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Abstract—A circular cylindrical metallic resonator half filled
with DPS material and half with DNG metamaterial is analyzed,
in the frequency domain. The two materials are linear, lossless,
homogeneous, and anti-isorefractive to each other. The electric
field is assumed to be parallel to the cylinder axis. It is shown that
the resonator performs independently of diameter size. Numerical
results are presented and discussed for a resonator excited by a
line source parallel to the axis.

I. INTRODUCTION

A metallic cylindrical resonator half-filled with anti-
isorefractive lossless DNG metamaterial is analyzed in the
frequency domain, with time-dependence factor exp(+jωt)
omitted throughout. The geometrical configuration of the
resonator is independent of the direction along the axis z of
the cylinder, that is, the cross section of the structure in a
plane z = constant is independent of z. Half of the resonator
is filled with a double-positive (DPS) medium characterized
by a real positive electric permittivity ε and a real positive
magnetic permeability µ, while the other half is filled with a
double-negative (DNG) metamaterial characterized by a real
negative permittivity −ε and a real negative permeability −µ.
Consequently, the DNG medium has a real negative refractive
index that is the opposite of the refractive index of the DPS
medium, while the two media have the same real positive
intrinsic impedance. The interface separating the two media
is a plane containing the cylinder axis, so that the resonator
consists of two equal half cylinders, each filled with one of
the two media. The electric field is assumed to be parallel to
the cylinder axis, so that the boundary conditions at the ends
z = constant of the resonator are satisfied and the resonator
length plays no role in the analysis.

The concept of utilizing DNG metamaterial inclusions to
render a resonator size-independent was introduced by En-
gheta [1]-[2] for a one-dimensional structure, to show that
it is possible to build resonators that functions independently
of dimensions at those frequencies for which the metamaterial
behaves as postulated. This concept was later extended to fully
three dimensional cavity resonators by Couture et al. et al. [3]-
[4] and by Uslenghi [5]-[7]. Recently, Daniele et al. [8]-[9]

studied in detail a cylindrical resonator sectorally filled with
metamaterial; in particular, their analysis showed that phase
compensation leading to size independence is possible only
if the cylinder is half-filled with metamaterial. This is the
case examined in the present work, in which the excitation
is provided by an electric line source located anywhere inside
the DPS half cylinder.

II. GEOMETRY OF THE PROBLEM

With reference to rectangular coordinates (x, y, z), the
metallic cylindrical resonator has the z axis as symmetry
axis, the inner radius of its circumference in any plane
z = constant is a, and the length of the resonator in the
z direction does not come into play because the resonator is
assumed to be excited by an electric line source parallel to its
axis, leading to an electric field that is everywhere parallel to z,
so that the boundary conditions at the two circular bases of the
cylinder are always satisfied. The half-cylinder occupying the
volume x < 0 is filled with DPS material characterized by a
wavenumber k = ω

√
εµ and an intrinsic impedance Z =

√
µ
ε .

The half-cylinder occupying the volume x > 0 is filled with a
DNG material whose wavenumber −k is the opposite of the
wavenumber in the DPS region, and whose intrinsic impedance
has the same value Z of the DPS region. The planar interface
x = 0 separates the DPS and DNG regions.

With reference to circular cylindrical coordinates (ρ, ϕ, z),
the DPS material fills the cross-sectional area (0 ≤ ρ ≤ a,
π/2 ≤ ϕ ≤ 3π/2), whereas the DNG material fills the cross-
sectional area (0 ≤ ρ ≤ a, −π/2 ≤ ϕ ≤ π/2). The electric
line source J0 located inside the DPS region at ρ0 (ρ = ρ0,
ϕ = ϕ0) is assumed to be:

J0 = Iδ(ρ− ρo)ẑ = I
1

ρo
δ(ρ− ρo)δ(ϕ− ϕo)ẑ (1)

where I is the intensity (in A), ẑ is a unit vector parallel to
the z axis, and δ is the delta function.

A cross section of the resonator in a plane perpendicular to
its axis is shown in Fig. 1.



Fig. 1. Cross section of the resonator

III. DESCRIPTION OF THE ANALYSIS

The dispersion relation for any homogeneous penetrable
wedge is obtained by expressing the solution to the boundary-
value problem in terms of circular cylindrical coordinates and
imposing the continuity of the tangential electric and magnetic
fields across the two wedge faces. As shown by Osipov [10],
such a relation always results in the product of trigonometric
functions being equal to zero. In the particular case of a wedge
of semi-aperture angle α, whose faces separate two regions of
space that are anti-isorefractive to each other, the dispersion
relation takes the simple form (see [9]):

sin((π − 2α)ν) = 0 (2)

where ν is a constant arising in the solution of the wave
equation by separation of variables. In the present work,
α = π/2, and therefore equation (2) is satisfied for any value
of ν. It follows that the boundary condition on the PEC wall
of the resonator

Jν(ka) = 0 (3)

where Jν is the Bessel function, yields the allowed values of
ν for any given frequency, that is, the cylinder resonates at all
frequencies for which the DNG material behaves as postulated,
and therefore the resonator can be miniaturized.

For a resonator partially filled by a DNG sectoral wedge
whose semiaperture angle α is different from π/2, the solution
for line source excitation has been obtained in [9] by employ-
ing a Green resolvent technique [11]. However, this technique
fails when α = π/2 because the characteristic Green function
cannot be defined in such a case. Hence, a different approach
is introduced in this work.

We introduce an image line source J1 having the same
magnitude but opposite sign of the line source (1), and located
at the image line ρ1 (ρ = ρ0, ϕ = π−ϕ0) with respect to the

interface x = 0 separating the DPS and DNG regions:

J1 = −Iδ(ρ− ρ1)ẑ (4)

Let us designate with E0 = E0ẑ the electric field produced
by the line source J0 when the resonator is completely filled
with DPS material, and with E1 = E1ẑ the electric field
produced by the image line source J1 when the resonator is
completely filled with DNG metamaterial.

It can be proven that the electric field in the half-filled
resonator considered in this work is everywhere given by

E = Ez ẑ = E0p0 +E1p1ẑ (5)

where p0 and p1 are window functions vanishing in the DNG
half-cylinder and in the DPS half-cylinder, respectively.

Slightly modifying the procedure proposed in [12], the fields
En (n = 0 or 1) are given by

En(ρ, ϕ) = jkZIgn(ρ,ρo) (6)

where g0 and g1 are:

go(ρ, ρo) =
1

2π

∞∑
m=0

εmĝom(ρ, ρo) cos[m(ϕ− ϕo)] (7)

g1(ρ, ρ1) =
1

2π

∞∑
m=0

εmĝ1m(ρ, ρ1) cos[m(ϕ− ϕ1)] (8)

where ε0 = 1, εn = 2 for n > 0, and

ĝom(ρ, ρo) =
πJm(koρ <)Dm(koρ >)

2Jm(koa)
(9)

ĝ1m(ρ, ρ1) =
πJm(−koρ <)Dm(−koρ >)

2Jm(−koa)
(10)

with

Dm(kρ) = Jm(kρ>)Ym(kρ>)− Jm(kρ<)Ym(kρ<) (11)

and ρ< (ρ>) is the smaller (larger) between ρ and ρ0. In (9)-
(11) Jm and Ym are respectively the Bessel functions of the
first kind and second kind.

The magnetic field components are obtained from the elec-
tric field via Maxwell’s equations. It can be verified that the
above solution satisfies all the boundary conditions.

Numerical validations and results will be presented at the
conference and they will be published in [13].
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