Scattering by a PEC wedge on a dielectric

Original

Availability:
This version is available at: 11583/2518682 since:

Publisher:
IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

Published
DOI:10.1109/ICEAA.2013.6632458

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Scattering by a PEC wedge on a Dielectric substrate

V.G. Daniele, G. Lombardi

Abstract — A perfect electric conductor wedge lying on a dielectric half-space is analyzed, in the frequency domain. The structure is excited by a plane wave coming from the free space region. The problem is formulated using generalized Wiener-Hopf equations and an approximated solution in terms of spectral quantities is proposed by discretization of Fredholm integral equations. Numerical results for several geometries will be presented and discussed at the conference.

1 INTRODUCTION

The evaluation of the electromagnetic field in a physical structure constituted by a perfect electric conductor (PEC) wedge lying on a dielectric half-space is analyzed, see Fig. 1. The PEC wedge is with a face tangent to the dielectric half-space and with aperture angle

\[(\pi - \Phi_e)\]

while \(\Phi_e > \pi/2\).

Without loss of generality, the structure is illuminated at normal incidence by an E-polarized plane wave (1) coming from the free space region (upper half-space) with direction \(\varphi_o\) \((0 < \varphi_o < \Phi_e)\) and with propagation constant \(k_o = \omega \sqrt{\varepsilon_o \mu_o}\) (free space permittivity \(\varepsilon_o\) and permeability \(\mu_o\)).

\[E_z = E_o e^{j k_o \rho \cos(\varphi - \varphi_o)}\] (1)

The lower half-space is constituted by a dielectric region with permittivity \(\varepsilon = \varepsilon_o \varepsilon_r\) and permeability \(\mu = \mu_o \mu_r\).

Apparently, the literature on this problem is very poor. Particular cases of a wedge immersed in a stratified medium were studied by Bertoncini and al. [1]-[2] by using the Uniform Theory of Diffraction (UTD). However the application of this method is limited to edges not close to the stratified regions.

Our approach is based on a formulation that uses the generalized Wiener-Hopf equations developed in [3]-[14] for different kind of wedge problems, i.e. scattering and diffraction by impenetrable wedge and penetrable wedge illuminated by plane waves at normal or skew incidence.

This technique has been recently extended to investigate wedge over a stratified medium [15]. The aim of this summary paper is to successfully introduce the extension of the application of Wiener-Hopf techniques to the present problem.

Since closed form solutions of classical Wiener-Hopf equations (CWE) and generalized Wiener-Hopf equations (GWHE) are possible only for a small class of problems, we have introduced a semi-analytical method based on the reduction of CWE and GWHE to Fredholm integral equations (FIE) [15]-[19]. This technique allows to obtain solutions for more general problems and we intend to apply it in the present problem.

2 FORMULATION

With reference to the problem described in Fig.1, we only consider time harmonic electromagnetic fields with a time dependence specified by the factor \(e^{+j\omega t}\) which is omitted.

Following the procedure presented in [15] we formulate the problem in terms of radial transmission line [3],[20],[6] in the upper free-space region and in terms of longitudinal transmission line in the lower dielectric region.

We define the following Wiener-Hopf spectral unknowns (Laplace transform) in the \(\eta\)-plane respectively for the upper region \((y > 0, 0 \leq \varphi < \Phi_e)\)

\[V_+(\eta, \varphi) = \int_0^\infty E_z(\rho, \varphi) e^{j\eta \rho} d\rho\]

\[I_+(\eta, \varphi) = \int_0^\infty H_\rho(\rho, \varphi) e^{j\eta \rho} d\rho\] (2)
and for the lower region \((y < 0)\)

\[
v_\eta(y) = \int_{-\infty}^{\infty} E_x(x, y)e^{j\eta x} \, dx \\
+i_\eta(y) = \int_{-\infty}^{\infty} H_x(x, y)e^{j\eta x} \, dx
\]
(3)

In particular we define the axial unknowns

\[
V_+ (\eta) = V_+ (\eta, \varphi = 0) \\
I_+ (\eta) = I_+ (\eta, \varphi = 0)
\]

whose physical support is the boundary between the free space region and the dielectric region.

By recalling the boundary conditions on the PEC and dielectric faces, the radial transmission line models electromagnetic problems in angular domains as \((y > 0), 0 \leq \varphi \leq \Phi_e\). From the analysis of the transmission line we obtain the following GWHE

\[
Y_cv_+ (\eta) - I_+ (\eta) = -I_{a+} (-m)
\]
(4)

where

\[
Y_c = \xi \omega \mu_o \\
\xi = \xi (\eta) = \sqrt{k_o^2 - \eta^2} = \tau_o \\
m = -\eta \cos \Phi_e + \xi \sin \Phi_e
\]

The longitudinal transmission line models electromagnetic problems in stratified medium as in particular the dielectric region \((y < 0)\). From the analysis of the transmission line we obtain the following CWHE

\[
Y_d V_+ (\eta) + I_+ (\eta) = -I_{-} (\eta)
\]
(5)

where

\[
Y_d = \frac{\xi_d}{k_d \omega} \\
\xi = \xi (\eta) = \sqrt{k_d^2 - \eta^2} \\
k_d = k_o \sqrt{\varepsilon_r}
\]

3 STEPS FOR THE SOLUTION

Starting from the system of Wiener-Hopf equations (4) and (5) we apply a generalized version of the Fredholm factorization method [16]-[19] as reported in [15]. It yields (6) and (7), reported in the next page, where \(f(\eta)\) is a source term extracted from the Wiener-Hopf unknowns as offending pole and it is related to the Geometrical Optics field (GO).

Since (6) and (7) are a system of Fredholm integral equation, their numerical discretization yields fast convergent solutions [21] in terms of \(V_+ (\eta), I_+ (\eta)\). If one is only interested on the spectrum of \(V_+ (\eta)\), we can eliminate \(I_+ (\eta)\) by substitution yielding a single integral equation with \(V_+ (\eta)\) as unique unknown. The properties of convergence are unaffected.

From \(V_+ (\eta)\), using the inverse Fourier transform and asymptotic evaluation, it is possible to obtain the GTD diffraction coefficient and the total far-fields for the problem under examination.

4 CONCLUSION

The method proposed in this summary paper shows the possibility of the GWHE technique to solve the problem of evaluating the electromagnetic field of a perfect electric conductor wedge lying on a dielectric half-space. Skew incidence case will be considered in future works.

Acknowledgment

This work was sponsored in part by the Italian Ministry of Education, University and Research (MIUR) under PRIN grant 20097JM7YR.

References

\begin{equation}
Y_c(\eta) V_+(\eta) - I_+(\eta) + \frac{1}{2\pi j} \left[\int_{-\infty}^{\infty} \frac{Y_c(\eta')}{\alpha'(\eta') - \frac{\alpha(\eta)}{\eta' - \eta}} \alpha'(\eta') - \frac{Y_c(\eta)}{\eta' - \eta} \right] V_+(\eta') d\eta' = f(\eta) \quad (6)
\end{equation}

\begin{equation}
Y_d(\eta) V_+(\eta) + I_+(\eta) + \frac{1}{2\pi j} \int_{-\infty}^{\infty} \frac{Y_d(\eta') - Y_d(\eta)}{\eta' - \eta} V_+(\eta') d\eta' = 0 \quad (7)
\end{equation}

