
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Design-time formal verification for smart environments: an exploratory perspective / Corno, Fulvio; Sanaullah,
Muhammad. - In: JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING. - ISSN 1868-5137. -
STAMPA. - 5:4(2014), pp. 581-599. [10.1007/s12652-013-0209-4]

Original

Design-time formal verification for smart environments: an exploratory perspective

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s12652-013-0209-4

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s12652-013-0209-4

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2518928 since:

Springer

Journal of Ambient Intelligence and Humanized Computing manuscript No.
(will be inserted by the editor)

Design-Time Formal Verification for Smart Environments: An
Exploratory Perspective

Fulvio Corno · Muhammad Sanaullah

Received: date / Accepted: date

Abstract Smart Environments (SmE) are richly inte-

grated with multiple heterogeneous devices; they per-

form the operations in intelligent manner by consid-

ering the context and actions/behaviors of the users.

Their major objective is to enable the environment to

provide ease and comfort to the users. The reliance on

these systems demands consistent behavior. The ver-

satility of devices, user behavior and intricacy of com-

munication complicate the modeling and verification of

SmE’s reliable behavior. Of the many available model-

ing and verification techniques, formal methods appear

to be the most promising.

Due to a large variety of implementation scenarios

and support for conditional behavior/processing, the

concept of SmE is applicable to diverse areas which calls

for focused research. As a result, a number of model-

ing and verification techniques have been made avail-

able for designers. This paper explores and puts into

perspective the modeling and verification techniques

based on an extended literature survey. These tech-

niques mainly focus on some specific aspects, with a

few overlapping scenarios (such as user interaction, de-

vices interaction and control, context awareness, etc.),

which were of the interest to the researchers based on

their specialized competencies. The techniques are cat-

egorized on the basis of various factors and formalisms

considered for the modeling and verification and later

analyzed. The results show that no surveyed technique

Fulvio Corno
Politecnico di Torino, Dipartimento di Automatica ed Infor-
matica, Corso Duca degli Abruzzi 24, 10129 - Torino, Italy
E-mail: fulvio.corno@polito.it

Muhammad Sanaullah �
Politecnico di Torino, Dipartimento di Automatica ed Infor-
matica, Corso Duca degli Abruzzi 24, 10129 - Torino, Italy
E-mail: muhammad.sanaullah@polito.it

maintains a holistic perspective; each technique is used

for the modeling and verification of specific SmE as-

pects. The results further help the designers select ap-

propriate modeling and verification techniques under

given requirements and stress for more R&D effort into

SmE modeling and verification research.

Keywords Smart Environments · Formal Modeling ·
Formal Verification · Design-Time Verification

1 Introduction

Over the last few years, the concept of enriching the

physical world with sensation, making decisions and

taking actions corresponding to the user desire has be-

come an open and challenging research area, partic-
ularly in computer science. A number of researchers

are working for designing such environments which are

“richly and invisibly interwoven with sensors, actua-

tors, displays, and computational elements, embedded

seamlessly in the everyday objects of our lives, and con-

nected through a continuous network” (Weiser, 1991).

The availability of low cost devices, advancement in ar-

tificial intelligence, ubiquitous and pervasive comput-

ing, wired and wireless networking, databases and other

relevant technologies have enabled to achieve such en-

vironments.

The environments, based on adopted technologies

and their application scenarios, are mostly referred in

literature as Smart Environments (SmE), Smart Spaces,

Smart Homes, Ambient Intelligence (AmI), Intelligent

Environments (IEs) and Intelligent Domotic Environ-

ments (IDE). The goal of SmE is to facilitate the en-

vironment by interweaving these technologies for ben-

efiting the user with ease and comfort along with the

safety and security (Acampora and Loia, 2005; Chen

2 Fulvio Corno, Muhammad Sanaullah

and Helal, 2012; Cook, 2009; Diane and Sajal, 2004).

Due to these benefits, SmE have penetrated into homes,

hospitals, offices, industries, airports, railways, trans-

portation mediums and many other important places

(Sadri, 2011).

In SmE, the computation is added in the environ-

ment in such a manner that the user remains unaware of

its existence, but the system considers his presence and

actions, and performs the activities accordingly through

electrical devices in controlled and intelligent manner.

The computational elements can be referred as control

algorithms. The communication among control algo-

rithms and devices can be performed with the exchange

of messages. The intricate communication between sev-

eral heterogeneous devices, computational elements and

the user actions sensation, along with implementing a

number of constraints regarding safety, security and re-

liable behavior of the system in a sophisticated manner,

make SmE complex. Moreover, the working capabili-

ties and internal behavior of each component (devices,

control algorithms and user’s considerable actions) are

independent from those of other components of the sys-

tem. The independent and interactive nature of these

components, along with satisfying system constraints,

adds into the complexity of SmE system. As a result,

errors may occur frequently, and lead towards criti-

cal/unwanted situations. To cope with such situations,

the reliable behavior of the system can be ensured by

exploiting verification approaches, which help in iden-

tifying and correcting the errors in early design stages

of the system (Clarke and Wing, 1996).

The verification process can be performed at de-

sign or implementation time; based on complexities and

application scenarios (like theft or traffic control sys-

tems, nursing care houses and others, where the er-

rors can be the cause of criticality), it is advisable to

verify SmE models at design time for reducing crit-

icality, time, cost and energy, and achieving the re-

liability (Bernardeschi et al, 1998; Clarke and Wing,

1996; Coronato and Pietro, 2010b; Wang, 2004). For de-

sign time verification, simulation or formal (mathemat-

ical) methods (strategies and structured approaches)

are commonly used with strengths and limitations of

the adopted methods. It may be very difficult to ver-

ify the accuracy of SmE on all possibly reachable paths

through simulations, because of their complex behavior.

Thus, formal methods are preferred due to their implicit

coverage of all possible paths (Woodcock et al, 2009).

Moreover, formal methods are mathematically oriented,

which specify and verify a model of the system in ac-

cordance with the desired behavior using several tech-

niques and tools. The adoption of formal methods re-

solves ambiguities, inconsistencies and incompleteness

in the designed model (Clarke and Wing, 1996).

The formal verification of all possible aspects of

SmE is arduous and laborious undertaking owing to

the complex nature of these systems. Therefore, re-

search seems to have emphasized the specific aspects

based on requirements and interests. As a result, this

focused approach has deprived the academicians and

new researchers/designers from a generic and one-size-

fits-all kind of modeling and verification technique. In

an attempt to collect the existing state-of-the-art, this

paper brings together the techniques/approaches that

are exploited in formal verification of SmE with respect

to different aspects. Moreover, the paper proposes a

parameter-based empirical methodology of several ap-

proaches adopted in verification of SmE at design-time.

The proposed empirical methodology helps to under-

stand the verity of adopted modeling and verification

techniques in different applications and scenarios. The

study expands upon the uncovered modeling and veri-

fication areas of SmE. The findings of the research may

help other researchers and designers to deeply under-

stand the existing techniques, and their adoption in dif-

ferent scenarios.

The rest of the paper is organized as following: Sec-

tion 2 defines a generic framework of SmE; the existing

formal modeling and verification process adopted for

SmE are reported in Section 3; the surveyed literature

is presented in section 4; the proposed parameter-based

empirical methodology is described in section 5 with

the overview of existing state-of-the art; and finally the

analysis and concluding remarks, on the surveyed liter-

ature against the proposed methodology, are presented

in section 6 and 7, respectively.

2 A Framework of Smart Environments

The basic components of SmE are users, devices, con-

trol algorithms and context/environment (Weiser, 1991;

Sadri, 2011; Augusto and Hornos, 2013). The execution

flow of the instructions starts from the user, as shown

in Figure 1, who wishes to achieve certain goals/desires

for which it is important to perform some specific ac-

tions. These actions are sensed by sensors, directly per-

formed on the devices, or instructed through hand-held

computing devices (by programming and using APIs).

These actions are sent to the control algorithms in the

form of messages. The control algorithms are responsi-

ble for controlling and satisfying the system level spe-

cific constraints (e.g. safety, security and reliable de-

sired behavior), and may reside at the gateway level

where all the devices are connected through some wired

or wireless medium. On receiving a message, the control

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 3

Fig. 1 A Generic Framework of Smart Environments

algorithms decide for the preferable operations by using

artificial intelligence, rule based or some other relevant

technologies and accordingly send commands to the rel-

evant devices for performing the specific functionalities.

For example, consider a smart home where when-

ever a user enters in the bedroom, it will be illumi-

nated depending upon the outside light intensity (user

goal). The smart room senses through sensors the pres-

ence/entrance of the user (action). The sensor will send

the notification message to the control algorithm. The

control algorithm sends a request to the illumination

sensor (placed outside the room) that replies with the

outside light intensity value. According to this value,

the current configuration of window-shutter and the

lamp, a control algorithm decides how to illuminate the

room (decision): either by moving the window-shutter

up or by switching the lamp on. Based on the opti-

mal decision, the control algorithm sends suitable com-

mands to the corresponding devices, which perform the

task (operation).

3 Modeling and verification processes

This section describes commonly adopted modeling and

verification processes during formal verification. These

processes are classified according to their coverage of

SmE aspects and application domain, namely: 1) for-

mal modeling, 2) component modeling, 3) formal ver-

ification, 4) Adopted Procedures/Tools. The details of

each process are described in the following subsections.

3.1 Formal Modeling

Formal Modeling is the process of describing a system

(a set of interconnected components performing desired

operations) in a well defined formal syntax and seman-

tics language; the following are its different perspectives

adopted in the modeling of SmE.

3.1.1 Black Box Modeling

Black Box or Interface modeling is the representation

of the information required to interact with the sys-

tem. The black box modeling focuses on functionalities

of the system without any internal details. For instance

in the running example, the control algorithm sends a

command to the window shutter to move up; the com-

mand is fulfilled by the window shutter-actuator. The

details about how the command has been sent by con-

trol algorithm and how the operation is performed by

the shutter-actuator are not considered in the black box

models. Instead, the modeling of which message is sent

and which action is performed against it are the main

focus of the black box.

3.1.2 White Box Modeling

White Box or Behavioral modeling is a representation

of a complete internal behavior of the system. The de-

tails of how commands are issued, how operations are

carried out, and how the system (or individual com-

ponent) requirements are fulfilled are taken care of in

white box modeling. In the running example, for in-

stance, details about how the control algorithm sends

commands, how other devices perform their tasks: in

other words, complete flow of actions done by the sys-

tem (or components) is modeled in this category.

3.1.3 Intelligence Modeling

One of the basic objectives of SmE is to provide ser-

vices in an intelligent way according to the system-level

specifications and constraints. To enrich SmE with in-

telligence, different artificial intelligence and database

techniques can be adopted, and their representation is

called intelligent modeling. For example, the decision

logic of control algorithms either to move window shut-

ter up or to switch lamp off can be modeled by adopting

different techniques, such as fuzzy logic, decision trees,

rules based, event-condition-action, etc.

3.1.4 Requirements Modeling

Requirements are the starting point of any formal ver-

ification process and are specified in the form of prop-

erties or axioms by adopting the syntax of some for-

mal language. These properties or axioms are designed

to represent behavioral and non-behavioral aspects of

4 Fulvio Corno, Muhammad Sanaullah

the system. The behavioral aspects are related to reli-

able functionalities (relation between event and action)

and non-behavioral aspects are related to security and

safety policies, performance, and other characteristics

of the system. For instance, in the running example,

the requirements related to the events – when the out-

side light intensity is high then the smart home has to

move the window shutter up as well as switch off the

lamp (if it is found on) – are presented in formal way in

this modeling approach. Formal representation of the

requirements is often expressed in temporal logic.

3.2 Component Modeling

The components of SmE are users, context/environment,

devices and control algorithms. Depending upon the ap-

plication domain, covered features and the interested

scenarios, the (black-box or/and) white-box modeling

of these components are accordingly performed. Mod-

eling of these components along with their interaction

details are considered in this classification.

3.3 Formal Verification

The system correctness with respect to its specifications

and constraints can be formally (comprehensively) ver-

ified and this process is known as formal verification.

During the verification process, different aspects of the

system are verified. The description of the noted aspect

is presented in the following sub-sections.

3.3.1 Consistency Verification

The consistency verification provides coherency of mod-

eling when both black box and white box processes are

applied. It is important to verify that both of the for-

malisms are consistent with each other; otherwise there

is a fair chance that one of the formalisms may have

some additional or missing information. Due to incon-

sistencies, each formalism may behave differently and

the access to desired functionality in an independent

way may be difficult. For example, if the command to

move window shutter up in black box is recognized as

“UP”, whilst the same command in white box is iden-

tified as “RISE”, this causes inconsistency between the

two modeling processes and will lead towards denial of

the desired outcomes (Corno and Sanaullah, 2011b).

Similarly, it is important to verify that the specified re-

quirements are incorporated in the designed model and

will behave properly in all scenarios.

3.3.2 Entire SmE Verification

SmE are integrated environments and promise to de-

liver services in an intelligent requirements-accomplished

way. As mentioned in Section 1, SmE covers different

aspects of given areas, the verification of the behavior

of individual components along with their interaction in

the entire system can be formally performed by using

model checking or theorem proving techniques, for en-

suring the specified SmE behavior, reliable interaction

along with the safety and security constraints.

3.4 Adopted Procedures/Tools

In this classification, the investigation of the verifica-

tion processes is performed on the basis of the adopted

procedures (through which the comprehensive verifica-

tion of correctness of system is analyzed with respect to

specified requirements) and tools. During the investiga-

tion, the maturity of surveyed technique is analyzed in

terms of automation, scalability, adopted tool and the

examined scenario (case study).

4 Surveyed Literature

Various techniques regarding the modeling and verifi-

cation of SmE and their related components are an-

alyzed under the empirically derived parameters (ex-

plained in section 5). Although various literature on

SmE is available, the papers considered for this sur-

vey encapsulate the formal modeling and verification

techniques; providing the SmE developers and design-

ers with a specific study material aimed at collecting

SmE-centric work. Though during survey a number of

techniques were found which extend the logic for de-

veloping the tool ((Birkedal et al, 2006; Mascolo et al,

2009; Siewe et al, 2011; Roman et al, 2007)), verification

of the protocols ((Forejt et al, 2011; Mottola et al, 2010;

Li and Regehr, 2010)) and modeling of the cognition-

based user behavior ((Bolton et al, 2012; Biswas et al,

2010)), such techniques are out of the scope of this pa-

per and therefore are not included.

In (Ahmed and Tripathi, 2003), the authors present

static verification of security requirements for CSCW

(Computer Supported Cooperative Work) systems us-

ing finite state techniques (model checking). They use

a role based collaboration model for specifying coordi-

nation and security constraints of CSCW systems. The

completeness and consistency of the specification is en-

sured by verification within the global requirements.

They have developed a number of verification models

for checking security properties (task-flow constraints,

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 5

information flow or confidentiality) and assignment of

administrative privileges. Their primary contribution is

a methodology for verification of security requirements

during designing of collaboration systems. Finally, they

have run a rather peculiar case study of collaborative

activities of academic nature. It is our understanding

that replacing the components of this case study with

SmE devices, it can also be applied on a complex sys-

tem.

In (Augusto and Hornos, 2013), the authors propose

MIRIE (Methodology for Improving the Reliability of

Intelligent Environment) by focusing and motivating on

the use of formal methods for the modeling and verifi-

cation of the reliable behavior of the systems at early

design states. The focused components are Users, De-

vices (sensors, actuators), Control unit and Environ-

ment (context) which are attempted to be modeled. The

behavior modeling of the system is performed with the

use of Promela (Process Meta Language); a language

through which the synchronous and asynchronous com-

munication among the components can be modeled as

non-deterministic automata and the resultant model

can be verified with the use of SPIN model checker.

System requirements are specified with the use of LTL

temporal logic. Iteratively extending the system model,

they explained/guided different properties/features of

SPIN model checker. The feasibility of proposed MIRIE

is ensured on the Nocturnal (Night Optimized Care

Technology for UseRs Needing Assisted Livestyles) project.

In the first part of (Augusto and Mccullagh, 2007),

the authors describe important characteristics, parent

technologies and the applications of SmE in various do-

mains. Then they present behavior models of various
components of SmE. The modeling of each component

is performed by using the semantics of finite state ma-

chines (network of automata). The controlling compo-

nent, known as coordinator system, detects the pres-

ence of home occupant with the use of seven motion sen-

sors, placed in kitchen, living room, bedroom and bath-

room. By sensing some activity, the system specified

constraints are checked and the suitable operations are

performed. Also the TV component is modeled: the con-

troller deactivates the TV when it is found unattended

for a long time. Similarly, an alarm manager compo-

nent is modeled which continuously monitors the trig-

gers from smoke alarms, burglar alarm and emergency

pull cord, and contacts fire brigade, security or nursing

unit based on triggers. Other controlling components,

such as door-bell manager, telephone manager, temper-

ature system manager, environment manager and vital

signs monitoring are modeled in the form of state ma-

chines. After modeling these components, they design

different behavioral properties regarding the verifica-

tion of specifications-accomplished behavior, individual

component behavior, safety and security with the use

of Timed Computation Tree Logic (TCTL) by consid-

ering the timing factor (real-time system). For verifying

these properties on the model, UPPAL is suggested as

model checking tool. The process of system modeling

and properties designing is performed manually.

In (Benghazi et al, 2012), the authors, having worked

in the area of verifying AAL (Ambient Assisted Living)

systems, present a verification approach for checking

the satisfaction of non-functional requirements, such

as timeliness and safety based on timed traces seman-

tics and UML-RT models (MEDISTAM-RT). They use

a real-time system design and analysis methodology

based on the semi-formal UML-RT models (which are

generally recognized to be well suited for designing com-

plex time-constrained systems) and the formal CSP+T

notation. In their methodology, the system is designed

in a stepwise refinement manner, where components are

divided hierarchically into sub-components till the final

level. The behavior of these basic components are sep-

arately designed by Timed State Diagrams (TSD) and

the behavior of the whole is derived from the behavior of

its constituent parts by following a compositional spec-

ification process based on CSP+T. Their methodology

is aimed at ensuring safe deadlock-free communication

between components. The authors verify an Emergency

Assistance System using this verification approach.

In (Bernardeschi et al, 1998), the authors present a

formal verification environment for ensuring the desired

behavior along with the ’safety’ and ’liveness’ proper-

ties. A case study of Computer Based Railway Inter-

locking system is reported in which all the communica-

tion is controlled through a sophisticated control unit.

The system behavior is modeled by using the formal-

ism of Calculus of Communicating Systems (CCS). Just

Another Concurrency Kit (JACK) is used as a model

checking tool and the properties are specified by us-

ing ACTL logic. The model is abstracted by using the

“Zooming” technique. In case of need for more reduc-

tion, the “Testing signal values” and “Static configu-

ration parameters” techniques can be applied on the

model. The system modeling and properties designing

process is manually performed.

In (Bonhomme et al, 2008), the authors present

their work for the modeling and verification of SmE. In

their methodology, the design process is based on the

Systems Engineering standards, especially on EIA-632.

In the design process, UML2 and SYSML standard dia-

grams are used. They take the example of energy man-

ager system (known as ERGDOM) for home comfort.

The ERGDOM is a self-configuring system, which iden-

tifies the users’ comfort patterns, habits and the cur-

6 Fulvio Corno, Muhammad Sanaullah

rent temperature of the home, and accordingly makes

the environment comfortable by controlling the func-

tionalities of HVAC systems, shutters, air-conditioning

and convectors. The specification related to main func-

tionalities (e.g. Measurement of temperature, moisture,

luminosity and air quality in each part of the home for

home comfort), the roles of each component (users or

devices) and their interaction with the system, is for-

malized by the use of context diagrams. Then with the

adoption of use-case diagrams, the use cases of the sys-

tem for the desired services (goals) by the users and

devices are designed. Further, the behavior of each use

case with their interaction is formulated by using se-

quence diagrams. These sequence diagrams are usu-

ally detailed due to the controlling aspects and are

then summarized into the concise activity diagrams.

These activity diagrams, based on the automatic trans-

lation of the ERGDOM model and their relation, are

converted into Petri-net by adopting HiLes functional

formalism. Various temporal properties, related to the

structure and dynamic behavior verification of the con-

trol model of ERGDOM, are verified by using TINA (a

model checking tool for Petri-net formalism).

In (Boytsov and Zaslavsky, 2013), the authors pro-

pose a method for the verification of the context and

situation in pervasive computing environments. As de-

vices are the basic elements of SmE and each device has

some capabilities (features), which can be controlled by

changing its value. These values can be non-numeric (a

lamp can be on or off) or numeric (the light intensity of

dimmer lamp can be controlled from 0% to 100%). Dur-

ing the verification of the context/situation of SmE, it is

essential to confirm the particular feature values of con-

cerning devices. A context/situation (defined by some

experts) may be associated, through the relation of gen-

eralization, composition, dependence or contradiction,

with other contexts (Ye et al, 2012). The modeling of

the context is performed with the use of Context Space

Theory (CST) which is further formalized in property

format by using Situation Algebra Expression. On the

basis of the rules defined in (Padovitz et al, 2008; Zadeh,

1965; Ye et al, 2012), they designed 3 algorithms by

which the context modeling can be converted into the

Orthotope-based situation space and situation algebra

expressions (Boytsov and Zaslavsky, 2013). These ex-

pressions are further checked on the Orthotope-based

situation space for identifying the emptiness or coun-

terexample in case of validation. The feasibility of the

proposed methodology is confirmed with the example

of Smart Office Environment. It is opportune to note

that this paper does not refer the context as the user

location.

In (Corno and Sanaullah, 2011a,b, 2013), the au-

thors present generic methodologies for the formal mod-

eling and verification of SmE and its related compo-

nents. The suite of methodologies is holistic in its na-

ture: not only the rules and important points to be con-

sidered for the modeling and verification of entire SmE,

but also the consistency amongst the various model-

ing formalisms is checked and corrected wherever re-

quired. The interface modeling is performed with the

use of an ontology, whereas the behavioral modeling is

performed with the use of statecharts. They perform

consistency checking among both interface and behav-

ioral formalisms and then the detailed internal behav-

ioral verification of the individual devices (Corno and

Sanaullah, 2011b), for this, they use the example of

dimmer lamp. Whereas in their other papers (Corno

and Sanaullah, 2011a, 2013), they present a generic

methodology for the formal modeling and verification

of SmE. For the verification purposes, they use UCTL

temporal logic for describing the requirements in the

form of properties and UMC as a model checking tool.

The methodology is tested by using a case study of a

Bank Door Security Booth (BDSB) system.

In (Coronato and Pietro, 2010a,b, 2011), the au-

thors present their work for the modeling and verifica-

tion of ambient intelligence applications. The authors’

key focus is on the location dependent movement of

users (also referred as ambient) by incorporating the

concepts of Pervasive and Ubiquitous Computing. They

propose a seven step process for the interface, behav-

ioral and constraints modeling of SmE. The Ontology

is used for interface modeling where ambient calculus

(AC) (a process calculus formalism derived from pi-

calculus) is used for behavioral modeling. They theoret-

ically extend AC by borrowing the concepts from dif-

ferent formal modeling techniques for incorporating the

real-time constraints and conditional movements which

are among the limitations of AC. The properties related

to the pervasive and ubiquitous concepts are specified

in terms of Ambient Logic (AL) – having a combined

power of propositional logic, first-order-logic, temporal

logic, somewhere and everywhere operators– the prop-

erties related to explicit real-time constraints are speci-

fied in terms of Real-Time Temporal Logic (RTTL) and

the properties related to the pre-and-post conditions

are specified by using Design-By-Contract (DBC). A

case study of a patient monitoring system is modeled

according to the above mentioned formalisms. The pa-

tient’s movements among different rooms, their activi-

ties and operations are identified with the use of RFID

Tag. For the modeling and verification, they develop

a tool, known as Ambient Designer which can visually

model the system in the form of AC and AL. It has

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 7

an additional functionality of translating the model in

the acceptable language of NuSVM model checker. The

designed model can be verified by implementing the

model checking algorithm for AC in the designed tool

or by using NuSVM model checker tool. By this, the

properties related to the functional correctness, relia-

bility, availability, safety and security of the system can

be verified.

In (Gnesi et al, 1999), the authors present a branch-

ing time model-checking approach for the formal ver-

ification of dynamic aspects of complex systems. Au-

thors defined some formal semantics, based on the work

of (Latella et al, 1999b) and JACK (model checker),

for considering the dynamic aspects of the system (de-

scribed in the form of Hierarchical Automata). For the

verification, authors consider the Statechart modeling

of user interaction with TV system. The dynamic be-

havioral properties are specified in ACTL logic and ver-

ified on the model with the help of JACK model check-

ing tool. The syntax and static semantics of Statecharts

are formally defined; however their dynamic aspects are

informally defined.

In (Gnesi and Mazzanti, 2004), the authors present

the UMC model checker tool for the formal verifica-

tion of the dynamic behavior of complex systems. The

systems which can be verified through UMC are re-

quired to be specified in the form of UML communi-

cating Statecharts which can interact with others. The

system requirements are formalized by using the syntax

and semantics of mu-ACTL logic (ACTL logic with the

complete power of mu-calculus as well) and verified on

the model with the use of UMC. A case study of the

system, consisting of two airports, two passengers and

an airplane, is considered for showing the satisfactory

outcomes of the model checker.

In (Hoogendoorn et al, 2009, 2013), the authors

present an agent based ambient system for the for-

mal modeling and verification of the interaction among

multi-agents. For the generic and domain specific be-

havior modeling of the interaction, they used predi-

cate logic. And for the verification of the specification,

they used rule based Temporal Trace Language (TTL)

(Bosse et al, 2009), which is specially designed for the

formal specification and analysis of dynamic properties,

regarding the qualitative and quantitative (in-term of

time) interaction aspects of the systems belonging to bi-

ological, cognitive and social domains. They have mod-

eled the Medicine Usage Management system, in which

patient takes medicines from the intelligent Medicine

box (which has the ability of knowing the quantity of

the dosage and the time of previously taken medicine).

On crossing the threshold values (maximum and mini-

mum quantity of dosage and time), the system notifies

with beep and by automatically sending the SMS to

the patient. In case of no reply (or response) from the

patient, the system sends a history SMS to relevant

doctor. For the modeling of each component (agent),

input, internal and output states are considered in pred-

icate logic format (referred as Ontology). A stochastic

model of the patient is considered, and interaction of

the model system is sent to the LEADSTO (Bosse et al,

2007), which executes and simulates the traces of the

system. The TTL properties are also analyzed on the

modeled system (by using these traces) through TTL

checking tool (Bosse et al, 2009) or by using SMV model

checker1.

In (Ishikawa et al, 2009), the authors present a the-

oretical framework for the formal modeling of SmE by

concentrating upon the concepts of Pervasive comput-

ing. They perform the formal modeling of requirements,

assumptions and behaviors of application software with

respect to the user (identification, movements, scopes)

and the accessible features of the surrounding devices.

According to the requirements and assumptions, the

abstract interaction modeling of the accessible features

of the devices (by the users at some certain time) is per-

formed, which is further analyzed and formally verified.

For the behavioral modeling of such system, Event Cal-

culus is used; a formalism for expressing and reasoning

the effects of any action (Shanahan, 1999). According

to the scopes (the direct interaction of the users with

the accessible devices) and duration, the requirements

along with the implementation of assumption are mod-

eled in the form of axioms (rules). A theorem proving

inference approach is used by adopting Discrete Event

Calculus Reasoner (IBM, 2005) as a tool for formally

satisfying the system requirements. Discrete Event Cal-

culus is for representing the requirements in the prop-

erties format. Discrete Event Calculus is converted into

the (well-known) SAT problem and inference is made

on the model. With the example of Meeting Support

System, they justify the feasibility of their proposed

framework.

In (Leelaprute et al, 2005), the authors present their

work related to the modeling and verification of the in-

tegrated services in the home network system (HNS).

They described and modeled the HNS by using the se-

mantic of Object Oriented modeling in which the en-

1 Moreover, Jan Treur (one of the authors of (Hoogendoorn
et al, 2009, 2013)) extended the work by covering other as-
pects of the agent based ambient system, with the collabora-
tion of other researchers (Aziz et al, 2010; Sharpanskykh and
Treur, 2012). In his work (Sharpanskykh and Treur, 2012),
the cognitive analysis is performed through simulation (there-
fore is not including in our survey). The purpose of mention-
ing this is that it is the only found work which performed
cognitive analysis for the ambient system.

8 Fulvio Corno, Muhammad Sanaullah

vironment, appliances, properties, methods, states and

other relevant information are considered. After that,

they presented a descriptive language for the model-

ing of the HNS. Then the services’ reliability of HNS is

verified. Authors used a case study of a home system

in which air conditioner, inside and outside thermome-

ters, smoke sensor, ventilators and windows are mod-

eled. The appliances and their integrated services are

verified with respect to different CTL specified proper-

ties by using SMV model checking tool.

In (Liu et al, 2012), the authors propose the use

of formal methods to analyze the pervasive computing

systems. They start with proposing a formal model-

ing framework for covering the main characteristics of

pervasive computing systems. They adopt CSP# for

modeling and verification as it is rich in the syntax for

modeling concurrent system with hierarchies. Later, the

safety requirements are identified and the specification

patterns for safety and liveness properties are provided

as they have classified the important requirements into

these categories. By doing so, the critical properties

against the system model can be verified by using model

checking to detect the design flaws at the early design

stage. Finally, a case study of a smart health care sys-

tem for mild dementia patients (AMUPADH) is run to

demonstrate the practicality of proposed framework.

In (Masci et al, 2012, 2013a,b), the authors’ main

goal is to verify the (software of) medical devices by us-

ing their UIs. They verify the devices by adopting differ-

ent strategies. They investigate the user’s actual behav-

ior in the field and verify it with the prescribed one as

mentioned in the user manual (Masci et al, 2012). Sim-

ilarly, they provide a solution to the investigation au-
thorities for verifying as to which specified user-interface

requirements are satisfactorily incorporated in the med-

ical device after their implementation (Masci et al, 2013a).

Moreover, they extend their work and investigate the

interaction design issues in the implementation by gen-

erating the keying sequences (data entry task) and an-

alyzing them with the user-interaction behavior (Masci

et al, 2013b). For the verification purpose, they adopt

theorem proving approach. The Prototype Verification

System (PVS) is adopted as a theorem proving tool,

and the model of the system is designed by using the

reverse engineering processes. The designed model is

further translated into the acceptable format of PVS,

which is based on higher ordered-typed logic and equipped

with similar features of various languages (like C++).

The requirements which are required to verify are for-

malized into axioms (according to the template for prop-

erties) and then verified on the model. The verification

process is performed in (Masci et al, 2012, 2013a) by us-

ing proof obligations component of PVS and in (Masci

et al, 2013b) by using configuration diagrams (a labeled

graph of the modeled system/device in which nodes

represent configurations and edges represents transition

with guard conditions). These configuration diagrams

help in generating the test cases for exposing the in-

teraction issues in the model. With the case study of

glucose monitoring procedure in oncology ward (Masci

et al, 2012), infusion pump (Masci et al, 2013a) and

a layout of medical device (Masci et al, 2013b), they

proved the authenticity of their work.

In (Ranganathan and Campbell, 2008), the authors

present their theoretical contribution for the modeling

and verification of pervasive computing environment.

They consider the software controlling components, de-

vices, users, environment and other physical objects in

the environment as ambient which are spatially inter-

related with other objects. Along with the movement,

an ambient can enter or leave the environment and can

be part of other environments. The modeling of these

ambient along with their operations and activities are

performed with the use of Ambient Calculus. The prop-

erties related to verifying the availability of the ser-

vices at anytime and anywhere, and devices mobility in

case of changing their context (entering and existing of

ambient in other environment) are performed with the

use of ambient logic. A case study (named as Gaia) of

university is considered which is equipped with multi-

ple sensors, computers and actuators. Students can en-

ter with their digital devices (mobiles, PDAs, laptop)

and can perform various pervasive activities. Different

model checking algorithms/tools, such as specified in

(Charatonik and Talbot, 2001), can be used for the ver-

ification of the pervasive properties.

5 Empirically-derived Parameter-based

Methodology

For the development of SmE, it is evident from the

literature to firstly design and verify the system (moti-

vation is given in Section 1). Practically, project man-

ager (along with the team) may have many questions

regarding the modeling and verification of the system.

As SmE has the capacity to cover various domains with

different perspective, different techniques and tools are

used – according to their application areas and covered

aspects – for the modeling and verification. On the ba-

sis of our experiences and surveyed literature, we try

to identify and classify the emerging concerns (listed

below) into four groups.

– Among the basic components of SmE (mentioned

in Section 2), which components are required to be

modeled for this specific application area;

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 9

– For the modeling of the selected components, which

aspects are required to be covered;

– How the modeling of each selected component is

performed by considering the level of details nec-

essary to be achieved?

– How the intelligence/computation is modeled by con-

sidering the system constraints?

– How the requirements of different perspectives are

modeled, for confirming the correct incorporation in

the system model?

– How the verification of the different aspects/perspectives

of the components or system is performed?

– Which techniques and tools are used for the model-

ing and verification of the system?

– Which application area is selected for proving the

reliability of the proposed approach?

– Which abstraction technique is employed/adopted

for reducing the size of the model so that the veri-

fication can be easily performed by focusing on the

interested perspective?

During the first course of the literature survey, these

questions were identified and classified according to cri-

teria mentioned in Section 3. A deep analysis of each

classification with the internal categorization is carried

out in the second round, and termed as parameter. In

the third round of survey, the existing state-of-the-art

against each parameter is identified and analyzed ac-

cording to its modeling/verification capacity, termed as

parameter values.

To the best of our knowledge, the existing state-of-

the-art of formal modeling and verification processes

(as described in Section 3), with respect to their level

of adoption and application scenarios, may be compre-

hensively represented in a tabular form, in which each

formal parameter is represented by the adopted state-

of-the-art (parameter values) against the surveyed lit-

erature. The complete procedure of designing tabular

form (from extracting parameters to their correspond-

ing values against each surveyed literature) is referred

as empirically-derived parameter-based methodology.

In order to perform an in-depth analysis of the sur-

veyed literature, an overview of the existing state-of-

the-art techniques has been performed. The details of

their application domains, level of adoption, and their

corresponding scenarios are presented in the subsequent

sections. Moreover, uncovered areas by the existing state-

of-the-art processes and commonly used ones are also

investigated.

The following subsections are the main classifica-

tion, against each of which, a table is designed that pro-

vides the adopted tools/techniques information against

each surveyed literature. The inner subsections of this

classification work as parameters of these tables. These

inner subsections represent different perspectives which

may be adopted during the formal modeling and ver-

ification, in the surveyed literature. The values of the

parameter represent the formalism (existing state-of-

the art) or the adoption of perspectives in the surveyed

literature.

5.1 Formal Modeling

5.1.1 Black Box Modeling

Different formalisms are used for Black Box modeling

such as Structure diagrams (Class diagrams, Object di-

agrams) (Booch et al, 1998) and Ontologies (Fensel,

2001). Structure diagrams are Unified Modeling Lan-

guage (UML) artifacts that model the Object Oriented

systems, whereas Ontologies are the semantic web solu-

tion for describing the data as complete data model, for-

mal semantics, knowledge discovery and sufficient rea-

soning power; due to these advantages, Ontologies are

often preferred for the modeling of SmE.

Black box, as a parameter in our methodology, is

used for representing the explicitly adopted formalism

of modeling information. In tabular format, this param-

eter is either represented with the name of the employed

formalism or with a cross mark (8), indicating that it

is not adopted (as represented in Table 1).

5.1.2 White Box Modeling

The behavioral modeling of SmE can be performed through

UML behavioral diagrams (Booch et al, 1998), process

calculus (Baeten, 2005; Bergstra and Klop, 1984) and

petri-nets (Nielsen et al, 1981; Bonhomme et al, 2008).

UML behavioral diagrams consist of Use Case, Ac-

tivity, Sequence, Statecharts and other diagrams. Stat-

echarts (Automata or labeled transition systems) are

commonly used artifacts for specifying the system in

a formal way. Different variants of state diagrams for

modeling different aspects of behaviors, with each vari-

ant having its own limitations, are designed. The more

famous and exploited variants are Harel Statecharts

(Harel, 1987), Communicating Statecharts (Gnesi and

Mazzanti, 2004), Automata (Hopcroft et al, 1979; Au-

gusto and Mccullagh, 2007) and Hierarchical Automata

(Mikk et al, 1997; Gnesi et al, 1999). The probabilistic

and timed behavior of the complex system can be mod-

eled with the use of Probabilistic Statecharts (Jansen

et al, 2002) and Timed Automata (Wang, 2004), re-

spectively.

Process algebras can also be represented as labeled

transition systems for specifying the behavior of the sys-

tem. In process calculus, the most commonly used for-

10 Fulvio Corno, Muhammad Sanaullah

Table 1 Modeling Evaluation

Researchers
Black Box White Box Intelligence Requirements
Modeling Modeling Modeling Modeling

Ahmed and Tripathi
(Ahmed and Tripathi,
2003)

8 Role based collaboration
model

Role based LTL

Augusto and Hornos
(Augusto and Hornos,
2013)

8 Activity Modeling
Through Promela pro-
cesses

Event (Activity
detection), Condi-
tion(location identifica-
tion), Action (operation
graded)

LTL

Augusto and McCul-
lagh (Augusto and
Mccullagh, 2007)

8 Finite State Machine Event Condition Action TCTL

Benghazi et al. (Beng-
hazi et al, 2012)

8 UML-RT (Timed Se-
quence Diagram, Timed
State Diagram), CSP+T

Event Condition (previ-
ous history) Action

FTT (Common Formal
Semantic Domain)

Bernardeschi et al.
(Bernardeschi et al,
1998)

8 CCS/MEIJE Process
Algebra

Event Condition Action mu-ACTL

Bonhomme et al. (Bon-
homme et al, 2008)

System Engineering
Standards, EIA-632,
Use Case, Sequence,
Activity and Dynamic
Context Diagrams,
UML2, SYSML

Petri-Nets, HiLes Decision Logic Temporal Properties

Boytsov and Zaslavsky
(Boytsov and Zaslavsky,
2013)

Context Space Theory
(CST)

Orthotope-based Situa-
tion Space

Weighted Rule Based Situation Algebra Ex-
pression

Corno and Sanaullah
(Corno and Sanaullah,
2011a,b, 2013)

Ontology Statecharts Event Condition Action UCTL

Coronato and Pietro
(Coronato and Pietro,
2010a,b, 2011)

Ontology Ambient Calculus Ambient movement,
Pre-and-Post conditions

Ambient logic + RTTL

Gnesi et al. (Gnesi et al,
1999)

8 Hierarchical Statecharts Event Condition Action ACTL

Gnesi and Mazzanti
(Gnesi and Mazzanti,
2004)

8 Communicating State
Machines

Event Condition Action mu-ACTL

Hoogendoorn et al.
(Hoogendoorn et al,
2009, 2013)

8 Predicate logic Rule Based TTL

Ishikawa et al. (Ishikawa
et al, 2009)

8 Event Calculus Rule Based Axioms Based through
Discrete Event Calculus

Leelaprute et al. (Lee-
laprute et al, 2005)

Object Oriented Model-
ing, System description

Object Oriented Model-
ing, Service description

Event Condition Action CTL

Liu et al. (Liu et al,
2012)

8 CSP# Rule Based LTL

(Masci et al, 2012,
2013a,b)

8 PVS Logic, a Typed
higher-ordered Logic

8 Axioms Based (accord-
ing to property tem-
plate)

Ranganathan and
Campbell (Ranganathan
and Campbell, 2008)

8 Ambient Calculus Rule Based, DL-Based,
Relational Algebra

Ambient Logic

malism are Calculus of Communicating Systems (CCS)

(Bernardeschi et al, 1998; Hennessy and Milner, 1985),

Communicating Sequential Processes (CSP) (Hoare, 1978;

Brookes, 1983) and Pi-calculus (Milner et al, 1992),

whereas their extension with the context-aware (mo-

bility) modeling information is known as Ambient Cal-

culus (AC) (Coronato and Pietro, 2010b; Cardelli and

Gordon, 1998). The probabilistic modeling of the sys-

tem is mostly performed by enhancing the semantics of

process calculus formalisms.

Petri nets are used as framework for specifying the

concurrent systems with detailed (mathematical and

conceptual) basic semantic for their modeling. Timed-

petri-nets is an extension of petri-nets, in which the

concurrent behavior of the system is formally specified

in terms of time.

White box, as a parameter in our methodology, is

used for representing the adopted formalism of mod-

eling information. In tabular format, the value of this

parameter is represented with the name of the employed

formalism.

5.1.3 Intelligence Modeling

For providing services intelligently, different techniques

are adopted among which artificial intelligence (e.g. fuzzy

logics in (Hagras et al, 2004; Pedrycz, 2010), decision

trees in (Stankovski and Trnkoczy, 2006), machine learn-

ing in (Cook et al, 2006), case-based reasoning in (Kofod-

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 11

Petersen and Aamodt, 2006), rule-based reasoning in

(Boytsov and Zaslavsky, 2013), databases (e.g. event-

condition-action in (Corno and Sanaullah, 2011a) and

SQL-based data management in (Feng et al, 2004)) are

some of the mostly adopted approaches. Based on these

approaches, control algorithms decide feasible opera-

tions and send commands accordingly to corresponding

devices.

In empirically-derived parameter-based methodol-

ogy, intelligence modeling is used as a parameter (see

Table 1). The value represents the name of the em-

ployed formalism by the surveyed technique and cross

mark (8) indicates that it is not observed in the sur-

veyed technique (as represented in Table 1).

5.1.4 Requirements Modeling

Temporal Logics are widely used in formal verifica-

tion in order to formalize and specify the requirements

of complex systems (Clarke et al, 1986; Nicola, 1995;

Nicola and Vaandrager, 1990; Manna and Pnueli, 1992).

The truth value of these specified requirements depend

upon time; whether the specific requirement will be true

at any path (Exists), or on all the paths (All) of the

complex systems. In addition to Exists and All, there

are other temporal quantifiers like Global, Next, Fu-

ture, Until, Implies, which help in verifying the complex

requirements on different branches from some specific

state at a certain time.

Linear-Time Temporal Logic (LTL) is used to rep-

resent the requirements for linear time model of the

system, whereas Action Based Branching Time Logic

(ACTL) (Nicola and Vaandrager, 1990) and State Based

Branching Time Logic (CTL) (Clarke et al, 1986) are

used for representing the requirements for computa-

tional time temporal logic of the system. Several log-

ics are designed for handling different aspects of re-

quirements, many are formulated by integrating the al-

ready designed languages addressing a wider range of

requirements like UCTL (Beek et al, 2011), SocL (Fan-

techi et al, 2008). Time based requirements are usu-

ally handled by TCTL, RTL, RTTL, TPTL, RTCTL

(Alur and Henzinger, 1992) whereas probabilistic re-

quirements are handled by using PLTL and PCTL log-

ics (Reynolds, 2005).

In our methodology, requirements modeling is used

as a parameter and the value (in Table 1) reports the

adopted logic by the surveyed technique.

5.2 Component Modeling

5.2.1 User Modeling

Users interact with the SmE in their own ways which, in

turn, responds according to the specified and modeled

behaviors. The level of details and sophistication varies

from system to system, context to context and goals

to goals. Among different perspectives, some of the be-

havioral aspects which are considered for user modeling

are:

– User identification (UI): the identification of the user

through sensing and/or input devices;

– User actions history (UH): the stored history of pre-

vious user actions;

– User privileges –on the basis of their roles– (UPr):

based on the role categorization, the system func-

tionality provision granted to the user;

– User position –pre- and post-action execution– (UP):

the geographical location of the user within the sys-

tem boundaries with respect to a specific action;

– User’s possible actions (UA): the actions of the user

which can be contemplated and facilitated by the

system;

– User’s possible behaviors (UB): the behavior (re-

lated to movement and context-approved actions)

of the user which can be contemplated and facili-

tated by the system;

In Table 2, the values at the end of listed items

(placed in parenthesis) are used as parameter values

for representing the modeling aspects covered by the

referring technique.

5.2.2 Devices Modeling

Device modeling can be done by two methodologies: in-

terface and behavior. In interface modeling, we usually

consider commands (triggers) a device may receive; as-

sociated functionality (operation) it may perform; con-

straints (rules) it has to follow; states at which it will be

at any time; notifications that it sends after the comple-

tion of task. Whereas in behavior modeling, acceptance

of specific commands on a particular state, implementa-

tion of constraints, operations which may be performed

on that state after the satisfaction of constraints are

considered.

Referring to Table 2, the value “Behavior” under

this category show the modeling of internal behavior of

the devices in the surveyed technique.

12 Fulvio Corno, Muhammad Sanaullah

Table 2 Component Modeling

Researchers
Users Devices Control Context Interaction
Modeling Modeling Modeling Modeling Modeling

Ahmed and Tripathi
(Ahmed and Tripathi,
2003)

UPr, UA 4 UI, IC, CO

Augusto and Hornos
(Augusto and Hornos,
2013)

UI, UP, UA,
UB

4 4 US, UC, SC, CO

Augusto and McCul-
lagh (Augusto and
Mccullagh, 2007)

UA Behavior 4 US, UI, SC, IC, CO

Benghazi et al. (Beng-
hazi et al, 2012)

UH, UA 4 US, UI, SC, IC, CO

Bernardeschi et al.
(Bernardeschi et al,
1998)

4 IC, CO

Bonhomme et al. (Bon-
homme et al, 2008)

UI, UH, UA 4 US, UI, SC, IC, CO

Boytsov and Zaslavsky
(Boytsov and Zaslavsky,
2013)

4 IC

Corno and Sanaullah
(Corno and Sanaullah,
2011a,b, 2013)

UI, UP, UA,
UB

Behavior 4 4 US, UC, UI, SC, IC,
CO

Coronato and Pietro
(Coronato and Pietro,
2010a,b, 2011)

UI, UP, UB 4 4 US, UC, SC, CO

Gnesi et al. (Gnesi et al,
1999)

UA Behavior UI

Gnesi and Mazzanti
(Gnesi and Mazzanti,
2004)

UA, UB Behavior 4 UC, UI

Hoogendoorn et al.
(Hoogendoorn et al,
2009, 2013)

UH, UA 4 UI, IC, CO

Ishikawa et al. (Ishikawa
et al, 2009)

UI, UPr, UP,
UA

4 4 US, UC, UI, SC, CO

Leelaprute et al. (Lee-
laprute et al, 2005)

Behavior 4 IC, CO

Liu et al. (Liu et al,
2012)

UI, UA 4 4 US, UC, UI, SC, IC,
CO

(Masci et al, 2012,
2013a,b)

UI, UPr, UA Behavior UI

Ranganathan and
Campbell (Ranganathan
and Campbell, 2008)

UI, UA 4 4 US, UC, UI, SC, IC,
CO

5.2.3 Control Algorithms Modeling

The overall sophisticated control strategy of SmE is

implemented through control algorithms. Control algo-

rithms take input from the input/sensing devices and

according to the system specifications and imposed con-

straints, decide for the reliable functionality. For the

fulfillment of the desired functionality, they send com-

mands to the relevant operating devices for performing

required task/operation (as presented in Figure 1).

In Table 2, a tick mark (4) under this parameter

show that the referred technique takes decision by im-

plementing the mentioned pattern.

5.2.4 Context/Environment Modeling

The identification of the user location is grouped in this

category, and termed as Context modeling. Referring to

Table 2, a tick mark (4) under this category shows the

referring technique performed this type of modeling.

5.2.5 Interaction Modeling

SmE components can interact with each other for the

achievement of desired goals. In the surveyed literature,

researchers are found focusing on different interaction

levels and accordingly building the system. On the basis

of these focuses, we categorized the interaction levels

into the following groups:

– User interaction with the environment through sen-

sors (US): the considerable user actions in the en-

vironment are monitored or noticed with the use of

sensors;

– User interaction according to its context (UC): the

user actions are recognized according to user’s move-

ments in the environment; although these are usu-

ally monitored by sensors, the focus point is that

with a change in the position, the system will able

to consider the activities;

– User action performance on input devices (UI): user

interacts with the system through handheld devices,

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 13

or by directly performing action on the real inputting

devices;

– Sensor interaction with the control algorithms (SC):

the sensed data is sent by the sensors to the control

algorithms, on the basis of which control algorithms

decide for the preferable action;

– Input device interaction with the control algorithms

(IC): the handheld devices or real devices send the

commands to the control algorithms for performing

the specific task;

– Control algorithms interaction with the operating

devices (CO): control algorithms incorporate the in-

telligence strategies and on the basis of incoming

commands, decide for the preferable action and ac-

cordingly send messages to the relevant devices.

In Table 2, the values presented at the end of each

listing item are used as the parameter values for inform-

ing that the referred technique is focusing/performing

on which type of interaction modeling.

5.3 Formal Verification

The system correctness with respect to its specifications

and constraints can formally (comprehensively) be ver-

ified and this process is known as formal verification.

Different aspects are verified during the verification pro-

cess. The description of each aspect is presented in the

following subsections.

5.3.1 Consistency Verification

Consistency verification, as a parameter in our method-

ology, is used for representing whether applied modeling

formalisms are consistent with respect to their vocabu-

lary and functionalities, and the specified requirements

are properly incorporated in the designed system (as

mentioned in Section 3.3.1). In Table 3, a tick mark

(4) shows it is considered and performed in surveyed

literature.

5.3.2 Entire SmE Verification

In order to verify entire system, different aspects are

covered, which can be classified as the following: Users

Behavior Verification, Context Verification, Device Be-

havior Verification, Devices Interaction and Control Ver-

ification, Real Time Verification and Probabilistic Ver-

ification.

– Users Behavior Verification: The key concern while

designing SmE is to facilitate the environment with

integrated technologies to benefit users, who have

certain goals/desires and a complex web of behav-

iors which can be adopted during interaction with

the system. In this classification, accomplishment of

user goals against the specified actions with the in-

put devices (or sensors) and the understanding of

the possible behavior (moves) of the users are ver-

ified. The tick (4) sign under this category shows

its application in verification of users actions and

behavior.

– Context Verification: Users interact with the SmE

through the environment. According to location (also

referred as Context), users can access services (mostly

concerned with safety and security) from the en-

vironment. The environment models of SmE have

extra computational power for determining the cur-

rent state of the corresponding objects/devices/users

and providing specified services accordingly. For in-

stance, room illumination services are only acces-

sible when residents are awake and/or present in

room. Table 3 reports whether the surveyed tech-

nique performs context verification or not; the tick

(4) sign shows context verification is performed.

– Device Behavior Verification: The devices in SmE

are of heterogeneous nature with some common and

distinct features. They are self-dependent compo-

nents with their own internal specified behavior that

may be complex based on the device features (smart

devices). In this classification, the specified internal

behavior of devices is explicitly confirmed on their

models. The tick (4) sign in Table 3 shows scenarios

in which this verification is performed.

– Devices Interaction and Control Verification: The

system level requirements are implemented through

control algorithms which regulate interaction among

devices. In this classification, the system level con-

straints and the reliable interaction among devices

under control algorithms are confirmed. The tick

(4) sign under this category shows it has been ap-

plied.

– Real Time Verification: The application areas of

SmE are almost in every domain. Some applica-

tions can be time dependent such as traffic control

system, where time factors are also considered in

modeling and verification stage. In this classifica-

tion, real-time verification of the system is ensured.

The tick (4) sign in Table 3 indicates real time ver-

ification is performed.

– Probabilistic Verification: The system being large

along with possibilities of its multi-tasking nature

make it more complicated. Probabilistic modeling,

in this regard, can be adopted to ensure its smooth

behavior with respect to possible actions the system

can perform at a given time. SmE may encounter

14 Fulvio Corno, Muhammad Sanaullah

Table 3 Formal Verification Evaluation

Entire System Verification
Authors Consistency Users Context Device Devices Real Probabilistic

Verification Behavior Verification Behavior Interaction Time Verification
Verification Verification Control Verifi-

cation
Verification

Ahmed and Tripathi
(Ahmed and Tripathi,
2003)

4 4

Augusto and Hornos
(Augusto and Hornos,
2013)

4 4 4

Augusto and McCul-
lagh (Augusto and
Mccullagh, 2007)

4 4 4

Benghazi et al. (Beng-
hazi et al, 2012)

4 4 4

Bernardeschi et al.
(Bernardeschi et al,
1998)

4

Bonhomme et al. (Bon-
homme et al, 2008)

4(Behavioral
Analysis)

4

Boytsov and Zaslavsky
(Boytsov and Zaslavsky,
2013)

4

Corno and Sanaullah
(Corno and Sanaullah,
2011a,b, 2013)

4 4 4 4 4

Coronato and Pietro
(Coronato and Pietro,
2010a,b, 2011)

4 4 4

Gnesi et al. (Gnesi et al,
1999)

4

Gnesi and Mazzanti
(Gnesi and Mazzanti,
2004)

4 4

Hoogendoorn et al.
(Hoogendoorn et al,
2009, 2013)

4 4

Ishikawa et al. (Ishikawa
et al, 2009)

4 4 4 4

Leelaprute et al. (Lee-
laprute et al, 2005)

4 4

Liu et al. (Liu et al,
2012)

4 4 4

(Masci et al, 2012,
2013a,b)

4 4

Ranganathan and
Campbell (Ranganathan
and Campbell, 2008)

4 4 4

challenging conditions such as versatile user behav-

iors, malfunctioning sensors, broken or out-of-order

devices, which may compromise reliable response of

the system. To cater to such scenarios, probabilistic

modeling and verification is usually performed. In

this classification, checking of probabilistic verifica-

tion in surveyed literature is taken into considera-

tion (see Table 3).

5.4 Adopted Procedures/Tools

In this category, analysis of verification procedures/tools

is considered. The following subsections explain in de-

tails.

5.4.1 Formal Verification Techniques

Model checking is suitable for the system in which the

state space is finite (Clarke et al, 1994) but it can also

work for infinite state space models represented as a fi-

nite state space by adopting some reduction technique

(such as abstraction, inactive variable elimination, in-

ternal transition by passing, approximation). Several

model checking tools are available for the formal verifi-

cation of SmE related systems. The verification can be

performed using Linear-Temporal Logics or Branching-

Time Temporal Logics. Some of the reported model

checkers that use Linear-Temporal Logics are in (Latella

et al, 1999a; Gallardo et al, 2002; Mikk et al, 1998),

HEGO (Schafer et al, 2001), vUML (Lilius and Pal-

tor, 1999) based on SPIN (Holzmann, 1997), whereas

JACK, (Gnesi et al, 1999), SMV (McMillan, 1992),

CMC (Beek et al, 2009) and UMC (Gnesi and Mazzanti,

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 15

Table 4 Adopted Procedures/Tools

Researchers Verification Abstraction Automatic Scalability Verification Case
Technique Tool Study

Ahmed and Tripathi
(Ahmed and Tripathi,
2003)

Model Checking incremental model-
ing with separation
of concerns and
property specific
abstractions

Automatic SPIN Computer Sup-
ported Cooperative
Work (CSCW) sys-
tem for Monitoring
Exam Activities

Augusto and Hornos
(Augusto and Hornos,
2013)

Model Checking 8 Manual 4 SPIN Nocturnal (Night
Optimized Care
Technology for
UseRs Needing
Assisted Livestyles)

Augusto and McCul-
lagh (Augusto and
Mccullagh, 2007)

Model Checking 8 Manually 4 UPPAL Smart Home

Benghazi et al. (Beng-
hazi et al, 2012)

Transformation
and Mapping
rules

8 Semi-
automatic

4 8 Emergency Assis-
tace System for
Cardiac patient

Bernardeschi et al.
(Bernardeschi et al,
1998)

Model Checking Testing Signal Val-
ues, Static config-
uration parameters,
Zooming

Manually JACK Computer Based
Railway Interlock-
ing System

Bonhomme et al. (Bon-
homme et al, 2008)

Model Checking 8 Semi-
automatic

TINA Smart Energy Man-
agement System
for Home Comfort
(EDGDOM)

Boytsov and Zaslavsky
(Boytsov and Zaslavsky,
2013)

Rule Based 8 Manual Self-
designed
Algorithms
for Empti-
ness Check

Smart Office Envi-
ronment

Corno and Sanaullah
(Corno and Sanaullah,
2011a,b, 2013)

Model Checking State and Action
based

Semi-
automatic

4 UMC Dimmer Lamp,
Bank Door Secu-
rity Booth System
(BDSB)

Coronato and Pietro
(Coronato and Pietro,
2010a,b, 2011)

Model Checking 8 Semi-
automatic

4 Ambient
Designer,
Nu-SMV

Pervasive Health-
care Application
for Monitoring the
Patient

Gnesi et al. (Gnesi et al,
1999)

Model Checking Refinement Func-
tion

Manually JACK User and TV System

Gnesi and Mazzanti
(Gnesi and Mazzanti,
2004)

Model Checking not generating the
global model of the
system

Manually 4 UMC Plane and Passenger
in Airport System

Hoogendoorn et al.
(Hoogendoorn et al,
2009, 2013)

Model Checking 8 Semi-
automatic

TTL
Checker,
SMV

Medicine Usage
Management

Ishikawa et al. (Ishikawa
et al, 2009)

Theorem Prov-
ing

4 Manual Discrete
Event
Calculus
Reasoner

Meeting Support
System

Leelaprute et al. (Lee-
laprute et al, 2005)

Model Checking Symbolic represen-
tation of the State
space

Semi-
automatic

SMV Air Cleaning Service
in Home Network
System

Liu et al. (Liu et al,
2012)

Model Checking 8 Semi-
automatic

4 PAT Heath care sys-
tem for Dementia
patient

(Masci et al, 2012,
2013a,b)

Theorem Prov-
ing

8 Semi-
automatic

PVS Glucose monitoring
procedure in oncol-
ogy ward, Infusion
pump, a real medical
device

Ranganathan and
Campbell (Ranganathan
and Campbell, 2008)

Model Checking 8 Manually specified
in (Latella
et al, 1999a;
Gallardo
et al, 2002;
Mikk et al,
1998)

Gaia (pervasive
environments with
digital devices)

16 Fulvio Corno, Muhammad Sanaullah

2004) are used for verifying state and action based branch-

ing time temporal behavior. For the verification of real-

time systems, UPPAL (Larsen et al, 1997) and nuSVM

(Cimatti et al, 2002) model checkers are used, while

TINA (Berthomieu and F.Vernadat, 2006), TAPAAL

(Byg et al, 2009), ROMEO (Gardey et al, 2005), DREAM

(Madl et al, 2006) are exploited when model is specified

in terms of Petri-Nets. Time based verification can be

performed with the use of UPPAL, TAPAAL, ROMEO,

DREAM, CWB (Stevens and Stirling, 1998) and other

model checkers, whereas probabilistic model checking

can be performed with the use of CADP (Garavel et al,

2001), PAT (Sun et al, 2009), PRISM (Kwiatkowska

et al, 2002) and others.

The formal verification on the system can also be

performed with the use of theorem proving techniques,

in which the system is modeled using invariants and set-

theoretical structures. Different logical inference rules,

linear and temporal properties can be applied for check-

ing correctness of the system. Inference can be semi-

automatic (with user involvement) or fully-automatic

(by providing full power of inference to theorem prover).

The commonly used semi-automatic theorem prover are

HOL (Harrison, 1996), Coq (Barras et al, 1997), ACL2

(Brock et al, 1996) PVS (Owre et al, 1996) and Is-

abelle (Paulson, 1989), whereas fully-automatic theo-

rem prover are Perfect Developer (Crocker, 2003) and

Escher C (Crocker and Carlton, 2007). The possible

scenarios, where these modeling techniques are applied,

are described in Table 4.

5.4.2 Abstraction

In case of model checkers, abstraction techniques are

frequently used for reducing the size of the system model.

The abstraction can be applied on states, actions and

variables of the model. Under this parameter, either the

name of the abstraction technique explicitly adopted

by the surveyed literature is mentioned or the cross (8)

sign indicating that it is not performed.

5.4.3 Automated

This parameter is used to represent that the surveyed

technique generates the model and the properties “au-

tomatically”, or it performs some manual instruction

and some part is automatically generated (“semi-automatically”),

or all work is performed “manually”.

5.4.4 Scalability

Scalability is among the important factors which are

considered for the evaluation of techniques. It is a broader

term and can be used in many dimensions. Here the

scalability is referred as the ability of the surveyed tech-

nique to enhance itself by adding more components of

same or different nature in the system. Under this pa-

rameter, the tick (4) sign indicates our observation

that the technique can be enhanced by adding other

components with their inner aspects and details.

5.4.5 Verification Tool

This parameter indicates that among the several model

checking/theorem proving tools (as listed in section 5.4.1),

which tools are adopted and in which domains and sce-

narios. In Table 4, this parameter (verification tool)

contains the name of the applied approaches/processes/tools

in verification process.

5.4.6 Example/Case Study

This parameter has the name of the application area,

which is selected by the surveyed literature as a case

study/example, for proving the satisfactory outcomes.

6 Discussion

In this paper, a survey of SmE modeling techniques

is empirically conducted. In survey, the modeling tech-

niques which also perform formal verification for con-

firming their correct behavior are considered.

As evident in the Table 1, the analysis shows that

most of the techniques do not perform black box mod-

eling, but white box modeling is globally performed.

The reasoning behind this trend can be attributed to

the fact that at least behavior modeling is performed in

any case due to the minimum formalism requirement.

Black box modeling, on the other hand, plays more of a

foundational role (in form of common dictionaries and

conventions). This role nevertheless has a considerable

planning and development cost. Owing to shortage of

time and resources, researchers seem to be in a hurry to

furnish the obvious functioning aspects of formal verifi-

cation rather than the foundation. For white box model-

ing, most of the techniques consistently use Statecharts

(or their variants) due to their maturity and ready avail-

ability other than mathematical-oriented wide cover-

age of all possible paths. Intelligence modeling, mostly

provided through Event-Condition-Action technique, is

almost globally performed by all the techniques. It is

imperative to mention that artificial intelligence (fuzzy

logic, decision tree) is not diffused in formal verification

practice. Finally, using the variants of temporal logic,

most of the surveyed techniques perform requirements

modeling.

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 17

The analysis of Table 2 shows that minimal user

modeling is performed by almost all the surveyed tech-

niques. However, it is opportune to mention that most

of the techniques acquire the knowledge of user identi-

fication and actions to perform user modeling. The real

user behavior modeling is performed by a minority of

techniques and a majority does not do so due to perti-

nent complexity of behavior versatility and uncertainty.

Further, all surveyed techniques in device modeling are

considering the interaction between the devices. But the

behavior of individual devices is only modeled by a very

few techniques. Further the table shows that almost

all the techniques perform control modeling, but their

point of reference is different: some involve the user’s

perspective, some involve device’s perspective and some

involve the environment’s/context’s perspective. 7 of

the surveyed techniques consider the user movements

before taking any decision in context modeling. Fur-

ther, the interaction modeling seems to be largely cov-

ered by the techniques; user identification and action,

and based on them the operations which could be per-

formed are major focus of interaction modeling. Leaving

aside Liu et al. ((Liu et al, 2012)), no other technique

seems holistic and global in its nature. They consider

one or the other component of SmE with the control

and model it; mostly the user. Four of the techniques

are somewhat holistic as they model 3 out of 4 SmE

components. There is definitely scarcity of techniques

covering all areas of components modeling.

The analysis of Table 3 shows that only 4 techniques

perform holistic consistency verification (between black

box and white box), whereas Ahmed and Tripathi ((Ahmed

and Tripathi, 2003)), though not having performed a

black box modeling, still adopt a consistency verifica-

tion strategy by validating the successive formalisms

with the previous ones. Since most of the techniques

have not performed black box modeling, therefore it

seems appropriate that they (other than Ahmed and

Tripathi) do not perform consistency verification. It is

also observed that 7 techniques perform user behavior

verification. This shows a lack of interactivity and live-

liness of SmE modeling and verification practices.

Similarly, the situation is equally alarming in con-

text verification with 7 out of 17 surveyed techniques

performing this verification. It can be argued that SmE

are context critical systems and demand an understand-

ing of their physical and location-based modalities, there-

fore such a modeling is highly required and the research

impetus is too strong to ignore in future works.

Also, some of the techniques are found to perform

device interaction verification. The increasing complex-

ity of devices and intricate nature of their behavior

within the system impede this type of verification. But,

based on mounting needs, it is imperative to perform

this type of modeling. The only surveyed technique

which has performed the complex internal device be-

havior verification is by Corno and Sanaullah ((Corno

and Sanaullah, 2011b)).

The analysis further reveals that device interaction

and control verification is performed by almost all the

techniques. It is grounded on the fact that most of the

surveyed techniques use control algorithms for accom-

plishing the system requirements, therefore it seems

natural that all these techniques do perform this kind

of verification. Finally, real time verification and proba-

bilistic verification are not found so diffused in the sur-

veyed techniques. These seem to be highly neglected ar-

eas of SmE verification and owing to their importance,

it is necessary that SmE researchers also divert some

effort to these areas.

The analysis of Table 4 shows abstraction is per-

formed by less than half of the surveyed techniques,

whereas others do not perform the abstraction. It can

be said that those techniques which perform abstraction

do so based on their large size and focus. According to

the observation, it is found that some techniques are

scalable, which can be enhanced by adding the other

components and their aspects in more details. Further,

it is found that 8 techniques are manual, 8 are semi-

automatic and only 1 technique claims to be fully au-

tomatic (as it is rule-based). It can be argued there

that the complex nature of SmE and correspondingly

complex modeling and verification requirements hinder

the automation of these techniques, as the only fully

automatic techniques is also not truly automatic in its

nature and is based on rules. All but two surveyed tech-

niques use verification tools of different nature. Finally,

all the surveyed techniques are tested on one or the

other case study of varying nature, scope and level of

complexity.

7 Conclusion

Smart Environments (SmE) are a growing field which

provides implicit computation facilities in the environ-

ment so that they behave in a sophisticated desired

manner. This sophistication is achieved with the inter-

action of users with the sensors, actuators, electrical

appliances and hidden computation. The versatile na-

ture of these components and their interaction makes

the systems huge, complex and ambiguous, motivating

to use the formal verification for validating the desired

behavior. In this survey, the techniques which are used

for the modeling of SmE and its related components,

along with the conformance of reliable behavior through

formal verification approaches, are considered.

18 Fulvio Corno, Muhammad Sanaullah

We derived some parameters related to the focused

area, modeling formalism, formal verification and other

important factors. We analyzed the techniques on these

parameters and conclude that the techniques mostly

follow Statecharts for the modeling purpose. It was also

observed that the black box modeling, owing to lack of

its visibility, is scarcely diffused in the techniques. Nev-

ertheless, Black box modeling assumes a fundamental

role by providing generic dictionaries and naming/communication

conventions which help broadly at the time of imple-

mentation. If the context and the user are also focused,

then Ambient Calculus is used.

Very few techniques are observed to model and ver-

ify – at a deeper level – all basic components of SmE

(user, devices, control algorithm, environment/context).

The model checking technique is used for the formal

verification. Some techniques also use abstractions for

reducing the state-space of the model. Results of the

survey show that no technique is fully automatic in true

nature and covers all the dimensions (e.g. modeling of

context, user, devices) of SmE. Based on this, it can also

be concluded that there still remains a sizable research

gap in SmE modeling and verification area. Mostly com-

plex modeling and verification scenarios and compo-

nents are given less or no attention partly due to the

inherent complexity and party due to personal inclina-

tion of current researchers towards areas of their inter-

est. This hinders in providing holistic solutions leaving

behind the industry and users with their specific needs

and demands. Therefore, it is deduced that more R&D

effort, impartial and objective in its nature, needs to be

put into the SmE modeling and verification research.

References

Acampora G, Loia V (2005) Fuzzy Control Interoper-

ability and Scalability for Adaptive Domotic Frame-

work. IEEE Transactions on Industrial Informatics

1(2):97–111

Ahmed T, Tripathi A (2003) Static Verification of Se-

curity Requirements in Role Based CSCW Systems.

In: Symposium on Access Control Models and Tech-

nologies: Proceedings of the eighth ACM symposium

on Access control models and technologies, vol 2, pp

196–203

Alur R, Henzinger T (1992) Logics and Models of Real

Time: A Survey. In: Real-Time: Theory in Practice,

Springer, pp 74–106

Augusto J, Hornos MJ (2013) Software Simulation

and Verification to Increase the Reliability of Intel-

ligent Environments. Advances in Engineering Soft-

ware 58:18–34

Augusto J, Mccullagh P (2007) Ambient Intelligence:

Concepts and Applications. Computer Science and

Information Systems 4 (1):1–27

Aziz A, Klein M, Treur J (2010) An Integrative Am-

bient Agent Model for Unipolar Depression Re-

lapse Prevention. Journal of Ambient Intelligence

and Smart Environments 2(1):5–20

Baeten J (2005) A Brief History of Process Algebra.

Theoretical Computer Science 335(2-3):131–146

Barras B, Boutin S, Cornes C, Courant J, Filliatre J,

Gimenez E, Herbelin H, Huet G, Munoz C, Murthy

C, et al (1997) The Coq Proof Assistant Reference

Manual: Version 6.1. INRIA– Institut National De

Recharche En Informatique Et Automatique

Beek M, Mazzanti F, Gnesi S (2009) CMC-UMC: A

Framework for the Verification of Abstract Service-

Oriented Properties. In: Proceedings of the ACM

symposium on Applied Computing, New York, NY,

USA, pp 2111–2117

Beek M, Fantechi A, Gnesi S, Mazzanti F (2011)

A State/Event-Based Model-Checking Approach for

the Analysis of Abstract System Properties. Science

of Computer Programming 76:119–135

Benghazi K, Hurtado M, Hornos M, Rodŕıguez M,

Rodŕıguez-Domı́nguez C, Pelegrina A, Rodŕıguez-

Fórtiz M (2012) Enabling Correct Design and Formal

Analysis of Ambient Assisted Living systems. Jour-

nal of Systems and Software 85(3):498–510

Bergstra J, Klop J (1984) Process Algebra for Syn-

chronous Communication. Information and control

60(1-3):109–137

Bernardeschi C, Fantechi A, Gnesi S, Larosa S, Mon-

gardi G, Romano D (1998) A Formal Verification

Environment for Railway Signaling System Design.

Formal Methods in System Design 12(2):139–161

Berthomieu B, FVernadat (2006) Time Petri Nets

Analysis with TINA. In: Third International Confer-

ence on Quantitative Evaluation of Systems, IEEE,

pp 123–124

Birkedal L, Debois S, Elsborg E, Hildebrandt T, Niss H

(2006) Bigraphical models of context-aware systems.

In: Foundations of software science and computation

structures, Springer, pp 187–201

Biswas J, Mokhtari M, Dong JS, Yap P (2010) Mild

Dementia Care at Home–Integrating Activity Moni-

toring, User Interface Plasticity and Scenario Verifi-

cation. In: Aging Friendly Technology for Health and

Independence, Springer, pp 160–170

Bolton ML, Bass EJ, Siminiceanu RI (2012) Generating

Phenotypical Erroneous Human Behavior to Eval-

uate Human-Automation Interaction using Model

Checking. International Journal of Human-Computer

Studies 70(11):888 – 906

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 19

Bonhomme S, Campo E, Esteve D, Guennec J (2008)

Methodology and Tools for the Design and Verifica-

tion of a Smart Management System for Home Com-

fort. In: 4th International Conference on Intelligent

Systems, IEEE, pp 24–2 –24–7

Booch G, Rumbaugh J, Jacobson I (1998) Unified Mod-

eling Language User Guide, The. Addison Wesley.

Bosse T, Jonker CM, Meij L, Treur J (2007) A Lan-

guage and Environment for Analysis of Dynamics by

Simulation. International Journal on Artificial Intel-

ligence Tools 16(03):435–464

Bosse T, Jonker C, Meij L, Sharpanskykh A, Treur J

(2009) Specification and Verification of Dynamics in

Agent Models. International Journal of Cooperative

Information Systems 18(01):167–193

Boytsov A, Zaslavsky A (2013) Formal Verification of

Context and Situation Models in Pervasive Comput-

ing. Pervasive and Mobile Computing 9(1):98 – 117

Brock B, Kaufmann M, Moore J (1996) ACL2 The-

orems about Commercial Microprocessors. In: For-

mal Methods in Computer-Aided Design, Springer,

pp 275–293

Brookes S (1983) On the Relationship of CCS and CSP.

Automata, Languages and Programming pp 83–96

Byg J, Jørgensen K, Srba J (2009) TAPAAL: Editor,

Simulator and Verifier of Timed-arc Petri Nets. Au-

tomated Technology for Verification and Analysis pp

84–89

Cardelli L, Gordon A (1998) Mobile Ambients. In:

Foundations of Software Science and Computation

Structures, Springer, pp 140–155

Charatonik W, Talbot JM (2001) The Decidability of

Model Checking Mobile Ambients. In: Fribourg L

(ed) Computer Science Logic, Lecture Notes in Com-

puter Science, vol 2142, Springer Berlin / Heidelberg,

pp 339–354

Chen C, Helal S (2012) System-wide support for safety

in pervasive spaces. Journal of Ambient Intelligence

and Humanized Computing 3(2):113–123

Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pi-

store M, Roveri M, Sebastiani R, Tacchella A (2002)

Nusmv 2: An Opensource Tool for Symbolic Model

Checking. In: Computer Aided Verification, Springer,

pp 241–268

Clarke E, Wing J (1996) Formal Methods: State of the

Art and Future Directions. ACM Computing Surveys

28(4):626–643

Clarke E, Grumberg O, Long D (1994) Verification

Tools for Finite-State Concurrent Systems. A Decade

of Concurrency Reflections and Perspectives pp 124–

175

Clarke EM, Emerson EA, Sistla AP (1986) Automatic

verification of finite-state concurrent systems using

temporal logic specifications. ACM Transactions on

Programming Languages and Systems 8:2:244–263

Cook D (2009) Multi-Agent Smart Environments. Jour-

nal of Ambient Intelligence and Smart Environments

1(1):51–55

Cook D, Youngblood M, Das S (2006) A Multi-Agent

Approach to Controlling a Smart Environment. De-

signing smart homes pp 165–182

Corno F, Sanaullah M (2011a) Design Time Methodol-

ogy for the Formal Verification of Intelligent Domotic

Environments. In: Ambient Intelligence - Software

and Applications, Advances in Intelligent and Soft

Computing, vol 92, Springer Berlin / Heidelberg, pp

9–16

Corno F, Sanaullah M (2011b) Formal verification of

device state chart models. In: 7th International Con-

ference on Intelligent Environments, IEEE, pp 66–73

Corno F, Sanaullah M (2013) Modeling and For-

mal Verification of Smart Environments. Security

and Communication Networks pp n/a–n/a, DOI 10.

1002/sec.794, URL http://dx.doi.org/10.1002/

sec.794

Coronato A, Pietro G (2010a) Formal Specification

of Wireless and Pervasive Healthcare Applications.

ACM Transactions on Embedded Computing Sys-

tems 10(1):12

Coronato A, Pietro GD (2010b) Formal Design of Am-

bient Intelligence Applications. Computer 43(12):60

–68

Coronato A, Pietro GD (2011) Formal Specification

and Verification of Ubiquitous and Pervasive Sys-

tems. ACM Transactions on Autonomous and Adap-

tive Systems 6(1):9:1–9:6

Crocker D (2003) Perfect Developer: A Tool for Object-

Oriented Formal Specification and Refinement. Tools

exhibition notes at formal methods Europe

Crocker D, Carlton J (2007) Verification of C Pro-

grams using Automated Reasoning. In: Fifth Interna-

tional Conference on Software Engineering and For-

mal Methods, IEEE, pp 7–14

Diane C, Sajal D (2004) Smart Environments: Technol-

ogy, Protocols and Applications. Wiley-Interscience

Fantechi A, Gnesi S, Lapadula A, Mazzanti F, Pugliese

R, Tiezzi F (2008) A model checking Approach for

Verifying COWS Specifications. Fundamental Ap-

proaches to Software Engineering pp 230–245

Feng L, Apers P, Jonker W (2004) Towards Context-

Aware Data Management for Ambient Intelligence.

In: Database and Expert Systems Applications,

Springer, pp 422–431

Fensel D (2001) Ontologies: A Silver Bullet for

Knowledge Management and Electronic Commerce.

Springer-Verlag, New York, NY, USA

20 Fulvio Corno, Muhammad Sanaullah

Forejt V, Kwiatkowska M, Norman G, Parker D (2011)

Automated Verification Techniques for Probabilistic

Systems. In: Formal Methods for Eternal Networked

Software Systems, Springer, pp 53–113

Gallardo M, Merino P, Pimentel E (2002) Debugging

UML Designs with Model Checking. Journal of Ob-

ject Technology 1(2):101–117

Garavel H, Lang F, Mateescu R, et al (2001)

An Overview of CADP 2001. Research Re-

port RT-0254, INRIA, URL http://hal.inria.fr/

inria-00069920

Gardey G, Lime D, Magnin M, Roux O (2005) Romeo:

A tool for Analyzing Time Petri Nets. In: Computer

Aided Verification, Springer, pp 261–272

Gnesi S, Mazzanti F (2004) On the Fly Model Check-

ing of Communicating UML State Machines. In: Sec-

ond ACIS International Conference on Software En-

gineering Research, Management and Applications,

pp 331–338

Gnesi S, Latella D, Massink M (1999) Model Checking

UML Statechart Diagrams Using JACK. In: Proceed-

ings of 4th IEEE International Symposium on High-

Assurance Systems Engineering, IEEE, pp 46–55

Hagras H, Callaghan V, Colley M, Clarke G, Pounds-

Cornish A, Duman H (2004) Creating an Ambient-

Intelligence Environment Using Embedded Agents.

Intelligent Systems 19(6):12–20

Harel D (1987) Statecharts: A Visual Formalism for

Complex Systems. Science of Computer Program-

ming 8(3):231 – 274

Harrison J (1996) HOL Light: A Tutorial Introduc-

tion. In: Formal Methods in Computer-Aided Design,

Springer, pp 265–269

Hennessy M, Milner R (1985) Algebraic Laws for Non-

determinism and Concurrency. Journal of the ACM

32(1):137–161

Hoare C (1978) Communicating Sequential Processes.

Communications of the ACM 21(8):666–677

Holzmann G (1997) The Model Checker SPIN. IEEE

Transactions on Software Engineering 23(5):279–295

Hoogendoorn M, Klein M, Memon ZA, Treur J (2009)

Formal Verification of an Agent-Based Support Sys-

tem for Medicine Intake. In: Fred A, Filipe J, Gam-

boa H (eds) Biomedical Engineering Systems and

Technologies, Communications in Computer and In-

formation Science, vol 25, Springer Berlin Heidelberg,

pp 453–466

Hoogendoorn M, Klein MC, Memon ZA, Treur J

(2013) Formal Specification and Analysis of In-

telligent Agents for Model-Based Medicine Usage

Management. Computers in Biology and Medicine

43(5):444 – 457

Hopcroft J, Motwani R, Ullman J (1979) Introduction

to Automata Theory, Languages, and Computation,

vol 2. Addison-wesley Reading, MA

IBM (2005) Commonsense Reasoning with the Dis-

crete Event Calculus Reasoner. URL http://

decreasoner.sourceforge.net/

Ishikawa F, Suleiman B, Yamamoto K, Honiden S

(2009) Physical Interaction in Pervasive Computing:

Formal Modeling, Analysis and Verification. In: Pro-

ceedings of the international conference on Pervasive

services, ACM, pp 133–140

Jansen D, Hermanns H, Katoen J (2002) A Probabilis-

tic Extension of UML Statecharts. In: Formal Tech-

niques in Real-Time and Fault-Tolerant Systems,

Springer, pp 355–374

Kofod-Petersen A, Aamodt A (2006) Contextualised

Ambient Intelligence Through Case-Based Reason-

ing. Advances in Case-Based Reasoning pp 211–225

Kwiatkowska M, Norman G, Parker D (2002) PRISM:

Probabilistic Symbolic Model Checker. Computer

Performance Evaluation: Modelling Techniques and

Tools pp 113–140

Larsen K, Pettersson P, Yi W (1997) UPPAAL in a

Nutshell. International Journal on Software Tools for

Technology Transfer 1(1):134–152

Latella D, Majzik I, Massink M (1999a) Automatic Ver-

ification of a Behavioural Subset of UML Statechart

Diagrams Using the SPIN Model-Checker. Formal

Aspects of Computing 11(6):637–664

Latella D, Majzik I, Massink M (1999b) Towards a

Formal Operational Semantics of UML Statechart

Diagrams. In: Proceedings of the IFIP TC6/WG6,

vol 99, pp 15–18

Leelaprute P, Nakamura M, Tsuchiya T, Matsumoto K,

Kikuno T (2005) Describing and Verifying Integrated

Services of Home Network Systems. In: 12th Asia-

Pacific Software Engineering Conference, p 10

Li P, Regehr J (2010) T-check: Bug Finding for Sensor

Networks. In: Proceedings of the 9th ACM/IEEE In-

ternational Conference on Information Processing in

Sensor Networks, ACM, pp 174–185

Lilius J, Paltor I (1999) vUML: A Tool for Verifying

UML Models. In: 14th IEEE International Confer-

ence on Automated Software Engineering, IEEE, pp

255–258

Liu Y, Zhang X, Dong J, Liu Y, Sun J, Biswas J,

Mokhtari M (2012) Formal Analysis of Pervasive

Computing Systems. In: 17th International Confer-

ence on Engineering of Complex Computer Systems,

IEEE, pp 169–178

Madl G, Abdelwahed S, Schmidt D (2006) Verifying

Distributed Real-Time Properties of Embedded Sys-

tems via Graph Transformations and Model Check-

Design-Time Formal Verification for Smart Environments: An Exploratory Perspective 21

ing. Real-Time Systems 33(1):77–100

Manna Z, Pnueli A (1992) The Temporal Logic of Re-

active and Concurrent Systems. Springer-Verlag New

York, Inc., New York, NY, USA

Masci P, Furniss D, Curzon P, Harrison MD, Bland-

ford A (2012) Supporting field investigators with pvs:

a case study in the healthcare domain. In: Software

Engineering for Resilient Systems, Springer, pp 150–

164

Masci P, Curzon P, Harrison MD, Ayoub A, Lee I,

Thimbleby H (2013a) Verification of interactive soft-

ware for medical devices: Pca infusion pumps and fda

regulation as an example. EICS2013 ACM Digital Li-

brary

Masci P, Zhang Y, Curzon P, Harrison MD, Jones

P, Thimbleby H (2013b) Verification of software

for medical device user interfaces in PVS. Sub-

mitted paper, URL http://www.chi-med.ac.uk/

researchers/bibdetail.php?docID=656

Mascolo C, Ghica D, Ryan M, Lupu E (2009) Ubi-

Val: Fundamental Approaches to Validation of

Ubiquitous Computing Applications and Infrastruc-

tures. Research Proposed EP/D076625/2, EPSRC,

URL https://www.comp.nus.edu.sg/~david/

Research/ubival.pdf

McMillan K (1992) Symbolic Model Checking: An Ap-

proach to the State Explosion Problem. Tech. rep.,

DTIC Document

Mikk E, Lakhnechi Y, Siegel M (1997) Hierarchical Au-

tomata as Model for Statecharts. Advances in Com-

puting Science pp 181–196

Mikk E, Lakhnech Y, Siegel M, Holzmann G (1998) Im-

plementing Statecharts in PROMELA/SPIN, book-

title = Proceedings in 2nd Workshop on Industrial

Strength Formal Specification Techniques. IEEE, pp

90 –101

Milner R, Parrow J, Walker D (1992) A Calculus of

Mobile processes, I. Information and computation

100(1):1–40

Mottola L, Voigt T, Österlind F, Eriksson J, Baresi L,

Ghezzi C (2010) Anquiro: Enabling Efficient Static

Verification of Sensor Network Software. In: Proceed-

ings of the ICSE Workshop on Software Engineering

for Sensor Network Applications, ACM, pp 32–37

Nicola RD (1995) Three Logics for Branching Bisim-

ulation. Journal of the Association for Computing

Machinery 42:2:458–487

Nicola RD, Vaandrager F (1990) Action versus state

based logics for transition systems. Semantics of Sys-

tems of Concurrent Processes, Lecture Notes in Com-

puter Science 469:407–419

Nielsen M, Plotkin G, Winskel G (1981) Petri Nets,

Event Structures and Domains, Part I. Theoretical

Computer Science 13(1):85–108

Owre S, Rajan S, Rushby JM, Shankar N, Srivas M

(1996) Pvs: Combining specification, proof checking,

and model checking. In: Computer Aided Verifica-

tion, Springer, pp 411–414

Padovitz A, Loke SW, Zaslavsky A (2008) Multiple-

Agent Perspectives in Reasoning about Situations for

Context-Aware Pervasive Computing Systems. IEEE

Transactions on Systems, Man and Cybernetics, Part

A: Systems and Humans 38(4):729–742

Paulson LC (1989) The Foundation of a Generic

Theorem Prover. Journal of Automated Reasoning

5(3):363–397

Pedrycz W (2010) Human Centricity in Computing

with Fuzzy Sets: an Interpretability Quest for Higher

Order Granular Constructs. Journal of Ambient In-

telligence and Humanized Computing 1(1):65–74

Ranganathan A, Campbell R (2008) Provably Correct

Pervasive Computing Environments. In: Sixth An-

nual International Conference on Pervasive Comput-

ing and Communications, IEEE, pp 160–169

Reynolds M (2005) An Axiomatization of PCTL*. In-

formation and Computation 201(1):72–119

Roman GC, Julien C, Payton J (2007) Modeling Adap-

tive Behaviors in Context UNITY. Theoretical Com-

puter Science 376(3):185–204

Sadri F (2011) Ambient Intelligence: A Survey. ACM

Computing Surveys 43(4):36:1–36:66

Schafer T, Knapp A, Merz S (2001) Model Checking

UML State Machines and Collaborations. Electronic

Notes in Theoretical Computer Science 55(3):357–

369

Shanahan M (1999) The Event Calculus Explained. In:

Artificial intelligence today, Springer, pp 409–430

Sharpanskykh A, Treur J (2012) An Ambient Agent

Architecture Exploiting Automated Cognitive Anal-

ysis. Journal of Ambient Intelligence and Humanized

Computing 3(3):219–237

Siewe F, Zedan H, Cau A (2011) The Calculus of

Context-Aware Ambients. Journal of Computer and

System Sciences 77(4):597–620

Stankovski V, Trnkoczy J (2006) Application of Deci-

sion Trees to Smart Homes. Designing Smart Homes

pp 132–145

Stevens P, Stirling C (1998) Practical Model-Checking

Using Games. Tools and Algorithms for the Con-

struction and Analysis of Systems pp 85–101

Sun J, Liu Y, Dong J, Pang J (2009) PAT: Towards

Flexible Verification under Fairness. In: Bouajjani A,

Maler O (eds) Computer Aided Verification, Lecture

Notes in Computer Science, vol 5643, Springer Berlin

Heidelberg, pp 709–714

22 Fulvio Corno, Muhammad Sanaullah

Wang F (2004) Formal Verification of Timed Systems:

A Survey and Perspective. Proceedings of the IEEE

92(8):1283–1305

Weiser M (1991) The Computer for the 21st Century.

Scientific American 265(3):94–104

Woodcock J, Larsen P, Bicarregui J, Fitzgerald J (2009)

Formal Methods: Practice and Experience. ACM

Computing Surveys 41(4):19

Ye J, Dobson S, McKeever S (2012) Situation Identifica-

tion Techniques in Pervasive Computing: A Review.

Pervasive and Mobile Computing 8(1):36–66

Zadeh LA (1965) Fuzzy Sets. Information and control

8(3):338–353

