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Abstract. The continuing discovery of new functions and classes of
small non-coding RNAs is suggesting the presence of regulatory mecha-
nisms far more complex than the ones identified so far. In our compu-
tational analysis of a large set of public available databases, we found
statistical evidence of an inter-pathway regulatory motif, not previously
described, that reveals a new protective role miRNAs may play in the
successful activation of a pathway. This paper reports the main outcomes
of this analysis.
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1 Introduction

In the past few years, the quest for recurrent motifs in the complex world of gene
regulation achieved several interesting results and identified the central role of
non-coding RNAs in intra-pathway regulation [2]. In our research for higher-
level mechanisms of transcriptional regulation, we identified an inter-pathway
regulatory motif, not previously described, in which miRNAs seem to play a
new role in the successful expression of a pathway. In particular, some intragenic
miRNAs, co-expressed with one or more pathway genes, seem to act as pathway
protectors. We observed that, in several situations, they target the transcription
factors of a set of genes hosting miRNAs that could interfere with the pathway
successful activation. We found statistical evidence that this inter-pathway reg-
ulatory motif, which we called Pathway Protection Loop (PPL), is very common
in several classes of KEGG pathways [7].

Figure 1 shows the structure of a PPL. The successful full activation of a
pathway not only depends on the correct expression of the pathway genes, but
also on controlling the expression of other genes that could potentially dysregu-
late (down-regulate or silence) the pathway at some point. We call these genes
the Pathway Antagonist Genes (PAGs). A possible way PAGs may interfere with
the activity of a pathway is to express a set of miRNAs, in this context called An-
tagonist miRNAs, targeting and down-regulating some of the pathway’s genes.
Interestingly, we discovered that, in several situations, the pathway intragenic
miRNAs target and silence the transcription factors of the PAGs, thus creating
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Fig. 1: Pathway Protection Loop (solid lines indicate active interactions; dashed
lines indicate inhibited effects).

a loop that seems designed to prevent PAGs from interfering with the path-
way expression process. When a PPL is present, its action is carried out in the
following steps:

1. When the pathway is activated, one or more pathway genes co-express one
or more intragenic miRNAs.

2. The intragenic miRNAs expressed by the pathway target one or more tran-
scription factors of some of the PAGs. We call these transcription factors
Pathway Antagonist Transcription Factors (PATFs).

3. The down-regulation of the PATFs has a repressive effect on the expression
of the corresponding PAGs.

4. Down-regulated PAGs have lower ability to express the Antagonist miRNAs.
miRNAs have a post-transcriptional regulation role [5]. Intragenic miRNAs
that directly target the PAGs would not actually prevent the expression of
the related Antagonist miRNAs since miRNAs are produced during tran-
scription. The only way PPLs can form is therefore by mediating the PAGs
down-regulation through their corresponding PATFs [19].

5. The reduced presence of Antagonist miRNAs contributes to the successful
expression of the pathway genes, thus closing the protection loop.

This paper proposes an extensive bioinformatics study designed to analyze
the existence and the characteristics of this new motif on a large set of public
available pathways. Results will show statistical evidence that this inter-pathway
regulatory motif is very common in several classes of KEGG homo sapiens path-
ways.

2 Results

We analyzed a set of 158 pathways from the KEGG database [7], representing
the full set of available Homo Sapiens maps with the exception of human dis-
eases and a few pathways not actually containing a regulatory network. Selected

IWBBIO 2013. Proceedings Granada, 18-20 March, 2013 378



miRNA as Pathways’ protectors. 3

pathways have been clustered in two main groups based on the KEGG BRITE
hierarchy. The first group contains 107 metabolic pathways (KEGG metabolism
classification) while the second group contains 51 non-metabolic pathways (9
from KEGG cellular processes classification, 16 from KEGG environmental in-
formation processes classification, 6 from KEGG genetic information processes
classification and 20 from KEGG organismal systems classification). PPLs in
KEGG pathways have been statistically compared to those identified in a popu-
lation of 107 randomly generated pathways. Genes have been randomly shuffled
among the 158 KEGG networks obtaining a set of 158 random pathways. 107
out of the 158 generated networks have been then randomly selected. The num-
ber of random pathways selected for the statistical analysis is directly connected
to the numerosity of the metabolic pathway group that represents the largest
group of our dataset. Using this randomization approach the frequency in which
each gene occurs in the data set has been preserved while its position in a given
network has been randomly modified.

2.1 Statistical analysis

Table 1 summarizes the overall statistics of our experimental setup. We first
investigated statistical differences in the frequency in which PPLs appear among
the three considered groups of pathways (metabolic, non-metabolic, random).
Table 1-a reports the obtained contingency matrix. A pathway is counted in the L
column if it manifests at least one PPL, otherwise it is counted in the NL column.
Since miRNAs play a pivotal role in the formation of a PPL, we performed the
full analysis by considering high-score miRNA target predictions, only (mirSVR
< -0.3, see section 3). PPLs appear in about 55% of non-metabolic pathways
while they appear only in about 9% of metabolic pathways. This is in accordance
with previous publications that highlight the deep involvement of miRNAs in
the regulation of signaling pathways, which represent a large portion of the
non-metabolic pathways group [15]. Pearson’s Chi-squared test among the three
groups confirms this qualitative observation and highlights significant statistical
dependence between rows and columns of the contingency table (p = 5.48e-09).
To better understand where differences among groups lie, post-hoc analysis has
been performed. We performed a chi-squared test considering all possible pairs
of groups (i.e., metabolic vs. random, non-metabolic vs. random, metabolic vs.
non-metabolic) adjusting resulting p-values using Holms correction. All tests
highlighted significant statistical differences among the groups as reported in
Table 1-c.

We also investigated if we can observe statistical difference in the number of
PPLs per pathway among the different groups. Due to lack of Normality in this
variable (Kolmogorov-Smirnov test, p-value < 2.2e-16) we resorted to a Kruskal-
Wallis test. The test highlights that there is statistical difference in the number of
loops among the three groups of pathways (p-value = 2.633e-09). Again to better
understand the differences among the different groups we performed a post-hoc
analysis running a set of Mann-Whitney U tests among pairs of different groups
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applying a Holms p-value adjustment. All tests confirmed significant statistical
difference among the considered groups (p-values are reported in Table 1-e).

From the statistical analysis we can therefore conclude that the presence of
the PPL motifs in the set of considered KEGGs is not a random event.

To understand the influence of the miRNA target predictions on the statistics
we repeated the statistical analysis considering an increased cut-off value of the
miRNA target prediction scores (mirSVR < -0.6) thus reducing the number of
predicted targets. Tables 1-b, 1-d and 1-f summarize the overall statistical results
for this additional analysis. Also these results confirm the statistically significant
presence of the PPLs. This outcome is particularly interesting since it highlights
that the identified PPLs mainly involve high-score miRNA gene predictions, thus
adding reliability to our findings.

Table 1: Statistical analysis summary.

(a) Pathway frequency contingency table.

L NL
Metabolic 10 (9.3%) 97 (90.7%)

Non-Metab. 28 (54.9%) 23 (45.1%)
Random 33 (30.8%) 74 (69.2%)

(b) Pathway frequency contingency table.

L NL
Metabolic 7 (6.5%) 100 (93.5%)

Non-Metab. 24 (47.0%) 27 (53.0%)
Random 25 (23.3%) 82 (76.7%)

(c) Pearson’s Chi-Square test p-value on the fre-
quency of loops with Holms correction (mirSVR
< -0.3)

Metabolic Non-Metab.
Non-Metab. 1.318e-09 -

Random 1.746e-4 6.339e-3

(d) Pearson’s Chi-Square test p-value on the fre-
quency of loops with Holms correction (mirSVR
< -0.6)

Metabolic Non-Metab.
Non-Metabolic 7.395e-09 -

Random 1.119e-3 4.705e-3

(e) Mann-Whitney U test p-value on the loop
numerosity with Holms correction (mirSVR < -
0.3)

Metabolic Non-Metab.
Non-Metab. 1.0e-09 -

Random 2.9e-4 9.2e-4

(f) Mann-Whitney U test p-value on the loop
numerosity with Holms correction (mirSVR < -
0.6

Metabolic Non-Metab.
Non-Metab. 9.5e-09 -

Random 1.4e-3 1.6e-3

2.2 An example of a PPL in the Aminoacyl-tRNA biosynthesis
pathway

The Aminoacyl-tRNA biosynthesis pathway (KEGG map #hs-00970), is ”Ge-
netic Information Processing pathway describing the activity of precisely match-
ing amino acids with tRNAs containing the corresponding anticodon [14].

The simplicity of the PPL regulatory mechanisms in this pathway can be ap-
preciated looking at Fig.2. hsa-mir-215 represents a sort of hub for the creation
of PPLs. Interestingly, we observed that this ”hierarchical” structure is typical
of the PPL motif, where a very small number of intragenic miRNAs (usually one
or two) is able to create loops targeting a large number of pathway genes. In this
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Fig. 2: PPLs identified in the KEGG Aminoacyl-tRNA biosynthesis pathway
(hs-00970). Only edges forming PPLs have been depicted.

example, the co-expression of a single miRNA allows the pathway to protect the
expression of 25.6% of its genes.

The involvement of YY1 in the formation of PPLs in this pathway is inter-
esting. YY1 is well known as regulator of the expression of numerous genes that
are mostly involved in cancers. Its up-regulation has been observed in different
types of cancers and it has therefore been proposed as a potential prognostic
marker [18]. The fact that this specific gene is also involved in the formation of
several PPLs in this pathway and therefore controlled by the regulatory effects
of the loop is in accordance with our hypothesis of the protective role this motif
has on the correct expression of a pathway. A complete list of the identified PPL
with their graphical representation inside each pathway is available at http://
www.testgroup.polito.it/index.php/component/k2/item/184-ppl-list.

3 Materials and Methods

To study characteristics and properties of PPLs, we designed a PHP-MySQL
pipeline integrating pathway and Micronome related data in order to search
for miRNA mediated interactions at the pathway level, thus searching for the
existence of PPLs. The source code of the pipeline is available at http://www.

testgroup.polito.it/index.php/component/k2/item/185-pathway-protection-loops-finder.
Pathways’ information and structures have been retrieved through Pathway

API [17], an aggregated database that combines three major sources of infor-
mation: (1) the WikiPathway database, the (2) Ingenuity database and the (3)
KEGG. One of the main advantages of Pathway API is the normalization of the
network nodes that are all consistently translated and named using the corre-
sponding NCBI Gene ID, thus enabling an easy data integration with the other
data sources considered in this work.

Figure 3 highlights the data sources and computations steps performed in
our pipeline. The pipeline basically consists of two information-retrieval flows
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applied to each gene of each target pathway. The outcomes of these two flows
are then intersected to identify the presence of PPLs.

Fig. 3: Computational pipeline for the identification of pathway protection loops.

The external data sources employed in the proposed pipeline are the Entrez
E-Utils web API (e-Utils) [13], the miRBase database release 18 (miRBase)
[8], the microRNA.org database (microRNA.org) [10], the TargetMine database
[3], the Transcription Factor encyclopedia (TFe) [20], and the Sanger Genecode
database release 9 (Sanger) [12].

To identify miRNAs co-expressed with the pathway genes we restrict our
search to the set of intragenic miRNA (Step 1, Figure 3). Intragenic miRNA rep-
resent around 50% of the mammalian miRNAs [11]. We assume that intragenic
miRNA are in general co-expressed with their related host-genes as supported
by previous studies [16]. Recently Chunjiang et al. [6] also suggested that evo-
lutionary conserved intragenic miRNA tend to be co-expressed with their host
genes more likely than poorly conserved ones. This consideration could further
refine the outcome of our analysis, however at the current stage it has not yet
be implemented in our pipeline.

Intragenic miRNAs are retrieved through the miRBase. To identify intragenic
miRNA of a given host gene we first search for the coordinate of the gene using
the e-Utils. Once obtained the gene coordinates we search for all miRNAs with
coordinates embedded in the ones of the gene resorting to miRBase.

We search for potential targets of each identified intragenic miRNA (Step 2,
Figure 3) resorting to microRNA.org, which searches for miRNA targets applying
the miRanda algorithm [4]. Other miRNA target databases such as TargetScan
[9] use different prediction algorithms that aim at filtering many false positives
from the beginning of the prediction process. However, the availability of the
mirSVR score in microRNA.org provided us an additional degree of freedom to
investigate the robustness of our prediction when changing the way microRNA
targets are filtered (see Table 1). To work with reliable predictions and limit the
amount of returned miRNA-gene interactions, during the analysis we restricted
our search to the microRNA.org ”Good mirSVR score, Conserved miRNA” and
”Good mirSVR score, Non-conserved miRNA” with negative mirSVR score lower
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than -0.3/-0.6. Given the selected intragenic miRNA name, searching for the
targets simply requires a SQL query into the microRNA.org database.

Antagonist miRNAs (Step 3, Figure 3) are miRNAs that target one of the
genes of the pathway and whose targets, similarly to the Intragenic miRNA,
can be retrieved through microRNA.org. Given the NCBI GeneID we query the
microRNA.org database to identify the set of miRNAs targeting the gene. Query
to microRNA.org at this step follows the same filtering rules on the mirSVR score
applied for the identification of the intragenic miRNA targets.

The identification of an antagonist miRNA host gene (Step 4, Figure 3) fol-
lows an inverted flow compared to the one employed to identify the pathway
intragenic miRNAs. For each antagonist miRNA we identify the related coor-
dinates using miRBase, and, given the coordinates, we search into Sanger for
a gene whose coordinates embraces the one of the considered miRNA. Genes
identified at this step represent potential PAGs.

As already mentioned in the introduction of this paper, miRNAs act as post-
transcriptional regulators. The expression of miRNAs can be activated or re-
pressed by transcription factors of the related host genes, which therefore can
serve as upstream regulators of miRNA [19]. For each antagonist miRNA host
gene we search for the related transcription factors (Step 5, Figure 3) . Due
to the limited availability of information about Transcription Factors in public
databases, we aggregated the data from two databases: (1) TargetMine and (2)
TFe.

4 Conclusions

The identification of recurrent motifs in regulatory networks is a crucial step
in a more comprehensive understanding of the complex gene regulation system.
Motifs allow to functionally cluster together groups of genes, and to reduce the
complexity of the networks allowing a higher-level view of the regulatory mech-
anisms. In this work we discussed the presence of an interesting inter-pathway
protection loop motif that seems designed to ”protect” the pathway activation
and expression by an indirect down-regulation of potential antagonist genes.

The discovery of the Pathway Protection Loops is suggesting a possible reg-
ulatory mechanism at the pathway level not yet fully investigated. Studies con-
ducted on specific miRNAs such as the one published by Barik [1] confirm the
presence of this type of regulatory motif, but a high-level analysis such as the
one proposed in this paper is still missing.

The understanding of this and other higher-level regulatory motifs could,
for example, lead to new approaches in the identification of therapeutic targets
because it could unveil new and “indirect” ways to activate or silence a target
pathway.
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