abstract

Most state—of-the—art speaker recognition systeras a
based on Gaussian Mixture Models (GMMs), where £

speech segment is represented by a compact refaésen
referred to as “identity vector” (ivector for shiprextracted
by means of Factor Analysis. The main advantagthisf
representation is that the problem of intersessamability
is deferred to a second stage, dealing with lowedisional
vectors rather than with the high-dimensional spafcthe
GMM means.

In this paper, we propose to use as a pseudosivect
extractor a Deep Belief Network (DBN) architecture,

trained with the utterances of several hundred lsgrealn
this approach, the DBN performs a
transformation of the input features, which produdtke
probability that an output unit is on, given thepun
features. We model the distribution of the outpuitsy
given an utterance, by a reduced set of paramébeats
embed the speaker characteristics.

Tested on the dataset exploited for training thetesys that

have been used for the NIST 2012 Speaker Recognitio.

Evaluation, this approach shows promising results.

2. Introduction

Many resources have been devoted in the last fansye
to Auto Associative Neural Networks (AANNS), Botikck
Networks, and Deep Belief Networks (DBNs) as pdssib
frameworks for innovative solutions to speech apelaker
recognition problems.

non-linear

the bottleneck layer have been adapted to the spehithe
current utterance and then used as ivectors [thofigh
some of the mentioned techniques use complex
rchitectures and computationally expensive opttion
procedures, none of them is able to reach statthefart
performance in speaker recognition. On the contrtrg
published results lay well behind the ones obtaibgdhe
"standard” ivector systems using a Probabilistimdar
Discriminant  Analysis (PLDA) classifier [8],[9].
Preliminary experiments with DBNs have been rembite
[10],[11] using i—vectors as input features for DBidsed
classifiers.

In contrast with these approaches, which try tarese
a huge number of parameters with a relatively smathber
of ivectors, our approach tries to extract a pseueotor
directly from the frames of the speech segment, vie
leave to a PLDA classifier the task of discrimingtemong
the speakers. In particular, our approach aimsteaeing a
compact information, which summarize the speaker
characteristic given an utterance, directly frore thutput
units of a stack of Restricted Boltzmann MachirRBNIs).
In this paper, we will refer to this stack of RBlds a DBN.
The DBN performs a non—linear transformation of itiput
features, and produces the probability that anwduipit is
active, given a wide—context of input frames. Welgldhe
distribution of each output unit, given an uttemnuy a few
set of parameters which embed the speaker chasdicter
because they average the acoustic content of th@nte.

In this work we tested several techniques to mtuese
distributions and to extract pseudo-ivectors. Véntd and
tested PLDA classifiers using these pseudo-iveatorshe
dataset exploited for training the systems thatehbeen

DBNs have been successfully used for speechysed for the NIST 2012 Speaker Recognition Evabnati

recognition [1], rising increasing interest in tHEBNs
technology [2]. AANNS, trained to reconstruct timput
features, or even simple Neural Networks classifibave
been used to compress in a bottleneck layer thenretion
given by a window including a suitably wide contekhe
outputs of the bottleneck units are then used asfeatures
for training traditional classifiers such as Hiddetarkov
Models for speech [3][4], or as features for GMMséa
speaker recognition systems [5].

AANNs have also been used, without exploiting aewvid
input context, but still using the compression tags a
feature extractor, for training an ivector basedkaker
recognition system [6]. In another approach, thights of

[12]. Although this approach does not obtain stdtihe-art
results, it is an attempt to go beyond the usén@MBN as
an ivector classifier, or as a bottleneck featuiteaetor.

The paper is organized as follows: Section 2 lyiefl
recalls the GMM, the ivector and the PLDA models fo
speaker recognition. Section 3 introduces the rivesd
Boltzmann Machine (RBM) model, and illustrates our
approach for pseudo-ivector extraction based on the
analysis of the probability distribution of the DBdutput
units. Section 4 details the computation of diffeneseudo-
ivectors from the DBN output nodes probability
distributions. Section 5 is devoted to the illustna of the



training and test datasets, and to the experimeatallts.
Finally, in Section 6 we draw our conclusions.
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3. GMM Speaker modds

Our reference models in this work are the statthefart
speaker Gaussian Mixture Models (GMMs), which aedu
to estimate statistics that allow obtaining a loimehsional
representation of a speech segment, the so—cadedtity
vector” or ivector [13][14]. An ivector is a compgac
representation of a GMM supervector [15], represgnt
both the speaker and channel characteristics ofveng
speech segment, which captures most of the sugervec
variability. The ivector representation constraine GMM
supervectos to live in a single subspace according to:
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Figure 2: Topology of a 5 layer RBM. The visiblgéda of
the first RBM takes a context of 11 frames consgstif 46
parameters. All the other layers have 1000 units.

s=m+ Tw, (1) ) — .
Since the RBM has the shape of a bipartite grapth, mo

where m is the Universal Background Model (UBM) intra-layer connections, the hidden unit activagioare
supervector.T is a low-rank rectangular matrix, @xF mutually independent, given the visible unit adiimas, and

rows andM columns, andC andF are the number of GMM  Vice-versa. RBMs are trained by means of the cetita
components and feature dimensions, respectivelg Mh divergence technique [18], which is also able tal deith

columns ofT are vectors spanning the subspace includin§ontinuous input values, as the ones that have bsed in

important inter and intra—speaker variability ineth Our experiments.

supervector space, amdis a latent variable of sizd with
standard normal distribution.
estimate of matrixi is obtained by minor modifications of
the Joint Factor Analysis approach [16][17].

Ivectors, in conjunction with a PLDA classifier|al
state of the art results to be obtained. A GausBiaDA
system, implemented according to the frameworlsitated
in [8], has been used in this work.

The details of the features, and datasets usetaiaing
these models are described in Section 6.

4. Restricted Boltzmann Machines

A Maximum-Likelihood

The activation probability of a hidden upis given by:
p(h = 1|v) = a(b; + [T, W, vy) 2
where

o(x) = @)

1+e>’

denotes the sigmoid function.

Thus, after the network has been trained, the a@biv
value of a unit of the first RBM hidden layer is #ctivation
probability given the values plugged to its visiblgts. This
single layer of binary features can be used as éata
training a second RBM, and this procedure can be

A Boltzmann machine is a generative Neural Networkerformed for the desired number of layers. Eagferlaf

that can learn a probability distribution overstt of binary
inputs. A Restricted Boltzmann Machine is a variahta
Boltzmann machine with a hidden layeand a visible layer
v, and without hidden-to-hidden or visible-to-vigbl
connections, as depicted in Figure 1.

Figure 1. A Restricted Boltzmann Machine

features captures higher-order correlations betwten
activities of the units of the previous layer.

The main idea in our proposal is to train a DBN sisting

of a stacked set of RBMs using as input data a wingext

of the frames of several hundred speakers segmasts,
shown in Figure 2, where the number of trained RB&/5,
the input layer takes a context of 11 frames coingiof 46
parameters, and each hidden layer has 1000 utitsfifst
layer is a Gaussian-Bernoulli RBM trained on acigust
features, whereas the others layers of the DBN are
Bernoulli-Bernoulli RBMs. Since this DBN can be ses a
UBM with a very large number of mixture components,
can try to exploit the probability distributionsofn the
activation probabilities of each hidden unit of top RBM
(we will refer to these units as the “output node®ur
assumption is that these probability distributioasd their
shape, carry information about the speaker idertiégause
the phonetic content of the segment, for long ehoug
utterances, is averaged. It is worth noting that IiBN is
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Figure 3: Distribution of the activation probahjléind the Beta fitting pdf for three output nodes.
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not further retrained with a different objectivenfition,  produces activation probabilities, i.e., the praligbthat
leaving to the PLDA classifier the task of discmaiing the output of nodg is active, given inpuk,. The figure
among the speakers. shows that the activation probability of a speciiiede is
Since the outputs of the net are highly correlatedconcentrated near 0 or 1, and that its distributiais a
Principal Component Analysis is performed to obtain shape that can be better fit by a Beta distributibn
pseudo—ivector with low dimensions, to be used agparticular, given an inpuk; the j—th outputy;; of the
observation sample for the standard PLDA model,civhi network is active with a probability;p which depends on

takes also care of the intersession variability. the input value and the network weights.
_ In the following, we assume that the activation
5. Pseudo-ivectors probabilities p are realizations of a random variab|edhd

that each random variablg ®llows a Beta distribution

Three main sets of pseudo-ivectors have been éattac ™.
with parameters;, B;

based on the analysis of the probability distritmutdf the
output units of the same DBN.

P~B(o;,B;).

fnd that the set of; Rire independent.

5.1. Empirical mean and variance

The simplest pseudo-ivector extraction approac

e The pair of parameters of the Beta distributian, ¢ ;)
computes the average value of the probability ghatven i
outpﬁt unit is active:g P yd can be estimated by maximizing the log-likelihoddte
1 _ set of T observations { i, ..., prj} of a speech segment
W =13 py=L | v), @ e B P

where T is the number of frames of the speaker segment,
without performing any decorrelation of the obtaingd

i.e., using as pseudo-ivector a 1000-dimensionatovar.

The results obtained using these pseudo-ivectorg,vas The log-likelihood in (5) is given by:
expected, not good compared with the pseudo-ivector

a;, B; = argmax o g1og L(p1j,p2j, . pwsl &, B ). %)

obtained by reducing their dimension by means &GCA logL(pl,-,ij,~-- ,Pnj| a,B) = —TlogB(a, B)
projection. Appending tqu the vector of the variances of + (a— 1)210:‘51%-
each output node probability, and then performir@AP - ! (6)
gives far better results at the cost of increasthg L (B-1 loa(1 —p..
dimension of the pseudo-ivectors. * )Z 09(1=py)).
L . which can be rewritten as:

5.2. Beta distribution fitting

Figure 3 shows the distribution of the probabititief log L(p1j,p2j, -+ pnjl @,B ) = —NlogB(a,B) +
three output nodes, computed for a file includir@p 26 (¢ — DL, + @)
voice frames. Similar plots are obtained for tHeeotoutput (B— DLy,

nodes, and for other files. These distributionsraseat all o o
Gaussian. This is not surprising because the ougyer Wherel, andLy,are the sufficient statistics:
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Figure 4: Distribution of the activation probahjland Legendre regression for three output nodes.

(8)

t
These sufficient statistics can be easily obtaifreth
the network outputs. We can find a ML solution for
obtaining every pair of, ;) by maximizing the log-
likelihood (7). These parameters can be estimayaddans
of a generic optimizer. In particular, we used tHFG
algorithm [19], a quasi-Newton optimizer, with a

activation probability and the Legendre regresdmnthe
same output nodes illustrated in Figure 3. Comptodikta
fitting, Legendre regression is more accurate,oaigfn it
has some difficulty with very sharp distributiorsjch as
the distribution of output node 42. Legendre potwied
fitting requires a substantially larger number oéfficients
compared to the first and second order statisticdp the
concatenation of thex( B)) pairs.

6. Experimental settingsand results

The features used in this work for training the eled

regularization which avoids that the mean of a Betgonsist of 46 parameters, 19 MFCC coefficients &9},

distribution, computed as:

)
(Zj + ,8] ’ (9)
differs too much with respect to the empirical wlisttion
mean. Then, three different sets of pseudo-vetiave been
extracted from these statistics by performing a -400
dimensional PCA projection of three vectors conmsisof:
the concatenation of all the;(B;) pairs,
the vector of the mean of the Beta distributigns
the vector of the mean of the log probability otlea

output unitL, (8).

uj =

5.3. Legendre Polynomial fitting

As shown in Figure 3, for the output nodes 42 agd 4
the Beta fitting pdf does not approximate very wagtual
distributions near the extreme values (0 or 1).sTfauthird

obtained from the output of a 300-3400Hz Mel d¥ilt
bank, 19 delta AcO- Ac18), and 8 double-deltaAfcO-
AACT). These features were computed with a frameafte
100 observation vectors per second, and were dutgec
short term gaussianization [20] computed on a 3siding
window applied to speech frames only.
Our reference system uses GMMs consisting of 2048
diagonal Gaussian mixtures. Gender dependent UB&ts w
trained using the conversations of the NIST SRE62Q008
and 2010. The training set includes 737 hours @afesh
selected from the 21780 conversations of 1095 femal
speakers and 512 hours from 15726 conversatiorn&28f
male speakers. MatriX has been obtained using the same
dataset. The dimension of the ivectors has beeio 4€0.

We trained PLDA models with full-rank channel
factors, using 200 dimensions for the speaker factbhe
ivectors used for the PLDA models are L2 normalized

pseudo-ivector extractor has been devised, based g8 pA training was performed using utterances withamny

Legendre polynomial fitting. In this approach, the
distribution of the probability of each output node
approximated by taking the fir¢€ terms of a Legendre
polynomial expansion estimated to fit the distribnt In
our experiments we used Legendre polynomial expassi

added noise. The training and test datasets faeldement
were selected from the male SRE 2012 training dathe
target models, eliminating the 10sec and the summed
conversation utterances, and taking care that ¥ighl
correlated segments (e.g. same interview from rdiffe

the test set. The development training set finalkyuded



Table 1: Performance of the reference GMM ivedRitDA
system, and of three other types of pseudo-iveexiracted
from the statistics of the output nodes of a DBN.

Systen % EEF | DCFO¢ | DCF1C
GMM (reference) 0.45 18 87
1000 meannc PCA 2.91 10¢ 237
Dim. 400 PCA projection| 0.81 40 190
Dim. 400 PCA projection
from the means of the
hidden units of the third| 03 ar 211
DBN layer

572 hours of speech selected from the 16850 coatvens

Table 2: Performance of 400-dimensional pseudotdrec
obtained using Beta distribution statistics.

PCADIm400 | %EER| DCF0§ DCFip
w+p 0.91 44 181
Ly 0.89 45 190
n(os, B) 0.71 3¢ 17C

all pairs ¢;, p;) estimated by the regularized LBFG
algorithm, the average of the log probabilities, and
finally the values of the means obtained as a fanaif the
pairs @, p;).

The first two set of parameters are similar to threes

of 1095 female speakers and 391 hours from 1207@btained with the means only, reported in Table/iereas

conversations of 723 male speakers. The partitiothe
SRE 2012 training data not used as PLDA trainirtgnses
used as development test set, for a total of 8204 and
more than 15 million impostor trials.

It is worth noting that in this work we scored eyvernale
test segment against all the others, irrespectifvethe
channel or noisy conditions defined in the NIST 2@RE
[21]. The reported results are obtained without angre
normalization

Although the distribution of each output node
probability is not Gaussian, the information cairigy the
distribution mean is the easiest to be computed; Table 1
shows the results of experiments aiming at evalgati
pseudo-ivectors extracted from the means onlyeims of
%EER, minDCFO08, and minDCF10 (x 1000). In particula
the first line of the table shows the performanta GMM
system, quite well aligned with state-of-the arsteyns,
which is our reference. The results in the secardl third
line of the Table 1 make evident the importancethef
decorrelation of the mean output probabilities.
performance of the mean based pseudo-ivector syste
highlighted in the third row of the table, is thefarence for
all the other pseudo-ivector systems. The resgiithe last
row support the hypothesis that deeper networkslales to
capture more information with respect to shallownmeks.
Here, the performance using the output of the Bri®BN
is better than the one obtained from the outputefthird
layer of the same DBN.

As far as the statistics obtained by estimating Beta
fitting distribution is concerned, the results atesnmarized
in Table 2. Results are reported for pseudo-ivector
obtained projecting to 400 dimensions the concaiemaf

an improvement is achieved by using the means ctedpu
from the pairs ;, p;) estimated by the regularized LBFG
algorithm.

Again, although the distribution of the output
probabilities is not Gaussian, rough informatiorowatbthe
shape of the each distribution can be given byarsance.
Since in this case the number of parameters doutiies
dimension of the PCA projections has been increagddw
first column of Table 3 shows the results obtaibgdising
the concatenation of means and variances, and PCA
projection with increasing dimensions. The perfanoe
keeps improving up to 1200-dimensional pseudo-omsct

Since obtaining the pairgy( ;) is more expensive than
just concatenating the means and variances, andBR&
algorithm requires setting the regularization patan the
pseudo-ivector based on Beta distributions weremuoe
exploited in the remaining experiments. Table 3ortpin
its second column the results for the pseudo-ivecto
extracted from the vector concatenating the setl®f

Thel€gendre coefficients fitting each output node ribstion.
df can be observed that the system based on Legendr

polynomial coefficients uses a much larger numbér o
parameters, but gives similar or slightly worseuhsswith
respect to system based on the concatenation afisveral
variances for every dimension of the pseudo-ivector
However, as shown in the third column of the Tahl¢he
concatenation of all these parameters improves the
performance, mostly the % EER. Compared to the mean
alone, this combination improves the performancel b,
25%, and 19% for the % EER, minDCFO08, and minDCF10,
respectively, but is still well behind the GMM redace
system.

Table 3: Performance of three types of pseudo-oresttractors.

PCA means + variances Legendre coefficients means + ve_lri_ances +
Dim (1000 + 1000) (13000) Legendre coefficient (15000

) % EEF | DCFO¢ | DCF1( | % EEF | DCFO¢ | DCF1( | % EEF | DCF0¢ | DCF1(
800 0.7 38 170 0.75 37 182 0.6 33 162
100(¢ 0.6¢ 37 16C 0.72 37 17¢ 0.58 32 160
1200 0.71 36 156 0.75 37 172 0.64 33 154
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