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Abstract  Multilayered composites can be weakened by 
local failures, which can give rise to singular stress fields. 
Singularities can be removed or integrated to obtain 
bounded quantities which may be used for the analysis. In 
any case, the participation of singular stresses should be 
identified. Serving this purpose, a new mixed singular 
wedge element based on interpolation functions with a 
variable singularity power is developed, which can adapt to 
the problem and can represent the non-singular fields as a 
particular case. The displacements and the interlaminar 
stresses are assumed as nodal d.o.f. to a priori fulfill the 
kinematic and stress contact conditions at the material 
interfaces and the stress boundary conditions in point form. 
The application to sample cases taken from literature shows 
that the element can be successfully employed for the 
analysis of singular fields. The variable singular 
representation and the mixed formulation give more 
accurate results than their displacement-based, non-singular, 
or singular counterparts with a fixed singularity. The failure 
loads of initially delaminated specimens are accurately 
predicted either using the virtual crack closure technique or 
a mesoscale model by running in a reasonable time on a 
personal laptop computer. 

Keywords  Stresses Singularity, Singular Finite 
Element, Mixed Formulation, Crack Damage, Delamination, 
Laminated Composites 

 

1. Introduction 
Multilayered composites are increasingly finding use, 

owing to excellent strength and stiffness-to-weight ratios, 
long fatigue life and advantageous energy absorption 
properties. As their performances can be weakened by local 
failures (e.g., fibre breakage, intralaminar and interlaminar 
matrix cracking, fibre/matrix debonding, delamination), an 
accurate prediction of their residual strength and stiffness is 
mandatory. A recent comprehensive review of the 
mechanisms of damage formation and evolution and of their 
modeling is given by Ivañez and Sanchez [1], Hassan et al. 

[2], Tay et al. [3], Càrdenas [4], Liu and Zheng [5] and 
Hongkarnjanakul et al. [6].  

Damaged areas require a full three-dimensional analysis, 
since the out-of-plane stresses, usually negligible elsewhere, 
have a significant bearing on keeping equilibrium in these 
regions and determine the stress singularities rise at matrix 
and delamination crack tips. As extensively discussed by 
Ebrahimi et al. [7] and Koguchi and da Costa [8], a 
different order of the singularity power is determined by the 
geometry and the constituent materials. The singular stress 
fields can be (i) removed or (ii) integrated to arrive at 
bounded quantities which can be physically interpreted and 
used for the analysis of progressive damage evolution and 
failure (see Berthelot [9] and Liu and Zheng [10]). Case (i) 
is that of continuum damage mesomechanics (CDM), while 
case (ii) is that of fracture mechanics (FM). Approach (i) is 
easy to implement into the finite elements and treats crack 
initiation and growth within a unified model. Approach (ii) 
is nowadays widely employed to predict the delamination 
growth using the virtual crack closure technique (VCCT) to 
solve the energy release rates (ERR). As examples, the 
papers by Okada et al. [11], Leski [12] and Liu et al. [13] 
are cited. If not experimentally determined, the critical ERR 
are computed by criteria such as those by Benzeggagh and 
Kenane [14], Wu and Reuter [15] and Reeder et al. [16]. 

Usually, finite element models are used as structural 
models, since closed form approaches should be limited to 
the analysis of certain range of geometries and loading 
conditions, due to the simplifying assumptions adopted, 
while shear-lag approaches, variational methods and stress 
transfer mechanics use parameters that should be 
determined by experiments. 

However, the presence of singularities should be 
recognized, their nature appreciated and their stress fields 
accurately and efficiently predicted, as extensively 
discussed by Sinclair [17] and Hu and Yao [18], since the 
participation of the singular stresses must be identified for 
any real use. Accordingly, special finite elements with 
singular stress fields should be considered. Elements of this 
kind have been developed via nodes shifting [19], singular 
topological transformation [20]-[29], embedding a known 
solution function of a singular problem [30]-[33], or using 
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interpolation functions with singular derivatives [34]-[36]. 
Progressive refinements have been brought to these 
techniques, in order to ensure compatibility of the crack-tip 
singular elements with the standard elements without using 
transition bridging elements. In this way it is possible to 
weaken the consistence requirements for the field functions, 
allowing to use certain discontinuous displacements and to 
develop more efficient ways to construct the stiffness 
matrix. 

For a crack lying close to a bi-material interface like in 
laminated composites, the stress singularity is oscillating in 
nature, i.e. σij≈r-1/2+ic while for a crack perpendicularly 
terminating at the interface the stress field is of the form 
σij≈rλ-1 (0<λ<1). In the previous formulas r is the radial 
distance from the crack tip, λ is the lowest root of the 
characteristic equation, ric is the oscillatory term due to the 
mismatch in elastic properties of the two bonded material. 
Therefore, an arbitrary order of singularity should be 
embedded in the elements. Elements with variable 
singularity power have been recently developed using 
different approaches and successfully applied for solving 
different problems in the papers by Zhou et al. [37] and 
Chen et al. [38]. In [37] a three-dimensional variable-order 
boundary element with variable singularity order and 
different kinds of displacement formulations was suggested, 
while in [38] a special five-node singular triangular 
crack-tip element with extra basis functions in the G space 
and strain smoothing was proposed. 

In the present paper, a solid singular, mixed wedge 
element for analysis of composite laminates is developed. It 
uses simple singular interpolation functions with variable 
singularity power that can degenerate into a non-singular 
standard representation as a particular case. This element is 
developed assuming the displacements and the out-of-plane 
stresses (i.e., the interlaminar stresses) as nodal d.o.f, since 
in this way, it a priori fulfills kinematic and stress contact 
conditions at the material interfaces, which are essential for 
keeping equilibrium, and it easily satisfy the stress 
boundary conditions in a point form. This element, which 
can be particularized as a displacement based element, is 
compatible with the standard ones (solid trilinear 
displacement based elements and non-singular mixed 
elements). The mixed formulation is chosen because it can 
provide more accurate results than displacement-based 
models with the same meshing and with a comparable 
processing time. The element is developed considering 
displacement and stress interpolating functions all of the 
same order, therefore the equilibrium is satisfied in an 
approximate integral form. The interpolation functions by 
Hughes and Akin [39] are used for the displacements, 
giving rise to singular derivatives with a variable singularity 
power that can be set as desired and can represent the 
regular (i.e. non-singular) behavior as a particular case. The 
interpolation functions for the nodal stresses are obtained 
deriving those for the displacements with respect to the 
coordinate that lies in a plane parallel to the layers where 
delamination/debonding cracks can rise and consequently a 

singularity line rises at the crack tip. Satisfaction of 
equilibrium in approximate integral form assuming a unique 
set indifferently for the displacement or the stress d.o.f. 
components is a simplification that does not result in an 
accuracy loss, as shown by Nakazawa [40]. More accurate 
stresses than with displacement-based elements are obtained 
with the same meshing, along with an improved 
convergence rate. The present element is employed around 
the delamination crack singularity, while to ensure 
compatibility with no need of transition elements, the 
non-singular brick elements with the same d.o.f and 
standard three-linear interpolating functions developed by 
Icardi and Atzori [41] and extensively applied to analysis of 
composites are used elsewhere. Due to the interpolation 
scheme with quasi-standard features, the element can be 
easily implemented into the computer code [41] and used to 
account for the effects of singularities. The present solid 
modeling will result in an increase of data preparation and 
processing time with respect to plate models customarily 
adopted for the analysis of composite laminates, but 
simplifying assumptions will not be introduced across the 
thickness that could limit accuracy, as discussed, e.g., by 
Weißgraeber and Becker [42]. So the present modeling can 
be more accurate with arbitrary geometries, lay-ups, loading 
and boundary conditions and the crack growth mechanism 
can be easily simulated by splitting the interfaces. The 
accuracy of the present modeling will be assessed 
considering sample test cases with singular stress fields 
taken form the literature and initially delaminated 
specimens, for which experimental results are available, 
whose failure loads will be predicted using fracture 
mechanics and a mesomechanic approach. In the former 
case, the analysis of delamination will be carried out using 
the singular representation, as in the papers by Ariza et al. 
[43] and Yao and Hu [44]. In the latter case, the regular 
behavior will be set by removing the effects of the 
singularity, similarly to McQuigg [45]. 

The numerical results will show that the failure loads of 
initially delaminated specimens are accurately predicted 
with an affordable effort for a personal laptop computer 
either using the virtual crack closure technique, or a 
mesoscale model. Correct results are obtained with a 
relatively coarse meshing, thanks to the possibility to adapt 
the singularity power and owing to the improved accuracy 
of the mixed formulation. Of course, more accurate results 
are obtained when the singularity power is appropriately set 
and the regular behavior can be correctly predicted by 
setting the singularity power to zero. The 
displacement-based elements particularized from the mixed 
elements give less accurate predictions.  

2. The wedge Element  
Figure 1 represents the wedge element in its natural 

volume of coordinates (η, θ, ζ) and in physical coordinates 
(x, y, z). Here x, y and η, θ are assumed to lie in a plane 

 



18  Variable Singularity Power Wedge Element for Multilayered Composites   
 

parallel to that of the constituent layers, with x, η  in the 
spanwise direction and y, θ in the transverse direction, as a 
consequence, z and ζ lie in the thickness direction. The 
displacements and the interlaminar stress components are 
indicated as u, v, w, σxz, σyz, σzz, respectively. The axes x and 
y are required to lie in a plane parallel to the constituent 
layers, while z is required to lie in the thickness direction, 
so that the singular line from nodes 1 to 4 lies on an 
interface. Distorted elements with a reduced distance from 
the nodes 1 and 4 can be constructed in order to 
approximate a point singularity. 

 

Figure 1.  The wedge element in its natural volume and numbering of 
nodes 

2.1. Interpolation Scheme 

The displacements and the interlaminar stresses are 
interpolated separately as: 

D = ∑
6

1

De e
dispN ; S =∑

6

1

Se e
stressN        (1) 

The symbols Ne
disp, Ne

stress represent the interpolation 
functions for the displacements and the stresses, which are 
here indicated by D and S, respectively: 

{D | S}T = { }T
zzyzxzwvu σσσ ,,|,,         (2) 

Their corresponding nodal values, which represent the 
nodal d.o.f. of the present element, are indicated as:  

{De| Se}T = 

= ( ){ } { }, , , , ,
T Te i e i e i e i e i e i

xz yz zzeq u v w σ σ σ=     (3) 

It is desirable that the interpolation functions have a 
variable stress singularity power that can adapt to the 
problem, in order to treat all constituent materials, 
geometries, loading and boundary conditions. The 
interpolation functions should also be able to represent the 
regular behavior, in order to obtain a conventional element 
as a particular case. Here, the shape functions with singular 
derivatives developed by Hughes and Akin [39] are used for 
interpolating the displacements:  

( )ϑη β−= 11
dispN                   (4) 

( )ϑζη β −= 12
dispN                 (5) 

ζϑη β=3
dispN                       (6) 

( )( )ϑη β −−= 114
dispN               (7) 

( )( )ϑζη β −−= 115
dispN               (8) 

( )ϑζη β −= 16
dispN               (9) 

The stresses are instead interpolated by differentiating the 
previous functions with respect to the coordinate ζ, which is 
supposed to lie in a plane parallel to the layers where 
delamination/debonding can rise:  

( )ϑη µ−= 11
stressN                (10) 

( )ϑζη µ −= 12
stressN               (11) 

ζϑη µ=3
stressN                     (12) 

( )( )ϑη µ −−= 114
stressN              (13) 

( )( )ϑζη µ −−= 115
stressN             (14) 

( )ϑζη µ −= 16
stressN                   (15) 

In this way, the stresses become singular at η =0, i.e. 
along the edge connecting nodes 1 and 4, with a singularity 
power μ≡ β - 1 that can adapt to the problem under 
investigation. The regular behavior is obtained by setting 
β= 1 in (4) to (9) and assuming μ= 1 in (10) to (15). 

As shown by Kaneko and Padilla [46], elements based on 
the shape functions defined above could have a 
convergence rate depending on the location of the 
interpolation points. Namely, locations can exist in which 
they could not work. However neither the present numerical 
applications, nor other authors have shown the occurrence 
of such prejudicial effects in the practical cases examined.  

It could be noticed that equilibrium is fulfilled in an 
integral form, because (18) does not always produce 
intra-element self-equilibrating stresses. As mentioned in 
the introductory section, this representation is chosen 
because it simplifies the development of the element and 
does not have detrimental effects on accuracy. 

As all the stresses should have the same singularity 
power, though they can have different singularity strength, 
the interpolation functions (10) to (15) are used for 
representing the inner variation also of the in-plane stress 
components. The element matrix and the vector of 
equivalent nodal forces are derived in a straightforward way 
by the Hellinger-Reissner mixed variational principle: 

1
2

0

u
HR ij ij ij ijkl kl i i i i

V V St

HR HR

C dV b u dV t u dS

U W

δ δ σ ε σ σ δ

δ δ

  ∏ = − − + =  
   

= − =

∫ ∫ ∫
       (16) 

by substituting the discretized representation of 
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displacements and stresses given above. Please note that, 
the symbol bi represents the volume forces, ui represents the 
displacements of the points where these forces are applied, 
ti are the surface tractions, εu

ij=½(ui,j + uj,i) represent the 
strains derived from the strain-displacement relations (the 
differentiation with respect to the physical coordinates is 
indicated by a comma), while σ kl are their counterparts 
obtained with the stress-strain relations: 

{ } ( ){ 11 12 13 14 15 16 ;
T

ij xx yy xy xz yz zz xxC C C C C Cσε σ σ σ σ σ σ σ= + + + + +
 

( ) yyzzyzxzxyyyxx CCCCCC σσσσσσσ 262524232221 +++++ ; 

( )31 32 33 34 35 36 ;xx yy xy xz yz zz xyC C C C C Cσ σ σ σ σ σ σ+ + + + +   (17) 

( )41 42 43 44 45 46 ;xx yy xy xz yz zz xzC C C C C Cσ σ σ σ σ σ σ+ + + + +  

( )51 52 53 54 55 56 ;xx yy xy xz yz zz yzC C C C C Cσ σ σ σ σ σ σ+ + + + +  

( ) }61 62 63 64 65 66

T

xx yy xy xz yz zz zzC C C C C Cσ σ σ σ σ σ σ+ + + + +
 

The stresses are represented as: 

}{ }{ }{ }{ }{ }{ }{
}{ }{ }{ }{ }{ }{
}{ }{ }{ }{ }{ }{

{ }( )

ˆ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

stress
e

stress

stress

D

N q
N

N

σ

   
 
= 
 
 
 

     (18) 

the matrix [ D̂ ] being obtained from the relation that defines 
the in-plane stress components 

{ } [ ][ ]{ } { }( ) ( )
ˆ  *

T

xx yy xy e eS B q D qσ σ σ  = =       (19) 

by inserting zeros in the appropriate positions. Since the 
interlaminar stresses σxz, σyz, σzz are assumed as nodal d.o.f., 
the interfacial stress contact conditions are a priori fulfilled 
when the nodes lie over a material interface. Though the 
continuity of the transverse normal stress gradient σzz,z, 
which is also prescribed by the elasticity theory, and the 
boundary conditions σzz,z = 0 at the upper and lower 
bounding faces cannot be enforced with the chosen d.o.f., 
they are spontaneously met, as observed by Icardi and 
Atzori [41] and by the present results. The present wedge 

element can be connected at nodes 2,3,5,6 to the 
non-singular hexahedral element by Icardi and Atzori [21], 
which has the same nodal d.o.f. and compatible tri-linear 
interpolation functions. 

Singular and non-singular displacement-based 
counterpart elements can be particularized from the present 
wedge element, which is referred as W6-MX-SG, according 
to the scheme of Table 1. In the numerical applications, the 
results by the present element will be compared to those of 
its counterpart elements defined in Table 1, in order to show 
the advantages of the mixed formulation and the variable 
singularity power representation. 

As customarily, a topological transformation is carried 
out from the physical volume (x, y, z) to the natural volume 
(η, θ, ζ) to uniform the computation of the volume integrals. 
This operation transforms any wedge element into the 
prismatic element of Figure 1, i.e. the nodal displacements 
eui, evi, ewi and the stresses eσi

xz, eσi
yz, eσi

zz into their 
counterparts e

ηui, e
θvi, e

ζwi, eσi
ηζ, eσi

θζ, eσi
ζζ in the natural 

volume. To this purpose, the coordinates of the internal 
points are expressed in terms of the nodal coordinates 
through the standard tri-linear interpolation functions Nj

c  
obtained from the Nj

disp of (4) to (9) by setting β= 1: 

),,(),,(
6

1
jjj

j
c zyxNzyx ∑=         (20) 

The derivatives with respect to the physical coordinates 
are computed as: 

1, , , ,
TT

x y z η ϑ ζ
−  ∂ ∂ ∂ ∂ ∂ ∂ = ℑ   ∂ ∂ ∂ ∂ ∂ ∂  

    (21) 

|ℑ | being the Jacobian of the transformation 
1 1 1

2 2 2
1 2 3 4 5 6

3 3 3
1 2 3 4 5 6

4 4 4
1 2 3 4 5 6

5 5 5

6 6 6

, , , , , ,
, , , , , ,
, , , , , ,

c c c c c c

c c c c c c

c c c c c c

x y z
x y z

N N N N N N
x y z

N N N N N N
x y z

N N N N N N
x y z
x y z

η η η η η η
ϑ ϑ ηϑ ϑ ϑ ϑ
ζ ζ ζ ζ ζ ζ

 
 
  
  ℑ =   
    
 
 

   (22) 

  

Table 1.  Elements that can be particularized from the present element and from [41] 

Element name Type d.o.f Interpolation Singularity power 

W6-MX-SG mixed displacements and stresses singular variable 

 W6-MX mixed displacements and stresses non-singular --- 

W6-SG displacement-based displacements singular variable 

W6 displacement-based displacements non-singular --- 

B8-MX [41] mixed displacements and stresses non-singular --- 

B8   [41] displacement-based displacements non-singular --- 
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In the numerical applications, the element matrix and the 
vector of the nodal forces will be derived using symbolic 
calculus, as in this way they are generated once at a time for 
all the elements. With this approach, the integrals involved 
in Eq. (16) will be computed in a closed form, thus avoiding 
the possible numerical instabilities due to Gaussian 
integration.  

The readers are referred to Hoa and Feng [47] for a 
comprehensive discussion of stability and solvability of 
mixed elements. Summing up, for being admissible, these 
elements should have a number of displacement d.o.f. that 
is larger or equal to that of stress d.o.f., but certain choices 
of the interpolation functions could not yield meaningful 
results. An eigenvalue test performed over a single finite 
element with unit length edges, which is free of boundary 
conditions, should be carried out to ensure admissibility. 
Instead, a sufficient condition for solvability requires that 
the number of zero eigenvalues of the stiffness matrix 
should be equal to the number of rigid body modes, that the 
number of positive eigenvalues should be equal to the 
number of stress d.o.f., while the total number of zero and 
negative eigenvalues should correspond to the number of 
displacement d.o.f. 

An isotropic material with unit elastic moduli and a 
Poisson’s ratio of 0.3, should be used in order to have 
eigenvalues with the same magnitude. The successful 
results of this test over the element W6-MX-SG and its 
particularizations (because the results coincide in the test 
case) is shown in Table 2, while those for the element 
B8-MX are shown in the paper by Icardi and Atzori [41]. 
Hereafter, the virtual crack closure technique and a damage 
mesomodel used for predicting the delamination failure 
loads will be briefly reviewed. 

Table 2.  Solvability test for the present singular wedge element 

Mode Eigenv. Mode Eigenv. Mode Eigenv. 

1 1.3853 2 1.1320 3 0.9107 

4 0.4663 5 0.3406 6 0.3077 

7 0.2172 8 0.2042 9 0.0901 

10 0.0792 11 0,0724 12 0.0722 

13 0.0589 14 0.0281 15 0.0260 

16 0.0196 17 0.0194 18 0.0076 

19 0 20 0 21 0 

22 0 23 0 24 0 

25 -0.0227 26 -0.0568 27 -0.0605 

28 -0.1241 29 -0.1294 30 -0.1727 

31 -0,2262 32 -0.2589 33 -0.3329 

34 -0.3717 35 -0.4592 36 -0.7144 

2.2. Virtual Crack Closure Technique  

Efficient ways for computing the energy release rates 
(ERR), which represents the drive force, since the crack 
propagates when they exceed a critical value, are based on 
the VCCT, as discussed in a comprehensive review by 
Krueger [48]. It is assumed that a crack propagates from a 
node i, which is split into two nodes whose relative 
displacements in the three directions are indicated as Δisx, 
Δisy, Δisz. The nodal forces before propagation are indicated 
by Fix, Fiy, Fiz. The sole assumption of VCCT is that the 
energy required for a crack propagation Δα is equal to that 
required to close two separate crack surfaces of the same 
length Δα. The total ERR due to the crack propagation G is 
expressed as the sum of the ERR corresponding to the three 
modes GI, GII, GIII, i.e. the opening (mode I), the forward 
shearing or sliding (mode II) and the anti-plane tearing or 
scissoring (mode III) modes: 

0
0

0 0

1lim ( ) ( )
2

( ) ( ) ( ) ( )

a
i i

a

a a
i i i i

G F x a sx a da

F y a sy a da F z a sz a da

∆

∆ →

∆ ∆


= ∆ +Σ 


+ ∆ + ∆ 



∫

∫ ∫
     (23)

 

Σ being the area generated by the crack propagation Δα. 
Usually, the so called two-step method is employed for 
computing G, because it can be successfully used with a not 
extremely refined meshing. This method uses the node 
forces before crack propagation and the node relative 
displacements after crack propagation: 

1 ( )
2

i i i i i iG F x sx F y a sy F z sz = ∆ + ∆ + ∆ Σ
   (24) 

As an alternative, the one-step method could be used, 
which however requires a refined meshing. It considers 
coupled the displacements of nearest nodes before crack 
propagation, instead of the relative displacements after 
crack propagation.  

The meshing should be chosen by considering the 
balance between accuracy and computational efficiency and 
by doing also convergence rate considerations, because a 
too refined meshing can result disadvantageous by the 
viewpoint of convergence, as shown by Krueger [48]. 
Under mode I, usually accuracy is not appreciably 
improved by refining the discretization, while it is improved 
of a small percentage under mixed modes (see Liu et al. 
[13]). Here the meshing size is chosen by stopping the 
refinement when precision is incremented less than 5 %. 
The following criteria, widely used for the analysis of 
delamination via VCCT, are employed for estimating the 
equivalent critical ERR of mixed-modes: 

B-K law (Benzeggagh and Kenane [14]) 
η









++

+
−+=

IIIIII

IIIIIcr
I

cr
II

cr
I

cr
equiv GGG

GGGGGG )(   (25) 

Power law (Wu, and Reuter [15])  
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0a

cr
III

III

a

cr
II

II

a

cr
I

I
cr

equiv

G
G

G
G

G
G

G
G nm









+








+








=   (26) 

Reeder law (Reeder et al. [16]) 

( )

( )

cr cr cr cr II III
equiv I II I

I II III

cr cr III II III
III II

II III I II III

G GG G G G
G G G

G G GG G
G G G G G

η

η

 +
= + − + + + 

  +
+ −   + + +  

      (27) 

where Gcr
I, Gcr

II and Gcr
III represent the critical ERR for 

modes I, II and III. The choice of the exponents can 
determine quite different results, as observed by Liu et al. 
[13] and in the present numerical applications. The values 
0.5, 1 and 2 have been used in literature, but the most 
accurate results are obtained with the latter two values.  

2.3. Damage Mesoscale Model 

This model considers an intermediate scale between that 
of the laminate and the micro-scale of the mechanisms of 
damage. Matrix microcracking, local delamination, diffuse 
damage and diffuse delamination are efficiently described 
by replacing the discretely damaged medium with an 
equivalent continuous homogeneous medium, which is 
equivalent to the damage micromodel from an energy 
standpoint and can simulate structures of industrial 
complexity. The behavior is described by means of two 
mesoconstituents, the single layer and the interface, which 
represents the thin layer of matrix between two adjacent 
plies. The damage state of each mesoconstituent is 
quantified by damage variables linked to the loss of 
stiffness of the mesoconstituent, whose evolution depends 
on damage forces that represent the variation of the energy 
with respect to the damage. These damage variables are 
assumed constant across the thickness of each 
mesoconstituent, but can vary changing the 
mesoconstituent.  

The damage mesoscale model (DMM) by Ladevèze et al. 
[49] is employed in this paper. In summary, the 
displacement, strain and stress fields representing the exact 
micro-solution are represented as SM =S ͂ + S ̅, S͂ being the 
solution of the problem with the damage removed and S ̅  
the solution of a residual problem where each cracked area 
is loaded by the residual stress σ ̴͂. Damage indicators are 
introduced, which are defined as the integrals of the strain 
energy for any basic residual problem. The strain energy Ej

p 
of the interface γj is expressed as: 
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where k ͂1, k ͂2 and k͂3 are the elastic stiffness coefficients of 
the interface and I ̅1, I ̅2 and I ̅3 the damage indicators, which 
depend just on the material properties of the 

mesoconstituent layer. They can be conveniently computed 
by a 3-D finite element analysis, as shown by Ladevèze and 
Lubineau [50], since the damage state of a ply depends on 
the state of damage of the adjacent plies. To this purpose, in 
this paper a cell subjected to the residual stresses is 
discretized by non-singular wedge elements, assuming the 
stiffness of the interface equal to the shear modulus of the 
matrix divided by its thickness, which is assumed as the 
thickness of a ply divided by 5. The progressive failure 
analysis by DMM is carried out at each increment of 
displacement or loading by evaluating the homogenized 
stresses at any point and comparing them to the strength. 
Damage is extended to the points where the ultimate 
strength is reached. 

3. Numerical Assessments  

3.1. Two-Material Wedge 

As a first test, the sample case of a two-material wedge is 
considered (Figure 2). Many studies have been published 
since the 60’s for this or similar cases, where analytical 
solutions have been presented. The exact elasticity solution 
by Hein and Erdogan [51] and the eigenvalue analysis by 
Yamada and Okumura [52] show that a singularity due to 
the dissimilar properties of the interfaced materials rise at 
the corner interface for certain side angles. The singularity 
power for this case considerably varies with geometry and 
material properties. With a mild variation of the properties 
and side angles of 60° or less there is no stress singularity, 
while for larger angles and dissimilar materials a strong 
singularity rises. The largest singularity power corresponds 
to the case with an interface angle of 90° when one of the 
materials is rigid. 

 

Figure 2.  Geometry, loading and meshing for the two-material wedge 
problem 

This latter case was simulated using wedge elements 
around the corner singularity and brick elements elsewhere, 
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as this represent the most severe case. The problem was 
simulated subdividing the domain into 600 elements, 275 of 
which in the rigid sector and 325 in the elastic sector, with a 
progressive refinement along the interface and at the left 
corner (Figure 2), where the results are compared to the 
reference solution. Around this corner, 30 singular wedge 
elements were used. A Young’s modulus of 7.3 GPa and a 
Poisson’s ratio of 0.3 were assumed for the deformable 
sector, while a modulus larger by a factor 100 was assumed 
for simulating the rigid sector. The variation of the ratio of 
the elastic moduli of the two sectors produces the variation 
of the singularity power shown in Figure 3. A singularity 
power α=0.22 corresponds to the case with an interface 
angle of 90° and one of the materials rigid. This value was 
found by a log-linear procedure, because a straight line is 
shown in the stress vs. distance log-log plot at the right α for 
each case with different elastic ratios and side angles. The 
exponent μ that appears in the interpolation functions is 
related to the singularity power by:  

µβα =−= 1                     (29) 

then the singular stress field is represented as:  

)( 1+−− ℜ+ℜ= αακσ Oijij               (30) 

ℜ  being the radial distance from the singularity, κ ij the 
singularity strength and O(ℜ -α+1) negligible higher-order 
terms. Figure 4 shows the curves obtained in the log-log 
plots when α ≠ 0.22 and the straight line corresponding to 
α=0.22. Table 3 reports the results when the singularity 
power is incorrectly set to 0.5 (symbol *) or it is set to 0 and 
thus represents the non-singular case (symbol °). It is 
evident from these results that the interpolation functions 
with variable singularity power give more accurate 
predictions. Forward and in the next Section, other cases 
with different singularity powers are considered, in order to 
assess the accuracy of the present finite element simulation. 

 

Figure 3.  Variation of the stress singularity power α with the ratio of the 

elastic moduli of the two sub-domains 

 

Figure 4.  The log-linear procedure used for setting the exponent of 
interpolation functions 

Figure 5 shows the results with a crack at the tip. The 
variation of the stress singularity power with the ratio of the 
elastic moduli in the two sub-domains is shown for a 
Poisson’s ratios of 0.2 of the elastic sector, this case being 
also considered by Hein and Erdogan [51] and Yamada and 
Okumura [52]. To enable a comparison with the results 
reported in [52], the characteristic equation used to solve 
the eigenvalue problem was reconstructed in the finite 
element model simulation by work-conjugating the nodal 
stresses to the strains obtained from the nodal values of 
displacements and the interpolation functions, in a region 
around the corner interface. In this way, it was possible to 
compute the eigenvalue λ, which is related to the singularity 
power α since α=|1-λ|, (the symbol | | was used to indicate 
the modulus). The results of Figures 3 and 5 and Table 3 
show that the solution by the present finite element model is 
free from spurious modes; it gives accurate predictions of 
the singular behavior and can correctly determine the real 
and imaginary parts of the eigenvalue λ. 

 

Figure 5.  Two material wedge problem: real and imaginary parts of the 
eigenvalue λ with a crack 
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Table 3.  Singularity power of the two material wedge problem by setting a different singularity power in the interpolation functions 

Analysis (+) by: log (E1m/E2m)=1 log (E1m/E2m)=2 log (E1m/E2m)=3 

W6-MX-SG+B8-MX 0.130  (0.134)° (0.145)* 0.198   (0.203)° (0.212)* 0.213  (0.216)° (0.237)* 

W6-SG+B8 0.135  (0.138)° (0.151)* 0.192   (0.189)° (0.203)* 0.209  (0.205)° (0.216)* 

EXACT 0.131 0,195 0.214 
(+) eigenvalue analysis 

3.2. L-Shaped Region 

As a further test, it is now considered the L-shaped plane 
geometry represented in Figure 6, where a stress singularity 
is generated by the opening corner (point S). The reference 
solution for this case is represented by the finite element 
analysis with non-singular displacement-based triangular 
plate elements by Zienkiewicz and Taylor [53]. 

 

Figure 6.  L-shaped region: variation of the in-plane stress σxx with the 
distance from the opening corner S 

In the present analysis, the problem was discretized 
considering a single layer of solid elements. Four singular 
wedge elements were used around the opening corner (point 
S), while 213 regular wedge elements were used elsewhere. 
The reference solution [53] shows that, approaching the 
corner singularity along the line B-C, σxx becomes about 
eight times greater than far from it. A similar result is 
obtained by the present finite element model when the 
regular behavior is set in the wedge elements around the 
opening corner, non-singular elements being used in the 
reference solution. In Figure 6 also the results obtained 
using displacement based elements B8 are reported. The 
comparison of these results to those by the mixed elements 
W6-MX-SG and W6-MX shows that even with refining 
meshing, elements B8 always give less accurate results. 
This result confirms the well-known fact that hybrid and 
mixed elements are more accurate than displacement-based 
elements with the same meshing. Figure 7 shows that the 
results by the present finite element simulation are still in a 

very good agreement with the exact solution by Hein and 
Erdogan [51] and the eigenvalue analysis by Yamada and 
Okumura [52] for this case. Forward, applications will be 
presented to laminates. 

 

Figure 7.  Singularity eigenvalue analysis for the L-shaped region 

3.3. Assessment of the Fracture Mechanics Model  

Now a simply-supported (90°5/0°5/90°5) cross-ply beam 
under a point centered loading is considered to the purpose 
of assessing whether the implementation of the fracture 
mechanics model was correct. The beam has a transverse 
crack in the matrix and an interfacial delamination at the 
upper interface of the intermediate layer. The beam is 2.187 
mm thick and has a length of 50.8 mm, the constituent 
materials have the properties reported in Table 4 and the 
loading has a magnitude P=13.345 N. 

For this case, the results by Liu et al. [54] and Bui et al. 
[55] are available for comparisons. The width was chosen 
large enough to avoid the interaction among the stresses 
from the free edge and those due to the delamination crack. 

In the present finite element simulation, a width of 25.4 
mm was assumed. Owing to the symmetry of the problem, 
only a quarter of the beam was discretized. Span, width and 
thickness are subdivided into 9, 12 and 3 rows of elements, 
respectively. As usual, the wedge elements are used at the 
crack tip, while the brick elements are used elsewhere. In 
this case, 15 wedge elements were used at each of the tips 
of the interfacial delamination crack. 
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Table 4.  Material properties used in the tests of the fracture mechanics model 

E11 [GPa] E22=E33 [GPa] G12 [GPa] G13=G23 [GPa] υ12 υ13= υ23 
119.969 9.86 5.24 5.24 0.3 0.3 

 

 

Figure 8.  Variation of the energy release rates GI , GII and GI +GII with the 
ratio a/h of the delamination crack half-length with respect to the thickness 

The results by Liu et al. [54] and Bui et al. [55] reported 
in Figure 8 show the variation of the strain energy release 
rates GI and GII separately and their sum GI+GII as a function 
of the ratio a/h, a being the half length of the delamination 
crack and h the thickness of the beam. The results by the 
present finite element model reported in this figure were 
obtained either by setting the singularity power to 0.5 to 
enable a comparison with [54] and [55], or setting it with 
the log-linear procedure. Either displacement-based 
elements that can be particularized by the mixed elements, 
as shown in Table 1, or the wedge and brick mixed 
elements were considered in the analysis. The results of 
Figure 8 show that the strain energy release rates are 
correctly computed by the present finite element simulation. 
However, also in this case the most accurate predictions are 
still obtained by the mixed elements and when the 
singularity power is set by the log-linear procedure. Once 
shown the finite element model to be accurate and the 
fracture mechanics model correctly implemented, 
delaminated specimens will be analyzed. These new tests 
will also serve as assessments of the damage mesoscale 
model. 

3.4. Initially Delaminated Specimens 

The following sample cases are considered, whose 
experimental failure loads are known:  

Case A. Double cantilever unidirectional beam made of 
AS4-3K/PEI layers under mode I;  
Case B. Double cantilever angle-ply beam made of 
XAS/931C layers under mode I;  
Case C. Angle-ply end-loaded split beam made of 
T400/6376C layers under mode II; 
Case D. End-notch-flexure cross-ply beam made of 
AS4-3501-6 layers under mode II. 
Case A. This case refers to a beam made of 16 

unidirectional layers aligned in the 0° direction, each 0.22 
mm thick, whose properties are given in Table 5. The beam 
is 146.5 mm long; it has a width of 20.0 mm and a thickness 
of 3.52 mm. A centered non-stick film 59 mm long and 15 
μm thick is interposed at the symmetry plane interface, in 
order to give rise to an initial delamination. GIcrit was 
determined by Fassine and Pavan [56] as 1.841 KJ/m2 and 
the experimental failure load as 74.94 N. The delamination 
load for this case is reported in Table 6. The computations 
were carried out discretizing the beam into 30, 10 and 16 
solid elements in the spanwise, width and thickness 
directions, respectively, with a progressive refinement at the 
tip where 15 wedge elements were used. 

The results show that a more accurate prediction is 
obtained by VCCT when the proper singularity power is set, 
than with setting the non-singular behavior or a singularity 
power of 0.5. Since the failure occurs as a matrix failure 
under traction, the contributions by GII and GIII are 
negligible, thus the propagation criteria (25) and (27) are 
reduced to Gcr

equiv = Gcr
I, while (26) becomes Gequiv/Gcr = 

(GI /Gcr
I), consequently just αm =1 has meaning. 

The damage mesoscale model (DMM) by Ladevèze et al. 
[49] also provides results in a good agreement with the 
experiment carrying out the homogenization process by the 
finite element model using as strength the matrix strength 
under traction and setting the non-singular behavior in the 
wedge elements. 

In Table 6, the processing time required to solve the 
problem by a laptop computer with a dual-core, 64 BIT 
operating system, 2.20 GHz CPU and a 4 GB RAM is 
reported. Please notice that the times provided comprise 
solution of the finite element scheme and computation of 
the failure load, but not the generation of the element 
matrices and the homogenization process, which are carried 
apart and take less than 10 minutes. 
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Table 5.  Material properties of initially delaminated specimens 

CASE 

E11[GPa] 
υ12 

R12[MPa] 
 

E22GPa] 
υ13 

R12[MPa] 
 

E33[GPa] 
υ23 

R12[MPa] 

G12[GPa] 
XT(XC)[MPa] 

G13[GPa] 
YT(YC)[MPa] 

G23[GPa] 
ZT(ZC)[MPa] 

A 
AS4-K/PEI       

Layers 
84.766 
0.35 
115 

8.5 
0.35 
115 

8.5 
0.35 
60 

1 
1170 (1745) 

1 
70 (350) 

0.8 
123 (350) 

Matrix 
3.1 

0.35 
236 

3.1 
0.35 
236 

3.1 
0.35 
236 

1.15 
123 (123) 

 

1.15 
123 (123) 

 

1.15 
123 (123) 

 
B 

XAS/931C       

Layers 
150 

0.263 
95 

9.5 
0.263 

94 

9.5 
0.5 
94 

4.9 
1990(1200) 

4.9 
57 (155) 

4.7 
57 (155) 

Matrix 
3.39 
0.3 
125 

3.39 
0.3 
125 

3.39 
0.3 
125 

1.3 
65.5 (62.5) 

 

1.3 
65.5 (62.5) 

 

1.3 
65.5 (62.5) 

 
C 

T400/6376C       

 
Layers 

120 
0.3 
98 

10.5 
0.3 
98 

10.5 
0.51 
30 

5.25 
2250 (1600) 

5.25 
64 (290) 

5.48 
94 (290) 

 
Matrix 

3.6 
0.3 

204.8 

3.6 
0.3 

204.8 

3.6 
0.3 

204.8 

1.38 
105 (105) 

1.38 
105 (105) 

1.38 
105 (105) 

D 
AS4-3501-6       

Layers 
134 

0.261 
115 

9.14 
0.261 
115 

9.14 
0.44 
32 

7.29 
1335 (1992) 

7.29 
28 (282) 

3.16 
28 (282) 

 
Matrix 

4.34 
0.36 
91.36 

4.34 
0.36 

91.36 

4.34 
0.36 
91.36 

1.596 
47.88 (47.88) 

 

1.596 
47.88 (47.88) 

 

1.596 
47.88 (47.88) 

 

VCCT appears advantageous over DMM as it does not require additional costs due to the homogenization process, while 
the singular representation offers the capability to predict presence and nature of singularities at the same costs of the 
non-singular representation. However, in this case an accurate prediction of the failure load can be obtained also using 
stress-based criteria (the results by Chang-Springer’s [57] and Davila-Camanho’s [58] criteria are reported) if the stresses 
σ ͂ij computed by setting the non-singular behavior are averaged over a distance from the crack tip equal to the thickness of 
the laminate.  

Case B. The beam is made of XAS/931C layers, each 0.125 mm thick, with the material properties reported in Table 5 
and a [-45°/0° (45°)2/0°/(-45°)2/0°/45°]2 lay-up. The beam has a length of 150 mm, a width of 30 mm and a thickness of 3 
mm. A Teflon film with a length a0 =29 mm and a thickness of 10 μm is interposed at the mid-plane to generate an initial 
delamination. Due to the 3-D stress field, delamination in this case occurs as a combination of the three modes. Robinson 
and Song [59] found an experimental failure load of 87 N for this case and numerically estimated Gcrit = 0.35 KJ/m2. The 
results by the present finite element model are still reported in Table 6. The beam was discretized by 30, 10 and 21 solid 
elements in the spanwise, width and thickness directions, respectively. The meshing was refined at the crack tip where the 
wedge elements were used, while the brick elements were used in the other regions. Also in this case 15 wedge elements 
were used. The mounting bulks bonded to the edges in order to apply the opening loading were discretized, as they 
represent a local increment of stiffness. The critical ERR for the three single modes were numerically estimated as 
suggested by Robinson and Song [59]. 

The results show that the propagation criteria (25)-(27) determine a different failure load with a different choice of the 
exponents (the law (26) was applied using equal exponents), as well as the important role played by the singularity power 
assumed in the interpolation functions. As shown by comparison with experiments, the results obtained with the singularity 
power set to 0 or 0.5 are again less accurate than those obtained setting the proper value with the log-linear procedure. 

The results by the DMM model have the same accuracy than those by VCCT also in this case. Since the stress state is no 
longer generated by a pure transverse traction, the Davila and Camanho’s criterion was used with DMM as matrix failure 
rule. 
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Table 6.  Failure loads of initially delaminated specimens [N] and computational time {}; λ1 variable singularity power; λ2 singularity power=0.5; λ3 
singularity power=0. DMM: Damage mesoscale model [49]; C-S: Chang and Springer’s criterion [57]; D-C: Davila and Camanho’s criterion [58] 

CASE A B C D 

 
Experiment 

 
 

 

74.94  

 

 
87.0 

 

150.0 

 

1192 
VCCT 

Law (25) {208 sec} {343 sec} {441 sec} {375 sec} 
exp=0.5 

λ1 
74.72 75.2 125.32 1013.20 

exp=2 
λ1 

74.72 81.1 141.58 1108.56 

exp=1 
λ1 
λ2 
λ3 

 
74.72 
73.22 
70.98 

 
86.43 
84.70 
82.32 

 
144.21 
141.33 
138.02 

 
1117.15 
1094.62 
1035.53 

VCCT 
Law (26) {210 sec} {345 sec} {443 sec} {376 sec} 
exp=0.5 

λ1 
(no meaning) 73.64 117.48 1006.76 

exp=2 
λ1 

(no meaning) 80.04 145.12 1126.08 

exp=1 
λ1 
λ2 
λ3 

 
74.70 
73.31 
70.95 

 
85.56 
83.04 
80.12 

 
148.51 
145.23 
139.77 

 
1153.62 
1108.75 
1104.28 

VCCT 
Law (27) {212 sec} {349 sec} {446 sec} {379 sec} 
exp=0.5 

λ1 
74.72 73.52 126.40 1060.88 

exp=2 
λ1 

74.72 75.36 140.34 1107.51 

exp=1 
λ1 
λ2 
λ3 

 
74.72 
73.22 
70.98 

 
86.23 
84.20 
80.59 

 
146.88 
139.57 
135.81 

 
1173.52 
1072.58 
1146.07 

DMM 73.58  {206 sec} 86.35  {338 sec} 146.96  {436 sec} 1175.93  {368 sec} 
C-S 71.60  {202 sec} 80.82  {332 sec} 142.15  {428 sec} 1091.18  {363 sec} 
D-C 74.51  {203 sec} 81.31  {334 sec} 147.26  {429 sec} 1108.29  {365 sec} 

  

The processing time is reported in Table 6 also for this 
case leaving apart the generation of the element matrices 
and the homogenization process. 

In this case, the Chang and Springer’s and Davila and 
Camanho’s criteria predict failure loads that are comparable 
each other and to the experimental load only if the stresses 
σ ͂ij are averaged over a distance from the delamination crack 
tip at least of 4 mm, which is larger than in the previous 
case. Please notice that numerical tests have shown that 
these criteria give monotonically increasing failure loads 
increasing the distance from the crack tip at which the 
stresses are evaluated, so they can overestimate the failure 
load at a sufficiently large distance if stress averaging is 
uncorrected.  

Case C. The case studied by Choi et al. [60] of a [(-45°/ 
0°/ 45)2s / (45°/ 0°/ -45)2s] angle-ply end-loaded split beam 
made of T400/6376C layers under mode II is considered. 
The beam is 100 mm long; it has a width of 24.5 mm and a 
thickness of 3.4 mm. Each constituent layer, whose material 
properties are reported in Table 5, is 0.142 mm thick. An 
initially delaminated area with a length of 60 mm is 
generated by interposing a Teflon film with a thickness of 
12.5 μm at the mid-plane interface. Owing to the primary 
importance of interlaminar stresses, each ply was 
subdivided into four layers of elements, i.e. 48 elements 
were used across the thickness, while 30 elements were 
used in the spanwise direction, which were refined at the tip, 
and 5 were used in the width direction. Also in this case the 
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mounting bulks were discretized and the critical ERR were 
still numerically estimated. As usual, wedge elements were 
used at the crack tip, whereas brick elements were used in 
the other regions.  

The results show that the choice of the exponents of the 
propagation criteria produce larger variations than in the 
previous sample case, since the contributions by modes II 
and III are much more important. As shown by Table 6, the 
best results by VCCT were obtained by using the exponent 
1 with all the propagation criteria, but good results were 
also obtained by using the exponent 2, while the exponent 
0.5 gave inaccurate predictions. Again, the most accurate 
results were obtained by setting the singularity power with 
the log-linear procedure. 

DMM still predicted a failure load in good agreement 
with VCCT and with the experiment, computing again the 
matrix failure through the rule by Davila and Camanho. The 
stress-based criteria still can provide accurate results 
considering the stresses computed using non-singular 
elements if these stresses are correctly averaged. The Davila 
and Camanho’s and Chang and Springer’s criteria predicted 
failure loads in a well agreement with the experiment when 
the stresses σ ͂ij were averaged over a distance of about 6 mm 
from the crack tip, while the Choi-Chang’s delamination 
criterion used for a comparison required just a distance 
equivalent to the thickness of a ply. 

The computational time again shows that the present 
analysis is affordable by a personal computer. However, it 
is presumed that a refined meshing should be used to more 
accurately determine the participation of the crack tip 
stresses for this case. 

Case D. The latter case examined is that of an 
end-notch-flexure cross-ply beam under mode II, with a 
[(0°10/90°/0°10)/0°/90°/(0°10/90°/0°10)] lay-up, a length of 
38.1 mm, an overall thickness of 5.1 mm and a width of 
16.5 mm. Each constituent layer is 0.116 mm thick and has 
the properties reported in Table 5 (material AS4-3501-6). A 
Teflon film is interposed at the mid-plane during 
manufacturing, in order to simulate an initially delaminated 
area of length 19.05 mm. Kim and Sun [61] found an 
experimental failure load of 1192 N and the critical strain 
energy release GII crit =0.515 KJ/m2. Each constituent layer 
was discretized by a layer of elements, i.e. 44 elements 
were used across the thickness and the width was 
discretized by 5 elements, while 30 elements with a 
progressive refinement at the crack tip were used in the 
span direction. Table 6 shows that the results by VCCT are 
now very sensitive to the choice of the exponents of the 
propagation criteria. Still better results are obtained by 
setting the proper singularity power of wedge elements at 
the crack tip with the log-linear procedure. Also in this case 
accurate results are computed by the DMM model carrying 
out the homogenization process by finite elements and 
using the Davila and Camanho’s criterion. Application of 
the Davila and Camanho’s and Chang and Springer’s 
criteria using the stresses σ ͂ij provided by the finite element 
analysis with the regular behavior shows that accurate 

results are obtained averaging the stresses over a distance of 
5 mm from the crack tip. It is shown that also in this case 
the computational time is affordable by a personal 
computer. 

4. Concluding Remarks 
A new mixed singular wedge element with a variable 

singularity power that can adapt to the problem and can 
represent the non-singular behavior as a particular case was 
developed for analysis of damaged composites. The 
accuracy of the element was initially assessed considering 
sample cases with singular stress fields due to dissimilar 
properties of materials, geometry or cracks, for which 
analytical solutions are available for comparisons. The 
numerical results proved that the present finite element 
simulation with mixed singular wedge elements around 
singularities and solid mixed elements elsewhere accurately 
predicts the presence and the nature of singularities, the 
related stress fields, the participation of the singular stresses 
and the regular behavior with an affordable computational 
effort for a laptop computer. The variable singular 
representation and the mixed formulation gave better results 
than their displacement-based, non-singular, or singular 
counterparts with a fixed singularity, confirming the results 
in literature. The failure loads of initially delaminated 
beams were computed using the virtual crack closure 
technique, a damage mesoscale model and comparisons 
were also made using stress-based criteria. The virtual crack 
closure technique was carried out setting the singular 
behavior with the appropriate singularity power in the 
wedge elements, while for the damage mesoscale model 
and the stress-based criteria the non-singular behavior was 
set. The comparison with experiments proved that accurate 
predictions can be obtained using fracture mechanics, but 
nearly equally accurate results can be obtained using 
damage mesomechanics and even stress-based criteria with 
an appropriate averaging of stress, as claimed in literature. 
The homogenization process required by the damage 
mesomechanics model, resulted in an additional cost for the 
damage mesoscale model. The results of the fracture 
mechanics model were sensitive to the exponents employed 
for estimating the critical energy release rates by the 
propagation criteria. The stress-based criteria required the 
stresses to be averaged over an appropriate distance from 
the tip, which appeared case dependent 

The present finite element simulation is accurate and 
efficient with a relatively coarse meshing and low 
computational costs. In all the examined cases, the 
computing time and the memory occupation were 
affordable by a personal computer, thus the present element 
can be successfully employed with the three classes of 
models currently used for the delamination analysis. 
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