
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Template-based ontology population for Smart Environments configuration / ACED LOPEZ, Sebastian; Bonino, Dario;
Corno, Fulvio. - STAMPA. - 8377:(2014), pp. 271-278. (Intervento presentato al convegno The 9th Semantic Web
Enabled Software Engineering tenutosi a Berlin (DE) nel December 2-5, 2013) [10.1007/978-3-319-06859-6_24].

Original

Template-based ontology population for Smart Environments configuration

Publisher:

Published
DOI:10.1007/978-3-319-06859-6_24

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2518929 since:

Springer International Publishing

Template-based ontology population for Smart
Environments configuration

Sebastián Aced López, Dario Bonino, and Fulvio Corno

Dipartimento di Automatica ed Informatica.
Politecnico di Torino

Torino, Italy
{sebastian.acedlopez, dario.bonino, fulvio.corno}@polito.it

Abstract. Smart Environments is one of several domains in which Se-
mantic Web technologies are applied nowadays. Ontologies, in particular,
are used as core modeling languages for representing devices, systems and
environments. Developing such ontologies, that typically involve several
device descriptions (individuals) and related information, i.e., individu-
als of classes contributing to the device model, is often done by a manual,
time consuming, and error-prone approach.

This paper presents a template based approach, which increases accu-
racy, ease of use, and time-effectiveness of the ontology population pro-
cess by reducing the amount of user-given information of about an order
of magnitude, with respect to the fully manual approach. User-required
information only pertains device features (e.g., name, location, etc.) and
never implies knowledge of Semantic Web technologies, thus enabling
end-user configuration of smart homes and buildings. Experimental re-
sults with a prototypical implementation confirm the viability of the
approach on a real-world use case.

Keywords: Ontology population, OWL templates, Instantiation, Smart Envi-
ronments, Configuration

1 Introduction

Semantic Web technologies have allowed cities, workplaces and homes to become
smarter over the years by supporting explicit context representation, expressive
context querying, and flexible context reasoning [1]. Ontologies can be used to
model agents, contexts and behaviors, while SPARQL querying helps to easily
retrieve data from them, and reasoners can use these data to infer relations and
describe complex scenarios, enriching the model capabilities.

Modeling Smart Environments (SmEs) by means of ontologies enables the
creation of a layer of abstraction, in which reality is represented in terms of
classes, properties and instances, and allows developers to work with concep-
tualizations of real entities instead of dealing with low-level representations of
them.

Adding new instances into the ontology is known as populating (or instan-
tiating) the ontology, and it is an essential part of almost every ontology based
application, especially in the SmE field, because the only way of configuring a
specific SmE, such as my-particular-room, is by creating specific instances, such
as my-particular-floor or my-particular-lamp. However, as it will be explained
later, most of the available methods to populate ontologies are error prone and
time consuming.

This paper proposes an OWL-template based approach that allows accurate,
fast and semi-automatic population of ontologies that can be used in general,
but specifically helps in the configuration of SmEs.

2 Related Works

Even if many ontologies have been created and are actually being used in a
variety of fields such as SmE modeling, better methods to populate them are still
object of research due to the challenging nature of the task. However, like for the
content and the structure, population techniques (listed in [2]) change a lot from
one type of ontology to another. The approaches for ontology population found
in literature can be divided into two types depending on how the information to
generate the individuals is gathered: either through Information extraction or
User-given data.

Information extraction approaches assume that the needed information is
already available somewhere, it could be on text documents, Internet pages,
databases etc., so they extract and process it to identify pieces that fit as in-
stances of some reference ontology1. This is the case of the Artequakt system
[3], which automatically extracts biographical information from the web to in-
stantiate a reference ontology and generate artists biographies.

Approaches based on user-given data, on the converse, gather the informa-
tion needed for instantiation directly from the user, as proposed in [4] and in
[5]. This is the case in SmE context, since the needed information is specific
for each particular environment configuration and cannot be mined elsewhere.
However, few of the approaches that gather information from the user, focus on
the generation of new individuals. Instead, they aim to support the design and
creation of new concept classes. See [6].

On the other hand, this paper presents an approach to enhance the creation
process of new individuals from already defined classes, exploiting different tech-
niques (inherited from the software engineering) based on automatic code gen-
eration and template modeling, which have already been proven appropriate for
working with ontologies [7].

1 The term Reference ontology refers to an ontology containing the classes from which
the instances are going to be created

3 Background

In this paper, examples and experimentation exploit a publicly available ontology
for smart environments named DogOnt2 [8]. It is organized in 5 main hierarchies
of concepts:

– Building Environment (BE): The concepts below this hierarchy are used to
describe the architectural spaces of built environments (Garage, Flat, Room,
etc.)

– Building Thing (BT): The concepts below this hierarchy are used to describe
the controllable (i.e., devices) and uncontrollable objects (e.g., furniture) of
a given environment.

– State: The concepts below this hierarchy are used to describe the working
configurations (observable status) that controllable BT objects can assume.

– Functionality: The concepts below this hierarchy are used to describe the
controllable BT objects capabilities.

– Network Component: The concepts below this hierarchy are used to describe
the technology-specific information needed for describing real-world devices.

Users configure specific SmEs by instantiating BE and BT concepts and by
connecting them according to the ontology-defined domain semantics.

4 Problem Statement

The population process, as stated previously, is time-consuming and error-prone
[2], mainly because of two challenging tasks it encompasses: instance properties
determination and implicitly derived instantiation. Figure 1 presents a DogOnt
fragment example to help to illustrate those concepts.

Instance properties determination

When a class is instantiated, it is not easy to identify which properties must
be included in the new instance description, for it to be valid and logically
consistent, and which properties can, instead, be omitted. The former type of
properties, namely Mandatory properties need to be created for the model to
be valid (under a logic and semantics standpoint) whereas the latter properties
(Optional properties) are not strictly required from a formal standpoint but
might be crucial for the model to be usable in the real world (e.g., the location
of a given device).

Classifying the properties of a class as mandatory or optional, helps to de-
termine which of them must and which of them may be part of a new instance
description. More in detail:

2 http://elite.polito.it/ontologies/dogont

Lamp

hasFunctionality

hasState

Fig. 1. Ontology fragment showing a DogOnt Lamp class.

– Mandatory properties: A property is mandatory if, in the class definition of
a given individual, its Cardinality Constraint is at least one. In other words,
the class mandatory properties are those that an individual must include in
its description, to be considered a valid instance of such class. Figure 1 shows
the mandatory properties of Lamp class: hasState and hasFunctionality.

– Optional properties: Optional properties may be included in an individual
description but are not required for it to be a valid instance of any class.
The user decides whether to include optional properties in a particular in-
stance description. In the example of Figure 1, the optional property isIn is
represented by a dashed arrow.

Implicitly derived instantiation

Assuming that the properties of a new individual have been established some-
how and it has been determined which of them can be automatically generated,
the implicitly derived instantiation problem has to be solved. Implicitly derived
instantiation refers to the fact that sometimes the explicit creation of a new in-
stance, implicitly leads to the generation of additional individuals. This happens
when an explicitly created instance is described by object properties, because
they describe instances by associating them with other URI resources (classes or
individuals), that also need to be created in order to produce valid associations
and valid descriptions. This is illustrated better by Figure 1: when an instance
is created explicitly, for example a Lamp instance, and it has an object property,
such as hasState, implicitly another instance has to be created, in this case a
new OnOffState individual.

Implicitly derived instantiation becomes a problem in large and highly inter-
related ontologies because the creation of one instance can start a chain reaction
of instantiations, making of the population task a long and complex process.

5 Proposed solution

In order to improve the ontology population process, and in particular to tackle
the inherent complexity of the tasks discussed in the previous section, a two
stage approach is proposed which aims at reducing the cardinality of informa-
tion needed from the user and at hiding ontology formalisms by only requiring
actually needed data (e.g., device types and names instead of device instance def-
initions). The two stages exploit different techniques based on automatic code
generation and template modeling, respectively.

The information cardinality reduction is based on the identification of which
objects/properties require external information to be created. For example, in
DogOnt, to describe a room instance, the Room class property hasFloor must be
filled with a Floor individual manually defined by the user (two rooms can share
the same floor). Instead, other classes, e.g., OnOffStateValue, are completely
specified and individuals creation can be automatically carried. Moreover, if a
given class has mandatory properties that refer to fully specified classes, indi-
viduals of such a class can also be generated automatically, by implementing
a suitable recursive mechanism. In this way the amount of instances that need
manual creation can be greatly reduced, depending on the ontology branching
and the adopted modeling approach: highly specified models experience greater
improvements with respect to loosely specified ones. SmE ontologies typically
fall in the former typology.

Formalism hiding, instead, is obtained through a template-based mechanism
which models repetitive syntactical structures in OWL, (e.g., type definitions)
and replaces information that must be given by users with suitable placeholders
to be filled at configuration time. In such a way, the actual data that users are
required to fill decreases (contributing to an additional cardinality reduction)
and ontology constructs are completely hidden and exposed as free parameters
to be filled.

In such a way, this approach helps to populate ontologies more quickly (due
to cardinality reduction) and more accurately (templates are validated once and
ensure syntactical correctness) than in the current state of the art. More in detail,
the overall approach is divided in the following three phases, and is illustrated
in Figure 2:

Ontology
Templates

Template
Filler

OWL
files

1. 2.

3.

User
Interface

Template
Factory

Fig. 2. Block diagram of the proposed approach.

5.1 Template generation

The template generation phase, which is executed offline only once (unless the
reference ontology itself changes) by the Template Factory, aims to create a
template for each target class.

Templates are divided into two parts: a main block and a secondary block.
The main block contains the description of the target class instance (the main
instance) for whom the template is created. The secondary block contains the
descriptions of all the implicitly derived instances (secondary instances).

In order to obtain a template, two steps have to be followed: reference on-
tology exploration, to determine and classify the properties used in the instance
descriptions and the template writing in which those instance descriptions are
structured and written in a template body.

Reference ontology exploration To create a template of a target class, the
reference ontology is recursively explored to find all the classes and properties
“connected” to such a class, identifying which information shall be filled by
the user and which one can be generated by an unsupervised process. Such
an exploration is based on SPARQL querying. The query process retrieves the
properties that can be used to describe target classes , and the information
needed to classify those properties as mandatory or optional.

Exploration queries should be designed to exploit the specific characteristics
of each reference ontology. As an example, in the DogOnt ontology used through-
out this paper for illustrating the proposed approach, mandatory properties do
not have free parameters, whereas the optional object properties always have
them. Consequently, its particular exploration query only returns the necessary
information to classify properties in the following groups:

– Mandatory object properties
– Mandatory datatype properties
– Optional object properties

Template Writing Once the template information is gathered and the class
properties properly classified, the template can be written. As stated before a
template is structured in blocks (main and secondary), each one describing an
instance. In general, such blocks contain:

– Namespace and main instance name placeholders.
– Static OWL statements: Corresponding to the mandatory properties with

no free parameters.
– Parametrized OWL statements: Corresponding to the mandatory properties

with free parameters, i.e., placeholders.
– Optional Statements: Corresponding to IF statements enclosing the optional

properties.
– A rdf:type property stating the class of the instance described in the block.

5.2 User input Information

After the template generation phase, information from the user is required to
resolve the Optional Statements and to assign proper values to the template
placeholders. Such information could be gathered through any user interaction
mechanisms, e.g. through a graphical user interface (GUI). Figure 2 shows an
arrow that goes from the Template Factory to the UI block, to indicate that the
former must supply information, such as the placeholder labels, to configure the
latter.

5.3 Ontology consolidation

The last phase of the overall process, consists in merging the template-encoded
information with the data entered by the user. The latter, in particular, replaces
all the template placeholders providing a valid and fully consistent OWL instance
definition. The steps to consolidate it are very simple:

1. Replace all the namespace and main instance name placeholders.
2. Resolve the IF statements (if present) to determine which optional properties

to include in the instance description.
3. Replace the rest of the template placeholders.
4. Write the output OWL file.

6 Experimental Results

The template based approach exposed along this document has been initially
tested in a real world case of ontology-based smart environment configuration.
More precisely, experiments were carried to populate a specific SmE: the Simple
Home [9] which is based on the DogOnt ontology (1835 classes) and describes a
flat with several (114) domotic devices modeled by 1408 concept instances.

The prototype tool developed for experimentation uses the Jena framework
to manage the ontologies and the ARQ engine to issue SPARQL queries at the
template generation phase. User information is collected through a dynamically
generated JavaFX application which also drives the consolidation process. User
given information, is mapped to a set of automatically generated Java Beans
accompanying each template and providing the additional information to check
the correctness of filled data, e.g., the allowed placeholder filler classes. This set
of beans, is then used in the ontology consolidation phase by a Velocity Template
Engine to fill the templates.

Experimental results confirm that by following the approach presented in this
document, the effort and time that users spent manually populating such a large
ontology was significantly reduced by using templates: the entire population pro-
cess took, in fact, less than one day (vs. over a week in the fully manual case) and
only required to fill free parameters for the 114 devices (roughly 300 parameters)
instead of manually describing the 1408 required instances (amounting to about
7000 triples), with a cardinality reduction of over one order of magnitude.

7 Conclusions

This paper discussed a general template-based approach for effective ontology
population, with a particular focus on the smart environment domain. While
the general problem of implicitly derived instantiation affecting current tools
(e.g., general editors as Protégé) cannot be fully solved as ontology modeling
implies the creation of related instances, with a complexity that depends on the
ontology branching factor, template-based solutions, as the one presented, allow
to greatly reduce the cardinality of user-given information and, at the same time
hide ontology-specific formalisms from the end users.

Preliminary experimental results, confirmed the viability of the proposed so-
lution with over an order of magnitude reduction in the cardinality of information
required to users: about 300 parameters vs over 7000 triples.

Future works will involve extensive experimentation with users, by exploiting
different ontology models for SmEs and a thoroughly study of user interfaces for
filling free parameters.

References

1. Wang, X., Dong, J.S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic space: An
infrastructure for smart spaces. IEEE Pervasive Computing 3(3) (2004) 32–39

2. Maleshkova, M., Mart́ınez, I.: Ontology instantiation state of the art report. Tech-
nical report (2008)

3. Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt, N.:
Using protege for automatic ontology instantiation. In: 7th International Protégé
Conference. (2004) Event Dates: July 6-9.

4. Kawamoto, K., Kitamura, Y., Tijerino, Y.: Kawawiki: A semantic wiki based on rdf
templates. In: WI-IATW ’06: Proceedings of the 2006 IEEE/WIC/ACM interna-
tional conference on Web Intelligence and Intelligent Agent Technology, Washington,
DC, USA, IEEE Computer Society (2006) 425–432

5. Doherty, L., Kumar, V., Winne, P.: Assisted ontology instantiation: a learningkit
perspective. In: Advanced Learning Technologies, 2007. ICALT 2007. Seventh IEEE
International Conference on. (2007) 265–267

6. Jupp, S., Horridge, M., Iannone, L., Klein, J., Owen, S., Schanstra, J., Stevens, R.,
Wolstencroft, K.: Populous: A tool for populating templates for owl ontologies. In
Burger, A., Marshall, M.S., 0001, P.R., Paschke, A., Splendiani, A., eds.: SWAT4LS.
Volume 698 of CEUR Workshop Proceedings., CEUR-WS.org (2010)

7. Parreiras, F., Gröner, G., Walter, T., Staab, S.: A model-driven approach for using
templates in owl ontologies. In Cimiano, P., Pinto, H., eds.: Knowledge Engineering
and Management by the Masses. Volume 6317 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2010) 350–359

8. Bonino, D., Corno, F.: Dogont - ontology modeling for intelligent domotic envi-
ronments. In Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T.W., Thirunarayan, K., eds.: International Semantic Web Conference. Volume 5318
of Lecture Notes in Computer Science., Springer (2008) 790–803

9. Bonino, D., Corno, F.: Dogsim: A state chart simulator for domotic environments.
In: PerCom Workshops, IEEE (2010) 208–213

